1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
81   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
85   Value *EmitLoadOfLValue(LValue LV) {
86     return CGF.EmitLoadOfLValue(LV).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E));
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     return Builder.CreateIsNotNull(V, "tobool");
144   }
145 
146   //===--------------------------------------------------------------------===//
147   //                            Visitor Methods
148   //===--------------------------------------------------------------------===//
149 
150   Value *Visit(Expr *E) {
151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152   }
153 
154   Value *VisitStmt(Stmt *S) {
155     S->dump(CGF.getContext().getSourceManager());
156     assert(0 && "Stmt can't have complex result type!");
157     return 0;
158   }
159   Value *VisitExpr(Expr *S);
160 
161   Value *VisitParenExpr(ParenExpr *PE) {
162     return Visit(PE->getSubExpr());
163   }
164   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
165     return Visit(E->getReplacement());
166   }
167   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
168     return Visit(GE->getResultExpr());
169   }
170 
171   // Leaves.
172   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
173     return Builder.getInt(E->getValue());
174   }
175   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
176     return llvm::ConstantFP::get(VMContext, E->getValue());
177   }
178   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
179     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
180   }
181   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
182     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
183   }
184   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
185     return EmitNullValue(E->getType());
186   }
187   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
188     return EmitNullValue(E->getType());
189   }
190   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
191   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
192   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
193     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
194     return Builder.CreateBitCast(V, ConvertType(E->getType()));
195   }
196 
197   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
198     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
199   }
200 
201   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
202     if (E->isGLValue())
203       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
204 
205     // Otherwise, assume the mapping is the scalar directly.
206     return CGF.getOpaqueRValueMapping(E).getScalarVal();
207   }
208 
209   // l-values.
210   Value *VisitDeclRefExpr(DeclRefExpr *E) {
211     Expr::EvalResult Result;
212     if (!E->Evaluate(Result, CGF.getContext()))
213       return EmitLoadOfLValue(E);
214 
215     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
216 
217     llvm::Constant *C;
218     if (Result.Val.isInt())
219       C = Builder.getInt(Result.Val.getInt());
220     else if (Result.Val.isFloat())
221       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
222     else
223       return EmitLoadOfLValue(E);
224 
225     // Make sure we emit a debug reference to the global variable.
226     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
227       if (!CGF.getContext().DeclMustBeEmitted(VD))
228         CGF.EmitDeclRefExprDbgValue(E, C);
229     } else if (isa<EnumConstantDecl>(E->getDecl())) {
230       CGF.EmitDeclRefExprDbgValue(E, C);
231     }
232 
233     return C;
234   }
235   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
236     return CGF.EmitObjCSelectorExpr(E);
237   }
238   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
239     return CGF.EmitObjCProtocolExpr(E);
240   }
241   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
242     return EmitLoadOfLValue(E);
243   }
244   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
245     assert(E->getObjectKind() == OK_Ordinary &&
246            "reached property reference without lvalue-to-rvalue");
247     return EmitLoadOfLValue(E);
248   }
249   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
250     if (E->getMethodDecl() &&
251         E->getMethodDecl()->getResultType()->isReferenceType())
252       return EmitLoadOfLValue(E);
253     return CGF.EmitObjCMessageExpr(E).getScalarVal();
254   }
255 
256   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
257     LValue LV = CGF.EmitObjCIsaExpr(E);
258     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
259     return V;
260   }
261 
262   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
263   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
264   Value *VisitMemberExpr(MemberExpr *E);
265   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
266   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
267     return EmitLoadOfLValue(E);
268   }
269 
270   Value *VisitInitListExpr(InitListExpr *E);
271 
272   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
273     return CGF.CGM.EmitNullConstant(E->getType());
274   }
275   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
276     if (E->getType()->isVariablyModifiedType())
277       CGF.EmitVariablyModifiedType(E->getType());
278     return VisitCastExpr(E);
279   }
280   Value *VisitCastExpr(CastExpr *E);
281 
282   Value *VisitCallExpr(const CallExpr *E) {
283     if (E->getCallReturnType()->isReferenceType())
284       return EmitLoadOfLValue(E);
285 
286     return CGF.EmitCallExpr(E).getScalarVal();
287   }
288 
289   Value *VisitStmtExpr(const StmtExpr *E);
290 
291   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
292 
293   // Unary Operators.
294   Value *VisitUnaryPostDec(const UnaryOperator *E) {
295     LValue LV = EmitLValue(E->getSubExpr());
296     return EmitScalarPrePostIncDec(E, LV, false, false);
297   }
298   Value *VisitUnaryPostInc(const UnaryOperator *E) {
299     LValue LV = EmitLValue(E->getSubExpr());
300     return EmitScalarPrePostIncDec(E, LV, true, false);
301   }
302   Value *VisitUnaryPreDec(const UnaryOperator *E) {
303     LValue LV = EmitLValue(E->getSubExpr());
304     return EmitScalarPrePostIncDec(E, LV, false, true);
305   }
306   Value *VisitUnaryPreInc(const UnaryOperator *E) {
307     LValue LV = EmitLValue(E->getSubExpr());
308     return EmitScalarPrePostIncDec(E, LV, true, true);
309   }
310 
311   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
312                                                llvm::Value *InVal,
313                                                llvm::Value *NextVal,
314                                                bool IsInc);
315 
316   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
317                                        bool isInc, bool isPre);
318 
319 
320   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
321     if (isa<MemberPointerType>(E->getType())) // never sugared
322       return CGF.CGM.getMemberPointerConstant(E);
323 
324     return EmitLValue(E->getSubExpr()).getAddress();
325   }
326   Value *VisitUnaryDeref(const UnaryOperator *E) {
327     if (E->getType()->isVoidType())
328       return Visit(E->getSubExpr()); // the actual value should be unused
329     return EmitLoadOfLValue(E);
330   }
331   Value *VisitUnaryPlus(const UnaryOperator *E) {
332     // This differs from gcc, though, most likely due to a bug in gcc.
333     TestAndClearIgnoreResultAssign();
334     return Visit(E->getSubExpr());
335   }
336   Value *VisitUnaryMinus    (const UnaryOperator *E);
337   Value *VisitUnaryNot      (const UnaryOperator *E);
338   Value *VisitUnaryLNot     (const UnaryOperator *E);
339   Value *VisitUnaryReal     (const UnaryOperator *E);
340   Value *VisitUnaryImag     (const UnaryOperator *E);
341   Value *VisitUnaryExtension(const UnaryOperator *E) {
342     return Visit(E->getSubExpr());
343   }
344 
345   // C++
346   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
347     RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E->GetTemporaryExpr()));
348     return RV.getScalarVal();
349   }
350 
351   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
352     return Visit(DAE->getExpr());
353   }
354   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
355     return CGF.LoadCXXThis();
356   }
357 
358   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
359     return CGF.EmitExprWithCleanups(E).getScalarVal();
360   }
361   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
362     return CGF.EmitCXXNewExpr(E);
363   }
364   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
365     CGF.EmitCXXDeleteExpr(E);
366     return 0;
367   }
368   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
369     return Builder.getInt1(E->getValue());
370   }
371 
372   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
373     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
374   }
375 
376   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
377     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
378   }
379 
380   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
381     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
382   }
383 
384   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
385     // C++ [expr.pseudo]p1:
386     //   The result shall only be used as the operand for the function call
387     //   operator (), and the result of such a call has type void. The only
388     //   effect is the evaluation of the postfix-expression before the dot or
389     //   arrow.
390     CGF.EmitScalarExpr(E->getBase());
391     return 0;
392   }
393 
394   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
395     return EmitNullValue(E->getType());
396   }
397 
398   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
399     CGF.EmitCXXThrowExpr(E);
400     return 0;
401   }
402 
403   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
404     return Builder.getInt1(E->getValue());
405   }
406 
407   // Binary Operators.
408   Value *EmitMul(const BinOpInfo &Ops) {
409     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
410       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
411       case LangOptions::SOB_Undefined:
412         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
413       case LangOptions::SOB_Defined:
414         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
415       case LangOptions::SOB_Trapping:
416         return EmitOverflowCheckedBinOp(Ops);
417       }
418     }
419 
420     if (Ops.LHS->getType()->isFPOrFPVectorTy())
421       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
422     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
423   }
424   bool isTrapvOverflowBehavior() {
425     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
426                == LangOptions::SOB_Trapping;
427   }
428   /// Create a binary op that checks for overflow.
429   /// Currently only supports +, - and *.
430   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
431   // Emit the overflow BB when -ftrapv option is activated.
432   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
433     Builder.SetInsertPoint(overflowBB);
434     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
435     Builder.CreateCall(Trap);
436     Builder.CreateUnreachable();
437   }
438   // Check for undefined division and modulus behaviors.
439   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
440                                                   llvm::Value *Zero,bool isDiv);
441   Value *EmitDiv(const BinOpInfo &Ops);
442   Value *EmitRem(const BinOpInfo &Ops);
443   Value *EmitAdd(const BinOpInfo &Ops);
444   Value *EmitSub(const BinOpInfo &Ops);
445   Value *EmitShl(const BinOpInfo &Ops);
446   Value *EmitShr(const BinOpInfo &Ops);
447   Value *EmitAnd(const BinOpInfo &Ops) {
448     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
449   }
450   Value *EmitXor(const BinOpInfo &Ops) {
451     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
452   }
453   Value *EmitOr (const BinOpInfo &Ops) {
454     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
455   }
456 
457   BinOpInfo EmitBinOps(const BinaryOperator *E);
458   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
459                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
460                                   Value *&Result);
461 
462   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
463                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
464 
465   // Binary operators and binary compound assignment operators.
466 #define HANDLEBINOP(OP) \
467   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
468     return Emit ## OP(EmitBinOps(E));                                      \
469   }                                                                        \
470   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
471     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
472   }
473   HANDLEBINOP(Mul)
474   HANDLEBINOP(Div)
475   HANDLEBINOP(Rem)
476   HANDLEBINOP(Add)
477   HANDLEBINOP(Sub)
478   HANDLEBINOP(Shl)
479   HANDLEBINOP(Shr)
480   HANDLEBINOP(And)
481   HANDLEBINOP(Xor)
482   HANDLEBINOP(Or)
483 #undef HANDLEBINOP
484 
485   // Comparisons.
486   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
487                      unsigned SICmpOpc, unsigned FCmpOpc);
488 #define VISITCOMP(CODE, UI, SI, FP) \
489     Value *VisitBin##CODE(const BinaryOperator *E) { \
490       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
491                          llvm::FCmpInst::FP); }
492   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
493   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
494   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
495   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
496   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
497   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
498 #undef VISITCOMP
499 
500   Value *VisitBinAssign     (const BinaryOperator *E);
501 
502   Value *VisitBinLAnd       (const BinaryOperator *E);
503   Value *VisitBinLOr        (const BinaryOperator *E);
504   Value *VisitBinComma      (const BinaryOperator *E);
505 
506   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
507   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
508 
509   // Other Operators.
510   Value *VisitBlockExpr(const BlockExpr *BE);
511   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
512   Value *VisitChooseExpr(ChooseExpr *CE);
513   Value *VisitVAArgExpr(VAArgExpr *VE);
514   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
515     return CGF.EmitObjCStringLiteral(E);
516   }
517   Value *VisitAsTypeExpr(AsTypeExpr *CE);
518 };
519 }  // end anonymous namespace.
520 
521 //===----------------------------------------------------------------------===//
522 //                                Utilities
523 //===----------------------------------------------------------------------===//
524 
525 /// EmitConversionToBool - Convert the specified expression value to a
526 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
527 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
528   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
529 
530   if (SrcType->isRealFloatingType())
531     return EmitFloatToBoolConversion(Src);
532 
533   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
534     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
535 
536   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
537          "Unknown scalar type to convert");
538 
539   if (isa<llvm::IntegerType>(Src->getType()))
540     return EmitIntToBoolConversion(Src);
541 
542   assert(isa<llvm::PointerType>(Src->getType()));
543   return EmitPointerToBoolConversion(Src);
544 }
545 
546 /// EmitScalarConversion - Emit a conversion from the specified type to the
547 /// specified destination type, both of which are LLVM scalar types.
548 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
549                                                QualType DstType) {
550   SrcType = CGF.getContext().getCanonicalType(SrcType);
551   DstType = CGF.getContext().getCanonicalType(DstType);
552   if (SrcType == DstType) return Src;
553 
554   if (DstType->isVoidType()) return 0;
555 
556   // Handle conversions to bool first, they are special: comparisons against 0.
557   if (DstType->isBooleanType())
558     return EmitConversionToBool(Src, SrcType);
559 
560   llvm::Type *DstTy = ConvertType(DstType);
561 
562   // Ignore conversions like int -> uint.
563   if (Src->getType() == DstTy)
564     return Src;
565 
566   // Handle pointer conversions next: pointers can only be converted to/from
567   // other pointers and integers. Check for pointer types in terms of LLVM, as
568   // some native types (like Obj-C id) may map to a pointer type.
569   if (isa<llvm::PointerType>(DstTy)) {
570     // The source value may be an integer, or a pointer.
571     if (isa<llvm::PointerType>(Src->getType()))
572       return Builder.CreateBitCast(Src, DstTy, "conv");
573 
574     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
575     // First, convert to the correct width so that we control the kind of
576     // extension.
577     llvm::Type *MiddleTy = CGF.IntPtrTy;
578     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
579     llvm::Value* IntResult =
580         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
581     // Then, cast to pointer.
582     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
583   }
584 
585   if (isa<llvm::PointerType>(Src->getType())) {
586     // Must be an ptr to int cast.
587     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
588     return Builder.CreatePtrToInt(Src, DstTy, "conv");
589   }
590 
591   // A scalar can be splatted to an extended vector of the same element type
592   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
593     // Cast the scalar to element type
594     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
595     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
596 
597     // Insert the element in element zero of an undef vector
598     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
599     llvm::Value *Idx = Builder.getInt32(0);
600     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
601 
602     // Splat the element across to all elements
603     SmallVector<llvm::Constant*, 16> Args;
604     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
605     for (unsigned i = 0; i != NumElements; ++i)
606       Args.push_back(Builder.getInt32(0));
607 
608     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
609     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
610     return Yay;
611   }
612 
613   // Allow bitcast from vector to integer/fp of the same size.
614   if (isa<llvm::VectorType>(Src->getType()) ||
615       isa<llvm::VectorType>(DstTy))
616     return Builder.CreateBitCast(Src, DstTy, "conv");
617 
618   // Finally, we have the arithmetic types: real int/float.
619   if (isa<llvm::IntegerType>(Src->getType())) {
620     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
621     if (isa<llvm::IntegerType>(DstTy))
622       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
623     else if (InputSigned)
624       return Builder.CreateSIToFP(Src, DstTy, "conv");
625     else
626       return Builder.CreateUIToFP(Src, DstTy, "conv");
627   }
628 
629   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
630   if (isa<llvm::IntegerType>(DstTy)) {
631     if (DstType->isSignedIntegerOrEnumerationType())
632       return Builder.CreateFPToSI(Src, DstTy, "conv");
633     else
634       return Builder.CreateFPToUI(Src, DstTy, "conv");
635   }
636 
637   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
638   if (DstTy->getTypeID() < Src->getType()->getTypeID())
639     return Builder.CreateFPTrunc(Src, DstTy, "conv");
640   else
641     return Builder.CreateFPExt(Src, DstTy, "conv");
642 }
643 
644 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
645 /// type to the specified destination type, where the destination type is an
646 /// LLVM scalar type.
647 Value *ScalarExprEmitter::
648 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
649                               QualType SrcTy, QualType DstTy) {
650   // Get the source element type.
651   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
652 
653   // Handle conversions to bool first, they are special: comparisons against 0.
654   if (DstTy->isBooleanType()) {
655     //  Complex != 0  -> (Real != 0) | (Imag != 0)
656     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
657     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
658     return Builder.CreateOr(Src.first, Src.second, "tobool");
659   }
660 
661   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
662   // the imaginary part of the complex value is discarded and the value of the
663   // real part is converted according to the conversion rules for the
664   // corresponding real type.
665   return EmitScalarConversion(Src.first, SrcTy, DstTy);
666 }
667 
668 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
669   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
670     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
671 
672   return llvm::Constant::getNullValue(ConvertType(Ty));
673 }
674 
675 //===----------------------------------------------------------------------===//
676 //                            Visitor Methods
677 //===----------------------------------------------------------------------===//
678 
679 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
680   CGF.ErrorUnsupported(E, "scalar expression");
681   if (E->getType()->isVoidType())
682     return 0;
683   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
684 }
685 
686 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
687   // Vector Mask Case
688   if (E->getNumSubExprs() == 2 ||
689       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
690     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
691     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
692     Value *Mask;
693 
694     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
695     unsigned LHSElts = LTy->getNumElements();
696 
697     if (E->getNumSubExprs() == 3) {
698       Mask = CGF.EmitScalarExpr(E->getExpr(2));
699 
700       // Shuffle LHS & RHS into one input vector.
701       SmallVector<llvm::Constant*, 32> concat;
702       for (unsigned i = 0; i != LHSElts; ++i) {
703         concat.push_back(Builder.getInt32(2*i));
704         concat.push_back(Builder.getInt32(2*i+1));
705       }
706 
707       Value* CV = llvm::ConstantVector::get(concat);
708       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
709       LHSElts *= 2;
710     } else {
711       Mask = RHS;
712     }
713 
714     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
715     llvm::Constant* EltMask;
716 
717     // Treat vec3 like vec4.
718     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
719       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
720                                        (1 << llvm::Log2_32(LHSElts+2))-1);
721     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
722       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
723                                        (1 << llvm::Log2_32(LHSElts+1))-1);
724     else
725       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
726                                        (1 << llvm::Log2_32(LHSElts))-1);
727 
728     // Mask off the high bits of each shuffle index.
729     SmallVector<llvm::Constant *, 32> MaskV;
730     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
731       MaskV.push_back(EltMask);
732 
733     Value* MaskBits = llvm::ConstantVector::get(MaskV);
734     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
735 
736     // newv = undef
737     // mask = mask & maskbits
738     // for each elt
739     //   n = extract mask i
740     //   x = extract val n
741     //   newv = insert newv, x, i
742     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
743                                                         MTy->getNumElements());
744     Value* NewV = llvm::UndefValue::get(RTy);
745     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
746       Value *Indx = Builder.getInt32(i);
747       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
748       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
749 
750       // Handle vec3 special since the index will be off by one for the RHS.
751       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
752         Value *cmpIndx, *newIndx;
753         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
754                                         "cmp_shuf_idx");
755         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
756         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
757       }
758       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
759       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
760     }
761     return NewV;
762   }
763 
764   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
765   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
766 
767   // Handle vec3 special since the index will be off by one for the RHS.
768   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
769   SmallVector<llvm::Constant*, 32> indices;
770   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
771     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
772     if (VTy->getNumElements() == 3 && Idx > 3)
773       Idx -= 1;
774     indices.push_back(Builder.getInt32(Idx));
775   }
776 
777   Value *SV = llvm::ConstantVector::get(indices);
778   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
779 }
780 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
781   Expr::EvalResult Result;
782   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
783     if (E->isArrow())
784       CGF.EmitScalarExpr(E->getBase());
785     else
786       EmitLValue(E->getBase());
787     return Builder.getInt(Result.Val.getInt());
788   }
789 
790   // Emit debug info for aggregate now, if it was delayed to reduce
791   // debug info size.
792   CGDebugInfo *DI = CGF.getDebugInfo();
793   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
794     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
795     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
796       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
797         DI->getOrCreateRecordType(PTy->getPointeeType(),
798                                   M->getParent()->getLocation());
799   }
800   return EmitLoadOfLValue(E);
801 }
802 
803 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
804   TestAndClearIgnoreResultAssign();
805 
806   // Emit subscript expressions in rvalue context's.  For most cases, this just
807   // loads the lvalue formed by the subscript expr.  However, we have to be
808   // careful, because the base of a vector subscript is occasionally an rvalue,
809   // so we can't get it as an lvalue.
810   if (!E->getBase()->getType()->isVectorType())
811     return EmitLoadOfLValue(E);
812 
813   // Handle the vector case.  The base must be a vector, the index must be an
814   // integer value.
815   Value *Base = Visit(E->getBase());
816   Value *Idx  = Visit(E->getIdx());
817   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
818   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
819   return Builder.CreateExtractElement(Base, Idx, "vecext");
820 }
821 
822 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
823                                   unsigned Off, llvm::Type *I32Ty) {
824   int MV = SVI->getMaskValue(Idx);
825   if (MV == -1)
826     return llvm::UndefValue::get(I32Ty);
827   return llvm::ConstantInt::get(I32Ty, Off+MV);
828 }
829 
830 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
831   bool Ignore = TestAndClearIgnoreResultAssign();
832   (void)Ignore;
833   assert (Ignore == false && "init list ignored");
834   unsigned NumInitElements = E->getNumInits();
835 
836   if (E->hadArrayRangeDesignator())
837     CGF.ErrorUnsupported(E, "GNU array range designator extension");
838 
839   llvm::VectorType *VType =
840     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
841 
842   // We have a scalar in braces. Just use the first element.
843   if (!VType)
844     return Visit(E->getInit(0));
845 
846   unsigned ResElts = VType->getNumElements();
847 
848   // Loop over initializers collecting the Value for each, and remembering
849   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
850   // us to fold the shuffle for the swizzle into the shuffle for the vector
851   // initializer, since LLVM optimizers generally do not want to touch
852   // shuffles.
853   unsigned CurIdx = 0;
854   bool VIsUndefShuffle = false;
855   llvm::Value *V = llvm::UndefValue::get(VType);
856   for (unsigned i = 0; i != NumInitElements; ++i) {
857     Expr *IE = E->getInit(i);
858     Value *Init = Visit(IE);
859     SmallVector<llvm::Constant*, 16> Args;
860 
861     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
862 
863     // Handle scalar elements.  If the scalar initializer is actually one
864     // element of a different vector of the same width, use shuffle instead of
865     // extract+insert.
866     if (!VVT) {
867       if (isa<ExtVectorElementExpr>(IE)) {
868         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
869 
870         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
871           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
872           Value *LHS = 0, *RHS = 0;
873           if (CurIdx == 0) {
874             // insert into undef -> shuffle (src, undef)
875             Args.push_back(C);
876             for (unsigned j = 1; j != ResElts; ++j)
877               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
878 
879             LHS = EI->getVectorOperand();
880             RHS = V;
881             VIsUndefShuffle = true;
882           } else if (VIsUndefShuffle) {
883             // insert into undefshuffle && size match -> shuffle (v, src)
884             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
885             for (unsigned j = 0; j != CurIdx; ++j)
886               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
887             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
888             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
889               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
890 
891             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
892             RHS = EI->getVectorOperand();
893             VIsUndefShuffle = false;
894           }
895           if (!Args.empty()) {
896             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
897             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
898             ++CurIdx;
899             continue;
900           }
901         }
902       }
903       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
904                                       "vecinit");
905       VIsUndefShuffle = false;
906       ++CurIdx;
907       continue;
908     }
909 
910     unsigned InitElts = VVT->getNumElements();
911 
912     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
913     // input is the same width as the vector being constructed, generate an
914     // optimized shuffle of the swizzle input into the result.
915     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
916     if (isa<ExtVectorElementExpr>(IE)) {
917       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
918       Value *SVOp = SVI->getOperand(0);
919       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
920 
921       if (OpTy->getNumElements() == ResElts) {
922         for (unsigned j = 0; j != CurIdx; ++j) {
923           // If the current vector initializer is a shuffle with undef, merge
924           // this shuffle directly into it.
925           if (VIsUndefShuffle) {
926             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
927                                       CGF.Int32Ty));
928           } else {
929             Args.push_back(Builder.getInt32(j));
930           }
931         }
932         for (unsigned j = 0, je = InitElts; j != je; ++j)
933           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
934         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
935           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
936 
937         if (VIsUndefShuffle)
938           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
939 
940         Init = SVOp;
941       }
942     }
943 
944     // Extend init to result vector length, and then shuffle its contribution
945     // to the vector initializer into V.
946     if (Args.empty()) {
947       for (unsigned j = 0; j != InitElts; ++j)
948         Args.push_back(Builder.getInt32(j));
949       for (unsigned j = InitElts; j != ResElts; ++j)
950         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
951       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
952       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
953                                          Mask, "vext");
954 
955       Args.clear();
956       for (unsigned j = 0; j != CurIdx; ++j)
957         Args.push_back(Builder.getInt32(j));
958       for (unsigned j = 0; j != InitElts; ++j)
959         Args.push_back(Builder.getInt32(j+Offset));
960       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
961         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
962     }
963 
964     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
965     // merging subsequent shuffles into this one.
966     if (CurIdx == 0)
967       std::swap(V, Init);
968     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
969     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
970     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
971     CurIdx += InitElts;
972   }
973 
974   // FIXME: evaluate codegen vs. shuffling against constant null vector.
975   // Emit remaining default initializers.
976   llvm::Type *EltTy = VType->getElementType();
977 
978   // Emit remaining default initializers
979   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
980     Value *Idx = Builder.getInt32(CurIdx);
981     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
982     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
983   }
984   return V;
985 }
986 
987 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
988   const Expr *E = CE->getSubExpr();
989 
990   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
991     return false;
992 
993   if (isa<CXXThisExpr>(E)) {
994     // We always assume that 'this' is never null.
995     return false;
996   }
997 
998   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
999     // And that glvalue casts are never null.
1000     if (ICE->getValueKind() != VK_RValue)
1001       return false;
1002   }
1003 
1004   return true;
1005 }
1006 
1007 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1008 // have to handle a more broad range of conversions than explicit casts, as they
1009 // handle things like function to ptr-to-function decay etc.
1010 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1011   Expr *E = CE->getSubExpr();
1012   QualType DestTy = CE->getType();
1013   CastKind Kind = CE->getCastKind();
1014 
1015   if (!DestTy->isVoidType())
1016     TestAndClearIgnoreResultAssign();
1017 
1018   // Since almost all cast kinds apply to scalars, this switch doesn't have
1019   // a default case, so the compiler will warn on a missing case.  The cases
1020   // are in the same order as in the CastKind enum.
1021   switch (Kind) {
1022   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1023 
1024   case CK_LValueBitCast:
1025   case CK_ObjCObjectLValueCast: {
1026     Value *V = EmitLValue(E).getAddress();
1027     V = Builder.CreateBitCast(V,
1028                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1029     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy));
1030   }
1031 
1032   case CK_AnyPointerToObjCPointerCast:
1033   case CK_AnyPointerToBlockPointerCast:
1034   case CK_BitCast: {
1035     Value *Src = Visit(const_cast<Expr*>(E));
1036     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1037   }
1038   case CK_NoOp:
1039   case CK_UserDefinedConversion:
1040     return Visit(const_cast<Expr*>(E));
1041 
1042   case CK_BaseToDerived: {
1043     const CXXRecordDecl *DerivedClassDecl =
1044       DestTy->getCXXRecordDeclForPointerType();
1045 
1046     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1047                                         CE->path_begin(), CE->path_end(),
1048                                         ShouldNullCheckClassCastValue(CE));
1049   }
1050   case CK_UncheckedDerivedToBase:
1051   case CK_DerivedToBase: {
1052     const RecordType *DerivedClassTy =
1053       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1054     CXXRecordDecl *DerivedClassDecl =
1055       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1056 
1057     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1058                                      CE->path_begin(), CE->path_end(),
1059                                      ShouldNullCheckClassCastValue(CE));
1060   }
1061   case CK_Dynamic: {
1062     Value *V = Visit(const_cast<Expr*>(E));
1063     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1064     return CGF.EmitDynamicCast(V, DCE);
1065   }
1066 
1067   case CK_ArrayToPointerDecay: {
1068     assert(E->getType()->isArrayType() &&
1069            "Array to pointer decay must have array source type!");
1070 
1071     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1072 
1073     // Note that VLA pointers are always decayed, so we don't need to do
1074     // anything here.
1075     if (!E->getType()->isVariableArrayType()) {
1076       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1077       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1078                                  ->getElementType()) &&
1079              "Expected pointer to array");
1080       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1081     }
1082 
1083     // Make sure the array decay ends up being the right type.  This matters if
1084     // the array type was of an incomplete type.
1085     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1086   }
1087   case CK_FunctionToPointerDecay:
1088     return EmitLValue(E).getAddress();
1089 
1090   case CK_NullToPointer:
1091     if (MustVisitNullValue(E))
1092       (void) Visit(E);
1093 
1094     return llvm::ConstantPointerNull::get(
1095                                cast<llvm::PointerType>(ConvertType(DestTy)));
1096 
1097   case CK_NullToMemberPointer: {
1098     if (MustVisitNullValue(E))
1099       (void) Visit(E);
1100 
1101     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1102     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1103   }
1104 
1105   case CK_BaseToDerivedMemberPointer:
1106   case CK_DerivedToBaseMemberPointer: {
1107     Value *Src = Visit(E);
1108 
1109     // Note that the AST doesn't distinguish between checked and
1110     // unchecked member pointer conversions, so we always have to
1111     // implement checked conversions here.  This is inefficient when
1112     // actual control flow may be required in order to perform the
1113     // check, which it is for data member pointers (but not member
1114     // function pointers on Itanium and ARM).
1115     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1116   }
1117 
1118   case CK_ObjCProduceObject:
1119     return CGF.EmitARCRetainScalarExpr(E);
1120   case CK_ObjCConsumeObject:
1121     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1122   case CK_ObjCReclaimReturnedObject: {
1123     llvm::Value *value = Visit(E);
1124     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1125     return CGF.EmitObjCConsumeObject(E->getType(), value);
1126   }
1127 
1128   case CK_FloatingRealToComplex:
1129   case CK_FloatingComplexCast:
1130   case CK_IntegralRealToComplex:
1131   case CK_IntegralComplexCast:
1132   case CK_IntegralComplexToFloatingComplex:
1133   case CK_FloatingComplexToIntegralComplex:
1134   case CK_ConstructorConversion:
1135   case CK_ToUnion:
1136     llvm_unreachable("scalar cast to non-scalar value");
1137     break;
1138 
1139   case CK_GetObjCProperty: {
1140     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1141     assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1142            "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1143     RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E));
1144     return RV.getScalarVal();
1145   }
1146 
1147   case CK_LValueToRValue:
1148     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1149     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1150     return Visit(const_cast<Expr*>(E));
1151 
1152   case CK_IntegralToPointer: {
1153     Value *Src = Visit(const_cast<Expr*>(E));
1154 
1155     // First, convert to the correct width so that we control the kind of
1156     // extension.
1157     llvm::Type *MiddleTy = CGF.IntPtrTy;
1158     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1159     llvm::Value* IntResult =
1160       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1161 
1162     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1163   }
1164   case CK_PointerToIntegral:
1165     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1166     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1167 
1168   case CK_ToVoid: {
1169     CGF.EmitIgnoredExpr(E);
1170     return 0;
1171   }
1172   case CK_VectorSplat: {
1173     llvm::Type *DstTy = ConvertType(DestTy);
1174     Value *Elt = Visit(const_cast<Expr*>(E));
1175 
1176     // Insert the element in element zero of an undef vector
1177     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1178     llvm::Value *Idx = Builder.getInt32(0);
1179     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1180 
1181     // Splat the element across to all elements
1182     SmallVector<llvm::Constant*, 16> Args;
1183     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1184     llvm::Constant *Zero = Builder.getInt32(0);
1185     for (unsigned i = 0; i < NumElements; i++)
1186       Args.push_back(Zero);
1187 
1188     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1189     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1190     return Yay;
1191   }
1192 
1193   case CK_IntegralCast:
1194   case CK_IntegralToFloating:
1195   case CK_FloatingToIntegral:
1196   case CK_FloatingCast:
1197     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1198 
1199   case CK_IntegralToBoolean:
1200     return EmitIntToBoolConversion(Visit(E));
1201   case CK_PointerToBoolean:
1202     return EmitPointerToBoolConversion(Visit(E));
1203   case CK_FloatingToBoolean:
1204     return EmitFloatToBoolConversion(Visit(E));
1205   case CK_MemberPointerToBoolean: {
1206     llvm::Value *MemPtr = Visit(E);
1207     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1208     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1209   }
1210 
1211   case CK_FloatingComplexToReal:
1212   case CK_IntegralComplexToReal:
1213     return CGF.EmitComplexExpr(E, false, true).first;
1214 
1215   case CK_FloatingComplexToBoolean:
1216   case CK_IntegralComplexToBoolean: {
1217     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1218 
1219     // TODO: kill this function off, inline appropriate case here
1220     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1221   }
1222 
1223   }
1224 
1225   llvm_unreachable("unknown scalar cast");
1226   return 0;
1227 }
1228 
1229 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1230   CodeGenFunction::StmtExprEvaluation eval(CGF);
1231   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1232     .getScalarVal();
1233 }
1234 
1235 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1236   LValue LV = CGF.EmitBlockDeclRefLValue(E);
1237   return CGF.EmitLoadOfLValue(LV).getScalarVal();
1238 }
1239 
1240 //===----------------------------------------------------------------------===//
1241 //                             Unary Operators
1242 //===----------------------------------------------------------------------===//
1243 
1244 llvm::Value *ScalarExprEmitter::
1245 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1246                                 llvm::Value *InVal,
1247                                 llvm::Value *NextVal, bool IsInc) {
1248   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1249   case LangOptions::SOB_Undefined:
1250     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1251     break;
1252   case LangOptions::SOB_Defined:
1253     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1254     break;
1255   case LangOptions::SOB_Trapping:
1256     BinOpInfo BinOp;
1257     BinOp.LHS = InVal;
1258     BinOp.RHS = NextVal;
1259     BinOp.Ty = E->getType();
1260     BinOp.Opcode = BO_Add;
1261     BinOp.E = E;
1262     return EmitOverflowCheckedBinOp(BinOp);
1263     break;
1264   }
1265   assert(false && "Unknown SignedOverflowBehaviorTy");
1266   return 0;
1267 }
1268 
1269 llvm::Value *
1270 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1271                                            bool isInc, bool isPre) {
1272 
1273   QualType type = E->getSubExpr()->getType();
1274   llvm::Value *value = EmitLoadOfLValue(LV);
1275   llvm::Value *input = value;
1276 
1277   int amount = (isInc ? 1 : -1);
1278 
1279   // Special case of integer increment that we have to check first: bool++.
1280   // Due to promotion rules, we get:
1281   //   bool++ -> bool = bool + 1
1282   //          -> bool = (int)bool + 1
1283   //          -> bool = ((int)bool + 1 != 0)
1284   // An interesting aspect of this is that increment is always true.
1285   // Decrement does not have this property.
1286   if (isInc && type->isBooleanType()) {
1287     value = Builder.getTrue();
1288 
1289   // Most common case by far: integer increment.
1290   } else if (type->isIntegerType()) {
1291 
1292     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1293 
1294     // Note that signed integer inc/dec with width less than int can't
1295     // overflow because of promotion rules; we're just eliding a few steps here.
1296     if (type->isSignedIntegerOrEnumerationType() &&
1297         value->getType()->getPrimitiveSizeInBits() >=
1298             CGF.IntTy->getBitWidth())
1299       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1300     else
1301       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1302 
1303   // Next most common: pointer increment.
1304   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1305     QualType type = ptr->getPointeeType();
1306 
1307     // VLA types don't have constant size.
1308     if (const VariableArrayType *vla
1309           = CGF.getContext().getAsVariableArrayType(type)) {
1310       llvm::Value *numElts = CGF.getVLASize(vla).first;
1311       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1312       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1313         value = Builder.CreateGEP(value, numElts, "vla.inc");
1314       else
1315         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1316 
1317     // Arithmetic on function pointers (!) is just +-1.
1318     } else if (type->isFunctionType()) {
1319       llvm::Value *amt = Builder.getInt32(amount);
1320 
1321       value = CGF.EmitCastToVoidPtr(value);
1322       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1323         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1324       else
1325         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1326       value = Builder.CreateBitCast(value, input->getType());
1327 
1328     // For everything else, we can just do a simple increment.
1329     } else {
1330       llvm::Value *amt = Builder.getInt32(amount);
1331       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1332         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1333       else
1334         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1335     }
1336 
1337   // Vector increment/decrement.
1338   } else if (type->isVectorType()) {
1339     if (type->hasIntegerRepresentation()) {
1340       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1341 
1342       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1343     } else {
1344       value = Builder.CreateFAdd(
1345                   value,
1346                   llvm::ConstantFP::get(value->getType(), amount),
1347                   isInc ? "inc" : "dec");
1348     }
1349 
1350   // Floating point.
1351   } else if (type->isRealFloatingType()) {
1352     // Add the inc/dec to the real part.
1353     llvm::Value *amt;
1354     if (value->getType()->isFloatTy())
1355       amt = llvm::ConstantFP::get(VMContext,
1356                                   llvm::APFloat(static_cast<float>(amount)));
1357     else if (value->getType()->isDoubleTy())
1358       amt = llvm::ConstantFP::get(VMContext,
1359                                   llvm::APFloat(static_cast<double>(amount)));
1360     else {
1361       llvm::APFloat F(static_cast<float>(amount));
1362       bool ignored;
1363       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1364                 &ignored);
1365       amt = llvm::ConstantFP::get(VMContext, F);
1366     }
1367     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1368 
1369   // Objective-C pointer types.
1370   } else {
1371     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1372     value = CGF.EmitCastToVoidPtr(value);
1373 
1374     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1375     if (!isInc) size = -size;
1376     llvm::Value *sizeValue =
1377       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1378 
1379     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1380       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1381     else
1382       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1383     value = Builder.CreateBitCast(value, input->getType());
1384   }
1385 
1386   // Store the updated result through the lvalue.
1387   if (LV.isBitField())
1388     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1389   else
1390     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1391 
1392   // If this is a postinc, return the value read from memory, otherwise use the
1393   // updated value.
1394   return isPre ? value : input;
1395 }
1396 
1397 
1398 
1399 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1400   TestAndClearIgnoreResultAssign();
1401   // Emit unary minus with EmitSub so we handle overflow cases etc.
1402   BinOpInfo BinOp;
1403   BinOp.RHS = Visit(E->getSubExpr());
1404 
1405   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1406     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1407   else
1408     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1409   BinOp.Ty = E->getType();
1410   BinOp.Opcode = BO_Sub;
1411   BinOp.E = E;
1412   return EmitSub(BinOp);
1413 }
1414 
1415 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1416   TestAndClearIgnoreResultAssign();
1417   Value *Op = Visit(E->getSubExpr());
1418   return Builder.CreateNot(Op, "neg");
1419 }
1420 
1421 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1422   // Compare operand to zero.
1423   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1424 
1425   // Invert value.
1426   // TODO: Could dynamically modify easy computations here.  For example, if
1427   // the operand is an icmp ne, turn into icmp eq.
1428   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1429 
1430   // ZExt result to the expr type.
1431   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1432 }
1433 
1434 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1435   // Try folding the offsetof to a constant.
1436   Expr::EvalResult EvalResult;
1437   if (E->Evaluate(EvalResult, CGF.getContext()))
1438     return Builder.getInt(EvalResult.Val.getInt());
1439 
1440   // Loop over the components of the offsetof to compute the value.
1441   unsigned n = E->getNumComponents();
1442   llvm::Type* ResultType = ConvertType(E->getType());
1443   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1444   QualType CurrentType = E->getTypeSourceInfo()->getType();
1445   for (unsigned i = 0; i != n; ++i) {
1446     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1447     llvm::Value *Offset = 0;
1448     switch (ON.getKind()) {
1449     case OffsetOfExpr::OffsetOfNode::Array: {
1450       // Compute the index
1451       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1452       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1453       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1454       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1455 
1456       // Save the element type
1457       CurrentType =
1458           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1459 
1460       // Compute the element size
1461       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1462           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1463 
1464       // Multiply out to compute the result
1465       Offset = Builder.CreateMul(Idx, ElemSize);
1466       break;
1467     }
1468 
1469     case OffsetOfExpr::OffsetOfNode::Field: {
1470       FieldDecl *MemberDecl = ON.getField();
1471       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1472       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1473 
1474       // Compute the index of the field in its parent.
1475       unsigned i = 0;
1476       // FIXME: It would be nice if we didn't have to loop here!
1477       for (RecordDecl::field_iterator Field = RD->field_begin(),
1478                                       FieldEnd = RD->field_end();
1479            Field != FieldEnd; (void)++Field, ++i) {
1480         if (*Field == MemberDecl)
1481           break;
1482       }
1483       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1484 
1485       // Compute the offset to the field
1486       int64_t OffsetInt = RL.getFieldOffset(i) /
1487                           CGF.getContext().getCharWidth();
1488       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1489 
1490       // Save the element type.
1491       CurrentType = MemberDecl->getType();
1492       break;
1493     }
1494 
1495     case OffsetOfExpr::OffsetOfNode::Identifier:
1496       llvm_unreachable("dependent __builtin_offsetof");
1497 
1498     case OffsetOfExpr::OffsetOfNode::Base: {
1499       if (ON.getBase()->isVirtual()) {
1500         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1501         continue;
1502       }
1503 
1504       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1505       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1506 
1507       // Save the element type.
1508       CurrentType = ON.getBase()->getType();
1509 
1510       // Compute the offset to the base.
1511       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1512       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1513       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1514                           CGF.getContext().getCharWidth();
1515       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1516       break;
1517     }
1518     }
1519     Result = Builder.CreateAdd(Result, Offset);
1520   }
1521   return Result;
1522 }
1523 
1524 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1525 /// argument of the sizeof expression as an integer.
1526 Value *
1527 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1528                               const UnaryExprOrTypeTraitExpr *E) {
1529   QualType TypeToSize = E->getTypeOfArgument();
1530   if (E->getKind() == UETT_SizeOf) {
1531     if (const VariableArrayType *VAT =
1532           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1533       if (E->isArgumentType()) {
1534         // sizeof(type) - make sure to emit the VLA size.
1535         CGF.EmitVariablyModifiedType(TypeToSize);
1536       } else {
1537         // C99 6.5.3.4p2: If the argument is an expression of type
1538         // VLA, it is evaluated.
1539         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1540       }
1541 
1542       QualType eltType;
1543       llvm::Value *numElts;
1544       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1545 
1546       llvm::Value *size = numElts;
1547 
1548       // Scale the number of non-VLA elements by the non-VLA element size.
1549       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1550       if (!eltSize.isOne())
1551         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1552 
1553       return size;
1554     }
1555   }
1556 
1557   // If this isn't sizeof(vla), the result must be constant; use the constant
1558   // folding logic so we don't have to duplicate it here.
1559   Expr::EvalResult Result;
1560   E->Evaluate(Result, CGF.getContext());
1561   return Builder.getInt(Result.Val.getInt());
1562 }
1563 
1564 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1565   Expr *Op = E->getSubExpr();
1566   if (Op->getType()->isAnyComplexType()) {
1567     // If it's an l-value, load through the appropriate subobject l-value.
1568     // Note that we have to ask E because Op might be an l-value that
1569     // this won't work for, e.g. an Obj-C property.
1570     if (E->isGLValue())
1571       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1572 
1573     // Otherwise, calculate and project.
1574     return CGF.EmitComplexExpr(Op, false, true).first;
1575   }
1576 
1577   return Visit(Op);
1578 }
1579 
1580 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1581   Expr *Op = E->getSubExpr();
1582   if (Op->getType()->isAnyComplexType()) {
1583     // If it's an l-value, load through the appropriate subobject l-value.
1584     // Note that we have to ask E because Op might be an l-value that
1585     // this won't work for, e.g. an Obj-C property.
1586     if (Op->isGLValue())
1587       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1588 
1589     // Otherwise, calculate and project.
1590     return CGF.EmitComplexExpr(Op, true, false).second;
1591   }
1592 
1593   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1594   // effects are evaluated, but not the actual value.
1595   CGF.EmitScalarExpr(Op, true);
1596   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1597 }
1598 
1599 //===----------------------------------------------------------------------===//
1600 //                           Binary Operators
1601 //===----------------------------------------------------------------------===//
1602 
1603 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1604   TestAndClearIgnoreResultAssign();
1605   BinOpInfo Result;
1606   Result.LHS = Visit(E->getLHS());
1607   Result.RHS = Visit(E->getRHS());
1608   Result.Ty  = E->getType();
1609   Result.Opcode = E->getOpcode();
1610   Result.E = E;
1611   return Result;
1612 }
1613 
1614 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1615                                               const CompoundAssignOperator *E,
1616                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1617                                                    Value *&Result) {
1618   QualType LHSTy = E->getLHS()->getType();
1619   BinOpInfo OpInfo;
1620 
1621   if (E->getComputationResultType()->isAnyComplexType()) {
1622     // This needs to go through the complex expression emitter, but it's a tad
1623     // complicated to do that... I'm leaving it out for now.  (Note that we do
1624     // actually need the imaginary part of the RHS for multiplication and
1625     // division.)
1626     CGF.ErrorUnsupported(E, "complex compound assignment");
1627     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1628     return LValue();
1629   }
1630 
1631   // Emit the RHS first.  __block variables need to have the rhs evaluated
1632   // first, plus this should improve codegen a little.
1633   OpInfo.RHS = Visit(E->getRHS());
1634   OpInfo.Ty = E->getComputationResultType();
1635   OpInfo.Opcode = E->getOpcode();
1636   OpInfo.E = E;
1637   // Load/convert the LHS.
1638   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1639   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1640   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1641                                     E->getComputationLHSType());
1642 
1643   // Expand the binary operator.
1644   Result = (this->*Func)(OpInfo);
1645 
1646   // Convert the result back to the LHS type.
1647   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1648 
1649   // Store the result value into the LHS lvalue. Bit-fields are handled
1650   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1651   // 'An assignment expression has the value of the left operand after the
1652   // assignment...'.
1653   if (LHSLV.isBitField())
1654     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1655   else
1656     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1657 
1658   return LHSLV;
1659 }
1660 
1661 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1662                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1663   bool Ignore = TestAndClearIgnoreResultAssign();
1664   Value *RHS;
1665   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1666 
1667   // If the result is clearly ignored, return now.
1668   if (Ignore)
1669     return 0;
1670 
1671   // The result of an assignment in C is the assigned r-value.
1672   if (!CGF.getContext().getLangOptions().CPlusPlus)
1673     return RHS;
1674 
1675   // Objective-C property assignment never reloads the value following a store.
1676   if (LHS.isPropertyRef())
1677     return RHS;
1678 
1679   // If the lvalue is non-volatile, return the computed value of the assignment.
1680   if (!LHS.isVolatileQualified())
1681     return RHS;
1682 
1683   // Otherwise, reload the value.
1684   return EmitLoadOfLValue(LHS);
1685 }
1686 
1687 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1688      					    const BinOpInfo &Ops,
1689 				     	    llvm::Value *Zero, bool isDiv) {
1690   llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1691   llvm::BasicBlock *contBB =
1692     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1693                          llvm::next(insertPt));
1694   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1695 
1696   llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1697 
1698   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1699     llvm::Value *IntMin =
1700       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1701     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1702 
1703     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1704     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1705     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1706     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1707     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1708                          overflowBB, contBB);
1709   } else {
1710     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1711                              overflowBB, contBB);
1712   }
1713   EmitOverflowBB(overflowBB);
1714   Builder.SetInsertPoint(contBB);
1715 }
1716 
1717 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1718   if (isTrapvOverflowBehavior()) {
1719     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1720 
1721     if (Ops.Ty->isIntegerType())
1722       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1723     else if (Ops.Ty->isRealFloatingType()) {
1724       llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1725       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1726                                                        llvm::next(insertPt));
1727       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1728                                                           CGF.CurFn);
1729       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1730                                overflowBB, DivCont);
1731       EmitOverflowBB(overflowBB);
1732       Builder.SetInsertPoint(DivCont);
1733     }
1734   }
1735   if (Ops.LHS->getType()->isFPOrFPVectorTy())
1736     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1737   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1738     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1739   else
1740     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1741 }
1742 
1743 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1744   // Rem in C can't be a floating point type: C99 6.5.5p2.
1745   if (isTrapvOverflowBehavior()) {
1746     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1747 
1748     if (Ops.Ty->isIntegerType())
1749       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1750   }
1751 
1752   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1753     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1754   else
1755     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1756 }
1757 
1758 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1759   unsigned IID;
1760   unsigned OpID = 0;
1761 
1762   switch (Ops.Opcode) {
1763   case BO_Add:
1764   case BO_AddAssign:
1765     OpID = 1;
1766     IID = llvm::Intrinsic::sadd_with_overflow;
1767     break;
1768   case BO_Sub:
1769   case BO_SubAssign:
1770     OpID = 2;
1771     IID = llvm::Intrinsic::ssub_with_overflow;
1772     break;
1773   case BO_Mul:
1774   case BO_MulAssign:
1775     OpID = 3;
1776     IID = llvm::Intrinsic::smul_with_overflow;
1777     break;
1778   default:
1779     assert(false && "Unsupported operation for overflow detection");
1780     IID = 0;
1781   }
1782   OpID <<= 1;
1783   OpID |= 1;
1784 
1785   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1786 
1787   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1788 
1789   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1790   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1791   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1792 
1793   // Branch in case of overflow.
1794   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1795   llvm::Function::iterator insertPt = initialBB;
1796   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1797                                                       llvm::next(insertPt));
1798   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1799 
1800   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1801 
1802   // Handle overflow with llvm.trap.
1803   const std::string *handlerName =
1804     &CGF.getContext().getLangOptions().OverflowHandler;
1805   if (handlerName->empty()) {
1806     EmitOverflowBB(overflowBB);
1807     Builder.SetInsertPoint(continueBB);
1808     return result;
1809   }
1810 
1811   // If an overflow handler is set, then we want to call it and then use its
1812   // result, if it returns.
1813   Builder.SetInsertPoint(overflowBB);
1814 
1815   // Get the overflow handler.
1816   llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1817   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1818   llvm::FunctionType *handlerTy =
1819       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1820   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1821 
1822   // Sign extend the args to 64-bit, so that we can use the same handler for
1823   // all types of overflow.
1824   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1825   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1826 
1827   // Call the handler with the two arguments, the operation, and the size of
1828   // the result.
1829   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1830       Builder.getInt8(OpID),
1831       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1832 
1833   // Truncate the result back to the desired size.
1834   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1835   Builder.CreateBr(continueBB);
1836 
1837   Builder.SetInsertPoint(continueBB);
1838   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1839   phi->addIncoming(result, initialBB);
1840   phi->addIncoming(handlerResult, overflowBB);
1841 
1842   return phi;
1843 }
1844 
1845 /// Emit pointer + index arithmetic.
1846 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1847                                     const BinOpInfo &op,
1848                                     bool isSubtraction) {
1849   // Must have binary (not unary) expr here.  Unary pointer
1850   // increment/decrement doesn't use this path.
1851   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1852 
1853   Value *pointer = op.LHS;
1854   Expr *pointerOperand = expr->getLHS();
1855   Value *index = op.RHS;
1856   Expr *indexOperand = expr->getRHS();
1857 
1858   // In a subtraction, the LHS is always the pointer.
1859   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1860     std::swap(pointer, index);
1861     std::swap(pointerOperand, indexOperand);
1862   }
1863 
1864   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1865   if (width != CGF.PointerWidthInBits) {
1866     // Zero-extend or sign-extend the pointer value according to
1867     // whether the index is signed or not.
1868     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1869     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1870                                       "idx.ext");
1871   }
1872 
1873   // If this is subtraction, negate the index.
1874   if (isSubtraction)
1875     index = CGF.Builder.CreateNeg(index, "idx.neg");
1876 
1877   const PointerType *pointerType
1878     = pointerOperand->getType()->getAs<PointerType>();
1879   if (!pointerType) {
1880     QualType objectType = pointerOperand->getType()
1881                                         ->castAs<ObjCObjectPointerType>()
1882                                         ->getPointeeType();
1883     llvm::Value *objectSize
1884       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1885 
1886     index = CGF.Builder.CreateMul(index, objectSize);
1887 
1888     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1889     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1890     return CGF.Builder.CreateBitCast(result, pointer->getType());
1891   }
1892 
1893   QualType elementType = pointerType->getPointeeType();
1894   if (const VariableArrayType *vla
1895         = CGF.getContext().getAsVariableArrayType(elementType)) {
1896     // The element count here is the total number of non-VLA elements.
1897     llvm::Value *numElements = CGF.getVLASize(vla).first;
1898 
1899     // Effectively, the multiply by the VLA size is part of the GEP.
1900     // GEP indexes are signed, and scaling an index isn't permitted to
1901     // signed-overflow, so we use the same semantics for our explicit
1902     // multiply.  We suppress this if overflow is not undefined behavior.
1903     if (CGF.getLangOptions().isSignedOverflowDefined()) {
1904       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1905       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1906     } else {
1907       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1908       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1909     }
1910     return pointer;
1911   }
1912 
1913   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1914   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1915   // future proof.
1916   if (elementType->isVoidType() || elementType->isFunctionType()) {
1917     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1918     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1919     return CGF.Builder.CreateBitCast(result, pointer->getType());
1920   }
1921 
1922   if (CGF.getLangOptions().isSignedOverflowDefined())
1923     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1924 
1925   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1926 }
1927 
1928 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
1929   if (op.LHS->getType()->isPointerTy() ||
1930       op.RHS->getType()->isPointerTy())
1931     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
1932 
1933   if (op.Ty->isSignedIntegerOrEnumerationType()) {
1934     switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1935     case LangOptions::SOB_Undefined:
1936       return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
1937     case LangOptions::SOB_Defined:
1938       return Builder.CreateAdd(op.LHS, op.RHS, "add");
1939     case LangOptions::SOB_Trapping:
1940       return EmitOverflowCheckedBinOp(op);
1941     }
1942   }
1943 
1944   if (op.LHS->getType()->isFPOrFPVectorTy())
1945     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
1946 
1947   return Builder.CreateAdd(op.LHS, op.RHS, "add");
1948 }
1949 
1950 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
1951   // The LHS is always a pointer if either side is.
1952   if (!op.LHS->getType()->isPointerTy()) {
1953     if (op.Ty->isSignedIntegerOrEnumerationType()) {
1954       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1955       case LangOptions::SOB_Undefined:
1956         return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
1957       case LangOptions::SOB_Defined:
1958         return Builder.CreateSub(op.LHS, op.RHS, "sub");
1959       case LangOptions::SOB_Trapping:
1960         return EmitOverflowCheckedBinOp(op);
1961       }
1962     }
1963 
1964     if (op.LHS->getType()->isFPOrFPVectorTy())
1965       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
1966 
1967     return Builder.CreateSub(op.LHS, op.RHS, "sub");
1968   }
1969 
1970   // If the RHS is not a pointer, then we have normal pointer
1971   // arithmetic.
1972   if (!op.RHS->getType()->isPointerTy())
1973     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
1974 
1975   // Otherwise, this is a pointer subtraction.
1976 
1977   // Do the raw subtraction part.
1978   llvm::Value *LHS
1979     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
1980   llvm::Value *RHS
1981     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
1982   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1983 
1984   // Okay, figure out the element size.
1985   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1986   QualType elementType = expr->getLHS()->getType()->getPointeeType();
1987 
1988   llvm::Value *divisor = 0;
1989 
1990   // For a variable-length array, this is going to be non-constant.
1991   if (const VariableArrayType *vla
1992         = CGF.getContext().getAsVariableArrayType(elementType)) {
1993     llvm::Value *numElements;
1994     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
1995 
1996     divisor = numElements;
1997 
1998     // Scale the number of non-VLA elements by the non-VLA element size.
1999     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2000     if (!eltSize.isOne())
2001       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2002 
2003   // For everything elese, we can just compute it, safe in the
2004   // assumption that Sema won't let anything through that we can't
2005   // safely compute the size of.
2006   } else {
2007     CharUnits elementSize;
2008     // Handle GCC extension for pointer arithmetic on void* and
2009     // function pointer types.
2010     if (elementType->isVoidType() || elementType->isFunctionType())
2011       elementSize = CharUnits::One();
2012     else
2013       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2014 
2015     // Don't even emit the divide for element size of 1.
2016     if (elementSize.isOne())
2017       return diffInChars;
2018 
2019     divisor = CGF.CGM.getSize(elementSize);
2020   }
2021 
2022   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2023   // pointer difference in C is only defined in the case where both operands
2024   // are pointing to elements of an array.
2025   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2026 }
2027 
2028 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2029   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2030   // RHS to the same size as the LHS.
2031   Value *RHS = Ops.RHS;
2032   if (Ops.LHS->getType() != RHS->getType())
2033     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2034 
2035   if (CGF.CatchUndefined
2036       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2037     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2038     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2039     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2040                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2041                              Cont, CGF.getTrapBB());
2042     CGF.EmitBlock(Cont);
2043   }
2044 
2045   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2046 }
2047 
2048 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2049   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2050   // RHS to the same size as the LHS.
2051   Value *RHS = Ops.RHS;
2052   if (Ops.LHS->getType() != RHS->getType())
2053     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2054 
2055   if (CGF.CatchUndefined
2056       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2057     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2058     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2059     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2060                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2061                              Cont, CGF.getTrapBB());
2062     CGF.EmitBlock(Cont);
2063   }
2064 
2065   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2066     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2067   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2068 }
2069 
2070 enum IntrinsicType { VCMPEQ, VCMPGT };
2071 // return corresponding comparison intrinsic for given vector type
2072 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2073                                         BuiltinType::Kind ElemKind) {
2074   switch (ElemKind) {
2075   default: assert(0 && "unexpected element type");
2076   case BuiltinType::Char_U:
2077   case BuiltinType::UChar:
2078     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2079                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2080     break;
2081   case BuiltinType::Char_S:
2082   case BuiltinType::SChar:
2083     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2084                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2085     break;
2086   case BuiltinType::UShort:
2087     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2088                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2089     break;
2090   case BuiltinType::Short:
2091     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2092                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2093     break;
2094   case BuiltinType::UInt:
2095   case BuiltinType::ULong:
2096     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2097                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2098     break;
2099   case BuiltinType::Int:
2100   case BuiltinType::Long:
2101     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2102                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2103     break;
2104   case BuiltinType::Float:
2105     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2106                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2107     break;
2108   }
2109   return llvm::Intrinsic::not_intrinsic;
2110 }
2111 
2112 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2113                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2114   TestAndClearIgnoreResultAssign();
2115   Value *Result;
2116   QualType LHSTy = E->getLHS()->getType();
2117   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2118     assert(E->getOpcode() == BO_EQ ||
2119            E->getOpcode() == BO_NE);
2120     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2121     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2122     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2123                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2124   } else if (!LHSTy->isAnyComplexType()) {
2125     Value *LHS = Visit(E->getLHS());
2126     Value *RHS = Visit(E->getRHS());
2127 
2128     // If AltiVec, the comparison results in a numeric type, so we use
2129     // intrinsics comparing vectors and giving 0 or 1 as a result
2130     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2131       // constants for mapping CR6 register bits to predicate result
2132       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2133 
2134       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2135 
2136       // in several cases vector arguments order will be reversed
2137       Value *FirstVecArg = LHS,
2138             *SecondVecArg = RHS;
2139 
2140       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2141       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2142       BuiltinType::Kind ElementKind = BTy->getKind();
2143 
2144       switch(E->getOpcode()) {
2145       default: assert(0 && "is not a comparison operation");
2146       case BO_EQ:
2147         CR6 = CR6_LT;
2148         ID = GetIntrinsic(VCMPEQ, ElementKind);
2149         break;
2150       case BO_NE:
2151         CR6 = CR6_EQ;
2152         ID = GetIntrinsic(VCMPEQ, ElementKind);
2153         break;
2154       case BO_LT:
2155         CR6 = CR6_LT;
2156         ID = GetIntrinsic(VCMPGT, ElementKind);
2157         std::swap(FirstVecArg, SecondVecArg);
2158         break;
2159       case BO_GT:
2160         CR6 = CR6_LT;
2161         ID = GetIntrinsic(VCMPGT, ElementKind);
2162         break;
2163       case BO_LE:
2164         if (ElementKind == BuiltinType::Float) {
2165           CR6 = CR6_LT;
2166           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2167           std::swap(FirstVecArg, SecondVecArg);
2168         }
2169         else {
2170           CR6 = CR6_EQ;
2171           ID = GetIntrinsic(VCMPGT, ElementKind);
2172         }
2173         break;
2174       case BO_GE:
2175         if (ElementKind == BuiltinType::Float) {
2176           CR6 = CR6_LT;
2177           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2178         }
2179         else {
2180           CR6 = CR6_EQ;
2181           ID = GetIntrinsic(VCMPGT, ElementKind);
2182           std::swap(FirstVecArg, SecondVecArg);
2183         }
2184         break;
2185       }
2186 
2187       Value *CR6Param = Builder.getInt32(CR6);
2188       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2189       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2190       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2191     }
2192 
2193     if (LHS->getType()->isFPOrFPVectorTy()) {
2194       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2195                                   LHS, RHS, "cmp");
2196     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2197       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2198                                   LHS, RHS, "cmp");
2199     } else {
2200       // Unsigned integers and pointers.
2201       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2202                                   LHS, RHS, "cmp");
2203     }
2204 
2205     // If this is a vector comparison, sign extend the result to the appropriate
2206     // vector integer type and return it (don't convert to bool).
2207     if (LHSTy->isVectorType())
2208       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2209 
2210   } else {
2211     // Complex Comparison: can only be an equality comparison.
2212     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2213     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2214 
2215     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2216 
2217     Value *ResultR, *ResultI;
2218     if (CETy->isRealFloatingType()) {
2219       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2220                                    LHS.first, RHS.first, "cmp.r");
2221       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2222                                    LHS.second, RHS.second, "cmp.i");
2223     } else {
2224       // Complex comparisons can only be equality comparisons.  As such, signed
2225       // and unsigned opcodes are the same.
2226       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2227                                    LHS.first, RHS.first, "cmp.r");
2228       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2229                                    LHS.second, RHS.second, "cmp.i");
2230     }
2231 
2232     if (E->getOpcode() == BO_EQ) {
2233       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2234     } else {
2235       assert(E->getOpcode() == BO_NE &&
2236              "Complex comparison other than == or != ?");
2237       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2238     }
2239   }
2240 
2241   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2242 }
2243 
2244 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2245   bool Ignore = TestAndClearIgnoreResultAssign();
2246 
2247   Value *RHS;
2248   LValue LHS;
2249 
2250   switch (E->getLHS()->getType().getObjCLifetime()) {
2251   case Qualifiers::OCL_Strong:
2252     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2253     break;
2254 
2255   case Qualifiers::OCL_Autoreleasing:
2256     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2257     break;
2258 
2259   case Qualifiers::OCL_Weak:
2260     RHS = Visit(E->getRHS());
2261     LHS = EmitCheckedLValue(E->getLHS());
2262     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2263     break;
2264 
2265   // No reason to do any of these differently.
2266   case Qualifiers::OCL_None:
2267   case Qualifiers::OCL_ExplicitNone:
2268     // __block variables need to have the rhs evaluated first, plus
2269     // this should improve codegen just a little.
2270     RHS = Visit(E->getRHS());
2271     LHS = EmitCheckedLValue(E->getLHS());
2272 
2273     // Store the value into the LHS.  Bit-fields are handled specially
2274     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2275     // 'An assignment expression has the value of the left operand after
2276     // the assignment...'.
2277     if (LHS.isBitField())
2278       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2279     else
2280       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2281   }
2282 
2283   // If the result is clearly ignored, return now.
2284   if (Ignore)
2285     return 0;
2286 
2287   // The result of an assignment in C is the assigned r-value.
2288   if (!CGF.getContext().getLangOptions().CPlusPlus)
2289     return RHS;
2290 
2291   // Objective-C property assignment never reloads the value following a store.
2292   if (LHS.isPropertyRef())
2293     return RHS;
2294 
2295   // If the lvalue is non-volatile, return the computed value of the assignment.
2296   if (!LHS.isVolatileQualified())
2297     return RHS;
2298 
2299   // Otherwise, reload the value.
2300   return EmitLoadOfLValue(LHS);
2301 }
2302 
2303 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2304   llvm::Type *ResTy = ConvertType(E->getType());
2305 
2306   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2307   // If we have 1 && X, just emit X without inserting the control flow.
2308   bool LHSCondVal;
2309   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2310     if (LHSCondVal) { // If we have 1 && X, just emit X.
2311       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2312       // ZExt result to int or bool.
2313       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2314     }
2315 
2316     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2317     if (!CGF.ContainsLabel(E->getRHS()))
2318       return llvm::Constant::getNullValue(ResTy);
2319   }
2320 
2321   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2322   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2323 
2324   CodeGenFunction::ConditionalEvaluation eval(CGF);
2325 
2326   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2327   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2328 
2329   // Any edges into the ContBlock are now from an (indeterminate number of)
2330   // edges from this first condition.  All of these values will be false.  Start
2331   // setting up the PHI node in the Cont Block for this.
2332   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2333                                             "", ContBlock);
2334   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2335        PI != PE; ++PI)
2336     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2337 
2338   eval.begin(CGF);
2339   CGF.EmitBlock(RHSBlock);
2340   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2341   eval.end(CGF);
2342 
2343   // Reaquire the RHS block, as there may be subblocks inserted.
2344   RHSBlock = Builder.GetInsertBlock();
2345 
2346   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2347   // into the phi node for the edge with the value of RHSCond.
2348   if (CGF.getDebugInfo())
2349     // There is no need to emit line number for unconditional branch.
2350     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2351   CGF.EmitBlock(ContBlock);
2352   PN->addIncoming(RHSCond, RHSBlock);
2353 
2354   // ZExt result to int.
2355   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2356 }
2357 
2358 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2359   llvm::Type *ResTy = ConvertType(E->getType());
2360 
2361   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2362   // If we have 0 || X, just emit X without inserting the control flow.
2363   bool LHSCondVal;
2364   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2365     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2366       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2367       // ZExt result to int or bool.
2368       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2369     }
2370 
2371     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2372     if (!CGF.ContainsLabel(E->getRHS()))
2373       return llvm::ConstantInt::get(ResTy, 1);
2374   }
2375 
2376   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2377   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2378 
2379   CodeGenFunction::ConditionalEvaluation eval(CGF);
2380 
2381   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2382   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2383 
2384   // Any edges into the ContBlock are now from an (indeterminate number of)
2385   // edges from this first condition.  All of these values will be true.  Start
2386   // setting up the PHI node in the Cont Block for this.
2387   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2388                                             "", ContBlock);
2389   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2390        PI != PE; ++PI)
2391     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2392 
2393   eval.begin(CGF);
2394 
2395   // Emit the RHS condition as a bool value.
2396   CGF.EmitBlock(RHSBlock);
2397   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2398 
2399   eval.end(CGF);
2400 
2401   // Reaquire the RHS block, as there may be subblocks inserted.
2402   RHSBlock = Builder.GetInsertBlock();
2403 
2404   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2405   // into the phi node for the edge with the value of RHSCond.
2406   CGF.EmitBlock(ContBlock);
2407   PN->addIncoming(RHSCond, RHSBlock);
2408 
2409   // ZExt result to int.
2410   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2411 }
2412 
2413 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2414   CGF.EmitIgnoredExpr(E->getLHS());
2415   CGF.EnsureInsertPoint();
2416   return Visit(E->getRHS());
2417 }
2418 
2419 //===----------------------------------------------------------------------===//
2420 //                             Other Operators
2421 //===----------------------------------------------------------------------===//
2422 
2423 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2424 /// expression is cheap enough and side-effect-free enough to evaluate
2425 /// unconditionally instead of conditionally.  This is used to convert control
2426 /// flow into selects in some cases.
2427 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2428                                                    CodeGenFunction &CGF) {
2429   E = E->IgnoreParens();
2430 
2431   // Anything that is an integer or floating point constant is fine.
2432   if (E->isConstantInitializer(CGF.getContext(), false))
2433     return true;
2434 
2435   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2436   // X and Y are local variables.
2437   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2438     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2439       if (VD->hasLocalStorage() && !(CGF.getContext()
2440                                      .getCanonicalType(VD->getType())
2441                                      .isVolatileQualified()))
2442         return true;
2443 
2444   return false;
2445 }
2446 
2447 
2448 Value *ScalarExprEmitter::
2449 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2450   TestAndClearIgnoreResultAssign();
2451 
2452   // Bind the common expression if necessary.
2453   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2454 
2455   Expr *condExpr = E->getCond();
2456   Expr *lhsExpr = E->getTrueExpr();
2457   Expr *rhsExpr = E->getFalseExpr();
2458 
2459   // If the condition constant folds and can be elided, try to avoid emitting
2460   // the condition and the dead arm.
2461   bool CondExprBool;
2462   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2463     Expr *live = lhsExpr, *dead = rhsExpr;
2464     if (!CondExprBool) std::swap(live, dead);
2465 
2466     // If the dead side doesn't have labels we need, and if the Live side isn't
2467     // the gnu missing ?: extension (which we could handle, but don't bother
2468     // to), just emit the Live part.
2469     if (!CGF.ContainsLabel(dead))
2470       return Visit(live);
2471   }
2472 
2473   // OpenCL: If the condition is a vector, we can treat this condition like
2474   // the select function.
2475   if (CGF.getContext().getLangOptions().OpenCL
2476       && condExpr->getType()->isVectorType()) {
2477     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2478     llvm::Value *LHS = Visit(lhsExpr);
2479     llvm::Value *RHS = Visit(rhsExpr);
2480 
2481     llvm::Type *condType = ConvertType(condExpr->getType());
2482     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2483 
2484     unsigned numElem = vecTy->getNumElements();
2485     llvm::Type *elemType = vecTy->getElementType();
2486 
2487     std::vector<llvm::Constant*> Zvals;
2488     for (unsigned i = 0; i < numElem; ++i)
2489       Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2490 
2491     llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2492     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2493     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2494                                           llvm::VectorType::get(elemType,
2495                                                                 numElem),
2496                                           "sext");
2497     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2498 
2499     // Cast float to int to perform ANDs if necessary.
2500     llvm::Value *RHSTmp = RHS;
2501     llvm::Value *LHSTmp = LHS;
2502     bool wasCast = false;
2503     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2504     if (rhsVTy->getElementType()->isFloatTy()) {
2505       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2506       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2507       wasCast = true;
2508     }
2509 
2510     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2511     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2512     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2513     if (wasCast)
2514       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2515 
2516     return tmp5;
2517   }
2518 
2519   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2520   // select instead of as control flow.  We can only do this if it is cheap and
2521   // safe to evaluate the LHS and RHS unconditionally.
2522   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2523       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2524     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2525     llvm::Value *LHS = Visit(lhsExpr);
2526     llvm::Value *RHS = Visit(rhsExpr);
2527     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2528   }
2529 
2530   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2531   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2532   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2533 
2534   CodeGenFunction::ConditionalEvaluation eval(CGF);
2535   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2536 
2537   CGF.EmitBlock(LHSBlock);
2538   eval.begin(CGF);
2539   Value *LHS = Visit(lhsExpr);
2540   eval.end(CGF);
2541 
2542   LHSBlock = Builder.GetInsertBlock();
2543   Builder.CreateBr(ContBlock);
2544 
2545   CGF.EmitBlock(RHSBlock);
2546   eval.begin(CGF);
2547   Value *RHS = Visit(rhsExpr);
2548   eval.end(CGF);
2549 
2550   RHSBlock = Builder.GetInsertBlock();
2551   CGF.EmitBlock(ContBlock);
2552 
2553   // If the LHS or RHS is a throw expression, it will be legitimately null.
2554   if (!LHS)
2555     return RHS;
2556   if (!RHS)
2557     return LHS;
2558 
2559   // Create a PHI node for the real part.
2560   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2561   PN->addIncoming(LHS, LHSBlock);
2562   PN->addIncoming(RHS, RHSBlock);
2563   return PN;
2564 }
2565 
2566 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2567   return Visit(E->getChosenSubExpr(CGF.getContext()));
2568 }
2569 
2570 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2571   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2572   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2573 
2574   // If EmitVAArg fails, we fall back to the LLVM instruction.
2575   if (!ArgPtr)
2576     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2577 
2578   // FIXME Volatility.
2579   return Builder.CreateLoad(ArgPtr);
2580 }
2581 
2582 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2583   return CGF.EmitBlockLiteral(block);
2584 }
2585 
2586 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2587   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2588   llvm::Type *DstTy = ConvertType(E->getType());
2589 
2590   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2591   // a shuffle vector instead of a bitcast.
2592   llvm::Type *SrcTy = Src->getType();
2593   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2594     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2595     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2596     if ((numElementsDst == 3 && numElementsSrc == 4)
2597         || (numElementsDst == 4 && numElementsSrc == 3)) {
2598 
2599 
2600       // In the case of going from int4->float3, a bitcast is needed before
2601       // doing a shuffle.
2602       llvm::Type *srcElemTy =
2603       cast<llvm::VectorType>(SrcTy)->getElementType();
2604       llvm::Type *dstElemTy =
2605       cast<llvm::VectorType>(DstTy)->getElementType();
2606 
2607       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2608           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2609         // Create a float type of the same size as the source or destination.
2610         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2611                                                                  numElementsSrc);
2612 
2613         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2614       }
2615 
2616       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2617 
2618       SmallVector<llvm::Constant*, 3> Args;
2619       Args.push_back(Builder.getInt32(0));
2620       Args.push_back(Builder.getInt32(1));
2621       Args.push_back(Builder.getInt32(2));
2622 
2623       if (numElementsDst == 4)
2624         Args.push_back(llvm::UndefValue::get(
2625                                              llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2626 
2627       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2628 
2629       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2630     }
2631   }
2632 
2633   return Builder.CreateBitCast(Src, DstTy, "astype");
2634 }
2635 
2636 //===----------------------------------------------------------------------===//
2637 //                         Entry Point into this File
2638 //===----------------------------------------------------------------------===//
2639 
2640 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2641 /// type, ignoring the result.
2642 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2643   assert(E && !hasAggregateLLVMType(E->getType()) &&
2644          "Invalid scalar expression to emit");
2645 
2646   if (isa<CXXDefaultArgExpr>(E))
2647     disableDebugInfo();
2648   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2649     .Visit(const_cast<Expr*>(E));
2650   if (isa<CXXDefaultArgExpr>(E))
2651     enableDebugInfo();
2652   return V;
2653 }
2654 
2655 /// EmitScalarConversion - Emit a conversion from the specified type to the
2656 /// specified destination type, both of which are LLVM scalar types.
2657 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2658                                              QualType DstTy) {
2659   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2660          "Invalid scalar expression to emit");
2661   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2662 }
2663 
2664 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2665 /// type to the specified destination type, where the destination type is an
2666 /// LLVM scalar type.
2667 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2668                                                       QualType SrcTy,
2669                                                       QualType DstTy) {
2670   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2671          "Invalid complex -> scalar conversion");
2672   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2673                                                                 DstTy);
2674 }
2675 
2676 
2677 llvm::Value *CodeGenFunction::
2678 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2679                         bool isInc, bool isPre) {
2680   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2681 }
2682 
2683 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2684   llvm::Value *V;
2685   // object->isa or (*object).isa
2686   // Generate code as for: *(Class*)object
2687   // build Class* type
2688   llvm::Type *ClassPtrTy = ConvertType(E->getType());
2689 
2690   Expr *BaseExpr = E->getBase();
2691   if (BaseExpr->isRValue()) {
2692     V = CreateTempAlloca(ClassPtrTy, "resval");
2693     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2694     Builder.CreateStore(Src, V);
2695     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2696       MakeAddrLValue(V, E->getType()));
2697   } else {
2698     if (E->isArrow())
2699       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2700     else
2701       V = EmitLValue(BaseExpr).getAddress();
2702   }
2703 
2704   // build Class* type
2705   ClassPtrTy = ClassPtrTy->getPointerTo();
2706   V = Builder.CreateBitCast(V, ClassPtrTy);
2707   return MakeAddrLValue(V, E->getType());
2708 }
2709 
2710 
2711 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2712                                             const CompoundAssignOperator *E) {
2713   ScalarExprEmitter Scalar(*this);
2714   Value *Result = 0;
2715   switch (E->getOpcode()) {
2716 #define COMPOUND_OP(Op)                                                       \
2717     case BO_##Op##Assign:                                                     \
2718       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2719                                              Result)
2720   COMPOUND_OP(Mul);
2721   COMPOUND_OP(Div);
2722   COMPOUND_OP(Rem);
2723   COMPOUND_OP(Add);
2724   COMPOUND_OP(Sub);
2725   COMPOUND_OP(Shl);
2726   COMPOUND_OP(Shr);
2727   COMPOUND_OP(And);
2728   COMPOUND_OP(Xor);
2729   COMPOUND_OP(Or);
2730 #undef COMPOUND_OP
2731 
2732   case BO_PtrMemD:
2733   case BO_PtrMemI:
2734   case BO_Mul:
2735   case BO_Div:
2736   case BO_Rem:
2737   case BO_Add:
2738   case BO_Sub:
2739   case BO_Shl:
2740   case BO_Shr:
2741   case BO_LT:
2742   case BO_GT:
2743   case BO_LE:
2744   case BO_GE:
2745   case BO_EQ:
2746   case BO_NE:
2747   case BO_And:
2748   case BO_Xor:
2749   case BO_Or:
2750   case BO_LAnd:
2751   case BO_LOr:
2752   case BO_Assign:
2753   case BO_Comma:
2754     assert(false && "Not valid compound assignment operators");
2755     break;
2756   }
2757 
2758   llvm_unreachable("Unhandled compound assignment operator");
2759 }
2760