1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "CodeGenFunction.h" 16 #include "CGCXXABI.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "CGDebugInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "llvm/Constants.h" 26 #include "llvm/Function.h" 27 #include "llvm/GlobalVariable.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/Module.h" 30 #include "llvm/Support/CFG.h" 31 #include "llvm/Target/TargetData.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 const Expr *E; // Entire expr, for error unsupported. May not be binop. 49 }; 50 51 static bool MustVisitNullValue(const Expr *E) { 52 // If a null pointer expression's type is the C++0x nullptr_t, then 53 // it's not necessarily a simple constant and it must be evaluated 54 // for its potential side effects. 55 return E->getType()->isNullPtrType(); 56 } 57 58 class ScalarExprEmitter 59 : public StmtVisitor<ScalarExprEmitter, Value*> { 60 CodeGenFunction &CGF; 61 CGBuilderTy &Builder; 62 bool IgnoreResultAssign; 63 llvm::LLVMContext &VMContext; 64 public: 65 66 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 67 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 68 VMContext(cgf.getLLVMContext()) { 69 } 70 71 //===--------------------------------------------------------------------===// 72 // Utilities 73 //===--------------------------------------------------------------------===// 74 75 bool TestAndClearIgnoreResultAssign() { 76 bool I = IgnoreResultAssign; 77 IgnoreResultAssign = false; 78 return I; 79 } 80 81 const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 82 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 83 LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); } 84 85 Value *EmitLoadOfLValue(LValue LV, QualType T) { 86 return CGF.EmitLoadOfLValue(LV, T).getScalarVal(); 87 } 88 89 /// EmitLoadOfLValue - Given an expression with complex type that represents a 90 /// value l-value, this method emits the address of the l-value, then loads 91 /// and returns the result. 92 Value *EmitLoadOfLValue(const Expr *E) { 93 return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType()); 94 } 95 96 /// EmitConversionToBool - Convert the specified expression value to a 97 /// boolean (i1) truth value. This is equivalent to "Val != 0". 98 Value *EmitConversionToBool(Value *Src, QualType DstTy); 99 100 /// EmitScalarConversion - Emit a conversion from the specified type to the 101 /// specified destination type, both of which are LLVM scalar types. 102 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 103 104 /// EmitComplexToScalarConversion - Emit a conversion from the specified 105 /// complex type to the specified destination type, where the destination type 106 /// is an LLVM scalar type. 107 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 108 QualType SrcTy, QualType DstTy); 109 110 /// EmitNullValue - Emit a value that corresponds to null for the given type. 111 Value *EmitNullValue(QualType Ty); 112 113 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 114 Value *EmitFloatToBoolConversion(Value *V) { 115 // Compare against 0.0 for fp scalars. 116 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 117 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 118 } 119 120 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 121 Value *EmitPointerToBoolConversion(Value *V) { 122 Value *Zero = llvm::ConstantPointerNull::get( 123 cast<llvm::PointerType>(V->getType())); 124 return Builder.CreateICmpNE(V, Zero, "tobool"); 125 } 126 127 Value *EmitIntToBoolConversion(Value *V) { 128 // Because of the type rules of C, we often end up computing a 129 // logical value, then zero extending it to int, then wanting it 130 // as a logical value again. Optimize this common case. 131 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 132 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 133 Value *Result = ZI->getOperand(0); 134 // If there aren't any more uses, zap the instruction to save space. 135 // Note that there can be more uses, for example if this 136 // is the result of an assignment. 137 if (ZI->use_empty()) 138 ZI->eraseFromParent(); 139 return Result; 140 } 141 } 142 143 const llvm::IntegerType *Ty = cast<llvm::IntegerType>(V->getType()); 144 Value *Zero = llvm::ConstantInt::get(Ty, 0); 145 return Builder.CreateICmpNE(V, Zero, "tobool"); 146 } 147 148 //===--------------------------------------------------------------------===// 149 // Visitor Methods 150 //===--------------------------------------------------------------------===// 151 152 Value *Visit(Expr *E) { 153 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 154 } 155 156 Value *VisitStmt(Stmt *S) { 157 S->dump(CGF.getContext().getSourceManager()); 158 assert(0 && "Stmt can't have complex result type!"); 159 return 0; 160 } 161 Value *VisitExpr(Expr *S); 162 163 Value *VisitParenExpr(ParenExpr *PE) { 164 return Visit(PE->getSubExpr()); 165 } 166 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 167 return Visit(GE->getResultExpr()); 168 } 169 170 // Leaves. 171 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 172 return llvm::ConstantInt::get(VMContext, E->getValue()); 173 } 174 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 175 return llvm::ConstantFP::get(VMContext, E->getValue()); 176 } 177 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 178 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 179 } 180 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 181 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 182 } 183 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 184 return EmitNullValue(E->getType()); 185 } 186 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 187 return EmitNullValue(E->getType()); 188 } 189 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 190 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 191 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 192 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 193 return Builder.CreateBitCast(V, ConvertType(E->getType())); 194 } 195 196 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 197 return llvm::ConstantInt::get(ConvertType(E->getType()), 198 E->getPackLength()); 199 } 200 201 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 202 if (E->isGLValue()) 203 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getType()); 204 205 // Otherwise, assume the mapping is the scalar directly. 206 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 207 } 208 209 // l-values. 210 Value *VisitDeclRefExpr(DeclRefExpr *E) { 211 Expr::EvalResult Result; 212 if (!E->Evaluate(Result, CGF.getContext())) 213 return EmitLoadOfLValue(E); 214 215 assert(!Result.HasSideEffects && "Constant declref with side-effect?!"); 216 217 llvm::Constant *C; 218 if (Result.Val.isInt()) { 219 C = llvm::ConstantInt::get(VMContext, Result.Val.getInt()); 220 } else if (Result.Val.isFloat()) { 221 C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat()); 222 } else { 223 return EmitLoadOfLValue(E); 224 } 225 226 // Make sure we emit a debug reference to the global variable. 227 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) { 228 if (!CGF.getContext().DeclMustBeEmitted(VD)) 229 CGF.EmitDeclRefExprDbgValue(E, C); 230 } else if (isa<EnumConstantDecl>(E->getDecl())) { 231 CGF.EmitDeclRefExprDbgValue(E, C); 232 } 233 234 return C; 235 } 236 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 237 return CGF.EmitObjCSelectorExpr(E); 238 } 239 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 240 return CGF.EmitObjCProtocolExpr(E); 241 } 242 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 243 return EmitLoadOfLValue(E); 244 } 245 Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 246 assert(E->getObjectKind() == OK_Ordinary && 247 "reached property reference without lvalue-to-rvalue"); 248 return EmitLoadOfLValue(E); 249 } 250 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 251 if (E->getMethodDecl() && 252 E->getMethodDecl()->getResultType()->isReferenceType()) 253 return EmitLoadOfLValue(E); 254 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 255 } 256 257 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 258 LValue LV = CGF.EmitObjCIsaExpr(E); 259 Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal(); 260 return V; 261 } 262 263 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 264 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 265 Value *VisitMemberExpr(MemberExpr *E); 266 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 267 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 268 return EmitLoadOfLValue(E); 269 } 270 271 Value *VisitInitListExpr(InitListExpr *E); 272 273 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 274 return CGF.CGM.EmitNullConstant(E->getType()); 275 } 276 Value *VisitCastExpr(CastExpr *E) { 277 // Make sure to evaluate VLA bounds now so that we have them for later. 278 if (E->getType()->isVariablyModifiedType()) 279 CGF.EmitVLASize(E->getType()); 280 281 return EmitCastExpr(E); 282 } 283 Value *EmitCastExpr(CastExpr *E); 284 285 Value *VisitCallExpr(const CallExpr *E) { 286 if (E->getCallReturnType()->isReferenceType()) 287 return EmitLoadOfLValue(E); 288 289 return CGF.EmitCallExpr(E).getScalarVal(); 290 } 291 292 Value *VisitStmtExpr(const StmtExpr *E); 293 294 Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E); 295 296 // Unary Operators. 297 Value *VisitUnaryPostDec(const UnaryOperator *E) { 298 LValue LV = EmitLValue(E->getSubExpr()); 299 return EmitScalarPrePostIncDec(E, LV, false, false); 300 } 301 Value *VisitUnaryPostInc(const UnaryOperator *E) { 302 LValue LV = EmitLValue(E->getSubExpr()); 303 return EmitScalarPrePostIncDec(E, LV, true, false); 304 } 305 Value *VisitUnaryPreDec(const UnaryOperator *E) { 306 LValue LV = EmitLValue(E->getSubExpr()); 307 return EmitScalarPrePostIncDec(E, LV, false, true); 308 } 309 Value *VisitUnaryPreInc(const UnaryOperator *E) { 310 LValue LV = EmitLValue(E->getSubExpr()); 311 return EmitScalarPrePostIncDec(E, LV, true, true); 312 } 313 314 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 315 llvm::Value *InVal, 316 llvm::Value *NextVal, 317 bool IsInc); 318 319 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 320 bool isInc, bool isPre); 321 322 323 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 324 if (isa<MemberPointerType>(E->getType())) // never sugared 325 return CGF.CGM.getMemberPointerConstant(E); 326 327 return EmitLValue(E->getSubExpr()).getAddress(); 328 } 329 Value *VisitUnaryDeref(const UnaryOperator *E) { 330 if (E->getType()->isVoidType()) 331 return Visit(E->getSubExpr()); // the actual value should be unused 332 return EmitLoadOfLValue(E); 333 } 334 Value *VisitUnaryPlus(const UnaryOperator *E) { 335 // This differs from gcc, though, most likely due to a bug in gcc. 336 TestAndClearIgnoreResultAssign(); 337 return Visit(E->getSubExpr()); 338 } 339 Value *VisitUnaryMinus (const UnaryOperator *E); 340 Value *VisitUnaryNot (const UnaryOperator *E); 341 Value *VisitUnaryLNot (const UnaryOperator *E); 342 Value *VisitUnaryReal (const UnaryOperator *E); 343 Value *VisitUnaryImag (const UnaryOperator *E); 344 Value *VisitUnaryExtension(const UnaryOperator *E) { 345 return Visit(E->getSubExpr()); 346 } 347 348 // C++ 349 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 350 return Visit(DAE->getExpr()); 351 } 352 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 353 return CGF.LoadCXXThis(); 354 } 355 356 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 357 return CGF.EmitExprWithCleanups(E).getScalarVal(); 358 } 359 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 360 return CGF.EmitCXXNewExpr(E); 361 } 362 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 363 CGF.EmitCXXDeleteExpr(E); 364 return 0; 365 } 366 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { 367 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 368 } 369 370 Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { 371 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 372 } 373 374 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 375 // C++ [expr.pseudo]p1: 376 // The result shall only be used as the operand for the function call 377 // operator (), and the result of such a call has type void. The only 378 // effect is the evaluation of the postfix-expression before the dot or 379 // arrow. 380 CGF.EmitScalarExpr(E->getBase()); 381 return 0; 382 } 383 384 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 385 return EmitNullValue(E->getType()); 386 } 387 388 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 389 CGF.EmitCXXThrowExpr(E); 390 return 0; 391 } 392 393 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 394 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 395 } 396 397 // Binary Operators. 398 Value *EmitMul(const BinOpInfo &Ops) { 399 if (Ops.Ty->hasSignedIntegerRepresentation()) { 400 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 401 case LangOptions::SOB_Undefined: 402 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 403 case LangOptions::SOB_Defined: 404 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 405 case LangOptions::SOB_Trapping: 406 return EmitOverflowCheckedBinOp(Ops); 407 } 408 } 409 410 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 411 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 412 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 413 } 414 bool isTrapvOverflowBehavior() { 415 return CGF.getContext().getLangOptions().getSignedOverflowBehavior() 416 == LangOptions::SOB_Trapping; 417 } 418 /// Create a binary op that checks for overflow. 419 /// Currently only supports +, - and *. 420 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 421 // Emit the overflow BB when -ftrapv option is activated. 422 void EmitOverflowBB(llvm::BasicBlock *overflowBB) { 423 Builder.SetInsertPoint(overflowBB); 424 llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap); 425 Builder.CreateCall(Trap); 426 Builder.CreateUnreachable(); 427 } 428 // Check for undefined division and modulus behaviors. 429 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 430 llvm::Value *Zero,bool isDiv); 431 Value *EmitDiv(const BinOpInfo &Ops); 432 Value *EmitRem(const BinOpInfo &Ops); 433 Value *EmitAdd(const BinOpInfo &Ops); 434 Value *EmitSub(const BinOpInfo &Ops); 435 Value *EmitShl(const BinOpInfo &Ops); 436 Value *EmitShr(const BinOpInfo &Ops); 437 Value *EmitAnd(const BinOpInfo &Ops) { 438 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 439 } 440 Value *EmitXor(const BinOpInfo &Ops) { 441 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 442 } 443 Value *EmitOr (const BinOpInfo &Ops) { 444 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 445 } 446 447 BinOpInfo EmitBinOps(const BinaryOperator *E); 448 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 449 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 450 Value *&Result); 451 452 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 453 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 454 455 // Binary operators and binary compound assignment operators. 456 #define HANDLEBINOP(OP) \ 457 Value *VisitBin ## OP(const BinaryOperator *E) { \ 458 return Emit ## OP(EmitBinOps(E)); \ 459 } \ 460 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 461 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 462 } 463 HANDLEBINOP(Mul) 464 HANDLEBINOP(Div) 465 HANDLEBINOP(Rem) 466 HANDLEBINOP(Add) 467 HANDLEBINOP(Sub) 468 HANDLEBINOP(Shl) 469 HANDLEBINOP(Shr) 470 HANDLEBINOP(And) 471 HANDLEBINOP(Xor) 472 HANDLEBINOP(Or) 473 #undef HANDLEBINOP 474 475 // Comparisons. 476 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 477 unsigned SICmpOpc, unsigned FCmpOpc); 478 #define VISITCOMP(CODE, UI, SI, FP) \ 479 Value *VisitBin##CODE(const BinaryOperator *E) { \ 480 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 481 llvm::FCmpInst::FP); } 482 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 483 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 484 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 485 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 486 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 487 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 488 #undef VISITCOMP 489 490 Value *VisitBinAssign (const BinaryOperator *E); 491 492 Value *VisitBinLAnd (const BinaryOperator *E); 493 Value *VisitBinLOr (const BinaryOperator *E); 494 Value *VisitBinComma (const BinaryOperator *E); 495 496 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 497 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 498 499 // Other Operators. 500 Value *VisitBlockExpr(const BlockExpr *BE); 501 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 502 Value *VisitChooseExpr(ChooseExpr *CE); 503 Value *VisitVAArgExpr(VAArgExpr *VE); 504 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 505 return CGF.EmitObjCStringLiteral(E); 506 } 507 }; 508 } // end anonymous namespace. 509 510 //===----------------------------------------------------------------------===// 511 // Utilities 512 //===----------------------------------------------------------------------===// 513 514 /// EmitConversionToBool - Convert the specified expression value to a 515 /// boolean (i1) truth value. This is equivalent to "Val != 0". 516 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 517 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 518 519 if (SrcType->isRealFloatingType()) 520 return EmitFloatToBoolConversion(Src); 521 522 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 523 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 524 525 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 526 "Unknown scalar type to convert"); 527 528 if (isa<llvm::IntegerType>(Src->getType())) 529 return EmitIntToBoolConversion(Src); 530 531 assert(isa<llvm::PointerType>(Src->getType())); 532 return EmitPointerToBoolConversion(Src); 533 } 534 535 /// EmitScalarConversion - Emit a conversion from the specified type to the 536 /// specified destination type, both of which are LLVM scalar types. 537 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 538 QualType DstType) { 539 SrcType = CGF.getContext().getCanonicalType(SrcType); 540 DstType = CGF.getContext().getCanonicalType(DstType); 541 if (SrcType == DstType) return Src; 542 543 if (DstType->isVoidType()) return 0; 544 545 // Handle conversions to bool first, they are special: comparisons against 0. 546 if (DstType->isBooleanType()) 547 return EmitConversionToBool(Src, SrcType); 548 549 const llvm::Type *DstTy = ConvertType(DstType); 550 551 // Ignore conversions like int -> uint. 552 if (Src->getType() == DstTy) 553 return Src; 554 555 // Handle pointer conversions next: pointers can only be converted to/from 556 // other pointers and integers. Check for pointer types in terms of LLVM, as 557 // some native types (like Obj-C id) may map to a pointer type. 558 if (isa<llvm::PointerType>(DstTy)) { 559 // The source value may be an integer, or a pointer. 560 if (isa<llvm::PointerType>(Src->getType())) 561 return Builder.CreateBitCast(Src, DstTy, "conv"); 562 563 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 564 // First, convert to the correct width so that we control the kind of 565 // extension. 566 const llvm::Type *MiddleTy = CGF.IntPtrTy; 567 bool InputSigned = SrcType->isSignedIntegerType(); 568 llvm::Value* IntResult = 569 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 570 // Then, cast to pointer. 571 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 572 } 573 574 if (isa<llvm::PointerType>(Src->getType())) { 575 // Must be an ptr to int cast. 576 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 577 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 578 } 579 580 // A scalar can be splatted to an extended vector of the same element type 581 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 582 // Cast the scalar to element type 583 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 584 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 585 586 // Insert the element in element zero of an undef vector 587 llvm::Value *UnV = llvm::UndefValue::get(DstTy); 588 llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0); 589 UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp"); 590 591 // Splat the element across to all elements 592 llvm::SmallVector<llvm::Constant*, 16> Args; 593 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 594 for (unsigned i = 0; i != NumElements; ++i) 595 Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0)); 596 597 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 598 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); 599 return Yay; 600 } 601 602 // Allow bitcast from vector to integer/fp of the same size. 603 if (isa<llvm::VectorType>(Src->getType()) || 604 isa<llvm::VectorType>(DstTy)) 605 return Builder.CreateBitCast(Src, DstTy, "conv"); 606 607 // Finally, we have the arithmetic types: real int/float. 608 if (isa<llvm::IntegerType>(Src->getType())) { 609 bool InputSigned = SrcType->isSignedIntegerType(); 610 if (isa<llvm::IntegerType>(DstTy)) 611 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 612 else if (InputSigned) 613 return Builder.CreateSIToFP(Src, DstTy, "conv"); 614 else 615 return Builder.CreateUIToFP(Src, DstTy, "conv"); 616 } 617 618 assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion"); 619 if (isa<llvm::IntegerType>(DstTy)) { 620 if (DstType->isSignedIntegerType()) 621 return Builder.CreateFPToSI(Src, DstTy, "conv"); 622 else 623 return Builder.CreateFPToUI(Src, DstTy, "conv"); 624 } 625 626 assert(DstTy->isFloatingPointTy() && "Unknown real conversion"); 627 if (DstTy->getTypeID() < Src->getType()->getTypeID()) 628 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 629 else 630 return Builder.CreateFPExt(Src, DstTy, "conv"); 631 } 632 633 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 634 /// type to the specified destination type, where the destination type is an 635 /// LLVM scalar type. 636 Value *ScalarExprEmitter:: 637 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 638 QualType SrcTy, QualType DstTy) { 639 // Get the source element type. 640 SrcTy = SrcTy->getAs<ComplexType>()->getElementType(); 641 642 // Handle conversions to bool first, they are special: comparisons against 0. 643 if (DstTy->isBooleanType()) { 644 // Complex != 0 -> (Real != 0) | (Imag != 0) 645 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 646 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 647 return Builder.CreateOr(Src.first, Src.second, "tobool"); 648 } 649 650 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 651 // the imaginary part of the complex value is discarded and the value of the 652 // real part is converted according to the conversion rules for the 653 // corresponding real type. 654 return EmitScalarConversion(Src.first, SrcTy, DstTy); 655 } 656 657 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 658 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) 659 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 660 661 return llvm::Constant::getNullValue(ConvertType(Ty)); 662 } 663 664 //===----------------------------------------------------------------------===// 665 // Visitor Methods 666 //===----------------------------------------------------------------------===// 667 668 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 669 CGF.ErrorUnsupported(E, "scalar expression"); 670 if (E->getType()->isVoidType()) 671 return 0; 672 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 673 } 674 675 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 676 // Vector Mask Case 677 if (E->getNumSubExprs() == 2 || 678 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 679 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 680 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 681 Value *Mask; 682 683 const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 684 unsigned LHSElts = LTy->getNumElements(); 685 686 if (E->getNumSubExprs() == 3) { 687 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 688 689 // Shuffle LHS & RHS into one input vector. 690 llvm::SmallVector<llvm::Constant*, 32> concat; 691 for (unsigned i = 0; i != LHSElts; ++i) { 692 concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i)); 693 concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1)); 694 } 695 696 Value* CV = llvm::ConstantVector::get(concat); 697 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 698 LHSElts *= 2; 699 } else { 700 Mask = RHS; 701 } 702 703 const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 704 llvm::Constant* EltMask; 705 706 // Treat vec3 like vec4. 707 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) 708 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 709 (1 << llvm::Log2_32(LHSElts+2))-1); 710 else if ((LHSElts == 3) && (E->getNumSubExprs() == 2)) 711 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 712 (1 << llvm::Log2_32(LHSElts+1))-1); 713 else 714 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 715 (1 << llvm::Log2_32(LHSElts))-1); 716 717 // Mask off the high bits of each shuffle index. 718 llvm::SmallVector<llvm::Constant *, 32> MaskV; 719 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) 720 MaskV.push_back(EltMask); 721 722 Value* MaskBits = llvm::ConstantVector::get(MaskV); 723 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 724 725 // newv = undef 726 // mask = mask & maskbits 727 // for each elt 728 // n = extract mask i 729 // x = extract val n 730 // newv = insert newv, x, i 731 const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 732 MTy->getNumElements()); 733 Value* NewV = llvm::UndefValue::get(RTy); 734 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 735 Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i); 736 Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx"); 737 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext"); 738 739 // Handle vec3 special since the index will be off by one for the RHS. 740 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) { 741 Value *cmpIndx, *newIndx; 742 cmpIndx = Builder.CreateICmpUGT(Indx, 743 llvm::ConstantInt::get(CGF.Int32Ty, 3), 744 "cmp_shuf_idx"); 745 newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1), 746 "shuf_idx_adj"); 747 Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx"); 748 } 749 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 750 NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins"); 751 } 752 return NewV; 753 } 754 755 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 756 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 757 758 // Handle vec3 special since the index will be off by one for the RHS. 759 llvm::SmallVector<llvm::Constant*, 32> indices; 760 for (unsigned i = 2; i < E->getNumSubExprs(); i++) { 761 llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))); 762 const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType()); 763 if (VTy->getNumElements() == 3) { 764 if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) { 765 uint64_t cVal = CI->getZExtValue(); 766 if (cVal > 3) { 767 C = llvm::ConstantInt::get(C->getType(), cVal-1); 768 } 769 } 770 } 771 indices.push_back(C); 772 } 773 774 Value *SV = llvm::ConstantVector::get(indices); 775 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 776 } 777 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 778 Expr::EvalResult Result; 779 if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) { 780 if (E->isArrow()) 781 CGF.EmitScalarExpr(E->getBase()); 782 else 783 EmitLValue(E->getBase()); 784 return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); 785 } 786 787 // Emit debug info for aggregate now, if it was delayed to reduce 788 // debug info size. 789 CGDebugInfo *DI = CGF.getDebugInfo(); 790 if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) { 791 QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType(); 792 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) 793 if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl())) 794 DI->getOrCreateRecordType(PTy->getPointeeType(), 795 M->getParent()->getLocation()); 796 } 797 return EmitLoadOfLValue(E); 798 } 799 800 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 801 TestAndClearIgnoreResultAssign(); 802 803 // Emit subscript expressions in rvalue context's. For most cases, this just 804 // loads the lvalue formed by the subscript expr. However, we have to be 805 // careful, because the base of a vector subscript is occasionally an rvalue, 806 // so we can't get it as an lvalue. 807 if (!E->getBase()->getType()->isVectorType()) 808 return EmitLoadOfLValue(E); 809 810 // Handle the vector case. The base must be a vector, the index must be an 811 // integer value. 812 Value *Base = Visit(E->getBase()); 813 Value *Idx = Visit(E->getIdx()); 814 bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType(); 815 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast"); 816 return Builder.CreateExtractElement(Base, Idx, "vecext"); 817 } 818 819 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 820 unsigned Off, const llvm::Type *I32Ty) { 821 int MV = SVI->getMaskValue(Idx); 822 if (MV == -1) 823 return llvm::UndefValue::get(I32Ty); 824 return llvm::ConstantInt::get(I32Ty, Off+MV); 825 } 826 827 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 828 bool Ignore = TestAndClearIgnoreResultAssign(); 829 (void)Ignore; 830 assert (Ignore == false && "init list ignored"); 831 unsigned NumInitElements = E->getNumInits(); 832 833 if (E->hadArrayRangeDesignator()) 834 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 835 836 const llvm::VectorType *VType = 837 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 838 839 // We have a scalar in braces. Just use the first element. 840 if (!VType) 841 return Visit(E->getInit(0)); 842 843 unsigned ResElts = VType->getNumElements(); 844 845 // Loop over initializers collecting the Value for each, and remembering 846 // whether the source was swizzle (ExtVectorElementExpr). This will allow 847 // us to fold the shuffle for the swizzle into the shuffle for the vector 848 // initializer, since LLVM optimizers generally do not want to touch 849 // shuffles. 850 unsigned CurIdx = 0; 851 bool VIsUndefShuffle = false; 852 llvm::Value *V = llvm::UndefValue::get(VType); 853 for (unsigned i = 0; i != NumInitElements; ++i) { 854 Expr *IE = E->getInit(i); 855 Value *Init = Visit(IE); 856 llvm::SmallVector<llvm::Constant*, 16> Args; 857 858 const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 859 860 // Handle scalar elements. If the scalar initializer is actually one 861 // element of a different vector of the same width, use shuffle instead of 862 // extract+insert. 863 if (!VVT) { 864 if (isa<ExtVectorElementExpr>(IE)) { 865 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 866 867 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 868 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 869 Value *LHS = 0, *RHS = 0; 870 if (CurIdx == 0) { 871 // insert into undef -> shuffle (src, undef) 872 Args.push_back(C); 873 for (unsigned j = 1; j != ResElts; ++j) 874 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 875 876 LHS = EI->getVectorOperand(); 877 RHS = V; 878 VIsUndefShuffle = true; 879 } else if (VIsUndefShuffle) { 880 // insert into undefshuffle && size match -> shuffle (v, src) 881 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 882 for (unsigned j = 0; j != CurIdx; ++j) 883 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 884 Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 885 ResElts + C->getZExtValue())); 886 for (unsigned j = CurIdx + 1; j != ResElts; ++j) 887 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 888 889 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 890 RHS = EI->getVectorOperand(); 891 VIsUndefShuffle = false; 892 } 893 if (!Args.empty()) { 894 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 895 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 896 ++CurIdx; 897 continue; 898 } 899 } 900 } 901 Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx); 902 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 903 VIsUndefShuffle = false; 904 ++CurIdx; 905 continue; 906 } 907 908 unsigned InitElts = VVT->getNumElements(); 909 910 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 911 // input is the same width as the vector being constructed, generate an 912 // optimized shuffle of the swizzle input into the result. 913 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 914 if (isa<ExtVectorElementExpr>(IE)) { 915 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 916 Value *SVOp = SVI->getOperand(0); 917 const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 918 919 if (OpTy->getNumElements() == ResElts) { 920 for (unsigned j = 0; j != CurIdx; ++j) { 921 // If the current vector initializer is a shuffle with undef, merge 922 // this shuffle directly into it. 923 if (VIsUndefShuffle) { 924 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 925 CGF.Int32Ty)); 926 } else { 927 Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j)); 928 } 929 } 930 for (unsigned j = 0, je = InitElts; j != je; ++j) 931 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 932 for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) 933 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 934 935 if (VIsUndefShuffle) 936 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 937 938 Init = SVOp; 939 } 940 } 941 942 // Extend init to result vector length, and then shuffle its contribution 943 // to the vector initializer into V. 944 if (Args.empty()) { 945 for (unsigned j = 0; j != InitElts; ++j) 946 Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j)); 947 for (unsigned j = InitElts; j != ResElts; ++j) 948 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 949 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 950 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 951 Mask, "vext"); 952 953 Args.clear(); 954 for (unsigned j = 0; j != CurIdx; ++j) 955 Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j)); 956 for (unsigned j = 0; j != InitElts; ++j) 957 Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset)); 958 for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) 959 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 960 } 961 962 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 963 // merging subsequent shuffles into this one. 964 if (CurIdx == 0) 965 std::swap(V, Init); 966 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 967 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 968 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 969 CurIdx += InitElts; 970 } 971 972 // FIXME: evaluate codegen vs. shuffling against constant null vector. 973 // Emit remaining default initializers. 974 const llvm::Type *EltTy = VType->getElementType(); 975 976 // Emit remaining default initializers 977 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 978 Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx); 979 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 980 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 981 } 982 return V; 983 } 984 985 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 986 const Expr *E = CE->getSubExpr(); 987 988 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 989 return false; 990 991 if (isa<CXXThisExpr>(E)) { 992 // We always assume that 'this' is never null. 993 return false; 994 } 995 996 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 997 // And that glvalue casts are never null. 998 if (ICE->getValueKind() != VK_RValue) 999 return false; 1000 } 1001 1002 return true; 1003 } 1004 1005 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1006 // have to handle a more broad range of conversions than explicit casts, as they 1007 // handle things like function to ptr-to-function decay etc. 1008 Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) { 1009 Expr *E = CE->getSubExpr(); 1010 QualType DestTy = CE->getType(); 1011 CastKind Kind = CE->getCastKind(); 1012 1013 if (!DestTy->isVoidType()) 1014 TestAndClearIgnoreResultAssign(); 1015 1016 // Since almost all cast kinds apply to scalars, this switch doesn't have 1017 // a default case, so the compiler will warn on a missing case. The cases 1018 // are in the same order as in the CastKind enum. 1019 switch (Kind) { 1020 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1021 1022 case CK_LValueBitCast: 1023 case CK_ObjCObjectLValueCast: { 1024 Value *V = EmitLValue(E).getAddress(); 1025 V = Builder.CreateBitCast(V, 1026 ConvertType(CGF.getContext().getPointerType(DestTy))); 1027 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy); 1028 } 1029 1030 case CK_AnyPointerToObjCPointerCast: 1031 case CK_AnyPointerToBlockPointerCast: 1032 case CK_BitCast: { 1033 Value *Src = Visit(const_cast<Expr*>(E)); 1034 return Builder.CreateBitCast(Src, ConvertType(DestTy)); 1035 } 1036 case CK_NoOp: 1037 case CK_UserDefinedConversion: 1038 return Visit(const_cast<Expr*>(E)); 1039 1040 case CK_BaseToDerived: { 1041 const CXXRecordDecl *DerivedClassDecl = 1042 DestTy->getCXXRecordDeclForPointerType(); 1043 1044 return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl, 1045 CE->path_begin(), CE->path_end(), 1046 ShouldNullCheckClassCastValue(CE)); 1047 } 1048 case CK_UncheckedDerivedToBase: 1049 case CK_DerivedToBase: { 1050 const RecordType *DerivedClassTy = 1051 E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>(); 1052 CXXRecordDecl *DerivedClassDecl = 1053 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 1054 1055 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 1056 CE->path_begin(), CE->path_end(), 1057 ShouldNullCheckClassCastValue(CE)); 1058 } 1059 case CK_Dynamic: { 1060 Value *V = Visit(const_cast<Expr*>(E)); 1061 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1062 return CGF.EmitDynamicCast(V, DCE); 1063 } 1064 1065 case CK_ArrayToPointerDecay: { 1066 assert(E->getType()->isArrayType() && 1067 "Array to pointer decay must have array source type!"); 1068 1069 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1070 1071 // Note that VLA pointers are always decayed, so we don't need to do 1072 // anything here. 1073 if (!E->getType()->isVariableArrayType()) { 1074 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1075 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1076 ->getElementType()) && 1077 "Expected pointer to array"); 1078 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1079 } 1080 1081 return V; 1082 } 1083 case CK_FunctionToPointerDecay: 1084 return EmitLValue(E).getAddress(); 1085 1086 case CK_NullToPointer: 1087 if (MustVisitNullValue(E)) 1088 (void) Visit(E); 1089 1090 return llvm::ConstantPointerNull::get( 1091 cast<llvm::PointerType>(ConvertType(DestTy))); 1092 1093 case CK_NullToMemberPointer: { 1094 if (MustVisitNullValue(E)) 1095 (void) Visit(E); 1096 1097 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1098 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1099 } 1100 1101 case CK_BaseToDerivedMemberPointer: 1102 case CK_DerivedToBaseMemberPointer: { 1103 Value *Src = Visit(E); 1104 1105 // Note that the AST doesn't distinguish between checked and 1106 // unchecked member pointer conversions, so we always have to 1107 // implement checked conversions here. This is inefficient when 1108 // actual control flow may be required in order to perform the 1109 // check, which it is for data member pointers (but not member 1110 // function pointers on Itanium and ARM). 1111 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1112 } 1113 1114 case CK_FloatingRealToComplex: 1115 case CK_FloatingComplexCast: 1116 case CK_IntegralRealToComplex: 1117 case CK_IntegralComplexCast: 1118 case CK_IntegralComplexToFloatingComplex: 1119 case CK_FloatingComplexToIntegralComplex: 1120 case CK_ConstructorConversion: 1121 case CK_ToUnion: 1122 llvm_unreachable("scalar cast to non-scalar value"); 1123 break; 1124 1125 case CK_GetObjCProperty: { 1126 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1127 assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty && 1128 "CK_GetObjCProperty for non-lvalue or non-ObjCProperty"); 1129 RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType()); 1130 return RV.getScalarVal(); 1131 } 1132 1133 case CK_LValueToRValue: 1134 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1135 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1136 return Visit(const_cast<Expr*>(E)); 1137 1138 case CK_IntegralToPointer: { 1139 Value *Src = Visit(const_cast<Expr*>(E)); 1140 1141 // First, convert to the correct width so that we control the kind of 1142 // extension. 1143 const llvm::Type *MiddleTy = CGF.IntPtrTy; 1144 bool InputSigned = E->getType()->isSignedIntegerType(); 1145 llvm::Value* IntResult = 1146 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1147 1148 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1149 } 1150 case CK_PointerToIntegral: { 1151 Value *Src = Visit(const_cast<Expr*>(E)); 1152 1153 // Handle conversion to bool correctly. 1154 if (DestTy->isBooleanType()) 1155 return EmitScalarConversion(Src, E->getType(), DestTy); 1156 1157 return Builder.CreatePtrToInt(Src, ConvertType(DestTy)); 1158 } 1159 case CK_ToVoid: { 1160 CGF.EmitIgnoredExpr(E); 1161 return 0; 1162 } 1163 case CK_VectorSplat: { 1164 const llvm::Type *DstTy = ConvertType(DestTy); 1165 Value *Elt = Visit(const_cast<Expr*>(E)); 1166 1167 // Insert the element in element zero of an undef vector 1168 llvm::Value *UnV = llvm::UndefValue::get(DstTy); 1169 llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0); 1170 UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp"); 1171 1172 // Splat the element across to all elements 1173 llvm::SmallVector<llvm::Constant*, 16> Args; 1174 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1175 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Int32Ty, 0); 1176 for (unsigned i = 0; i < NumElements; i++) 1177 Args.push_back(Zero); 1178 1179 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1180 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); 1181 return Yay; 1182 } 1183 1184 case CK_IntegralCast: 1185 case CK_IntegralToFloating: 1186 case CK_FloatingToIntegral: 1187 case CK_FloatingCast: 1188 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1189 1190 case CK_IntegralToBoolean: 1191 return EmitIntToBoolConversion(Visit(E)); 1192 case CK_PointerToBoolean: 1193 return EmitPointerToBoolConversion(Visit(E)); 1194 case CK_FloatingToBoolean: 1195 return EmitFloatToBoolConversion(Visit(E)); 1196 case CK_MemberPointerToBoolean: { 1197 llvm::Value *MemPtr = Visit(E); 1198 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1199 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1200 } 1201 1202 case CK_FloatingComplexToReal: 1203 case CK_IntegralComplexToReal: 1204 return CGF.EmitComplexExpr(E, false, true).first; 1205 1206 case CK_FloatingComplexToBoolean: 1207 case CK_IntegralComplexToBoolean: { 1208 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1209 1210 // TODO: kill this function off, inline appropriate case here 1211 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1212 } 1213 1214 } 1215 1216 llvm_unreachable("unknown scalar cast"); 1217 return 0; 1218 } 1219 1220 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1221 CodeGenFunction::StmtExprEvaluation eval(CGF); 1222 return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType()) 1223 .getScalarVal(); 1224 } 1225 1226 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 1227 LValue LV = CGF.EmitBlockDeclRefLValue(E); 1228 return CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal(); 1229 } 1230 1231 //===----------------------------------------------------------------------===// 1232 // Unary Operators 1233 //===----------------------------------------------------------------------===// 1234 1235 llvm::Value *ScalarExprEmitter:: 1236 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1237 llvm::Value *InVal, 1238 llvm::Value *NextVal, bool IsInc) { 1239 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 1240 case LangOptions::SOB_Undefined: 1241 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1242 break; 1243 case LangOptions::SOB_Defined: 1244 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1245 break; 1246 case LangOptions::SOB_Trapping: 1247 BinOpInfo BinOp; 1248 BinOp.LHS = InVal; 1249 BinOp.RHS = NextVal; 1250 BinOp.Ty = E->getType(); 1251 BinOp.Opcode = BO_Add; 1252 BinOp.E = E; 1253 return EmitOverflowCheckedBinOp(BinOp); 1254 break; 1255 } 1256 assert(false && "Unknown SignedOverflowBehaviorTy"); 1257 return 0; 1258 } 1259 1260 llvm::Value * 1261 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1262 bool isInc, bool isPre) { 1263 1264 QualType type = E->getSubExpr()->getType(); 1265 llvm::Value *value = EmitLoadOfLValue(LV, type); 1266 llvm::Value *input = value; 1267 1268 int amount = (isInc ? 1 : -1); 1269 1270 // Special case of integer increment that we have to check first: bool++. 1271 // Due to promotion rules, we get: 1272 // bool++ -> bool = bool + 1 1273 // -> bool = (int)bool + 1 1274 // -> bool = ((int)bool + 1 != 0) 1275 // An interesting aspect of this is that increment is always true. 1276 // Decrement does not have this property. 1277 if (isInc && type->isBooleanType()) { 1278 value = Builder.getTrue(); 1279 1280 // Most common case by far: integer increment. 1281 } else if (type->isIntegerType()) { 1282 1283 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1284 1285 // Note that signed integer inc/dec with width less than int can't 1286 // overflow because of promotion rules; we're just eliding a few steps here. 1287 if (type->isSignedIntegerType() && 1288 value->getType()->getPrimitiveSizeInBits() >= 1289 CGF.CGM.IntTy->getBitWidth()) 1290 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1291 else 1292 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1293 1294 // Next most common: pointer increment. 1295 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1296 QualType type = ptr->getPointeeType(); 1297 1298 // VLA types don't have constant size. 1299 if (type->isVariableArrayType()) { 1300 llvm::Value *vlaSize = 1301 CGF.GetVLASize(CGF.getContext().getAsVariableArrayType(type)); 1302 value = CGF.EmitCastToVoidPtr(value); 1303 if (!isInc) vlaSize = Builder.CreateNSWNeg(vlaSize, "vla.negsize"); 1304 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1305 value = Builder.CreateGEP(value, vlaSize, "vla.inc"); 1306 else 1307 value = Builder.CreateInBoundsGEP(value, vlaSize, "vla.inc"); 1308 value = Builder.CreateBitCast(value, input->getType()); 1309 1310 // Arithmetic on function pointers (!) is just +-1. 1311 } else if (type->isFunctionType()) { 1312 llvm::Value *amt = llvm::ConstantInt::get(CGF.Int32Ty, amount); 1313 1314 value = CGF.EmitCastToVoidPtr(value); 1315 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1316 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1317 else 1318 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1319 value = Builder.CreateBitCast(value, input->getType()); 1320 1321 // For everything else, we can just do a simple increment. 1322 } else { 1323 llvm::Value *amt = llvm::ConstantInt::get(CGF.Int32Ty, amount); 1324 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1325 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1326 else 1327 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1328 } 1329 1330 // Vector increment/decrement. 1331 } else if (type->isVectorType()) { 1332 if (type->hasIntegerRepresentation()) { 1333 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1334 1335 if (type->hasSignedIntegerRepresentation()) 1336 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1337 else 1338 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1339 } else { 1340 value = Builder.CreateFAdd( 1341 value, 1342 llvm::ConstantFP::get(value->getType(), amount), 1343 isInc ? "inc" : "dec"); 1344 } 1345 1346 // Floating point. 1347 } else if (type->isRealFloatingType()) { 1348 // Add the inc/dec to the real part. 1349 llvm::Value *amt; 1350 if (value->getType()->isFloatTy()) 1351 amt = llvm::ConstantFP::get(VMContext, 1352 llvm::APFloat(static_cast<float>(amount))); 1353 else if (value->getType()->isDoubleTy()) 1354 amt = llvm::ConstantFP::get(VMContext, 1355 llvm::APFloat(static_cast<double>(amount))); 1356 else { 1357 llvm::APFloat F(static_cast<float>(amount)); 1358 bool ignored; 1359 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero, 1360 &ignored); 1361 amt = llvm::ConstantFP::get(VMContext, F); 1362 } 1363 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1364 1365 // Objective-C pointer types. 1366 } else { 1367 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1368 value = CGF.EmitCastToVoidPtr(value); 1369 1370 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1371 if (!isInc) size = -size; 1372 llvm::Value *sizeValue = 1373 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1374 1375 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1376 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1377 else 1378 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1379 value = Builder.CreateBitCast(value, input->getType()); 1380 } 1381 1382 // Store the updated result through the lvalue. 1383 if (LV.isBitField()) 1384 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, type, &value); 1385 else 1386 CGF.EmitStoreThroughLValue(RValue::get(value), LV, type); 1387 1388 // If this is a postinc, return the value read from memory, otherwise use the 1389 // updated value. 1390 return isPre ? value : input; 1391 } 1392 1393 1394 1395 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1396 TestAndClearIgnoreResultAssign(); 1397 // Emit unary minus with EmitSub so we handle overflow cases etc. 1398 BinOpInfo BinOp; 1399 BinOp.RHS = Visit(E->getSubExpr()); 1400 1401 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1402 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1403 else 1404 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1405 BinOp.Ty = E->getType(); 1406 BinOp.Opcode = BO_Sub; 1407 BinOp.E = E; 1408 return EmitSub(BinOp); 1409 } 1410 1411 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1412 TestAndClearIgnoreResultAssign(); 1413 Value *Op = Visit(E->getSubExpr()); 1414 return Builder.CreateNot(Op, "neg"); 1415 } 1416 1417 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1418 // Compare operand to zero. 1419 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1420 1421 // Invert value. 1422 // TODO: Could dynamically modify easy computations here. For example, if 1423 // the operand is an icmp ne, turn into icmp eq. 1424 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1425 1426 // ZExt result to the expr type. 1427 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1428 } 1429 1430 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1431 // Try folding the offsetof to a constant. 1432 Expr::EvalResult EvalResult; 1433 if (E->Evaluate(EvalResult, CGF.getContext())) 1434 return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt()); 1435 1436 // Loop over the components of the offsetof to compute the value. 1437 unsigned n = E->getNumComponents(); 1438 const llvm::Type* ResultType = ConvertType(E->getType()); 1439 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1440 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1441 for (unsigned i = 0; i != n; ++i) { 1442 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1443 llvm::Value *Offset = 0; 1444 switch (ON.getKind()) { 1445 case OffsetOfExpr::OffsetOfNode::Array: { 1446 // Compute the index 1447 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1448 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1449 bool IdxSigned = IdxExpr->getType()->isSignedIntegerType(); 1450 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1451 1452 // Save the element type 1453 CurrentType = 1454 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1455 1456 // Compute the element size 1457 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1458 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1459 1460 // Multiply out to compute the result 1461 Offset = Builder.CreateMul(Idx, ElemSize); 1462 break; 1463 } 1464 1465 case OffsetOfExpr::OffsetOfNode::Field: { 1466 FieldDecl *MemberDecl = ON.getField(); 1467 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1468 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1469 1470 // Compute the index of the field in its parent. 1471 unsigned i = 0; 1472 // FIXME: It would be nice if we didn't have to loop here! 1473 for (RecordDecl::field_iterator Field = RD->field_begin(), 1474 FieldEnd = RD->field_end(); 1475 Field != FieldEnd; (void)++Field, ++i) { 1476 if (*Field == MemberDecl) 1477 break; 1478 } 1479 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1480 1481 // Compute the offset to the field 1482 int64_t OffsetInt = RL.getFieldOffset(i) / 1483 CGF.getContext().getCharWidth(); 1484 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1485 1486 // Save the element type. 1487 CurrentType = MemberDecl->getType(); 1488 break; 1489 } 1490 1491 case OffsetOfExpr::OffsetOfNode::Identifier: 1492 llvm_unreachable("dependent __builtin_offsetof"); 1493 1494 case OffsetOfExpr::OffsetOfNode::Base: { 1495 if (ON.getBase()->isVirtual()) { 1496 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1497 continue; 1498 } 1499 1500 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1501 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1502 1503 // Save the element type. 1504 CurrentType = ON.getBase()->getType(); 1505 1506 // Compute the offset to the base. 1507 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1508 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1509 int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) / 1510 CGF.getContext().getCharWidth(); 1511 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1512 break; 1513 } 1514 } 1515 Result = Builder.CreateAdd(Result, Offset); 1516 } 1517 return Result; 1518 } 1519 1520 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1521 /// argument of the sizeof expression as an integer. 1522 Value * 1523 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1524 const UnaryExprOrTypeTraitExpr *E) { 1525 QualType TypeToSize = E->getTypeOfArgument(); 1526 if (E->getKind() == UETT_SizeOf) { 1527 if (const VariableArrayType *VAT = 1528 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1529 if (E->isArgumentType()) { 1530 // sizeof(type) - make sure to emit the VLA size. 1531 CGF.EmitVLASize(TypeToSize); 1532 } else { 1533 // C99 6.5.3.4p2: If the argument is an expression of type 1534 // VLA, it is evaluated. 1535 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1536 } 1537 1538 return CGF.GetVLASize(VAT); 1539 } 1540 } 1541 1542 // If this isn't sizeof(vla), the result must be constant; use the constant 1543 // folding logic so we don't have to duplicate it here. 1544 Expr::EvalResult Result; 1545 E->Evaluate(Result, CGF.getContext()); 1546 return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); 1547 } 1548 1549 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1550 Expr *Op = E->getSubExpr(); 1551 if (Op->getType()->isAnyComplexType()) { 1552 // If it's an l-value, load through the appropriate subobject l-value. 1553 // Note that we have to ask E because Op might be an l-value that 1554 // this won't work for, e.g. an Obj-C property. 1555 if (E->isGLValue()) 1556 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType()) 1557 .getScalarVal(); 1558 1559 // Otherwise, calculate and project. 1560 return CGF.EmitComplexExpr(Op, false, true).first; 1561 } 1562 1563 return Visit(Op); 1564 } 1565 1566 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1567 Expr *Op = E->getSubExpr(); 1568 if (Op->getType()->isAnyComplexType()) { 1569 // If it's an l-value, load through the appropriate subobject l-value. 1570 // Note that we have to ask E because Op might be an l-value that 1571 // this won't work for, e.g. an Obj-C property. 1572 if (Op->isGLValue()) 1573 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType()) 1574 .getScalarVal(); 1575 1576 // Otherwise, calculate and project. 1577 return CGF.EmitComplexExpr(Op, true, false).second; 1578 } 1579 1580 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1581 // effects are evaluated, but not the actual value. 1582 CGF.EmitScalarExpr(Op, true); 1583 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1584 } 1585 1586 //===----------------------------------------------------------------------===// 1587 // Binary Operators 1588 //===----------------------------------------------------------------------===// 1589 1590 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1591 TestAndClearIgnoreResultAssign(); 1592 BinOpInfo Result; 1593 Result.LHS = Visit(E->getLHS()); 1594 Result.RHS = Visit(E->getRHS()); 1595 Result.Ty = E->getType(); 1596 Result.Opcode = E->getOpcode(); 1597 Result.E = E; 1598 return Result; 1599 } 1600 1601 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 1602 const CompoundAssignOperator *E, 1603 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 1604 Value *&Result) { 1605 QualType LHSTy = E->getLHS()->getType(); 1606 BinOpInfo OpInfo; 1607 1608 if (E->getComputationResultType()->isAnyComplexType()) { 1609 // This needs to go through the complex expression emitter, but it's a tad 1610 // complicated to do that... I'm leaving it out for now. (Note that we do 1611 // actually need the imaginary part of the RHS for multiplication and 1612 // division.) 1613 CGF.ErrorUnsupported(E, "complex compound assignment"); 1614 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1615 return LValue(); 1616 } 1617 1618 // Emit the RHS first. __block variables need to have the rhs evaluated 1619 // first, plus this should improve codegen a little. 1620 OpInfo.RHS = Visit(E->getRHS()); 1621 OpInfo.Ty = E->getComputationResultType(); 1622 OpInfo.Opcode = E->getOpcode(); 1623 OpInfo.E = E; 1624 // Load/convert the LHS. 1625 LValue LHSLV = EmitCheckedLValue(E->getLHS()); 1626 OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy); 1627 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 1628 E->getComputationLHSType()); 1629 1630 // Expand the binary operator. 1631 Result = (this->*Func)(OpInfo); 1632 1633 // Convert the result back to the LHS type. 1634 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 1635 1636 // Store the result value into the LHS lvalue. Bit-fields are handled 1637 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 1638 // 'An assignment expression has the value of the left operand after the 1639 // assignment...'. 1640 if (LHSLV.isBitField()) 1641 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy, 1642 &Result); 1643 else 1644 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy); 1645 1646 return LHSLV; 1647 } 1648 1649 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 1650 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 1651 bool Ignore = TestAndClearIgnoreResultAssign(); 1652 Value *RHS; 1653 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 1654 1655 // If the result is clearly ignored, return now. 1656 if (Ignore) 1657 return 0; 1658 1659 // The result of an assignment in C is the assigned r-value. 1660 if (!CGF.getContext().getLangOptions().CPlusPlus) 1661 return RHS; 1662 1663 // Objective-C property assignment never reloads the value following a store. 1664 if (LHS.isPropertyRef()) 1665 return RHS; 1666 1667 // If the lvalue is non-volatile, return the computed value of the assignment. 1668 if (!LHS.isVolatileQualified()) 1669 return RHS; 1670 1671 // Otherwise, reload the value. 1672 return EmitLoadOfLValue(LHS, E->getType()); 1673 } 1674 1675 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 1676 const BinOpInfo &Ops, 1677 llvm::Value *Zero, bool isDiv) { 1678 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 1679 llvm::BasicBlock *contBB = 1680 CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn); 1681 1682 const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 1683 1684 if (Ops.Ty->hasSignedIntegerRepresentation()) { 1685 llvm::Value *IntMin = 1686 llvm::ConstantInt::get(VMContext, 1687 llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 1688 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 1689 1690 llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero); 1691 llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin); 1692 llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne); 1693 llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and"); 1694 Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"), 1695 overflowBB, contBB); 1696 } else { 1697 CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero), 1698 overflowBB, contBB); 1699 } 1700 EmitOverflowBB(overflowBB); 1701 Builder.SetInsertPoint(contBB); 1702 } 1703 1704 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 1705 if (isTrapvOverflowBehavior()) { 1706 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 1707 1708 if (Ops.Ty->isIntegerType()) 1709 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 1710 else if (Ops.Ty->isRealFloatingType()) { 1711 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", 1712 CGF.CurFn); 1713 llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn); 1714 CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero), 1715 overflowBB, DivCont); 1716 EmitOverflowBB(overflowBB); 1717 Builder.SetInsertPoint(DivCont); 1718 } 1719 } 1720 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 1721 return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 1722 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 1723 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 1724 else 1725 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 1726 } 1727 1728 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 1729 // Rem in C can't be a floating point type: C99 6.5.5p2. 1730 if (isTrapvOverflowBehavior()) { 1731 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 1732 1733 if (Ops.Ty->isIntegerType()) 1734 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 1735 } 1736 1737 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 1738 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 1739 else 1740 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 1741 } 1742 1743 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 1744 unsigned IID; 1745 unsigned OpID = 0; 1746 1747 switch (Ops.Opcode) { 1748 case BO_Add: 1749 case BO_AddAssign: 1750 OpID = 1; 1751 IID = llvm::Intrinsic::sadd_with_overflow; 1752 break; 1753 case BO_Sub: 1754 case BO_SubAssign: 1755 OpID = 2; 1756 IID = llvm::Intrinsic::ssub_with_overflow; 1757 break; 1758 case BO_Mul: 1759 case BO_MulAssign: 1760 OpID = 3; 1761 IID = llvm::Intrinsic::smul_with_overflow; 1762 break; 1763 default: 1764 assert(false && "Unsupported operation for overflow detection"); 1765 IID = 0; 1766 } 1767 OpID <<= 1; 1768 OpID |= 1; 1769 1770 const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 1771 1772 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1); 1773 1774 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 1775 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 1776 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 1777 1778 // Branch in case of overflow. 1779 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 1780 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 1781 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn); 1782 1783 Builder.CreateCondBr(overflow, overflowBB, continueBB); 1784 1785 // Handle overflow with llvm.trap. 1786 const std::string *handlerName = 1787 &CGF.getContext().getLangOptions().OverflowHandler; 1788 if (handlerName->empty()) { 1789 EmitOverflowBB(overflowBB); 1790 Builder.SetInsertPoint(continueBB); 1791 return result; 1792 } 1793 1794 // If an overflow handler is set, then we want to call it and then use its 1795 // result, if it returns. 1796 Builder.SetInsertPoint(overflowBB); 1797 1798 // Get the overflow handler. 1799 const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext); 1800 std::vector<const llvm::Type*> argTypes; 1801 argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty); 1802 argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty); 1803 llvm::FunctionType *handlerTy = 1804 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 1805 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 1806 1807 // Sign extend the args to 64-bit, so that we can use the same handler for 1808 // all types of overflow. 1809 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 1810 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 1811 1812 // Call the handler with the two arguments, the operation, and the size of 1813 // the result. 1814 llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs, 1815 Builder.getInt8(OpID), 1816 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())); 1817 1818 // Truncate the result back to the desired size. 1819 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 1820 Builder.CreateBr(continueBB); 1821 1822 Builder.SetInsertPoint(continueBB); 1823 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 1824 phi->addIncoming(result, initialBB); 1825 phi->addIncoming(handlerResult, overflowBB); 1826 1827 return phi; 1828 } 1829 1830 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) { 1831 if (!Ops.Ty->isAnyPointerType()) { 1832 if (Ops.Ty->hasSignedIntegerRepresentation()) { 1833 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 1834 case LangOptions::SOB_Undefined: 1835 return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add"); 1836 case LangOptions::SOB_Defined: 1837 return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add"); 1838 case LangOptions::SOB_Trapping: 1839 return EmitOverflowCheckedBinOp(Ops); 1840 } 1841 } 1842 1843 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 1844 return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add"); 1845 1846 return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add"); 1847 } 1848 1849 // Must have binary (not unary) expr here. Unary pointer decrement doesn't 1850 // use this path. 1851 const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E); 1852 1853 if (Ops.Ty->isPointerType() && 1854 Ops.Ty->getAs<PointerType>()->isVariableArrayType()) { 1855 // The amount of the addition needs to account for the VLA size 1856 CGF.ErrorUnsupported(BinOp, "VLA pointer addition"); 1857 } 1858 1859 Value *Ptr, *Idx; 1860 Expr *IdxExp; 1861 const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>(); 1862 const ObjCObjectPointerType *OPT = 1863 BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>(); 1864 if (PT || OPT) { 1865 Ptr = Ops.LHS; 1866 Idx = Ops.RHS; 1867 IdxExp = BinOp->getRHS(); 1868 } else { // int + pointer 1869 PT = BinOp->getRHS()->getType()->getAs<PointerType>(); 1870 OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>(); 1871 assert((PT || OPT) && "Invalid add expr"); 1872 Ptr = Ops.RHS; 1873 Idx = Ops.LHS; 1874 IdxExp = BinOp->getLHS(); 1875 } 1876 1877 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); 1878 if (Width < CGF.PointerWidthInBits) { 1879 // Zero or sign extend the pointer value based on whether the index is 1880 // signed or not. 1881 const llvm::Type *IdxType = CGF.IntPtrTy; 1882 if (IdxExp->getType()->isSignedIntegerType()) 1883 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); 1884 else 1885 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); 1886 } 1887 const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType(); 1888 // Handle interface types, which are not represented with a concrete type. 1889 if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) { 1890 llvm::Value *InterfaceSize = 1891 llvm::ConstantInt::get(Idx->getType(), 1892 CGF.getContext().getTypeSizeInChars(OIT).getQuantity()); 1893 Idx = Builder.CreateMul(Idx, InterfaceSize); 1894 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); 1895 Value *Casted = Builder.CreateBitCast(Ptr, i8Ty); 1896 Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr"); 1897 return Builder.CreateBitCast(Res, Ptr->getType()); 1898 } 1899 1900 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 1901 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 1902 // future proof. 1903 if (ElementType->isVoidType() || ElementType->isFunctionType()) { 1904 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); 1905 Value *Casted = Builder.CreateBitCast(Ptr, i8Ty); 1906 Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr"); 1907 return Builder.CreateBitCast(Res, Ptr->getType()); 1908 } 1909 1910 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1911 return Builder.CreateGEP(Ptr, Idx, "add.ptr"); 1912 return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr"); 1913 } 1914 1915 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) { 1916 if (!isa<llvm::PointerType>(Ops.LHS->getType())) { 1917 if (Ops.Ty->hasSignedIntegerRepresentation()) { 1918 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 1919 case LangOptions::SOB_Undefined: 1920 return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub"); 1921 case LangOptions::SOB_Defined: 1922 return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub"); 1923 case LangOptions::SOB_Trapping: 1924 return EmitOverflowCheckedBinOp(Ops); 1925 } 1926 } 1927 1928 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 1929 return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub"); 1930 1931 return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub"); 1932 } 1933 1934 // Must have binary (not unary) expr here. Unary pointer increment doesn't 1935 // use this path. 1936 const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E); 1937 1938 if (BinOp->getLHS()->getType()->isPointerType() && 1939 BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) { 1940 // The amount of the addition needs to account for the VLA size for 1941 // ptr-int 1942 // The amount of the division needs to account for the VLA size for 1943 // ptr-ptr. 1944 CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction"); 1945 } 1946 1947 const QualType LHSType = BinOp->getLHS()->getType(); 1948 const QualType LHSElementType = LHSType->getPointeeType(); 1949 if (!isa<llvm::PointerType>(Ops.RHS->getType())) { 1950 // pointer - int 1951 Value *Idx = Ops.RHS; 1952 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); 1953 if (Width < CGF.PointerWidthInBits) { 1954 // Zero or sign extend the pointer value based on whether the index is 1955 // signed or not. 1956 const llvm::Type *IdxType = CGF.IntPtrTy; 1957 if (BinOp->getRHS()->getType()->isSignedIntegerType()) 1958 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); 1959 else 1960 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); 1961 } 1962 Idx = Builder.CreateNeg(Idx, "sub.ptr.neg"); 1963 1964 // Handle interface types, which are not represented with a concrete type. 1965 if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) { 1966 llvm::Value *InterfaceSize = 1967 llvm::ConstantInt::get(Idx->getType(), 1968 CGF.getContext(). 1969 getTypeSizeInChars(OIT).getQuantity()); 1970 Idx = Builder.CreateMul(Idx, InterfaceSize); 1971 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); 1972 Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty); 1973 Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr"); 1974 return Builder.CreateBitCast(Res, Ops.LHS->getType()); 1975 } 1976 1977 // Explicitly handle GNU void* and function pointer arithmetic 1978 // extensions. The GNU void* casts amount to no-ops since our void* type is 1979 // i8*, but this is future proof. 1980 if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) { 1981 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); 1982 Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty); 1983 Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr"); 1984 return Builder.CreateBitCast(Res, Ops.LHS->getType()); 1985 } 1986 1987 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1988 return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr"); 1989 return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr"); 1990 } 1991 1992 // pointer - pointer 1993 Value *LHS = Ops.LHS; 1994 Value *RHS = Ops.RHS; 1995 1996 CharUnits ElementSize; 1997 1998 // Handle GCC extension for pointer arithmetic on void* and function pointer 1999 // types. 2000 if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) 2001 ElementSize = CharUnits::One(); 2002 else 2003 ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType); 2004 2005 const llvm::Type *ResultType = ConvertType(Ops.Ty); 2006 LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast"); 2007 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2008 Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2009 2010 // Optimize out the shift for element size of 1. 2011 if (ElementSize.isOne()) 2012 return BytesBetween; 2013 2014 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2015 // pointer difference in C is only defined in the case where both operands 2016 // are pointing to elements of an array. 2017 Value *BytesPerElt = 2018 llvm::ConstantInt::get(ResultType, ElementSize.getQuantity()); 2019 return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div"); 2020 } 2021 2022 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2023 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2024 // RHS to the same size as the LHS. 2025 Value *RHS = Ops.RHS; 2026 if (Ops.LHS->getType() != RHS->getType()) 2027 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2028 2029 if (CGF.CatchUndefined 2030 && isa<llvm::IntegerType>(Ops.LHS->getType())) { 2031 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth(); 2032 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2033 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS, 2034 llvm::ConstantInt::get(RHS->getType(), Width)), 2035 Cont, CGF.getTrapBB()); 2036 CGF.EmitBlock(Cont); 2037 } 2038 2039 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2040 } 2041 2042 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2043 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2044 // RHS to the same size as the LHS. 2045 Value *RHS = Ops.RHS; 2046 if (Ops.LHS->getType() != RHS->getType()) 2047 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2048 2049 if (CGF.CatchUndefined 2050 && isa<llvm::IntegerType>(Ops.LHS->getType())) { 2051 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth(); 2052 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2053 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS, 2054 llvm::ConstantInt::get(RHS->getType(), Width)), 2055 Cont, CGF.getTrapBB()); 2056 CGF.EmitBlock(Cont); 2057 } 2058 2059 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2060 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2061 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2062 } 2063 2064 enum IntrinsicType { VCMPEQ, VCMPGT }; 2065 // return corresponding comparison intrinsic for given vector type 2066 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2067 BuiltinType::Kind ElemKind) { 2068 switch (ElemKind) { 2069 default: assert(0 && "unexpected element type"); 2070 case BuiltinType::Char_U: 2071 case BuiltinType::UChar: 2072 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2073 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2074 break; 2075 case BuiltinType::Char_S: 2076 case BuiltinType::SChar: 2077 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2078 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2079 break; 2080 case BuiltinType::UShort: 2081 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2082 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2083 break; 2084 case BuiltinType::Short: 2085 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2086 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2087 break; 2088 case BuiltinType::UInt: 2089 case BuiltinType::ULong: 2090 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2091 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2092 break; 2093 case BuiltinType::Int: 2094 case BuiltinType::Long: 2095 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2096 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2097 break; 2098 case BuiltinType::Float: 2099 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2100 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2101 break; 2102 } 2103 return llvm::Intrinsic::not_intrinsic; 2104 } 2105 2106 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2107 unsigned SICmpOpc, unsigned FCmpOpc) { 2108 TestAndClearIgnoreResultAssign(); 2109 Value *Result; 2110 QualType LHSTy = E->getLHS()->getType(); 2111 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2112 assert(E->getOpcode() == BO_EQ || 2113 E->getOpcode() == BO_NE); 2114 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2115 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2116 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2117 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2118 } else if (!LHSTy->isAnyComplexType()) { 2119 Value *LHS = Visit(E->getLHS()); 2120 Value *RHS = Visit(E->getRHS()); 2121 2122 // If AltiVec, the comparison results in a numeric type, so we use 2123 // intrinsics comparing vectors and giving 0 or 1 as a result 2124 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2125 // constants for mapping CR6 register bits to predicate result 2126 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2127 2128 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2129 2130 // in several cases vector arguments order will be reversed 2131 Value *FirstVecArg = LHS, 2132 *SecondVecArg = RHS; 2133 2134 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2135 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2136 BuiltinType::Kind ElementKind = BTy->getKind(); 2137 2138 switch(E->getOpcode()) { 2139 default: assert(0 && "is not a comparison operation"); 2140 case BO_EQ: 2141 CR6 = CR6_LT; 2142 ID = GetIntrinsic(VCMPEQ, ElementKind); 2143 break; 2144 case BO_NE: 2145 CR6 = CR6_EQ; 2146 ID = GetIntrinsic(VCMPEQ, ElementKind); 2147 break; 2148 case BO_LT: 2149 CR6 = CR6_LT; 2150 ID = GetIntrinsic(VCMPGT, ElementKind); 2151 std::swap(FirstVecArg, SecondVecArg); 2152 break; 2153 case BO_GT: 2154 CR6 = CR6_LT; 2155 ID = GetIntrinsic(VCMPGT, ElementKind); 2156 break; 2157 case BO_LE: 2158 if (ElementKind == BuiltinType::Float) { 2159 CR6 = CR6_LT; 2160 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2161 std::swap(FirstVecArg, SecondVecArg); 2162 } 2163 else { 2164 CR6 = CR6_EQ; 2165 ID = GetIntrinsic(VCMPGT, ElementKind); 2166 } 2167 break; 2168 case BO_GE: 2169 if (ElementKind == BuiltinType::Float) { 2170 CR6 = CR6_LT; 2171 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2172 } 2173 else { 2174 CR6 = CR6_EQ; 2175 ID = GetIntrinsic(VCMPGT, ElementKind); 2176 std::swap(FirstVecArg, SecondVecArg); 2177 } 2178 break; 2179 } 2180 2181 Value *CR6Param = llvm::ConstantInt::get(CGF.Int32Ty, CR6); 2182 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2183 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2184 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2185 } 2186 2187 if (LHS->getType()->isFPOrFPVectorTy()) { 2188 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2189 LHS, RHS, "cmp"); 2190 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2191 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2192 LHS, RHS, "cmp"); 2193 } else { 2194 // Unsigned integers and pointers. 2195 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2196 LHS, RHS, "cmp"); 2197 } 2198 2199 // If this is a vector comparison, sign extend the result to the appropriate 2200 // vector integer type and return it (don't convert to bool). 2201 if (LHSTy->isVectorType()) 2202 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2203 2204 } else { 2205 // Complex Comparison: can only be an equality comparison. 2206 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 2207 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 2208 2209 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 2210 2211 Value *ResultR, *ResultI; 2212 if (CETy->isRealFloatingType()) { 2213 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2214 LHS.first, RHS.first, "cmp.r"); 2215 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2216 LHS.second, RHS.second, "cmp.i"); 2217 } else { 2218 // Complex comparisons can only be equality comparisons. As such, signed 2219 // and unsigned opcodes are the same. 2220 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2221 LHS.first, RHS.first, "cmp.r"); 2222 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2223 LHS.second, RHS.second, "cmp.i"); 2224 } 2225 2226 if (E->getOpcode() == BO_EQ) { 2227 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2228 } else { 2229 assert(E->getOpcode() == BO_NE && 2230 "Complex comparison other than == or != ?"); 2231 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2232 } 2233 } 2234 2235 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2236 } 2237 2238 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2239 bool Ignore = TestAndClearIgnoreResultAssign(); 2240 2241 // __block variables need to have the rhs evaluated first, plus this should 2242 // improve codegen just a little. 2243 Value *RHS = Visit(E->getRHS()); 2244 LValue LHS = EmitCheckedLValue(E->getLHS()); 2245 2246 // Store the value into the LHS. Bit-fields are handled specially 2247 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2248 // 'An assignment expression has the value of the left operand after 2249 // the assignment...'. 2250 if (LHS.isBitField()) 2251 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(), 2252 &RHS); 2253 else 2254 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType()); 2255 2256 // If the result is clearly ignored, return now. 2257 if (Ignore) 2258 return 0; 2259 2260 // The result of an assignment in C is the assigned r-value. 2261 if (!CGF.getContext().getLangOptions().CPlusPlus) 2262 return RHS; 2263 2264 // Objective-C property assignment never reloads the value following a store. 2265 if (LHS.isPropertyRef()) 2266 return RHS; 2267 2268 // If the lvalue is non-volatile, return the computed value of the assignment. 2269 if (!LHS.isVolatileQualified()) 2270 return RHS; 2271 2272 // Otherwise, reload the value. 2273 return EmitLoadOfLValue(LHS, E->getType()); 2274 } 2275 2276 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2277 const llvm::Type *ResTy = ConvertType(E->getType()); 2278 2279 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2280 // If we have 1 && X, just emit X without inserting the control flow. 2281 bool LHSCondVal; 2282 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2283 if (LHSCondVal) { // If we have 1 && X, just emit X. 2284 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2285 // ZExt result to int or bool. 2286 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2287 } 2288 2289 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2290 if (!CGF.ContainsLabel(E->getRHS())) 2291 return llvm::Constant::getNullValue(ResTy); 2292 } 2293 2294 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2295 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 2296 2297 CodeGenFunction::ConditionalEvaluation eval(CGF); 2298 2299 // Branch on the LHS first. If it is false, go to the failure (cont) block. 2300 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); 2301 2302 // Any edges into the ContBlock are now from an (indeterminate number of) 2303 // edges from this first condition. All of these values will be false. Start 2304 // setting up the PHI node in the Cont Block for this. 2305 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2306 "", ContBlock); 2307 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2308 PI != PE; ++PI) 2309 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 2310 2311 eval.begin(CGF); 2312 CGF.EmitBlock(RHSBlock); 2313 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2314 eval.end(CGF); 2315 2316 // Reaquire the RHS block, as there may be subblocks inserted. 2317 RHSBlock = Builder.GetInsertBlock(); 2318 2319 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2320 // into the phi node for the edge with the value of RHSCond. 2321 if (CGF.getDebugInfo()) 2322 // There is no need to emit line number for unconditional branch. 2323 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 2324 CGF.EmitBlock(ContBlock); 2325 PN->addIncoming(RHSCond, RHSBlock); 2326 2327 // ZExt result to int. 2328 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 2329 } 2330 2331 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 2332 const llvm::Type *ResTy = ConvertType(E->getType()); 2333 2334 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 2335 // If we have 0 || X, just emit X without inserting the control flow. 2336 bool LHSCondVal; 2337 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2338 if (!LHSCondVal) { // If we have 0 || X, just emit X. 2339 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2340 // ZExt result to int or bool. 2341 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 2342 } 2343 2344 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 2345 if (!CGF.ContainsLabel(E->getRHS())) 2346 return llvm::ConstantInt::get(ResTy, 1); 2347 } 2348 2349 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 2350 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 2351 2352 CodeGenFunction::ConditionalEvaluation eval(CGF); 2353 2354 // Branch on the LHS first. If it is true, go to the success (cont) block. 2355 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); 2356 2357 // Any edges into the ContBlock are now from an (indeterminate number of) 2358 // edges from this first condition. All of these values will be true. Start 2359 // setting up the PHI node in the Cont Block for this. 2360 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2361 "", ContBlock); 2362 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2363 PI != PE; ++PI) 2364 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 2365 2366 eval.begin(CGF); 2367 2368 // Emit the RHS condition as a bool value. 2369 CGF.EmitBlock(RHSBlock); 2370 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2371 2372 eval.end(CGF); 2373 2374 // Reaquire the RHS block, as there may be subblocks inserted. 2375 RHSBlock = Builder.GetInsertBlock(); 2376 2377 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2378 // into the phi node for the edge with the value of RHSCond. 2379 CGF.EmitBlock(ContBlock); 2380 PN->addIncoming(RHSCond, RHSBlock); 2381 2382 // ZExt result to int. 2383 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 2384 } 2385 2386 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 2387 CGF.EmitIgnoredExpr(E->getLHS()); 2388 CGF.EnsureInsertPoint(); 2389 return Visit(E->getRHS()); 2390 } 2391 2392 //===----------------------------------------------------------------------===// 2393 // Other Operators 2394 //===----------------------------------------------------------------------===// 2395 2396 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 2397 /// expression is cheap enough and side-effect-free enough to evaluate 2398 /// unconditionally instead of conditionally. This is used to convert control 2399 /// flow into selects in some cases. 2400 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 2401 CodeGenFunction &CGF) { 2402 E = E->IgnoreParens(); 2403 2404 // TODO: Allow anything we can constant fold to an integer or fp constant. 2405 if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) || 2406 isa<FloatingLiteral>(E)) 2407 return true; 2408 2409 // Non-volatile automatic variables too, to get "cond ? X : Y" where 2410 // X and Y are local variables. 2411 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 2412 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2413 if (VD->hasLocalStorage() && !(CGF.getContext() 2414 .getCanonicalType(VD->getType()) 2415 .isVolatileQualified())) 2416 return true; 2417 2418 return false; 2419 } 2420 2421 2422 Value *ScalarExprEmitter:: 2423 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 2424 TestAndClearIgnoreResultAssign(); 2425 2426 // Bind the common expression if necessary. 2427 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 2428 2429 Expr *condExpr = E->getCond(); 2430 Expr *lhsExpr = E->getTrueExpr(); 2431 Expr *rhsExpr = E->getFalseExpr(); 2432 2433 // If the condition constant folds and can be elided, try to avoid emitting 2434 // the condition and the dead arm. 2435 bool CondExprBool; 2436 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2437 Expr *live = lhsExpr, *dead = rhsExpr; 2438 if (!CondExprBool) std::swap(live, dead); 2439 2440 // If the dead side doesn't have labels we need, and if the Live side isn't 2441 // the gnu missing ?: extension (which we could handle, but don't bother 2442 // to), just emit the Live part. 2443 if (!CGF.ContainsLabel(dead)) 2444 return Visit(live); 2445 } 2446 2447 // OpenCL: If the condition is a vector, we can treat this condition like 2448 // the select function. 2449 if (CGF.getContext().getLangOptions().OpenCL 2450 && condExpr->getType()->isVectorType()) { 2451 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 2452 llvm::Value *LHS = Visit(lhsExpr); 2453 llvm::Value *RHS = Visit(rhsExpr); 2454 2455 const llvm::Type *condType = ConvertType(condExpr->getType()); 2456 const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 2457 2458 unsigned numElem = vecTy->getNumElements(); 2459 const llvm::Type *elemType = vecTy->getElementType(); 2460 2461 std::vector<llvm::Constant*> Zvals; 2462 for (unsigned i = 0; i < numElem; ++i) 2463 Zvals.push_back(llvm::ConstantInt::get(elemType,0)); 2464 2465 llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals); 2466 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 2467 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 2468 llvm::VectorType::get(elemType, 2469 numElem), 2470 "sext"); 2471 llvm::Value *tmp2 = Builder.CreateNot(tmp); 2472 2473 // Cast float to int to perform ANDs if necessary. 2474 llvm::Value *RHSTmp = RHS; 2475 llvm::Value *LHSTmp = LHS; 2476 bool wasCast = false; 2477 const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 2478 if (rhsVTy->getElementType()->isFloatTy()) { 2479 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 2480 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 2481 wasCast = true; 2482 } 2483 2484 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 2485 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 2486 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 2487 if (wasCast) 2488 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 2489 2490 return tmp5; 2491 } 2492 2493 // If this is a really simple expression (like x ? 4 : 5), emit this as a 2494 // select instead of as control flow. We can only do this if it is cheap and 2495 // safe to evaluate the LHS and RHS unconditionally. 2496 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 2497 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 2498 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 2499 llvm::Value *LHS = Visit(lhsExpr); 2500 llvm::Value *RHS = Visit(rhsExpr); 2501 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 2502 } 2503 2504 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 2505 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 2506 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 2507 2508 CodeGenFunction::ConditionalEvaluation eval(CGF); 2509 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock); 2510 2511 CGF.EmitBlock(LHSBlock); 2512 eval.begin(CGF); 2513 Value *LHS = Visit(lhsExpr); 2514 eval.end(CGF); 2515 2516 LHSBlock = Builder.GetInsertBlock(); 2517 Builder.CreateBr(ContBlock); 2518 2519 CGF.EmitBlock(RHSBlock); 2520 eval.begin(CGF); 2521 Value *RHS = Visit(rhsExpr); 2522 eval.end(CGF); 2523 2524 RHSBlock = Builder.GetInsertBlock(); 2525 CGF.EmitBlock(ContBlock); 2526 2527 // If the LHS or RHS is a throw expression, it will be legitimately null. 2528 if (!LHS) 2529 return RHS; 2530 if (!RHS) 2531 return LHS; 2532 2533 // Create a PHI node for the real part. 2534 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 2535 PN->addIncoming(LHS, LHSBlock); 2536 PN->addIncoming(RHS, RHSBlock); 2537 return PN; 2538 } 2539 2540 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 2541 return Visit(E->getChosenSubExpr(CGF.getContext())); 2542 } 2543 2544 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 2545 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 2546 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 2547 2548 // If EmitVAArg fails, we fall back to the LLVM instruction. 2549 if (!ArgPtr) 2550 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 2551 2552 // FIXME Volatility. 2553 return Builder.CreateLoad(ArgPtr); 2554 } 2555 2556 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 2557 return CGF.EmitBlockLiteral(block); 2558 } 2559 2560 //===----------------------------------------------------------------------===// 2561 // Entry Point into this File 2562 //===----------------------------------------------------------------------===// 2563 2564 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 2565 /// type, ignoring the result. 2566 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 2567 assert(E && !hasAggregateLLVMType(E->getType()) && 2568 "Invalid scalar expression to emit"); 2569 2570 if (isa<CXXDefaultArgExpr>(E)) 2571 disableDebugInfo(); 2572 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 2573 .Visit(const_cast<Expr*>(E)); 2574 if (isa<CXXDefaultArgExpr>(E)) 2575 enableDebugInfo(); 2576 return V; 2577 } 2578 2579 /// EmitScalarConversion - Emit a conversion from the specified type to the 2580 /// specified destination type, both of which are LLVM scalar types. 2581 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 2582 QualType DstTy) { 2583 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) && 2584 "Invalid scalar expression to emit"); 2585 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 2586 } 2587 2588 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 2589 /// type to the specified destination type, where the destination type is an 2590 /// LLVM scalar type. 2591 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 2592 QualType SrcTy, 2593 QualType DstTy) { 2594 assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) && 2595 "Invalid complex -> scalar conversion"); 2596 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 2597 DstTy); 2598 } 2599 2600 2601 llvm::Value *CodeGenFunction:: 2602 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2603 bool isInc, bool isPre) { 2604 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 2605 } 2606 2607 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 2608 llvm::Value *V; 2609 // object->isa or (*object).isa 2610 // Generate code as for: *(Class*)object 2611 // build Class* type 2612 const llvm::Type *ClassPtrTy = ConvertType(E->getType()); 2613 2614 Expr *BaseExpr = E->getBase(); 2615 if (BaseExpr->isRValue()) { 2616 V = CreateTempAlloca(ClassPtrTy, "resval"); 2617 llvm::Value *Src = EmitScalarExpr(BaseExpr); 2618 Builder.CreateStore(Src, V); 2619 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 2620 MakeAddrLValue(V, E->getType()), E->getType()); 2621 } else { 2622 if (E->isArrow()) 2623 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 2624 else 2625 V = EmitLValue(BaseExpr).getAddress(); 2626 } 2627 2628 // build Class* type 2629 ClassPtrTy = ClassPtrTy->getPointerTo(); 2630 V = Builder.CreateBitCast(V, ClassPtrTy); 2631 return MakeAddrLValue(V, E->getType()); 2632 } 2633 2634 2635 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 2636 const CompoundAssignOperator *E) { 2637 ScalarExprEmitter Scalar(*this); 2638 Value *Result = 0; 2639 switch (E->getOpcode()) { 2640 #define COMPOUND_OP(Op) \ 2641 case BO_##Op##Assign: \ 2642 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 2643 Result) 2644 COMPOUND_OP(Mul); 2645 COMPOUND_OP(Div); 2646 COMPOUND_OP(Rem); 2647 COMPOUND_OP(Add); 2648 COMPOUND_OP(Sub); 2649 COMPOUND_OP(Shl); 2650 COMPOUND_OP(Shr); 2651 COMPOUND_OP(And); 2652 COMPOUND_OP(Xor); 2653 COMPOUND_OP(Or); 2654 #undef COMPOUND_OP 2655 2656 case BO_PtrMemD: 2657 case BO_PtrMemI: 2658 case BO_Mul: 2659 case BO_Div: 2660 case BO_Rem: 2661 case BO_Add: 2662 case BO_Sub: 2663 case BO_Shl: 2664 case BO_Shr: 2665 case BO_LT: 2666 case BO_GT: 2667 case BO_LE: 2668 case BO_GE: 2669 case BO_EQ: 2670 case BO_NE: 2671 case BO_And: 2672 case BO_Xor: 2673 case BO_Or: 2674 case BO_LAnd: 2675 case BO_LOr: 2676 case BO_Assign: 2677 case BO_Comma: 2678 assert(false && "Not valid compound assignment operators"); 2679 break; 2680 } 2681 2682 llvm_unreachable("Unhandled compound assignment operator"); 2683 } 2684