1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/CFG.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(Value *Check, const BinOpInfo &Info); 89 90 Value *EmitLoadOfLValue(LValue LV) { 91 return CGF.EmitLoadOfLValue(LV).getScalarVal(); 92 } 93 94 /// EmitLoadOfLValue - Given an expression with complex type that represents a 95 /// value l-value, this method emits the address of the l-value, then loads 96 /// and returns the result. 97 Value *EmitLoadOfLValue(const Expr *E) { 98 return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load)); 99 } 100 101 /// EmitConversionToBool - Convert the specified expression value to a 102 /// boolean (i1) truth value. This is equivalent to "Val != 0". 103 Value *EmitConversionToBool(Value *Src, QualType DstTy); 104 105 /// \brief Emit a check that a conversion to or from a floating-point type 106 /// does not overflow. 107 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 108 Value *Src, QualType SrcType, 109 QualType DstType, llvm::Type *DstTy); 110 111 /// EmitScalarConversion - Emit a conversion from the specified type to the 112 /// specified destination type, both of which are LLVM scalar types. 113 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 114 115 /// EmitComplexToScalarConversion - Emit a conversion from the specified 116 /// complex type to the specified destination type, where the destination type 117 /// is an LLVM scalar type. 118 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 119 QualType SrcTy, QualType DstTy); 120 121 /// EmitNullValue - Emit a value that corresponds to null for the given type. 122 Value *EmitNullValue(QualType Ty); 123 124 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 125 Value *EmitFloatToBoolConversion(Value *V) { 126 // Compare against 0.0 for fp scalars. 127 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 128 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 129 } 130 131 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 132 Value *EmitPointerToBoolConversion(Value *V) { 133 Value *Zero = llvm::ConstantPointerNull::get( 134 cast<llvm::PointerType>(V->getType())); 135 return Builder.CreateICmpNE(V, Zero, "tobool"); 136 } 137 138 Value *EmitIntToBoolConversion(Value *V) { 139 // Because of the type rules of C, we often end up computing a 140 // logical value, then zero extending it to int, then wanting it 141 // as a logical value again. Optimize this common case. 142 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 143 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 144 Value *Result = ZI->getOperand(0); 145 // If there aren't any more uses, zap the instruction to save space. 146 // Note that there can be more uses, for example if this 147 // is the result of an assignment. 148 if (ZI->use_empty()) 149 ZI->eraseFromParent(); 150 return Result; 151 } 152 } 153 154 return Builder.CreateIsNotNull(V, "tobool"); 155 } 156 157 //===--------------------------------------------------------------------===// 158 // Visitor Methods 159 //===--------------------------------------------------------------------===// 160 161 Value *Visit(Expr *E) { 162 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 163 } 164 165 Value *VisitStmt(Stmt *S) { 166 S->dump(CGF.getContext().getSourceManager()); 167 llvm_unreachable("Stmt can't have complex result type!"); 168 } 169 Value *VisitExpr(Expr *S); 170 171 Value *VisitParenExpr(ParenExpr *PE) { 172 return Visit(PE->getSubExpr()); 173 } 174 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 175 return Visit(E->getReplacement()); 176 } 177 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 178 return Visit(GE->getResultExpr()); 179 } 180 181 // Leaves. 182 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 183 return Builder.getInt(E->getValue()); 184 } 185 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 186 return llvm::ConstantFP::get(VMContext, E->getValue()); 187 } 188 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 189 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 190 } 191 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 192 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 193 } 194 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 195 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 196 } 197 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 198 return EmitNullValue(E->getType()); 199 } 200 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 201 return EmitNullValue(E->getType()); 202 } 203 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 204 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 205 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 206 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 207 return Builder.CreateBitCast(V, ConvertType(E->getType())); 208 } 209 210 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 211 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 212 } 213 214 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 215 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 216 } 217 218 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 219 if (E->isGLValue()) 220 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E)); 221 222 // Otherwise, assume the mapping is the scalar directly. 223 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 224 } 225 226 // l-values. 227 Value *VisitDeclRefExpr(DeclRefExpr *E) { 228 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 229 if (result.isReference()) 230 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E)); 231 return result.getValue(); 232 } 233 return EmitLoadOfLValue(E); 234 } 235 236 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 237 return CGF.EmitObjCSelectorExpr(E); 238 } 239 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 240 return CGF.EmitObjCProtocolExpr(E); 241 } 242 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 243 return EmitLoadOfLValue(E); 244 } 245 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 246 if (E->getMethodDecl() && 247 E->getMethodDecl()->getResultType()->isReferenceType()) 248 return EmitLoadOfLValue(E); 249 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 250 } 251 252 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 253 LValue LV = CGF.EmitObjCIsaExpr(E); 254 Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal(); 255 return V; 256 } 257 258 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 259 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 260 Value *VisitMemberExpr(MemberExpr *E); 261 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 262 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 263 return EmitLoadOfLValue(E); 264 } 265 266 Value *VisitInitListExpr(InitListExpr *E); 267 268 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 269 return EmitNullValue(E->getType()); 270 } 271 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 272 if (E->getType()->isVariablyModifiedType()) 273 CGF.EmitVariablyModifiedType(E->getType()); 274 return VisitCastExpr(E); 275 } 276 Value *VisitCastExpr(CastExpr *E); 277 278 Value *VisitCallExpr(const CallExpr *E) { 279 if (E->getCallReturnType()->isReferenceType()) 280 return EmitLoadOfLValue(E); 281 282 return CGF.EmitCallExpr(E).getScalarVal(); 283 } 284 285 Value *VisitStmtExpr(const StmtExpr *E); 286 287 // Unary Operators. 288 Value *VisitUnaryPostDec(const UnaryOperator *E) { 289 LValue LV = EmitLValue(E->getSubExpr()); 290 return EmitScalarPrePostIncDec(E, LV, false, false); 291 } 292 Value *VisitUnaryPostInc(const UnaryOperator *E) { 293 LValue LV = EmitLValue(E->getSubExpr()); 294 return EmitScalarPrePostIncDec(E, LV, true, false); 295 } 296 Value *VisitUnaryPreDec(const UnaryOperator *E) { 297 LValue LV = EmitLValue(E->getSubExpr()); 298 return EmitScalarPrePostIncDec(E, LV, false, true); 299 } 300 Value *VisitUnaryPreInc(const UnaryOperator *E) { 301 LValue LV = EmitLValue(E->getSubExpr()); 302 return EmitScalarPrePostIncDec(E, LV, true, true); 303 } 304 305 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 306 llvm::Value *InVal, 307 llvm::Value *NextVal, 308 bool IsInc); 309 310 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 311 bool isInc, bool isPre); 312 313 314 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 315 if (isa<MemberPointerType>(E->getType())) // never sugared 316 return CGF.CGM.getMemberPointerConstant(E); 317 318 return EmitLValue(E->getSubExpr()).getAddress(); 319 } 320 Value *VisitUnaryDeref(const UnaryOperator *E) { 321 if (E->getType()->isVoidType()) 322 return Visit(E->getSubExpr()); // the actual value should be unused 323 return EmitLoadOfLValue(E); 324 } 325 Value *VisitUnaryPlus(const UnaryOperator *E) { 326 // This differs from gcc, though, most likely due to a bug in gcc. 327 TestAndClearIgnoreResultAssign(); 328 return Visit(E->getSubExpr()); 329 } 330 Value *VisitUnaryMinus (const UnaryOperator *E); 331 Value *VisitUnaryNot (const UnaryOperator *E); 332 Value *VisitUnaryLNot (const UnaryOperator *E); 333 Value *VisitUnaryReal (const UnaryOperator *E); 334 Value *VisitUnaryImag (const UnaryOperator *E); 335 Value *VisitUnaryExtension(const UnaryOperator *E) { 336 return Visit(E->getSubExpr()); 337 } 338 339 // C++ 340 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 341 return EmitLoadOfLValue(E); 342 } 343 344 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 345 return Visit(DAE->getExpr()); 346 } 347 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 348 return CGF.LoadCXXThis(); 349 } 350 351 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 352 CGF.enterFullExpression(E); 353 CodeGenFunction::RunCleanupsScope Scope(CGF); 354 return Visit(E->getSubExpr()); 355 } 356 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 357 return CGF.EmitCXXNewExpr(E); 358 } 359 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 360 CGF.EmitCXXDeleteExpr(E); 361 return 0; 362 } 363 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { 364 return Builder.getInt1(E->getValue()); 365 } 366 367 Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { 368 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 369 } 370 371 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 372 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 373 } 374 375 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 376 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 377 } 378 379 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 380 // C++ [expr.pseudo]p1: 381 // The result shall only be used as the operand for the function call 382 // operator (), and the result of such a call has type void. The only 383 // effect is the evaluation of the postfix-expression before the dot or 384 // arrow. 385 CGF.EmitScalarExpr(E->getBase()); 386 return 0; 387 } 388 389 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 390 return EmitNullValue(E->getType()); 391 } 392 393 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 394 CGF.EmitCXXThrowExpr(E); 395 return 0; 396 } 397 398 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 399 return Builder.getInt1(E->getValue()); 400 } 401 402 // Binary Operators. 403 Value *EmitMul(const BinOpInfo &Ops) { 404 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 405 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 406 case LangOptions::SOB_Defined: 407 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 408 case LangOptions::SOB_Undefined: 409 if (!CGF.SanOpts->SignedIntegerOverflow) 410 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 411 // Fall through. 412 case LangOptions::SOB_Trapping: 413 return EmitOverflowCheckedBinOp(Ops); 414 } 415 } 416 417 if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 418 return EmitOverflowCheckedBinOp(Ops); 419 420 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 421 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 422 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 423 } 424 /// Create a binary op that checks for overflow. 425 /// Currently only supports +, - and *. 426 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 427 428 // Check for undefined division and modulus behaviors. 429 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 430 llvm::Value *Zero,bool isDiv); 431 // Common helper for getting how wide LHS of shift is. 432 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 433 Value *EmitDiv(const BinOpInfo &Ops); 434 Value *EmitRem(const BinOpInfo &Ops); 435 Value *EmitAdd(const BinOpInfo &Ops); 436 Value *EmitSub(const BinOpInfo &Ops); 437 Value *EmitShl(const BinOpInfo &Ops); 438 Value *EmitShr(const BinOpInfo &Ops); 439 Value *EmitAnd(const BinOpInfo &Ops) { 440 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 441 } 442 Value *EmitXor(const BinOpInfo &Ops) { 443 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 444 } 445 Value *EmitOr (const BinOpInfo &Ops) { 446 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 447 } 448 449 BinOpInfo EmitBinOps(const BinaryOperator *E); 450 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 451 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 452 Value *&Result); 453 454 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 455 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 456 457 // Binary operators and binary compound assignment operators. 458 #define HANDLEBINOP(OP) \ 459 Value *VisitBin ## OP(const BinaryOperator *E) { \ 460 return Emit ## OP(EmitBinOps(E)); \ 461 } \ 462 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 463 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 464 } 465 HANDLEBINOP(Mul) 466 HANDLEBINOP(Div) 467 HANDLEBINOP(Rem) 468 HANDLEBINOP(Add) 469 HANDLEBINOP(Sub) 470 HANDLEBINOP(Shl) 471 HANDLEBINOP(Shr) 472 HANDLEBINOP(And) 473 HANDLEBINOP(Xor) 474 HANDLEBINOP(Or) 475 #undef HANDLEBINOP 476 477 // Comparisons. 478 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 479 unsigned SICmpOpc, unsigned FCmpOpc); 480 #define VISITCOMP(CODE, UI, SI, FP) \ 481 Value *VisitBin##CODE(const BinaryOperator *E) { \ 482 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 483 llvm::FCmpInst::FP); } 484 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 485 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 486 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 487 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 488 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 489 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 490 #undef VISITCOMP 491 492 Value *VisitBinAssign (const BinaryOperator *E); 493 494 Value *VisitBinLAnd (const BinaryOperator *E); 495 Value *VisitBinLOr (const BinaryOperator *E); 496 Value *VisitBinComma (const BinaryOperator *E); 497 498 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 499 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 500 501 // Other Operators. 502 Value *VisitBlockExpr(const BlockExpr *BE); 503 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 504 Value *VisitChooseExpr(ChooseExpr *CE); 505 Value *VisitVAArgExpr(VAArgExpr *VE); 506 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 507 return CGF.EmitObjCStringLiteral(E); 508 } 509 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 510 return CGF.EmitObjCBoxedExpr(E); 511 } 512 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 513 return CGF.EmitObjCArrayLiteral(E); 514 } 515 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 516 return CGF.EmitObjCDictionaryLiteral(E); 517 } 518 Value *VisitAsTypeExpr(AsTypeExpr *CE); 519 Value *VisitAtomicExpr(AtomicExpr *AE); 520 }; 521 } // end anonymous namespace. 522 523 //===----------------------------------------------------------------------===// 524 // Utilities 525 //===----------------------------------------------------------------------===// 526 527 /// EmitConversionToBool - Convert the specified expression value to a 528 /// boolean (i1) truth value. This is equivalent to "Val != 0". 529 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 530 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 531 532 if (SrcType->isRealFloatingType()) 533 return EmitFloatToBoolConversion(Src); 534 535 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 536 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 537 538 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 539 "Unknown scalar type to convert"); 540 541 if (isa<llvm::IntegerType>(Src->getType())) 542 return EmitIntToBoolConversion(Src); 543 544 assert(isa<llvm::PointerType>(Src->getType())); 545 return EmitPointerToBoolConversion(Src); 546 } 547 548 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 549 QualType OrigSrcType, 550 Value *Src, QualType SrcType, 551 QualType DstType, 552 llvm::Type *DstTy) { 553 using llvm::APFloat; 554 using llvm::APSInt; 555 556 llvm::Type *SrcTy = Src->getType(); 557 558 llvm::Value *Check = 0; 559 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 560 // Integer to floating-point. This can fail for unsigned short -> __half 561 // or unsigned __int128 -> float. 562 assert(DstType->isFloatingType()); 563 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 564 565 APFloat LargestFloat = 566 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 567 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 568 569 bool IsExact; 570 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 571 &IsExact) != APFloat::opOK) 572 // The range of representable values of this floating point type includes 573 // all values of this integer type. Don't need an overflow check. 574 return; 575 576 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 577 if (SrcIsUnsigned) 578 Check = Builder.CreateICmpULE(Src, Max); 579 else { 580 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 581 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 582 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 583 Check = Builder.CreateAnd(GE, LE); 584 } 585 } else { 586 // Floating-point to integer or floating-point to floating-point. This has 587 // undefined behavior if the source is +-Inf, NaN, or doesn't fit into the 588 // destination type. 589 const llvm::fltSemantics &SrcSema = 590 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 591 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 592 APFloat MinSrc(SrcSema, APFloat::uninitialized); 593 594 if (isa<llvm::IntegerType>(DstTy)) { 595 unsigned Width = CGF.getContext().getIntWidth(DstType); 596 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 597 598 APSInt Min = APSInt::getMinValue(Width, Unsigned); 599 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 600 APFloat::opOverflow) 601 // Don't need an overflow check for lower bound. Just check for 602 // -Inf/NaN. 603 MinSrc = APFloat::getLargest(SrcSema, true); 604 605 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 606 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 607 APFloat::opOverflow) 608 // Don't need an overflow check for upper bound. Just check for 609 // +Inf/NaN. 610 MaxSrc = APFloat::getLargest(SrcSema, false); 611 } else { 612 const llvm::fltSemantics &DstSema = 613 CGF.getContext().getFloatTypeSemantics(DstType); 614 bool IsInexact; 615 616 MinSrc = APFloat::getLargest(DstSema, true); 617 if (MinSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) & 618 APFloat::opOverflow) 619 MinSrc = APFloat::getLargest(SrcSema, true); 620 621 MaxSrc = APFloat::getLargest(DstSema, false); 622 if (MaxSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) & 623 APFloat::opOverflow) 624 MaxSrc = APFloat::getLargest(SrcSema, false); 625 } 626 627 // If we're converting from __half, convert the range to float to match 628 // the type of src. 629 if (OrigSrcType->isHalfType()) { 630 const llvm::fltSemantics &Sema = 631 CGF.getContext().getFloatTypeSemantics(SrcType); 632 bool IsInexact; 633 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 634 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 635 } 636 637 llvm::Value *GE = 638 Builder.CreateFCmpOGE(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 639 llvm::Value *LE = 640 Builder.CreateFCmpOLE(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 641 Check = Builder.CreateAnd(GE, LE); 642 } 643 644 // FIXME: Provide a SourceLocation. 645 llvm::Constant *StaticArgs[] = { 646 CGF.EmitCheckTypeDescriptor(OrigSrcType), 647 CGF.EmitCheckTypeDescriptor(DstType) 648 }; 649 CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc, 650 CodeGenFunction::CRK_Recoverable); 651 } 652 653 /// EmitScalarConversion - Emit a conversion from the specified type to the 654 /// specified destination type, both of which are LLVM scalar types. 655 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 656 QualType DstType) { 657 SrcType = CGF.getContext().getCanonicalType(SrcType); 658 DstType = CGF.getContext().getCanonicalType(DstType); 659 if (SrcType == DstType) return Src; 660 661 if (DstType->isVoidType()) return 0; 662 663 llvm::Value *OrigSrc = Src; 664 QualType OrigSrcType = SrcType; 665 llvm::Type *SrcTy = Src->getType(); 666 667 // If casting to/from storage-only half FP, use special intrinsics. 668 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 669 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src); 670 SrcType = CGF.getContext().FloatTy; 671 SrcTy = CGF.FloatTy; 672 } 673 674 // Handle conversions to bool first, they are special: comparisons against 0. 675 if (DstType->isBooleanType()) 676 return EmitConversionToBool(Src, SrcType); 677 678 llvm::Type *DstTy = ConvertType(DstType); 679 680 // Ignore conversions like int -> uint. 681 if (SrcTy == DstTy) 682 return Src; 683 684 // Handle pointer conversions next: pointers can only be converted to/from 685 // other pointers and integers. Check for pointer types in terms of LLVM, as 686 // some native types (like Obj-C id) may map to a pointer type. 687 if (isa<llvm::PointerType>(DstTy)) { 688 // The source value may be an integer, or a pointer. 689 if (isa<llvm::PointerType>(SrcTy)) 690 return Builder.CreateBitCast(Src, DstTy, "conv"); 691 692 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 693 // First, convert to the correct width so that we control the kind of 694 // extension. 695 llvm::Type *MiddleTy = CGF.IntPtrTy; 696 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 697 llvm::Value* IntResult = 698 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 699 // Then, cast to pointer. 700 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 701 } 702 703 if (isa<llvm::PointerType>(SrcTy)) { 704 // Must be an ptr to int cast. 705 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 706 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 707 } 708 709 // A scalar can be splatted to an extended vector of the same element type 710 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 711 // Cast the scalar to element type 712 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 713 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 714 715 // Splat the element across to all elements 716 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 717 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 718 } 719 720 // Allow bitcast from vector to integer/fp of the same size. 721 if (isa<llvm::VectorType>(SrcTy) || 722 isa<llvm::VectorType>(DstTy)) 723 return Builder.CreateBitCast(Src, DstTy, "conv"); 724 725 // Finally, we have the arithmetic types: real int/float. 726 Value *Res = NULL; 727 llvm::Type *ResTy = DstTy; 728 729 // An overflowing conversion has undefined behavior if either the source type 730 // or the destination type is a floating-point type. 731 if (CGF.SanOpts->FloatCastOverflow && 732 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 733 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 734 DstTy); 735 736 // Cast to half via float 737 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 738 DstTy = CGF.FloatTy; 739 740 if (isa<llvm::IntegerType>(SrcTy)) { 741 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 742 if (isa<llvm::IntegerType>(DstTy)) 743 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 744 else if (InputSigned) 745 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 746 else 747 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 748 } else if (isa<llvm::IntegerType>(DstTy)) { 749 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 750 if (DstType->isSignedIntegerOrEnumerationType()) 751 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 752 else 753 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 754 } else { 755 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 756 "Unknown real conversion"); 757 if (DstTy->getTypeID() < SrcTy->getTypeID()) 758 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 759 else 760 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 761 } 762 763 if (DstTy != ResTy) { 764 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 765 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res); 766 } 767 768 return Res; 769 } 770 771 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 772 /// type to the specified destination type, where the destination type is an 773 /// LLVM scalar type. 774 Value *ScalarExprEmitter:: 775 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 776 QualType SrcTy, QualType DstTy) { 777 // Get the source element type. 778 SrcTy = SrcTy->getAs<ComplexType>()->getElementType(); 779 780 // Handle conversions to bool first, they are special: comparisons against 0. 781 if (DstTy->isBooleanType()) { 782 // Complex != 0 -> (Real != 0) | (Imag != 0) 783 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 784 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 785 return Builder.CreateOr(Src.first, Src.second, "tobool"); 786 } 787 788 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 789 // the imaginary part of the complex value is discarded and the value of the 790 // real part is converted according to the conversion rules for the 791 // corresponding real type. 792 return EmitScalarConversion(Src.first, SrcTy, DstTy); 793 } 794 795 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 796 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 797 } 798 799 /// \brief Emit a sanitization check for the given "binary" operation (which 800 /// might actually be a unary increment which has been lowered to a binary 801 /// operation). The check passes if \p Check, which is an \c i1, is \c true. 802 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) { 803 StringRef CheckName; 804 SmallVector<llvm::Constant *, 4> StaticData; 805 SmallVector<llvm::Value *, 2> DynamicData; 806 807 BinaryOperatorKind Opcode = Info.Opcode; 808 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 809 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 810 811 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 812 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 813 if (UO && UO->getOpcode() == UO_Minus) { 814 CheckName = "negate_overflow"; 815 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 816 DynamicData.push_back(Info.RHS); 817 } else { 818 if (BinaryOperator::isShiftOp(Opcode)) { 819 // Shift LHS negative or too large, or RHS out of bounds. 820 CheckName = "shift_out_of_bounds"; 821 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 822 StaticData.push_back( 823 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 824 StaticData.push_back( 825 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 826 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 827 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 828 CheckName = "divrem_overflow"; 829 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 830 } else { 831 // Signed arithmetic overflow (+, -, *). 832 switch (Opcode) { 833 case BO_Add: CheckName = "add_overflow"; break; 834 case BO_Sub: CheckName = "sub_overflow"; break; 835 case BO_Mul: CheckName = "mul_overflow"; break; 836 default: llvm_unreachable("unexpected opcode for bin op check"); 837 } 838 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 839 } 840 DynamicData.push_back(Info.LHS); 841 DynamicData.push_back(Info.RHS); 842 } 843 844 CGF.EmitCheck(Check, CheckName, StaticData, DynamicData, 845 CodeGenFunction::CRK_Recoverable); 846 } 847 848 //===----------------------------------------------------------------------===// 849 // Visitor Methods 850 //===----------------------------------------------------------------------===// 851 852 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 853 CGF.ErrorUnsupported(E, "scalar expression"); 854 if (E->getType()->isVoidType()) 855 return 0; 856 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 857 } 858 859 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 860 // Vector Mask Case 861 if (E->getNumSubExprs() == 2 || 862 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 863 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 864 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 865 Value *Mask; 866 867 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 868 unsigned LHSElts = LTy->getNumElements(); 869 870 if (E->getNumSubExprs() == 3) { 871 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 872 873 // Shuffle LHS & RHS into one input vector. 874 SmallVector<llvm::Constant*, 32> concat; 875 for (unsigned i = 0; i != LHSElts; ++i) { 876 concat.push_back(Builder.getInt32(2*i)); 877 concat.push_back(Builder.getInt32(2*i+1)); 878 } 879 880 Value* CV = llvm::ConstantVector::get(concat); 881 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 882 LHSElts *= 2; 883 } else { 884 Mask = RHS; 885 } 886 887 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 888 llvm::Constant* EltMask; 889 890 // Treat vec3 like vec4. 891 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) 892 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 893 (1 << llvm::Log2_32(LHSElts+2))-1); 894 else if ((LHSElts == 3) && (E->getNumSubExprs() == 2)) 895 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 896 (1 << llvm::Log2_32(LHSElts+1))-1); 897 else 898 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 899 (1 << llvm::Log2_32(LHSElts))-1); 900 901 // Mask off the high bits of each shuffle index. 902 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 903 EltMask); 904 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 905 906 // newv = undef 907 // mask = mask & maskbits 908 // for each elt 909 // n = extract mask i 910 // x = extract val n 911 // newv = insert newv, x, i 912 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 913 MTy->getNumElements()); 914 Value* NewV = llvm::UndefValue::get(RTy); 915 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 916 Value *IIndx = Builder.getInt32(i); 917 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 918 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext"); 919 920 // Handle vec3 special since the index will be off by one for the RHS. 921 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) { 922 Value *cmpIndx, *newIndx; 923 cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3), 924 "cmp_shuf_idx"); 925 newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj"); 926 Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx"); 927 } 928 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 929 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 930 } 931 return NewV; 932 } 933 934 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 935 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 936 937 // Handle vec3 special since the index will be off by one for the RHS. 938 llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType()); 939 SmallVector<llvm::Constant*, 32> indices; 940 for (unsigned i = 2; i < E->getNumSubExprs(); i++) { 941 unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 942 if (VTy->getNumElements() == 3 && Idx > 3) 943 Idx -= 1; 944 indices.push_back(Builder.getInt32(Idx)); 945 } 946 947 Value *SV = llvm::ConstantVector::get(indices); 948 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 949 } 950 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 951 llvm::APSInt Value; 952 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 953 if (E->isArrow()) 954 CGF.EmitScalarExpr(E->getBase()); 955 else 956 EmitLValue(E->getBase()); 957 return Builder.getInt(Value); 958 } 959 960 // Emit debug info for aggregate now, if it was delayed to reduce 961 // debug info size. 962 CGDebugInfo *DI = CGF.getDebugInfo(); 963 if (DI && 964 CGF.CGM.getCodeGenOpts().getDebugInfo() 965 == CodeGenOptions::LimitedDebugInfo) { 966 QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType(); 967 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) 968 if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl())) 969 DI->getOrCreateRecordType(PTy->getPointeeType(), 970 M->getParent()->getLocation()); 971 } 972 return EmitLoadOfLValue(E); 973 } 974 975 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 976 TestAndClearIgnoreResultAssign(); 977 978 // Emit subscript expressions in rvalue context's. For most cases, this just 979 // loads the lvalue formed by the subscript expr. However, we have to be 980 // careful, because the base of a vector subscript is occasionally an rvalue, 981 // so we can't get it as an lvalue. 982 if (!E->getBase()->getType()->isVectorType()) 983 return EmitLoadOfLValue(E); 984 985 // Handle the vector case. The base must be a vector, the index must be an 986 // integer value. 987 Value *Base = Visit(E->getBase()); 988 Value *Idx = Visit(E->getIdx()); 989 bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType(); 990 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast"); 991 return Builder.CreateExtractElement(Base, Idx, "vecext"); 992 } 993 994 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 995 unsigned Off, llvm::Type *I32Ty) { 996 int MV = SVI->getMaskValue(Idx); 997 if (MV == -1) 998 return llvm::UndefValue::get(I32Ty); 999 return llvm::ConstantInt::get(I32Ty, Off+MV); 1000 } 1001 1002 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1003 bool Ignore = TestAndClearIgnoreResultAssign(); 1004 (void)Ignore; 1005 assert (Ignore == false && "init list ignored"); 1006 unsigned NumInitElements = E->getNumInits(); 1007 1008 if (E->hadArrayRangeDesignator()) 1009 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1010 1011 llvm::VectorType *VType = 1012 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1013 1014 if (!VType) { 1015 if (NumInitElements == 0) { 1016 // C++11 value-initialization for the scalar. 1017 return EmitNullValue(E->getType()); 1018 } 1019 // We have a scalar in braces. Just use the first element. 1020 return Visit(E->getInit(0)); 1021 } 1022 1023 unsigned ResElts = VType->getNumElements(); 1024 1025 // Loop over initializers collecting the Value for each, and remembering 1026 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1027 // us to fold the shuffle for the swizzle into the shuffle for the vector 1028 // initializer, since LLVM optimizers generally do not want to touch 1029 // shuffles. 1030 unsigned CurIdx = 0; 1031 bool VIsUndefShuffle = false; 1032 llvm::Value *V = llvm::UndefValue::get(VType); 1033 for (unsigned i = 0; i != NumInitElements; ++i) { 1034 Expr *IE = E->getInit(i); 1035 Value *Init = Visit(IE); 1036 SmallVector<llvm::Constant*, 16> Args; 1037 1038 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1039 1040 // Handle scalar elements. If the scalar initializer is actually one 1041 // element of a different vector of the same width, use shuffle instead of 1042 // extract+insert. 1043 if (!VVT) { 1044 if (isa<ExtVectorElementExpr>(IE)) { 1045 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1046 1047 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1048 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1049 Value *LHS = 0, *RHS = 0; 1050 if (CurIdx == 0) { 1051 // insert into undef -> shuffle (src, undef) 1052 Args.push_back(C); 1053 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1054 1055 LHS = EI->getVectorOperand(); 1056 RHS = V; 1057 VIsUndefShuffle = true; 1058 } else if (VIsUndefShuffle) { 1059 // insert into undefshuffle && size match -> shuffle (v, src) 1060 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1061 for (unsigned j = 0; j != CurIdx; ++j) 1062 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1063 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1064 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1065 1066 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1067 RHS = EI->getVectorOperand(); 1068 VIsUndefShuffle = false; 1069 } 1070 if (!Args.empty()) { 1071 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1072 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1073 ++CurIdx; 1074 continue; 1075 } 1076 } 1077 } 1078 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1079 "vecinit"); 1080 VIsUndefShuffle = false; 1081 ++CurIdx; 1082 continue; 1083 } 1084 1085 unsigned InitElts = VVT->getNumElements(); 1086 1087 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1088 // input is the same width as the vector being constructed, generate an 1089 // optimized shuffle of the swizzle input into the result. 1090 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1091 if (isa<ExtVectorElementExpr>(IE)) { 1092 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1093 Value *SVOp = SVI->getOperand(0); 1094 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1095 1096 if (OpTy->getNumElements() == ResElts) { 1097 for (unsigned j = 0; j != CurIdx; ++j) { 1098 // If the current vector initializer is a shuffle with undef, merge 1099 // this shuffle directly into it. 1100 if (VIsUndefShuffle) { 1101 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1102 CGF.Int32Ty)); 1103 } else { 1104 Args.push_back(Builder.getInt32(j)); 1105 } 1106 } 1107 for (unsigned j = 0, je = InitElts; j != je; ++j) 1108 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1109 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1110 1111 if (VIsUndefShuffle) 1112 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1113 1114 Init = SVOp; 1115 } 1116 } 1117 1118 // Extend init to result vector length, and then shuffle its contribution 1119 // to the vector initializer into V. 1120 if (Args.empty()) { 1121 for (unsigned j = 0; j != InitElts; ++j) 1122 Args.push_back(Builder.getInt32(j)); 1123 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1124 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1125 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1126 Mask, "vext"); 1127 1128 Args.clear(); 1129 for (unsigned j = 0; j != CurIdx; ++j) 1130 Args.push_back(Builder.getInt32(j)); 1131 for (unsigned j = 0; j != InitElts; ++j) 1132 Args.push_back(Builder.getInt32(j+Offset)); 1133 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1134 } 1135 1136 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1137 // merging subsequent shuffles into this one. 1138 if (CurIdx == 0) 1139 std::swap(V, Init); 1140 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1141 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1142 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1143 CurIdx += InitElts; 1144 } 1145 1146 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1147 // Emit remaining default initializers. 1148 llvm::Type *EltTy = VType->getElementType(); 1149 1150 // Emit remaining default initializers 1151 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1152 Value *Idx = Builder.getInt32(CurIdx); 1153 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1154 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1155 } 1156 return V; 1157 } 1158 1159 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1160 const Expr *E = CE->getSubExpr(); 1161 1162 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1163 return false; 1164 1165 if (isa<CXXThisExpr>(E)) { 1166 // We always assume that 'this' is never null. 1167 return false; 1168 } 1169 1170 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1171 // And that glvalue casts are never null. 1172 if (ICE->getValueKind() != VK_RValue) 1173 return false; 1174 } 1175 1176 return true; 1177 } 1178 1179 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1180 // have to handle a more broad range of conversions than explicit casts, as they 1181 // handle things like function to ptr-to-function decay etc. 1182 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1183 Expr *E = CE->getSubExpr(); 1184 QualType DestTy = CE->getType(); 1185 CastKind Kind = CE->getCastKind(); 1186 1187 if (!DestTy->isVoidType()) 1188 TestAndClearIgnoreResultAssign(); 1189 1190 // Since almost all cast kinds apply to scalars, this switch doesn't have 1191 // a default case, so the compiler will warn on a missing case. The cases 1192 // are in the same order as in the CastKind enum. 1193 switch (Kind) { 1194 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1195 case CK_BuiltinFnToFnPtr: 1196 llvm_unreachable("builtin functions are handled elsewhere"); 1197 1198 case CK_LValueBitCast: 1199 case CK_ObjCObjectLValueCast: { 1200 Value *V = EmitLValue(E).getAddress(); 1201 V = Builder.CreateBitCast(V, 1202 ConvertType(CGF.getContext().getPointerType(DestTy))); 1203 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy)); 1204 } 1205 1206 case CK_CPointerToObjCPointerCast: 1207 case CK_BlockPointerToObjCPointerCast: 1208 case CK_AnyPointerToBlockPointerCast: 1209 case CK_BitCast: { 1210 Value *Src = Visit(const_cast<Expr*>(E)); 1211 return Builder.CreateBitCast(Src, ConvertType(DestTy)); 1212 } 1213 case CK_AtomicToNonAtomic: 1214 case CK_NonAtomicToAtomic: 1215 case CK_NoOp: 1216 case CK_UserDefinedConversion: 1217 return Visit(const_cast<Expr*>(E)); 1218 1219 case CK_BaseToDerived: { 1220 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1221 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1222 1223 return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl, 1224 CE->path_begin(), CE->path_end(), 1225 ShouldNullCheckClassCastValue(CE)); 1226 } 1227 case CK_UncheckedDerivedToBase: 1228 case CK_DerivedToBase: { 1229 const CXXRecordDecl *DerivedClassDecl = 1230 E->getType()->getPointeeCXXRecordDecl(); 1231 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1232 1233 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 1234 CE->path_begin(), CE->path_end(), 1235 ShouldNullCheckClassCastValue(CE)); 1236 } 1237 case CK_Dynamic: { 1238 Value *V = Visit(const_cast<Expr*>(E)); 1239 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1240 return CGF.EmitDynamicCast(V, DCE); 1241 } 1242 1243 case CK_ArrayToPointerDecay: { 1244 assert(E->getType()->isArrayType() && 1245 "Array to pointer decay must have array source type!"); 1246 1247 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1248 1249 // Note that VLA pointers are always decayed, so we don't need to do 1250 // anything here. 1251 if (!E->getType()->isVariableArrayType()) { 1252 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1253 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1254 ->getElementType()) && 1255 "Expected pointer to array"); 1256 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1257 } 1258 1259 // Make sure the array decay ends up being the right type. This matters if 1260 // the array type was of an incomplete type. 1261 return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType())); 1262 } 1263 case CK_FunctionToPointerDecay: 1264 return EmitLValue(E).getAddress(); 1265 1266 case CK_NullToPointer: 1267 if (MustVisitNullValue(E)) 1268 (void) Visit(E); 1269 1270 return llvm::ConstantPointerNull::get( 1271 cast<llvm::PointerType>(ConvertType(DestTy))); 1272 1273 case CK_NullToMemberPointer: { 1274 if (MustVisitNullValue(E)) 1275 (void) Visit(E); 1276 1277 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1278 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1279 } 1280 1281 case CK_ReinterpretMemberPointer: 1282 case CK_BaseToDerivedMemberPointer: 1283 case CK_DerivedToBaseMemberPointer: { 1284 Value *Src = Visit(E); 1285 1286 // Note that the AST doesn't distinguish between checked and 1287 // unchecked member pointer conversions, so we always have to 1288 // implement checked conversions here. This is inefficient when 1289 // actual control flow may be required in order to perform the 1290 // check, which it is for data member pointers (but not member 1291 // function pointers on Itanium and ARM). 1292 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1293 } 1294 1295 case CK_ARCProduceObject: 1296 return CGF.EmitARCRetainScalarExpr(E); 1297 case CK_ARCConsumeObject: 1298 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1299 case CK_ARCReclaimReturnedObject: { 1300 llvm::Value *value = Visit(E); 1301 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1302 return CGF.EmitObjCConsumeObject(E->getType(), value); 1303 } 1304 case CK_ARCExtendBlockObject: 1305 return CGF.EmitARCExtendBlockObject(E); 1306 1307 case CK_CopyAndAutoreleaseBlockObject: 1308 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1309 1310 case CK_FloatingRealToComplex: 1311 case CK_FloatingComplexCast: 1312 case CK_IntegralRealToComplex: 1313 case CK_IntegralComplexCast: 1314 case CK_IntegralComplexToFloatingComplex: 1315 case CK_FloatingComplexToIntegralComplex: 1316 case CK_ConstructorConversion: 1317 case CK_ToUnion: 1318 llvm_unreachable("scalar cast to non-scalar value"); 1319 1320 case CK_LValueToRValue: 1321 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1322 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1323 return Visit(const_cast<Expr*>(E)); 1324 1325 case CK_IntegralToPointer: { 1326 Value *Src = Visit(const_cast<Expr*>(E)); 1327 1328 // First, convert to the correct width so that we control the kind of 1329 // extension. 1330 llvm::Type *MiddleTy = CGF.IntPtrTy; 1331 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1332 llvm::Value* IntResult = 1333 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1334 1335 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1336 } 1337 case CK_PointerToIntegral: 1338 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1339 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1340 1341 case CK_ToVoid: { 1342 CGF.EmitIgnoredExpr(E); 1343 return 0; 1344 } 1345 case CK_VectorSplat: { 1346 llvm::Type *DstTy = ConvertType(DestTy); 1347 Value *Elt = Visit(const_cast<Expr*>(E)); 1348 Elt = EmitScalarConversion(Elt, E->getType(), 1349 DestTy->getAs<VectorType>()->getElementType()); 1350 1351 // Splat the element across to all elements 1352 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1353 return Builder.CreateVectorSplat(NumElements, Elt, "splat");; 1354 } 1355 1356 case CK_IntegralCast: 1357 case CK_IntegralToFloating: 1358 case CK_FloatingToIntegral: 1359 case CK_FloatingCast: 1360 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1361 case CK_IntegralToBoolean: 1362 return EmitIntToBoolConversion(Visit(E)); 1363 case CK_PointerToBoolean: 1364 return EmitPointerToBoolConversion(Visit(E)); 1365 case CK_FloatingToBoolean: 1366 return EmitFloatToBoolConversion(Visit(E)); 1367 case CK_MemberPointerToBoolean: { 1368 llvm::Value *MemPtr = Visit(E); 1369 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1370 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1371 } 1372 1373 case CK_FloatingComplexToReal: 1374 case CK_IntegralComplexToReal: 1375 return CGF.EmitComplexExpr(E, false, true).first; 1376 1377 case CK_FloatingComplexToBoolean: 1378 case CK_IntegralComplexToBoolean: { 1379 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1380 1381 // TODO: kill this function off, inline appropriate case here 1382 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1383 } 1384 1385 case CK_ZeroToOCLEvent: { 1386 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non event type"); 1387 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1388 } 1389 1390 } 1391 1392 llvm_unreachable("unknown scalar cast"); 1393 } 1394 1395 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1396 CodeGenFunction::StmtExprEvaluation eval(CGF); 1397 return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType()) 1398 .getScalarVal(); 1399 } 1400 1401 //===----------------------------------------------------------------------===// 1402 // Unary Operators 1403 //===----------------------------------------------------------------------===// 1404 1405 llvm::Value *ScalarExprEmitter:: 1406 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1407 llvm::Value *InVal, 1408 llvm::Value *NextVal, bool IsInc) { 1409 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1410 case LangOptions::SOB_Defined: 1411 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1412 case LangOptions::SOB_Undefined: 1413 if (!CGF.SanOpts->SignedIntegerOverflow) 1414 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1415 // Fall through. 1416 case LangOptions::SOB_Trapping: 1417 BinOpInfo BinOp; 1418 BinOp.LHS = InVal; 1419 BinOp.RHS = NextVal; 1420 BinOp.Ty = E->getType(); 1421 BinOp.Opcode = BO_Add; 1422 BinOp.FPContractable = false; 1423 BinOp.E = E; 1424 return EmitOverflowCheckedBinOp(BinOp); 1425 } 1426 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1427 } 1428 1429 llvm::Value * 1430 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1431 bool isInc, bool isPre) { 1432 1433 QualType type = E->getSubExpr()->getType(); 1434 llvm::Value *value = EmitLoadOfLValue(LV); 1435 llvm::Value *input = value; 1436 llvm::PHINode *atomicPHI = 0; 1437 1438 int amount = (isInc ? 1 : -1); 1439 1440 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1441 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1442 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1443 Builder.CreateBr(opBB); 1444 Builder.SetInsertPoint(opBB); 1445 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1446 atomicPHI->addIncoming(value, startBB); 1447 type = atomicTy->getValueType(); 1448 value = atomicPHI; 1449 } 1450 1451 // Special case of integer increment that we have to check first: bool++. 1452 // Due to promotion rules, we get: 1453 // bool++ -> bool = bool + 1 1454 // -> bool = (int)bool + 1 1455 // -> bool = ((int)bool + 1 != 0) 1456 // An interesting aspect of this is that increment is always true. 1457 // Decrement does not have this property. 1458 if (isInc && type->isBooleanType()) { 1459 value = Builder.getTrue(); 1460 1461 // Most common case by far: integer increment. 1462 } else if (type->isIntegerType()) { 1463 1464 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1465 1466 // Note that signed integer inc/dec with width less than int can't 1467 // overflow because of promotion rules; we're just eliding a few steps here. 1468 if (value->getType()->getPrimitiveSizeInBits() >= 1469 CGF.IntTy->getBitWidth() && 1470 type->isSignedIntegerOrEnumerationType()) { 1471 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1472 } else if (value->getType()->getPrimitiveSizeInBits() >= 1473 CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() && 1474 CGF.SanOpts->UnsignedIntegerOverflow) { 1475 BinOpInfo BinOp; 1476 BinOp.LHS = value; 1477 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1478 BinOp.Ty = E->getType(); 1479 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1480 BinOp.FPContractable = false; 1481 BinOp.E = E; 1482 value = EmitOverflowCheckedBinOp(BinOp); 1483 } else 1484 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1485 1486 // Next most common: pointer increment. 1487 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1488 QualType type = ptr->getPointeeType(); 1489 1490 // VLA types don't have constant size. 1491 if (const VariableArrayType *vla 1492 = CGF.getContext().getAsVariableArrayType(type)) { 1493 llvm::Value *numElts = CGF.getVLASize(vla).first; 1494 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1495 if (CGF.getLangOpts().isSignedOverflowDefined()) 1496 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1497 else 1498 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1499 1500 // Arithmetic on function pointers (!) is just +-1. 1501 } else if (type->isFunctionType()) { 1502 llvm::Value *amt = Builder.getInt32(amount); 1503 1504 value = CGF.EmitCastToVoidPtr(value); 1505 if (CGF.getLangOpts().isSignedOverflowDefined()) 1506 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1507 else 1508 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1509 value = Builder.CreateBitCast(value, input->getType()); 1510 1511 // For everything else, we can just do a simple increment. 1512 } else { 1513 llvm::Value *amt = Builder.getInt32(amount); 1514 if (CGF.getLangOpts().isSignedOverflowDefined()) 1515 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1516 else 1517 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1518 } 1519 1520 // Vector increment/decrement. 1521 } else if (type->isVectorType()) { 1522 if (type->hasIntegerRepresentation()) { 1523 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1524 1525 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1526 } else { 1527 value = Builder.CreateFAdd( 1528 value, 1529 llvm::ConstantFP::get(value->getType(), amount), 1530 isInc ? "inc" : "dec"); 1531 } 1532 1533 // Floating point. 1534 } else if (type->isRealFloatingType()) { 1535 // Add the inc/dec to the real part. 1536 llvm::Value *amt; 1537 1538 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1539 // Another special case: half FP increment should be done via float 1540 value = 1541 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), 1542 input); 1543 } 1544 1545 if (value->getType()->isFloatTy()) 1546 amt = llvm::ConstantFP::get(VMContext, 1547 llvm::APFloat(static_cast<float>(amount))); 1548 else if (value->getType()->isDoubleTy()) 1549 amt = llvm::ConstantFP::get(VMContext, 1550 llvm::APFloat(static_cast<double>(amount))); 1551 else { 1552 llvm::APFloat F(static_cast<float>(amount)); 1553 bool ignored; 1554 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero, 1555 &ignored); 1556 amt = llvm::ConstantFP::get(VMContext, F); 1557 } 1558 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1559 1560 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 1561 value = 1562 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), 1563 value); 1564 1565 // Objective-C pointer types. 1566 } else { 1567 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1568 value = CGF.EmitCastToVoidPtr(value); 1569 1570 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1571 if (!isInc) size = -size; 1572 llvm::Value *sizeValue = 1573 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1574 1575 if (CGF.getLangOpts().isSignedOverflowDefined()) 1576 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1577 else 1578 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1579 value = Builder.CreateBitCast(value, input->getType()); 1580 } 1581 1582 if (atomicPHI) { 1583 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1584 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1585 llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI, 1586 value, llvm::SequentiallyConsistent); 1587 atomicPHI->addIncoming(old, opBB); 1588 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1589 Builder.CreateCondBr(success, contBB, opBB); 1590 Builder.SetInsertPoint(contBB); 1591 return isPre ? value : input; 1592 } 1593 1594 // Store the updated result through the lvalue. 1595 if (LV.isBitField()) 1596 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1597 else 1598 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1599 1600 // If this is a postinc, return the value read from memory, otherwise use the 1601 // updated value. 1602 return isPre ? value : input; 1603 } 1604 1605 1606 1607 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1608 TestAndClearIgnoreResultAssign(); 1609 // Emit unary minus with EmitSub so we handle overflow cases etc. 1610 BinOpInfo BinOp; 1611 BinOp.RHS = Visit(E->getSubExpr()); 1612 1613 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1614 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1615 else 1616 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1617 BinOp.Ty = E->getType(); 1618 BinOp.Opcode = BO_Sub; 1619 BinOp.FPContractable = false; 1620 BinOp.E = E; 1621 return EmitSub(BinOp); 1622 } 1623 1624 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1625 TestAndClearIgnoreResultAssign(); 1626 Value *Op = Visit(E->getSubExpr()); 1627 return Builder.CreateNot(Op, "neg"); 1628 } 1629 1630 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1631 1632 // Perform vector logical not on comparison with zero vector. 1633 if (E->getType()->isExtVectorType()) { 1634 Value *Oper = Visit(E->getSubExpr()); 1635 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1636 Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1637 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1638 } 1639 1640 // Compare operand to zero. 1641 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1642 1643 // Invert value. 1644 // TODO: Could dynamically modify easy computations here. For example, if 1645 // the operand is an icmp ne, turn into icmp eq. 1646 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1647 1648 // ZExt result to the expr type. 1649 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1650 } 1651 1652 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1653 // Try folding the offsetof to a constant. 1654 llvm::APSInt Value; 1655 if (E->EvaluateAsInt(Value, CGF.getContext())) 1656 return Builder.getInt(Value); 1657 1658 // Loop over the components of the offsetof to compute the value. 1659 unsigned n = E->getNumComponents(); 1660 llvm::Type* ResultType = ConvertType(E->getType()); 1661 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1662 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1663 for (unsigned i = 0; i != n; ++i) { 1664 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1665 llvm::Value *Offset = 0; 1666 switch (ON.getKind()) { 1667 case OffsetOfExpr::OffsetOfNode::Array: { 1668 // Compute the index 1669 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1670 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1671 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1672 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1673 1674 // Save the element type 1675 CurrentType = 1676 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1677 1678 // Compute the element size 1679 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1680 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1681 1682 // Multiply out to compute the result 1683 Offset = Builder.CreateMul(Idx, ElemSize); 1684 break; 1685 } 1686 1687 case OffsetOfExpr::OffsetOfNode::Field: { 1688 FieldDecl *MemberDecl = ON.getField(); 1689 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1690 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1691 1692 // Compute the index of the field in its parent. 1693 unsigned i = 0; 1694 // FIXME: It would be nice if we didn't have to loop here! 1695 for (RecordDecl::field_iterator Field = RD->field_begin(), 1696 FieldEnd = RD->field_end(); 1697 Field != FieldEnd; ++Field, ++i) { 1698 if (*Field == MemberDecl) 1699 break; 1700 } 1701 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1702 1703 // Compute the offset to the field 1704 int64_t OffsetInt = RL.getFieldOffset(i) / 1705 CGF.getContext().getCharWidth(); 1706 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1707 1708 // Save the element type. 1709 CurrentType = MemberDecl->getType(); 1710 break; 1711 } 1712 1713 case OffsetOfExpr::OffsetOfNode::Identifier: 1714 llvm_unreachable("dependent __builtin_offsetof"); 1715 1716 case OffsetOfExpr::OffsetOfNode::Base: { 1717 if (ON.getBase()->isVirtual()) { 1718 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1719 continue; 1720 } 1721 1722 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1723 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1724 1725 // Save the element type. 1726 CurrentType = ON.getBase()->getType(); 1727 1728 // Compute the offset to the base. 1729 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1730 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1731 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1732 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1733 break; 1734 } 1735 } 1736 Result = Builder.CreateAdd(Result, Offset); 1737 } 1738 return Result; 1739 } 1740 1741 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1742 /// argument of the sizeof expression as an integer. 1743 Value * 1744 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1745 const UnaryExprOrTypeTraitExpr *E) { 1746 QualType TypeToSize = E->getTypeOfArgument(); 1747 if (E->getKind() == UETT_SizeOf) { 1748 if (const VariableArrayType *VAT = 1749 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1750 if (E->isArgumentType()) { 1751 // sizeof(type) - make sure to emit the VLA size. 1752 CGF.EmitVariablyModifiedType(TypeToSize); 1753 } else { 1754 // C99 6.5.3.4p2: If the argument is an expression of type 1755 // VLA, it is evaluated. 1756 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1757 } 1758 1759 QualType eltType; 1760 llvm::Value *numElts; 1761 llvm::tie(numElts, eltType) = CGF.getVLASize(VAT); 1762 1763 llvm::Value *size = numElts; 1764 1765 // Scale the number of non-VLA elements by the non-VLA element size. 1766 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1767 if (!eltSize.isOne()) 1768 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1769 1770 return size; 1771 } 1772 } 1773 1774 // If this isn't sizeof(vla), the result must be constant; use the constant 1775 // folding logic so we don't have to duplicate it here. 1776 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1777 } 1778 1779 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1780 Expr *Op = E->getSubExpr(); 1781 if (Op->getType()->isAnyComplexType()) { 1782 // If it's an l-value, load through the appropriate subobject l-value. 1783 // Note that we have to ask E because Op might be an l-value that 1784 // this won't work for, e.g. an Obj-C property. 1785 if (E->isGLValue()) 1786 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1787 1788 // Otherwise, calculate and project. 1789 return CGF.EmitComplexExpr(Op, false, true).first; 1790 } 1791 1792 return Visit(Op); 1793 } 1794 1795 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1796 Expr *Op = E->getSubExpr(); 1797 if (Op->getType()->isAnyComplexType()) { 1798 // If it's an l-value, load through the appropriate subobject l-value. 1799 // Note that we have to ask E because Op might be an l-value that 1800 // this won't work for, e.g. an Obj-C property. 1801 if (Op->isGLValue()) 1802 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1803 1804 // Otherwise, calculate and project. 1805 return CGF.EmitComplexExpr(Op, true, false).second; 1806 } 1807 1808 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1809 // effects are evaluated, but not the actual value. 1810 if (Op->isGLValue()) 1811 CGF.EmitLValue(Op); 1812 else 1813 CGF.EmitScalarExpr(Op, true); 1814 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1815 } 1816 1817 //===----------------------------------------------------------------------===// 1818 // Binary Operators 1819 //===----------------------------------------------------------------------===// 1820 1821 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1822 TestAndClearIgnoreResultAssign(); 1823 BinOpInfo Result; 1824 Result.LHS = Visit(E->getLHS()); 1825 Result.RHS = Visit(E->getRHS()); 1826 Result.Ty = E->getType(); 1827 Result.Opcode = E->getOpcode(); 1828 Result.FPContractable = E->isFPContractable(); 1829 Result.E = E; 1830 return Result; 1831 } 1832 1833 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 1834 const CompoundAssignOperator *E, 1835 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 1836 Value *&Result) { 1837 QualType LHSTy = E->getLHS()->getType(); 1838 BinOpInfo OpInfo; 1839 1840 if (E->getComputationResultType()->isAnyComplexType()) { 1841 // This needs to go through the complex expression emitter, but it's a tad 1842 // complicated to do that... I'm leaving it out for now. (Note that we do 1843 // actually need the imaginary part of the RHS for multiplication and 1844 // division.) 1845 CGF.ErrorUnsupported(E, "complex compound assignment"); 1846 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1847 return LValue(); 1848 } 1849 1850 // Emit the RHS first. __block variables need to have the rhs evaluated 1851 // first, plus this should improve codegen a little. 1852 OpInfo.RHS = Visit(E->getRHS()); 1853 OpInfo.Ty = E->getComputationResultType(); 1854 OpInfo.Opcode = E->getOpcode(); 1855 OpInfo.FPContractable = false; 1856 OpInfo.E = E; 1857 // Load/convert the LHS. 1858 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1859 OpInfo.LHS = EmitLoadOfLValue(LHSLV); 1860 1861 llvm::PHINode *atomicPHI = 0; 1862 if (LHSTy->isAtomicType()) { 1863 // FIXME: For floating point types, we should be saving and restoring the 1864 // floating point environment in the loop. 1865 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1866 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1867 Builder.CreateBr(opBB); 1868 Builder.SetInsertPoint(opBB); 1869 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 1870 atomicPHI->addIncoming(OpInfo.LHS, startBB); 1871 OpInfo.LHS = atomicPHI; 1872 } 1873 1874 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 1875 E->getComputationLHSType()); 1876 1877 // Expand the binary operator. 1878 Result = (this->*Func)(OpInfo); 1879 1880 // Convert the result back to the LHS type. 1881 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 1882 1883 if (atomicPHI) { 1884 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1885 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1886 llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI, 1887 Result, llvm::SequentiallyConsistent); 1888 atomicPHI->addIncoming(old, opBB); 1889 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1890 Builder.CreateCondBr(success, contBB, opBB); 1891 Builder.SetInsertPoint(contBB); 1892 return LHSLV; 1893 } 1894 1895 // Store the result value into the LHS lvalue. Bit-fields are handled 1896 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 1897 // 'An assignment expression has the value of the left operand after the 1898 // assignment...'. 1899 if (LHSLV.isBitField()) 1900 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 1901 else 1902 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 1903 1904 return LHSLV; 1905 } 1906 1907 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 1908 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 1909 bool Ignore = TestAndClearIgnoreResultAssign(); 1910 Value *RHS; 1911 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 1912 1913 // If the result is clearly ignored, return now. 1914 if (Ignore) 1915 return 0; 1916 1917 // The result of an assignment in C is the assigned r-value. 1918 if (!CGF.getLangOpts().CPlusPlus) 1919 return RHS; 1920 1921 // If the lvalue is non-volatile, return the computed value of the assignment. 1922 if (!LHS.isVolatileQualified()) 1923 return RHS; 1924 1925 // Otherwise, reload the value. 1926 return EmitLoadOfLValue(LHS); 1927 } 1928 1929 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 1930 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 1931 llvm::Value *Cond = 0; 1932 1933 if (CGF.SanOpts->IntegerDivideByZero) 1934 Cond = Builder.CreateICmpNE(Ops.RHS, Zero); 1935 1936 if (CGF.SanOpts->SignedIntegerOverflow && 1937 Ops.Ty->hasSignedIntegerRepresentation()) { 1938 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 1939 1940 llvm::Value *IntMin = 1941 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 1942 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 1943 1944 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 1945 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 1946 llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 1947 Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow; 1948 } 1949 1950 if (Cond) 1951 EmitBinOpCheck(Cond, Ops); 1952 } 1953 1954 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 1955 if ((CGF.SanOpts->IntegerDivideByZero || 1956 CGF.SanOpts->SignedIntegerOverflow) && 1957 Ops.Ty->isIntegerType()) { 1958 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 1959 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 1960 } else if (CGF.SanOpts->FloatDivideByZero && 1961 Ops.Ty->isRealFloatingType()) { 1962 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 1963 EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops); 1964 } 1965 1966 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 1967 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 1968 if (CGF.getLangOpts().OpenCL) { 1969 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 1970 llvm::Type *ValTy = Val->getType(); 1971 if (ValTy->isFloatTy() || 1972 (isa<llvm::VectorType>(ValTy) && 1973 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 1974 CGF.SetFPAccuracy(Val, 2.5); 1975 } 1976 return Val; 1977 } 1978 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 1979 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 1980 else 1981 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 1982 } 1983 1984 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 1985 // Rem in C can't be a floating point type: C99 6.5.5p2. 1986 if (CGF.SanOpts->IntegerDivideByZero) { 1987 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 1988 1989 if (Ops.Ty->isIntegerType()) 1990 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 1991 } 1992 1993 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 1994 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 1995 else 1996 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 1997 } 1998 1999 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2000 unsigned IID; 2001 unsigned OpID = 0; 2002 2003 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2004 switch (Ops.Opcode) { 2005 case BO_Add: 2006 case BO_AddAssign: 2007 OpID = 1; 2008 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2009 llvm::Intrinsic::uadd_with_overflow; 2010 break; 2011 case BO_Sub: 2012 case BO_SubAssign: 2013 OpID = 2; 2014 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2015 llvm::Intrinsic::usub_with_overflow; 2016 break; 2017 case BO_Mul: 2018 case BO_MulAssign: 2019 OpID = 3; 2020 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2021 llvm::Intrinsic::umul_with_overflow; 2022 break; 2023 default: 2024 llvm_unreachable("Unsupported operation for overflow detection"); 2025 } 2026 OpID <<= 1; 2027 if (isSigned) 2028 OpID |= 1; 2029 2030 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2031 2032 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2033 2034 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2035 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2036 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2037 2038 // Handle overflow with llvm.trap if no custom handler has been specified. 2039 const std::string *handlerName = 2040 &CGF.getLangOpts().OverflowHandler; 2041 if (handlerName->empty()) { 2042 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2043 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2044 if (!isSigned || CGF.SanOpts->SignedIntegerOverflow) 2045 EmitBinOpCheck(Builder.CreateNot(overflow), Ops); 2046 else 2047 CGF.EmitTrapvCheck(Builder.CreateNot(overflow)); 2048 return result; 2049 } 2050 2051 // Branch in case of overflow. 2052 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2053 llvm::Function::iterator insertPt = initialBB; 2054 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2055 llvm::next(insertPt)); 2056 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2057 2058 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2059 2060 // If an overflow handler is set, then we want to call it and then use its 2061 // result, if it returns. 2062 Builder.SetInsertPoint(overflowBB); 2063 2064 // Get the overflow handler. 2065 llvm::Type *Int8Ty = CGF.Int8Ty; 2066 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2067 llvm::FunctionType *handlerTy = 2068 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2069 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2070 2071 // Sign extend the args to 64-bit, so that we can use the same handler for 2072 // all types of overflow. 2073 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2074 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2075 2076 // Call the handler with the two arguments, the operation, and the size of 2077 // the result. 2078 llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs, 2079 Builder.getInt8(OpID), 2080 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())); 2081 2082 // Truncate the result back to the desired size. 2083 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2084 Builder.CreateBr(continueBB); 2085 2086 Builder.SetInsertPoint(continueBB); 2087 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2088 phi->addIncoming(result, initialBB); 2089 phi->addIncoming(handlerResult, overflowBB); 2090 2091 return phi; 2092 } 2093 2094 /// Emit pointer + index arithmetic. 2095 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2096 const BinOpInfo &op, 2097 bool isSubtraction) { 2098 // Must have binary (not unary) expr here. Unary pointer 2099 // increment/decrement doesn't use this path. 2100 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2101 2102 Value *pointer = op.LHS; 2103 Expr *pointerOperand = expr->getLHS(); 2104 Value *index = op.RHS; 2105 Expr *indexOperand = expr->getRHS(); 2106 2107 // In a subtraction, the LHS is always the pointer. 2108 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2109 std::swap(pointer, index); 2110 std::swap(pointerOperand, indexOperand); 2111 } 2112 2113 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2114 if (width != CGF.PointerWidthInBits) { 2115 // Zero-extend or sign-extend the pointer value according to 2116 // whether the index is signed or not. 2117 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2118 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2119 "idx.ext"); 2120 } 2121 2122 // If this is subtraction, negate the index. 2123 if (isSubtraction) 2124 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2125 2126 const PointerType *pointerType 2127 = pointerOperand->getType()->getAs<PointerType>(); 2128 if (!pointerType) { 2129 QualType objectType = pointerOperand->getType() 2130 ->castAs<ObjCObjectPointerType>() 2131 ->getPointeeType(); 2132 llvm::Value *objectSize 2133 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2134 2135 index = CGF.Builder.CreateMul(index, objectSize); 2136 2137 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2138 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2139 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2140 } 2141 2142 QualType elementType = pointerType->getPointeeType(); 2143 if (const VariableArrayType *vla 2144 = CGF.getContext().getAsVariableArrayType(elementType)) { 2145 // The element count here is the total number of non-VLA elements. 2146 llvm::Value *numElements = CGF.getVLASize(vla).first; 2147 2148 // Effectively, the multiply by the VLA size is part of the GEP. 2149 // GEP indexes are signed, and scaling an index isn't permitted to 2150 // signed-overflow, so we use the same semantics for our explicit 2151 // multiply. We suppress this if overflow is not undefined behavior. 2152 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2153 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2154 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2155 } else { 2156 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2157 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2158 } 2159 return pointer; 2160 } 2161 2162 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2163 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2164 // future proof. 2165 if (elementType->isVoidType() || elementType->isFunctionType()) { 2166 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2167 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2168 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2169 } 2170 2171 if (CGF.getLangOpts().isSignedOverflowDefined()) 2172 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2173 2174 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2175 } 2176 2177 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2178 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2179 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2180 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2181 // efficient operations. 2182 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2183 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2184 bool negMul, bool negAdd) { 2185 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2186 2187 Value *MulOp0 = MulOp->getOperand(0); 2188 Value *MulOp1 = MulOp->getOperand(1); 2189 if (negMul) { 2190 MulOp0 = 2191 Builder.CreateFSub( 2192 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2193 "neg"); 2194 } else if (negAdd) { 2195 Addend = 2196 Builder.CreateFSub( 2197 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2198 "neg"); 2199 } 2200 2201 Value *FMulAdd = 2202 Builder.CreateCall3( 2203 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2204 MulOp0, MulOp1, Addend); 2205 MulOp->eraseFromParent(); 2206 2207 return FMulAdd; 2208 } 2209 2210 // Check whether it would be legal to emit an fmuladd intrinsic call to 2211 // represent op and if so, build the fmuladd. 2212 // 2213 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2214 // Does NOT check the type of the operation - it's assumed that this function 2215 // will be called from contexts where it's known that the type is contractable. 2216 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2217 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2218 bool isSub=false) { 2219 2220 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2221 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2222 "Only fadd/fsub can be the root of an fmuladd."); 2223 2224 // Check whether this op is marked as fusable. 2225 if (!op.FPContractable) 2226 return 0; 2227 2228 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2229 // either disabled, or handled entirely by the LLVM backend). 2230 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2231 return 0; 2232 2233 // We have a potentially fusable op. Look for a mul on one of the operands. 2234 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2235 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2236 assert(LHSBinOp->getNumUses() == 0 && 2237 "Operations with multiple uses shouldn't be contracted."); 2238 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2239 } 2240 } else if (llvm::BinaryOperator* RHSBinOp = 2241 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2242 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2243 assert(RHSBinOp->getNumUses() == 0 && 2244 "Operations with multiple uses shouldn't be contracted."); 2245 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2246 } 2247 } 2248 2249 return 0; 2250 } 2251 2252 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2253 if (op.LHS->getType()->isPointerTy() || 2254 op.RHS->getType()->isPointerTy()) 2255 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2256 2257 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2258 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2259 case LangOptions::SOB_Defined: 2260 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2261 case LangOptions::SOB_Undefined: 2262 if (!CGF.SanOpts->SignedIntegerOverflow) 2263 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2264 // Fall through. 2265 case LangOptions::SOB_Trapping: 2266 return EmitOverflowCheckedBinOp(op); 2267 } 2268 } 2269 2270 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2271 return EmitOverflowCheckedBinOp(op); 2272 2273 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2274 // Try to form an fmuladd. 2275 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2276 return FMulAdd; 2277 2278 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2279 } 2280 2281 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2282 } 2283 2284 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2285 // The LHS is always a pointer if either side is. 2286 if (!op.LHS->getType()->isPointerTy()) { 2287 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2288 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2289 case LangOptions::SOB_Defined: 2290 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2291 case LangOptions::SOB_Undefined: 2292 if (!CGF.SanOpts->SignedIntegerOverflow) 2293 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2294 // Fall through. 2295 case LangOptions::SOB_Trapping: 2296 return EmitOverflowCheckedBinOp(op); 2297 } 2298 } 2299 2300 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2301 return EmitOverflowCheckedBinOp(op); 2302 2303 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2304 // Try to form an fmuladd. 2305 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2306 return FMulAdd; 2307 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2308 } 2309 2310 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2311 } 2312 2313 // If the RHS is not a pointer, then we have normal pointer 2314 // arithmetic. 2315 if (!op.RHS->getType()->isPointerTy()) 2316 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2317 2318 // Otherwise, this is a pointer subtraction. 2319 2320 // Do the raw subtraction part. 2321 llvm::Value *LHS 2322 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2323 llvm::Value *RHS 2324 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2325 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2326 2327 // Okay, figure out the element size. 2328 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2329 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2330 2331 llvm::Value *divisor = 0; 2332 2333 // For a variable-length array, this is going to be non-constant. 2334 if (const VariableArrayType *vla 2335 = CGF.getContext().getAsVariableArrayType(elementType)) { 2336 llvm::Value *numElements; 2337 llvm::tie(numElements, elementType) = CGF.getVLASize(vla); 2338 2339 divisor = numElements; 2340 2341 // Scale the number of non-VLA elements by the non-VLA element size. 2342 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2343 if (!eltSize.isOne()) 2344 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2345 2346 // For everything elese, we can just compute it, safe in the 2347 // assumption that Sema won't let anything through that we can't 2348 // safely compute the size of. 2349 } else { 2350 CharUnits elementSize; 2351 // Handle GCC extension for pointer arithmetic on void* and 2352 // function pointer types. 2353 if (elementType->isVoidType() || elementType->isFunctionType()) 2354 elementSize = CharUnits::One(); 2355 else 2356 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2357 2358 // Don't even emit the divide for element size of 1. 2359 if (elementSize.isOne()) 2360 return diffInChars; 2361 2362 divisor = CGF.CGM.getSize(elementSize); 2363 } 2364 2365 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2366 // pointer difference in C is only defined in the case where both operands 2367 // are pointing to elements of an array. 2368 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2369 } 2370 2371 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2372 llvm::IntegerType *Ty; 2373 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2374 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2375 else 2376 Ty = cast<llvm::IntegerType>(LHS->getType()); 2377 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2378 } 2379 2380 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2381 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2382 // RHS to the same size as the LHS. 2383 Value *RHS = Ops.RHS; 2384 if (Ops.LHS->getType() != RHS->getType()) 2385 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2386 2387 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2388 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2389 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2390 // FIXME: Emit the branching explicitly rather than emitting the check 2391 // twice. 2392 EmitBinOpCheck(Builder.CreateICmpULE(RHS, WidthMinusOne), Ops); 2393 2394 if (Ops.Ty->hasSignedIntegerRepresentation()) { 2395 // Check whether we are shifting any non-zero bits off the top of the 2396 // integer. 2397 llvm::Value *BitsShiftedOff = 2398 Builder.CreateLShr(Ops.LHS, 2399 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2400 /*NUW*/true, /*NSW*/true), 2401 "shl.check"); 2402 if (CGF.getLangOpts().CPlusPlus) { 2403 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2404 // Under C++11's rules, shifting a 1 bit into the sign bit is 2405 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2406 // define signed left shifts, so we use the C99 and C++11 rules there). 2407 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2408 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2409 } 2410 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2411 EmitBinOpCheck(Builder.CreateICmpEQ(BitsShiftedOff, Zero), Ops); 2412 } 2413 } 2414 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2415 if (CGF.getLangOpts().OpenCL) 2416 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2417 2418 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2419 } 2420 2421 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2422 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2423 // RHS to the same size as the LHS. 2424 Value *RHS = Ops.RHS; 2425 if (Ops.LHS->getType() != RHS->getType()) 2426 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2427 2428 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2429 isa<llvm::IntegerType>(Ops.LHS->getType())) 2430 EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops); 2431 2432 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2433 if (CGF.getLangOpts().OpenCL) 2434 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2435 2436 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2437 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2438 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2439 } 2440 2441 enum IntrinsicType { VCMPEQ, VCMPGT }; 2442 // return corresponding comparison intrinsic for given vector type 2443 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2444 BuiltinType::Kind ElemKind) { 2445 switch (ElemKind) { 2446 default: llvm_unreachable("unexpected element type"); 2447 case BuiltinType::Char_U: 2448 case BuiltinType::UChar: 2449 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2450 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2451 case BuiltinType::Char_S: 2452 case BuiltinType::SChar: 2453 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2454 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2455 case BuiltinType::UShort: 2456 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2457 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2458 case BuiltinType::Short: 2459 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2460 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2461 case BuiltinType::UInt: 2462 case BuiltinType::ULong: 2463 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2464 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2465 case BuiltinType::Int: 2466 case BuiltinType::Long: 2467 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2468 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2469 case BuiltinType::Float: 2470 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2471 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2472 } 2473 } 2474 2475 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2476 unsigned SICmpOpc, unsigned FCmpOpc) { 2477 TestAndClearIgnoreResultAssign(); 2478 Value *Result; 2479 QualType LHSTy = E->getLHS()->getType(); 2480 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2481 assert(E->getOpcode() == BO_EQ || 2482 E->getOpcode() == BO_NE); 2483 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2484 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2485 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2486 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2487 } else if (!LHSTy->isAnyComplexType()) { 2488 Value *LHS = Visit(E->getLHS()); 2489 Value *RHS = Visit(E->getRHS()); 2490 2491 // If AltiVec, the comparison results in a numeric type, so we use 2492 // intrinsics comparing vectors and giving 0 or 1 as a result 2493 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2494 // constants for mapping CR6 register bits to predicate result 2495 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2496 2497 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2498 2499 // in several cases vector arguments order will be reversed 2500 Value *FirstVecArg = LHS, 2501 *SecondVecArg = RHS; 2502 2503 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2504 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2505 BuiltinType::Kind ElementKind = BTy->getKind(); 2506 2507 switch(E->getOpcode()) { 2508 default: llvm_unreachable("is not a comparison operation"); 2509 case BO_EQ: 2510 CR6 = CR6_LT; 2511 ID = GetIntrinsic(VCMPEQ, ElementKind); 2512 break; 2513 case BO_NE: 2514 CR6 = CR6_EQ; 2515 ID = GetIntrinsic(VCMPEQ, ElementKind); 2516 break; 2517 case BO_LT: 2518 CR6 = CR6_LT; 2519 ID = GetIntrinsic(VCMPGT, ElementKind); 2520 std::swap(FirstVecArg, SecondVecArg); 2521 break; 2522 case BO_GT: 2523 CR6 = CR6_LT; 2524 ID = GetIntrinsic(VCMPGT, ElementKind); 2525 break; 2526 case BO_LE: 2527 if (ElementKind == BuiltinType::Float) { 2528 CR6 = CR6_LT; 2529 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2530 std::swap(FirstVecArg, SecondVecArg); 2531 } 2532 else { 2533 CR6 = CR6_EQ; 2534 ID = GetIntrinsic(VCMPGT, ElementKind); 2535 } 2536 break; 2537 case BO_GE: 2538 if (ElementKind == BuiltinType::Float) { 2539 CR6 = CR6_LT; 2540 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2541 } 2542 else { 2543 CR6 = CR6_EQ; 2544 ID = GetIntrinsic(VCMPGT, ElementKind); 2545 std::swap(FirstVecArg, SecondVecArg); 2546 } 2547 break; 2548 } 2549 2550 Value *CR6Param = Builder.getInt32(CR6); 2551 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2552 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2553 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2554 } 2555 2556 if (LHS->getType()->isFPOrFPVectorTy()) { 2557 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2558 LHS, RHS, "cmp"); 2559 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2560 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2561 LHS, RHS, "cmp"); 2562 } else { 2563 // Unsigned integers and pointers. 2564 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2565 LHS, RHS, "cmp"); 2566 } 2567 2568 // If this is a vector comparison, sign extend the result to the appropriate 2569 // vector integer type and return it (don't convert to bool). 2570 if (LHSTy->isVectorType()) 2571 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2572 2573 } else { 2574 // Complex Comparison: can only be an equality comparison. 2575 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 2576 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 2577 2578 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 2579 2580 Value *ResultR, *ResultI; 2581 if (CETy->isRealFloatingType()) { 2582 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2583 LHS.first, RHS.first, "cmp.r"); 2584 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2585 LHS.second, RHS.second, "cmp.i"); 2586 } else { 2587 // Complex comparisons can only be equality comparisons. As such, signed 2588 // and unsigned opcodes are the same. 2589 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2590 LHS.first, RHS.first, "cmp.r"); 2591 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2592 LHS.second, RHS.second, "cmp.i"); 2593 } 2594 2595 if (E->getOpcode() == BO_EQ) { 2596 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2597 } else { 2598 assert(E->getOpcode() == BO_NE && 2599 "Complex comparison other than == or != ?"); 2600 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2601 } 2602 } 2603 2604 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2605 } 2606 2607 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2608 bool Ignore = TestAndClearIgnoreResultAssign(); 2609 2610 Value *RHS; 2611 LValue LHS; 2612 2613 switch (E->getLHS()->getType().getObjCLifetime()) { 2614 case Qualifiers::OCL_Strong: 2615 llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2616 break; 2617 2618 case Qualifiers::OCL_Autoreleasing: 2619 llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E); 2620 break; 2621 2622 case Qualifiers::OCL_Weak: 2623 RHS = Visit(E->getRHS()); 2624 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2625 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2626 break; 2627 2628 // No reason to do any of these differently. 2629 case Qualifiers::OCL_None: 2630 case Qualifiers::OCL_ExplicitNone: 2631 // __block variables need to have the rhs evaluated first, plus 2632 // this should improve codegen just a little. 2633 RHS = Visit(E->getRHS()); 2634 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2635 2636 // Store the value into the LHS. Bit-fields are handled specially 2637 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2638 // 'An assignment expression has the value of the left operand after 2639 // the assignment...'. 2640 if (LHS.isBitField()) 2641 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2642 else 2643 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2644 } 2645 2646 // If the result is clearly ignored, return now. 2647 if (Ignore) 2648 return 0; 2649 2650 // The result of an assignment in C is the assigned r-value. 2651 if (!CGF.getLangOpts().CPlusPlus) 2652 return RHS; 2653 2654 // If the lvalue is non-volatile, return the computed value of the assignment. 2655 if (!LHS.isVolatileQualified()) 2656 return RHS; 2657 2658 // Otherwise, reload the value. 2659 return EmitLoadOfLValue(LHS); 2660 } 2661 2662 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2663 2664 // Perform vector logical and on comparisons with zero vectors. 2665 if (E->getType()->isVectorType()) { 2666 Value *LHS = Visit(E->getLHS()); 2667 Value *RHS = Visit(E->getRHS()); 2668 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2669 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2670 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2671 Value *And = Builder.CreateAnd(LHS, RHS); 2672 return Builder.CreateSExt(And, Zero->getType(), "sext"); 2673 } 2674 2675 llvm::Type *ResTy = ConvertType(E->getType()); 2676 2677 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2678 // If we have 1 && X, just emit X without inserting the control flow. 2679 bool LHSCondVal; 2680 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2681 if (LHSCondVal) { // If we have 1 && X, just emit X. 2682 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2683 // ZExt result to int or bool. 2684 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2685 } 2686 2687 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2688 if (!CGF.ContainsLabel(E->getRHS())) 2689 return llvm::Constant::getNullValue(ResTy); 2690 } 2691 2692 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2693 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 2694 2695 CodeGenFunction::ConditionalEvaluation eval(CGF); 2696 2697 // Branch on the LHS first. If it is false, go to the failure (cont) block. 2698 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); 2699 2700 // Any edges into the ContBlock are now from an (indeterminate number of) 2701 // edges from this first condition. All of these values will be false. Start 2702 // setting up the PHI node in the Cont Block for this. 2703 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2704 "", ContBlock); 2705 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2706 PI != PE; ++PI) 2707 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 2708 2709 eval.begin(CGF); 2710 CGF.EmitBlock(RHSBlock); 2711 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2712 eval.end(CGF); 2713 2714 // Reaquire the RHS block, as there may be subblocks inserted. 2715 RHSBlock = Builder.GetInsertBlock(); 2716 2717 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2718 // into the phi node for the edge with the value of RHSCond. 2719 if (CGF.getDebugInfo()) 2720 // There is no need to emit line number for unconditional branch. 2721 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 2722 CGF.EmitBlock(ContBlock); 2723 PN->addIncoming(RHSCond, RHSBlock); 2724 2725 // ZExt result to int. 2726 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 2727 } 2728 2729 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 2730 2731 // Perform vector logical or on comparisons with zero vectors. 2732 if (E->getType()->isVectorType()) { 2733 Value *LHS = Visit(E->getLHS()); 2734 Value *RHS = Visit(E->getRHS()); 2735 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2736 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2737 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2738 Value *Or = Builder.CreateOr(LHS, RHS); 2739 return Builder.CreateSExt(Or, Zero->getType(), "sext"); 2740 } 2741 2742 llvm::Type *ResTy = ConvertType(E->getType()); 2743 2744 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 2745 // If we have 0 || X, just emit X without inserting the control flow. 2746 bool LHSCondVal; 2747 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2748 if (!LHSCondVal) { // If we have 0 || X, just emit X. 2749 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2750 // ZExt result to int or bool. 2751 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 2752 } 2753 2754 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 2755 if (!CGF.ContainsLabel(E->getRHS())) 2756 return llvm::ConstantInt::get(ResTy, 1); 2757 } 2758 2759 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 2760 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 2761 2762 CodeGenFunction::ConditionalEvaluation eval(CGF); 2763 2764 // Branch on the LHS first. If it is true, go to the success (cont) block. 2765 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); 2766 2767 // Any edges into the ContBlock are now from an (indeterminate number of) 2768 // edges from this first condition. All of these values will be true. Start 2769 // setting up the PHI node in the Cont Block for this. 2770 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2771 "", ContBlock); 2772 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2773 PI != PE; ++PI) 2774 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 2775 2776 eval.begin(CGF); 2777 2778 // Emit the RHS condition as a bool value. 2779 CGF.EmitBlock(RHSBlock); 2780 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2781 2782 eval.end(CGF); 2783 2784 // Reaquire the RHS block, as there may be subblocks inserted. 2785 RHSBlock = Builder.GetInsertBlock(); 2786 2787 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2788 // into the phi node for the edge with the value of RHSCond. 2789 CGF.EmitBlock(ContBlock); 2790 PN->addIncoming(RHSCond, RHSBlock); 2791 2792 // ZExt result to int. 2793 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 2794 } 2795 2796 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 2797 CGF.EmitIgnoredExpr(E->getLHS()); 2798 CGF.EnsureInsertPoint(); 2799 return Visit(E->getRHS()); 2800 } 2801 2802 //===----------------------------------------------------------------------===// 2803 // Other Operators 2804 //===----------------------------------------------------------------------===// 2805 2806 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 2807 /// expression is cheap enough and side-effect-free enough to evaluate 2808 /// unconditionally instead of conditionally. This is used to convert control 2809 /// flow into selects in some cases. 2810 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 2811 CodeGenFunction &CGF) { 2812 E = E->IgnoreParens(); 2813 2814 // Anything that is an integer or floating point constant is fine. 2815 if (E->isConstantInitializer(CGF.getContext(), false)) 2816 return true; 2817 2818 // Non-volatile automatic variables too, to get "cond ? X : Y" where 2819 // X and Y are local variables. 2820 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 2821 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2822 if (VD->hasLocalStorage() && !(CGF.getContext() 2823 .getCanonicalType(VD->getType()) 2824 .isVolatileQualified())) 2825 return true; 2826 2827 return false; 2828 } 2829 2830 2831 Value *ScalarExprEmitter:: 2832 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 2833 TestAndClearIgnoreResultAssign(); 2834 2835 // Bind the common expression if necessary. 2836 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 2837 2838 Expr *condExpr = E->getCond(); 2839 Expr *lhsExpr = E->getTrueExpr(); 2840 Expr *rhsExpr = E->getFalseExpr(); 2841 2842 // If the condition constant folds and can be elided, try to avoid emitting 2843 // the condition and the dead arm. 2844 bool CondExprBool; 2845 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2846 Expr *live = lhsExpr, *dead = rhsExpr; 2847 if (!CondExprBool) std::swap(live, dead); 2848 2849 // If the dead side doesn't have labels we need, just emit the Live part. 2850 if (!CGF.ContainsLabel(dead)) { 2851 Value *Result = Visit(live); 2852 2853 // If the live part is a throw expression, it acts like it has a void 2854 // type, so evaluating it returns a null Value*. However, a conditional 2855 // with non-void type must return a non-null Value*. 2856 if (!Result && !E->getType()->isVoidType()) 2857 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 2858 2859 return Result; 2860 } 2861 } 2862 2863 // OpenCL: If the condition is a vector, we can treat this condition like 2864 // the select function. 2865 if (CGF.getLangOpts().OpenCL 2866 && condExpr->getType()->isVectorType()) { 2867 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 2868 llvm::Value *LHS = Visit(lhsExpr); 2869 llvm::Value *RHS = Visit(rhsExpr); 2870 2871 llvm::Type *condType = ConvertType(condExpr->getType()); 2872 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 2873 2874 unsigned numElem = vecTy->getNumElements(); 2875 llvm::Type *elemType = vecTy->getElementType(); 2876 2877 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 2878 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 2879 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 2880 llvm::VectorType::get(elemType, 2881 numElem), 2882 "sext"); 2883 llvm::Value *tmp2 = Builder.CreateNot(tmp); 2884 2885 // Cast float to int to perform ANDs if necessary. 2886 llvm::Value *RHSTmp = RHS; 2887 llvm::Value *LHSTmp = LHS; 2888 bool wasCast = false; 2889 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 2890 if (rhsVTy->getElementType()->isFloatingPointTy()) { 2891 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 2892 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 2893 wasCast = true; 2894 } 2895 2896 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 2897 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 2898 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 2899 if (wasCast) 2900 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 2901 2902 return tmp5; 2903 } 2904 2905 // If this is a really simple expression (like x ? 4 : 5), emit this as a 2906 // select instead of as control flow. We can only do this if it is cheap and 2907 // safe to evaluate the LHS and RHS unconditionally. 2908 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 2909 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 2910 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 2911 llvm::Value *LHS = Visit(lhsExpr); 2912 llvm::Value *RHS = Visit(rhsExpr); 2913 if (!LHS) { 2914 // If the conditional has void type, make sure we return a null Value*. 2915 assert(!RHS && "LHS and RHS types must match"); 2916 return 0; 2917 } 2918 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 2919 } 2920 2921 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 2922 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 2923 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 2924 2925 CodeGenFunction::ConditionalEvaluation eval(CGF); 2926 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock); 2927 2928 CGF.EmitBlock(LHSBlock); 2929 eval.begin(CGF); 2930 Value *LHS = Visit(lhsExpr); 2931 eval.end(CGF); 2932 2933 LHSBlock = Builder.GetInsertBlock(); 2934 Builder.CreateBr(ContBlock); 2935 2936 CGF.EmitBlock(RHSBlock); 2937 eval.begin(CGF); 2938 Value *RHS = Visit(rhsExpr); 2939 eval.end(CGF); 2940 2941 RHSBlock = Builder.GetInsertBlock(); 2942 CGF.EmitBlock(ContBlock); 2943 2944 // If the LHS or RHS is a throw expression, it will be legitimately null. 2945 if (!LHS) 2946 return RHS; 2947 if (!RHS) 2948 return LHS; 2949 2950 // Create a PHI node for the real part. 2951 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 2952 PN->addIncoming(LHS, LHSBlock); 2953 PN->addIncoming(RHS, RHSBlock); 2954 return PN; 2955 } 2956 2957 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 2958 return Visit(E->getChosenSubExpr(CGF.getContext())); 2959 } 2960 2961 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 2962 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 2963 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 2964 2965 // If EmitVAArg fails, we fall back to the LLVM instruction. 2966 if (!ArgPtr) 2967 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 2968 2969 // FIXME Volatility. 2970 return Builder.CreateLoad(ArgPtr); 2971 } 2972 2973 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 2974 return CGF.EmitBlockLiteral(block); 2975 } 2976 2977 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 2978 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 2979 llvm::Type *DstTy = ConvertType(E->getType()); 2980 2981 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 2982 // a shuffle vector instead of a bitcast. 2983 llvm::Type *SrcTy = Src->getType(); 2984 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 2985 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 2986 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 2987 if ((numElementsDst == 3 && numElementsSrc == 4) 2988 || (numElementsDst == 4 && numElementsSrc == 3)) { 2989 2990 2991 // In the case of going from int4->float3, a bitcast is needed before 2992 // doing a shuffle. 2993 llvm::Type *srcElemTy = 2994 cast<llvm::VectorType>(SrcTy)->getElementType(); 2995 llvm::Type *dstElemTy = 2996 cast<llvm::VectorType>(DstTy)->getElementType(); 2997 2998 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 2999 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3000 // Create a float type of the same size as the source or destination. 3001 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3002 numElementsSrc); 3003 3004 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3005 } 3006 3007 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3008 3009 SmallVector<llvm::Constant*, 3> Args; 3010 Args.push_back(Builder.getInt32(0)); 3011 Args.push_back(Builder.getInt32(1)); 3012 Args.push_back(Builder.getInt32(2)); 3013 3014 if (numElementsDst == 4) 3015 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3016 3017 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3018 3019 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3020 } 3021 } 3022 3023 return Builder.CreateBitCast(Src, DstTy, "astype"); 3024 } 3025 3026 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3027 return CGF.EmitAtomicExpr(E).getScalarVal(); 3028 } 3029 3030 //===----------------------------------------------------------------------===// 3031 // Entry Point into this File 3032 //===----------------------------------------------------------------------===// 3033 3034 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3035 /// type, ignoring the result. 3036 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3037 assert(E && !hasAggregateLLVMType(E->getType()) && 3038 "Invalid scalar expression to emit"); 3039 3040 if (isa<CXXDefaultArgExpr>(E)) 3041 disableDebugInfo(); 3042 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 3043 .Visit(const_cast<Expr*>(E)); 3044 if (isa<CXXDefaultArgExpr>(E)) 3045 enableDebugInfo(); 3046 return V; 3047 } 3048 3049 /// EmitScalarConversion - Emit a conversion from the specified type to the 3050 /// specified destination type, both of which are LLVM scalar types. 3051 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3052 QualType DstTy) { 3053 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) && 3054 "Invalid scalar expression to emit"); 3055 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3056 } 3057 3058 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3059 /// type to the specified destination type, where the destination type is an 3060 /// LLVM scalar type. 3061 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3062 QualType SrcTy, 3063 QualType DstTy) { 3064 assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) && 3065 "Invalid complex -> scalar conversion"); 3066 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3067 DstTy); 3068 } 3069 3070 3071 llvm::Value *CodeGenFunction:: 3072 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3073 bool isInc, bool isPre) { 3074 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3075 } 3076 3077 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3078 llvm::Value *V; 3079 // object->isa or (*object).isa 3080 // Generate code as for: *(Class*)object 3081 // build Class* type 3082 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3083 3084 Expr *BaseExpr = E->getBase(); 3085 if (BaseExpr->isRValue()) { 3086 V = CreateMemTemp(E->getType(), "resval"); 3087 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3088 Builder.CreateStore(Src, V); 3089 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3090 MakeNaturalAlignAddrLValue(V, E->getType())); 3091 } else { 3092 if (E->isArrow()) 3093 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3094 else 3095 V = EmitLValue(BaseExpr).getAddress(); 3096 } 3097 3098 // build Class* type 3099 ClassPtrTy = ClassPtrTy->getPointerTo(); 3100 V = Builder.CreateBitCast(V, ClassPtrTy); 3101 return MakeNaturalAlignAddrLValue(V, E->getType()); 3102 } 3103 3104 3105 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3106 const CompoundAssignOperator *E) { 3107 ScalarExprEmitter Scalar(*this); 3108 Value *Result = 0; 3109 switch (E->getOpcode()) { 3110 #define COMPOUND_OP(Op) \ 3111 case BO_##Op##Assign: \ 3112 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3113 Result) 3114 COMPOUND_OP(Mul); 3115 COMPOUND_OP(Div); 3116 COMPOUND_OP(Rem); 3117 COMPOUND_OP(Add); 3118 COMPOUND_OP(Sub); 3119 COMPOUND_OP(Shl); 3120 COMPOUND_OP(Shr); 3121 COMPOUND_OP(And); 3122 COMPOUND_OP(Xor); 3123 COMPOUND_OP(Or); 3124 #undef COMPOUND_OP 3125 3126 case BO_PtrMemD: 3127 case BO_PtrMemI: 3128 case BO_Mul: 3129 case BO_Div: 3130 case BO_Rem: 3131 case BO_Add: 3132 case BO_Sub: 3133 case BO_Shl: 3134 case BO_Shr: 3135 case BO_LT: 3136 case BO_GT: 3137 case BO_LE: 3138 case BO_GE: 3139 case BO_EQ: 3140 case BO_NE: 3141 case BO_And: 3142 case BO_Xor: 3143 case BO_Or: 3144 case BO_LAnd: 3145 case BO_LOr: 3146 case BO_Assign: 3147 case BO_Comma: 3148 llvm_unreachable("Not valid compound assignment operators"); 3149 } 3150 3151 llvm_unreachable("Unhandled compound assignment operator"); 3152 } 3153