1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 class ScalarExprEmitter
52   : public StmtVisitor<ScalarExprEmitter, Value*> {
53   CodeGenFunction &CGF;
54   CGBuilderTy &Builder;
55   bool IgnoreResultAssign;
56   llvm::LLVMContext &VMContext;
57 public:
58 
59   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
60     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
61       VMContext(cgf.getLLVMContext()) {
62   }
63 
64   //===--------------------------------------------------------------------===//
65   //                               Utilities
66   //===--------------------------------------------------------------------===//
67 
68   bool TestAndClearIgnoreResultAssign() {
69     bool I = IgnoreResultAssign;
70     IgnoreResultAssign = false;
71     return I;
72   }
73 
74   const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
75   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
76   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
77 
78   Value *EmitLoadOfLValue(LValue LV, QualType T) {
79     return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
80   }
81 
82   /// EmitLoadOfLValue - Given an expression with complex type that represents a
83   /// value l-value, this method emits the address of the l-value, then loads
84   /// and returns the result.
85   Value *EmitLoadOfLValue(const Expr *E) {
86     return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
87   }
88 
89   /// EmitConversionToBool - Convert the specified expression value to a
90   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
91   Value *EmitConversionToBool(Value *Src, QualType DstTy);
92 
93   /// EmitScalarConversion - Emit a conversion from the specified type to the
94   /// specified destination type, both of which are LLVM scalar types.
95   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
96 
97   /// EmitComplexToScalarConversion - Emit a conversion from the specified
98   /// complex type to the specified destination type, where the destination type
99   /// is an LLVM scalar type.
100   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
101                                        QualType SrcTy, QualType DstTy);
102 
103   /// EmitNullValue - Emit a value that corresponds to null for the given type.
104   Value *EmitNullValue(QualType Ty);
105 
106   //===--------------------------------------------------------------------===//
107   //                            Visitor Methods
108   //===--------------------------------------------------------------------===//
109 
110   Value *Visit(Expr *E) {
111     llvm::DenseMap<const Expr *, llvm::Value *>::iterator I =
112       CGF.ConditionalSaveExprs.find(E);
113     if (I != CGF.ConditionalSaveExprs.end())
114       return I->second;
115 
116     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
117   }
118 
119   Value *VisitStmt(Stmt *S) {
120     S->dump(CGF.getContext().getSourceManager());
121     assert(0 && "Stmt can't have complex result type!");
122     return 0;
123   }
124   Value *VisitExpr(Expr *S);
125 
126   Value *VisitParenExpr(ParenExpr *PE) {
127     return Visit(PE->getSubExpr());
128   }
129 
130   // Leaves.
131   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
132     return llvm::ConstantInt::get(VMContext, E->getValue());
133   }
134   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
135     return llvm::ConstantFP::get(VMContext, E->getValue());
136   }
137   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
138     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
139   }
140   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
141     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
142   }
143   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
144     return EmitNullValue(E->getType());
145   }
146   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
147     return EmitNullValue(E->getType());
148   }
149   Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
150     return llvm::ConstantInt::get(ConvertType(E->getType()),
151                                   CGF.getContext().typesAreCompatible(
152                                     E->getArgType1(), E->getArgType2()));
153   }
154   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
155   Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
156   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
157     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
158     return Builder.CreateBitCast(V, ConvertType(E->getType()));
159   }
160 
161   // l-values.
162   Value *VisitDeclRefExpr(DeclRefExpr *E) {
163     Expr::EvalResult Result;
164     if (!E->Evaluate(Result, CGF.getContext()))
165       return EmitLoadOfLValue(E);
166 
167     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
168 
169     llvm::Constant *C;
170     if (Result.Val.isInt()) {
171       C = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
172     } else if (Result.Val.isFloat()) {
173       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
174     } else {
175       return EmitLoadOfLValue(E);
176     }
177 
178     // Make sure we emit a debug reference to the global variable.
179     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
180       if (!CGF.getContext().DeclMustBeEmitted(VD))
181         CGF.EmitDeclRefExprDbgValue(E, C);
182     } else if (isa<EnumConstantDecl>(E->getDecl())) {
183       CGF.EmitDeclRefExprDbgValue(E, C);
184     }
185 
186     return C;
187   }
188   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
189     return CGF.EmitObjCSelectorExpr(E);
190   }
191   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
192     return CGF.EmitObjCProtocolExpr(E);
193   }
194   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
195     return EmitLoadOfLValue(E);
196   }
197   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
198     return EmitLoadOfLValue(E);
199   }
200   Value *VisitObjCImplicitSetterGetterRefExpr(
201                         ObjCImplicitSetterGetterRefExpr *E) {
202     return EmitLoadOfLValue(E);
203   }
204   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
205     return CGF.EmitObjCMessageExpr(E).getScalarVal();
206   }
207 
208   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
209     LValue LV = CGF.EmitObjCIsaExpr(E);
210     Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
211     return V;
212   }
213 
214   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
215   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
216   Value *VisitMemberExpr(MemberExpr *E);
217   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
218   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
219     return EmitLoadOfLValue(E);
220   }
221 
222   Value *VisitInitListExpr(InitListExpr *E);
223 
224   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
225     return CGF.CGM.EmitNullConstant(E->getType());
226   }
227   Value *VisitCastExpr(CastExpr *E) {
228     // Make sure to evaluate VLA bounds now so that we have them for later.
229     if (E->getType()->isVariablyModifiedType())
230       CGF.EmitVLASize(E->getType());
231 
232     return EmitCastExpr(E);
233   }
234   Value *EmitCastExpr(CastExpr *E);
235 
236   Value *VisitCallExpr(const CallExpr *E) {
237     if (E->getCallReturnType()->isReferenceType())
238       return EmitLoadOfLValue(E);
239 
240     return CGF.EmitCallExpr(E).getScalarVal();
241   }
242 
243   Value *VisitStmtExpr(const StmtExpr *E);
244 
245   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
246 
247   // Unary Operators.
248   Value *VisitUnaryPostDec(const UnaryOperator *E) {
249     LValue LV = EmitLValue(E->getSubExpr());
250     return EmitScalarPrePostIncDec(E, LV, false, false);
251   }
252   Value *VisitUnaryPostInc(const UnaryOperator *E) {
253     LValue LV = EmitLValue(E->getSubExpr());
254     return EmitScalarPrePostIncDec(E, LV, true, false);
255   }
256   Value *VisitUnaryPreDec(const UnaryOperator *E) {
257     LValue LV = EmitLValue(E->getSubExpr());
258     return EmitScalarPrePostIncDec(E, LV, false, true);
259   }
260   Value *VisitUnaryPreInc(const UnaryOperator *E) {
261     LValue LV = EmitLValue(E->getSubExpr());
262     return EmitScalarPrePostIncDec(E, LV, true, true);
263   }
264 
265   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
266                                        bool isInc, bool isPre);
267 
268 
269   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
270     // If the sub-expression is an instance member reference,
271     // EmitDeclRefLValue will magically emit it with the appropriate
272     // value as the "address".
273     return EmitLValue(E->getSubExpr()).getAddress();
274   }
275   Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
276   Value *VisitUnaryPlus(const UnaryOperator *E) {
277     // This differs from gcc, though, most likely due to a bug in gcc.
278     TestAndClearIgnoreResultAssign();
279     return Visit(E->getSubExpr());
280   }
281   Value *VisitUnaryMinus    (const UnaryOperator *E);
282   Value *VisitUnaryNot      (const UnaryOperator *E);
283   Value *VisitUnaryLNot     (const UnaryOperator *E);
284   Value *VisitUnaryReal     (const UnaryOperator *E);
285   Value *VisitUnaryImag     (const UnaryOperator *E);
286   Value *VisitUnaryExtension(const UnaryOperator *E) {
287     return Visit(E->getSubExpr());
288   }
289 
290   // C++
291   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
292     return Visit(DAE->getExpr());
293   }
294   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
295     return CGF.LoadCXXThis();
296   }
297 
298   Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
299     return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
300   }
301   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
302     return CGF.EmitCXXNewExpr(E);
303   }
304   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
305     CGF.EmitCXXDeleteExpr(E);
306     return 0;
307   }
308   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
309     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
310   }
311 
312   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
313     // C++ [expr.pseudo]p1:
314     //   The result shall only be used as the operand for the function call
315     //   operator (), and the result of such a call has type void. The only
316     //   effect is the evaluation of the postfix-expression before the dot or
317     //   arrow.
318     CGF.EmitScalarExpr(E->getBase());
319     return 0;
320   }
321 
322   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
323     return EmitNullValue(E->getType());
324   }
325 
326   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
327     CGF.EmitCXXThrowExpr(E);
328     return 0;
329   }
330 
331   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
332     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
333   }
334 
335   // Binary Operators.
336   Value *EmitMul(const BinOpInfo &Ops) {
337     if (Ops.Ty->hasSignedIntegerRepresentation()) {
338       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
339       case LangOptions::SOB_Undefined:
340         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
341       case LangOptions::SOB_Defined:
342         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
343       case LangOptions::SOB_Trapping:
344         return EmitOverflowCheckedBinOp(Ops);
345       }
346     }
347 
348     if (Ops.LHS->getType()->isFPOrFPVectorTy())
349       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
350     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
351   }
352   bool isTrapvOverflowBehavior() {
353     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
354                == LangOptions::SOB_Trapping;
355   }
356   /// Create a binary op that checks for overflow.
357   /// Currently only supports +, - and *.
358   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
359   // Emit the overflow BB when -ftrapv option is activated.
360   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
361     Builder.SetInsertPoint(overflowBB);
362     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
363     Builder.CreateCall(Trap);
364     Builder.CreateUnreachable();
365   }
366   // Check for undefined division and modulus behaviors.
367   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
368                                                   llvm::Value *Zero,bool isDiv);
369   Value *EmitDiv(const BinOpInfo &Ops);
370   Value *EmitRem(const BinOpInfo &Ops);
371   Value *EmitAdd(const BinOpInfo &Ops);
372   Value *EmitSub(const BinOpInfo &Ops);
373   Value *EmitShl(const BinOpInfo &Ops);
374   Value *EmitShr(const BinOpInfo &Ops);
375   Value *EmitAnd(const BinOpInfo &Ops) {
376     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
377   }
378   Value *EmitXor(const BinOpInfo &Ops) {
379     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
380   }
381   Value *EmitOr (const BinOpInfo &Ops) {
382     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
383   }
384 
385   BinOpInfo EmitBinOps(const BinaryOperator *E);
386   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
387                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
388                                   Value *&Result);
389 
390   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
391                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
392 
393   // Binary operators and binary compound assignment operators.
394 #define HANDLEBINOP(OP) \
395   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
396     return Emit ## OP(EmitBinOps(E));                                      \
397   }                                                                        \
398   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
399     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
400   }
401   HANDLEBINOP(Mul)
402   HANDLEBINOP(Div)
403   HANDLEBINOP(Rem)
404   HANDLEBINOP(Add)
405   HANDLEBINOP(Sub)
406   HANDLEBINOP(Shl)
407   HANDLEBINOP(Shr)
408   HANDLEBINOP(And)
409   HANDLEBINOP(Xor)
410   HANDLEBINOP(Or)
411 #undef HANDLEBINOP
412 
413   // Comparisons.
414   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
415                      unsigned SICmpOpc, unsigned FCmpOpc);
416 #define VISITCOMP(CODE, UI, SI, FP) \
417     Value *VisitBin##CODE(const BinaryOperator *E) { \
418       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
419                          llvm::FCmpInst::FP); }
420   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
421   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
422   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
423   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
424   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
425   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
426 #undef VISITCOMP
427 
428   Value *VisitBinAssign     (const BinaryOperator *E);
429 
430   Value *VisitBinLAnd       (const BinaryOperator *E);
431   Value *VisitBinLOr        (const BinaryOperator *E);
432   Value *VisitBinComma      (const BinaryOperator *E);
433 
434   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
435   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
436 
437   // Other Operators.
438   Value *VisitBlockExpr(const BlockExpr *BE);
439   Value *VisitConditionalOperator(const ConditionalOperator *CO);
440   Value *VisitChooseExpr(ChooseExpr *CE);
441   Value *VisitVAArgExpr(VAArgExpr *VE);
442   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
443     return CGF.EmitObjCStringLiteral(E);
444   }
445 };
446 }  // end anonymous namespace.
447 
448 //===----------------------------------------------------------------------===//
449 //                                Utilities
450 //===----------------------------------------------------------------------===//
451 
452 /// EmitConversionToBool - Convert the specified expression value to a
453 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
454 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
455   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
456 
457   if (SrcType->isRealFloatingType()) {
458     // Compare against 0.0 for fp scalars.
459     llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
460     return Builder.CreateFCmpUNE(Src, Zero, "tobool");
461   }
462 
463   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
464     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
465 
466   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
467          "Unknown scalar type to convert");
468 
469   // Because of the type rules of C, we often end up computing a logical value,
470   // then zero extending it to int, then wanting it as a logical value again.
471   // Optimize this common case.
472   if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
473     if (ZI->getOperand(0)->getType() ==
474         llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
475       Value *Result = ZI->getOperand(0);
476       // If there aren't any more uses, zap the instruction to save space.
477       // Note that there can be more uses, for example if this
478       // is the result of an assignment.
479       if (ZI->use_empty())
480         ZI->eraseFromParent();
481       return Result;
482     }
483   }
484 
485   // Compare against an integer or pointer null.
486   llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
487   return Builder.CreateICmpNE(Src, Zero, "tobool");
488 }
489 
490 /// EmitScalarConversion - Emit a conversion from the specified type to the
491 /// specified destination type, both of which are LLVM scalar types.
492 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
493                                                QualType DstType) {
494   SrcType = CGF.getContext().getCanonicalType(SrcType);
495   DstType = CGF.getContext().getCanonicalType(DstType);
496   if (SrcType == DstType) return Src;
497 
498   if (DstType->isVoidType()) return 0;
499 
500   // Handle conversions to bool first, they are special: comparisons against 0.
501   if (DstType->isBooleanType())
502     return EmitConversionToBool(Src, SrcType);
503 
504   const llvm::Type *DstTy = ConvertType(DstType);
505 
506   // Ignore conversions like int -> uint.
507   if (Src->getType() == DstTy)
508     return Src;
509 
510   // Handle pointer conversions next: pointers can only be converted to/from
511   // other pointers and integers. Check for pointer types in terms of LLVM, as
512   // some native types (like Obj-C id) may map to a pointer type.
513   if (isa<llvm::PointerType>(DstTy)) {
514     // The source value may be an integer, or a pointer.
515     if (isa<llvm::PointerType>(Src->getType()))
516       return Builder.CreateBitCast(Src, DstTy, "conv");
517 
518     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
519     // First, convert to the correct width so that we control the kind of
520     // extension.
521     const llvm::Type *MiddleTy = CGF.IntPtrTy;
522     bool InputSigned = SrcType->isSignedIntegerType();
523     llvm::Value* IntResult =
524         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
525     // Then, cast to pointer.
526     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
527   }
528 
529   if (isa<llvm::PointerType>(Src->getType())) {
530     // Must be an ptr to int cast.
531     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
532     return Builder.CreatePtrToInt(Src, DstTy, "conv");
533   }
534 
535   // A scalar can be splatted to an extended vector of the same element type
536   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
537     // Cast the scalar to element type
538     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
539     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
540 
541     // Insert the element in element zero of an undef vector
542     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
543     llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
544     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
545 
546     // Splat the element across to all elements
547     llvm::SmallVector<llvm::Constant*, 16> Args;
548     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
549     for (unsigned i = 0; i < NumElements; i++)
550       Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
551 
552     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
553     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
554     return Yay;
555   }
556 
557   // Allow bitcast from vector to integer/fp of the same size.
558   if (isa<llvm::VectorType>(Src->getType()) ||
559       isa<llvm::VectorType>(DstTy))
560     return Builder.CreateBitCast(Src, DstTy, "conv");
561 
562   // Finally, we have the arithmetic types: real int/float.
563   if (isa<llvm::IntegerType>(Src->getType())) {
564     bool InputSigned = SrcType->isSignedIntegerType();
565     if (isa<llvm::IntegerType>(DstTy))
566       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
567     else if (InputSigned)
568       return Builder.CreateSIToFP(Src, DstTy, "conv");
569     else
570       return Builder.CreateUIToFP(Src, DstTy, "conv");
571   }
572 
573   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
574   if (isa<llvm::IntegerType>(DstTy)) {
575     if (DstType->isSignedIntegerType())
576       return Builder.CreateFPToSI(Src, DstTy, "conv");
577     else
578       return Builder.CreateFPToUI(Src, DstTy, "conv");
579   }
580 
581   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
582   if (DstTy->getTypeID() < Src->getType()->getTypeID())
583     return Builder.CreateFPTrunc(Src, DstTy, "conv");
584   else
585     return Builder.CreateFPExt(Src, DstTy, "conv");
586 }
587 
588 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
589 /// type to the specified destination type, where the destination type is an
590 /// LLVM scalar type.
591 Value *ScalarExprEmitter::
592 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
593                               QualType SrcTy, QualType DstTy) {
594   // Get the source element type.
595   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
596 
597   // Handle conversions to bool first, they are special: comparisons against 0.
598   if (DstTy->isBooleanType()) {
599     //  Complex != 0  -> (Real != 0) | (Imag != 0)
600     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
601     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
602     return Builder.CreateOr(Src.first, Src.second, "tobool");
603   }
604 
605   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
606   // the imaginary part of the complex value is discarded and the value of the
607   // real part is converted according to the conversion rules for the
608   // corresponding real type.
609   return EmitScalarConversion(Src.first, SrcTy, DstTy);
610 }
611 
612 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
613   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
614     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
615 
616   return llvm::Constant::getNullValue(ConvertType(Ty));
617 }
618 
619 //===----------------------------------------------------------------------===//
620 //                            Visitor Methods
621 //===----------------------------------------------------------------------===//
622 
623 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
624   CGF.ErrorUnsupported(E, "scalar expression");
625   if (E->getType()->isVoidType())
626     return 0;
627   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
628 }
629 
630 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
631   // Vector Mask Case
632   if (E->getNumSubExprs() == 2 ||
633       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
634     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
635     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
636     Value *Mask;
637 
638     const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
639     unsigned LHSElts = LTy->getNumElements();
640 
641     if (E->getNumSubExprs() == 3) {
642       Mask = CGF.EmitScalarExpr(E->getExpr(2));
643 
644       // Shuffle LHS & RHS into one input vector.
645       llvm::SmallVector<llvm::Constant*, 32> concat;
646       for (unsigned i = 0; i != LHSElts; ++i) {
647         concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
648         concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
649       }
650 
651       Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
652       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
653       LHSElts *= 2;
654     } else {
655       Mask = RHS;
656     }
657 
658     const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
659     llvm::Constant* EltMask;
660 
661     // Treat vec3 like vec4.
662     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
663       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
664                                        (1 << llvm::Log2_32(LHSElts+2))-1);
665     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
666       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
667                                        (1 << llvm::Log2_32(LHSElts+1))-1);
668     else
669       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
670                                        (1 << llvm::Log2_32(LHSElts))-1);
671 
672     // Mask off the high bits of each shuffle index.
673     llvm::SmallVector<llvm::Constant *, 32> MaskV;
674     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
675       MaskV.push_back(EltMask);
676 
677     Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
678     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
679 
680     // newv = undef
681     // mask = mask & maskbits
682     // for each elt
683     //   n = extract mask i
684     //   x = extract val n
685     //   newv = insert newv, x, i
686     const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
687                                                         MTy->getNumElements());
688     Value* NewV = llvm::UndefValue::get(RTy);
689     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
690       Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
691       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
692       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
693 
694       // Handle vec3 special since the index will be off by one for the RHS.
695       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
696         Value *cmpIndx, *newIndx;
697         cmpIndx = Builder.CreateICmpUGT(Indx,
698                                         llvm::ConstantInt::get(CGF.Int32Ty, 3),
699                                         "cmp_shuf_idx");
700         newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
701                                     "shuf_idx_adj");
702         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
703       }
704       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
705       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
706     }
707     return NewV;
708   }
709 
710   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
711   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
712 
713   // Handle vec3 special since the index will be off by one for the RHS.
714   llvm::SmallVector<llvm::Constant*, 32> indices;
715   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
716     llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
717     const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
718     if (VTy->getNumElements() == 3) {
719       if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
720         uint64_t cVal = CI->getZExtValue();
721         if (cVal > 3) {
722           C = llvm::ConstantInt::get(C->getType(), cVal-1);
723         }
724       }
725     }
726     indices.push_back(C);
727   }
728 
729   Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
730   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
731 }
732 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
733   Expr::EvalResult Result;
734   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
735     if (E->isArrow())
736       CGF.EmitScalarExpr(E->getBase());
737     else
738       EmitLValue(E->getBase());
739     return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
740   }
741 
742   // Emit debug info for aggregate now, if it was delayed to reduce
743   // debug info size.
744   CGDebugInfo *DI = CGF.getDebugInfo();
745   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
746     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
747     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
748       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
749         DI->getOrCreateRecordType(PTy->getPointeeType(),
750                                   M->getParent()->getLocation());
751   }
752   return EmitLoadOfLValue(E);
753 }
754 
755 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
756   TestAndClearIgnoreResultAssign();
757 
758   // Emit subscript expressions in rvalue context's.  For most cases, this just
759   // loads the lvalue formed by the subscript expr.  However, we have to be
760   // careful, because the base of a vector subscript is occasionally an rvalue,
761   // so we can't get it as an lvalue.
762   if (!E->getBase()->getType()->isVectorType())
763     return EmitLoadOfLValue(E);
764 
765   // Handle the vector case.  The base must be a vector, the index must be an
766   // integer value.
767   Value *Base = Visit(E->getBase());
768   Value *Idx  = Visit(E->getIdx());
769   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
770   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
771   return Builder.CreateExtractElement(Base, Idx, "vecext");
772 }
773 
774 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
775                                   unsigned Off, const llvm::Type *I32Ty) {
776   int MV = SVI->getMaskValue(Idx);
777   if (MV == -1)
778     return llvm::UndefValue::get(I32Ty);
779   return llvm::ConstantInt::get(I32Ty, Off+MV);
780 }
781 
782 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
783   bool Ignore = TestAndClearIgnoreResultAssign();
784   (void)Ignore;
785   assert (Ignore == false && "init list ignored");
786   unsigned NumInitElements = E->getNumInits();
787 
788   if (E->hadArrayRangeDesignator())
789     CGF.ErrorUnsupported(E, "GNU array range designator extension");
790 
791   const llvm::VectorType *VType =
792     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
793 
794   // We have a scalar in braces. Just use the first element.
795   if (!VType)
796     return Visit(E->getInit(0));
797 
798   unsigned ResElts = VType->getNumElements();
799 
800   // Loop over initializers collecting the Value for each, and remembering
801   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
802   // us to fold the shuffle for the swizzle into the shuffle for the vector
803   // initializer, since LLVM optimizers generally do not want to touch
804   // shuffles.
805   unsigned CurIdx = 0;
806   bool VIsUndefShuffle = false;
807   llvm::Value *V = llvm::UndefValue::get(VType);
808   for (unsigned i = 0; i != NumInitElements; ++i) {
809     Expr *IE = E->getInit(i);
810     Value *Init = Visit(IE);
811     llvm::SmallVector<llvm::Constant*, 16> Args;
812 
813     const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
814 
815     // Handle scalar elements.  If the scalar initializer is actually one
816     // element of a different vector of the same width, use shuffle instead of
817     // extract+insert.
818     if (!VVT) {
819       if (isa<ExtVectorElementExpr>(IE)) {
820         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
821 
822         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
823           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
824           Value *LHS = 0, *RHS = 0;
825           if (CurIdx == 0) {
826             // insert into undef -> shuffle (src, undef)
827             Args.push_back(C);
828             for (unsigned j = 1; j != ResElts; ++j)
829               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
830 
831             LHS = EI->getVectorOperand();
832             RHS = V;
833             VIsUndefShuffle = true;
834           } else if (VIsUndefShuffle) {
835             // insert into undefshuffle && size match -> shuffle (v, src)
836             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
837             for (unsigned j = 0; j != CurIdx; ++j)
838               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
839             Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
840                                                   ResElts + C->getZExtValue()));
841             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
842               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
843 
844             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
845             RHS = EI->getVectorOperand();
846             VIsUndefShuffle = false;
847           }
848           if (!Args.empty()) {
849             llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
850             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
851             ++CurIdx;
852             continue;
853           }
854         }
855       }
856       Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
857       V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
858       VIsUndefShuffle = false;
859       ++CurIdx;
860       continue;
861     }
862 
863     unsigned InitElts = VVT->getNumElements();
864 
865     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
866     // input is the same width as the vector being constructed, generate an
867     // optimized shuffle of the swizzle input into the result.
868     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
869     if (isa<ExtVectorElementExpr>(IE)) {
870       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
871       Value *SVOp = SVI->getOperand(0);
872       const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
873 
874       if (OpTy->getNumElements() == ResElts) {
875         for (unsigned j = 0; j != CurIdx; ++j) {
876           // If the current vector initializer is a shuffle with undef, merge
877           // this shuffle directly into it.
878           if (VIsUndefShuffle) {
879             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
880                                       CGF.Int32Ty));
881           } else {
882             Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
883           }
884         }
885         for (unsigned j = 0, je = InitElts; j != je; ++j)
886           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
887         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
888           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
889 
890         if (VIsUndefShuffle)
891           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
892 
893         Init = SVOp;
894       }
895     }
896 
897     // Extend init to result vector length, and then shuffle its contribution
898     // to the vector initializer into V.
899     if (Args.empty()) {
900       for (unsigned j = 0; j != InitElts; ++j)
901         Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
902       for (unsigned j = InitElts; j != ResElts; ++j)
903         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
904       llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
905       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
906                                          Mask, "vext");
907 
908       Args.clear();
909       for (unsigned j = 0; j != CurIdx; ++j)
910         Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
911       for (unsigned j = 0; j != InitElts; ++j)
912         Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
913       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
914         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
915     }
916 
917     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
918     // merging subsequent shuffles into this one.
919     if (CurIdx == 0)
920       std::swap(V, Init);
921     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
922     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
923     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
924     CurIdx += InitElts;
925   }
926 
927   // FIXME: evaluate codegen vs. shuffling against constant null vector.
928   // Emit remaining default initializers.
929   const llvm::Type *EltTy = VType->getElementType();
930 
931   // Emit remaining default initializers
932   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
933     Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
934     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
935     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
936   }
937   return V;
938 }
939 
940 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
941   const Expr *E = CE->getSubExpr();
942 
943   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
944     return false;
945 
946   if (isa<CXXThisExpr>(E)) {
947     // We always assume that 'this' is never null.
948     return false;
949   }
950 
951   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
952     // And that glvalue casts are never null.
953     if (ICE->getValueKind() != VK_RValue)
954       return false;
955   }
956 
957   return true;
958 }
959 
960 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
961 // have to handle a more broad range of conversions than explicit casts, as they
962 // handle things like function to ptr-to-function decay etc.
963 Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
964   Expr *E = CE->getSubExpr();
965   QualType DestTy = CE->getType();
966   CastKind Kind = CE->getCastKind();
967 
968   if (!DestTy->isVoidType())
969     TestAndClearIgnoreResultAssign();
970 
971   // Since almost all cast kinds apply to scalars, this switch doesn't have
972   // a default case, so the compiler will warn on a missing case.  The cases
973   // are in the same order as in the CastKind enum.
974   switch (Kind) {
975   case CK_Unknown:
976     // FIXME: All casts should have a known kind!
977     //assert(0 && "Unknown cast kind!");
978     break;
979 
980   case CK_LValueBitCast:
981   case CK_ObjCObjectLValueCast: {
982     Value *V = EmitLValue(E).getAddress();
983     V = Builder.CreateBitCast(V,
984                           ConvertType(CGF.getContext().getPointerType(DestTy)));
985     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
986   }
987 
988   case CK_AnyPointerToObjCPointerCast:
989   case CK_AnyPointerToBlockPointerCast:
990   case CK_BitCast: {
991     Value *Src = Visit(const_cast<Expr*>(E));
992     return Builder.CreateBitCast(Src, ConvertType(DestTy));
993   }
994   case CK_NoOp:
995   case CK_UserDefinedConversion:
996     return Visit(const_cast<Expr*>(E));
997 
998   case CK_BaseToDerived: {
999     const CXXRecordDecl *DerivedClassDecl =
1000       DestTy->getCXXRecordDeclForPointerType();
1001 
1002     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1003                                         CE->path_begin(), CE->path_end(),
1004                                         ShouldNullCheckClassCastValue(CE));
1005   }
1006   case CK_UncheckedDerivedToBase:
1007   case CK_DerivedToBase: {
1008     const RecordType *DerivedClassTy =
1009       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1010     CXXRecordDecl *DerivedClassDecl =
1011       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1012 
1013     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1014                                      CE->path_begin(), CE->path_end(),
1015                                      ShouldNullCheckClassCastValue(CE));
1016   }
1017   case CK_Dynamic: {
1018     Value *V = Visit(const_cast<Expr*>(E));
1019     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1020     return CGF.EmitDynamicCast(V, DCE);
1021   }
1022   case CK_ToUnion:
1023     assert(0 && "Should be unreachable!");
1024     break;
1025 
1026   case CK_ArrayToPointerDecay: {
1027     assert(E->getType()->isArrayType() &&
1028            "Array to pointer decay must have array source type!");
1029 
1030     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1031 
1032     // Note that VLA pointers are always decayed, so we don't need to do
1033     // anything here.
1034     if (!E->getType()->isVariableArrayType()) {
1035       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1036       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1037                                  ->getElementType()) &&
1038              "Expected pointer to array");
1039       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1040     }
1041 
1042     return V;
1043   }
1044   case CK_FunctionToPointerDecay:
1045     return EmitLValue(E).getAddress();
1046 
1047   case CK_NullToMemberPointer: {
1048     // If the subexpression's type is the C++0x nullptr_t, emit the
1049     // subexpression, which may have side effects.
1050     if (E->getType()->isNullPtrType())
1051       (void) Visit(E);
1052 
1053     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1054     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1055   }
1056 
1057   case CK_BaseToDerivedMemberPointer:
1058   case CK_DerivedToBaseMemberPointer: {
1059     Value *Src = Visit(E);
1060 
1061     // Note that the AST doesn't distinguish between checked and
1062     // unchecked member pointer conversions, so we always have to
1063     // implement checked conversions here.  This is inefficient when
1064     // actual control flow may be required in order to perform the
1065     // check, which it is for data member pointers (but not member
1066     // function pointers on Itanium and ARM).
1067     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1068   }
1069 
1070 
1071   case CK_ConstructorConversion:
1072     assert(0 && "Should be unreachable!");
1073     break;
1074 
1075   case CK_IntegralToPointer: {
1076     Value *Src = Visit(const_cast<Expr*>(E));
1077 
1078     // First, convert to the correct width so that we control the kind of
1079     // extension.
1080     const llvm::Type *MiddleTy = CGF.IntPtrTy;
1081     bool InputSigned = E->getType()->isSignedIntegerType();
1082     llvm::Value* IntResult =
1083       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1084 
1085     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1086   }
1087   case CK_PointerToIntegral: {
1088     Value *Src = Visit(const_cast<Expr*>(E));
1089 
1090     // Handle conversion to bool correctly.
1091     if (DestTy->isBooleanType())
1092       return EmitScalarConversion(Src, E->getType(), DestTy);
1093 
1094     return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1095   }
1096   case CK_ToVoid: {
1097     if (E->Classify(CGF.getContext()).isGLValue()) {
1098       LValue LV = CGF.EmitLValue(E);
1099       if (LV.isPropertyRef())
1100         CGF.EmitLoadOfPropertyRefLValue(LV, E->getType());
1101       else if (LV.isKVCRef())
1102         CGF.EmitLoadOfKVCRefLValue(LV, E->getType());
1103     }
1104     else
1105       CGF.EmitAnyExpr(E, AggValueSlot::ignored(), true);
1106     return 0;
1107   }
1108   case CK_VectorSplat: {
1109     const llvm::Type *DstTy = ConvertType(DestTy);
1110     Value *Elt = Visit(const_cast<Expr*>(E));
1111 
1112     // Insert the element in element zero of an undef vector
1113     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1114     llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1115     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1116 
1117     // Splat the element across to all elements
1118     llvm::SmallVector<llvm::Constant*, 16> Args;
1119     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1120     for (unsigned i = 0; i < NumElements; i++)
1121       Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
1122 
1123     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1124     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1125     return Yay;
1126   }
1127   case CK_IntegralCast:
1128   case CK_IntegralToFloating:
1129   case CK_FloatingToIntegral:
1130   case CK_FloatingCast:
1131     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1132 
1133   case CK_MemberPointerToBoolean: {
1134     llvm::Value *MemPtr = Visit(E);
1135     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1136     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1137   }
1138   }
1139 
1140   // Handle cases where the source is an non-complex type.
1141 
1142   if (!CGF.hasAggregateLLVMType(E->getType())) {
1143     Value *Src = Visit(const_cast<Expr*>(E));
1144 
1145     // Use EmitScalarConversion to perform the conversion.
1146     return EmitScalarConversion(Src, E->getType(), DestTy);
1147   }
1148 
1149   if (E->getType()->isAnyComplexType()) {
1150     // Handle cases where the source is a complex type.
1151     bool IgnoreImag = true;
1152     bool IgnoreImagAssign = true;
1153     bool IgnoreReal = IgnoreResultAssign;
1154     bool IgnoreRealAssign = IgnoreResultAssign;
1155     if (DestTy->isBooleanType())
1156       IgnoreImagAssign = IgnoreImag = false;
1157     else if (DestTy->isVoidType()) {
1158       IgnoreReal = IgnoreImag = false;
1159       IgnoreRealAssign = IgnoreImagAssign = true;
1160     }
1161     CodeGenFunction::ComplexPairTy V
1162       = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
1163                             IgnoreImagAssign);
1164     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1165   }
1166 
1167   // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
1168   // evaluate the result and return.
1169   CGF.EmitAggExpr(E, AggValueSlot::ignored(), true);
1170   return 0;
1171 }
1172 
1173 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1174   return CGF.EmitCompoundStmt(*E->getSubStmt(),
1175                               !E->getType()->isVoidType()).getScalarVal();
1176 }
1177 
1178 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1179   llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1180   if (E->getType().isObjCGCWeak())
1181     return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1182   return CGF.EmitLoadOfScalar(V, false, 0, E->getType());
1183 }
1184 
1185 //===----------------------------------------------------------------------===//
1186 //                             Unary Operators
1187 //===----------------------------------------------------------------------===//
1188 
1189 llvm::Value *ScalarExprEmitter::
1190 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1191                         bool isInc, bool isPre) {
1192 
1193   QualType ValTy = E->getSubExpr()->getType();
1194   llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
1195 
1196   int AmountVal = isInc ? 1 : -1;
1197 
1198   if (ValTy->isPointerType() &&
1199       ValTy->getAs<PointerType>()->isVariableArrayType()) {
1200     // The amount of the addition/subtraction needs to account for the VLA size
1201     CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1202   }
1203 
1204   llvm::Value *NextVal;
1205   if (const llvm::PointerType *PT =
1206       dyn_cast<llvm::PointerType>(InVal->getType())) {
1207     llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
1208     if (!isa<llvm::FunctionType>(PT->getElementType())) {
1209       QualType PTEE = ValTy->getPointeeType();
1210       if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
1211         // Handle interface types, which are not represented with a concrete
1212         // type.
1213         int size = CGF.getContext().getTypeSize(OIT) / 8;
1214         if (!isInc)
1215           size = -size;
1216         Inc = llvm::ConstantInt::get(Inc->getType(), size);
1217         const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1218         InVal = Builder.CreateBitCast(InVal, i8Ty);
1219         NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1220         llvm::Value *lhs = LV.getAddress();
1221         lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1222         LV = CGF.MakeAddrLValue(lhs, ValTy);
1223       } else
1224         NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1225     } else {
1226       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1227       NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1228       NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1229       NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1230     }
1231   } else if (InVal->getType()->isIntegerTy(1) && isInc) {
1232     // Bool++ is an interesting case, due to promotion rules, we get:
1233     // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1234     // Bool = ((int)Bool+1) != 0
1235     // An interesting aspect of this is that increment is always true.
1236     // Decrement does not have this property.
1237     NextVal = llvm::ConstantInt::getTrue(VMContext);
1238   } else if (isa<llvm::IntegerType>(InVal->getType())) {
1239     NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1240 
1241     if (!ValTy->isSignedIntegerType())
1242       // Unsigned integer inc is always two's complement.
1243       NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1244     else {
1245       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1246       case LangOptions::SOB_Undefined:
1247         NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1248         break;
1249       case LangOptions::SOB_Defined:
1250         NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1251         break;
1252       case LangOptions::SOB_Trapping:
1253         BinOpInfo BinOp;
1254         BinOp.LHS = InVal;
1255         BinOp.RHS = NextVal;
1256         BinOp.Ty = E->getType();
1257         BinOp.Opcode = BO_Add;
1258         BinOp.E = E;
1259         NextVal = EmitOverflowCheckedBinOp(BinOp);
1260         break;
1261       }
1262     }
1263   } else {
1264     // Add the inc/dec to the real part.
1265     if (InVal->getType()->isFloatTy())
1266       NextVal =
1267       llvm::ConstantFP::get(VMContext,
1268                             llvm::APFloat(static_cast<float>(AmountVal)));
1269     else if (InVal->getType()->isDoubleTy())
1270       NextVal =
1271       llvm::ConstantFP::get(VMContext,
1272                             llvm::APFloat(static_cast<double>(AmountVal)));
1273     else {
1274       llvm::APFloat F(static_cast<float>(AmountVal));
1275       bool ignored;
1276       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1277                 &ignored);
1278       NextVal = llvm::ConstantFP::get(VMContext, F);
1279     }
1280     NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1281   }
1282 
1283   // Store the updated result through the lvalue.
1284   if (LV.isBitField())
1285     CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
1286   else
1287     CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1288 
1289   // If this is a postinc, return the value read from memory, otherwise use the
1290   // updated value.
1291   return isPre ? NextVal : InVal;
1292 }
1293 
1294 
1295 
1296 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1297   TestAndClearIgnoreResultAssign();
1298   // Emit unary minus with EmitSub so we handle overflow cases etc.
1299   BinOpInfo BinOp;
1300   BinOp.RHS = Visit(E->getSubExpr());
1301 
1302   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1303     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1304   else
1305     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1306   BinOp.Ty = E->getType();
1307   BinOp.Opcode = BO_Sub;
1308   BinOp.E = E;
1309   return EmitSub(BinOp);
1310 }
1311 
1312 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1313   TestAndClearIgnoreResultAssign();
1314   Value *Op = Visit(E->getSubExpr());
1315   return Builder.CreateNot(Op, "neg");
1316 }
1317 
1318 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1319   // Compare operand to zero.
1320   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1321 
1322   // Invert value.
1323   // TODO: Could dynamically modify easy computations here.  For example, if
1324   // the operand is an icmp ne, turn into icmp eq.
1325   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1326 
1327   // ZExt result to the expr type.
1328   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1329 }
1330 
1331 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1332   // Try folding the offsetof to a constant.
1333   Expr::EvalResult EvalResult;
1334   if (E->Evaluate(EvalResult, CGF.getContext()))
1335     return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1336 
1337   // Loop over the components of the offsetof to compute the value.
1338   unsigned n = E->getNumComponents();
1339   const llvm::Type* ResultType = ConvertType(E->getType());
1340   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1341   QualType CurrentType = E->getTypeSourceInfo()->getType();
1342   for (unsigned i = 0; i != n; ++i) {
1343     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1344     llvm::Value *Offset = 0;
1345     switch (ON.getKind()) {
1346     case OffsetOfExpr::OffsetOfNode::Array: {
1347       // Compute the index
1348       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1349       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1350       bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1351       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1352 
1353       // Save the element type
1354       CurrentType =
1355           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1356 
1357       // Compute the element size
1358       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1359           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1360 
1361       // Multiply out to compute the result
1362       Offset = Builder.CreateMul(Idx, ElemSize);
1363       break;
1364     }
1365 
1366     case OffsetOfExpr::OffsetOfNode::Field: {
1367       FieldDecl *MemberDecl = ON.getField();
1368       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1369       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1370 
1371       // Compute the index of the field in its parent.
1372       unsigned i = 0;
1373       // FIXME: It would be nice if we didn't have to loop here!
1374       for (RecordDecl::field_iterator Field = RD->field_begin(),
1375                                       FieldEnd = RD->field_end();
1376            Field != FieldEnd; (void)++Field, ++i) {
1377         if (*Field == MemberDecl)
1378           break;
1379       }
1380       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1381 
1382       // Compute the offset to the field
1383       int64_t OffsetInt = RL.getFieldOffset(i) /
1384                           CGF.getContext().getCharWidth();
1385       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1386 
1387       // Save the element type.
1388       CurrentType = MemberDecl->getType();
1389       break;
1390     }
1391 
1392     case OffsetOfExpr::OffsetOfNode::Identifier:
1393       llvm_unreachable("dependent __builtin_offsetof");
1394 
1395     case OffsetOfExpr::OffsetOfNode::Base: {
1396       if (ON.getBase()->isVirtual()) {
1397         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1398         continue;
1399       }
1400 
1401       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1402       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1403 
1404       // Save the element type.
1405       CurrentType = ON.getBase()->getType();
1406 
1407       // Compute the offset to the base.
1408       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1409       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1410       int64_t OffsetInt = RL.getBaseClassOffset(BaseRD) /
1411                           CGF.getContext().getCharWidth();
1412       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1413       break;
1414     }
1415     }
1416     Result = Builder.CreateAdd(Result, Offset);
1417   }
1418   return Result;
1419 }
1420 
1421 /// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1422 /// argument of the sizeof expression as an integer.
1423 Value *
1424 ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1425   QualType TypeToSize = E->getTypeOfArgument();
1426   if (E->isSizeOf()) {
1427     if (const VariableArrayType *VAT =
1428           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1429       if (E->isArgumentType()) {
1430         // sizeof(type) - make sure to emit the VLA size.
1431         CGF.EmitVLASize(TypeToSize);
1432       } else {
1433         // C99 6.5.3.4p2: If the argument is an expression of type
1434         // VLA, it is evaluated.
1435         CGF.EmitAnyExpr(E->getArgumentExpr());
1436       }
1437 
1438       return CGF.GetVLASize(VAT);
1439     }
1440   }
1441 
1442   // If this isn't sizeof(vla), the result must be constant; use the constant
1443   // folding logic so we don't have to duplicate it here.
1444   Expr::EvalResult Result;
1445   E->Evaluate(Result, CGF.getContext());
1446   return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1447 }
1448 
1449 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1450   Expr *Op = E->getSubExpr();
1451   if (Op->getType()->isAnyComplexType())
1452     return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1453   return Visit(Op);
1454 }
1455 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1456   Expr *Op = E->getSubExpr();
1457   if (Op->getType()->isAnyComplexType())
1458     return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1459 
1460   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1461   // effects are evaluated, but not the actual value.
1462   if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1463     CGF.EmitLValue(Op);
1464   else
1465     CGF.EmitScalarExpr(Op, true);
1466   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1467 }
1468 
1469 //===----------------------------------------------------------------------===//
1470 //                           Binary Operators
1471 //===----------------------------------------------------------------------===//
1472 
1473 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1474   TestAndClearIgnoreResultAssign();
1475   BinOpInfo Result;
1476   Result.LHS = Visit(E->getLHS());
1477   Result.RHS = Visit(E->getRHS());
1478   Result.Ty  = E->getType();
1479   Result.Opcode = E->getOpcode();
1480   Result.E = E;
1481   return Result;
1482 }
1483 
1484 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1485                                               const CompoundAssignOperator *E,
1486                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1487                                                    Value *&Result) {
1488   QualType LHSTy = E->getLHS()->getType();
1489   BinOpInfo OpInfo;
1490 
1491   if (E->getComputationResultType()->isAnyComplexType()) {
1492     // This needs to go through the complex expression emitter, but it's a tad
1493     // complicated to do that... I'm leaving it out for now.  (Note that we do
1494     // actually need the imaginary part of the RHS for multiplication and
1495     // division.)
1496     CGF.ErrorUnsupported(E, "complex compound assignment");
1497     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1498     return LValue();
1499   }
1500 
1501   // Emit the RHS first.  __block variables need to have the rhs evaluated
1502   // first, plus this should improve codegen a little.
1503   OpInfo.RHS = Visit(E->getRHS());
1504   OpInfo.Ty = E->getComputationResultType();
1505   OpInfo.Opcode = E->getOpcode();
1506   OpInfo.E = E;
1507   // Load/convert the LHS.
1508   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1509   OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1510   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1511                                     E->getComputationLHSType());
1512 
1513   // Expand the binary operator.
1514   Result = (this->*Func)(OpInfo);
1515 
1516   // Convert the result back to the LHS type.
1517   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1518 
1519   // Store the result value into the LHS lvalue. Bit-fields are handled
1520   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1521   // 'An assignment expression has the value of the left operand after the
1522   // assignment...'.
1523   if (LHSLV.isBitField())
1524     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1525                                        &Result);
1526   else
1527     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1528 
1529   return LHSLV;
1530 }
1531 
1532 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1533                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1534   bool Ignore = TestAndClearIgnoreResultAssign();
1535   Value *RHS;
1536   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1537 
1538   // If the result is clearly ignored, return now.
1539   if (Ignore)
1540     return 0;
1541 
1542   // Objective-C property assignment never reloads the value following a store.
1543   if (LHS.isPropertyRef() || LHS.isKVCRef())
1544     return RHS;
1545 
1546   // If the lvalue is non-volatile, return the computed value of the assignment.
1547   if (!LHS.isVolatileQualified())
1548     return RHS;
1549 
1550   // Otherwise, reload the value.
1551   return EmitLoadOfLValue(LHS, E->getType());
1552 }
1553 
1554 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1555      					    const BinOpInfo &Ops,
1556 				     	    llvm::Value *Zero, bool isDiv) {
1557   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1558   llvm::BasicBlock *contBB =
1559     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1560 
1561   const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1562 
1563   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1564     llvm::Value *IntMin =
1565       llvm::ConstantInt::get(VMContext,
1566                              llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1567     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1568 
1569     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1570     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1571     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1572     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1573     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1574                          overflowBB, contBB);
1575   } else {
1576     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1577                              overflowBB, contBB);
1578   }
1579   EmitOverflowBB(overflowBB);
1580   Builder.SetInsertPoint(contBB);
1581 }
1582 
1583 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1584   if (isTrapvOverflowBehavior()) {
1585     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1586 
1587     if (Ops.Ty->isIntegerType())
1588       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1589     else if (Ops.Ty->isRealFloatingType()) {
1590       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1591                                                           CGF.CurFn);
1592       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1593       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1594                                overflowBB, DivCont);
1595       EmitOverflowBB(overflowBB);
1596       Builder.SetInsertPoint(DivCont);
1597     }
1598   }
1599   if (Ops.LHS->getType()->isFPOrFPVectorTy())
1600     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1601   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1602     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1603   else
1604     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1605 }
1606 
1607 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1608   // Rem in C can't be a floating point type: C99 6.5.5p2.
1609   if (isTrapvOverflowBehavior()) {
1610     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1611 
1612     if (Ops.Ty->isIntegerType())
1613       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1614   }
1615 
1616   if (Ops.Ty->isUnsignedIntegerType())
1617     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1618   else
1619     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1620 }
1621 
1622 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1623   unsigned IID;
1624   unsigned OpID = 0;
1625 
1626   switch (Ops.Opcode) {
1627   case BO_Add:
1628   case BO_AddAssign:
1629     OpID = 1;
1630     IID = llvm::Intrinsic::sadd_with_overflow;
1631     break;
1632   case BO_Sub:
1633   case BO_SubAssign:
1634     OpID = 2;
1635     IID = llvm::Intrinsic::ssub_with_overflow;
1636     break;
1637   case BO_Mul:
1638   case BO_MulAssign:
1639     OpID = 3;
1640     IID = llvm::Intrinsic::smul_with_overflow;
1641     break;
1642   default:
1643     assert(false && "Unsupported operation for overflow detection");
1644     IID = 0;
1645   }
1646   OpID <<= 1;
1647   OpID |= 1;
1648 
1649   const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1650 
1651   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1652 
1653   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1654   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1655   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1656 
1657   // Branch in case of overflow.
1658   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1659   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1660   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1661 
1662   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1663 
1664   // Handle overflow with llvm.trap.
1665   const std::string *handlerName =
1666     &CGF.getContext().getLangOptions().OverflowHandler;
1667   if (handlerName->empty()) {
1668     EmitOverflowBB(overflowBB);
1669     Builder.SetInsertPoint(continueBB);
1670     return result;
1671   }
1672 
1673   // If an overflow handler is set, then we want to call it and then use its
1674   // result, if it returns.
1675   Builder.SetInsertPoint(overflowBB);
1676 
1677   // Get the overflow handler.
1678   const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1679   std::vector<const llvm::Type*> argTypes;
1680   argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty);
1681   argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty);
1682   llvm::FunctionType *handlerTy =
1683       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1684   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1685 
1686   // Sign extend the args to 64-bit, so that we can use the same handler for
1687   // all types of overflow.
1688   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1689   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1690 
1691   // Call the handler with the two arguments, the operation, and the size of
1692   // the result.
1693   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1694       Builder.getInt8(OpID),
1695       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1696 
1697   // Truncate the result back to the desired size.
1698   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1699   Builder.CreateBr(continueBB);
1700 
1701   Builder.SetInsertPoint(continueBB);
1702   llvm::PHINode *phi = Builder.CreatePHI(opTy);
1703   phi->reserveOperandSpace(2);
1704   phi->addIncoming(result, initialBB);
1705   phi->addIncoming(handlerResult, overflowBB);
1706 
1707   return phi;
1708 }
1709 
1710 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1711   if (!Ops.Ty->isAnyPointerType()) {
1712     if (Ops.Ty->hasSignedIntegerRepresentation()) {
1713       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1714       case LangOptions::SOB_Undefined:
1715         return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1716       case LangOptions::SOB_Defined:
1717         return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1718       case LangOptions::SOB_Trapping:
1719         return EmitOverflowCheckedBinOp(Ops);
1720       }
1721     }
1722 
1723     if (Ops.LHS->getType()->isFPOrFPVectorTy())
1724       return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1725 
1726     return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1727   }
1728 
1729   // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1730   // use this path.
1731   const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1732 
1733   if (Ops.Ty->isPointerType() &&
1734       Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1735     // The amount of the addition needs to account for the VLA size
1736     CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1737   }
1738 
1739   Value *Ptr, *Idx;
1740   Expr *IdxExp;
1741   const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1742   const ObjCObjectPointerType *OPT =
1743     BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1744   if (PT || OPT) {
1745     Ptr = Ops.LHS;
1746     Idx = Ops.RHS;
1747     IdxExp = BinOp->getRHS();
1748   } else {  // int + pointer
1749     PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1750     OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1751     assert((PT || OPT) && "Invalid add expr");
1752     Ptr = Ops.RHS;
1753     Idx = Ops.LHS;
1754     IdxExp = BinOp->getLHS();
1755   }
1756 
1757   unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1758   if (Width < CGF.LLVMPointerWidth) {
1759     // Zero or sign extend the pointer value based on whether the index is
1760     // signed or not.
1761     const llvm::Type *IdxType = CGF.IntPtrTy;
1762     if (IdxExp->getType()->isSignedIntegerType())
1763       Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1764     else
1765       Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1766   }
1767   const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1768   // Handle interface types, which are not represented with a concrete type.
1769   if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1770     llvm::Value *InterfaceSize =
1771       llvm::ConstantInt::get(Idx->getType(),
1772           CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1773     Idx = Builder.CreateMul(Idx, InterfaceSize);
1774     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1775     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1776     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1777     return Builder.CreateBitCast(Res, Ptr->getType());
1778   }
1779 
1780   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1781   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1782   // future proof.
1783   if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1784     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1785     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1786     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1787     return Builder.CreateBitCast(Res, Ptr->getType());
1788   }
1789 
1790   return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1791 }
1792 
1793 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1794   if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1795     if (Ops.Ty->hasSignedIntegerRepresentation()) {
1796       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1797       case LangOptions::SOB_Undefined:
1798         return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1799       case LangOptions::SOB_Defined:
1800         return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1801       case LangOptions::SOB_Trapping:
1802         return EmitOverflowCheckedBinOp(Ops);
1803       }
1804     }
1805 
1806     if (Ops.LHS->getType()->isFPOrFPVectorTy())
1807       return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1808 
1809     return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1810   }
1811 
1812   // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1813   // use this path.
1814   const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1815 
1816   if (BinOp->getLHS()->getType()->isPointerType() &&
1817       BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1818     // The amount of the addition needs to account for the VLA size for
1819     // ptr-int
1820     // The amount of the division needs to account for the VLA size for
1821     // ptr-ptr.
1822     CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1823   }
1824 
1825   const QualType LHSType = BinOp->getLHS()->getType();
1826   const QualType LHSElementType = LHSType->getPointeeType();
1827   if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1828     // pointer - int
1829     Value *Idx = Ops.RHS;
1830     unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1831     if (Width < CGF.LLVMPointerWidth) {
1832       // Zero or sign extend the pointer value based on whether the index is
1833       // signed or not.
1834       const llvm::Type *IdxType = CGF.IntPtrTy;
1835       if (BinOp->getRHS()->getType()->isSignedIntegerType())
1836         Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1837       else
1838         Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1839     }
1840     Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1841 
1842     // Handle interface types, which are not represented with a concrete type.
1843     if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1844       llvm::Value *InterfaceSize =
1845         llvm::ConstantInt::get(Idx->getType(),
1846                                CGF.getContext().
1847                                  getTypeSizeInChars(OIT).getQuantity());
1848       Idx = Builder.CreateMul(Idx, InterfaceSize);
1849       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1850       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1851       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1852       return Builder.CreateBitCast(Res, Ops.LHS->getType());
1853     }
1854 
1855     // Explicitly handle GNU void* and function pointer arithmetic
1856     // extensions. The GNU void* casts amount to no-ops since our void* type is
1857     // i8*, but this is future proof.
1858     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1859       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1860       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1861       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1862       return Builder.CreateBitCast(Res, Ops.LHS->getType());
1863     }
1864 
1865     return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1866   } else {
1867     // pointer - pointer
1868     Value *LHS = Ops.LHS;
1869     Value *RHS = Ops.RHS;
1870 
1871     CharUnits ElementSize;
1872 
1873     // Handle GCC extension for pointer arithmetic on void* and function pointer
1874     // types.
1875     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1876       ElementSize = CharUnits::One();
1877     } else {
1878       ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1879     }
1880 
1881     const llvm::Type *ResultType = ConvertType(Ops.Ty);
1882     LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1883     RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1884     Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1885 
1886     // Optimize out the shift for element size of 1.
1887     if (ElementSize.isOne())
1888       return BytesBetween;
1889 
1890     // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1891     // pointer difference in C is only defined in the case where both operands
1892     // are pointing to elements of an array.
1893     Value *BytesPerElt =
1894         llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1895     return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1896   }
1897 }
1898 
1899 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1900   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1901   // RHS to the same size as the LHS.
1902   Value *RHS = Ops.RHS;
1903   if (Ops.LHS->getType() != RHS->getType())
1904     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1905 
1906   if (CGF.CatchUndefined
1907       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1908     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1909     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1910     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1911                                  llvm::ConstantInt::get(RHS->getType(), Width)),
1912                              Cont, CGF.getTrapBB());
1913     CGF.EmitBlock(Cont);
1914   }
1915 
1916   return Builder.CreateShl(Ops.LHS, RHS, "shl");
1917 }
1918 
1919 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1920   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1921   // RHS to the same size as the LHS.
1922   Value *RHS = Ops.RHS;
1923   if (Ops.LHS->getType() != RHS->getType())
1924     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1925 
1926   if (CGF.CatchUndefined
1927       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1928     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1929     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1930     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1931                                  llvm::ConstantInt::get(RHS->getType(), Width)),
1932                              Cont, CGF.getTrapBB());
1933     CGF.EmitBlock(Cont);
1934   }
1935 
1936   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1937     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1938   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1939 }
1940 
1941 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1942                                       unsigned SICmpOpc, unsigned FCmpOpc) {
1943   TestAndClearIgnoreResultAssign();
1944   Value *Result;
1945   QualType LHSTy = E->getLHS()->getType();
1946   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
1947     assert(E->getOpcode() == BO_EQ ||
1948            E->getOpcode() == BO_NE);
1949     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
1950     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
1951     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
1952                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
1953   } else if (!LHSTy->isAnyComplexType()) {
1954     Value *LHS = Visit(E->getLHS());
1955     Value *RHS = Visit(E->getRHS());
1956 
1957     if (LHS->getType()->isFPOrFPVectorTy()) {
1958       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1959                                   LHS, RHS, "cmp");
1960     } else if (LHSTy->hasSignedIntegerRepresentation()) {
1961       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1962                                   LHS, RHS, "cmp");
1963     } else {
1964       // Unsigned integers and pointers.
1965       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1966                                   LHS, RHS, "cmp");
1967     }
1968 
1969     // If this is a vector comparison, sign extend the result to the appropriate
1970     // vector integer type and return it (don't convert to bool).
1971     if (LHSTy->isVectorType())
1972       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1973 
1974   } else {
1975     // Complex Comparison: can only be an equality comparison.
1976     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1977     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1978 
1979     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1980 
1981     Value *ResultR, *ResultI;
1982     if (CETy->isRealFloatingType()) {
1983       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1984                                    LHS.first, RHS.first, "cmp.r");
1985       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1986                                    LHS.second, RHS.second, "cmp.i");
1987     } else {
1988       // Complex comparisons can only be equality comparisons.  As such, signed
1989       // and unsigned opcodes are the same.
1990       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1991                                    LHS.first, RHS.first, "cmp.r");
1992       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1993                                    LHS.second, RHS.second, "cmp.i");
1994     }
1995 
1996     if (E->getOpcode() == BO_EQ) {
1997       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1998     } else {
1999       assert(E->getOpcode() == BO_NE &&
2000              "Complex comparison other than == or != ?");
2001       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2002     }
2003   }
2004 
2005   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2006 }
2007 
2008 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2009   bool Ignore = TestAndClearIgnoreResultAssign();
2010 
2011   // __block variables need to have the rhs evaluated first, plus this should
2012   // improve codegen just a little.
2013   Value *RHS = Visit(E->getRHS());
2014   LValue LHS = EmitCheckedLValue(E->getLHS());
2015 
2016   // Store the value into the LHS.  Bit-fields are handled specially
2017   // because the result is altered by the store, i.e., [C99 6.5.16p1]
2018   // 'An assignment expression has the value of the left operand after
2019   // the assignment...'.
2020   if (LHS.isBitField())
2021     CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2022                                        &RHS);
2023   else
2024     CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2025 
2026   // If the result is clearly ignored, return now.
2027   if (Ignore)
2028     return 0;
2029 
2030   // Objective-C property assignment never reloads the value following a store.
2031   if (LHS.isPropertyRef() || LHS.isKVCRef())
2032     return RHS;
2033 
2034   // If the lvalue is non-volatile, return the computed value of the assignment.
2035   if (!LHS.isVolatileQualified())
2036     return RHS;
2037 
2038   // Otherwise, reload the value.
2039   return EmitLoadOfLValue(LHS, E->getType());
2040 }
2041 
2042 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2043   const llvm::Type *ResTy = ConvertType(E->getType());
2044 
2045   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2046   // If we have 1 && X, just emit X without inserting the control flow.
2047   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2048     if (Cond == 1) { // If we have 1 && X, just emit X.
2049       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2050       // ZExt result to int or bool.
2051       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2052     }
2053 
2054     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2055     if (!CGF.ContainsLabel(E->getRHS()))
2056       return llvm::Constant::getNullValue(ResTy);
2057   }
2058 
2059   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2060   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2061 
2062   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2063   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2064 
2065   // Any edges into the ContBlock are now from an (indeterminate number of)
2066   // edges from this first condition.  All of these values will be false.  Start
2067   // setting up the PHI node in the Cont Block for this.
2068   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2069                                             "", ContBlock);
2070   PN->reserveOperandSpace(2);  // Normal case, two inputs.
2071   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2072        PI != PE; ++PI)
2073     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2074 
2075   CGF.BeginConditionalBranch();
2076   CGF.EmitBlock(RHSBlock);
2077   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2078   CGF.EndConditionalBranch();
2079 
2080   // Reaquire the RHS block, as there may be subblocks inserted.
2081   RHSBlock = Builder.GetInsertBlock();
2082 
2083   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2084   // into the phi node for the edge with the value of RHSCond.
2085   CGF.EmitBlock(ContBlock);
2086   PN->addIncoming(RHSCond, RHSBlock);
2087 
2088   // ZExt result to int.
2089   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2090 }
2091 
2092 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2093   const llvm::Type *ResTy = ConvertType(E->getType());
2094 
2095   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2096   // If we have 0 || X, just emit X without inserting the control flow.
2097   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2098     if (Cond == -1) { // If we have 0 || X, just emit X.
2099       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2100       // ZExt result to int or bool.
2101       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2102     }
2103 
2104     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2105     if (!CGF.ContainsLabel(E->getRHS()))
2106       return llvm::ConstantInt::get(ResTy, 1);
2107   }
2108 
2109   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2110   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2111 
2112   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2113   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2114 
2115   // Any edges into the ContBlock are now from an (indeterminate number of)
2116   // edges from this first condition.  All of these values will be true.  Start
2117   // setting up the PHI node in the Cont Block for this.
2118   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2119                                             "", ContBlock);
2120   PN->reserveOperandSpace(2);  // Normal case, two inputs.
2121   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2122        PI != PE; ++PI)
2123     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2124 
2125   CGF.BeginConditionalBranch();
2126 
2127   // Emit the RHS condition as a bool value.
2128   CGF.EmitBlock(RHSBlock);
2129   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2130 
2131   CGF.EndConditionalBranch();
2132 
2133   // Reaquire the RHS block, as there may be subblocks inserted.
2134   RHSBlock = Builder.GetInsertBlock();
2135 
2136   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2137   // into the phi node for the edge with the value of RHSCond.
2138   CGF.EmitBlock(ContBlock);
2139   PN->addIncoming(RHSCond, RHSBlock);
2140 
2141   // ZExt result to int.
2142   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2143 }
2144 
2145 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2146   CGF.EmitStmt(E->getLHS());
2147   CGF.EnsureInsertPoint();
2148   return Visit(E->getRHS());
2149 }
2150 
2151 //===----------------------------------------------------------------------===//
2152 //                             Other Operators
2153 //===----------------------------------------------------------------------===//
2154 
2155 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2156 /// expression is cheap enough and side-effect-free enough to evaluate
2157 /// unconditionally instead of conditionally.  This is used to convert control
2158 /// flow into selects in some cases.
2159 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2160                                                    CodeGenFunction &CGF) {
2161   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2162     return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2163 
2164   // TODO: Allow anything we can constant fold to an integer or fp constant.
2165   if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2166       isa<FloatingLiteral>(E))
2167     return true;
2168 
2169   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2170   // X and Y are local variables.
2171   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2172     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2173       if (VD->hasLocalStorage() && !(CGF.getContext()
2174                                      .getCanonicalType(VD->getType())
2175                                      .isVolatileQualified()))
2176         return true;
2177 
2178   return false;
2179 }
2180 
2181 
2182 Value *ScalarExprEmitter::
2183 VisitConditionalOperator(const ConditionalOperator *E) {
2184   TestAndClearIgnoreResultAssign();
2185   // If the condition constant folds and can be elided, try to avoid emitting
2186   // the condition and the dead arm.
2187   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
2188     Expr *Live = E->getLHS(), *Dead = E->getRHS();
2189     if (Cond == -1)
2190       std::swap(Live, Dead);
2191 
2192     // If the dead side doesn't have labels we need, and if the Live side isn't
2193     // the gnu missing ?: extension (which we could handle, but don't bother
2194     // to), just emit the Live part.
2195     if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
2196         Live)                                   // Live part isn't missing.
2197       return Visit(Live);
2198   }
2199 
2200   // OpenCL: If the condition is a vector, we can treat this condition like
2201   // the select function.
2202   if (CGF.getContext().getLangOptions().OpenCL
2203       && E->getCond()->getType()->isVectorType()) {
2204     llvm::Value *CondV = CGF.EmitScalarExpr(E->getCond());
2205     llvm::Value *LHS = Visit(E->getLHS());
2206     llvm::Value *RHS = Visit(E->getRHS());
2207 
2208     const llvm::Type *condType = ConvertType(E->getCond()->getType());
2209     const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2210 
2211     unsigned numElem = vecTy->getNumElements();
2212     const llvm::Type *elemType = vecTy->getElementType();
2213 
2214     std::vector<llvm::Constant*> Zvals;
2215     for (unsigned i = 0; i < numElem; ++i)
2216       Zvals.push_back(llvm::ConstantInt::get(elemType,0));
2217 
2218     llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2219     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2220     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2221                                           llvm::VectorType::get(elemType,
2222                                                                 numElem),
2223                                           "sext");
2224     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2225 
2226     // Cast float to int to perform ANDs if necessary.
2227     llvm::Value *RHSTmp = RHS;
2228     llvm::Value *LHSTmp = LHS;
2229     bool wasCast = false;
2230     const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2231     if (rhsVTy->getElementType()->isFloatTy()) {
2232       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2233       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2234       wasCast = true;
2235     }
2236 
2237     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2238     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2239     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2240     if (wasCast)
2241       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2242 
2243     return tmp5;
2244   }
2245 
2246   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2247   // select instead of as control flow.  We can only do this if it is cheap and
2248   // safe to evaluate the LHS and RHS unconditionally.
2249   if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
2250                                                             CGF) &&
2251       isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
2252     llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
2253     llvm::Value *LHS = Visit(E->getLHS());
2254     llvm::Value *RHS = Visit(E->getRHS());
2255     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2256   }
2257 
2258   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2259   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2260   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2261 
2262   // If we don't have the GNU missing condition extension, emit a branch on bool
2263   // the normal way.
2264   if (E->getLHS()) {
2265     // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
2266     // the branch on bool.
2267     CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
2268   } else {
2269     // Otherwise, for the ?: extension, evaluate the conditional and then
2270     // convert it to bool the hard way.  We do this explicitly because we need
2271     // the unconverted value for the missing middle value of the ?:.
2272     Expr *save = E->getSAVE();
2273     assert(save && "VisitConditionalOperator - save is null");
2274     // Intentianlly not doing direct assignment to ConditionalSaveExprs[save] !!
2275     Value *SaveVal = CGF.EmitScalarExpr(save);
2276     CGF.ConditionalSaveExprs[save] = SaveVal;
2277     Value *CondVal = Visit(E->getCond());
2278     // In some cases, EmitScalarConversion will delete the "CondVal" expression
2279     // if there are no extra uses (an optimization).  Inhibit this by making an
2280     // extra dead use, because we're going to add a use of CondVal later.  We
2281     // don't use the builder for this, because we don't want it to get optimized
2282     // away.  This leaves dead code, but the ?: extension isn't common.
2283     new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
2284                           Builder.GetInsertBlock());
2285 
2286     Value *CondBoolVal =
2287       CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
2288                                CGF.getContext().BoolTy);
2289     Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
2290   }
2291 
2292   CGF.BeginConditionalBranch();
2293   CGF.EmitBlock(LHSBlock);
2294 
2295   // Handle the GNU extension for missing LHS.
2296   Value *LHS = Visit(E->getTrueExpr());
2297 
2298   CGF.EndConditionalBranch();
2299   LHSBlock = Builder.GetInsertBlock();
2300   CGF.EmitBranch(ContBlock);
2301 
2302   CGF.BeginConditionalBranch();
2303   CGF.EmitBlock(RHSBlock);
2304 
2305   Value *RHS = Visit(E->getRHS());
2306   CGF.EndConditionalBranch();
2307   RHSBlock = Builder.GetInsertBlock();
2308   CGF.EmitBranch(ContBlock);
2309 
2310   CGF.EmitBlock(ContBlock);
2311 
2312   // If the LHS or RHS is a throw expression, it will be legitimately null.
2313   if (!LHS)
2314     return RHS;
2315   if (!RHS)
2316     return LHS;
2317 
2318   // Create a PHI node for the real part.
2319   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
2320   PN->reserveOperandSpace(2);
2321   PN->addIncoming(LHS, LHSBlock);
2322   PN->addIncoming(RHS, RHSBlock);
2323   return PN;
2324 }
2325 
2326 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2327   return Visit(E->getChosenSubExpr(CGF.getContext()));
2328 }
2329 
2330 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2331   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2332   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2333 
2334   // If EmitVAArg fails, we fall back to the LLVM instruction.
2335   if (!ArgPtr)
2336     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2337 
2338   // FIXME Volatility.
2339   return Builder.CreateLoad(ArgPtr);
2340 }
2341 
2342 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
2343   return CGF.BuildBlockLiteralTmp(BE);
2344 }
2345 
2346 //===----------------------------------------------------------------------===//
2347 //                         Entry Point into this File
2348 //===----------------------------------------------------------------------===//
2349 
2350 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2351 /// type, ignoring the result.
2352 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2353   assert(E && !hasAggregateLLVMType(E->getType()) &&
2354          "Invalid scalar expression to emit");
2355 
2356   return ScalarExprEmitter(*this, IgnoreResultAssign)
2357     .Visit(const_cast<Expr*>(E));
2358 }
2359 
2360 /// EmitScalarConversion - Emit a conversion from the specified type to the
2361 /// specified destination type, both of which are LLVM scalar types.
2362 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2363                                              QualType DstTy) {
2364   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2365          "Invalid scalar expression to emit");
2366   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2367 }
2368 
2369 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2370 /// type to the specified destination type, where the destination type is an
2371 /// LLVM scalar type.
2372 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2373                                                       QualType SrcTy,
2374                                                       QualType DstTy) {
2375   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2376          "Invalid complex -> scalar conversion");
2377   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2378                                                                 DstTy);
2379 }
2380 
2381 
2382 llvm::Value *CodeGenFunction::
2383 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2384                         bool isInc, bool isPre) {
2385   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2386 }
2387 
2388 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2389   llvm::Value *V;
2390   // object->isa or (*object).isa
2391   // Generate code as for: *(Class*)object
2392   // build Class* type
2393   const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2394 
2395   Expr *BaseExpr = E->getBase();
2396   if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
2397     V = CreateTempAlloca(ClassPtrTy, "resval");
2398     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2399     Builder.CreateStore(Src, V);
2400     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2401       MakeAddrLValue(V, E->getType()), E->getType());
2402   } else {
2403     if (E->isArrow())
2404       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2405     else
2406       V = EmitLValue(BaseExpr).getAddress();
2407   }
2408 
2409   // build Class* type
2410   ClassPtrTy = ClassPtrTy->getPointerTo();
2411   V = Builder.CreateBitCast(V, ClassPtrTy);
2412   return MakeAddrLValue(V, E->getType());
2413 }
2414 
2415 
2416 LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
2417                                             const CompoundAssignOperator *E) {
2418   ScalarExprEmitter Scalar(*this);
2419   Value *Result = 0;
2420   switch (E->getOpcode()) {
2421 #define COMPOUND_OP(Op)                                                       \
2422     case BO_##Op##Assign:                                                     \
2423       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2424                                              Result)
2425   COMPOUND_OP(Mul);
2426   COMPOUND_OP(Div);
2427   COMPOUND_OP(Rem);
2428   COMPOUND_OP(Add);
2429   COMPOUND_OP(Sub);
2430   COMPOUND_OP(Shl);
2431   COMPOUND_OP(Shr);
2432   COMPOUND_OP(And);
2433   COMPOUND_OP(Xor);
2434   COMPOUND_OP(Or);
2435 #undef COMPOUND_OP
2436 
2437   case BO_PtrMemD:
2438   case BO_PtrMemI:
2439   case BO_Mul:
2440   case BO_Div:
2441   case BO_Rem:
2442   case BO_Add:
2443   case BO_Sub:
2444   case BO_Shl:
2445   case BO_Shr:
2446   case BO_LT:
2447   case BO_GT:
2448   case BO_LE:
2449   case BO_GE:
2450   case BO_EQ:
2451   case BO_NE:
2452   case BO_And:
2453   case BO_Xor:
2454   case BO_Or:
2455   case BO_LAnd:
2456   case BO_LOr:
2457   case BO_Assign:
2458   case BO_Comma:
2459     assert(false && "Not valid compound assignment operators");
2460     break;
2461   }
2462 
2463   llvm_unreachable("Unhandled compound assignment operator");
2464 }
2465