1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/FixedPoint.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/Module.h"
39 #include <cstdarg>
40 
41 using namespace clang;
42 using namespace CodeGen;
43 using llvm::Value;
44 
45 //===----------------------------------------------------------------------===//
46 //                         Scalar Expression Emitter
47 //===----------------------------------------------------------------------===//
48 
49 namespace {
50 
51 /// Determine whether the given binary operation may overflow.
52 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
53 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
54 /// the returned overflow check is precise. The returned value is 'true' for
55 /// all other opcodes, to be conservative.
56 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
57                              BinaryOperator::Opcode Opcode, bool Signed,
58                              llvm::APInt &Result) {
59   // Assume overflow is possible, unless we can prove otherwise.
60   bool Overflow = true;
61   const auto &LHSAP = LHS->getValue();
62   const auto &RHSAP = RHS->getValue();
63   if (Opcode == BO_Add) {
64     if (Signed)
65       Result = LHSAP.sadd_ov(RHSAP, Overflow);
66     else
67       Result = LHSAP.uadd_ov(RHSAP, Overflow);
68   } else if (Opcode == BO_Sub) {
69     if (Signed)
70       Result = LHSAP.ssub_ov(RHSAP, Overflow);
71     else
72       Result = LHSAP.usub_ov(RHSAP, Overflow);
73   } else if (Opcode == BO_Mul) {
74     if (Signed)
75       Result = LHSAP.smul_ov(RHSAP, Overflow);
76     else
77       Result = LHSAP.umul_ov(RHSAP, Overflow);
78   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
79     if (Signed && !RHS->isZero())
80       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
81     else
82       return false;
83   }
84   return Overflow;
85 }
86 
87 struct BinOpInfo {
88   Value *LHS;
89   Value *RHS;
90   QualType Ty;  // Computation Type.
91   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
92   FPOptions FPFeatures;
93   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
94 
95   /// Check if the binop can result in integer overflow.
96   bool mayHaveIntegerOverflow() const {
97     // Without constant input, we can't rule out overflow.
98     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
99     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
100     if (!LHSCI || !RHSCI)
101       return true;
102 
103     llvm::APInt Result;
104     return ::mayHaveIntegerOverflow(
105         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
106   }
107 
108   /// Check if the binop computes a division or a remainder.
109   bool isDivremOp() const {
110     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
111            Opcode == BO_RemAssign;
112   }
113 
114   /// Check if the binop can result in an integer division by zero.
115   bool mayHaveIntegerDivisionByZero() const {
116     if (isDivremOp())
117       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
118         return CI->isZero();
119     return true;
120   }
121 
122   /// Check if the binop can result in a float division by zero.
123   bool mayHaveFloatDivisionByZero() const {
124     if (isDivremOp())
125       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
126         return CFP->isZero();
127     return true;
128   }
129 
130   /// Check if either operand is a fixed point type or integer type, with at
131   /// least one being a fixed point type. In any case, this
132   /// operation did not follow usual arithmetic conversion and both operands may
133   /// not be the same.
134   bool isFixedPointBinOp() const {
135     // We cannot simply check the result type since comparison operations return
136     // an int.
137     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
138       QualType LHSType = BinOp->getLHS()->getType();
139       QualType RHSType = BinOp->getRHS()->getType();
140       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
141     }
142     return false;
143   }
144 };
145 
146 static bool MustVisitNullValue(const Expr *E) {
147   // If a null pointer expression's type is the C++0x nullptr_t, then
148   // it's not necessarily a simple constant and it must be evaluated
149   // for its potential side effects.
150   return E->getType()->isNullPtrType();
151 }
152 
153 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
154 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
155                                                         const Expr *E) {
156   const Expr *Base = E->IgnoreImpCasts();
157   if (E == Base)
158     return llvm::None;
159 
160   QualType BaseTy = Base->getType();
161   if (!BaseTy->isPromotableIntegerType() ||
162       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
163     return llvm::None;
164 
165   return BaseTy;
166 }
167 
168 /// Check if \p E is a widened promoted integer.
169 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
170   return getUnwidenedIntegerType(Ctx, E).hasValue();
171 }
172 
173 /// Check if we can skip the overflow check for \p Op.
174 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
175   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
176          "Expected a unary or binary operator");
177 
178   // If the binop has constant inputs and we can prove there is no overflow,
179   // we can elide the overflow check.
180   if (!Op.mayHaveIntegerOverflow())
181     return true;
182 
183   // If a unary op has a widened operand, the op cannot overflow.
184   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
185     return !UO->canOverflow();
186 
187   // We usually don't need overflow checks for binops with widened operands.
188   // Multiplication with promoted unsigned operands is a special case.
189   const auto *BO = cast<BinaryOperator>(Op.E);
190   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
191   if (!OptionalLHSTy)
192     return false;
193 
194   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
195   if (!OptionalRHSTy)
196     return false;
197 
198   QualType LHSTy = *OptionalLHSTy;
199   QualType RHSTy = *OptionalRHSTy;
200 
201   // This is the simple case: binops without unsigned multiplication, and with
202   // widened operands. No overflow check is needed here.
203   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
204       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
205     return true;
206 
207   // For unsigned multiplication the overflow check can be elided if either one
208   // of the unpromoted types are less than half the size of the promoted type.
209   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
210   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
211          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
212 }
213 
214 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
215 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
216                                 FPOptions FPFeatures) {
217   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
218 }
219 
220 /// Propagate fast-math flags from \p Op to the instruction in \p V.
221 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
222   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
223     llvm::FastMathFlags FMF = I->getFastMathFlags();
224     updateFastMathFlags(FMF, Op.FPFeatures);
225     I->setFastMathFlags(FMF);
226   }
227   return V;
228 }
229 
230 class ScalarExprEmitter
231   : public StmtVisitor<ScalarExprEmitter, Value*> {
232   CodeGenFunction &CGF;
233   CGBuilderTy &Builder;
234   bool IgnoreResultAssign;
235   llvm::LLVMContext &VMContext;
236 public:
237 
238   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
239     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
240       VMContext(cgf.getLLVMContext()) {
241   }
242 
243   //===--------------------------------------------------------------------===//
244   //                               Utilities
245   //===--------------------------------------------------------------------===//
246 
247   bool TestAndClearIgnoreResultAssign() {
248     bool I = IgnoreResultAssign;
249     IgnoreResultAssign = false;
250     return I;
251   }
252 
253   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
254   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
255   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
256     return CGF.EmitCheckedLValue(E, TCK);
257   }
258 
259   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
260                       const BinOpInfo &Info);
261 
262   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
263     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
264   }
265 
266   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
267     const AlignValueAttr *AVAttr = nullptr;
268     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
269       const ValueDecl *VD = DRE->getDecl();
270 
271       if (VD->getType()->isReferenceType()) {
272         if (const auto *TTy =
273             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
274           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
275       } else {
276         // Assumptions for function parameters are emitted at the start of the
277         // function, so there is no need to repeat that here,
278         // unless the alignment-assumption sanitizer is enabled,
279         // then we prefer the assumption over alignment attribute
280         // on IR function param.
281         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
282           return;
283 
284         AVAttr = VD->getAttr<AlignValueAttr>();
285       }
286     }
287 
288     if (!AVAttr)
289       if (const auto *TTy =
290           dyn_cast<TypedefType>(E->getType()))
291         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
292 
293     if (!AVAttr)
294       return;
295 
296     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
297     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
298     CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
299   }
300 
301   /// EmitLoadOfLValue - Given an expression with complex type that represents a
302   /// value l-value, this method emits the address of the l-value, then loads
303   /// and returns the result.
304   Value *EmitLoadOfLValue(const Expr *E) {
305     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
306                                 E->getExprLoc());
307 
308     EmitLValueAlignmentAssumption(E, V);
309     return V;
310   }
311 
312   /// EmitConversionToBool - Convert the specified expression value to a
313   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
314   Value *EmitConversionToBool(Value *Src, QualType DstTy);
315 
316   /// Emit a check that a conversion from a floating-point type does not
317   /// overflow.
318   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
319                                 Value *Src, QualType SrcType, QualType DstType,
320                                 llvm::Type *DstTy, SourceLocation Loc);
321 
322   /// Known implicit conversion check kinds.
323   /// Keep in sync with the enum of the same name in ubsan_handlers.h
324   enum ImplicitConversionCheckKind : unsigned char {
325     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
326     ICCK_UnsignedIntegerTruncation = 1,
327     ICCK_SignedIntegerTruncation = 2,
328     ICCK_IntegerSignChange = 3,
329     ICCK_SignedIntegerTruncationOrSignChange = 4,
330   };
331 
332   /// Emit a check that an [implicit] truncation of an integer  does not
333   /// discard any bits. It is not UB, so we use the value after truncation.
334   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
335                                   QualType DstType, SourceLocation Loc);
336 
337   /// Emit a check that an [implicit] conversion of an integer does not change
338   /// the sign of the value. It is not UB, so we use the value after conversion.
339   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
340   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
341                                   QualType DstType, SourceLocation Loc);
342 
343   /// Emit a conversion from the specified type to the specified destination
344   /// type, both of which are LLVM scalar types.
345   struct ScalarConversionOpts {
346     bool TreatBooleanAsSigned;
347     bool EmitImplicitIntegerTruncationChecks;
348     bool EmitImplicitIntegerSignChangeChecks;
349 
350     ScalarConversionOpts()
351         : TreatBooleanAsSigned(false),
352           EmitImplicitIntegerTruncationChecks(false),
353           EmitImplicitIntegerSignChangeChecks(false) {}
354 
355     ScalarConversionOpts(clang::SanitizerSet SanOpts)
356         : TreatBooleanAsSigned(false),
357           EmitImplicitIntegerTruncationChecks(
358               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
359           EmitImplicitIntegerSignChangeChecks(
360               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
361   };
362   Value *
363   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
364                        SourceLocation Loc,
365                        ScalarConversionOpts Opts = ScalarConversionOpts());
366 
367   /// Convert between either a fixed point and other fixed point or fixed point
368   /// and an integer.
369   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
370                                   SourceLocation Loc);
371   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
372                                   FixedPointSemantics &DstFixedSema,
373                                   SourceLocation Loc,
374                                   bool DstIsInteger = false);
375 
376   /// Emit a conversion from the specified complex type to the specified
377   /// destination type, where the destination type is an LLVM scalar type.
378   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
379                                        QualType SrcTy, QualType DstTy,
380                                        SourceLocation Loc);
381 
382   /// EmitNullValue - Emit a value that corresponds to null for the given type.
383   Value *EmitNullValue(QualType Ty);
384 
385   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
386   Value *EmitFloatToBoolConversion(Value *V) {
387     // Compare against 0.0 for fp scalars.
388     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
389     return Builder.CreateFCmpUNE(V, Zero, "tobool");
390   }
391 
392   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
393   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
394     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
395 
396     return Builder.CreateICmpNE(V, Zero, "tobool");
397   }
398 
399   Value *EmitIntToBoolConversion(Value *V) {
400     // Because of the type rules of C, we often end up computing a
401     // logical value, then zero extending it to int, then wanting it
402     // as a logical value again.  Optimize this common case.
403     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
404       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
405         Value *Result = ZI->getOperand(0);
406         // If there aren't any more uses, zap the instruction to save space.
407         // Note that there can be more uses, for example if this
408         // is the result of an assignment.
409         if (ZI->use_empty())
410           ZI->eraseFromParent();
411         return Result;
412       }
413     }
414 
415     return Builder.CreateIsNotNull(V, "tobool");
416   }
417 
418   //===--------------------------------------------------------------------===//
419   //                            Visitor Methods
420   //===--------------------------------------------------------------------===//
421 
422   Value *Visit(Expr *E) {
423     ApplyDebugLocation DL(CGF, E);
424     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
425   }
426 
427   Value *VisitStmt(Stmt *S) {
428     S->dump(CGF.getContext().getSourceManager());
429     llvm_unreachable("Stmt can't have complex result type!");
430   }
431   Value *VisitExpr(Expr *S);
432 
433   Value *VisitConstantExpr(ConstantExpr *E) {
434     return Visit(E->getSubExpr());
435   }
436   Value *VisitParenExpr(ParenExpr *PE) {
437     return Visit(PE->getSubExpr());
438   }
439   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
440     return Visit(E->getReplacement());
441   }
442   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
443     return Visit(GE->getResultExpr());
444   }
445   Value *VisitCoawaitExpr(CoawaitExpr *S) {
446     return CGF.EmitCoawaitExpr(*S).getScalarVal();
447   }
448   Value *VisitCoyieldExpr(CoyieldExpr *S) {
449     return CGF.EmitCoyieldExpr(*S).getScalarVal();
450   }
451   Value *VisitUnaryCoawait(const UnaryOperator *E) {
452     return Visit(E->getSubExpr());
453   }
454 
455   // Leaves.
456   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
457     return Builder.getInt(E->getValue());
458   }
459   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
460     return Builder.getInt(E->getValue());
461   }
462   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
463     return llvm::ConstantFP::get(VMContext, E->getValue());
464   }
465   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
466     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467   }
468   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
469     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
470   }
471   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
472     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
473   }
474   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
475     return EmitNullValue(E->getType());
476   }
477   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
478     return EmitNullValue(E->getType());
479   }
480   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
481   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
482   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
483     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
484     return Builder.CreateBitCast(V, ConvertType(E->getType()));
485   }
486 
487   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
488     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
489   }
490 
491   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
492     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
493   }
494 
495   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
496     if (E->isGLValue())
497       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
498                               E->getExprLoc());
499 
500     // Otherwise, assume the mapping is the scalar directly.
501     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
502   }
503 
504   // l-values.
505   Value *VisitDeclRefExpr(DeclRefExpr *E) {
506     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
507       return CGF.emitScalarConstant(Constant, E);
508     return EmitLoadOfLValue(E);
509   }
510 
511   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
512     return CGF.EmitObjCSelectorExpr(E);
513   }
514   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
515     return CGF.EmitObjCProtocolExpr(E);
516   }
517   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
518     return EmitLoadOfLValue(E);
519   }
520   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
521     if (E->getMethodDecl() &&
522         E->getMethodDecl()->getReturnType()->isReferenceType())
523       return EmitLoadOfLValue(E);
524     return CGF.EmitObjCMessageExpr(E).getScalarVal();
525   }
526 
527   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
528     LValue LV = CGF.EmitObjCIsaExpr(E);
529     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
530     return V;
531   }
532 
533   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
534     VersionTuple Version = E->getVersion();
535 
536     // If we're checking for a platform older than our minimum deployment
537     // target, we can fold the check away.
538     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
539       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
540 
541     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
542     llvm::Value *Args[] = {
543         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
544         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
545         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
546     };
547 
548     return CGF.EmitBuiltinAvailable(Args);
549   }
550 
551   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
552   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
553   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
554   Value *VisitMemberExpr(MemberExpr *E);
555   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
556   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
557     return EmitLoadOfLValue(E);
558   }
559 
560   Value *VisitInitListExpr(InitListExpr *E);
561 
562   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
563     assert(CGF.getArrayInitIndex() &&
564            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
565     return CGF.getArrayInitIndex();
566   }
567 
568   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
569     return EmitNullValue(E->getType());
570   }
571   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
572     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
573     return VisitCastExpr(E);
574   }
575   Value *VisitCastExpr(CastExpr *E);
576 
577   Value *VisitCallExpr(const CallExpr *E) {
578     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
579       return EmitLoadOfLValue(E);
580 
581     Value *V = CGF.EmitCallExpr(E).getScalarVal();
582 
583     EmitLValueAlignmentAssumption(E, V);
584     return V;
585   }
586 
587   Value *VisitStmtExpr(const StmtExpr *E);
588 
589   // Unary Operators.
590   Value *VisitUnaryPostDec(const UnaryOperator *E) {
591     LValue LV = EmitLValue(E->getSubExpr());
592     return EmitScalarPrePostIncDec(E, LV, false, false);
593   }
594   Value *VisitUnaryPostInc(const UnaryOperator *E) {
595     LValue LV = EmitLValue(E->getSubExpr());
596     return EmitScalarPrePostIncDec(E, LV, true, false);
597   }
598   Value *VisitUnaryPreDec(const UnaryOperator *E) {
599     LValue LV = EmitLValue(E->getSubExpr());
600     return EmitScalarPrePostIncDec(E, LV, false, true);
601   }
602   Value *VisitUnaryPreInc(const UnaryOperator *E) {
603     LValue LV = EmitLValue(E->getSubExpr());
604     return EmitScalarPrePostIncDec(E, LV, true, true);
605   }
606 
607   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
608                                                   llvm::Value *InVal,
609                                                   bool IsInc);
610 
611   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
612                                        bool isInc, bool isPre);
613 
614 
615   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
616     if (isa<MemberPointerType>(E->getType())) // never sugared
617       return CGF.CGM.getMemberPointerConstant(E);
618 
619     return EmitLValue(E->getSubExpr()).getPointer(CGF);
620   }
621   Value *VisitUnaryDeref(const UnaryOperator *E) {
622     if (E->getType()->isVoidType())
623       return Visit(E->getSubExpr()); // the actual value should be unused
624     return EmitLoadOfLValue(E);
625   }
626   Value *VisitUnaryPlus(const UnaryOperator *E) {
627     // This differs from gcc, though, most likely due to a bug in gcc.
628     TestAndClearIgnoreResultAssign();
629     return Visit(E->getSubExpr());
630   }
631   Value *VisitUnaryMinus    (const UnaryOperator *E);
632   Value *VisitUnaryNot      (const UnaryOperator *E);
633   Value *VisitUnaryLNot     (const UnaryOperator *E);
634   Value *VisitUnaryReal     (const UnaryOperator *E);
635   Value *VisitUnaryImag     (const UnaryOperator *E);
636   Value *VisitUnaryExtension(const UnaryOperator *E) {
637     return Visit(E->getSubExpr());
638   }
639 
640   // C++
641   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
642     return EmitLoadOfLValue(E);
643   }
644   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
645     auto &Ctx = CGF.getContext();
646     APValue Evaluated =
647         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
648     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
649                                              SLE->getType());
650   }
651 
652   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
653     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
654     return Visit(DAE->getExpr());
655   }
656   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
657     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
658     return Visit(DIE->getExpr());
659   }
660   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
661     return CGF.LoadCXXThis();
662   }
663 
664   Value *VisitExprWithCleanups(ExprWithCleanups *E);
665   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
666     return CGF.EmitCXXNewExpr(E);
667   }
668   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
669     CGF.EmitCXXDeleteExpr(E);
670     return nullptr;
671   }
672 
673   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
674     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
675   }
676 
677   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
678     return Builder.getInt1(E->isSatisfied());
679   }
680 
681   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
682     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
683   }
684 
685   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
686     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
687   }
688 
689   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
690     // C++ [expr.pseudo]p1:
691     //   The result shall only be used as the operand for the function call
692     //   operator (), and the result of such a call has type void. The only
693     //   effect is the evaluation of the postfix-expression before the dot or
694     //   arrow.
695     CGF.EmitScalarExpr(E->getBase());
696     return nullptr;
697   }
698 
699   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
700     return EmitNullValue(E->getType());
701   }
702 
703   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
704     CGF.EmitCXXThrowExpr(E);
705     return nullptr;
706   }
707 
708   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
709     return Builder.getInt1(E->getValue());
710   }
711 
712   // Binary Operators.
713   Value *EmitMul(const BinOpInfo &Ops) {
714     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
715       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
716       case LangOptions::SOB_Defined:
717         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
718       case LangOptions::SOB_Undefined:
719         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
720           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
721         LLVM_FALLTHROUGH;
722       case LangOptions::SOB_Trapping:
723         if (CanElideOverflowCheck(CGF.getContext(), Ops))
724           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
725         return EmitOverflowCheckedBinOp(Ops);
726       }
727     }
728 
729     if (Ops.Ty->isUnsignedIntegerType() &&
730         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
731         !CanElideOverflowCheck(CGF.getContext(), Ops))
732       return EmitOverflowCheckedBinOp(Ops);
733 
734     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
735       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
736       return propagateFMFlags(V, Ops);
737     }
738     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
739   }
740   /// Create a binary op that checks for overflow.
741   /// Currently only supports +, - and *.
742   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
743 
744   // Check for undefined division and modulus behaviors.
745   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
746                                                   llvm::Value *Zero,bool isDiv);
747   // Common helper for getting how wide LHS of shift is.
748   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
749   Value *EmitDiv(const BinOpInfo &Ops);
750   Value *EmitRem(const BinOpInfo &Ops);
751   Value *EmitAdd(const BinOpInfo &Ops);
752   Value *EmitSub(const BinOpInfo &Ops);
753   Value *EmitShl(const BinOpInfo &Ops);
754   Value *EmitShr(const BinOpInfo &Ops);
755   Value *EmitAnd(const BinOpInfo &Ops) {
756     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
757   }
758   Value *EmitXor(const BinOpInfo &Ops) {
759     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
760   }
761   Value *EmitOr (const BinOpInfo &Ops) {
762     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
763   }
764 
765   // Helper functions for fixed point binary operations.
766   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
767 
768   BinOpInfo EmitBinOps(const BinaryOperator *E);
769   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
770                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
771                                   Value *&Result);
772 
773   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
774                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
775 
776   // Binary operators and binary compound assignment operators.
777 #define HANDLEBINOP(OP) \
778   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
779     return Emit ## OP(EmitBinOps(E));                                      \
780   }                                                                        \
781   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
782     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
783   }
784   HANDLEBINOP(Mul)
785   HANDLEBINOP(Div)
786   HANDLEBINOP(Rem)
787   HANDLEBINOP(Add)
788   HANDLEBINOP(Sub)
789   HANDLEBINOP(Shl)
790   HANDLEBINOP(Shr)
791   HANDLEBINOP(And)
792   HANDLEBINOP(Xor)
793   HANDLEBINOP(Or)
794 #undef HANDLEBINOP
795 
796   // Comparisons.
797   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
798                      llvm::CmpInst::Predicate SICmpOpc,
799                      llvm::CmpInst::Predicate FCmpOpc);
800 #define VISITCOMP(CODE, UI, SI, FP) \
801     Value *VisitBin##CODE(const BinaryOperator *E) { \
802       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
803                          llvm::FCmpInst::FP); }
804   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
805   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
806   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
807   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
808   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
809   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
810 #undef VISITCOMP
811 
812   Value *VisitBinAssign     (const BinaryOperator *E);
813 
814   Value *VisitBinLAnd       (const BinaryOperator *E);
815   Value *VisitBinLOr        (const BinaryOperator *E);
816   Value *VisitBinComma      (const BinaryOperator *E);
817 
818   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
819   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
820 
821   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
822     return Visit(E->getSemanticForm());
823   }
824 
825   // Other Operators.
826   Value *VisitBlockExpr(const BlockExpr *BE);
827   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
828   Value *VisitChooseExpr(ChooseExpr *CE);
829   Value *VisitVAArgExpr(VAArgExpr *VE);
830   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
831     return CGF.EmitObjCStringLiteral(E);
832   }
833   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
834     return CGF.EmitObjCBoxedExpr(E);
835   }
836   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
837     return CGF.EmitObjCArrayLiteral(E);
838   }
839   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
840     return CGF.EmitObjCDictionaryLiteral(E);
841   }
842   Value *VisitAsTypeExpr(AsTypeExpr *CE);
843   Value *VisitAtomicExpr(AtomicExpr *AE);
844 };
845 }  // end anonymous namespace.
846 
847 //===----------------------------------------------------------------------===//
848 //                                Utilities
849 //===----------------------------------------------------------------------===//
850 
851 /// EmitConversionToBool - Convert the specified expression value to a
852 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
853 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
854   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
855 
856   if (SrcType->isRealFloatingType())
857     return EmitFloatToBoolConversion(Src);
858 
859   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
860     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
861 
862   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
863          "Unknown scalar type to convert");
864 
865   if (isa<llvm::IntegerType>(Src->getType()))
866     return EmitIntToBoolConversion(Src);
867 
868   assert(isa<llvm::PointerType>(Src->getType()));
869   return EmitPointerToBoolConversion(Src, SrcType);
870 }
871 
872 void ScalarExprEmitter::EmitFloatConversionCheck(
873     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
874     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
875   assert(SrcType->isFloatingType() && "not a conversion from floating point");
876   if (!isa<llvm::IntegerType>(DstTy))
877     return;
878 
879   CodeGenFunction::SanitizerScope SanScope(&CGF);
880   using llvm::APFloat;
881   using llvm::APSInt;
882 
883   llvm::Value *Check = nullptr;
884   const llvm::fltSemantics &SrcSema =
885     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
886 
887   // Floating-point to integer. This has undefined behavior if the source is
888   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
889   // to an integer).
890   unsigned Width = CGF.getContext().getIntWidth(DstType);
891   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
892 
893   APSInt Min = APSInt::getMinValue(Width, Unsigned);
894   APFloat MinSrc(SrcSema, APFloat::uninitialized);
895   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
896       APFloat::opOverflow)
897     // Don't need an overflow check for lower bound. Just check for
898     // -Inf/NaN.
899     MinSrc = APFloat::getInf(SrcSema, true);
900   else
901     // Find the largest value which is too small to represent (before
902     // truncation toward zero).
903     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
904 
905   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
906   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
907   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
908       APFloat::opOverflow)
909     // Don't need an overflow check for upper bound. Just check for
910     // +Inf/NaN.
911     MaxSrc = APFloat::getInf(SrcSema, false);
912   else
913     // Find the smallest value which is too large to represent (before
914     // truncation toward zero).
915     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
916 
917   // If we're converting from __half, convert the range to float to match
918   // the type of src.
919   if (OrigSrcType->isHalfType()) {
920     const llvm::fltSemantics &Sema =
921       CGF.getContext().getFloatTypeSemantics(SrcType);
922     bool IsInexact;
923     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
924     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
925   }
926 
927   llvm::Value *GE =
928     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
929   llvm::Value *LE =
930     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
931   Check = Builder.CreateAnd(GE, LE);
932 
933   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
934                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
935                                   CGF.EmitCheckTypeDescriptor(DstType)};
936   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
937                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
938 }
939 
940 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
941 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
942 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
943                  std::pair<llvm::Value *, SanitizerMask>>
944 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
945                                  QualType DstType, CGBuilderTy &Builder) {
946   llvm::Type *SrcTy = Src->getType();
947   llvm::Type *DstTy = Dst->getType();
948   (void)DstTy; // Only used in assert()
949 
950   // This should be truncation of integral types.
951   assert(Src != Dst);
952   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
953   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
954          "non-integer llvm type");
955 
956   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
957   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
958 
959   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
960   // Else, it is a signed truncation.
961   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
962   SanitizerMask Mask;
963   if (!SrcSigned && !DstSigned) {
964     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
965     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
966   } else {
967     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
968     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
969   }
970 
971   llvm::Value *Check = nullptr;
972   // 1. Extend the truncated value back to the same width as the Src.
973   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
974   // 2. Equality-compare with the original source value
975   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
976   // If the comparison result is 'i1 false', then the truncation was lossy.
977   return std::make_pair(Kind, std::make_pair(Check, Mask));
978 }
979 
980 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
981     QualType SrcType, QualType DstType) {
982   return SrcType->isIntegerType() && DstType->isIntegerType();
983 }
984 
985 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
986                                                    Value *Dst, QualType DstType,
987                                                    SourceLocation Loc) {
988   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
989     return;
990 
991   // We only care about int->int conversions here.
992   // We ignore conversions to/from pointer and/or bool.
993   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
994                                                                        DstType))
995     return;
996 
997   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
998   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
999   // This must be truncation. Else we do not care.
1000   if (SrcBits <= DstBits)
1001     return;
1002 
1003   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1004 
1005   // If the integer sign change sanitizer is enabled,
1006   // and we are truncating from larger unsigned type to smaller signed type,
1007   // let that next sanitizer deal with it.
1008   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1009   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1010   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1011       (!SrcSigned && DstSigned))
1012     return;
1013 
1014   CodeGenFunction::SanitizerScope SanScope(&CGF);
1015 
1016   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1017             std::pair<llvm::Value *, SanitizerMask>>
1018       Check =
1019           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1020   // If the comparison result is 'i1 false', then the truncation was lossy.
1021 
1022   // Do we care about this type of truncation?
1023   if (!CGF.SanOpts.has(Check.second.second))
1024     return;
1025 
1026   llvm::Constant *StaticArgs[] = {
1027       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1028       CGF.EmitCheckTypeDescriptor(DstType),
1029       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1030   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1031                 {Src, Dst});
1032 }
1033 
1034 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1035 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1036 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1037                  std::pair<llvm::Value *, SanitizerMask>>
1038 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1039                                  QualType DstType, CGBuilderTy &Builder) {
1040   llvm::Type *SrcTy = Src->getType();
1041   llvm::Type *DstTy = Dst->getType();
1042 
1043   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1044          "non-integer llvm type");
1045 
1046   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1047   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1048   (void)SrcSigned; // Only used in assert()
1049   (void)DstSigned; // Only used in assert()
1050   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1051   unsigned DstBits = DstTy->getScalarSizeInBits();
1052   (void)SrcBits; // Only used in assert()
1053   (void)DstBits; // Only used in assert()
1054 
1055   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1056          "either the widths should be different, or the signednesses.");
1057 
1058   // NOTE: zero value is considered to be non-negative.
1059   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1060                                        const char *Name) -> Value * {
1061     // Is this value a signed type?
1062     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1063     llvm::Type *VTy = V->getType();
1064     if (!VSigned) {
1065       // If the value is unsigned, then it is never negative.
1066       // FIXME: can we encounter non-scalar VTy here?
1067       return llvm::ConstantInt::getFalse(VTy->getContext());
1068     }
1069     // Get the zero of the same type with which we will be comparing.
1070     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1071     // %V.isnegative = icmp slt %V, 0
1072     // I.e is %V *strictly* less than zero, does it have negative value?
1073     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1074                               llvm::Twine(Name) + "." + V->getName() +
1075                                   ".negativitycheck");
1076   };
1077 
1078   // 1. Was the old Value negative?
1079   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1080   // 2. Is the new Value negative?
1081   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1082   // 3. Now, was the 'negativity status' preserved during the conversion?
1083   //    NOTE: conversion from negative to zero is considered to change the sign.
1084   //    (We want to get 'false' when the conversion changed the sign)
1085   //    So we should just equality-compare the negativity statuses.
1086   llvm::Value *Check = nullptr;
1087   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1088   // If the comparison result is 'false', then the conversion changed the sign.
1089   return std::make_pair(
1090       ScalarExprEmitter::ICCK_IntegerSignChange,
1091       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1092 }
1093 
1094 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1095                                                    Value *Dst, QualType DstType,
1096                                                    SourceLocation Loc) {
1097   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1098     return;
1099 
1100   llvm::Type *SrcTy = Src->getType();
1101   llvm::Type *DstTy = Dst->getType();
1102 
1103   // We only care about int->int conversions here.
1104   // We ignore conversions to/from pointer and/or bool.
1105   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1106                                                                        DstType))
1107     return;
1108 
1109   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1110   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1111   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1112   unsigned DstBits = DstTy->getScalarSizeInBits();
1113 
1114   // Now, we do not need to emit the check in *all* of the cases.
1115   // We can avoid emitting it in some obvious cases where it would have been
1116   // dropped by the opt passes (instcombine) always anyways.
1117   // If it's a cast between effectively the same type, no check.
1118   // NOTE: this is *not* equivalent to checking the canonical types.
1119   if (SrcSigned == DstSigned && SrcBits == DstBits)
1120     return;
1121   // At least one of the values needs to have signed type.
1122   // If both are unsigned, then obviously, neither of them can be negative.
1123   if (!SrcSigned && !DstSigned)
1124     return;
1125   // If the conversion is to *larger* *signed* type, then no check is needed.
1126   // Because either sign-extension happens (so the sign will remain),
1127   // or zero-extension will happen (the sign bit will be zero.)
1128   if ((DstBits > SrcBits) && DstSigned)
1129     return;
1130   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1131       (SrcBits > DstBits) && SrcSigned) {
1132     // If the signed integer truncation sanitizer is enabled,
1133     // and this is a truncation from signed type, then no check is needed.
1134     // Because here sign change check is interchangeable with truncation check.
1135     return;
1136   }
1137   // That's it. We can't rule out any more cases with the data we have.
1138 
1139   CodeGenFunction::SanitizerScope SanScope(&CGF);
1140 
1141   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1142             std::pair<llvm::Value *, SanitizerMask>>
1143       Check;
1144 
1145   // Each of these checks needs to return 'false' when an issue was detected.
1146   ImplicitConversionCheckKind CheckKind;
1147   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1148   // So we can 'and' all the checks together, and still get 'false',
1149   // if at least one of the checks detected an issue.
1150 
1151   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1152   CheckKind = Check.first;
1153   Checks.emplace_back(Check.second);
1154 
1155   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1156       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1157     // If the signed integer truncation sanitizer was enabled,
1158     // and we are truncating from larger unsigned type to smaller signed type,
1159     // let's handle the case we skipped in that check.
1160     Check =
1161         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1162     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1163     Checks.emplace_back(Check.second);
1164     // If the comparison result is 'i1 false', then the truncation was lossy.
1165   }
1166 
1167   llvm::Constant *StaticArgs[] = {
1168       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1169       CGF.EmitCheckTypeDescriptor(DstType),
1170       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1171   // EmitCheck() will 'and' all the checks together.
1172   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1173                 {Src, Dst});
1174 }
1175 
1176 /// Emit a conversion from the specified type to the specified destination type,
1177 /// both of which are LLVM scalar types.
1178 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1179                                                QualType DstType,
1180                                                SourceLocation Loc,
1181                                                ScalarConversionOpts Opts) {
1182   // All conversions involving fixed point types should be handled by the
1183   // EmitFixedPoint family functions. This is done to prevent bloating up this
1184   // function more, and although fixed point numbers are represented by
1185   // integers, we do not want to follow any logic that assumes they should be
1186   // treated as integers.
1187   // TODO(leonardchan): When necessary, add another if statement checking for
1188   // conversions to fixed point types from other types.
1189   if (SrcType->isFixedPointType()) {
1190     if (DstType->isBooleanType())
1191       // It is important that we check this before checking if the dest type is
1192       // an integer because booleans are technically integer types.
1193       // We do not need to check the padding bit on unsigned types if unsigned
1194       // padding is enabled because overflow into this bit is undefined
1195       // behavior.
1196       return Builder.CreateIsNotNull(Src, "tobool");
1197     if (DstType->isFixedPointType() || DstType->isIntegerType())
1198       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1199 
1200     llvm_unreachable(
1201         "Unhandled scalar conversion from a fixed point type to another type.");
1202   } else if (DstType->isFixedPointType()) {
1203     if (SrcType->isIntegerType())
1204       // This also includes converting booleans and enums to fixed point types.
1205       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1206 
1207     llvm_unreachable(
1208         "Unhandled scalar conversion to a fixed point type from another type.");
1209   }
1210 
1211   QualType NoncanonicalSrcType = SrcType;
1212   QualType NoncanonicalDstType = DstType;
1213 
1214   SrcType = CGF.getContext().getCanonicalType(SrcType);
1215   DstType = CGF.getContext().getCanonicalType(DstType);
1216   if (SrcType == DstType) return Src;
1217 
1218   if (DstType->isVoidType()) return nullptr;
1219 
1220   llvm::Value *OrigSrc = Src;
1221   QualType OrigSrcType = SrcType;
1222   llvm::Type *SrcTy = Src->getType();
1223 
1224   // Handle conversions to bool first, they are special: comparisons against 0.
1225   if (DstType->isBooleanType())
1226     return EmitConversionToBool(Src, SrcType);
1227 
1228   llvm::Type *DstTy = ConvertType(DstType);
1229 
1230   // Cast from half through float if half isn't a native type.
1231   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1232     // Cast to FP using the intrinsic if the half type itself isn't supported.
1233     if (DstTy->isFloatingPointTy()) {
1234       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1235         return Builder.CreateCall(
1236             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1237             Src);
1238     } else {
1239       // Cast to other types through float, using either the intrinsic or FPExt,
1240       // depending on whether the half type itself is supported
1241       // (as opposed to operations on half, available with NativeHalfType).
1242       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1243         Src = Builder.CreateCall(
1244             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1245                                  CGF.CGM.FloatTy),
1246             Src);
1247       } else {
1248         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1249       }
1250       SrcType = CGF.getContext().FloatTy;
1251       SrcTy = CGF.FloatTy;
1252     }
1253   }
1254 
1255   // Ignore conversions like int -> uint.
1256   if (SrcTy == DstTy) {
1257     if (Opts.EmitImplicitIntegerSignChangeChecks)
1258       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1259                                  NoncanonicalDstType, Loc);
1260 
1261     return Src;
1262   }
1263 
1264   // Handle pointer conversions next: pointers can only be converted to/from
1265   // other pointers and integers. Check for pointer types in terms of LLVM, as
1266   // some native types (like Obj-C id) may map to a pointer type.
1267   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1268     // The source value may be an integer, or a pointer.
1269     if (isa<llvm::PointerType>(SrcTy))
1270       return Builder.CreateBitCast(Src, DstTy, "conv");
1271 
1272     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1273     // First, convert to the correct width so that we control the kind of
1274     // extension.
1275     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1276     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1277     llvm::Value* IntResult =
1278         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1279     // Then, cast to pointer.
1280     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1281   }
1282 
1283   if (isa<llvm::PointerType>(SrcTy)) {
1284     // Must be an ptr to int cast.
1285     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1286     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1287   }
1288 
1289   // A scalar can be splatted to an extended vector of the same element type
1290   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1291     // Sema should add casts to make sure that the source expression's type is
1292     // the same as the vector's element type (sans qualifiers)
1293     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1294                SrcType.getTypePtr() &&
1295            "Splatted expr doesn't match with vector element type?");
1296 
1297     // Splat the element across to all elements
1298     unsigned NumElements = DstTy->getVectorNumElements();
1299     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1300   }
1301 
1302   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1303     // Allow bitcast from vector to integer/fp of the same size.
1304     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1305     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1306     if (SrcSize == DstSize)
1307       return Builder.CreateBitCast(Src, DstTy, "conv");
1308 
1309     // Conversions between vectors of different sizes are not allowed except
1310     // when vectors of half are involved. Operations on storage-only half
1311     // vectors require promoting half vector operands to float vectors and
1312     // truncating the result, which is either an int or float vector, to a
1313     // short or half vector.
1314 
1315     // Source and destination are both expected to be vectors.
1316     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1317     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1318     (void)DstElementTy;
1319 
1320     assert(((SrcElementTy->isIntegerTy() &&
1321              DstElementTy->isIntegerTy()) ||
1322             (SrcElementTy->isFloatingPointTy() &&
1323              DstElementTy->isFloatingPointTy())) &&
1324            "unexpected conversion between a floating-point vector and an "
1325            "integer vector");
1326 
1327     // Truncate an i32 vector to an i16 vector.
1328     if (SrcElementTy->isIntegerTy())
1329       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1330 
1331     // Truncate a float vector to a half vector.
1332     if (SrcSize > DstSize)
1333       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1334 
1335     // Promote a half vector to a float vector.
1336     return Builder.CreateFPExt(Src, DstTy, "conv");
1337   }
1338 
1339   // Finally, we have the arithmetic types: real int/float.
1340   Value *Res = nullptr;
1341   llvm::Type *ResTy = DstTy;
1342 
1343   // An overflowing conversion has undefined behavior if either the source type
1344   // or the destination type is a floating-point type. However, we consider the
1345   // range of representable values for all floating-point types to be
1346   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1347   // floating-point type.
1348   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1349       OrigSrcType->isFloatingType())
1350     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1351                              Loc);
1352 
1353   // Cast to half through float if half isn't a native type.
1354   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1355     // Make sure we cast in a single step if from another FP type.
1356     if (SrcTy->isFloatingPointTy()) {
1357       // Use the intrinsic if the half type itself isn't supported
1358       // (as opposed to operations on half, available with NativeHalfType).
1359       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1360         return Builder.CreateCall(
1361             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1362       // If the half type is supported, just use an fptrunc.
1363       return Builder.CreateFPTrunc(Src, DstTy);
1364     }
1365     DstTy = CGF.FloatTy;
1366   }
1367 
1368   if (isa<llvm::IntegerType>(SrcTy)) {
1369     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1370     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1371       InputSigned = true;
1372     }
1373     if (isa<llvm::IntegerType>(DstTy))
1374       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1375     else if (InputSigned)
1376       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1377     else
1378       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1379   } else if (isa<llvm::IntegerType>(DstTy)) {
1380     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1381     if (DstType->isSignedIntegerOrEnumerationType())
1382       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1383     else
1384       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1385   } else {
1386     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1387            "Unknown real conversion");
1388     if (DstTy->getTypeID() < SrcTy->getTypeID())
1389       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1390     else
1391       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1392   }
1393 
1394   if (DstTy != ResTy) {
1395     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1396       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1397       Res = Builder.CreateCall(
1398         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1399         Res);
1400     } else {
1401       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1402     }
1403   }
1404 
1405   if (Opts.EmitImplicitIntegerTruncationChecks)
1406     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1407                                NoncanonicalDstType, Loc);
1408 
1409   if (Opts.EmitImplicitIntegerSignChangeChecks)
1410     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1411                                NoncanonicalDstType, Loc);
1412 
1413   return Res;
1414 }
1415 
1416 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1417                                                    QualType DstTy,
1418                                                    SourceLocation Loc) {
1419   FixedPointSemantics SrcFPSema =
1420       CGF.getContext().getFixedPointSemantics(SrcTy);
1421   FixedPointSemantics DstFPSema =
1422       CGF.getContext().getFixedPointSemantics(DstTy);
1423   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1424                                   DstTy->isIntegerType());
1425 }
1426 
1427 Value *ScalarExprEmitter::EmitFixedPointConversion(
1428     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1429     SourceLocation Loc, bool DstIsInteger) {
1430   using llvm::APInt;
1431   using llvm::ConstantInt;
1432   using llvm::Value;
1433 
1434   unsigned SrcWidth = SrcFPSema.getWidth();
1435   unsigned DstWidth = DstFPSema.getWidth();
1436   unsigned SrcScale = SrcFPSema.getScale();
1437   unsigned DstScale = DstFPSema.getScale();
1438   bool SrcIsSigned = SrcFPSema.isSigned();
1439   bool DstIsSigned = DstFPSema.isSigned();
1440 
1441   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1442 
1443   Value *Result = Src;
1444   unsigned ResultWidth = SrcWidth;
1445 
1446   // Downscale.
1447   if (DstScale < SrcScale) {
1448     // When converting to integers, we round towards zero. For negative numbers,
1449     // right shifting rounds towards negative infinity. In this case, we can
1450     // just round up before shifting.
1451     if (DstIsInteger && SrcIsSigned) {
1452       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1453       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1454       Value *LowBits = ConstantInt::get(
1455           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1456       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1457       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1458     }
1459 
1460     Result = SrcIsSigned
1461                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1462                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1463   }
1464 
1465   if (!DstFPSema.isSaturated()) {
1466     // Resize.
1467     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1468 
1469     // Upscale.
1470     if (DstScale > SrcScale)
1471       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1472   } else {
1473     // Adjust the number of fractional bits.
1474     if (DstScale > SrcScale) {
1475       // Compare to DstWidth to prevent resizing twice.
1476       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1477       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1478       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1479       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1480     }
1481 
1482     // Handle saturation.
1483     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1484     if (LessIntBits) {
1485       Value *Max = ConstantInt::get(
1486           CGF.getLLVMContext(),
1487           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1488       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1489                                    : Builder.CreateICmpUGT(Result, Max);
1490       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1491     }
1492     // Cannot overflow min to dest type if src is unsigned since all fixed
1493     // point types can cover the unsigned min of 0.
1494     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1495       Value *Min = ConstantInt::get(
1496           CGF.getLLVMContext(),
1497           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1498       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1499       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1500     }
1501 
1502     // Resize the integer part to get the final destination size.
1503     if (ResultWidth != DstWidth)
1504       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1505   }
1506   return Result;
1507 }
1508 
1509 /// Emit a conversion from the specified complex type to the specified
1510 /// destination type, where the destination type is an LLVM scalar type.
1511 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1512     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1513     SourceLocation Loc) {
1514   // Get the source element type.
1515   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1516 
1517   // Handle conversions to bool first, they are special: comparisons against 0.
1518   if (DstTy->isBooleanType()) {
1519     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1520     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1521     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1522     return Builder.CreateOr(Src.first, Src.second, "tobool");
1523   }
1524 
1525   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1526   // the imaginary part of the complex value is discarded and the value of the
1527   // real part is converted according to the conversion rules for the
1528   // corresponding real type.
1529   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1530 }
1531 
1532 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1533   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1534 }
1535 
1536 /// Emit a sanitization check for the given "binary" operation (which
1537 /// might actually be a unary increment which has been lowered to a binary
1538 /// operation). The check passes if all values in \p Checks (which are \c i1),
1539 /// are \c true.
1540 void ScalarExprEmitter::EmitBinOpCheck(
1541     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1542   assert(CGF.IsSanitizerScope);
1543   SanitizerHandler Check;
1544   SmallVector<llvm::Constant *, 4> StaticData;
1545   SmallVector<llvm::Value *, 2> DynamicData;
1546 
1547   BinaryOperatorKind Opcode = Info.Opcode;
1548   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1549     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1550 
1551   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1552   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1553   if (UO && UO->getOpcode() == UO_Minus) {
1554     Check = SanitizerHandler::NegateOverflow;
1555     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1556     DynamicData.push_back(Info.RHS);
1557   } else {
1558     if (BinaryOperator::isShiftOp(Opcode)) {
1559       // Shift LHS negative or too large, or RHS out of bounds.
1560       Check = SanitizerHandler::ShiftOutOfBounds;
1561       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1562       StaticData.push_back(
1563         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1564       StaticData.push_back(
1565         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1566     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1567       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1568       Check = SanitizerHandler::DivremOverflow;
1569       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1570     } else {
1571       // Arithmetic overflow (+, -, *).
1572       switch (Opcode) {
1573       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1574       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1575       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1576       default: llvm_unreachable("unexpected opcode for bin op check");
1577       }
1578       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1579     }
1580     DynamicData.push_back(Info.LHS);
1581     DynamicData.push_back(Info.RHS);
1582   }
1583 
1584   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1585 }
1586 
1587 //===----------------------------------------------------------------------===//
1588 //                            Visitor Methods
1589 //===----------------------------------------------------------------------===//
1590 
1591 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1592   CGF.ErrorUnsupported(E, "scalar expression");
1593   if (E->getType()->isVoidType())
1594     return nullptr;
1595   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1596 }
1597 
1598 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1599   // Vector Mask Case
1600   if (E->getNumSubExprs() == 2) {
1601     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1602     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1603     Value *Mask;
1604 
1605     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1606     unsigned LHSElts = LTy->getNumElements();
1607 
1608     Mask = RHS;
1609 
1610     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1611 
1612     // Mask off the high bits of each shuffle index.
1613     Value *MaskBits =
1614         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1615     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1616 
1617     // newv = undef
1618     // mask = mask & maskbits
1619     // for each elt
1620     //   n = extract mask i
1621     //   x = extract val n
1622     //   newv = insert newv, x, i
1623     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1624                                                   MTy->getNumElements());
1625     Value* NewV = llvm::UndefValue::get(RTy);
1626     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1627       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1628       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1629 
1630       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1631       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1632     }
1633     return NewV;
1634   }
1635 
1636   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1637   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1638 
1639   SmallVector<llvm::Constant*, 32> indices;
1640   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1641     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1642     // Check for -1 and output it as undef in the IR.
1643     if (Idx.isSigned() && Idx.isAllOnesValue())
1644       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1645     else
1646       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1647   }
1648 
1649   Value *SV = llvm::ConstantVector::get(indices);
1650   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1651 }
1652 
1653 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1654   QualType SrcType = E->getSrcExpr()->getType(),
1655            DstType = E->getType();
1656 
1657   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1658 
1659   SrcType = CGF.getContext().getCanonicalType(SrcType);
1660   DstType = CGF.getContext().getCanonicalType(DstType);
1661   if (SrcType == DstType) return Src;
1662 
1663   assert(SrcType->isVectorType() &&
1664          "ConvertVector source type must be a vector");
1665   assert(DstType->isVectorType() &&
1666          "ConvertVector destination type must be a vector");
1667 
1668   llvm::Type *SrcTy = Src->getType();
1669   llvm::Type *DstTy = ConvertType(DstType);
1670 
1671   // Ignore conversions like int -> uint.
1672   if (SrcTy == DstTy)
1673     return Src;
1674 
1675   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1676            DstEltType = DstType->castAs<VectorType>()->getElementType();
1677 
1678   assert(SrcTy->isVectorTy() &&
1679          "ConvertVector source IR type must be a vector");
1680   assert(DstTy->isVectorTy() &&
1681          "ConvertVector destination IR type must be a vector");
1682 
1683   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1684              *DstEltTy = DstTy->getVectorElementType();
1685 
1686   if (DstEltType->isBooleanType()) {
1687     assert((SrcEltTy->isFloatingPointTy() ||
1688             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1689 
1690     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1691     if (SrcEltTy->isFloatingPointTy()) {
1692       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1693     } else {
1694       return Builder.CreateICmpNE(Src, Zero, "tobool");
1695     }
1696   }
1697 
1698   // We have the arithmetic types: real int/float.
1699   Value *Res = nullptr;
1700 
1701   if (isa<llvm::IntegerType>(SrcEltTy)) {
1702     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1703     if (isa<llvm::IntegerType>(DstEltTy))
1704       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1705     else if (InputSigned)
1706       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1707     else
1708       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1709   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1710     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1711     if (DstEltType->isSignedIntegerOrEnumerationType())
1712       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1713     else
1714       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1715   } else {
1716     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1717            "Unknown real conversion");
1718     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1719       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1720     else
1721       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1722   }
1723 
1724   return Res;
1725 }
1726 
1727 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1728   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1729     CGF.EmitIgnoredExpr(E->getBase());
1730     return CGF.emitScalarConstant(Constant, E);
1731   } else {
1732     Expr::EvalResult Result;
1733     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1734       llvm::APSInt Value = Result.Val.getInt();
1735       CGF.EmitIgnoredExpr(E->getBase());
1736       return Builder.getInt(Value);
1737     }
1738   }
1739 
1740   return EmitLoadOfLValue(E);
1741 }
1742 
1743 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1744   TestAndClearIgnoreResultAssign();
1745 
1746   // Emit subscript expressions in rvalue context's.  For most cases, this just
1747   // loads the lvalue formed by the subscript expr.  However, we have to be
1748   // careful, because the base of a vector subscript is occasionally an rvalue,
1749   // so we can't get it as an lvalue.
1750   if (!E->getBase()->getType()->isVectorType())
1751     return EmitLoadOfLValue(E);
1752 
1753   // Handle the vector case.  The base must be a vector, the index must be an
1754   // integer value.
1755   Value *Base = Visit(E->getBase());
1756   Value *Idx  = Visit(E->getIdx());
1757   QualType IdxTy = E->getIdx()->getType();
1758 
1759   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1760     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1761 
1762   return Builder.CreateExtractElement(Base, Idx, "vecext");
1763 }
1764 
1765 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1766                                   unsigned Off, llvm::Type *I32Ty) {
1767   int MV = SVI->getMaskValue(Idx);
1768   if (MV == -1)
1769     return llvm::UndefValue::get(I32Ty);
1770   return llvm::ConstantInt::get(I32Ty, Off+MV);
1771 }
1772 
1773 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1774   if (C->getBitWidth() != 32) {
1775       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1776                                                     C->getZExtValue()) &&
1777              "Index operand too large for shufflevector mask!");
1778       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1779   }
1780   return C;
1781 }
1782 
1783 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1784   bool Ignore = TestAndClearIgnoreResultAssign();
1785   (void)Ignore;
1786   assert (Ignore == false && "init list ignored");
1787   unsigned NumInitElements = E->getNumInits();
1788 
1789   if (E->hadArrayRangeDesignator())
1790     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1791 
1792   llvm::VectorType *VType =
1793     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1794 
1795   if (!VType) {
1796     if (NumInitElements == 0) {
1797       // C++11 value-initialization for the scalar.
1798       return EmitNullValue(E->getType());
1799     }
1800     // We have a scalar in braces. Just use the first element.
1801     return Visit(E->getInit(0));
1802   }
1803 
1804   unsigned ResElts = VType->getNumElements();
1805 
1806   // Loop over initializers collecting the Value for each, and remembering
1807   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1808   // us to fold the shuffle for the swizzle into the shuffle for the vector
1809   // initializer, since LLVM optimizers generally do not want to touch
1810   // shuffles.
1811   unsigned CurIdx = 0;
1812   bool VIsUndefShuffle = false;
1813   llvm::Value *V = llvm::UndefValue::get(VType);
1814   for (unsigned i = 0; i != NumInitElements; ++i) {
1815     Expr *IE = E->getInit(i);
1816     Value *Init = Visit(IE);
1817     SmallVector<llvm::Constant*, 16> Args;
1818 
1819     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1820 
1821     // Handle scalar elements.  If the scalar initializer is actually one
1822     // element of a different vector of the same width, use shuffle instead of
1823     // extract+insert.
1824     if (!VVT) {
1825       if (isa<ExtVectorElementExpr>(IE)) {
1826         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1827 
1828         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1829           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1830           Value *LHS = nullptr, *RHS = nullptr;
1831           if (CurIdx == 0) {
1832             // insert into undef -> shuffle (src, undef)
1833             // shufflemask must use an i32
1834             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1835             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1836 
1837             LHS = EI->getVectorOperand();
1838             RHS = V;
1839             VIsUndefShuffle = true;
1840           } else if (VIsUndefShuffle) {
1841             // insert into undefshuffle && size match -> shuffle (v, src)
1842             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1843             for (unsigned j = 0; j != CurIdx; ++j)
1844               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1845             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1846             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1847 
1848             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1849             RHS = EI->getVectorOperand();
1850             VIsUndefShuffle = false;
1851           }
1852           if (!Args.empty()) {
1853             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1854             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1855             ++CurIdx;
1856             continue;
1857           }
1858         }
1859       }
1860       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1861                                       "vecinit");
1862       VIsUndefShuffle = false;
1863       ++CurIdx;
1864       continue;
1865     }
1866 
1867     unsigned InitElts = VVT->getNumElements();
1868 
1869     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1870     // input is the same width as the vector being constructed, generate an
1871     // optimized shuffle of the swizzle input into the result.
1872     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1873     if (isa<ExtVectorElementExpr>(IE)) {
1874       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1875       Value *SVOp = SVI->getOperand(0);
1876       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1877 
1878       if (OpTy->getNumElements() == ResElts) {
1879         for (unsigned j = 0; j != CurIdx; ++j) {
1880           // If the current vector initializer is a shuffle with undef, merge
1881           // this shuffle directly into it.
1882           if (VIsUndefShuffle) {
1883             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1884                                       CGF.Int32Ty));
1885           } else {
1886             Args.push_back(Builder.getInt32(j));
1887           }
1888         }
1889         for (unsigned j = 0, je = InitElts; j != je; ++j)
1890           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1891         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1892 
1893         if (VIsUndefShuffle)
1894           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1895 
1896         Init = SVOp;
1897       }
1898     }
1899 
1900     // Extend init to result vector length, and then shuffle its contribution
1901     // to the vector initializer into V.
1902     if (Args.empty()) {
1903       for (unsigned j = 0; j != InitElts; ++j)
1904         Args.push_back(Builder.getInt32(j));
1905       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1906       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1907       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1908                                          Mask, "vext");
1909 
1910       Args.clear();
1911       for (unsigned j = 0; j != CurIdx; ++j)
1912         Args.push_back(Builder.getInt32(j));
1913       for (unsigned j = 0; j != InitElts; ++j)
1914         Args.push_back(Builder.getInt32(j+Offset));
1915       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1916     }
1917 
1918     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1919     // merging subsequent shuffles into this one.
1920     if (CurIdx == 0)
1921       std::swap(V, Init);
1922     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1923     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1924     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1925     CurIdx += InitElts;
1926   }
1927 
1928   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1929   // Emit remaining default initializers.
1930   llvm::Type *EltTy = VType->getElementType();
1931 
1932   // Emit remaining default initializers
1933   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1934     Value *Idx = Builder.getInt32(CurIdx);
1935     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1936     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1937   }
1938   return V;
1939 }
1940 
1941 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1942   const Expr *E = CE->getSubExpr();
1943 
1944   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1945     return false;
1946 
1947   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1948     // We always assume that 'this' is never null.
1949     return false;
1950   }
1951 
1952   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1953     // And that glvalue casts are never null.
1954     if (ICE->getValueKind() != VK_RValue)
1955       return false;
1956   }
1957 
1958   return true;
1959 }
1960 
1961 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1962 // have to handle a more broad range of conversions than explicit casts, as they
1963 // handle things like function to ptr-to-function decay etc.
1964 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1965   Expr *E = CE->getSubExpr();
1966   QualType DestTy = CE->getType();
1967   CastKind Kind = CE->getCastKind();
1968 
1969   // These cases are generally not written to ignore the result of
1970   // evaluating their sub-expressions, so we clear this now.
1971   bool Ignored = TestAndClearIgnoreResultAssign();
1972 
1973   // Since almost all cast kinds apply to scalars, this switch doesn't have
1974   // a default case, so the compiler will warn on a missing case.  The cases
1975   // are in the same order as in the CastKind enum.
1976   switch (Kind) {
1977   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1978   case CK_BuiltinFnToFnPtr:
1979     llvm_unreachable("builtin functions are handled elsewhere");
1980 
1981   case CK_LValueBitCast:
1982   case CK_ObjCObjectLValueCast: {
1983     Address Addr = EmitLValue(E).getAddress(CGF);
1984     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1985     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1986     return EmitLoadOfLValue(LV, CE->getExprLoc());
1987   }
1988 
1989   case CK_LValueToRValueBitCast: {
1990     LValue SourceLVal = CGF.EmitLValue(E);
1991     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1992                                                 CGF.ConvertTypeForMem(DestTy));
1993     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1994     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1995     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1996   }
1997 
1998   case CK_CPointerToObjCPointerCast:
1999   case CK_BlockPointerToObjCPointerCast:
2000   case CK_AnyPointerToBlockPointerCast:
2001   case CK_BitCast: {
2002     Value *Src = Visit(const_cast<Expr*>(E));
2003     llvm::Type *SrcTy = Src->getType();
2004     llvm::Type *DstTy = ConvertType(DestTy);
2005     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2006         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2007       llvm_unreachable("wrong cast for pointers in different address spaces"
2008                        "(must be an address space cast)!");
2009     }
2010 
2011     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2012       if (auto PT = DestTy->getAs<PointerType>())
2013         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2014                                       /*MayBeNull=*/true,
2015                                       CodeGenFunction::CFITCK_UnrelatedCast,
2016                                       CE->getBeginLoc());
2017     }
2018 
2019     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2020       const QualType SrcType = E->getType();
2021 
2022       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2023         // Casting to pointer that could carry dynamic information (provided by
2024         // invariant.group) requires launder.
2025         Src = Builder.CreateLaunderInvariantGroup(Src);
2026       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2027         // Casting to pointer that does not carry dynamic information (provided
2028         // by invariant.group) requires stripping it.  Note that we don't do it
2029         // if the source could not be dynamic type and destination could be
2030         // dynamic because dynamic information is already laundered.  It is
2031         // because launder(strip(src)) == launder(src), so there is no need to
2032         // add extra strip before launder.
2033         Src = Builder.CreateStripInvariantGroup(Src);
2034       }
2035     }
2036 
2037     // Update heapallocsite metadata when there is an explicit cast.
2038     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2039       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2040           CGF.getDebugInfo()->
2041               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2042 
2043     return Builder.CreateBitCast(Src, DstTy);
2044   }
2045   case CK_AddressSpaceConversion: {
2046     Expr::EvalResult Result;
2047     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2048         Result.Val.isNullPointer()) {
2049       // If E has side effect, it is emitted even if its final result is a
2050       // null pointer. In that case, a DCE pass should be able to
2051       // eliminate the useless instructions emitted during translating E.
2052       if (Result.HasSideEffects)
2053         Visit(E);
2054       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2055           ConvertType(DestTy)), DestTy);
2056     }
2057     // Since target may map different address spaces in AST to the same address
2058     // space, an address space conversion may end up as a bitcast.
2059     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2060         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2061         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2062   }
2063   case CK_AtomicToNonAtomic:
2064   case CK_NonAtomicToAtomic:
2065   case CK_NoOp:
2066   case CK_UserDefinedConversion:
2067     return Visit(const_cast<Expr*>(E));
2068 
2069   case CK_BaseToDerived: {
2070     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2071     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2072 
2073     Address Base = CGF.EmitPointerWithAlignment(E);
2074     Address Derived =
2075       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2076                                    CE->path_begin(), CE->path_end(),
2077                                    CGF.ShouldNullCheckClassCastValue(CE));
2078 
2079     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2080     // performed and the object is not of the derived type.
2081     if (CGF.sanitizePerformTypeCheck())
2082       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2083                         Derived.getPointer(), DestTy->getPointeeType());
2084 
2085     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2086       CGF.EmitVTablePtrCheckForCast(
2087           DestTy->getPointeeType(), Derived.getPointer(),
2088           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2089           CE->getBeginLoc());
2090 
2091     return Derived.getPointer();
2092   }
2093   case CK_UncheckedDerivedToBase:
2094   case CK_DerivedToBase: {
2095     // The EmitPointerWithAlignment path does this fine; just discard
2096     // the alignment.
2097     return CGF.EmitPointerWithAlignment(CE).getPointer();
2098   }
2099 
2100   case CK_Dynamic: {
2101     Address V = CGF.EmitPointerWithAlignment(E);
2102     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2103     return CGF.EmitDynamicCast(V, DCE);
2104   }
2105 
2106   case CK_ArrayToPointerDecay:
2107     return CGF.EmitArrayToPointerDecay(E).getPointer();
2108   case CK_FunctionToPointerDecay:
2109     return EmitLValue(E).getPointer(CGF);
2110 
2111   case CK_NullToPointer:
2112     if (MustVisitNullValue(E))
2113       CGF.EmitIgnoredExpr(E);
2114 
2115     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2116                               DestTy);
2117 
2118   case CK_NullToMemberPointer: {
2119     if (MustVisitNullValue(E))
2120       CGF.EmitIgnoredExpr(E);
2121 
2122     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2123     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2124   }
2125 
2126   case CK_ReinterpretMemberPointer:
2127   case CK_BaseToDerivedMemberPointer:
2128   case CK_DerivedToBaseMemberPointer: {
2129     Value *Src = Visit(E);
2130 
2131     // Note that the AST doesn't distinguish between checked and
2132     // unchecked member pointer conversions, so we always have to
2133     // implement checked conversions here.  This is inefficient when
2134     // actual control flow may be required in order to perform the
2135     // check, which it is for data member pointers (but not member
2136     // function pointers on Itanium and ARM).
2137     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2138   }
2139 
2140   case CK_ARCProduceObject:
2141     return CGF.EmitARCRetainScalarExpr(E);
2142   case CK_ARCConsumeObject:
2143     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2144   case CK_ARCReclaimReturnedObject:
2145     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2146   case CK_ARCExtendBlockObject:
2147     return CGF.EmitARCExtendBlockObject(E);
2148 
2149   case CK_CopyAndAutoreleaseBlockObject:
2150     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2151 
2152   case CK_FloatingRealToComplex:
2153   case CK_FloatingComplexCast:
2154   case CK_IntegralRealToComplex:
2155   case CK_IntegralComplexCast:
2156   case CK_IntegralComplexToFloatingComplex:
2157   case CK_FloatingComplexToIntegralComplex:
2158   case CK_ConstructorConversion:
2159   case CK_ToUnion:
2160     llvm_unreachable("scalar cast to non-scalar value");
2161 
2162   case CK_LValueToRValue:
2163     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2164     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2165     return Visit(const_cast<Expr*>(E));
2166 
2167   case CK_IntegralToPointer: {
2168     Value *Src = Visit(const_cast<Expr*>(E));
2169 
2170     // First, convert to the correct width so that we control the kind of
2171     // extension.
2172     auto DestLLVMTy = ConvertType(DestTy);
2173     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2174     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2175     llvm::Value* IntResult =
2176       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2177 
2178     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2179 
2180     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2181       // Going from integer to pointer that could be dynamic requires reloading
2182       // dynamic information from invariant.group.
2183       if (DestTy.mayBeDynamicClass())
2184         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2185     }
2186     return IntToPtr;
2187   }
2188   case CK_PointerToIntegral: {
2189     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2190     auto *PtrExpr = Visit(E);
2191 
2192     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2193       const QualType SrcType = E->getType();
2194 
2195       // Casting to integer requires stripping dynamic information as it does
2196       // not carries it.
2197       if (SrcType.mayBeDynamicClass())
2198         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2199     }
2200 
2201     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2202   }
2203   case CK_ToVoid: {
2204     CGF.EmitIgnoredExpr(E);
2205     return nullptr;
2206   }
2207   case CK_VectorSplat: {
2208     llvm::Type *DstTy = ConvertType(DestTy);
2209     Value *Elt = Visit(const_cast<Expr*>(E));
2210     // Splat the element across to all elements
2211     unsigned NumElements = DstTy->getVectorNumElements();
2212     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2213   }
2214 
2215   case CK_FixedPointCast:
2216     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2217                                 CE->getExprLoc());
2218 
2219   case CK_FixedPointToBoolean:
2220     assert(E->getType()->isFixedPointType() &&
2221            "Expected src type to be fixed point type");
2222     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2223     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2224                                 CE->getExprLoc());
2225 
2226   case CK_FixedPointToIntegral:
2227     assert(E->getType()->isFixedPointType() &&
2228            "Expected src type to be fixed point type");
2229     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2230     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2231                                 CE->getExprLoc());
2232 
2233   case CK_IntegralToFixedPoint:
2234     assert(E->getType()->isIntegerType() &&
2235            "Expected src type to be an integer");
2236     assert(DestTy->isFixedPointType() &&
2237            "Expected dest type to be fixed point type");
2238     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2239                                 CE->getExprLoc());
2240 
2241   case CK_IntegralCast: {
2242     ScalarConversionOpts Opts;
2243     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2244       if (!ICE->isPartOfExplicitCast())
2245         Opts = ScalarConversionOpts(CGF.SanOpts);
2246     }
2247     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2248                                 CE->getExprLoc(), Opts);
2249   }
2250   case CK_IntegralToFloating:
2251   case CK_FloatingToIntegral:
2252   case CK_FloatingCast:
2253     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2254                                 CE->getExprLoc());
2255   case CK_BooleanToSignedIntegral: {
2256     ScalarConversionOpts Opts;
2257     Opts.TreatBooleanAsSigned = true;
2258     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2259                                 CE->getExprLoc(), Opts);
2260   }
2261   case CK_IntegralToBoolean:
2262     return EmitIntToBoolConversion(Visit(E));
2263   case CK_PointerToBoolean:
2264     return EmitPointerToBoolConversion(Visit(E), E->getType());
2265   case CK_FloatingToBoolean:
2266     return EmitFloatToBoolConversion(Visit(E));
2267   case CK_MemberPointerToBoolean: {
2268     llvm::Value *MemPtr = Visit(E);
2269     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2270     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2271   }
2272 
2273   case CK_FloatingComplexToReal:
2274   case CK_IntegralComplexToReal:
2275     return CGF.EmitComplexExpr(E, false, true).first;
2276 
2277   case CK_FloatingComplexToBoolean:
2278   case CK_IntegralComplexToBoolean: {
2279     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2280 
2281     // TODO: kill this function off, inline appropriate case here
2282     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2283                                          CE->getExprLoc());
2284   }
2285 
2286   case CK_ZeroToOCLOpaqueType: {
2287     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2288             DestTy->isOCLIntelSubgroupAVCType()) &&
2289            "CK_ZeroToOCLEvent cast on non-event type");
2290     return llvm::Constant::getNullValue(ConvertType(DestTy));
2291   }
2292 
2293   case CK_IntToOCLSampler:
2294     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2295 
2296   } // end of switch
2297 
2298   llvm_unreachable("unknown scalar cast");
2299 }
2300 
2301 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2302   CodeGenFunction::StmtExprEvaluation eval(CGF);
2303   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2304                                            !E->getType()->isVoidType());
2305   if (!RetAlloca.isValid())
2306     return nullptr;
2307   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2308                               E->getExprLoc());
2309 }
2310 
2311 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2312   CGF.enterFullExpression(E);
2313   CodeGenFunction::RunCleanupsScope Scope(CGF);
2314   Value *V = Visit(E->getSubExpr());
2315   // Defend against dominance problems caused by jumps out of expression
2316   // evaluation through the shared cleanup block.
2317   Scope.ForceCleanup({&V});
2318   return V;
2319 }
2320 
2321 //===----------------------------------------------------------------------===//
2322 //                             Unary Operators
2323 //===----------------------------------------------------------------------===//
2324 
2325 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2326                                            llvm::Value *InVal, bool IsInc) {
2327   BinOpInfo BinOp;
2328   BinOp.LHS = InVal;
2329   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2330   BinOp.Ty = E->getType();
2331   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2332   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2333   BinOp.E = E;
2334   return BinOp;
2335 }
2336 
2337 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2338     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2339   llvm::Value *Amount =
2340       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2341   StringRef Name = IsInc ? "inc" : "dec";
2342   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2343   case LangOptions::SOB_Defined:
2344     return Builder.CreateAdd(InVal, Amount, Name);
2345   case LangOptions::SOB_Undefined:
2346     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2347       return Builder.CreateNSWAdd(InVal, Amount, Name);
2348     LLVM_FALLTHROUGH;
2349   case LangOptions::SOB_Trapping:
2350     if (!E->canOverflow())
2351       return Builder.CreateNSWAdd(InVal, Amount, Name);
2352     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2353   }
2354   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2355 }
2356 
2357 llvm::Value *
2358 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2359                                            bool isInc, bool isPre) {
2360 
2361   QualType type = E->getSubExpr()->getType();
2362   llvm::PHINode *atomicPHI = nullptr;
2363   llvm::Value *value;
2364   llvm::Value *input;
2365 
2366   int amount = (isInc ? 1 : -1);
2367   bool isSubtraction = !isInc;
2368 
2369   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2370     type = atomicTy->getValueType();
2371     if (isInc && type->isBooleanType()) {
2372       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2373       if (isPre) {
2374         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2375             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2376         return Builder.getTrue();
2377       }
2378       // For atomic bool increment, we just store true and return it for
2379       // preincrement, do an atomic swap with true for postincrement
2380       return Builder.CreateAtomicRMW(
2381           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2382           llvm::AtomicOrdering::SequentiallyConsistent);
2383     }
2384     // Special case for atomic increment / decrement on integers, emit
2385     // atomicrmw instructions.  We skip this if we want to be doing overflow
2386     // checking, and fall into the slow path with the atomic cmpxchg loop.
2387     if (!type->isBooleanType() && type->isIntegerType() &&
2388         !(type->isUnsignedIntegerType() &&
2389           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2390         CGF.getLangOpts().getSignedOverflowBehavior() !=
2391             LangOptions::SOB_Trapping) {
2392       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2393         llvm::AtomicRMWInst::Sub;
2394       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2395         llvm::Instruction::Sub;
2396       llvm::Value *amt = CGF.EmitToMemory(
2397           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2398       llvm::Value *old =
2399           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2400                                   llvm::AtomicOrdering::SequentiallyConsistent);
2401       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2402     }
2403     value = EmitLoadOfLValue(LV, E->getExprLoc());
2404     input = value;
2405     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2406     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2407     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2408     value = CGF.EmitToMemory(value, type);
2409     Builder.CreateBr(opBB);
2410     Builder.SetInsertPoint(opBB);
2411     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2412     atomicPHI->addIncoming(value, startBB);
2413     value = atomicPHI;
2414   } else {
2415     value = EmitLoadOfLValue(LV, E->getExprLoc());
2416     input = value;
2417   }
2418 
2419   // Special case of integer increment that we have to check first: bool++.
2420   // Due to promotion rules, we get:
2421   //   bool++ -> bool = bool + 1
2422   //          -> bool = (int)bool + 1
2423   //          -> bool = ((int)bool + 1 != 0)
2424   // An interesting aspect of this is that increment is always true.
2425   // Decrement does not have this property.
2426   if (isInc && type->isBooleanType()) {
2427     value = Builder.getTrue();
2428 
2429   // Most common case by far: integer increment.
2430   } else if (type->isIntegerType()) {
2431     QualType promotedType;
2432     bool canPerformLossyDemotionCheck = false;
2433     if (type->isPromotableIntegerType()) {
2434       promotedType = CGF.getContext().getPromotedIntegerType(type);
2435       assert(promotedType != type && "Shouldn't promote to the same type.");
2436       canPerformLossyDemotionCheck = true;
2437       canPerformLossyDemotionCheck &=
2438           CGF.getContext().getCanonicalType(type) !=
2439           CGF.getContext().getCanonicalType(promotedType);
2440       canPerformLossyDemotionCheck &=
2441           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2442               type, promotedType);
2443       assert((!canPerformLossyDemotionCheck ||
2444               type->isSignedIntegerOrEnumerationType() ||
2445               promotedType->isSignedIntegerOrEnumerationType() ||
2446               ConvertType(type)->getScalarSizeInBits() ==
2447                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2448              "The following check expects that if we do promotion to different "
2449              "underlying canonical type, at least one of the types (either "
2450              "base or promoted) will be signed, or the bitwidths will match.");
2451     }
2452     if (CGF.SanOpts.hasOneOf(
2453             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2454         canPerformLossyDemotionCheck) {
2455       // While `x += 1` (for `x` with width less than int) is modeled as
2456       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2457       // ease; inc/dec with width less than int can't overflow because of
2458       // promotion rules, so we omit promotion+demotion, which means that we can
2459       // not catch lossy "demotion". Because we still want to catch these cases
2460       // when the sanitizer is enabled, we perform the promotion, then perform
2461       // the increment/decrement in the wider type, and finally
2462       // perform the demotion. This will catch lossy demotions.
2463 
2464       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2465       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2466       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2467       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2468       // emitted.
2469       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2470                                    ScalarConversionOpts(CGF.SanOpts));
2471 
2472       // Note that signed integer inc/dec with width less than int can't
2473       // overflow because of promotion rules; we're just eliding a few steps
2474       // here.
2475     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2476       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2477     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2478                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2479       value =
2480           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2481     } else {
2482       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2483       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2484     }
2485 
2486   // Next most common: pointer increment.
2487   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2488     QualType type = ptr->getPointeeType();
2489 
2490     // VLA types don't have constant size.
2491     if (const VariableArrayType *vla
2492           = CGF.getContext().getAsVariableArrayType(type)) {
2493       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2494       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2495       if (CGF.getLangOpts().isSignedOverflowDefined())
2496         value = Builder.CreateGEP(value, numElts, "vla.inc");
2497       else
2498         value = CGF.EmitCheckedInBoundsGEP(
2499             value, numElts, /*SignedIndices=*/false, isSubtraction,
2500             E->getExprLoc(), "vla.inc");
2501 
2502     // Arithmetic on function pointers (!) is just +-1.
2503     } else if (type->isFunctionType()) {
2504       llvm::Value *amt = Builder.getInt32(amount);
2505 
2506       value = CGF.EmitCastToVoidPtr(value);
2507       if (CGF.getLangOpts().isSignedOverflowDefined())
2508         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2509       else
2510         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2511                                            isSubtraction, E->getExprLoc(),
2512                                            "incdec.funcptr");
2513       value = Builder.CreateBitCast(value, input->getType());
2514 
2515     // For everything else, we can just do a simple increment.
2516     } else {
2517       llvm::Value *amt = Builder.getInt32(amount);
2518       if (CGF.getLangOpts().isSignedOverflowDefined())
2519         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2520       else
2521         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2522                                            isSubtraction, E->getExprLoc(),
2523                                            "incdec.ptr");
2524     }
2525 
2526   // Vector increment/decrement.
2527   } else if (type->isVectorType()) {
2528     if (type->hasIntegerRepresentation()) {
2529       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2530 
2531       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2532     } else {
2533       value = Builder.CreateFAdd(
2534                   value,
2535                   llvm::ConstantFP::get(value->getType(), amount),
2536                   isInc ? "inc" : "dec");
2537     }
2538 
2539   // Floating point.
2540   } else if (type->isRealFloatingType()) {
2541     // Add the inc/dec to the real part.
2542     llvm::Value *amt;
2543 
2544     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2545       // Another special case: half FP increment should be done via float
2546       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2547         value = Builder.CreateCall(
2548             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2549                                  CGF.CGM.FloatTy),
2550             input, "incdec.conv");
2551       } else {
2552         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2553       }
2554     }
2555 
2556     if (value->getType()->isFloatTy())
2557       amt = llvm::ConstantFP::get(VMContext,
2558                                   llvm::APFloat(static_cast<float>(amount)));
2559     else if (value->getType()->isDoubleTy())
2560       amt = llvm::ConstantFP::get(VMContext,
2561                                   llvm::APFloat(static_cast<double>(amount)));
2562     else {
2563       // Remaining types are Half, LongDouble or __float128. Convert from float.
2564       llvm::APFloat F(static_cast<float>(amount));
2565       bool ignored;
2566       const llvm::fltSemantics *FS;
2567       // Don't use getFloatTypeSemantics because Half isn't
2568       // necessarily represented using the "half" LLVM type.
2569       if (value->getType()->isFP128Ty())
2570         FS = &CGF.getTarget().getFloat128Format();
2571       else if (value->getType()->isHalfTy())
2572         FS = &CGF.getTarget().getHalfFormat();
2573       else
2574         FS = &CGF.getTarget().getLongDoubleFormat();
2575       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2576       amt = llvm::ConstantFP::get(VMContext, F);
2577     }
2578     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2579 
2580     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2581       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2582         value = Builder.CreateCall(
2583             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2584                                  CGF.CGM.FloatTy),
2585             value, "incdec.conv");
2586       } else {
2587         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2588       }
2589     }
2590 
2591   // Objective-C pointer types.
2592   } else {
2593     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2594     value = CGF.EmitCastToVoidPtr(value);
2595 
2596     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2597     if (!isInc) size = -size;
2598     llvm::Value *sizeValue =
2599       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2600 
2601     if (CGF.getLangOpts().isSignedOverflowDefined())
2602       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2603     else
2604       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2605                                          /*SignedIndices=*/false, isSubtraction,
2606                                          E->getExprLoc(), "incdec.objptr");
2607     value = Builder.CreateBitCast(value, input->getType());
2608   }
2609 
2610   if (atomicPHI) {
2611     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2612     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2613     auto Pair = CGF.EmitAtomicCompareExchange(
2614         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2615     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2616     llvm::Value *success = Pair.second;
2617     atomicPHI->addIncoming(old, curBlock);
2618     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2619     Builder.SetInsertPoint(contBB);
2620     return isPre ? value : input;
2621   }
2622 
2623   // Store the updated result through the lvalue.
2624   if (LV.isBitField())
2625     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2626   else
2627     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2628 
2629   // If this is a postinc, return the value read from memory, otherwise use the
2630   // updated value.
2631   return isPre ? value : input;
2632 }
2633 
2634 
2635 
2636 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2637   TestAndClearIgnoreResultAssign();
2638   Value *Op = Visit(E->getSubExpr());
2639 
2640   // Generate a unary FNeg for FP ops.
2641   if (Op->getType()->isFPOrFPVectorTy())
2642     return Builder.CreateFNeg(Op, "fneg");
2643 
2644   // Emit unary minus with EmitSub so we handle overflow cases etc.
2645   BinOpInfo BinOp;
2646   BinOp.RHS = Op;
2647   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2648   BinOp.Ty = E->getType();
2649   BinOp.Opcode = BO_Sub;
2650   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2651   BinOp.E = E;
2652   return EmitSub(BinOp);
2653 }
2654 
2655 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2656   TestAndClearIgnoreResultAssign();
2657   Value *Op = Visit(E->getSubExpr());
2658   return Builder.CreateNot(Op, "neg");
2659 }
2660 
2661 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2662   // Perform vector logical not on comparison with zero vector.
2663   if (E->getType()->isExtVectorType()) {
2664     Value *Oper = Visit(E->getSubExpr());
2665     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2666     Value *Result;
2667     if (Oper->getType()->isFPOrFPVectorTy())
2668       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2669     else
2670       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2671     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2672   }
2673 
2674   // Compare operand to zero.
2675   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2676 
2677   // Invert value.
2678   // TODO: Could dynamically modify easy computations here.  For example, if
2679   // the operand is an icmp ne, turn into icmp eq.
2680   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2681 
2682   // ZExt result to the expr type.
2683   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2684 }
2685 
2686 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2687   // Try folding the offsetof to a constant.
2688   Expr::EvalResult EVResult;
2689   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2690     llvm::APSInt Value = EVResult.Val.getInt();
2691     return Builder.getInt(Value);
2692   }
2693 
2694   // Loop over the components of the offsetof to compute the value.
2695   unsigned n = E->getNumComponents();
2696   llvm::Type* ResultType = ConvertType(E->getType());
2697   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2698   QualType CurrentType = E->getTypeSourceInfo()->getType();
2699   for (unsigned i = 0; i != n; ++i) {
2700     OffsetOfNode ON = E->getComponent(i);
2701     llvm::Value *Offset = nullptr;
2702     switch (ON.getKind()) {
2703     case OffsetOfNode::Array: {
2704       // Compute the index
2705       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2706       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2707       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2708       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2709 
2710       // Save the element type
2711       CurrentType =
2712           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2713 
2714       // Compute the element size
2715       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2716           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2717 
2718       // Multiply out to compute the result
2719       Offset = Builder.CreateMul(Idx, ElemSize);
2720       break;
2721     }
2722 
2723     case OffsetOfNode::Field: {
2724       FieldDecl *MemberDecl = ON.getField();
2725       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2726       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2727 
2728       // Compute the index of the field in its parent.
2729       unsigned i = 0;
2730       // FIXME: It would be nice if we didn't have to loop here!
2731       for (RecordDecl::field_iterator Field = RD->field_begin(),
2732                                       FieldEnd = RD->field_end();
2733            Field != FieldEnd; ++Field, ++i) {
2734         if (*Field == MemberDecl)
2735           break;
2736       }
2737       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2738 
2739       // Compute the offset to the field
2740       int64_t OffsetInt = RL.getFieldOffset(i) /
2741                           CGF.getContext().getCharWidth();
2742       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2743 
2744       // Save the element type.
2745       CurrentType = MemberDecl->getType();
2746       break;
2747     }
2748 
2749     case OffsetOfNode::Identifier:
2750       llvm_unreachable("dependent __builtin_offsetof");
2751 
2752     case OffsetOfNode::Base: {
2753       if (ON.getBase()->isVirtual()) {
2754         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2755         continue;
2756       }
2757 
2758       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2759       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2760 
2761       // Save the element type.
2762       CurrentType = ON.getBase()->getType();
2763 
2764       // Compute the offset to the base.
2765       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2766       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2767       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2768       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2769       break;
2770     }
2771     }
2772     Result = Builder.CreateAdd(Result, Offset);
2773   }
2774   return Result;
2775 }
2776 
2777 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2778 /// argument of the sizeof expression as an integer.
2779 Value *
2780 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2781                               const UnaryExprOrTypeTraitExpr *E) {
2782   QualType TypeToSize = E->getTypeOfArgument();
2783   if (E->getKind() == UETT_SizeOf) {
2784     if (const VariableArrayType *VAT =
2785           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2786       if (E->isArgumentType()) {
2787         // sizeof(type) - make sure to emit the VLA size.
2788         CGF.EmitVariablyModifiedType(TypeToSize);
2789       } else {
2790         // C99 6.5.3.4p2: If the argument is an expression of type
2791         // VLA, it is evaluated.
2792         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2793       }
2794 
2795       auto VlaSize = CGF.getVLASize(VAT);
2796       llvm::Value *size = VlaSize.NumElts;
2797 
2798       // Scale the number of non-VLA elements by the non-VLA element size.
2799       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2800       if (!eltSize.isOne())
2801         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2802 
2803       return size;
2804     }
2805   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2806     auto Alignment =
2807         CGF.getContext()
2808             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2809                 E->getTypeOfArgument()->getPointeeType()))
2810             .getQuantity();
2811     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2812   }
2813 
2814   // If this isn't sizeof(vla), the result must be constant; use the constant
2815   // folding logic so we don't have to duplicate it here.
2816   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2817 }
2818 
2819 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2820   Expr *Op = E->getSubExpr();
2821   if (Op->getType()->isAnyComplexType()) {
2822     // If it's an l-value, load through the appropriate subobject l-value.
2823     // Note that we have to ask E because Op might be an l-value that
2824     // this won't work for, e.g. an Obj-C property.
2825     if (E->isGLValue())
2826       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2827                                   E->getExprLoc()).getScalarVal();
2828 
2829     // Otherwise, calculate and project.
2830     return CGF.EmitComplexExpr(Op, false, true).first;
2831   }
2832 
2833   return Visit(Op);
2834 }
2835 
2836 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2837   Expr *Op = E->getSubExpr();
2838   if (Op->getType()->isAnyComplexType()) {
2839     // If it's an l-value, load through the appropriate subobject l-value.
2840     // Note that we have to ask E because Op might be an l-value that
2841     // this won't work for, e.g. an Obj-C property.
2842     if (Op->isGLValue())
2843       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2844                                   E->getExprLoc()).getScalarVal();
2845 
2846     // Otherwise, calculate and project.
2847     return CGF.EmitComplexExpr(Op, true, false).second;
2848   }
2849 
2850   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2851   // effects are evaluated, but not the actual value.
2852   if (Op->isGLValue())
2853     CGF.EmitLValue(Op);
2854   else
2855     CGF.EmitScalarExpr(Op, true);
2856   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2857 }
2858 
2859 //===----------------------------------------------------------------------===//
2860 //                           Binary Operators
2861 //===----------------------------------------------------------------------===//
2862 
2863 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2864   TestAndClearIgnoreResultAssign();
2865   BinOpInfo Result;
2866   Result.LHS = Visit(E->getLHS());
2867   Result.RHS = Visit(E->getRHS());
2868   Result.Ty  = E->getType();
2869   Result.Opcode = E->getOpcode();
2870   Result.FPFeatures = E->getFPFeatures();
2871   Result.E = E;
2872   return Result;
2873 }
2874 
2875 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2876                                               const CompoundAssignOperator *E,
2877                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2878                                                    Value *&Result) {
2879   QualType LHSTy = E->getLHS()->getType();
2880   BinOpInfo OpInfo;
2881 
2882   if (E->getComputationResultType()->isAnyComplexType())
2883     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2884 
2885   // Emit the RHS first.  __block variables need to have the rhs evaluated
2886   // first, plus this should improve codegen a little.
2887   OpInfo.RHS = Visit(E->getRHS());
2888   OpInfo.Ty = E->getComputationResultType();
2889   OpInfo.Opcode = E->getOpcode();
2890   OpInfo.FPFeatures = E->getFPFeatures();
2891   OpInfo.E = E;
2892   // Load/convert the LHS.
2893   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2894 
2895   llvm::PHINode *atomicPHI = nullptr;
2896   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2897     QualType type = atomicTy->getValueType();
2898     if (!type->isBooleanType() && type->isIntegerType() &&
2899         !(type->isUnsignedIntegerType() &&
2900           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2901         CGF.getLangOpts().getSignedOverflowBehavior() !=
2902             LangOptions::SOB_Trapping) {
2903       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2904       llvm::Instruction::BinaryOps Op;
2905       switch (OpInfo.Opcode) {
2906         // We don't have atomicrmw operands for *, %, /, <<, >>
2907         case BO_MulAssign: case BO_DivAssign:
2908         case BO_RemAssign:
2909         case BO_ShlAssign:
2910         case BO_ShrAssign:
2911           break;
2912         case BO_AddAssign:
2913           AtomicOp = llvm::AtomicRMWInst::Add;
2914           Op = llvm::Instruction::Add;
2915           break;
2916         case BO_SubAssign:
2917           AtomicOp = llvm::AtomicRMWInst::Sub;
2918           Op = llvm::Instruction::Sub;
2919           break;
2920         case BO_AndAssign:
2921           AtomicOp = llvm::AtomicRMWInst::And;
2922           Op = llvm::Instruction::And;
2923           break;
2924         case BO_XorAssign:
2925           AtomicOp = llvm::AtomicRMWInst::Xor;
2926           Op = llvm::Instruction::Xor;
2927           break;
2928         case BO_OrAssign:
2929           AtomicOp = llvm::AtomicRMWInst::Or;
2930           Op = llvm::Instruction::Or;
2931           break;
2932         default:
2933           llvm_unreachable("Invalid compound assignment type");
2934       }
2935       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2936         llvm::Value *Amt = CGF.EmitToMemory(
2937             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2938                                  E->getExprLoc()),
2939             LHSTy);
2940         Value *OldVal = Builder.CreateAtomicRMW(
2941             AtomicOp, LHSLV.getPointer(CGF), Amt,
2942             llvm::AtomicOrdering::SequentiallyConsistent);
2943 
2944         // Since operation is atomic, the result type is guaranteed to be the
2945         // same as the input in LLVM terms.
2946         Result = Builder.CreateBinOp(Op, OldVal, Amt);
2947         return LHSLV;
2948       }
2949     }
2950     // FIXME: For floating point types, we should be saving and restoring the
2951     // floating point environment in the loop.
2952     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2953     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2954     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2955     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2956     Builder.CreateBr(opBB);
2957     Builder.SetInsertPoint(opBB);
2958     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2959     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2960     OpInfo.LHS = atomicPHI;
2961   }
2962   else
2963     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2964 
2965   SourceLocation Loc = E->getExprLoc();
2966   OpInfo.LHS =
2967       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2968 
2969   // Expand the binary operator.
2970   Result = (this->*Func)(OpInfo);
2971 
2972   // Convert the result back to the LHS type,
2973   // potentially with Implicit Conversion sanitizer check.
2974   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2975                                 Loc, ScalarConversionOpts(CGF.SanOpts));
2976 
2977   if (atomicPHI) {
2978     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2979     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2980     auto Pair = CGF.EmitAtomicCompareExchange(
2981         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2982     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2983     llvm::Value *success = Pair.second;
2984     atomicPHI->addIncoming(old, curBlock);
2985     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2986     Builder.SetInsertPoint(contBB);
2987     return LHSLV;
2988   }
2989 
2990   // Store the result value into the LHS lvalue. Bit-fields are handled
2991   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2992   // 'An assignment expression has the value of the left operand after the
2993   // assignment...'.
2994   if (LHSLV.isBitField())
2995     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2996   else
2997     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2998 
2999   return LHSLV;
3000 }
3001 
3002 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3003                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3004   bool Ignore = TestAndClearIgnoreResultAssign();
3005   Value *RHS = nullptr;
3006   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3007 
3008   // If the result is clearly ignored, return now.
3009   if (Ignore)
3010     return nullptr;
3011 
3012   // The result of an assignment in C is the assigned r-value.
3013   if (!CGF.getLangOpts().CPlusPlus)
3014     return RHS;
3015 
3016   // If the lvalue is non-volatile, return the computed value of the assignment.
3017   if (!LHS.isVolatileQualified())
3018     return RHS;
3019 
3020   // Otherwise, reload the value.
3021   return EmitLoadOfLValue(LHS, E->getExprLoc());
3022 }
3023 
3024 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3025     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3026   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3027 
3028   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3029     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3030                                     SanitizerKind::IntegerDivideByZero));
3031   }
3032 
3033   const auto *BO = cast<BinaryOperator>(Ops.E);
3034   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3035       Ops.Ty->hasSignedIntegerRepresentation() &&
3036       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3037       Ops.mayHaveIntegerOverflow()) {
3038     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3039 
3040     llvm::Value *IntMin =
3041       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3042     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3043 
3044     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3045     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3046     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3047     Checks.push_back(
3048         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3049   }
3050 
3051   if (Checks.size() > 0)
3052     EmitBinOpCheck(Checks, Ops);
3053 }
3054 
3055 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3056   {
3057     CodeGenFunction::SanitizerScope SanScope(&CGF);
3058     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3059          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3060         Ops.Ty->isIntegerType() &&
3061         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3062       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3063       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3064     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3065                Ops.Ty->isRealFloatingType() &&
3066                Ops.mayHaveFloatDivisionByZero()) {
3067       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3068       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3069       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3070                      Ops);
3071     }
3072   }
3073 
3074   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3075     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3076     if (CGF.getLangOpts().OpenCL &&
3077         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3078       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3079       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3080       // build option allows an application to specify that single precision
3081       // floating-point divide (x/y and 1/x) and sqrt used in the program
3082       // source are correctly rounded.
3083       llvm::Type *ValTy = Val->getType();
3084       if (ValTy->isFloatTy() ||
3085           (isa<llvm::VectorType>(ValTy) &&
3086            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3087         CGF.SetFPAccuracy(Val, 2.5);
3088     }
3089     return Val;
3090   }
3091   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3092     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3093   else
3094     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3095 }
3096 
3097 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3098   // Rem in C can't be a floating point type: C99 6.5.5p2.
3099   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3100        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3101       Ops.Ty->isIntegerType() &&
3102       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3103     CodeGenFunction::SanitizerScope SanScope(&CGF);
3104     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3105     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3106   }
3107 
3108   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3109     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3110   else
3111     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3112 }
3113 
3114 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3115   unsigned IID;
3116   unsigned OpID = 0;
3117 
3118   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3119   switch (Ops.Opcode) {
3120   case BO_Add:
3121   case BO_AddAssign:
3122     OpID = 1;
3123     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3124                      llvm::Intrinsic::uadd_with_overflow;
3125     break;
3126   case BO_Sub:
3127   case BO_SubAssign:
3128     OpID = 2;
3129     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3130                      llvm::Intrinsic::usub_with_overflow;
3131     break;
3132   case BO_Mul:
3133   case BO_MulAssign:
3134     OpID = 3;
3135     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3136                      llvm::Intrinsic::umul_with_overflow;
3137     break;
3138   default:
3139     llvm_unreachable("Unsupported operation for overflow detection");
3140   }
3141   OpID <<= 1;
3142   if (isSigned)
3143     OpID |= 1;
3144 
3145   CodeGenFunction::SanitizerScope SanScope(&CGF);
3146   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3147 
3148   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3149 
3150   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3151   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3152   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3153 
3154   // Handle overflow with llvm.trap if no custom handler has been specified.
3155   const std::string *handlerName =
3156     &CGF.getLangOpts().OverflowHandler;
3157   if (handlerName->empty()) {
3158     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3159     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3160     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3161       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3162       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3163                               : SanitizerKind::UnsignedIntegerOverflow;
3164       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3165     } else
3166       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3167     return result;
3168   }
3169 
3170   // Branch in case of overflow.
3171   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3172   llvm::BasicBlock *continueBB =
3173       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3174   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3175 
3176   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3177 
3178   // If an overflow handler is set, then we want to call it and then use its
3179   // result, if it returns.
3180   Builder.SetInsertPoint(overflowBB);
3181 
3182   // Get the overflow handler.
3183   llvm::Type *Int8Ty = CGF.Int8Ty;
3184   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3185   llvm::FunctionType *handlerTy =
3186       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3187   llvm::FunctionCallee handler =
3188       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3189 
3190   // Sign extend the args to 64-bit, so that we can use the same handler for
3191   // all types of overflow.
3192   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3193   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3194 
3195   // Call the handler with the two arguments, the operation, and the size of
3196   // the result.
3197   llvm::Value *handlerArgs[] = {
3198     lhs,
3199     rhs,
3200     Builder.getInt8(OpID),
3201     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3202   };
3203   llvm::Value *handlerResult =
3204     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3205 
3206   // Truncate the result back to the desired size.
3207   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3208   Builder.CreateBr(continueBB);
3209 
3210   Builder.SetInsertPoint(continueBB);
3211   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3212   phi->addIncoming(result, initialBB);
3213   phi->addIncoming(handlerResult, overflowBB);
3214 
3215   return phi;
3216 }
3217 
3218 /// Emit pointer + index arithmetic.
3219 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3220                                     const BinOpInfo &op,
3221                                     bool isSubtraction) {
3222   // Must have binary (not unary) expr here.  Unary pointer
3223   // increment/decrement doesn't use this path.
3224   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3225 
3226   Value *pointer = op.LHS;
3227   Expr *pointerOperand = expr->getLHS();
3228   Value *index = op.RHS;
3229   Expr *indexOperand = expr->getRHS();
3230 
3231   // In a subtraction, the LHS is always the pointer.
3232   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3233     std::swap(pointer, index);
3234     std::swap(pointerOperand, indexOperand);
3235   }
3236 
3237   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3238 
3239   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3240   auto &DL = CGF.CGM.getDataLayout();
3241   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3242 
3243   // Some versions of glibc and gcc use idioms (particularly in their malloc
3244   // routines) that add a pointer-sized integer (known to be a pointer value)
3245   // to a null pointer in order to cast the value back to an integer or as
3246   // part of a pointer alignment algorithm.  This is undefined behavior, but
3247   // we'd like to be able to compile programs that use it.
3248   //
3249   // Normally, we'd generate a GEP with a null-pointer base here in response
3250   // to that code, but it's also UB to dereference a pointer created that
3251   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3252   // generate a direct cast of the integer value to a pointer.
3253   //
3254   // The idiom (p = nullptr + N) is not met if any of the following are true:
3255   //
3256   //   The operation is subtraction.
3257   //   The index is not pointer-sized.
3258   //   The pointer type is not byte-sized.
3259   //
3260   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3261                                                        op.Opcode,
3262                                                        expr->getLHS(),
3263                                                        expr->getRHS()))
3264     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3265 
3266   if (width != DL.getTypeSizeInBits(PtrTy)) {
3267     // Zero-extend or sign-extend the pointer value according to
3268     // whether the index is signed or not.
3269     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3270                                       "idx.ext");
3271   }
3272 
3273   // If this is subtraction, negate the index.
3274   if (isSubtraction)
3275     index = CGF.Builder.CreateNeg(index, "idx.neg");
3276 
3277   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3278     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3279                         /*Accessed*/ false);
3280 
3281   const PointerType *pointerType
3282     = pointerOperand->getType()->getAs<PointerType>();
3283   if (!pointerType) {
3284     QualType objectType = pointerOperand->getType()
3285                                         ->castAs<ObjCObjectPointerType>()
3286                                         ->getPointeeType();
3287     llvm::Value *objectSize
3288       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3289 
3290     index = CGF.Builder.CreateMul(index, objectSize);
3291 
3292     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3293     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3294     return CGF.Builder.CreateBitCast(result, pointer->getType());
3295   }
3296 
3297   QualType elementType = pointerType->getPointeeType();
3298   if (const VariableArrayType *vla
3299         = CGF.getContext().getAsVariableArrayType(elementType)) {
3300     // The element count here is the total number of non-VLA elements.
3301     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3302 
3303     // Effectively, the multiply by the VLA size is part of the GEP.
3304     // GEP indexes are signed, and scaling an index isn't permitted to
3305     // signed-overflow, so we use the same semantics for our explicit
3306     // multiply.  We suppress this if overflow is not undefined behavior.
3307     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3308       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3309       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3310     } else {
3311       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3312       pointer =
3313           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3314                                      op.E->getExprLoc(), "add.ptr");
3315     }
3316     return pointer;
3317   }
3318 
3319   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3320   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3321   // future proof.
3322   if (elementType->isVoidType() || elementType->isFunctionType()) {
3323     Value *result = CGF.EmitCastToVoidPtr(pointer);
3324     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3325     return CGF.Builder.CreateBitCast(result, pointer->getType());
3326   }
3327 
3328   if (CGF.getLangOpts().isSignedOverflowDefined())
3329     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3330 
3331   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3332                                     op.E->getExprLoc(), "add.ptr");
3333 }
3334 
3335 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3336 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3337 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3338 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3339 // efficient operations.
3340 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3341                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3342                            bool negMul, bool negAdd) {
3343   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3344 
3345   Value *MulOp0 = MulOp->getOperand(0);
3346   Value *MulOp1 = MulOp->getOperand(1);
3347   if (negMul) {
3348     MulOp0 =
3349       Builder.CreateFSub(
3350         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3351         "neg");
3352   } else if (negAdd) {
3353     Addend =
3354       Builder.CreateFSub(
3355         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3356         "neg");
3357   }
3358 
3359   Value *FMulAdd = Builder.CreateCall(
3360       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3361       {MulOp0, MulOp1, Addend});
3362    MulOp->eraseFromParent();
3363 
3364    return FMulAdd;
3365 }
3366 
3367 // Check whether it would be legal to emit an fmuladd intrinsic call to
3368 // represent op and if so, build the fmuladd.
3369 //
3370 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3371 // Does NOT check the type of the operation - it's assumed that this function
3372 // will be called from contexts where it's known that the type is contractable.
3373 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3374                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3375                          bool isSub=false) {
3376 
3377   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3378           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3379          "Only fadd/fsub can be the root of an fmuladd.");
3380 
3381   // Check whether this op is marked as fusable.
3382   if (!op.FPFeatures.allowFPContractWithinStatement())
3383     return nullptr;
3384 
3385   // We have a potentially fusable op. Look for a mul on one of the operands.
3386   // Also, make sure that the mul result isn't used directly. In that case,
3387   // there's no point creating a muladd operation.
3388   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3389     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3390         LHSBinOp->use_empty())
3391       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3392   }
3393   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3394     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3395         RHSBinOp->use_empty())
3396       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3397   }
3398 
3399   return nullptr;
3400 }
3401 
3402 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3403   if (op.LHS->getType()->isPointerTy() ||
3404       op.RHS->getType()->isPointerTy())
3405     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3406 
3407   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3408     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3409     case LangOptions::SOB_Defined:
3410       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3411     case LangOptions::SOB_Undefined:
3412       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3413         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3414       LLVM_FALLTHROUGH;
3415     case LangOptions::SOB_Trapping:
3416       if (CanElideOverflowCheck(CGF.getContext(), op))
3417         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3418       return EmitOverflowCheckedBinOp(op);
3419     }
3420   }
3421 
3422   if (op.Ty->isUnsignedIntegerType() &&
3423       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3424       !CanElideOverflowCheck(CGF.getContext(), op))
3425     return EmitOverflowCheckedBinOp(op);
3426 
3427   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3428     // Try to form an fmuladd.
3429     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3430       return FMulAdd;
3431 
3432     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3433     return propagateFMFlags(V, op);
3434   }
3435 
3436   if (op.isFixedPointBinOp())
3437     return EmitFixedPointBinOp(op);
3438 
3439   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3440 }
3441 
3442 /// The resulting value must be calculated with exact precision, so the operands
3443 /// may not be the same type.
3444 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3445   using llvm::APSInt;
3446   using llvm::ConstantInt;
3447 
3448   const auto *BinOp = cast<BinaryOperator>(op.E);
3449 
3450   // The result is a fixed point type and at least one of the operands is fixed
3451   // point while the other is either fixed point or an int. This resulting type
3452   // should be determined by Sema::handleFixedPointConversions().
3453   QualType ResultTy = op.Ty;
3454   QualType LHSTy = BinOp->getLHS()->getType();
3455   QualType RHSTy = BinOp->getRHS()->getType();
3456   ASTContext &Ctx = CGF.getContext();
3457   Value *LHS = op.LHS;
3458   Value *RHS = op.RHS;
3459 
3460   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3461   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3462   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3463   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3464 
3465   // Convert the operands to the full precision type.
3466   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3467                                             BinOp->getExprLoc());
3468   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3469                                             BinOp->getExprLoc());
3470 
3471   // Perform the actual addition.
3472   Value *Result;
3473   switch (BinOp->getOpcode()) {
3474   case BO_Add: {
3475     if (ResultFixedSema.isSaturated()) {
3476       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3477                                     ? llvm::Intrinsic::sadd_sat
3478                                     : llvm::Intrinsic::uadd_sat;
3479       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3480     } else {
3481       Result = Builder.CreateAdd(FullLHS, FullRHS);
3482     }
3483     break;
3484   }
3485   case BO_Sub: {
3486     if (ResultFixedSema.isSaturated()) {
3487       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3488                                     ? llvm::Intrinsic::ssub_sat
3489                                     : llvm::Intrinsic::usub_sat;
3490       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3491     } else {
3492       Result = Builder.CreateSub(FullLHS, FullRHS);
3493     }
3494     break;
3495   }
3496   case BO_LT:
3497     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3498                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3499   case BO_GT:
3500     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3501                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3502   case BO_LE:
3503     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3504                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3505   case BO_GE:
3506     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3507                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3508   case BO_EQ:
3509     // For equality operations, we assume any padding bits on unsigned types are
3510     // zero'd out. They could be overwritten through non-saturating operations
3511     // that cause overflow, but this leads to undefined behavior.
3512     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3513   case BO_NE:
3514     return Builder.CreateICmpNE(FullLHS, FullRHS);
3515   case BO_Mul:
3516   case BO_Div:
3517   case BO_Shl:
3518   case BO_Shr:
3519   case BO_Cmp:
3520   case BO_LAnd:
3521   case BO_LOr:
3522   case BO_MulAssign:
3523   case BO_DivAssign:
3524   case BO_AddAssign:
3525   case BO_SubAssign:
3526   case BO_ShlAssign:
3527   case BO_ShrAssign:
3528     llvm_unreachable("Found unimplemented fixed point binary operation");
3529   case BO_PtrMemD:
3530   case BO_PtrMemI:
3531   case BO_Rem:
3532   case BO_Xor:
3533   case BO_And:
3534   case BO_Or:
3535   case BO_Assign:
3536   case BO_RemAssign:
3537   case BO_AndAssign:
3538   case BO_XorAssign:
3539   case BO_OrAssign:
3540   case BO_Comma:
3541     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3542   }
3543 
3544   // Convert to the result type.
3545   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3546                                   BinOp->getExprLoc());
3547 }
3548 
3549 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3550   // The LHS is always a pointer if either side is.
3551   if (!op.LHS->getType()->isPointerTy()) {
3552     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3553       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3554       case LangOptions::SOB_Defined:
3555         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3556       case LangOptions::SOB_Undefined:
3557         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3558           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3559         LLVM_FALLTHROUGH;
3560       case LangOptions::SOB_Trapping:
3561         if (CanElideOverflowCheck(CGF.getContext(), op))
3562           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3563         return EmitOverflowCheckedBinOp(op);
3564       }
3565     }
3566 
3567     if (op.Ty->isUnsignedIntegerType() &&
3568         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3569         !CanElideOverflowCheck(CGF.getContext(), op))
3570       return EmitOverflowCheckedBinOp(op);
3571 
3572     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3573       // Try to form an fmuladd.
3574       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3575         return FMulAdd;
3576       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3577       return propagateFMFlags(V, op);
3578     }
3579 
3580     if (op.isFixedPointBinOp())
3581       return EmitFixedPointBinOp(op);
3582 
3583     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3584   }
3585 
3586   // If the RHS is not a pointer, then we have normal pointer
3587   // arithmetic.
3588   if (!op.RHS->getType()->isPointerTy())
3589     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3590 
3591   // Otherwise, this is a pointer subtraction.
3592 
3593   // Do the raw subtraction part.
3594   llvm::Value *LHS
3595     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3596   llvm::Value *RHS
3597     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3598   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3599 
3600   // Okay, figure out the element size.
3601   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3602   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3603 
3604   llvm::Value *divisor = nullptr;
3605 
3606   // For a variable-length array, this is going to be non-constant.
3607   if (const VariableArrayType *vla
3608         = CGF.getContext().getAsVariableArrayType(elementType)) {
3609     auto VlaSize = CGF.getVLASize(vla);
3610     elementType = VlaSize.Type;
3611     divisor = VlaSize.NumElts;
3612 
3613     // Scale the number of non-VLA elements by the non-VLA element size.
3614     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3615     if (!eltSize.isOne())
3616       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3617 
3618   // For everything elese, we can just compute it, safe in the
3619   // assumption that Sema won't let anything through that we can't
3620   // safely compute the size of.
3621   } else {
3622     CharUnits elementSize;
3623     // Handle GCC extension for pointer arithmetic on void* and
3624     // function pointer types.
3625     if (elementType->isVoidType() || elementType->isFunctionType())
3626       elementSize = CharUnits::One();
3627     else
3628       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3629 
3630     // Don't even emit the divide for element size of 1.
3631     if (elementSize.isOne())
3632       return diffInChars;
3633 
3634     divisor = CGF.CGM.getSize(elementSize);
3635   }
3636 
3637   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3638   // pointer difference in C is only defined in the case where both operands
3639   // are pointing to elements of an array.
3640   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3641 }
3642 
3643 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3644   llvm::IntegerType *Ty;
3645   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3646     Ty = cast<llvm::IntegerType>(VT->getElementType());
3647   else
3648     Ty = cast<llvm::IntegerType>(LHS->getType());
3649   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3650 }
3651 
3652 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3653   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3654   // RHS to the same size as the LHS.
3655   Value *RHS = Ops.RHS;
3656   if (Ops.LHS->getType() != RHS->getType())
3657     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3658 
3659   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3660                       Ops.Ty->hasSignedIntegerRepresentation() &&
3661                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3662                       !CGF.getLangOpts().CPlusPlus2a;
3663   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3664   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3665   if (CGF.getLangOpts().OpenCL)
3666     RHS =
3667         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3668   else if ((SanitizeBase || SanitizeExponent) &&
3669            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3670     CodeGenFunction::SanitizerScope SanScope(&CGF);
3671     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3672     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3673     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3674 
3675     if (SanitizeExponent) {
3676       Checks.push_back(
3677           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3678     }
3679 
3680     if (SanitizeBase) {
3681       // Check whether we are shifting any non-zero bits off the top of the
3682       // integer. We only emit this check if exponent is valid - otherwise
3683       // instructions below will have undefined behavior themselves.
3684       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3685       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3686       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3687       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3688       llvm::Value *PromotedWidthMinusOne =
3689           (RHS == Ops.RHS) ? WidthMinusOne
3690                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3691       CGF.EmitBlock(CheckShiftBase);
3692       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3693           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3694                                      /*NUW*/ true, /*NSW*/ true),
3695           "shl.check");
3696       if (CGF.getLangOpts().CPlusPlus) {
3697         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3698         // Under C++11's rules, shifting a 1 bit into the sign bit is
3699         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3700         // define signed left shifts, so we use the C99 and C++11 rules there).
3701         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3702         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3703       }
3704       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3705       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3706       CGF.EmitBlock(Cont);
3707       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3708       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3709       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3710       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3711     }
3712 
3713     assert(!Checks.empty());
3714     EmitBinOpCheck(Checks, Ops);
3715   }
3716 
3717   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3718 }
3719 
3720 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3721   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3722   // RHS to the same size as the LHS.
3723   Value *RHS = Ops.RHS;
3724   if (Ops.LHS->getType() != RHS->getType())
3725     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3726 
3727   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3728   if (CGF.getLangOpts().OpenCL)
3729     RHS =
3730         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3731   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3732            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3733     CodeGenFunction::SanitizerScope SanScope(&CGF);
3734     llvm::Value *Valid =
3735         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3736     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3737   }
3738 
3739   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3740     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3741   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3742 }
3743 
3744 enum IntrinsicType { VCMPEQ, VCMPGT };
3745 // return corresponding comparison intrinsic for given vector type
3746 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3747                                         BuiltinType::Kind ElemKind) {
3748   switch (ElemKind) {
3749   default: llvm_unreachable("unexpected element type");
3750   case BuiltinType::Char_U:
3751   case BuiltinType::UChar:
3752     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3753                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3754   case BuiltinType::Char_S:
3755   case BuiltinType::SChar:
3756     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3757                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3758   case BuiltinType::UShort:
3759     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3760                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3761   case BuiltinType::Short:
3762     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3763                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3764   case BuiltinType::UInt:
3765     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3766                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3767   case BuiltinType::Int:
3768     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3769                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3770   case BuiltinType::ULong:
3771   case BuiltinType::ULongLong:
3772     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3773                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3774   case BuiltinType::Long:
3775   case BuiltinType::LongLong:
3776     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3777                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3778   case BuiltinType::Float:
3779     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3780                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3781   case BuiltinType::Double:
3782     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3783                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3784   }
3785 }
3786 
3787 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3788                                       llvm::CmpInst::Predicate UICmpOpc,
3789                                       llvm::CmpInst::Predicate SICmpOpc,
3790                                       llvm::CmpInst::Predicate FCmpOpc) {
3791   TestAndClearIgnoreResultAssign();
3792   Value *Result;
3793   QualType LHSTy = E->getLHS()->getType();
3794   QualType RHSTy = E->getRHS()->getType();
3795   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3796     assert(E->getOpcode() == BO_EQ ||
3797            E->getOpcode() == BO_NE);
3798     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3799     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3800     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3801                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3802   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3803     BinOpInfo BOInfo = EmitBinOps(E);
3804     Value *LHS = BOInfo.LHS;
3805     Value *RHS = BOInfo.RHS;
3806 
3807     // If AltiVec, the comparison results in a numeric type, so we use
3808     // intrinsics comparing vectors and giving 0 or 1 as a result
3809     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3810       // constants for mapping CR6 register bits to predicate result
3811       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3812 
3813       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3814 
3815       // in several cases vector arguments order will be reversed
3816       Value *FirstVecArg = LHS,
3817             *SecondVecArg = RHS;
3818 
3819       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3820       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3821       BuiltinType::Kind ElementKind = BTy->getKind();
3822 
3823       switch(E->getOpcode()) {
3824       default: llvm_unreachable("is not a comparison operation");
3825       case BO_EQ:
3826         CR6 = CR6_LT;
3827         ID = GetIntrinsic(VCMPEQ, ElementKind);
3828         break;
3829       case BO_NE:
3830         CR6 = CR6_EQ;
3831         ID = GetIntrinsic(VCMPEQ, ElementKind);
3832         break;
3833       case BO_LT:
3834         CR6 = CR6_LT;
3835         ID = GetIntrinsic(VCMPGT, ElementKind);
3836         std::swap(FirstVecArg, SecondVecArg);
3837         break;
3838       case BO_GT:
3839         CR6 = CR6_LT;
3840         ID = GetIntrinsic(VCMPGT, ElementKind);
3841         break;
3842       case BO_LE:
3843         if (ElementKind == BuiltinType::Float) {
3844           CR6 = CR6_LT;
3845           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3846           std::swap(FirstVecArg, SecondVecArg);
3847         }
3848         else {
3849           CR6 = CR6_EQ;
3850           ID = GetIntrinsic(VCMPGT, ElementKind);
3851         }
3852         break;
3853       case BO_GE:
3854         if (ElementKind == BuiltinType::Float) {
3855           CR6 = CR6_LT;
3856           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3857         }
3858         else {
3859           CR6 = CR6_EQ;
3860           ID = GetIntrinsic(VCMPGT, ElementKind);
3861           std::swap(FirstVecArg, SecondVecArg);
3862         }
3863         break;
3864       }
3865 
3866       Value *CR6Param = Builder.getInt32(CR6);
3867       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3868       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3869 
3870       // The result type of intrinsic may not be same as E->getType().
3871       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3872       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3873       // do nothing, if ResultTy is not i1 at the same time, it will cause
3874       // crash later.
3875       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3876       if (ResultTy->getBitWidth() > 1 &&
3877           E->getType() == CGF.getContext().BoolTy)
3878         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3879       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3880                                   E->getExprLoc());
3881     }
3882 
3883     if (BOInfo.isFixedPointBinOp()) {
3884       Result = EmitFixedPointBinOp(BOInfo);
3885     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3886       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3887     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3888       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3889     } else {
3890       // Unsigned integers and pointers.
3891 
3892       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3893           !isa<llvm::ConstantPointerNull>(LHS) &&
3894           !isa<llvm::ConstantPointerNull>(RHS)) {
3895 
3896         // Dynamic information is required to be stripped for comparisons,
3897         // because it could leak the dynamic information.  Based on comparisons
3898         // of pointers to dynamic objects, the optimizer can replace one pointer
3899         // with another, which might be incorrect in presence of invariant
3900         // groups. Comparison with null is safe because null does not carry any
3901         // dynamic information.
3902         if (LHSTy.mayBeDynamicClass())
3903           LHS = Builder.CreateStripInvariantGroup(LHS);
3904         if (RHSTy.mayBeDynamicClass())
3905           RHS = Builder.CreateStripInvariantGroup(RHS);
3906       }
3907 
3908       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3909     }
3910 
3911     // If this is a vector comparison, sign extend the result to the appropriate
3912     // vector integer type and return it (don't convert to bool).
3913     if (LHSTy->isVectorType())
3914       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3915 
3916   } else {
3917     // Complex Comparison: can only be an equality comparison.
3918     CodeGenFunction::ComplexPairTy LHS, RHS;
3919     QualType CETy;
3920     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3921       LHS = CGF.EmitComplexExpr(E->getLHS());
3922       CETy = CTy->getElementType();
3923     } else {
3924       LHS.first = Visit(E->getLHS());
3925       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3926       CETy = LHSTy;
3927     }
3928     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3929       RHS = CGF.EmitComplexExpr(E->getRHS());
3930       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3931                                                      CTy->getElementType()) &&
3932              "The element types must always match.");
3933       (void)CTy;
3934     } else {
3935       RHS.first = Visit(E->getRHS());
3936       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3937       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3938              "The element types must always match.");
3939     }
3940 
3941     Value *ResultR, *ResultI;
3942     if (CETy->isRealFloatingType()) {
3943       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3944       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3945     } else {
3946       // Complex comparisons can only be equality comparisons.  As such, signed
3947       // and unsigned opcodes are the same.
3948       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3949       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3950     }
3951 
3952     if (E->getOpcode() == BO_EQ) {
3953       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3954     } else {
3955       assert(E->getOpcode() == BO_NE &&
3956              "Complex comparison other than == or != ?");
3957       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3958     }
3959   }
3960 
3961   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3962                               E->getExprLoc());
3963 }
3964 
3965 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3966   bool Ignore = TestAndClearIgnoreResultAssign();
3967 
3968   Value *RHS;
3969   LValue LHS;
3970 
3971   switch (E->getLHS()->getType().getObjCLifetime()) {
3972   case Qualifiers::OCL_Strong:
3973     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3974     break;
3975 
3976   case Qualifiers::OCL_Autoreleasing:
3977     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3978     break;
3979 
3980   case Qualifiers::OCL_ExplicitNone:
3981     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3982     break;
3983 
3984   case Qualifiers::OCL_Weak:
3985     RHS = Visit(E->getRHS());
3986     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3987     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
3988     break;
3989 
3990   case Qualifiers::OCL_None:
3991     // __block variables need to have the rhs evaluated first, plus
3992     // this should improve codegen just a little.
3993     RHS = Visit(E->getRHS());
3994     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3995 
3996     // Store the value into the LHS.  Bit-fields are handled specially
3997     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3998     // 'An assignment expression has the value of the left operand after
3999     // the assignment...'.
4000     if (LHS.isBitField()) {
4001       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4002     } else {
4003       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4004       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4005     }
4006   }
4007 
4008   // If the result is clearly ignored, return now.
4009   if (Ignore)
4010     return nullptr;
4011 
4012   // The result of an assignment in C is the assigned r-value.
4013   if (!CGF.getLangOpts().CPlusPlus)
4014     return RHS;
4015 
4016   // If the lvalue is non-volatile, return the computed value of the assignment.
4017   if (!LHS.isVolatileQualified())
4018     return RHS;
4019 
4020   // Otherwise, reload the value.
4021   return EmitLoadOfLValue(LHS, E->getExprLoc());
4022 }
4023 
4024 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4025   // Perform vector logical and on comparisons with zero vectors.
4026   if (E->getType()->isVectorType()) {
4027     CGF.incrementProfileCounter(E);
4028 
4029     Value *LHS = Visit(E->getLHS());
4030     Value *RHS = Visit(E->getRHS());
4031     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4032     if (LHS->getType()->isFPOrFPVectorTy()) {
4033       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4034       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4035     } else {
4036       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4037       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4038     }
4039     Value *And = Builder.CreateAnd(LHS, RHS);
4040     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4041   }
4042 
4043   llvm::Type *ResTy = ConvertType(E->getType());
4044 
4045   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4046   // If we have 1 && X, just emit X without inserting the control flow.
4047   bool LHSCondVal;
4048   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4049     if (LHSCondVal) { // If we have 1 && X, just emit X.
4050       CGF.incrementProfileCounter(E);
4051 
4052       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4053       // ZExt result to int or bool.
4054       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4055     }
4056 
4057     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4058     if (!CGF.ContainsLabel(E->getRHS()))
4059       return llvm::Constant::getNullValue(ResTy);
4060   }
4061 
4062   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4063   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4064 
4065   CodeGenFunction::ConditionalEvaluation eval(CGF);
4066 
4067   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4068   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4069                            CGF.getProfileCount(E->getRHS()));
4070 
4071   // Any edges into the ContBlock are now from an (indeterminate number of)
4072   // edges from this first condition.  All of these values will be false.  Start
4073   // setting up the PHI node in the Cont Block for this.
4074   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4075                                             "", ContBlock);
4076   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4077        PI != PE; ++PI)
4078     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4079 
4080   eval.begin(CGF);
4081   CGF.EmitBlock(RHSBlock);
4082   CGF.incrementProfileCounter(E);
4083   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4084   eval.end(CGF);
4085 
4086   // Reaquire the RHS block, as there may be subblocks inserted.
4087   RHSBlock = Builder.GetInsertBlock();
4088 
4089   // Emit an unconditional branch from this block to ContBlock.
4090   {
4091     // There is no need to emit line number for unconditional branch.
4092     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4093     CGF.EmitBlock(ContBlock);
4094   }
4095   // Insert an entry into the phi node for the edge with the value of RHSCond.
4096   PN->addIncoming(RHSCond, RHSBlock);
4097 
4098   // Artificial location to preserve the scope information
4099   {
4100     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4101     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4102   }
4103 
4104   // ZExt result to int.
4105   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4106 }
4107 
4108 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4109   // Perform vector logical or on comparisons with zero vectors.
4110   if (E->getType()->isVectorType()) {
4111     CGF.incrementProfileCounter(E);
4112 
4113     Value *LHS = Visit(E->getLHS());
4114     Value *RHS = Visit(E->getRHS());
4115     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4116     if (LHS->getType()->isFPOrFPVectorTy()) {
4117       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4118       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4119     } else {
4120       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4121       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4122     }
4123     Value *Or = Builder.CreateOr(LHS, RHS);
4124     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4125   }
4126 
4127   llvm::Type *ResTy = ConvertType(E->getType());
4128 
4129   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4130   // If we have 0 || X, just emit X without inserting the control flow.
4131   bool LHSCondVal;
4132   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4133     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4134       CGF.incrementProfileCounter(E);
4135 
4136       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4137       // ZExt result to int or bool.
4138       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4139     }
4140 
4141     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4142     if (!CGF.ContainsLabel(E->getRHS()))
4143       return llvm::ConstantInt::get(ResTy, 1);
4144   }
4145 
4146   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4147   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4148 
4149   CodeGenFunction::ConditionalEvaluation eval(CGF);
4150 
4151   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4152   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4153                            CGF.getCurrentProfileCount() -
4154                                CGF.getProfileCount(E->getRHS()));
4155 
4156   // Any edges into the ContBlock are now from an (indeterminate number of)
4157   // edges from this first condition.  All of these values will be true.  Start
4158   // setting up the PHI node in the Cont Block for this.
4159   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4160                                             "", ContBlock);
4161   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4162        PI != PE; ++PI)
4163     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4164 
4165   eval.begin(CGF);
4166 
4167   // Emit the RHS condition as a bool value.
4168   CGF.EmitBlock(RHSBlock);
4169   CGF.incrementProfileCounter(E);
4170   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4171 
4172   eval.end(CGF);
4173 
4174   // Reaquire the RHS block, as there may be subblocks inserted.
4175   RHSBlock = Builder.GetInsertBlock();
4176 
4177   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4178   // into the phi node for the edge with the value of RHSCond.
4179   CGF.EmitBlock(ContBlock);
4180   PN->addIncoming(RHSCond, RHSBlock);
4181 
4182   // ZExt result to int.
4183   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4184 }
4185 
4186 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4187   CGF.EmitIgnoredExpr(E->getLHS());
4188   CGF.EnsureInsertPoint();
4189   return Visit(E->getRHS());
4190 }
4191 
4192 //===----------------------------------------------------------------------===//
4193 //                             Other Operators
4194 //===----------------------------------------------------------------------===//
4195 
4196 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4197 /// expression is cheap enough and side-effect-free enough to evaluate
4198 /// unconditionally instead of conditionally.  This is used to convert control
4199 /// flow into selects in some cases.
4200 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4201                                                    CodeGenFunction &CGF) {
4202   // Anything that is an integer or floating point constant is fine.
4203   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4204 
4205   // Even non-volatile automatic variables can't be evaluated unconditionally.
4206   // Referencing a thread_local may cause non-trivial initialization work to
4207   // occur. If we're inside a lambda and one of the variables is from the scope
4208   // outside the lambda, that function may have returned already. Reading its
4209   // locals is a bad idea. Also, these reads may introduce races there didn't
4210   // exist in the source-level program.
4211 }
4212 
4213 
4214 Value *ScalarExprEmitter::
4215 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4216   TestAndClearIgnoreResultAssign();
4217 
4218   // Bind the common expression if necessary.
4219   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4220 
4221   Expr *condExpr = E->getCond();
4222   Expr *lhsExpr = E->getTrueExpr();
4223   Expr *rhsExpr = E->getFalseExpr();
4224 
4225   // If the condition constant folds and can be elided, try to avoid emitting
4226   // the condition and the dead arm.
4227   bool CondExprBool;
4228   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4229     Expr *live = lhsExpr, *dead = rhsExpr;
4230     if (!CondExprBool) std::swap(live, dead);
4231 
4232     // If the dead side doesn't have labels we need, just emit the Live part.
4233     if (!CGF.ContainsLabel(dead)) {
4234       if (CondExprBool)
4235         CGF.incrementProfileCounter(E);
4236       Value *Result = Visit(live);
4237 
4238       // If the live part is a throw expression, it acts like it has a void
4239       // type, so evaluating it returns a null Value*.  However, a conditional
4240       // with non-void type must return a non-null Value*.
4241       if (!Result && !E->getType()->isVoidType())
4242         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4243 
4244       return Result;
4245     }
4246   }
4247 
4248   // OpenCL: If the condition is a vector, we can treat this condition like
4249   // the select function.
4250   if (CGF.getLangOpts().OpenCL
4251       && condExpr->getType()->isVectorType()) {
4252     CGF.incrementProfileCounter(E);
4253 
4254     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4255     llvm::Value *LHS = Visit(lhsExpr);
4256     llvm::Value *RHS = Visit(rhsExpr);
4257 
4258     llvm::Type *condType = ConvertType(condExpr->getType());
4259     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4260 
4261     unsigned numElem = vecTy->getNumElements();
4262     llvm::Type *elemType = vecTy->getElementType();
4263 
4264     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4265     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4266     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4267                                           llvm::VectorType::get(elemType,
4268                                                                 numElem),
4269                                           "sext");
4270     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4271 
4272     // Cast float to int to perform ANDs if necessary.
4273     llvm::Value *RHSTmp = RHS;
4274     llvm::Value *LHSTmp = LHS;
4275     bool wasCast = false;
4276     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4277     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4278       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4279       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4280       wasCast = true;
4281     }
4282 
4283     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4284     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4285     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4286     if (wasCast)
4287       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4288 
4289     return tmp5;
4290   }
4291 
4292   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4293   // select instead of as control flow.  We can only do this if it is cheap and
4294   // safe to evaluate the LHS and RHS unconditionally.
4295   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4296       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4297     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4298     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4299 
4300     CGF.incrementProfileCounter(E, StepV);
4301 
4302     llvm::Value *LHS = Visit(lhsExpr);
4303     llvm::Value *RHS = Visit(rhsExpr);
4304     if (!LHS) {
4305       // If the conditional has void type, make sure we return a null Value*.
4306       assert(!RHS && "LHS and RHS types must match");
4307       return nullptr;
4308     }
4309     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4310   }
4311 
4312   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4313   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4314   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4315 
4316   CodeGenFunction::ConditionalEvaluation eval(CGF);
4317   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4318                            CGF.getProfileCount(lhsExpr));
4319 
4320   CGF.EmitBlock(LHSBlock);
4321   CGF.incrementProfileCounter(E);
4322   eval.begin(CGF);
4323   Value *LHS = Visit(lhsExpr);
4324   eval.end(CGF);
4325 
4326   LHSBlock = Builder.GetInsertBlock();
4327   Builder.CreateBr(ContBlock);
4328 
4329   CGF.EmitBlock(RHSBlock);
4330   eval.begin(CGF);
4331   Value *RHS = Visit(rhsExpr);
4332   eval.end(CGF);
4333 
4334   RHSBlock = Builder.GetInsertBlock();
4335   CGF.EmitBlock(ContBlock);
4336 
4337   // If the LHS or RHS is a throw expression, it will be legitimately null.
4338   if (!LHS)
4339     return RHS;
4340   if (!RHS)
4341     return LHS;
4342 
4343   // Create a PHI node for the real part.
4344   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4345   PN->addIncoming(LHS, LHSBlock);
4346   PN->addIncoming(RHS, RHSBlock);
4347   return PN;
4348 }
4349 
4350 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4351   return Visit(E->getChosenSubExpr());
4352 }
4353 
4354 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4355   QualType Ty = VE->getType();
4356 
4357   if (Ty->isVariablyModifiedType())
4358     CGF.EmitVariablyModifiedType(Ty);
4359 
4360   Address ArgValue = Address::invalid();
4361   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4362 
4363   llvm::Type *ArgTy = ConvertType(VE->getType());
4364 
4365   // If EmitVAArg fails, emit an error.
4366   if (!ArgPtr.isValid()) {
4367     CGF.ErrorUnsupported(VE, "va_arg expression");
4368     return llvm::UndefValue::get(ArgTy);
4369   }
4370 
4371   // FIXME Volatility.
4372   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4373 
4374   // If EmitVAArg promoted the type, we must truncate it.
4375   if (ArgTy != Val->getType()) {
4376     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4377       Val = Builder.CreateIntToPtr(Val, ArgTy);
4378     else
4379       Val = Builder.CreateTrunc(Val, ArgTy);
4380   }
4381 
4382   return Val;
4383 }
4384 
4385 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4386   return CGF.EmitBlockLiteral(block);
4387 }
4388 
4389 // Convert a vec3 to vec4, or vice versa.
4390 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4391                                  Value *Src, unsigned NumElementsDst) {
4392   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4393   SmallVector<llvm::Constant*, 4> Args;
4394   Args.push_back(Builder.getInt32(0));
4395   Args.push_back(Builder.getInt32(1));
4396   Args.push_back(Builder.getInt32(2));
4397   if (NumElementsDst == 4)
4398     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4399   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4400   return Builder.CreateShuffleVector(Src, UnV, Mask);
4401 }
4402 
4403 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4404 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4405 // but could be scalar or vectors of different lengths, and either can be
4406 // pointer.
4407 // There are 4 cases:
4408 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4409 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4410 // 3. pointer -> non-pointer
4411 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4412 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4413 // 4. non-pointer -> pointer
4414 //   a) intptr_t -> pointer       : needs 1 inttoptr
4415 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4416 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4417 // allow casting directly between pointer types and non-integer non-pointer
4418 // types.
4419 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4420                                            const llvm::DataLayout &DL,
4421                                            Value *Src, llvm::Type *DstTy,
4422                                            StringRef Name = "") {
4423   auto SrcTy = Src->getType();
4424 
4425   // Case 1.
4426   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4427     return Builder.CreateBitCast(Src, DstTy, Name);
4428 
4429   // Case 2.
4430   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4431     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4432 
4433   // Case 3.
4434   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4435     // Case 3b.
4436     if (!DstTy->isIntegerTy())
4437       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4438     // Cases 3a and 3b.
4439     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4440   }
4441 
4442   // Case 4b.
4443   if (!SrcTy->isIntegerTy())
4444     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4445   // Cases 4a and 4b.
4446   return Builder.CreateIntToPtr(Src, DstTy, Name);
4447 }
4448 
4449 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4450   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4451   llvm::Type *DstTy = ConvertType(E->getType());
4452 
4453   llvm::Type *SrcTy = Src->getType();
4454   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4455     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4456   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4457     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4458 
4459   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4460   // vector to get a vec4, then a bitcast if the target type is different.
4461   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4462     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4463 
4464     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4465       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4466                                          DstTy);
4467     }
4468 
4469     Src->setName("astype");
4470     return Src;
4471   }
4472 
4473   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4474   // to vec4 if the original type is not vec4, then a shuffle vector to
4475   // get a vec3.
4476   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4477     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4478       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4479       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4480                                          Vec4Ty);
4481     }
4482 
4483     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4484     Src->setName("astype");
4485     return Src;
4486   }
4487 
4488   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4489                                       Src, DstTy, "astype");
4490 }
4491 
4492 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4493   return CGF.EmitAtomicExpr(E).getScalarVal();
4494 }
4495 
4496 //===----------------------------------------------------------------------===//
4497 //                         Entry Point into this File
4498 //===----------------------------------------------------------------------===//
4499 
4500 /// Emit the computation of the specified expression of scalar type, ignoring
4501 /// the result.
4502 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4503   assert(E && hasScalarEvaluationKind(E->getType()) &&
4504          "Invalid scalar expression to emit");
4505 
4506   return ScalarExprEmitter(*this, IgnoreResultAssign)
4507       .Visit(const_cast<Expr *>(E));
4508 }
4509 
4510 /// Emit a conversion from the specified type to the specified destination type,
4511 /// both of which are LLVM scalar types.
4512 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4513                                              QualType DstTy,
4514                                              SourceLocation Loc) {
4515   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4516          "Invalid scalar expression to emit");
4517   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4518 }
4519 
4520 /// Emit a conversion from the specified complex type to the specified
4521 /// destination type, where the destination type is an LLVM scalar type.
4522 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4523                                                       QualType SrcTy,
4524                                                       QualType DstTy,
4525                                                       SourceLocation Loc) {
4526   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4527          "Invalid complex -> scalar conversion");
4528   return ScalarExprEmitter(*this)
4529       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4530 }
4531 
4532 
4533 llvm::Value *CodeGenFunction::
4534 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4535                         bool isInc, bool isPre) {
4536   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4537 }
4538 
4539 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4540   // object->isa or (*object).isa
4541   // Generate code as for: *(Class*)object
4542 
4543   Expr *BaseExpr = E->getBase();
4544   Address Addr = Address::invalid();
4545   if (BaseExpr->isRValue()) {
4546     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4547   } else {
4548     Addr = EmitLValue(BaseExpr).getAddress(*this);
4549   }
4550 
4551   // Cast the address to Class*.
4552   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4553   return MakeAddrLValue(Addr, E->getType());
4554 }
4555 
4556 
4557 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4558                                             const CompoundAssignOperator *E) {
4559   ScalarExprEmitter Scalar(*this);
4560   Value *Result = nullptr;
4561   switch (E->getOpcode()) {
4562 #define COMPOUND_OP(Op)                                                       \
4563     case BO_##Op##Assign:                                                     \
4564       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4565                                              Result)
4566   COMPOUND_OP(Mul);
4567   COMPOUND_OP(Div);
4568   COMPOUND_OP(Rem);
4569   COMPOUND_OP(Add);
4570   COMPOUND_OP(Sub);
4571   COMPOUND_OP(Shl);
4572   COMPOUND_OP(Shr);
4573   COMPOUND_OP(And);
4574   COMPOUND_OP(Xor);
4575   COMPOUND_OP(Or);
4576 #undef COMPOUND_OP
4577 
4578   case BO_PtrMemD:
4579   case BO_PtrMemI:
4580   case BO_Mul:
4581   case BO_Div:
4582   case BO_Rem:
4583   case BO_Add:
4584   case BO_Sub:
4585   case BO_Shl:
4586   case BO_Shr:
4587   case BO_LT:
4588   case BO_GT:
4589   case BO_LE:
4590   case BO_GE:
4591   case BO_EQ:
4592   case BO_NE:
4593   case BO_Cmp:
4594   case BO_And:
4595   case BO_Xor:
4596   case BO_Or:
4597   case BO_LAnd:
4598   case BO_LOr:
4599   case BO_Assign:
4600   case BO_Comma:
4601     llvm_unreachable("Not valid compound assignment operators");
4602   }
4603 
4604   llvm_unreachable("Unhandled compound assignment operator");
4605 }
4606 
4607 struct GEPOffsetAndOverflow {
4608   // The total (signed) byte offset for the GEP.
4609   llvm::Value *TotalOffset;
4610   // The offset overflow flag - true if the total offset overflows.
4611   llvm::Value *OffsetOverflows;
4612 };
4613 
4614 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4615 /// and compute the total offset it applies from it's base pointer BasePtr.
4616 /// Returns offset in bytes and a boolean flag whether an overflow happened
4617 /// during evaluation.
4618 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4619                                                  llvm::LLVMContext &VMContext,
4620                                                  CodeGenModule &CGM,
4621                                                  CGBuilderTy Builder) {
4622   const auto &DL = CGM.getDataLayout();
4623 
4624   // The total (signed) byte offset for the GEP.
4625   llvm::Value *TotalOffset = nullptr;
4626 
4627   // Was the GEP already reduced to a constant?
4628   if (isa<llvm::Constant>(GEPVal)) {
4629     // Compute the offset by casting both pointers to integers and subtracting:
4630     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4631     Value *BasePtr_int =
4632         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4633     Value *GEPVal_int =
4634         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4635     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4636     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4637   }
4638 
4639   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4640   assert(GEP->getPointerOperand() == BasePtr &&
4641          "BasePtr must be the the base of the GEP.");
4642   assert(GEP->isInBounds() && "Expected inbounds GEP");
4643 
4644   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4645 
4646   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4647   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4648   auto *SAddIntrinsic =
4649       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4650   auto *SMulIntrinsic =
4651       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4652 
4653   // The offset overflow flag - true if the total offset overflows.
4654   llvm::Value *OffsetOverflows = Builder.getFalse();
4655 
4656   /// Return the result of the given binary operation.
4657   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4658                   llvm::Value *RHS) -> llvm::Value * {
4659     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4660 
4661     // If the operands are constants, return a constant result.
4662     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4663       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4664         llvm::APInt N;
4665         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4666                                                   /*Signed=*/true, N);
4667         if (HasOverflow)
4668           OffsetOverflows = Builder.getTrue();
4669         return llvm::ConstantInt::get(VMContext, N);
4670       }
4671     }
4672 
4673     // Otherwise, compute the result with checked arithmetic.
4674     auto *ResultAndOverflow = Builder.CreateCall(
4675         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4676     OffsetOverflows = Builder.CreateOr(
4677         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4678     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4679   };
4680 
4681   // Determine the total byte offset by looking at each GEP operand.
4682   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4683        GTI != GTE; ++GTI) {
4684     llvm::Value *LocalOffset;
4685     auto *Index = GTI.getOperand();
4686     // Compute the local offset contributed by this indexing step:
4687     if (auto *STy = GTI.getStructTypeOrNull()) {
4688       // For struct indexing, the local offset is the byte position of the
4689       // specified field.
4690       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4691       LocalOffset = llvm::ConstantInt::get(
4692           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4693     } else {
4694       // Otherwise this is array-like indexing. The local offset is the index
4695       // multiplied by the element size.
4696       auto *ElementSize = llvm::ConstantInt::get(
4697           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4698       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4699       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4700     }
4701 
4702     // If this is the first offset, set it as the total offset. Otherwise, add
4703     // the local offset into the running total.
4704     if (!TotalOffset || TotalOffset == Zero)
4705       TotalOffset = LocalOffset;
4706     else
4707       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4708   }
4709 
4710   return {TotalOffset, OffsetOverflows};
4711 }
4712 
4713 Value *
4714 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4715                                         bool SignedIndices, bool IsSubtraction,
4716                                         SourceLocation Loc, const Twine &Name) {
4717   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4718 
4719   // If the pointer overflow sanitizer isn't enabled, do nothing.
4720   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4721     return GEPVal;
4722 
4723   llvm::Type *PtrTy = Ptr->getType();
4724 
4725   // Perform nullptr-and-offset check unless the nullptr is defined.
4726   bool PerformNullCheck = !NullPointerIsDefined(
4727       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4728   // Check for overflows unless the GEP got constant-folded,
4729   // and only in the default address space
4730   bool PerformOverflowCheck =
4731       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4732 
4733   if (!(PerformNullCheck || PerformOverflowCheck))
4734     return GEPVal;
4735 
4736   const auto &DL = CGM.getDataLayout();
4737 
4738   SanitizerScope SanScope(this);
4739   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4740 
4741   GEPOffsetAndOverflow EvaluatedGEP =
4742       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4743 
4744   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4745           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4746          "If the offset got constant-folded, we don't expect that there was an "
4747          "overflow.");
4748 
4749   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4750 
4751   // Common case: if the total offset is zero, and we are using C++ semantics,
4752   // where nullptr+0 is defined, don't emit a check.
4753   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4754     return GEPVal;
4755 
4756   // Now that we've computed the total offset, add it to the base pointer (with
4757   // wrapping semantics).
4758   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4759   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4760 
4761   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4762 
4763   if (PerformNullCheck) {
4764     // In C++, if the base pointer evaluates to a null pointer value,
4765     // the only valid  pointer this inbounds GEP can produce is also
4766     // a null pointer, so the offset must also evaluate to zero.
4767     // Likewise, if we have non-zero base pointer, we can not get null pointer
4768     // as a result, so the offset can not be -intptr_t(BasePtr).
4769     // In other words, both pointers are either null, or both are non-null,
4770     // or the behaviour is undefined.
4771     //
4772     // C, however, is more strict in this regard, and gives more
4773     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4774     // So both the input to the 'gep inbounds' AND the output must not be null.
4775     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4776     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4777     auto *Valid =
4778         CGM.getLangOpts().CPlusPlus
4779             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4780             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4781     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4782   }
4783 
4784   if (PerformOverflowCheck) {
4785     // The GEP is valid if:
4786     // 1) The total offset doesn't overflow, and
4787     // 2) The sign of the difference between the computed address and the base
4788     // pointer matches the sign of the total offset.
4789     llvm::Value *ValidGEP;
4790     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4791     if (SignedIndices) {
4792       // GEP is computed as `unsigned base + signed offset`, therefore:
4793       // * If offset was positive, then the computed pointer can not be
4794       //   [unsigned] less than the base pointer, unless it overflowed.
4795       // * If offset was negative, then the computed pointer can not be
4796       //   [unsigned] greater than the bas pointere, unless it overflowed.
4797       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4798       auto *PosOrZeroOffset =
4799           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4800       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4801       ValidGEP =
4802           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4803     } else if (!IsSubtraction) {
4804       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4805       // computed pointer can not be [unsigned] less than base pointer,
4806       // unless there was an overflow.
4807       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4808       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4809     } else {
4810       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4811       // computed pointer can not be [unsigned] greater than base pointer,
4812       // unless there was an overflow.
4813       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4814       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4815     }
4816     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4817     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4818   }
4819 
4820   assert(!Checks.empty() && "Should have produced some checks.");
4821 
4822   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4823   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4824   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4825   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4826 
4827   return GEPVal;
4828 }
4829