1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Module.h" 37 #include <cstdarg> 38 39 using namespace clang; 40 using namespace CodeGen; 41 using llvm::Value; 42 43 //===----------------------------------------------------------------------===// 44 // Scalar Expression Emitter 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 49 /// Determine whether the given binary operation may overflow. 50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 52 /// the returned overflow check is precise. The returned value is 'true' for 53 /// all other opcodes, to be conservative. 54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 55 BinaryOperator::Opcode Opcode, bool Signed, 56 llvm::APInt &Result) { 57 // Assume overflow is possible, unless we can prove otherwise. 58 bool Overflow = true; 59 const auto &LHSAP = LHS->getValue(); 60 const auto &RHSAP = RHS->getValue(); 61 if (Opcode == BO_Add) { 62 if (Signed) 63 Result = LHSAP.sadd_ov(RHSAP, Overflow); 64 else 65 Result = LHSAP.uadd_ov(RHSAP, Overflow); 66 } else if (Opcode == BO_Sub) { 67 if (Signed) 68 Result = LHSAP.ssub_ov(RHSAP, Overflow); 69 else 70 Result = LHSAP.usub_ov(RHSAP, Overflow); 71 } else if (Opcode == BO_Mul) { 72 if (Signed) 73 Result = LHSAP.smul_ov(RHSAP, Overflow); 74 else 75 Result = LHSAP.umul_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 77 if (Signed && !RHS->isZero()) 78 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 79 else 80 return false; 81 } 82 return Overflow; 83 } 84 85 struct BinOpInfo { 86 Value *LHS; 87 Value *RHS; 88 QualType Ty; // Computation Type. 89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 90 FPOptions FPFeatures; 91 const Expr *E; // Entire expr, for error unsupported. May not be binop. 92 93 /// Check if the binop can result in integer overflow. 94 bool mayHaveIntegerOverflow() const { 95 // Without constant input, we can't rule out overflow. 96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 98 if (!LHSCI || !RHSCI) 99 return true; 100 101 llvm::APInt Result; 102 return ::mayHaveIntegerOverflow( 103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 104 } 105 106 /// Check if the binop computes a division or a remainder. 107 bool isDivremOp() const { 108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 109 Opcode == BO_RemAssign; 110 } 111 112 /// Check if the binop can result in an integer division by zero. 113 bool mayHaveIntegerDivisionByZero() const { 114 if (isDivremOp()) 115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 116 return CI->isZero(); 117 return true; 118 } 119 120 /// Check if the binop can result in a float division by zero. 121 bool mayHaveFloatDivisionByZero() const { 122 if (isDivremOp()) 123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 124 return CFP->isZero(); 125 return true; 126 } 127 }; 128 129 static bool MustVisitNullValue(const Expr *E) { 130 // If a null pointer expression's type is the C++0x nullptr_t, then 131 // it's not necessarily a simple constant and it must be evaluated 132 // for its potential side effects. 133 return E->getType()->isNullPtrType(); 134 } 135 136 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 138 const Expr *E) { 139 const Expr *Base = E->IgnoreImpCasts(); 140 if (E == Base) 141 return llvm::None; 142 143 QualType BaseTy = Base->getType(); 144 if (!BaseTy->isPromotableIntegerType() || 145 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 146 return llvm::None; 147 148 return BaseTy; 149 } 150 151 /// Check if \p E is a widened promoted integer. 152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 153 return getUnwidenedIntegerType(Ctx, E).hasValue(); 154 } 155 156 /// Check if we can skip the overflow check for \p Op. 157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 158 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 159 "Expected a unary or binary operator"); 160 161 // If the binop has constant inputs and we can prove there is no overflow, 162 // we can elide the overflow check. 163 if (!Op.mayHaveIntegerOverflow()) 164 return true; 165 166 // If a unary op has a widened operand, the op cannot overflow. 167 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 168 return !UO->canOverflow(); 169 170 // We usually don't need overflow checks for binops with widened operands. 171 // Multiplication with promoted unsigned operands is a special case. 172 const auto *BO = cast<BinaryOperator>(Op.E); 173 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 174 if (!OptionalLHSTy) 175 return false; 176 177 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 178 if (!OptionalRHSTy) 179 return false; 180 181 QualType LHSTy = *OptionalLHSTy; 182 QualType RHSTy = *OptionalRHSTy; 183 184 // This is the simple case: binops without unsigned multiplication, and with 185 // widened operands. No overflow check is needed here. 186 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 187 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 188 return true; 189 190 // For unsigned multiplication the overflow check can be elided if either one 191 // of the unpromoted types are less than half the size of the promoted type. 192 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 193 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 194 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 195 } 196 197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 198 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 199 FPOptions FPFeatures) { 200 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 201 } 202 203 /// Propagate fast-math flags from \p Op to the instruction in \p V. 204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 205 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 206 llvm::FastMathFlags FMF = I->getFastMathFlags(); 207 updateFastMathFlags(FMF, Op.FPFeatures); 208 I->setFastMathFlags(FMF); 209 } 210 return V; 211 } 212 213 class ScalarExprEmitter 214 : public StmtVisitor<ScalarExprEmitter, Value*> { 215 CodeGenFunction &CGF; 216 CGBuilderTy &Builder; 217 bool IgnoreResultAssign; 218 llvm::LLVMContext &VMContext; 219 public: 220 221 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 222 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 223 VMContext(cgf.getLLVMContext()) { 224 } 225 226 //===--------------------------------------------------------------------===// 227 // Utilities 228 //===--------------------------------------------------------------------===// 229 230 bool TestAndClearIgnoreResultAssign() { 231 bool I = IgnoreResultAssign; 232 IgnoreResultAssign = false; 233 return I; 234 } 235 236 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 237 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 238 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 239 return CGF.EmitCheckedLValue(E, TCK); 240 } 241 242 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 243 const BinOpInfo &Info); 244 245 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 246 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 247 } 248 249 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 250 const AlignValueAttr *AVAttr = nullptr; 251 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 252 const ValueDecl *VD = DRE->getDecl(); 253 254 if (VD->getType()->isReferenceType()) { 255 if (const auto *TTy = 256 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 257 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 258 } else { 259 // Assumptions for function parameters are emitted at the start of the 260 // function, so there is no need to repeat that here. 261 if (isa<ParmVarDecl>(VD)) 262 return; 263 264 AVAttr = VD->getAttr<AlignValueAttr>(); 265 } 266 } 267 268 if (!AVAttr) 269 if (const auto *TTy = 270 dyn_cast<TypedefType>(E->getType())) 271 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 272 273 if (!AVAttr) 274 return; 275 276 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 277 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 278 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 279 } 280 281 /// EmitLoadOfLValue - Given an expression with complex type that represents a 282 /// value l-value, this method emits the address of the l-value, then loads 283 /// and returns the result. 284 Value *EmitLoadOfLValue(const Expr *E) { 285 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 286 E->getExprLoc()); 287 288 EmitLValueAlignmentAssumption(E, V); 289 return V; 290 } 291 292 /// EmitConversionToBool - Convert the specified expression value to a 293 /// boolean (i1) truth value. This is equivalent to "Val != 0". 294 Value *EmitConversionToBool(Value *Src, QualType DstTy); 295 296 /// Emit a check that a conversion to or from a floating-point type does not 297 /// overflow. 298 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 299 Value *Src, QualType SrcType, QualType DstType, 300 llvm::Type *DstTy, SourceLocation Loc); 301 302 /// Known implicit conversion check kinds. 303 /// Keep in sync with the enum of the same name in ubsan_handlers.h 304 enum ImplicitConversionCheckKind : unsigned char { 305 ICCK_IntegerTruncation = 0, 306 }; 307 308 /// Emit a check that an [implicit] truncation of an integer does not 309 /// discard any bits. It is not UB, so we use the value after truncation. 310 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 311 QualType DstType, SourceLocation Loc); 312 313 /// Emit a conversion from the specified type to the specified destination 314 /// type, both of which are LLVM scalar types. 315 struct ScalarConversionOpts { 316 bool TreatBooleanAsSigned; 317 bool EmitImplicitIntegerTruncationChecks; 318 319 ScalarConversionOpts() 320 : TreatBooleanAsSigned(false), 321 EmitImplicitIntegerTruncationChecks(false) {} 322 }; 323 Value * 324 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 325 SourceLocation Loc, 326 ScalarConversionOpts Opts = ScalarConversionOpts()); 327 328 /// Emit a conversion from the specified complex type to the specified 329 /// destination type, where the destination type is an LLVM scalar type. 330 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 331 QualType SrcTy, QualType DstTy, 332 SourceLocation Loc); 333 334 /// EmitNullValue - Emit a value that corresponds to null for the given type. 335 Value *EmitNullValue(QualType Ty); 336 337 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 338 Value *EmitFloatToBoolConversion(Value *V) { 339 // Compare against 0.0 for fp scalars. 340 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 341 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 342 } 343 344 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 345 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 346 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 347 348 return Builder.CreateICmpNE(V, Zero, "tobool"); 349 } 350 351 Value *EmitIntToBoolConversion(Value *V) { 352 // Because of the type rules of C, we often end up computing a 353 // logical value, then zero extending it to int, then wanting it 354 // as a logical value again. Optimize this common case. 355 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 356 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 357 Value *Result = ZI->getOperand(0); 358 // If there aren't any more uses, zap the instruction to save space. 359 // Note that there can be more uses, for example if this 360 // is the result of an assignment. 361 if (ZI->use_empty()) 362 ZI->eraseFromParent(); 363 return Result; 364 } 365 } 366 367 return Builder.CreateIsNotNull(V, "tobool"); 368 } 369 370 //===--------------------------------------------------------------------===// 371 // Visitor Methods 372 //===--------------------------------------------------------------------===// 373 374 Value *Visit(Expr *E) { 375 ApplyDebugLocation DL(CGF, E); 376 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 377 } 378 379 Value *VisitStmt(Stmt *S) { 380 S->dump(CGF.getContext().getSourceManager()); 381 llvm_unreachable("Stmt can't have complex result type!"); 382 } 383 Value *VisitExpr(Expr *S); 384 385 Value *VisitParenExpr(ParenExpr *PE) { 386 return Visit(PE->getSubExpr()); 387 } 388 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 389 return Visit(E->getReplacement()); 390 } 391 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 392 return Visit(GE->getResultExpr()); 393 } 394 Value *VisitCoawaitExpr(CoawaitExpr *S) { 395 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 396 } 397 Value *VisitCoyieldExpr(CoyieldExpr *S) { 398 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 399 } 400 Value *VisitUnaryCoawait(const UnaryOperator *E) { 401 return Visit(E->getSubExpr()); 402 } 403 404 // Leaves. 405 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 406 return Builder.getInt(E->getValue()); 407 } 408 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 409 return Builder.getInt(E->getValue()); 410 } 411 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 412 return llvm::ConstantFP::get(VMContext, E->getValue()); 413 } 414 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 415 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 416 } 417 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 418 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 419 } 420 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 421 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 422 } 423 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 424 return EmitNullValue(E->getType()); 425 } 426 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 427 return EmitNullValue(E->getType()); 428 } 429 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 430 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 431 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 432 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 433 return Builder.CreateBitCast(V, ConvertType(E->getType())); 434 } 435 436 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 437 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 438 } 439 440 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 441 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 442 } 443 444 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 445 if (E->isGLValue()) 446 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 447 E->getExprLoc()); 448 449 // Otherwise, assume the mapping is the scalar directly. 450 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 451 } 452 453 Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant, 454 Expr *E) { 455 assert(Constant && "not a constant"); 456 if (Constant.isReference()) 457 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 458 E->getExprLoc()); 459 return Constant.getValue(); 460 } 461 462 // l-values. 463 Value *VisitDeclRefExpr(DeclRefExpr *E) { 464 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 465 return emitConstant(Constant, E); 466 return EmitLoadOfLValue(E); 467 } 468 469 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 470 return CGF.EmitObjCSelectorExpr(E); 471 } 472 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 473 return CGF.EmitObjCProtocolExpr(E); 474 } 475 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 476 return EmitLoadOfLValue(E); 477 } 478 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 479 if (E->getMethodDecl() && 480 E->getMethodDecl()->getReturnType()->isReferenceType()) 481 return EmitLoadOfLValue(E); 482 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 483 } 484 485 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 486 LValue LV = CGF.EmitObjCIsaExpr(E); 487 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 488 return V; 489 } 490 491 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 492 VersionTuple Version = E->getVersion(); 493 494 // If we're checking for a platform older than our minimum deployment 495 // target, we can fold the check away. 496 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 497 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 498 499 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 500 llvm::Value *Args[] = { 501 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 502 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 503 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 504 }; 505 506 return CGF.EmitBuiltinAvailable(Args); 507 } 508 509 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 510 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 511 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 512 Value *VisitMemberExpr(MemberExpr *E); 513 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 514 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 515 return EmitLoadOfLValue(E); 516 } 517 518 Value *VisitInitListExpr(InitListExpr *E); 519 520 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 521 assert(CGF.getArrayInitIndex() && 522 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 523 return CGF.getArrayInitIndex(); 524 } 525 526 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 527 return EmitNullValue(E->getType()); 528 } 529 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 530 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 531 return VisitCastExpr(E); 532 } 533 Value *VisitCastExpr(CastExpr *E); 534 535 Value *VisitCallExpr(const CallExpr *E) { 536 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 537 return EmitLoadOfLValue(E); 538 539 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 540 541 EmitLValueAlignmentAssumption(E, V); 542 return V; 543 } 544 545 Value *VisitStmtExpr(const StmtExpr *E); 546 547 // Unary Operators. 548 Value *VisitUnaryPostDec(const UnaryOperator *E) { 549 LValue LV = EmitLValue(E->getSubExpr()); 550 return EmitScalarPrePostIncDec(E, LV, false, false); 551 } 552 Value *VisitUnaryPostInc(const UnaryOperator *E) { 553 LValue LV = EmitLValue(E->getSubExpr()); 554 return EmitScalarPrePostIncDec(E, LV, true, false); 555 } 556 Value *VisitUnaryPreDec(const UnaryOperator *E) { 557 LValue LV = EmitLValue(E->getSubExpr()); 558 return EmitScalarPrePostIncDec(E, LV, false, true); 559 } 560 Value *VisitUnaryPreInc(const UnaryOperator *E) { 561 LValue LV = EmitLValue(E->getSubExpr()); 562 return EmitScalarPrePostIncDec(E, LV, true, true); 563 } 564 565 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 566 llvm::Value *InVal, 567 bool IsInc); 568 569 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 570 bool isInc, bool isPre); 571 572 573 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 574 if (isa<MemberPointerType>(E->getType())) // never sugared 575 return CGF.CGM.getMemberPointerConstant(E); 576 577 return EmitLValue(E->getSubExpr()).getPointer(); 578 } 579 Value *VisitUnaryDeref(const UnaryOperator *E) { 580 if (E->getType()->isVoidType()) 581 return Visit(E->getSubExpr()); // the actual value should be unused 582 return EmitLoadOfLValue(E); 583 } 584 Value *VisitUnaryPlus(const UnaryOperator *E) { 585 // This differs from gcc, though, most likely due to a bug in gcc. 586 TestAndClearIgnoreResultAssign(); 587 return Visit(E->getSubExpr()); 588 } 589 Value *VisitUnaryMinus (const UnaryOperator *E); 590 Value *VisitUnaryNot (const UnaryOperator *E); 591 Value *VisitUnaryLNot (const UnaryOperator *E); 592 Value *VisitUnaryReal (const UnaryOperator *E); 593 Value *VisitUnaryImag (const UnaryOperator *E); 594 Value *VisitUnaryExtension(const UnaryOperator *E) { 595 return Visit(E->getSubExpr()); 596 } 597 598 // C++ 599 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 600 return EmitLoadOfLValue(E); 601 } 602 603 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 604 return Visit(DAE->getExpr()); 605 } 606 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 607 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 608 return Visit(DIE->getExpr()); 609 } 610 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 611 return CGF.LoadCXXThis(); 612 } 613 614 Value *VisitExprWithCleanups(ExprWithCleanups *E); 615 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 616 return CGF.EmitCXXNewExpr(E); 617 } 618 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 619 CGF.EmitCXXDeleteExpr(E); 620 return nullptr; 621 } 622 623 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 624 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 625 } 626 627 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 628 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 629 } 630 631 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 632 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 633 } 634 635 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 636 // C++ [expr.pseudo]p1: 637 // The result shall only be used as the operand for the function call 638 // operator (), and the result of such a call has type void. The only 639 // effect is the evaluation of the postfix-expression before the dot or 640 // arrow. 641 CGF.EmitScalarExpr(E->getBase()); 642 return nullptr; 643 } 644 645 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 646 return EmitNullValue(E->getType()); 647 } 648 649 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 650 CGF.EmitCXXThrowExpr(E); 651 return nullptr; 652 } 653 654 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 655 return Builder.getInt1(E->getValue()); 656 } 657 658 // Binary Operators. 659 Value *EmitMul(const BinOpInfo &Ops) { 660 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 661 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 662 case LangOptions::SOB_Defined: 663 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 664 case LangOptions::SOB_Undefined: 665 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 666 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 667 // Fall through. 668 case LangOptions::SOB_Trapping: 669 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 670 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 671 return EmitOverflowCheckedBinOp(Ops); 672 } 673 } 674 675 if (Ops.Ty->isUnsignedIntegerType() && 676 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 677 !CanElideOverflowCheck(CGF.getContext(), Ops)) 678 return EmitOverflowCheckedBinOp(Ops); 679 680 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 681 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 682 return propagateFMFlags(V, Ops); 683 } 684 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 685 } 686 /// Create a binary op that checks for overflow. 687 /// Currently only supports +, - and *. 688 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 689 690 // Check for undefined division and modulus behaviors. 691 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 692 llvm::Value *Zero,bool isDiv); 693 // Common helper for getting how wide LHS of shift is. 694 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 695 Value *EmitDiv(const BinOpInfo &Ops); 696 Value *EmitRem(const BinOpInfo &Ops); 697 Value *EmitAdd(const BinOpInfo &Ops); 698 Value *EmitSub(const BinOpInfo &Ops); 699 Value *EmitShl(const BinOpInfo &Ops); 700 Value *EmitShr(const BinOpInfo &Ops); 701 Value *EmitAnd(const BinOpInfo &Ops) { 702 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 703 } 704 Value *EmitXor(const BinOpInfo &Ops) { 705 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 706 } 707 Value *EmitOr (const BinOpInfo &Ops) { 708 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 709 } 710 711 BinOpInfo EmitBinOps(const BinaryOperator *E); 712 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 713 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 714 Value *&Result); 715 716 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 717 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 718 719 // Binary operators and binary compound assignment operators. 720 #define HANDLEBINOP(OP) \ 721 Value *VisitBin ## OP(const BinaryOperator *E) { \ 722 return Emit ## OP(EmitBinOps(E)); \ 723 } \ 724 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 725 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 726 } 727 HANDLEBINOP(Mul) 728 HANDLEBINOP(Div) 729 HANDLEBINOP(Rem) 730 HANDLEBINOP(Add) 731 HANDLEBINOP(Sub) 732 HANDLEBINOP(Shl) 733 HANDLEBINOP(Shr) 734 HANDLEBINOP(And) 735 HANDLEBINOP(Xor) 736 HANDLEBINOP(Or) 737 #undef HANDLEBINOP 738 739 // Comparisons. 740 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 741 llvm::CmpInst::Predicate SICmpOpc, 742 llvm::CmpInst::Predicate FCmpOpc); 743 #define VISITCOMP(CODE, UI, SI, FP) \ 744 Value *VisitBin##CODE(const BinaryOperator *E) { \ 745 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 746 llvm::FCmpInst::FP); } 747 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 748 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 749 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 750 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 751 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 752 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 753 #undef VISITCOMP 754 755 Value *VisitBinAssign (const BinaryOperator *E); 756 757 Value *VisitBinLAnd (const BinaryOperator *E); 758 Value *VisitBinLOr (const BinaryOperator *E); 759 Value *VisitBinComma (const BinaryOperator *E); 760 761 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 762 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 763 764 // Other Operators. 765 Value *VisitBlockExpr(const BlockExpr *BE); 766 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 767 Value *VisitChooseExpr(ChooseExpr *CE); 768 Value *VisitVAArgExpr(VAArgExpr *VE); 769 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 770 return CGF.EmitObjCStringLiteral(E); 771 } 772 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 773 return CGF.EmitObjCBoxedExpr(E); 774 } 775 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 776 return CGF.EmitObjCArrayLiteral(E); 777 } 778 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 779 return CGF.EmitObjCDictionaryLiteral(E); 780 } 781 Value *VisitAsTypeExpr(AsTypeExpr *CE); 782 Value *VisitAtomicExpr(AtomicExpr *AE); 783 }; 784 } // end anonymous namespace. 785 786 //===----------------------------------------------------------------------===// 787 // Utilities 788 //===----------------------------------------------------------------------===// 789 790 /// EmitConversionToBool - Convert the specified expression value to a 791 /// boolean (i1) truth value. This is equivalent to "Val != 0". 792 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 793 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 794 795 if (SrcType->isRealFloatingType()) 796 return EmitFloatToBoolConversion(Src); 797 798 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 799 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 800 801 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 802 "Unknown scalar type to convert"); 803 804 if (isa<llvm::IntegerType>(Src->getType())) 805 return EmitIntToBoolConversion(Src); 806 807 assert(isa<llvm::PointerType>(Src->getType())); 808 return EmitPointerToBoolConversion(Src, SrcType); 809 } 810 811 void ScalarExprEmitter::EmitFloatConversionCheck( 812 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 813 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 814 CodeGenFunction::SanitizerScope SanScope(&CGF); 815 using llvm::APFloat; 816 using llvm::APSInt; 817 818 llvm::Type *SrcTy = Src->getType(); 819 820 llvm::Value *Check = nullptr; 821 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 822 // Integer to floating-point. This can fail for unsigned short -> __half 823 // or unsigned __int128 -> float. 824 assert(DstType->isFloatingType()); 825 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 826 827 APFloat LargestFloat = 828 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 829 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 830 831 bool IsExact; 832 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 833 &IsExact) != APFloat::opOK) 834 // The range of representable values of this floating point type includes 835 // all values of this integer type. Don't need an overflow check. 836 return; 837 838 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 839 if (SrcIsUnsigned) 840 Check = Builder.CreateICmpULE(Src, Max); 841 else { 842 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 843 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 844 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 845 Check = Builder.CreateAnd(GE, LE); 846 } 847 } else { 848 const llvm::fltSemantics &SrcSema = 849 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 850 if (isa<llvm::IntegerType>(DstTy)) { 851 // Floating-point to integer. This has undefined behavior if the source is 852 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 853 // to an integer). 854 unsigned Width = CGF.getContext().getIntWidth(DstType); 855 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 856 857 APSInt Min = APSInt::getMinValue(Width, Unsigned); 858 APFloat MinSrc(SrcSema, APFloat::uninitialized); 859 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 860 APFloat::opOverflow) 861 // Don't need an overflow check for lower bound. Just check for 862 // -Inf/NaN. 863 MinSrc = APFloat::getInf(SrcSema, true); 864 else 865 // Find the largest value which is too small to represent (before 866 // truncation toward zero). 867 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 868 869 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 870 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 871 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 872 APFloat::opOverflow) 873 // Don't need an overflow check for upper bound. Just check for 874 // +Inf/NaN. 875 MaxSrc = APFloat::getInf(SrcSema, false); 876 else 877 // Find the smallest value which is too large to represent (before 878 // truncation toward zero). 879 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 880 881 // If we're converting from __half, convert the range to float to match 882 // the type of src. 883 if (OrigSrcType->isHalfType()) { 884 const llvm::fltSemantics &Sema = 885 CGF.getContext().getFloatTypeSemantics(SrcType); 886 bool IsInexact; 887 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 888 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 889 } 890 891 llvm::Value *GE = 892 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 893 llvm::Value *LE = 894 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 895 Check = Builder.CreateAnd(GE, LE); 896 } else { 897 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 898 // 899 // Floating-point to floating-point. This has undefined behavior if the 900 // source is not in the range of representable values of the destination 901 // type. The C and C++ standards are spectacularly unclear here. We 902 // diagnose finite out-of-range conversions, but allow infinities and NaNs 903 // to convert to the corresponding value in the smaller type. 904 // 905 // C11 Annex F gives all such conversions defined behavior for IEC 60559 906 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 907 // does not. 908 909 // Converting from a lower rank to a higher rank can never have 910 // undefined behavior, since higher-rank types must have a superset 911 // of values of lower-rank types. 912 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 913 return; 914 915 assert(!OrigSrcType->isHalfType() && 916 "should not check conversion from __half, it has the lowest rank"); 917 918 const llvm::fltSemantics &DstSema = 919 CGF.getContext().getFloatTypeSemantics(DstType); 920 APFloat MinBad = APFloat::getLargest(DstSema, false); 921 APFloat MaxBad = APFloat::getInf(DstSema, false); 922 923 bool IsInexact; 924 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 925 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 926 927 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 928 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 929 llvm::Value *GE = 930 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 931 llvm::Value *LE = 932 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 933 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 934 } 935 } 936 937 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 938 CGF.EmitCheckTypeDescriptor(OrigSrcType), 939 CGF.EmitCheckTypeDescriptor(DstType)}; 940 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 941 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 942 } 943 944 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 945 Value *Dst, QualType DstType, 946 SourceLocation Loc) { 947 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerTruncation)) 948 return; 949 950 llvm::Type *SrcTy = Src->getType(); 951 llvm::Type *DstTy = Dst->getType(); 952 953 // We only care about int->int conversions here. 954 // We ignore conversions to/from pointer and/or bool. 955 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 956 return; 957 958 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 959 "clang integer type lowered to non-integer llvm type"); 960 961 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 962 unsigned DstBits = DstTy->getScalarSizeInBits(); 963 // This must be truncation. Else we do not care. 964 if (SrcBits <= DstBits) 965 return; 966 967 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 968 969 CodeGenFunction::SanitizerScope SanScope(&CGF); 970 971 llvm::Value *Check = nullptr; 972 973 // 1. Extend the truncated value back to the same width as the Src. 974 bool InputSigned = DstType->isSignedIntegerOrEnumerationType(); 975 Check = Builder.CreateIntCast(Dst, SrcTy, InputSigned, "anyext"); 976 // 2. Equality-compare with the original source value 977 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 978 // If the comparison result is 'i1 false', then the truncation was lossy. 979 980 llvm::Constant *StaticArgs[] = { 981 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 982 CGF.EmitCheckTypeDescriptor(DstType), 983 llvm::ConstantInt::get(Builder.getInt8Ty(), ICCK_IntegerTruncation)}; 984 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::ImplicitIntegerTruncation), 985 SanitizerHandler::ImplicitConversion, StaticArgs, {Src, Dst}); 986 } 987 988 /// Emit a conversion from the specified type to the specified destination type, 989 /// both of which are LLVM scalar types. 990 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 991 QualType DstType, 992 SourceLocation Loc, 993 ScalarConversionOpts Opts) { 994 QualType NoncanonicalSrcType = SrcType; 995 QualType NoncanonicalDstType = DstType; 996 997 SrcType = CGF.getContext().getCanonicalType(SrcType); 998 DstType = CGF.getContext().getCanonicalType(DstType); 999 if (SrcType == DstType) return Src; 1000 1001 if (DstType->isVoidType()) return nullptr; 1002 1003 llvm::Value *OrigSrc = Src; 1004 QualType OrigSrcType = SrcType; 1005 llvm::Type *SrcTy = Src->getType(); 1006 1007 // Handle conversions to bool first, they are special: comparisons against 0. 1008 if (DstType->isBooleanType()) 1009 return EmitConversionToBool(Src, SrcType); 1010 1011 llvm::Type *DstTy = ConvertType(DstType); 1012 1013 // Cast from half through float if half isn't a native type. 1014 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1015 // Cast to FP using the intrinsic if the half type itself isn't supported. 1016 if (DstTy->isFloatingPointTy()) { 1017 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1018 return Builder.CreateCall( 1019 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1020 Src); 1021 } else { 1022 // Cast to other types through float, using either the intrinsic or FPExt, 1023 // depending on whether the half type itself is supported 1024 // (as opposed to operations on half, available with NativeHalfType). 1025 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1026 Src = Builder.CreateCall( 1027 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1028 CGF.CGM.FloatTy), 1029 Src); 1030 } else { 1031 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1032 } 1033 SrcType = CGF.getContext().FloatTy; 1034 SrcTy = CGF.FloatTy; 1035 } 1036 } 1037 1038 // Ignore conversions like int -> uint. 1039 if (SrcTy == DstTy) 1040 return Src; 1041 1042 // Handle pointer conversions next: pointers can only be converted to/from 1043 // other pointers and integers. Check for pointer types in terms of LLVM, as 1044 // some native types (like Obj-C id) may map to a pointer type. 1045 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1046 // The source value may be an integer, or a pointer. 1047 if (isa<llvm::PointerType>(SrcTy)) 1048 return Builder.CreateBitCast(Src, DstTy, "conv"); 1049 1050 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1051 // First, convert to the correct width so that we control the kind of 1052 // extension. 1053 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1054 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1055 llvm::Value* IntResult = 1056 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1057 // Then, cast to pointer. 1058 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1059 } 1060 1061 if (isa<llvm::PointerType>(SrcTy)) { 1062 // Must be an ptr to int cast. 1063 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1064 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1065 } 1066 1067 // A scalar can be splatted to an extended vector of the same element type 1068 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1069 // Sema should add casts to make sure that the source expression's type is 1070 // the same as the vector's element type (sans qualifiers) 1071 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1072 SrcType.getTypePtr() && 1073 "Splatted expr doesn't match with vector element type?"); 1074 1075 // Splat the element across to all elements 1076 unsigned NumElements = DstTy->getVectorNumElements(); 1077 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1078 } 1079 1080 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1081 // Allow bitcast from vector to integer/fp of the same size. 1082 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1083 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1084 if (SrcSize == DstSize) 1085 return Builder.CreateBitCast(Src, DstTy, "conv"); 1086 1087 // Conversions between vectors of different sizes are not allowed except 1088 // when vectors of half are involved. Operations on storage-only half 1089 // vectors require promoting half vector operands to float vectors and 1090 // truncating the result, which is either an int or float vector, to a 1091 // short or half vector. 1092 1093 // Source and destination are both expected to be vectors. 1094 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1095 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1096 (void)DstElementTy; 1097 1098 assert(((SrcElementTy->isIntegerTy() && 1099 DstElementTy->isIntegerTy()) || 1100 (SrcElementTy->isFloatingPointTy() && 1101 DstElementTy->isFloatingPointTy())) && 1102 "unexpected conversion between a floating-point vector and an " 1103 "integer vector"); 1104 1105 // Truncate an i32 vector to an i16 vector. 1106 if (SrcElementTy->isIntegerTy()) 1107 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1108 1109 // Truncate a float vector to a half vector. 1110 if (SrcSize > DstSize) 1111 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1112 1113 // Promote a half vector to a float vector. 1114 return Builder.CreateFPExt(Src, DstTy, "conv"); 1115 } 1116 1117 // Finally, we have the arithmetic types: real int/float. 1118 Value *Res = nullptr; 1119 llvm::Type *ResTy = DstTy; 1120 1121 // An overflowing conversion has undefined behavior if either the source type 1122 // or the destination type is a floating-point type. 1123 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1124 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1125 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1126 Loc); 1127 1128 // Cast to half through float if half isn't a native type. 1129 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1130 // Make sure we cast in a single step if from another FP type. 1131 if (SrcTy->isFloatingPointTy()) { 1132 // Use the intrinsic if the half type itself isn't supported 1133 // (as opposed to operations on half, available with NativeHalfType). 1134 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1135 return Builder.CreateCall( 1136 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1137 // If the half type is supported, just use an fptrunc. 1138 return Builder.CreateFPTrunc(Src, DstTy); 1139 } 1140 DstTy = CGF.FloatTy; 1141 } 1142 1143 if (isa<llvm::IntegerType>(SrcTy)) { 1144 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1145 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1146 InputSigned = true; 1147 } 1148 if (isa<llvm::IntegerType>(DstTy)) 1149 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1150 else if (InputSigned) 1151 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1152 else 1153 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1154 } else if (isa<llvm::IntegerType>(DstTy)) { 1155 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1156 if (DstType->isSignedIntegerOrEnumerationType()) 1157 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1158 else 1159 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1160 } else { 1161 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1162 "Unknown real conversion"); 1163 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1164 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1165 else 1166 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1167 } 1168 1169 if (DstTy != ResTy) { 1170 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1171 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1172 Res = Builder.CreateCall( 1173 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1174 Res); 1175 } else { 1176 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1177 } 1178 } 1179 1180 if (Opts.EmitImplicitIntegerTruncationChecks) 1181 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1182 NoncanonicalDstType, Loc); 1183 1184 return Res; 1185 } 1186 1187 /// Emit a conversion from the specified complex type to the specified 1188 /// destination type, where the destination type is an LLVM scalar type. 1189 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1190 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1191 SourceLocation Loc) { 1192 // Get the source element type. 1193 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1194 1195 // Handle conversions to bool first, they are special: comparisons against 0. 1196 if (DstTy->isBooleanType()) { 1197 // Complex != 0 -> (Real != 0) | (Imag != 0) 1198 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1199 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1200 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1201 } 1202 1203 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1204 // the imaginary part of the complex value is discarded and the value of the 1205 // real part is converted according to the conversion rules for the 1206 // corresponding real type. 1207 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1208 } 1209 1210 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1211 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1212 } 1213 1214 /// Emit a sanitization check for the given "binary" operation (which 1215 /// might actually be a unary increment which has been lowered to a binary 1216 /// operation). The check passes if all values in \p Checks (which are \c i1), 1217 /// are \c true. 1218 void ScalarExprEmitter::EmitBinOpCheck( 1219 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1220 assert(CGF.IsSanitizerScope); 1221 SanitizerHandler Check; 1222 SmallVector<llvm::Constant *, 4> StaticData; 1223 SmallVector<llvm::Value *, 2> DynamicData; 1224 1225 BinaryOperatorKind Opcode = Info.Opcode; 1226 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1227 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1228 1229 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1230 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1231 if (UO && UO->getOpcode() == UO_Minus) { 1232 Check = SanitizerHandler::NegateOverflow; 1233 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1234 DynamicData.push_back(Info.RHS); 1235 } else { 1236 if (BinaryOperator::isShiftOp(Opcode)) { 1237 // Shift LHS negative or too large, or RHS out of bounds. 1238 Check = SanitizerHandler::ShiftOutOfBounds; 1239 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1240 StaticData.push_back( 1241 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1242 StaticData.push_back( 1243 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1244 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1245 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1246 Check = SanitizerHandler::DivremOverflow; 1247 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1248 } else { 1249 // Arithmetic overflow (+, -, *). 1250 switch (Opcode) { 1251 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1252 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1253 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1254 default: llvm_unreachable("unexpected opcode for bin op check"); 1255 } 1256 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1257 } 1258 DynamicData.push_back(Info.LHS); 1259 DynamicData.push_back(Info.RHS); 1260 } 1261 1262 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1263 } 1264 1265 //===----------------------------------------------------------------------===// 1266 // Visitor Methods 1267 //===----------------------------------------------------------------------===// 1268 1269 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1270 CGF.ErrorUnsupported(E, "scalar expression"); 1271 if (E->getType()->isVoidType()) 1272 return nullptr; 1273 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1274 } 1275 1276 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1277 // Vector Mask Case 1278 if (E->getNumSubExprs() == 2) { 1279 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1280 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1281 Value *Mask; 1282 1283 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1284 unsigned LHSElts = LTy->getNumElements(); 1285 1286 Mask = RHS; 1287 1288 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1289 1290 // Mask off the high bits of each shuffle index. 1291 Value *MaskBits = 1292 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1293 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1294 1295 // newv = undef 1296 // mask = mask & maskbits 1297 // for each elt 1298 // n = extract mask i 1299 // x = extract val n 1300 // newv = insert newv, x, i 1301 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1302 MTy->getNumElements()); 1303 Value* NewV = llvm::UndefValue::get(RTy); 1304 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1305 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1306 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1307 1308 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1309 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1310 } 1311 return NewV; 1312 } 1313 1314 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1315 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1316 1317 SmallVector<llvm::Constant*, 32> indices; 1318 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1319 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1320 // Check for -1 and output it as undef in the IR. 1321 if (Idx.isSigned() && Idx.isAllOnesValue()) 1322 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1323 else 1324 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1325 } 1326 1327 Value *SV = llvm::ConstantVector::get(indices); 1328 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1329 } 1330 1331 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1332 QualType SrcType = E->getSrcExpr()->getType(), 1333 DstType = E->getType(); 1334 1335 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1336 1337 SrcType = CGF.getContext().getCanonicalType(SrcType); 1338 DstType = CGF.getContext().getCanonicalType(DstType); 1339 if (SrcType == DstType) return Src; 1340 1341 assert(SrcType->isVectorType() && 1342 "ConvertVector source type must be a vector"); 1343 assert(DstType->isVectorType() && 1344 "ConvertVector destination type must be a vector"); 1345 1346 llvm::Type *SrcTy = Src->getType(); 1347 llvm::Type *DstTy = ConvertType(DstType); 1348 1349 // Ignore conversions like int -> uint. 1350 if (SrcTy == DstTy) 1351 return Src; 1352 1353 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1354 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1355 1356 assert(SrcTy->isVectorTy() && 1357 "ConvertVector source IR type must be a vector"); 1358 assert(DstTy->isVectorTy() && 1359 "ConvertVector destination IR type must be a vector"); 1360 1361 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1362 *DstEltTy = DstTy->getVectorElementType(); 1363 1364 if (DstEltType->isBooleanType()) { 1365 assert((SrcEltTy->isFloatingPointTy() || 1366 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1367 1368 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1369 if (SrcEltTy->isFloatingPointTy()) { 1370 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1371 } else { 1372 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1373 } 1374 } 1375 1376 // We have the arithmetic types: real int/float. 1377 Value *Res = nullptr; 1378 1379 if (isa<llvm::IntegerType>(SrcEltTy)) { 1380 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1381 if (isa<llvm::IntegerType>(DstEltTy)) 1382 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1383 else if (InputSigned) 1384 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1385 else 1386 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1387 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1388 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1389 if (DstEltType->isSignedIntegerOrEnumerationType()) 1390 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1391 else 1392 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1393 } else { 1394 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1395 "Unknown real conversion"); 1396 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1397 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1398 else 1399 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1400 } 1401 1402 return Res; 1403 } 1404 1405 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1406 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1407 CGF.EmitIgnoredExpr(E->getBase()); 1408 return emitConstant(Constant, E); 1409 } else { 1410 llvm::APSInt Value; 1411 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1412 CGF.EmitIgnoredExpr(E->getBase()); 1413 return Builder.getInt(Value); 1414 } 1415 } 1416 1417 return EmitLoadOfLValue(E); 1418 } 1419 1420 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1421 TestAndClearIgnoreResultAssign(); 1422 1423 // Emit subscript expressions in rvalue context's. For most cases, this just 1424 // loads the lvalue formed by the subscript expr. However, we have to be 1425 // careful, because the base of a vector subscript is occasionally an rvalue, 1426 // so we can't get it as an lvalue. 1427 if (!E->getBase()->getType()->isVectorType()) 1428 return EmitLoadOfLValue(E); 1429 1430 // Handle the vector case. The base must be a vector, the index must be an 1431 // integer value. 1432 Value *Base = Visit(E->getBase()); 1433 Value *Idx = Visit(E->getIdx()); 1434 QualType IdxTy = E->getIdx()->getType(); 1435 1436 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1437 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1438 1439 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1440 } 1441 1442 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1443 unsigned Off, llvm::Type *I32Ty) { 1444 int MV = SVI->getMaskValue(Idx); 1445 if (MV == -1) 1446 return llvm::UndefValue::get(I32Ty); 1447 return llvm::ConstantInt::get(I32Ty, Off+MV); 1448 } 1449 1450 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1451 if (C->getBitWidth() != 32) { 1452 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1453 C->getZExtValue()) && 1454 "Index operand too large for shufflevector mask!"); 1455 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1456 } 1457 return C; 1458 } 1459 1460 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1461 bool Ignore = TestAndClearIgnoreResultAssign(); 1462 (void)Ignore; 1463 assert (Ignore == false && "init list ignored"); 1464 unsigned NumInitElements = E->getNumInits(); 1465 1466 if (E->hadArrayRangeDesignator()) 1467 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1468 1469 llvm::VectorType *VType = 1470 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1471 1472 if (!VType) { 1473 if (NumInitElements == 0) { 1474 // C++11 value-initialization for the scalar. 1475 return EmitNullValue(E->getType()); 1476 } 1477 // We have a scalar in braces. Just use the first element. 1478 return Visit(E->getInit(0)); 1479 } 1480 1481 unsigned ResElts = VType->getNumElements(); 1482 1483 // Loop over initializers collecting the Value for each, and remembering 1484 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1485 // us to fold the shuffle for the swizzle into the shuffle for the vector 1486 // initializer, since LLVM optimizers generally do not want to touch 1487 // shuffles. 1488 unsigned CurIdx = 0; 1489 bool VIsUndefShuffle = false; 1490 llvm::Value *V = llvm::UndefValue::get(VType); 1491 for (unsigned i = 0; i != NumInitElements; ++i) { 1492 Expr *IE = E->getInit(i); 1493 Value *Init = Visit(IE); 1494 SmallVector<llvm::Constant*, 16> Args; 1495 1496 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1497 1498 // Handle scalar elements. If the scalar initializer is actually one 1499 // element of a different vector of the same width, use shuffle instead of 1500 // extract+insert. 1501 if (!VVT) { 1502 if (isa<ExtVectorElementExpr>(IE)) { 1503 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1504 1505 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1506 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1507 Value *LHS = nullptr, *RHS = nullptr; 1508 if (CurIdx == 0) { 1509 // insert into undef -> shuffle (src, undef) 1510 // shufflemask must use an i32 1511 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1512 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1513 1514 LHS = EI->getVectorOperand(); 1515 RHS = V; 1516 VIsUndefShuffle = true; 1517 } else if (VIsUndefShuffle) { 1518 // insert into undefshuffle && size match -> shuffle (v, src) 1519 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1520 for (unsigned j = 0; j != CurIdx; ++j) 1521 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1522 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1523 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1524 1525 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1526 RHS = EI->getVectorOperand(); 1527 VIsUndefShuffle = false; 1528 } 1529 if (!Args.empty()) { 1530 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1531 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1532 ++CurIdx; 1533 continue; 1534 } 1535 } 1536 } 1537 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1538 "vecinit"); 1539 VIsUndefShuffle = false; 1540 ++CurIdx; 1541 continue; 1542 } 1543 1544 unsigned InitElts = VVT->getNumElements(); 1545 1546 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1547 // input is the same width as the vector being constructed, generate an 1548 // optimized shuffle of the swizzle input into the result. 1549 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1550 if (isa<ExtVectorElementExpr>(IE)) { 1551 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1552 Value *SVOp = SVI->getOperand(0); 1553 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1554 1555 if (OpTy->getNumElements() == ResElts) { 1556 for (unsigned j = 0; j != CurIdx; ++j) { 1557 // If the current vector initializer is a shuffle with undef, merge 1558 // this shuffle directly into it. 1559 if (VIsUndefShuffle) { 1560 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1561 CGF.Int32Ty)); 1562 } else { 1563 Args.push_back(Builder.getInt32(j)); 1564 } 1565 } 1566 for (unsigned j = 0, je = InitElts; j != je; ++j) 1567 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1568 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1569 1570 if (VIsUndefShuffle) 1571 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1572 1573 Init = SVOp; 1574 } 1575 } 1576 1577 // Extend init to result vector length, and then shuffle its contribution 1578 // to the vector initializer into V. 1579 if (Args.empty()) { 1580 for (unsigned j = 0; j != InitElts; ++j) 1581 Args.push_back(Builder.getInt32(j)); 1582 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1583 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1584 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1585 Mask, "vext"); 1586 1587 Args.clear(); 1588 for (unsigned j = 0; j != CurIdx; ++j) 1589 Args.push_back(Builder.getInt32(j)); 1590 for (unsigned j = 0; j != InitElts; ++j) 1591 Args.push_back(Builder.getInt32(j+Offset)); 1592 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1593 } 1594 1595 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1596 // merging subsequent shuffles into this one. 1597 if (CurIdx == 0) 1598 std::swap(V, Init); 1599 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1600 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1601 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1602 CurIdx += InitElts; 1603 } 1604 1605 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1606 // Emit remaining default initializers. 1607 llvm::Type *EltTy = VType->getElementType(); 1608 1609 // Emit remaining default initializers 1610 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1611 Value *Idx = Builder.getInt32(CurIdx); 1612 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1613 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1614 } 1615 return V; 1616 } 1617 1618 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1619 const Expr *E = CE->getSubExpr(); 1620 1621 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1622 return false; 1623 1624 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1625 // We always assume that 'this' is never null. 1626 return false; 1627 } 1628 1629 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1630 // And that glvalue casts are never null. 1631 if (ICE->getValueKind() != VK_RValue) 1632 return false; 1633 } 1634 1635 return true; 1636 } 1637 1638 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1639 // have to handle a more broad range of conversions than explicit casts, as they 1640 // handle things like function to ptr-to-function decay etc. 1641 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1642 Expr *E = CE->getSubExpr(); 1643 QualType DestTy = CE->getType(); 1644 CastKind Kind = CE->getCastKind(); 1645 1646 // These cases are generally not written to ignore the result of 1647 // evaluating their sub-expressions, so we clear this now. 1648 bool Ignored = TestAndClearIgnoreResultAssign(); 1649 1650 // Since almost all cast kinds apply to scalars, this switch doesn't have 1651 // a default case, so the compiler will warn on a missing case. The cases 1652 // are in the same order as in the CastKind enum. 1653 switch (Kind) { 1654 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1655 case CK_BuiltinFnToFnPtr: 1656 llvm_unreachable("builtin functions are handled elsewhere"); 1657 1658 case CK_LValueBitCast: 1659 case CK_ObjCObjectLValueCast: { 1660 Address Addr = EmitLValue(E).getAddress(); 1661 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1662 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1663 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1664 } 1665 1666 case CK_CPointerToObjCPointerCast: 1667 case CK_BlockPointerToObjCPointerCast: 1668 case CK_AnyPointerToBlockPointerCast: 1669 case CK_BitCast: { 1670 Value *Src = Visit(const_cast<Expr*>(E)); 1671 llvm::Type *SrcTy = Src->getType(); 1672 llvm::Type *DstTy = ConvertType(DestTy); 1673 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1674 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1675 llvm_unreachable("wrong cast for pointers in different address spaces" 1676 "(must be an address space cast)!"); 1677 } 1678 1679 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1680 if (auto PT = DestTy->getAs<PointerType>()) 1681 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1682 /*MayBeNull=*/true, 1683 CodeGenFunction::CFITCK_UnrelatedCast, 1684 CE->getBeginLoc()); 1685 } 1686 1687 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1688 const QualType SrcType = E->getType(); 1689 1690 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 1691 // Casting to pointer that could carry dynamic information (provided by 1692 // invariant.group) requires launder. 1693 Src = Builder.CreateLaunderInvariantGroup(Src); 1694 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 1695 // Casting to pointer that does not carry dynamic information (provided 1696 // by invariant.group) requires stripping it. Note that we don't do it 1697 // if the source could not be dynamic type and destination could be 1698 // dynamic because dynamic information is already laundered. It is 1699 // because launder(strip(src)) == launder(src), so there is no need to 1700 // add extra strip before launder. 1701 Src = Builder.CreateStripInvariantGroup(Src); 1702 } 1703 } 1704 1705 return Builder.CreateBitCast(Src, DstTy); 1706 } 1707 case CK_AddressSpaceConversion: { 1708 Expr::EvalResult Result; 1709 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 1710 Result.Val.isNullPointer()) { 1711 // If E has side effect, it is emitted even if its final result is a 1712 // null pointer. In that case, a DCE pass should be able to 1713 // eliminate the useless instructions emitted during translating E. 1714 if (Result.HasSideEffects) 1715 Visit(E); 1716 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 1717 ConvertType(DestTy)), DestTy); 1718 } 1719 // Since target may map different address spaces in AST to the same address 1720 // space, an address space conversion may end up as a bitcast. 1721 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 1722 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 1723 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 1724 } 1725 case CK_AtomicToNonAtomic: 1726 case CK_NonAtomicToAtomic: 1727 case CK_NoOp: 1728 case CK_UserDefinedConversion: 1729 return Visit(const_cast<Expr*>(E)); 1730 1731 case CK_BaseToDerived: { 1732 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1733 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1734 1735 Address Base = CGF.EmitPointerWithAlignment(E); 1736 Address Derived = 1737 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1738 CE->path_begin(), CE->path_end(), 1739 CGF.ShouldNullCheckClassCastValue(CE)); 1740 1741 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1742 // performed and the object is not of the derived type. 1743 if (CGF.sanitizePerformTypeCheck()) 1744 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1745 Derived.getPointer(), DestTy->getPointeeType()); 1746 1747 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1748 CGF.EmitVTablePtrCheckForCast( 1749 DestTy->getPointeeType(), Derived.getPointer(), 1750 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 1751 CE->getBeginLoc()); 1752 1753 return Derived.getPointer(); 1754 } 1755 case CK_UncheckedDerivedToBase: 1756 case CK_DerivedToBase: { 1757 // The EmitPointerWithAlignment path does this fine; just discard 1758 // the alignment. 1759 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1760 } 1761 1762 case CK_Dynamic: { 1763 Address V = CGF.EmitPointerWithAlignment(E); 1764 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1765 return CGF.EmitDynamicCast(V, DCE); 1766 } 1767 1768 case CK_ArrayToPointerDecay: 1769 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1770 case CK_FunctionToPointerDecay: 1771 return EmitLValue(E).getPointer(); 1772 1773 case CK_NullToPointer: 1774 if (MustVisitNullValue(E)) 1775 (void) Visit(E); 1776 1777 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 1778 DestTy); 1779 1780 case CK_NullToMemberPointer: { 1781 if (MustVisitNullValue(E)) 1782 (void) Visit(E); 1783 1784 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1785 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1786 } 1787 1788 case CK_ReinterpretMemberPointer: 1789 case CK_BaseToDerivedMemberPointer: 1790 case CK_DerivedToBaseMemberPointer: { 1791 Value *Src = Visit(E); 1792 1793 // Note that the AST doesn't distinguish between checked and 1794 // unchecked member pointer conversions, so we always have to 1795 // implement checked conversions here. This is inefficient when 1796 // actual control flow may be required in order to perform the 1797 // check, which it is for data member pointers (but not member 1798 // function pointers on Itanium and ARM). 1799 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1800 } 1801 1802 case CK_ARCProduceObject: 1803 return CGF.EmitARCRetainScalarExpr(E); 1804 case CK_ARCConsumeObject: 1805 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1806 case CK_ARCReclaimReturnedObject: 1807 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1808 case CK_ARCExtendBlockObject: 1809 return CGF.EmitARCExtendBlockObject(E); 1810 1811 case CK_CopyAndAutoreleaseBlockObject: 1812 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1813 1814 case CK_FloatingRealToComplex: 1815 case CK_FloatingComplexCast: 1816 case CK_IntegralRealToComplex: 1817 case CK_IntegralComplexCast: 1818 case CK_IntegralComplexToFloatingComplex: 1819 case CK_FloatingComplexToIntegralComplex: 1820 case CK_ConstructorConversion: 1821 case CK_ToUnion: 1822 llvm_unreachable("scalar cast to non-scalar value"); 1823 1824 case CK_LValueToRValue: 1825 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1826 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1827 return Visit(const_cast<Expr*>(E)); 1828 1829 case CK_IntegralToPointer: { 1830 Value *Src = Visit(const_cast<Expr*>(E)); 1831 1832 // First, convert to the correct width so that we control the kind of 1833 // extension. 1834 auto DestLLVMTy = ConvertType(DestTy); 1835 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 1836 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1837 llvm::Value* IntResult = 1838 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1839 1840 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 1841 1842 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1843 // Going from integer to pointer that could be dynamic requires reloading 1844 // dynamic information from invariant.group. 1845 if (DestTy.mayBeDynamicClass()) 1846 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 1847 } 1848 return IntToPtr; 1849 } 1850 case CK_PointerToIntegral: { 1851 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1852 auto *PtrExpr = Visit(E); 1853 1854 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1855 const QualType SrcType = E->getType(); 1856 1857 // Casting to integer requires stripping dynamic information as it does 1858 // not carries it. 1859 if (SrcType.mayBeDynamicClass()) 1860 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 1861 } 1862 1863 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 1864 } 1865 case CK_ToVoid: { 1866 CGF.EmitIgnoredExpr(E); 1867 return nullptr; 1868 } 1869 case CK_VectorSplat: { 1870 llvm::Type *DstTy = ConvertType(DestTy); 1871 Value *Elt = Visit(const_cast<Expr*>(E)); 1872 // Splat the element across to all elements 1873 unsigned NumElements = DstTy->getVectorNumElements(); 1874 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1875 } 1876 1877 case CK_IntegralCast: { 1878 ScalarConversionOpts Opts; 1879 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerTruncation)) { 1880 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) 1881 Opts.EmitImplicitIntegerTruncationChecks = !ICE->isPartOfExplicitCast(); 1882 } 1883 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1884 CE->getExprLoc(), Opts); 1885 } 1886 case CK_IntegralToFloating: 1887 case CK_FloatingToIntegral: 1888 case CK_FloatingCast: 1889 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1890 CE->getExprLoc()); 1891 case CK_BooleanToSignedIntegral: { 1892 ScalarConversionOpts Opts; 1893 Opts.TreatBooleanAsSigned = true; 1894 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1895 CE->getExprLoc(), Opts); 1896 } 1897 case CK_IntegralToBoolean: 1898 return EmitIntToBoolConversion(Visit(E)); 1899 case CK_PointerToBoolean: 1900 return EmitPointerToBoolConversion(Visit(E), E->getType()); 1901 case CK_FloatingToBoolean: 1902 return EmitFloatToBoolConversion(Visit(E)); 1903 case CK_MemberPointerToBoolean: { 1904 llvm::Value *MemPtr = Visit(E); 1905 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1906 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1907 } 1908 1909 case CK_FloatingComplexToReal: 1910 case CK_IntegralComplexToReal: 1911 return CGF.EmitComplexExpr(E, false, true).first; 1912 1913 case CK_FloatingComplexToBoolean: 1914 case CK_IntegralComplexToBoolean: { 1915 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1916 1917 // TODO: kill this function off, inline appropriate case here 1918 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1919 CE->getExprLoc()); 1920 } 1921 1922 case CK_ZeroToOCLEvent: { 1923 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1924 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1925 } 1926 1927 case CK_ZeroToOCLQueue: { 1928 assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type"); 1929 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1930 } 1931 1932 case CK_IntToOCLSampler: 1933 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1934 1935 } // end of switch 1936 1937 llvm_unreachable("unknown scalar cast"); 1938 } 1939 1940 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1941 CodeGenFunction::StmtExprEvaluation eval(CGF); 1942 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1943 !E->getType()->isVoidType()); 1944 if (!RetAlloca.isValid()) 1945 return nullptr; 1946 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1947 E->getExprLoc()); 1948 } 1949 1950 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1951 CGF.enterFullExpression(E); 1952 CodeGenFunction::RunCleanupsScope Scope(CGF); 1953 Value *V = Visit(E->getSubExpr()); 1954 // Defend against dominance problems caused by jumps out of expression 1955 // evaluation through the shared cleanup block. 1956 Scope.ForceCleanup({&V}); 1957 return V; 1958 } 1959 1960 //===----------------------------------------------------------------------===// 1961 // Unary Operators 1962 //===----------------------------------------------------------------------===// 1963 1964 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1965 llvm::Value *InVal, bool IsInc) { 1966 BinOpInfo BinOp; 1967 BinOp.LHS = InVal; 1968 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1969 BinOp.Ty = E->getType(); 1970 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1971 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 1972 BinOp.E = E; 1973 return BinOp; 1974 } 1975 1976 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1977 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1978 llvm::Value *Amount = 1979 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1980 StringRef Name = IsInc ? "inc" : "dec"; 1981 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1982 case LangOptions::SOB_Defined: 1983 return Builder.CreateAdd(InVal, Amount, Name); 1984 case LangOptions::SOB_Undefined: 1985 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1986 return Builder.CreateNSWAdd(InVal, Amount, Name); 1987 // Fall through. 1988 case LangOptions::SOB_Trapping: 1989 if (!E->canOverflow()) 1990 return Builder.CreateNSWAdd(InVal, Amount, Name); 1991 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1992 } 1993 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1994 } 1995 1996 llvm::Value * 1997 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1998 bool isInc, bool isPre) { 1999 2000 QualType type = E->getSubExpr()->getType(); 2001 llvm::PHINode *atomicPHI = nullptr; 2002 llvm::Value *value; 2003 llvm::Value *input; 2004 2005 int amount = (isInc ? 1 : -1); 2006 bool isSubtraction = !isInc; 2007 2008 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2009 type = atomicTy->getValueType(); 2010 if (isInc && type->isBooleanType()) { 2011 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2012 if (isPre) { 2013 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2014 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2015 return Builder.getTrue(); 2016 } 2017 // For atomic bool increment, we just store true and return it for 2018 // preincrement, do an atomic swap with true for postincrement 2019 return Builder.CreateAtomicRMW( 2020 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2021 llvm::AtomicOrdering::SequentiallyConsistent); 2022 } 2023 // Special case for atomic increment / decrement on integers, emit 2024 // atomicrmw instructions. We skip this if we want to be doing overflow 2025 // checking, and fall into the slow path with the atomic cmpxchg loop. 2026 if (!type->isBooleanType() && type->isIntegerType() && 2027 !(type->isUnsignedIntegerType() && 2028 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2029 CGF.getLangOpts().getSignedOverflowBehavior() != 2030 LangOptions::SOB_Trapping) { 2031 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2032 llvm::AtomicRMWInst::Sub; 2033 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2034 llvm::Instruction::Sub; 2035 llvm::Value *amt = CGF.EmitToMemory( 2036 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2037 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2038 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2039 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2040 } 2041 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2042 input = value; 2043 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2044 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2045 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2046 value = CGF.EmitToMemory(value, type); 2047 Builder.CreateBr(opBB); 2048 Builder.SetInsertPoint(opBB); 2049 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2050 atomicPHI->addIncoming(value, startBB); 2051 value = atomicPHI; 2052 } else { 2053 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2054 input = value; 2055 } 2056 2057 // Special case of integer increment that we have to check first: bool++. 2058 // Due to promotion rules, we get: 2059 // bool++ -> bool = bool + 1 2060 // -> bool = (int)bool + 1 2061 // -> bool = ((int)bool + 1 != 0) 2062 // An interesting aspect of this is that increment is always true. 2063 // Decrement does not have this property. 2064 if (isInc && type->isBooleanType()) { 2065 value = Builder.getTrue(); 2066 2067 // Most common case by far: integer increment. 2068 } else if (type->isIntegerType()) { 2069 // Note that signed integer inc/dec with width less than int can't 2070 // overflow because of promotion rules; we're just eliding a few steps here. 2071 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2072 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2073 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2074 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2075 value = 2076 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2077 } else { 2078 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2079 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2080 } 2081 2082 // Next most common: pointer increment. 2083 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2084 QualType type = ptr->getPointeeType(); 2085 2086 // VLA types don't have constant size. 2087 if (const VariableArrayType *vla 2088 = CGF.getContext().getAsVariableArrayType(type)) { 2089 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2090 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2091 if (CGF.getLangOpts().isSignedOverflowDefined()) 2092 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2093 else 2094 value = CGF.EmitCheckedInBoundsGEP( 2095 value, numElts, /*SignedIndices=*/false, isSubtraction, 2096 E->getExprLoc(), "vla.inc"); 2097 2098 // Arithmetic on function pointers (!) is just +-1. 2099 } else if (type->isFunctionType()) { 2100 llvm::Value *amt = Builder.getInt32(amount); 2101 2102 value = CGF.EmitCastToVoidPtr(value); 2103 if (CGF.getLangOpts().isSignedOverflowDefined()) 2104 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2105 else 2106 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2107 isSubtraction, E->getExprLoc(), 2108 "incdec.funcptr"); 2109 value = Builder.CreateBitCast(value, input->getType()); 2110 2111 // For everything else, we can just do a simple increment. 2112 } else { 2113 llvm::Value *amt = Builder.getInt32(amount); 2114 if (CGF.getLangOpts().isSignedOverflowDefined()) 2115 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2116 else 2117 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2118 isSubtraction, E->getExprLoc(), 2119 "incdec.ptr"); 2120 } 2121 2122 // Vector increment/decrement. 2123 } else if (type->isVectorType()) { 2124 if (type->hasIntegerRepresentation()) { 2125 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2126 2127 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2128 } else { 2129 value = Builder.CreateFAdd( 2130 value, 2131 llvm::ConstantFP::get(value->getType(), amount), 2132 isInc ? "inc" : "dec"); 2133 } 2134 2135 // Floating point. 2136 } else if (type->isRealFloatingType()) { 2137 // Add the inc/dec to the real part. 2138 llvm::Value *amt; 2139 2140 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2141 // Another special case: half FP increment should be done via float 2142 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2143 value = Builder.CreateCall( 2144 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2145 CGF.CGM.FloatTy), 2146 input, "incdec.conv"); 2147 } else { 2148 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2149 } 2150 } 2151 2152 if (value->getType()->isFloatTy()) 2153 amt = llvm::ConstantFP::get(VMContext, 2154 llvm::APFloat(static_cast<float>(amount))); 2155 else if (value->getType()->isDoubleTy()) 2156 amt = llvm::ConstantFP::get(VMContext, 2157 llvm::APFloat(static_cast<double>(amount))); 2158 else { 2159 // Remaining types are Half, LongDouble or __float128. Convert from float. 2160 llvm::APFloat F(static_cast<float>(amount)); 2161 bool ignored; 2162 const llvm::fltSemantics *FS; 2163 // Don't use getFloatTypeSemantics because Half isn't 2164 // necessarily represented using the "half" LLVM type. 2165 if (value->getType()->isFP128Ty()) 2166 FS = &CGF.getTarget().getFloat128Format(); 2167 else if (value->getType()->isHalfTy()) 2168 FS = &CGF.getTarget().getHalfFormat(); 2169 else 2170 FS = &CGF.getTarget().getLongDoubleFormat(); 2171 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2172 amt = llvm::ConstantFP::get(VMContext, F); 2173 } 2174 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2175 2176 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2177 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2178 value = Builder.CreateCall( 2179 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2180 CGF.CGM.FloatTy), 2181 value, "incdec.conv"); 2182 } else { 2183 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2184 } 2185 } 2186 2187 // Objective-C pointer types. 2188 } else { 2189 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2190 value = CGF.EmitCastToVoidPtr(value); 2191 2192 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2193 if (!isInc) size = -size; 2194 llvm::Value *sizeValue = 2195 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2196 2197 if (CGF.getLangOpts().isSignedOverflowDefined()) 2198 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2199 else 2200 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2201 /*SignedIndices=*/false, isSubtraction, 2202 E->getExprLoc(), "incdec.objptr"); 2203 value = Builder.CreateBitCast(value, input->getType()); 2204 } 2205 2206 if (atomicPHI) { 2207 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2208 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2209 auto Pair = CGF.EmitAtomicCompareExchange( 2210 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2211 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2212 llvm::Value *success = Pair.second; 2213 atomicPHI->addIncoming(old, opBB); 2214 Builder.CreateCondBr(success, contBB, opBB); 2215 Builder.SetInsertPoint(contBB); 2216 return isPre ? value : input; 2217 } 2218 2219 // Store the updated result through the lvalue. 2220 if (LV.isBitField()) 2221 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2222 else 2223 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2224 2225 // If this is a postinc, return the value read from memory, otherwise use the 2226 // updated value. 2227 return isPre ? value : input; 2228 } 2229 2230 2231 2232 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2233 TestAndClearIgnoreResultAssign(); 2234 // Emit unary minus with EmitSub so we handle overflow cases etc. 2235 BinOpInfo BinOp; 2236 BinOp.RHS = Visit(E->getSubExpr()); 2237 2238 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2239 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2240 else 2241 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2242 BinOp.Ty = E->getType(); 2243 BinOp.Opcode = BO_Sub; 2244 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2245 BinOp.E = E; 2246 return EmitSub(BinOp); 2247 } 2248 2249 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2250 TestAndClearIgnoreResultAssign(); 2251 Value *Op = Visit(E->getSubExpr()); 2252 return Builder.CreateNot(Op, "neg"); 2253 } 2254 2255 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2256 // Perform vector logical not on comparison with zero vector. 2257 if (E->getType()->isExtVectorType()) { 2258 Value *Oper = Visit(E->getSubExpr()); 2259 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2260 Value *Result; 2261 if (Oper->getType()->isFPOrFPVectorTy()) 2262 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2263 else 2264 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2265 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2266 } 2267 2268 // Compare operand to zero. 2269 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2270 2271 // Invert value. 2272 // TODO: Could dynamically modify easy computations here. For example, if 2273 // the operand is an icmp ne, turn into icmp eq. 2274 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2275 2276 // ZExt result to the expr type. 2277 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2278 } 2279 2280 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2281 // Try folding the offsetof to a constant. 2282 llvm::APSInt Value; 2283 if (E->EvaluateAsInt(Value, CGF.getContext())) 2284 return Builder.getInt(Value); 2285 2286 // Loop over the components of the offsetof to compute the value. 2287 unsigned n = E->getNumComponents(); 2288 llvm::Type* ResultType = ConvertType(E->getType()); 2289 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2290 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2291 for (unsigned i = 0; i != n; ++i) { 2292 OffsetOfNode ON = E->getComponent(i); 2293 llvm::Value *Offset = nullptr; 2294 switch (ON.getKind()) { 2295 case OffsetOfNode::Array: { 2296 // Compute the index 2297 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2298 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2299 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2300 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2301 2302 // Save the element type 2303 CurrentType = 2304 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2305 2306 // Compute the element size 2307 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2308 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2309 2310 // Multiply out to compute the result 2311 Offset = Builder.CreateMul(Idx, ElemSize); 2312 break; 2313 } 2314 2315 case OffsetOfNode::Field: { 2316 FieldDecl *MemberDecl = ON.getField(); 2317 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2318 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2319 2320 // Compute the index of the field in its parent. 2321 unsigned i = 0; 2322 // FIXME: It would be nice if we didn't have to loop here! 2323 for (RecordDecl::field_iterator Field = RD->field_begin(), 2324 FieldEnd = RD->field_end(); 2325 Field != FieldEnd; ++Field, ++i) { 2326 if (*Field == MemberDecl) 2327 break; 2328 } 2329 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2330 2331 // Compute the offset to the field 2332 int64_t OffsetInt = RL.getFieldOffset(i) / 2333 CGF.getContext().getCharWidth(); 2334 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2335 2336 // Save the element type. 2337 CurrentType = MemberDecl->getType(); 2338 break; 2339 } 2340 2341 case OffsetOfNode::Identifier: 2342 llvm_unreachable("dependent __builtin_offsetof"); 2343 2344 case OffsetOfNode::Base: { 2345 if (ON.getBase()->isVirtual()) { 2346 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2347 continue; 2348 } 2349 2350 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2351 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2352 2353 // Save the element type. 2354 CurrentType = ON.getBase()->getType(); 2355 2356 // Compute the offset to the base. 2357 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2358 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2359 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2360 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2361 break; 2362 } 2363 } 2364 Result = Builder.CreateAdd(Result, Offset); 2365 } 2366 return Result; 2367 } 2368 2369 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2370 /// argument of the sizeof expression as an integer. 2371 Value * 2372 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2373 const UnaryExprOrTypeTraitExpr *E) { 2374 QualType TypeToSize = E->getTypeOfArgument(); 2375 if (E->getKind() == UETT_SizeOf) { 2376 if (const VariableArrayType *VAT = 2377 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2378 if (E->isArgumentType()) { 2379 // sizeof(type) - make sure to emit the VLA size. 2380 CGF.EmitVariablyModifiedType(TypeToSize); 2381 } else { 2382 // C99 6.5.3.4p2: If the argument is an expression of type 2383 // VLA, it is evaluated. 2384 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2385 } 2386 2387 auto VlaSize = CGF.getVLASize(VAT); 2388 llvm::Value *size = VlaSize.NumElts; 2389 2390 // Scale the number of non-VLA elements by the non-VLA element size. 2391 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2392 if (!eltSize.isOne()) 2393 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2394 2395 return size; 2396 } 2397 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2398 auto Alignment = 2399 CGF.getContext() 2400 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2401 E->getTypeOfArgument()->getPointeeType())) 2402 .getQuantity(); 2403 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2404 } 2405 2406 // If this isn't sizeof(vla), the result must be constant; use the constant 2407 // folding logic so we don't have to duplicate it here. 2408 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2409 } 2410 2411 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2412 Expr *Op = E->getSubExpr(); 2413 if (Op->getType()->isAnyComplexType()) { 2414 // If it's an l-value, load through the appropriate subobject l-value. 2415 // Note that we have to ask E because Op might be an l-value that 2416 // this won't work for, e.g. an Obj-C property. 2417 if (E->isGLValue()) 2418 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2419 E->getExprLoc()).getScalarVal(); 2420 2421 // Otherwise, calculate and project. 2422 return CGF.EmitComplexExpr(Op, false, true).first; 2423 } 2424 2425 return Visit(Op); 2426 } 2427 2428 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2429 Expr *Op = E->getSubExpr(); 2430 if (Op->getType()->isAnyComplexType()) { 2431 // If it's an l-value, load through the appropriate subobject l-value. 2432 // Note that we have to ask E because Op might be an l-value that 2433 // this won't work for, e.g. an Obj-C property. 2434 if (Op->isGLValue()) 2435 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2436 E->getExprLoc()).getScalarVal(); 2437 2438 // Otherwise, calculate and project. 2439 return CGF.EmitComplexExpr(Op, true, false).second; 2440 } 2441 2442 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2443 // effects are evaluated, but not the actual value. 2444 if (Op->isGLValue()) 2445 CGF.EmitLValue(Op); 2446 else 2447 CGF.EmitScalarExpr(Op, true); 2448 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2449 } 2450 2451 //===----------------------------------------------------------------------===// 2452 // Binary Operators 2453 //===----------------------------------------------------------------------===// 2454 2455 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2456 TestAndClearIgnoreResultAssign(); 2457 BinOpInfo Result; 2458 Result.LHS = Visit(E->getLHS()); 2459 Result.RHS = Visit(E->getRHS()); 2460 Result.Ty = E->getType(); 2461 Result.Opcode = E->getOpcode(); 2462 Result.FPFeatures = E->getFPFeatures(); 2463 Result.E = E; 2464 return Result; 2465 } 2466 2467 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2468 const CompoundAssignOperator *E, 2469 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2470 Value *&Result) { 2471 QualType LHSTy = E->getLHS()->getType(); 2472 BinOpInfo OpInfo; 2473 2474 if (E->getComputationResultType()->isAnyComplexType()) 2475 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2476 2477 // Emit the RHS first. __block variables need to have the rhs evaluated 2478 // first, plus this should improve codegen a little. 2479 OpInfo.RHS = Visit(E->getRHS()); 2480 OpInfo.Ty = E->getComputationResultType(); 2481 OpInfo.Opcode = E->getOpcode(); 2482 OpInfo.FPFeatures = E->getFPFeatures(); 2483 OpInfo.E = E; 2484 // Load/convert the LHS. 2485 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2486 2487 llvm::PHINode *atomicPHI = nullptr; 2488 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2489 QualType type = atomicTy->getValueType(); 2490 if (!type->isBooleanType() && type->isIntegerType() && 2491 !(type->isUnsignedIntegerType() && 2492 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2493 CGF.getLangOpts().getSignedOverflowBehavior() != 2494 LangOptions::SOB_Trapping) { 2495 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2496 switch (OpInfo.Opcode) { 2497 // We don't have atomicrmw operands for *, %, /, <<, >> 2498 case BO_MulAssign: case BO_DivAssign: 2499 case BO_RemAssign: 2500 case BO_ShlAssign: 2501 case BO_ShrAssign: 2502 break; 2503 case BO_AddAssign: 2504 aop = llvm::AtomicRMWInst::Add; 2505 break; 2506 case BO_SubAssign: 2507 aop = llvm::AtomicRMWInst::Sub; 2508 break; 2509 case BO_AndAssign: 2510 aop = llvm::AtomicRMWInst::And; 2511 break; 2512 case BO_XorAssign: 2513 aop = llvm::AtomicRMWInst::Xor; 2514 break; 2515 case BO_OrAssign: 2516 aop = llvm::AtomicRMWInst::Or; 2517 break; 2518 default: 2519 llvm_unreachable("Invalid compound assignment type"); 2520 } 2521 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2522 llvm::Value *amt = CGF.EmitToMemory( 2523 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2524 E->getExprLoc()), 2525 LHSTy); 2526 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2527 llvm::AtomicOrdering::SequentiallyConsistent); 2528 return LHSLV; 2529 } 2530 } 2531 // FIXME: For floating point types, we should be saving and restoring the 2532 // floating point environment in the loop. 2533 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2534 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2535 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2536 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2537 Builder.CreateBr(opBB); 2538 Builder.SetInsertPoint(opBB); 2539 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2540 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2541 OpInfo.LHS = atomicPHI; 2542 } 2543 else 2544 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2545 2546 SourceLocation Loc = E->getExprLoc(); 2547 OpInfo.LHS = 2548 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2549 2550 // Expand the binary operator. 2551 Result = (this->*Func)(OpInfo); 2552 2553 // Convert the result back to the LHS type. 2554 Result = 2555 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2556 2557 if (atomicPHI) { 2558 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2559 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2560 auto Pair = CGF.EmitAtomicCompareExchange( 2561 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2562 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2563 llvm::Value *success = Pair.second; 2564 atomicPHI->addIncoming(old, opBB); 2565 Builder.CreateCondBr(success, contBB, opBB); 2566 Builder.SetInsertPoint(contBB); 2567 return LHSLV; 2568 } 2569 2570 // Store the result value into the LHS lvalue. Bit-fields are handled 2571 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2572 // 'An assignment expression has the value of the left operand after the 2573 // assignment...'. 2574 if (LHSLV.isBitField()) 2575 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2576 else 2577 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2578 2579 return LHSLV; 2580 } 2581 2582 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2583 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2584 bool Ignore = TestAndClearIgnoreResultAssign(); 2585 Value *RHS; 2586 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2587 2588 // If the result is clearly ignored, return now. 2589 if (Ignore) 2590 return nullptr; 2591 2592 // The result of an assignment in C is the assigned r-value. 2593 if (!CGF.getLangOpts().CPlusPlus) 2594 return RHS; 2595 2596 // If the lvalue is non-volatile, return the computed value of the assignment. 2597 if (!LHS.isVolatileQualified()) 2598 return RHS; 2599 2600 // Otherwise, reload the value. 2601 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2602 } 2603 2604 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2605 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2606 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2607 2608 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2609 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2610 SanitizerKind::IntegerDivideByZero)); 2611 } 2612 2613 const auto *BO = cast<BinaryOperator>(Ops.E); 2614 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2615 Ops.Ty->hasSignedIntegerRepresentation() && 2616 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2617 Ops.mayHaveIntegerOverflow()) { 2618 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2619 2620 llvm::Value *IntMin = 2621 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2622 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2623 2624 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2625 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2626 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2627 Checks.push_back( 2628 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2629 } 2630 2631 if (Checks.size() > 0) 2632 EmitBinOpCheck(Checks, Ops); 2633 } 2634 2635 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2636 { 2637 CodeGenFunction::SanitizerScope SanScope(&CGF); 2638 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2639 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2640 Ops.Ty->isIntegerType() && 2641 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2642 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2643 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2644 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2645 Ops.Ty->isRealFloatingType() && 2646 Ops.mayHaveFloatDivisionByZero()) { 2647 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2648 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2649 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2650 Ops); 2651 } 2652 } 2653 2654 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2655 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2656 if (CGF.getLangOpts().OpenCL && 2657 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2658 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2659 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2660 // build option allows an application to specify that single precision 2661 // floating-point divide (x/y and 1/x) and sqrt used in the program 2662 // source are correctly rounded. 2663 llvm::Type *ValTy = Val->getType(); 2664 if (ValTy->isFloatTy() || 2665 (isa<llvm::VectorType>(ValTy) && 2666 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2667 CGF.SetFPAccuracy(Val, 2.5); 2668 } 2669 return Val; 2670 } 2671 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2672 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2673 else 2674 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2675 } 2676 2677 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2678 // Rem in C can't be a floating point type: C99 6.5.5p2. 2679 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2680 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2681 Ops.Ty->isIntegerType() && 2682 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2683 CodeGenFunction::SanitizerScope SanScope(&CGF); 2684 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2685 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2686 } 2687 2688 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2689 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2690 else 2691 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2692 } 2693 2694 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2695 unsigned IID; 2696 unsigned OpID = 0; 2697 2698 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2699 switch (Ops.Opcode) { 2700 case BO_Add: 2701 case BO_AddAssign: 2702 OpID = 1; 2703 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2704 llvm::Intrinsic::uadd_with_overflow; 2705 break; 2706 case BO_Sub: 2707 case BO_SubAssign: 2708 OpID = 2; 2709 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2710 llvm::Intrinsic::usub_with_overflow; 2711 break; 2712 case BO_Mul: 2713 case BO_MulAssign: 2714 OpID = 3; 2715 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2716 llvm::Intrinsic::umul_with_overflow; 2717 break; 2718 default: 2719 llvm_unreachable("Unsupported operation for overflow detection"); 2720 } 2721 OpID <<= 1; 2722 if (isSigned) 2723 OpID |= 1; 2724 2725 CodeGenFunction::SanitizerScope SanScope(&CGF); 2726 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2727 2728 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2729 2730 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2731 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2732 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2733 2734 // Handle overflow with llvm.trap if no custom handler has been specified. 2735 const std::string *handlerName = 2736 &CGF.getLangOpts().OverflowHandler; 2737 if (handlerName->empty()) { 2738 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2739 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2740 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2741 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2742 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2743 : SanitizerKind::UnsignedIntegerOverflow; 2744 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2745 } else 2746 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2747 return result; 2748 } 2749 2750 // Branch in case of overflow. 2751 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2752 llvm::BasicBlock *continueBB = 2753 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2754 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2755 2756 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2757 2758 // If an overflow handler is set, then we want to call it and then use its 2759 // result, if it returns. 2760 Builder.SetInsertPoint(overflowBB); 2761 2762 // Get the overflow handler. 2763 llvm::Type *Int8Ty = CGF.Int8Ty; 2764 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2765 llvm::FunctionType *handlerTy = 2766 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2767 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2768 2769 // Sign extend the args to 64-bit, so that we can use the same handler for 2770 // all types of overflow. 2771 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2772 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2773 2774 // Call the handler with the two arguments, the operation, and the size of 2775 // the result. 2776 llvm::Value *handlerArgs[] = { 2777 lhs, 2778 rhs, 2779 Builder.getInt8(OpID), 2780 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2781 }; 2782 llvm::Value *handlerResult = 2783 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2784 2785 // Truncate the result back to the desired size. 2786 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2787 Builder.CreateBr(continueBB); 2788 2789 Builder.SetInsertPoint(continueBB); 2790 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2791 phi->addIncoming(result, initialBB); 2792 phi->addIncoming(handlerResult, overflowBB); 2793 2794 return phi; 2795 } 2796 2797 /// Emit pointer + index arithmetic. 2798 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2799 const BinOpInfo &op, 2800 bool isSubtraction) { 2801 // Must have binary (not unary) expr here. Unary pointer 2802 // increment/decrement doesn't use this path. 2803 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2804 2805 Value *pointer = op.LHS; 2806 Expr *pointerOperand = expr->getLHS(); 2807 Value *index = op.RHS; 2808 Expr *indexOperand = expr->getRHS(); 2809 2810 // In a subtraction, the LHS is always the pointer. 2811 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2812 std::swap(pointer, index); 2813 std::swap(pointerOperand, indexOperand); 2814 } 2815 2816 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2817 2818 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2819 auto &DL = CGF.CGM.getDataLayout(); 2820 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 2821 2822 // Some versions of glibc and gcc use idioms (particularly in their malloc 2823 // routines) that add a pointer-sized integer (known to be a pointer value) 2824 // to a null pointer in order to cast the value back to an integer or as 2825 // part of a pointer alignment algorithm. This is undefined behavior, but 2826 // we'd like to be able to compile programs that use it. 2827 // 2828 // Normally, we'd generate a GEP with a null-pointer base here in response 2829 // to that code, but it's also UB to dereference a pointer created that 2830 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 2831 // generate a direct cast of the integer value to a pointer. 2832 // 2833 // The idiom (p = nullptr + N) is not met if any of the following are true: 2834 // 2835 // The operation is subtraction. 2836 // The index is not pointer-sized. 2837 // The pointer type is not byte-sized. 2838 // 2839 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 2840 op.Opcode, 2841 expr->getLHS(), 2842 expr->getRHS())) 2843 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 2844 2845 if (width != DL.getTypeSizeInBits(PtrTy)) { 2846 // Zero-extend or sign-extend the pointer value according to 2847 // whether the index is signed or not. 2848 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 2849 "idx.ext"); 2850 } 2851 2852 // If this is subtraction, negate the index. 2853 if (isSubtraction) 2854 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2855 2856 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2857 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2858 /*Accessed*/ false); 2859 2860 const PointerType *pointerType 2861 = pointerOperand->getType()->getAs<PointerType>(); 2862 if (!pointerType) { 2863 QualType objectType = pointerOperand->getType() 2864 ->castAs<ObjCObjectPointerType>() 2865 ->getPointeeType(); 2866 llvm::Value *objectSize 2867 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2868 2869 index = CGF.Builder.CreateMul(index, objectSize); 2870 2871 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2872 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2873 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2874 } 2875 2876 QualType elementType = pointerType->getPointeeType(); 2877 if (const VariableArrayType *vla 2878 = CGF.getContext().getAsVariableArrayType(elementType)) { 2879 // The element count here is the total number of non-VLA elements. 2880 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 2881 2882 // Effectively, the multiply by the VLA size is part of the GEP. 2883 // GEP indexes are signed, and scaling an index isn't permitted to 2884 // signed-overflow, so we use the same semantics for our explicit 2885 // multiply. We suppress this if overflow is not undefined behavior. 2886 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2887 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2888 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2889 } else { 2890 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2891 pointer = 2892 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2893 op.E->getExprLoc(), "add.ptr"); 2894 } 2895 return pointer; 2896 } 2897 2898 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2899 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2900 // future proof. 2901 if (elementType->isVoidType() || elementType->isFunctionType()) { 2902 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2903 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2904 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2905 } 2906 2907 if (CGF.getLangOpts().isSignedOverflowDefined()) 2908 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2909 2910 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2911 op.E->getExprLoc(), "add.ptr"); 2912 } 2913 2914 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2915 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2916 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2917 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2918 // efficient operations. 2919 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2920 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2921 bool negMul, bool negAdd) { 2922 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2923 2924 Value *MulOp0 = MulOp->getOperand(0); 2925 Value *MulOp1 = MulOp->getOperand(1); 2926 if (negMul) { 2927 MulOp0 = 2928 Builder.CreateFSub( 2929 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2930 "neg"); 2931 } else if (negAdd) { 2932 Addend = 2933 Builder.CreateFSub( 2934 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2935 "neg"); 2936 } 2937 2938 Value *FMulAdd = Builder.CreateCall( 2939 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2940 {MulOp0, MulOp1, Addend}); 2941 MulOp->eraseFromParent(); 2942 2943 return FMulAdd; 2944 } 2945 2946 // Check whether it would be legal to emit an fmuladd intrinsic call to 2947 // represent op and if so, build the fmuladd. 2948 // 2949 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2950 // Does NOT check the type of the operation - it's assumed that this function 2951 // will be called from contexts where it's known that the type is contractable. 2952 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2953 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2954 bool isSub=false) { 2955 2956 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2957 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2958 "Only fadd/fsub can be the root of an fmuladd."); 2959 2960 // Check whether this op is marked as fusable. 2961 if (!op.FPFeatures.allowFPContractWithinStatement()) 2962 return nullptr; 2963 2964 // We have a potentially fusable op. Look for a mul on one of the operands. 2965 // Also, make sure that the mul result isn't used directly. In that case, 2966 // there's no point creating a muladd operation. 2967 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2968 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2969 LHSBinOp->use_empty()) 2970 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2971 } 2972 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2973 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2974 RHSBinOp->use_empty()) 2975 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2976 } 2977 2978 return nullptr; 2979 } 2980 2981 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2982 if (op.LHS->getType()->isPointerTy() || 2983 op.RHS->getType()->isPointerTy()) 2984 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 2985 2986 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2987 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2988 case LangOptions::SOB_Defined: 2989 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2990 case LangOptions::SOB_Undefined: 2991 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2992 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2993 // Fall through. 2994 case LangOptions::SOB_Trapping: 2995 if (CanElideOverflowCheck(CGF.getContext(), op)) 2996 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2997 return EmitOverflowCheckedBinOp(op); 2998 } 2999 } 3000 3001 if (op.Ty->isUnsignedIntegerType() && 3002 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3003 !CanElideOverflowCheck(CGF.getContext(), op)) 3004 return EmitOverflowCheckedBinOp(op); 3005 3006 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3007 // Try to form an fmuladd. 3008 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3009 return FMulAdd; 3010 3011 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3012 return propagateFMFlags(V, op); 3013 } 3014 3015 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3016 } 3017 3018 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3019 // The LHS is always a pointer if either side is. 3020 if (!op.LHS->getType()->isPointerTy()) { 3021 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3022 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3023 case LangOptions::SOB_Defined: 3024 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3025 case LangOptions::SOB_Undefined: 3026 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3027 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3028 // Fall through. 3029 case LangOptions::SOB_Trapping: 3030 if (CanElideOverflowCheck(CGF.getContext(), op)) 3031 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3032 return EmitOverflowCheckedBinOp(op); 3033 } 3034 } 3035 3036 if (op.Ty->isUnsignedIntegerType() && 3037 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3038 !CanElideOverflowCheck(CGF.getContext(), op)) 3039 return EmitOverflowCheckedBinOp(op); 3040 3041 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3042 // Try to form an fmuladd. 3043 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3044 return FMulAdd; 3045 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3046 return propagateFMFlags(V, op); 3047 } 3048 3049 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3050 } 3051 3052 // If the RHS is not a pointer, then we have normal pointer 3053 // arithmetic. 3054 if (!op.RHS->getType()->isPointerTy()) 3055 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3056 3057 // Otherwise, this is a pointer subtraction. 3058 3059 // Do the raw subtraction part. 3060 llvm::Value *LHS 3061 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3062 llvm::Value *RHS 3063 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3064 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3065 3066 // Okay, figure out the element size. 3067 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3068 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3069 3070 llvm::Value *divisor = nullptr; 3071 3072 // For a variable-length array, this is going to be non-constant. 3073 if (const VariableArrayType *vla 3074 = CGF.getContext().getAsVariableArrayType(elementType)) { 3075 auto VlaSize = CGF.getVLASize(vla); 3076 elementType = VlaSize.Type; 3077 divisor = VlaSize.NumElts; 3078 3079 // Scale the number of non-VLA elements by the non-VLA element size. 3080 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3081 if (!eltSize.isOne()) 3082 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3083 3084 // For everything elese, we can just compute it, safe in the 3085 // assumption that Sema won't let anything through that we can't 3086 // safely compute the size of. 3087 } else { 3088 CharUnits elementSize; 3089 // Handle GCC extension for pointer arithmetic on void* and 3090 // function pointer types. 3091 if (elementType->isVoidType() || elementType->isFunctionType()) 3092 elementSize = CharUnits::One(); 3093 else 3094 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3095 3096 // Don't even emit the divide for element size of 1. 3097 if (elementSize.isOne()) 3098 return diffInChars; 3099 3100 divisor = CGF.CGM.getSize(elementSize); 3101 } 3102 3103 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3104 // pointer difference in C is only defined in the case where both operands 3105 // are pointing to elements of an array. 3106 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3107 } 3108 3109 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3110 llvm::IntegerType *Ty; 3111 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3112 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3113 else 3114 Ty = cast<llvm::IntegerType>(LHS->getType()); 3115 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3116 } 3117 3118 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3119 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3120 // RHS to the same size as the LHS. 3121 Value *RHS = Ops.RHS; 3122 if (Ops.LHS->getType() != RHS->getType()) 3123 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3124 3125 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3126 Ops.Ty->hasSignedIntegerRepresentation() && 3127 !CGF.getLangOpts().isSignedOverflowDefined(); 3128 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3129 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3130 if (CGF.getLangOpts().OpenCL) 3131 RHS = 3132 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3133 else if ((SanitizeBase || SanitizeExponent) && 3134 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3135 CodeGenFunction::SanitizerScope SanScope(&CGF); 3136 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3137 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3138 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3139 3140 if (SanitizeExponent) { 3141 Checks.push_back( 3142 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3143 } 3144 3145 if (SanitizeBase) { 3146 // Check whether we are shifting any non-zero bits off the top of the 3147 // integer. We only emit this check if exponent is valid - otherwise 3148 // instructions below will have undefined behavior themselves. 3149 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3150 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3151 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3152 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3153 llvm::Value *PromotedWidthMinusOne = 3154 (RHS == Ops.RHS) ? WidthMinusOne 3155 : GetWidthMinusOneValue(Ops.LHS, RHS); 3156 CGF.EmitBlock(CheckShiftBase); 3157 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3158 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3159 /*NUW*/ true, /*NSW*/ true), 3160 "shl.check"); 3161 if (CGF.getLangOpts().CPlusPlus) { 3162 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3163 // Under C++11's rules, shifting a 1 bit into the sign bit is 3164 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3165 // define signed left shifts, so we use the C99 and C++11 rules there). 3166 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3167 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3168 } 3169 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3170 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3171 CGF.EmitBlock(Cont); 3172 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3173 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3174 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3175 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3176 } 3177 3178 assert(!Checks.empty()); 3179 EmitBinOpCheck(Checks, Ops); 3180 } 3181 3182 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3183 } 3184 3185 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3186 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3187 // RHS to the same size as the LHS. 3188 Value *RHS = Ops.RHS; 3189 if (Ops.LHS->getType() != RHS->getType()) 3190 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3191 3192 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3193 if (CGF.getLangOpts().OpenCL) 3194 RHS = 3195 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3196 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3197 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3198 CodeGenFunction::SanitizerScope SanScope(&CGF); 3199 llvm::Value *Valid = 3200 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3201 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3202 } 3203 3204 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3205 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3206 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3207 } 3208 3209 enum IntrinsicType { VCMPEQ, VCMPGT }; 3210 // return corresponding comparison intrinsic for given vector type 3211 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3212 BuiltinType::Kind ElemKind) { 3213 switch (ElemKind) { 3214 default: llvm_unreachable("unexpected element type"); 3215 case BuiltinType::Char_U: 3216 case BuiltinType::UChar: 3217 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3218 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3219 case BuiltinType::Char_S: 3220 case BuiltinType::SChar: 3221 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3222 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3223 case BuiltinType::UShort: 3224 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3225 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3226 case BuiltinType::Short: 3227 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3228 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3229 case BuiltinType::UInt: 3230 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3231 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3232 case BuiltinType::Int: 3233 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3234 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3235 case BuiltinType::ULong: 3236 case BuiltinType::ULongLong: 3237 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3238 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3239 case BuiltinType::Long: 3240 case BuiltinType::LongLong: 3241 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3242 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3243 case BuiltinType::Float: 3244 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3245 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3246 case BuiltinType::Double: 3247 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3248 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3249 } 3250 } 3251 3252 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3253 llvm::CmpInst::Predicate UICmpOpc, 3254 llvm::CmpInst::Predicate SICmpOpc, 3255 llvm::CmpInst::Predicate FCmpOpc) { 3256 TestAndClearIgnoreResultAssign(); 3257 Value *Result; 3258 QualType LHSTy = E->getLHS()->getType(); 3259 QualType RHSTy = E->getRHS()->getType(); 3260 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3261 assert(E->getOpcode() == BO_EQ || 3262 E->getOpcode() == BO_NE); 3263 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3264 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3265 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3266 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3267 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3268 Value *LHS = Visit(E->getLHS()); 3269 Value *RHS = Visit(E->getRHS()); 3270 3271 // If AltiVec, the comparison results in a numeric type, so we use 3272 // intrinsics comparing vectors and giving 0 or 1 as a result 3273 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3274 // constants for mapping CR6 register bits to predicate result 3275 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3276 3277 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3278 3279 // in several cases vector arguments order will be reversed 3280 Value *FirstVecArg = LHS, 3281 *SecondVecArg = RHS; 3282 3283 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3284 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3285 BuiltinType::Kind ElementKind = BTy->getKind(); 3286 3287 switch(E->getOpcode()) { 3288 default: llvm_unreachable("is not a comparison operation"); 3289 case BO_EQ: 3290 CR6 = CR6_LT; 3291 ID = GetIntrinsic(VCMPEQ, ElementKind); 3292 break; 3293 case BO_NE: 3294 CR6 = CR6_EQ; 3295 ID = GetIntrinsic(VCMPEQ, ElementKind); 3296 break; 3297 case BO_LT: 3298 CR6 = CR6_LT; 3299 ID = GetIntrinsic(VCMPGT, ElementKind); 3300 std::swap(FirstVecArg, SecondVecArg); 3301 break; 3302 case BO_GT: 3303 CR6 = CR6_LT; 3304 ID = GetIntrinsic(VCMPGT, ElementKind); 3305 break; 3306 case BO_LE: 3307 if (ElementKind == BuiltinType::Float) { 3308 CR6 = CR6_LT; 3309 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3310 std::swap(FirstVecArg, SecondVecArg); 3311 } 3312 else { 3313 CR6 = CR6_EQ; 3314 ID = GetIntrinsic(VCMPGT, ElementKind); 3315 } 3316 break; 3317 case BO_GE: 3318 if (ElementKind == BuiltinType::Float) { 3319 CR6 = CR6_LT; 3320 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3321 } 3322 else { 3323 CR6 = CR6_EQ; 3324 ID = GetIntrinsic(VCMPGT, ElementKind); 3325 std::swap(FirstVecArg, SecondVecArg); 3326 } 3327 break; 3328 } 3329 3330 Value *CR6Param = Builder.getInt32(CR6); 3331 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3332 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3333 3334 // The result type of intrinsic may not be same as E->getType(). 3335 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3336 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3337 // do nothing, if ResultTy is not i1 at the same time, it will cause 3338 // crash later. 3339 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3340 if (ResultTy->getBitWidth() > 1 && 3341 E->getType() == CGF.getContext().BoolTy) 3342 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3343 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3344 E->getExprLoc()); 3345 } 3346 3347 if (LHS->getType()->isFPOrFPVectorTy()) { 3348 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3349 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3350 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3351 } else { 3352 // Unsigned integers and pointers. 3353 3354 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3355 !isa<llvm::ConstantPointerNull>(LHS) && 3356 !isa<llvm::ConstantPointerNull>(RHS)) { 3357 3358 // Dynamic information is required to be stripped for comparisons, 3359 // because it could leak the dynamic information. Based on comparisons 3360 // of pointers to dynamic objects, the optimizer can replace one pointer 3361 // with another, which might be incorrect in presence of invariant 3362 // groups. Comparison with null is safe because null does not carry any 3363 // dynamic information. 3364 if (LHSTy.mayBeDynamicClass()) 3365 LHS = Builder.CreateStripInvariantGroup(LHS); 3366 if (RHSTy.mayBeDynamicClass()) 3367 RHS = Builder.CreateStripInvariantGroup(RHS); 3368 } 3369 3370 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3371 } 3372 3373 // If this is a vector comparison, sign extend the result to the appropriate 3374 // vector integer type and return it (don't convert to bool). 3375 if (LHSTy->isVectorType()) 3376 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3377 3378 } else { 3379 // Complex Comparison: can only be an equality comparison. 3380 CodeGenFunction::ComplexPairTy LHS, RHS; 3381 QualType CETy; 3382 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3383 LHS = CGF.EmitComplexExpr(E->getLHS()); 3384 CETy = CTy->getElementType(); 3385 } else { 3386 LHS.first = Visit(E->getLHS()); 3387 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3388 CETy = LHSTy; 3389 } 3390 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3391 RHS = CGF.EmitComplexExpr(E->getRHS()); 3392 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3393 CTy->getElementType()) && 3394 "The element types must always match."); 3395 (void)CTy; 3396 } else { 3397 RHS.first = Visit(E->getRHS()); 3398 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3399 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3400 "The element types must always match."); 3401 } 3402 3403 Value *ResultR, *ResultI; 3404 if (CETy->isRealFloatingType()) { 3405 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3406 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3407 } else { 3408 // Complex comparisons can only be equality comparisons. As such, signed 3409 // and unsigned opcodes are the same. 3410 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3411 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3412 } 3413 3414 if (E->getOpcode() == BO_EQ) { 3415 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3416 } else { 3417 assert(E->getOpcode() == BO_NE && 3418 "Complex comparison other than == or != ?"); 3419 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3420 } 3421 } 3422 3423 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3424 E->getExprLoc()); 3425 } 3426 3427 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3428 bool Ignore = TestAndClearIgnoreResultAssign(); 3429 3430 Value *RHS; 3431 LValue LHS; 3432 3433 switch (E->getLHS()->getType().getObjCLifetime()) { 3434 case Qualifiers::OCL_Strong: 3435 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3436 break; 3437 3438 case Qualifiers::OCL_Autoreleasing: 3439 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3440 break; 3441 3442 case Qualifiers::OCL_ExplicitNone: 3443 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3444 break; 3445 3446 case Qualifiers::OCL_Weak: 3447 RHS = Visit(E->getRHS()); 3448 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3449 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3450 break; 3451 3452 case Qualifiers::OCL_None: 3453 // __block variables need to have the rhs evaluated first, plus 3454 // this should improve codegen just a little. 3455 RHS = Visit(E->getRHS()); 3456 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3457 3458 // Store the value into the LHS. Bit-fields are handled specially 3459 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3460 // 'An assignment expression has the value of the left operand after 3461 // the assignment...'. 3462 if (LHS.isBitField()) { 3463 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3464 } else { 3465 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3466 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3467 } 3468 } 3469 3470 // If the result is clearly ignored, return now. 3471 if (Ignore) 3472 return nullptr; 3473 3474 // The result of an assignment in C is the assigned r-value. 3475 if (!CGF.getLangOpts().CPlusPlus) 3476 return RHS; 3477 3478 // If the lvalue is non-volatile, return the computed value of the assignment. 3479 if (!LHS.isVolatileQualified()) 3480 return RHS; 3481 3482 // Otherwise, reload the value. 3483 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3484 } 3485 3486 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3487 // Perform vector logical and on comparisons with zero vectors. 3488 if (E->getType()->isVectorType()) { 3489 CGF.incrementProfileCounter(E); 3490 3491 Value *LHS = Visit(E->getLHS()); 3492 Value *RHS = Visit(E->getRHS()); 3493 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3494 if (LHS->getType()->isFPOrFPVectorTy()) { 3495 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3496 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3497 } else { 3498 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3499 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3500 } 3501 Value *And = Builder.CreateAnd(LHS, RHS); 3502 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3503 } 3504 3505 llvm::Type *ResTy = ConvertType(E->getType()); 3506 3507 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3508 // If we have 1 && X, just emit X without inserting the control flow. 3509 bool LHSCondVal; 3510 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3511 if (LHSCondVal) { // If we have 1 && X, just emit X. 3512 CGF.incrementProfileCounter(E); 3513 3514 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3515 // ZExt result to int or bool. 3516 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3517 } 3518 3519 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3520 if (!CGF.ContainsLabel(E->getRHS())) 3521 return llvm::Constant::getNullValue(ResTy); 3522 } 3523 3524 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3525 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3526 3527 CodeGenFunction::ConditionalEvaluation eval(CGF); 3528 3529 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3530 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3531 CGF.getProfileCount(E->getRHS())); 3532 3533 // Any edges into the ContBlock are now from an (indeterminate number of) 3534 // edges from this first condition. All of these values will be false. Start 3535 // setting up the PHI node in the Cont Block for this. 3536 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3537 "", ContBlock); 3538 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3539 PI != PE; ++PI) 3540 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3541 3542 eval.begin(CGF); 3543 CGF.EmitBlock(RHSBlock); 3544 CGF.incrementProfileCounter(E); 3545 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3546 eval.end(CGF); 3547 3548 // Reaquire the RHS block, as there may be subblocks inserted. 3549 RHSBlock = Builder.GetInsertBlock(); 3550 3551 // Emit an unconditional branch from this block to ContBlock. 3552 { 3553 // There is no need to emit line number for unconditional branch. 3554 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3555 CGF.EmitBlock(ContBlock); 3556 } 3557 // Insert an entry into the phi node for the edge with the value of RHSCond. 3558 PN->addIncoming(RHSCond, RHSBlock); 3559 3560 // Artificial location to preserve the scope information 3561 { 3562 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 3563 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 3564 } 3565 3566 // ZExt result to int. 3567 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3568 } 3569 3570 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3571 // Perform vector logical or on comparisons with zero vectors. 3572 if (E->getType()->isVectorType()) { 3573 CGF.incrementProfileCounter(E); 3574 3575 Value *LHS = Visit(E->getLHS()); 3576 Value *RHS = Visit(E->getRHS()); 3577 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3578 if (LHS->getType()->isFPOrFPVectorTy()) { 3579 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3580 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3581 } else { 3582 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3583 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3584 } 3585 Value *Or = Builder.CreateOr(LHS, RHS); 3586 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3587 } 3588 3589 llvm::Type *ResTy = ConvertType(E->getType()); 3590 3591 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3592 // If we have 0 || X, just emit X without inserting the control flow. 3593 bool LHSCondVal; 3594 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3595 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3596 CGF.incrementProfileCounter(E); 3597 3598 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3599 // ZExt result to int or bool. 3600 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3601 } 3602 3603 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3604 if (!CGF.ContainsLabel(E->getRHS())) 3605 return llvm::ConstantInt::get(ResTy, 1); 3606 } 3607 3608 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3609 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3610 3611 CodeGenFunction::ConditionalEvaluation eval(CGF); 3612 3613 // Branch on the LHS first. If it is true, go to the success (cont) block. 3614 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3615 CGF.getCurrentProfileCount() - 3616 CGF.getProfileCount(E->getRHS())); 3617 3618 // Any edges into the ContBlock are now from an (indeterminate number of) 3619 // edges from this first condition. All of these values will be true. Start 3620 // setting up the PHI node in the Cont Block for this. 3621 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3622 "", ContBlock); 3623 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3624 PI != PE; ++PI) 3625 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3626 3627 eval.begin(CGF); 3628 3629 // Emit the RHS condition as a bool value. 3630 CGF.EmitBlock(RHSBlock); 3631 CGF.incrementProfileCounter(E); 3632 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3633 3634 eval.end(CGF); 3635 3636 // Reaquire the RHS block, as there may be subblocks inserted. 3637 RHSBlock = Builder.GetInsertBlock(); 3638 3639 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3640 // into the phi node for the edge with the value of RHSCond. 3641 CGF.EmitBlock(ContBlock); 3642 PN->addIncoming(RHSCond, RHSBlock); 3643 3644 // ZExt result to int. 3645 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3646 } 3647 3648 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3649 CGF.EmitIgnoredExpr(E->getLHS()); 3650 CGF.EnsureInsertPoint(); 3651 return Visit(E->getRHS()); 3652 } 3653 3654 //===----------------------------------------------------------------------===// 3655 // Other Operators 3656 //===----------------------------------------------------------------------===// 3657 3658 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3659 /// expression is cheap enough and side-effect-free enough to evaluate 3660 /// unconditionally instead of conditionally. This is used to convert control 3661 /// flow into selects in some cases. 3662 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3663 CodeGenFunction &CGF) { 3664 // Anything that is an integer or floating point constant is fine. 3665 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3666 3667 // Even non-volatile automatic variables can't be evaluated unconditionally. 3668 // Referencing a thread_local may cause non-trivial initialization work to 3669 // occur. If we're inside a lambda and one of the variables is from the scope 3670 // outside the lambda, that function may have returned already. Reading its 3671 // locals is a bad idea. Also, these reads may introduce races there didn't 3672 // exist in the source-level program. 3673 } 3674 3675 3676 Value *ScalarExprEmitter:: 3677 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3678 TestAndClearIgnoreResultAssign(); 3679 3680 // Bind the common expression if necessary. 3681 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3682 3683 Expr *condExpr = E->getCond(); 3684 Expr *lhsExpr = E->getTrueExpr(); 3685 Expr *rhsExpr = E->getFalseExpr(); 3686 3687 // If the condition constant folds and can be elided, try to avoid emitting 3688 // the condition and the dead arm. 3689 bool CondExprBool; 3690 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3691 Expr *live = lhsExpr, *dead = rhsExpr; 3692 if (!CondExprBool) std::swap(live, dead); 3693 3694 // If the dead side doesn't have labels we need, just emit the Live part. 3695 if (!CGF.ContainsLabel(dead)) { 3696 if (CondExprBool) 3697 CGF.incrementProfileCounter(E); 3698 Value *Result = Visit(live); 3699 3700 // If the live part is a throw expression, it acts like it has a void 3701 // type, so evaluating it returns a null Value*. However, a conditional 3702 // with non-void type must return a non-null Value*. 3703 if (!Result && !E->getType()->isVoidType()) 3704 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3705 3706 return Result; 3707 } 3708 } 3709 3710 // OpenCL: If the condition is a vector, we can treat this condition like 3711 // the select function. 3712 if (CGF.getLangOpts().OpenCL 3713 && condExpr->getType()->isVectorType()) { 3714 CGF.incrementProfileCounter(E); 3715 3716 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3717 llvm::Value *LHS = Visit(lhsExpr); 3718 llvm::Value *RHS = Visit(rhsExpr); 3719 3720 llvm::Type *condType = ConvertType(condExpr->getType()); 3721 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3722 3723 unsigned numElem = vecTy->getNumElements(); 3724 llvm::Type *elemType = vecTy->getElementType(); 3725 3726 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3727 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3728 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3729 llvm::VectorType::get(elemType, 3730 numElem), 3731 "sext"); 3732 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3733 3734 // Cast float to int to perform ANDs if necessary. 3735 llvm::Value *RHSTmp = RHS; 3736 llvm::Value *LHSTmp = LHS; 3737 bool wasCast = false; 3738 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3739 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3740 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3741 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3742 wasCast = true; 3743 } 3744 3745 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3746 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3747 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3748 if (wasCast) 3749 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3750 3751 return tmp5; 3752 } 3753 3754 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3755 // select instead of as control flow. We can only do this if it is cheap and 3756 // safe to evaluate the LHS and RHS unconditionally. 3757 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3758 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3759 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3760 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 3761 3762 CGF.incrementProfileCounter(E, StepV); 3763 3764 llvm::Value *LHS = Visit(lhsExpr); 3765 llvm::Value *RHS = Visit(rhsExpr); 3766 if (!LHS) { 3767 // If the conditional has void type, make sure we return a null Value*. 3768 assert(!RHS && "LHS and RHS types must match"); 3769 return nullptr; 3770 } 3771 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3772 } 3773 3774 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3775 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3776 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3777 3778 CodeGenFunction::ConditionalEvaluation eval(CGF); 3779 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3780 CGF.getProfileCount(lhsExpr)); 3781 3782 CGF.EmitBlock(LHSBlock); 3783 CGF.incrementProfileCounter(E); 3784 eval.begin(CGF); 3785 Value *LHS = Visit(lhsExpr); 3786 eval.end(CGF); 3787 3788 LHSBlock = Builder.GetInsertBlock(); 3789 Builder.CreateBr(ContBlock); 3790 3791 CGF.EmitBlock(RHSBlock); 3792 eval.begin(CGF); 3793 Value *RHS = Visit(rhsExpr); 3794 eval.end(CGF); 3795 3796 RHSBlock = Builder.GetInsertBlock(); 3797 CGF.EmitBlock(ContBlock); 3798 3799 // If the LHS or RHS is a throw expression, it will be legitimately null. 3800 if (!LHS) 3801 return RHS; 3802 if (!RHS) 3803 return LHS; 3804 3805 // Create a PHI node for the real part. 3806 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3807 PN->addIncoming(LHS, LHSBlock); 3808 PN->addIncoming(RHS, RHSBlock); 3809 return PN; 3810 } 3811 3812 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3813 return Visit(E->getChosenSubExpr()); 3814 } 3815 3816 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3817 QualType Ty = VE->getType(); 3818 3819 if (Ty->isVariablyModifiedType()) 3820 CGF.EmitVariablyModifiedType(Ty); 3821 3822 Address ArgValue = Address::invalid(); 3823 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3824 3825 llvm::Type *ArgTy = ConvertType(VE->getType()); 3826 3827 // If EmitVAArg fails, emit an error. 3828 if (!ArgPtr.isValid()) { 3829 CGF.ErrorUnsupported(VE, "va_arg expression"); 3830 return llvm::UndefValue::get(ArgTy); 3831 } 3832 3833 // FIXME Volatility. 3834 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3835 3836 // If EmitVAArg promoted the type, we must truncate it. 3837 if (ArgTy != Val->getType()) { 3838 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3839 Val = Builder.CreateIntToPtr(Val, ArgTy); 3840 else 3841 Val = Builder.CreateTrunc(Val, ArgTy); 3842 } 3843 3844 return Val; 3845 } 3846 3847 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3848 return CGF.EmitBlockLiteral(block); 3849 } 3850 3851 // Convert a vec3 to vec4, or vice versa. 3852 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3853 Value *Src, unsigned NumElementsDst) { 3854 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3855 SmallVector<llvm::Constant*, 4> Args; 3856 Args.push_back(Builder.getInt32(0)); 3857 Args.push_back(Builder.getInt32(1)); 3858 Args.push_back(Builder.getInt32(2)); 3859 if (NumElementsDst == 4) 3860 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3861 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3862 return Builder.CreateShuffleVector(Src, UnV, Mask); 3863 } 3864 3865 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 3866 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 3867 // but could be scalar or vectors of different lengths, and either can be 3868 // pointer. 3869 // There are 4 cases: 3870 // 1. non-pointer -> non-pointer : needs 1 bitcast 3871 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 3872 // 3. pointer -> non-pointer 3873 // a) pointer -> intptr_t : needs 1 ptrtoint 3874 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 3875 // 4. non-pointer -> pointer 3876 // a) intptr_t -> pointer : needs 1 inttoptr 3877 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 3878 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 3879 // allow casting directly between pointer types and non-integer non-pointer 3880 // types. 3881 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 3882 const llvm::DataLayout &DL, 3883 Value *Src, llvm::Type *DstTy, 3884 StringRef Name = "") { 3885 auto SrcTy = Src->getType(); 3886 3887 // Case 1. 3888 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 3889 return Builder.CreateBitCast(Src, DstTy, Name); 3890 3891 // Case 2. 3892 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 3893 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 3894 3895 // Case 3. 3896 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 3897 // Case 3b. 3898 if (!DstTy->isIntegerTy()) 3899 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 3900 // Cases 3a and 3b. 3901 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 3902 } 3903 3904 // Case 4b. 3905 if (!SrcTy->isIntegerTy()) 3906 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 3907 // Cases 4a and 4b. 3908 return Builder.CreateIntToPtr(Src, DstTy, Name); 3909 } 3910 3911 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3912 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3913 llvm::Type *DstTy = ConvertType(E->getType()); 3914 3915 llvm::Type *SrcTy = Src->getType(); 3916 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3917 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3918 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3919 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3920 3921 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3922 // vector to get a vec4, then a bitcast if the target type is different. 3923 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3924 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3925 3926 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3927 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3928 DstTy); 3929 } 3930 3931 Src->setName("astype"); 3932 return Src; 3933 } 3934 3935 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3936 // to vec4 if the original type is not vec4, then a shuffle vector to 3937 // get a vec3. 3938 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3939 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3940 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3941 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3942 Vec4Ty); 3943 } 3944 3945 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3946 Src->setName("astype"); 3947 return Src; 3948 } 3949 3950 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 3951 Src, DstTy, "astype"); 3952 } 3953 3954 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3955 return CGF.EmitAtomicExpr(E).getScalarVal(); 3956 } 3957 3958 //===----------------------------------------------------------------------===// 3959 // Entry Point into this File 3960 //===----------------------------------------------------------------------===// 3961 3962 /// Emit the computation of the specified expression of scalar type, ignoring 3963 /// the result. 3964 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3965 assert(E && hasScalarEvaluationKind(E->getType()) && 3966 "Invalid scalar expression to emit"); 3967 3968 return ScalarExprEmitter(*this, IgnoreResultAssign) 3969 .Visit(const_cast<Expr *>(E)); 3970 } 3971 3972 /// Emit a conversion from the specified type to the specified destination type, 3973 /// both of which are LLVM scalar types. 3974 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3975 QualType DstTy, 3976 SourceLocation Loc) { 3977 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3978 "Invalid scalar expression to emit"); 3979 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3980 } 3981 3982 /// Emit a conversion from the specified complex type to the specified 3983 /// destination type, where the destination type is an LLVM scalar type. 3984 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3985 QualType SrcTy, 3986 QualType DstTy, 3987 SourceLocation Loc) { 3988 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3989 "Invalid complex -> scalar conversion"); 3990 return ScalarExprEmitter(*this) 3991 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3992 } 3993 3994 3995 llvm::Value *CodeGenFunction:: 3996 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3997 bool isInc, bool isPre) { 3998 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3999 } 4000 4001 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4002 // object->isa or (*object).isa 4003 // Generate code as for: *(Class*)object 4004 4005 Expr *BaseExpr = E->getBase(); 4006 Address Addr = Address::invalid(); 4007 if (BaseExpr->isRValue()) { 4008 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4009 } else { 4010 Addr = EmitLValue(BaseExpr).getAddress(); 4011 } 4012 4013 // Cast the address to Class*. 4014 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4015 return MakeAddrLValue(Addr, E->getType()); 4016 } 4017 4018 4019 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4020 const CompoundAssignOperator *E) { 4021 ScalarExprEmitter Scalar(*this); 4022 Value *Result = nullptr; 4023 switch (E->getOpcode()) { 4024 #define COMPOUND_OP(Op) \ 4025 case BO_##Op##Assign: \ 4026 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4027 Result) 4028 COMPOUND_OP(Mul); 4029 COMPOUND_OP(Div); 4030 COMPOUND_OP(Rem); 4031 COMPOUND_OP(Add); 4032 COMPOUND_OP(Sub); 4033 COMPOUND_OP(Shl); 4034 COMPOUND_OP(Shr); 4035 COMPOUND_OP(And); 4036 COMPOUND_OP(Xor); 4037 COMPOUND_OP(Or); 4038 #undef COMPOUND_OP 4039 4040 case BO_PtrMemD: 4041 case BO_PtrMemI: 4042 case BO_Mul: 4043 case BO_Div: 4044 case BO_Rem: 4045 case BO_Add: 4046 case BO_Sub: 4047 case BO_Shl: 4048 case BO_Shr: 4049 case BO_LT: 4050 case BO_GT: 4051 case BO_LE: 4052 case BO_GE: 4053 case BO_EQ: 4054 case BO_NE: 4055 case BO_Cmp: 4056 case BO_And: 4057 case BO_Xor: 4058 case BO_Or: 4059 case BO_LAnd: 4060 case BO_LOr: 4061 case BO_Assign: 4062 case BO_Comma: 4063 llvm_unreachable("Not valid compound assignment operators"); 4064 } 4065 4066 llvm_unreachable("Unhandled compound assignment operator"); 4067 } 4068 4069 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 4070 ArrayRef<Value *> IdxList, 4071 bool SignedIndices, 4072 bool IsSubtraction, 4073 SourceLocation Loc, 4074 const Twine &Name) { 4075 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4076 4077 // If the pointer overflow sanitizer isn't enabled, do nothing. 4078 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4079 return GEPVal; 4080 4081 // If the GEP has already been reduced to a constant, leave it be. 4082 if (isa<llvm::Constant>(GEPVal)) 4083 return GEPVal; 4084 4085 // Only check for overflows in the default address space. 4086 if (GEPVal->getType()->getPointerAddressSpace()) 4087 return GEPVal; 4088 4089 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4090 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4091 4092 SanitizerScope SanScope(this); 4093 auto &VMContext = getLLVMContext(); 4094 const auto &DL = CGM.getDataLayout(); 4095 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4096 4097 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4098 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4099 auto *SAddIntrinsic = 4100 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4101 auto *SMulIntrinsic = 4102 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4103 4104 // The total (signed) byte offset for the GEP. 4105 llvm::Value *TotalOffset = nullptr; 4106 // The offset overflow flag - true if the total offset overflows. 4107 llvm::Value *OffsetOverflows = Builder.getFalse(); 4108 4109 /// Return the result of the given binary operation. 4110 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4111 llvm::Value *RHS) -> llvm::Value * { 4112 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4113 4114 // If the operands are constants, return a constant result. 4115 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4116 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4117 llvm::APInt N; 4118 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4119 /*Signed=*/true, N); 4120 if (HasOverflow) 4121 OffsetOverflows = Builder.getTrue(); 4122 return llvm::ConstantInt::get(VMContext, N); 4123 } 4124 } 4125 4126 // Otherwise, compute the result with checked arithmetic. 4127 auto *ResultAndOverflow = Builder.CreateCall( 4128 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4129 OffsetOverflows = Builder.CreateOr( 4130 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4131 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4132 }; 4133 4134 // Determine the total byte offset by looking at each GEP operand. 4135 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4136 GTI != GTE; ++GTI) { 4137 llvm::Value *LocalOffset; 4138 auto *Index = GTI.getOperand(); 4139 // Compute the local offset contributed by this indexing step: 4140 if (auto *STy = GTI.getStructTypeOrNull()) { 4141 // For struct indexing, the local offset is the byte position of the 4142 // specified field. 4143 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4144 LocalOffset = llvm::ConstantInt::get( 4145 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4146 } else { 4147 // Otherwise this is array-like indexing. The local offset is the index 4148 // multiplied by the element size. 4149 auto *ElementSize = llvm::ConstantInt::get( 4150 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4151 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4152 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4153 } 4154 4155 // If this is the first offset, set it as the total offset. Otherwise, add 4156 // the local offset into the running total. 4157 if (!TotalOffset || TotalOffset == Zero) 4158 TotalOffset = LocalOffset; 4159 else 4160 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4161 } 4162 4163 // Common case: if the total offset is zero, don't emit a check. 4164 if (TotalOffset == Zero) 4165 return GEPVal; 4166 4167 // Now that we've computed the total offset, add it to the base pointer (with 4168 // wrapping semantics). 4169 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4170 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4171 4172 // The GEP is valid if: 4173 // 1) The total offset doesn't overflow, and 4174 // 2) The sign of the difference between the computed address and the base 4175 // pointer matches the sign of the total offset. 4176 llvm::Value *ValidGEP; 4177 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4178 if (SignedIndices) { 4179 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4180 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4181 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4182 ValidGEP = Builder.CreateAnd( 4183 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4184 NoOffsetOverflow); 4185 } else if (!SignedIndices && !IsSubtraction) { 4186 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4187 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4188 } else { 4189 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4190 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4191 } 4192 4193 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4194 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4195 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4196 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4197 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4198 4199 return GEPVal; 4200 } 4201