1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 //                         Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45   Value *LHS;
46   Value *RHS;
47   QualType Ty;  // Computation Type.
48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49   bool FPContractable;
50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54   // If a null pointer expression's type is the C++0x nullptr_t, then
55   // it's not necessarily a simple constant and it must be evaluated
56   // for its potential side effects.
57   return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61   : public StmtVisitor<ScalarExprEmitter, Value*> {
62   CodeGenFunction &CGF;
63   CGBuilderTy &Builder;
64   bool IgnoreResultAssign;
65   llvm::LLVMContext &VMContext;
66 public:
67 
68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70       VMContext(cgf.getLLVMContext()) {
71   }
72 
73   //===--------------------------------------------------------------------===//
74   //                               Utilities
75   //===--------------------------------------------------------------------===//
76 
77   bool TestAndClearIgnoreResultAssign() {
78     bool I = IgnoreResultAssign;
79     IgnoreResultAssign = false;
80     return I;
81   }
82 
83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86     return CGF.EmitCheckedLValue(E, TCK);
87   }
88 
89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                       const BinOpInfo &Info);
91 
92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94   }
95 
96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97     const AlignValueAttr *AVAttr = nullptr;
98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99       const ValueDecl *VD = DRE->getDecl();
100 
101       if (VD->getType()->isReferenceType()) {
102         if (const auto *TTy =
103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105       } else {
106         // Assumptions for function parameters are emitted at the start of the
107         // function, so there is no need to repeat that here.
108         if (isa<ParmVarDecl>(VD))
109           return;
110 
111         AVAttr = VD->getAttr<AlignValueAttr>();
112       }
113     }
114 
115     if (!AVAttr)
116       if (const auto *TTy =
117           dyn_cast<TypedefType>(E->getType()))
118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120     if (!AVAttr)
121       return;
122 
123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126   }
127 
128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129   /// value l-value, this method emits the address of the l-value, then loads
130   /// and returns the result.
131   Value *EmitLoadOfLValue(const Expr *E) {
132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                 E->getExprLoc());
134 
135     EmitLValueAlignmentAssumption(E, V);
136     return V;
137   }
138 
139   /// EmitConversionToBool - Convert the specified expression value to a
140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143   /// \brief Emit a check that a conversion to or from a floating-point type
144   /// does not overflow.
145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                 Value *Src, QualType SrcType,
147                                 QualType DstType, llvm::Type *DstTy);
148 
149   /// EmitScalarConversion - Emit a conversion from the specified type to the
150   /// specified destination type, both of which are LLVM scalar types.
151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
152 
153   /// EmitComplexToScalarConversion - Emit a conversion from the specified
154   /// complex type to the specified destination type, where the destination type
155   /// is an LLVM scalar type.
156   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
157                                        QualType SrcTy, QualType DstTy);
158 
159   /// EmitNullValue - Emit a value that corresponds to null for the given type.
160   Value *EmitNullValue(QualType Ty);
161 
162   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
163   Value *EmitFloatToBoolConversion(Value *V) {
164     // Compare against 0.0 for fp scalars.
165     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
166     return Builder.CreateFCmpUNE(V, Zero, "tobool");
167   }
168 
169   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
170   Value *EmitPointerToBoolConversion(Value *V) {
171     Value *Zero = llvm::ConstantPointerNull::get(
172                                       cast<llvm::PointerType>(V->getType()));
173     return Builder.CreateICmpNE(V, Zero, "tobool");
174   }
175 
176   Value *EmitIntToBoolConversion(Value *V) {
177     // Because of the type rules of C, we often end up computing a
178     // logical value, then zero extending it to int, then wanting it
179     // as a logical value again.  Optimize this common case.
180     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
181       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
182         Value *Result = ZI->getOperand(0);
183         // If there aren't any more uses, zap the instruction to save space.
184         // Note that there can be more uses, for example if this
185         // is the result of an assignment.
186         if (ZI->use_empty())
187           ZI->eraseFromParent();
188         return Result;
189       }
190     }
191 
192     return Builder.CreateIsNotNull(V, "tobool");
193   }
194 
195   //===--------------------------------------------------------------------===//
196   //                            Visitor Methods
197   //===--------------------------------------------------------------------===//
198 
199   Value *Visit(Expr *E) {
200     ApplyDebugLocation DL(CGF, E);
201     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
202   }
203 
204   Value *VisitStmt(Stmt *S) {
205     S->dump(CGF.getContext().getSourceManager());
206     llvm_unreachable("Stmt can't have complex result type!");
207   }
208   Value *VisitExpr(Expr *S);
209 
210   Value *VisitParenExpr(ParenExpr *PE) {
211     return Visit(PE->getSubExpr());
212   }
213   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
214     return Visit(E->getReplacement());
215   }
216   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
217     return Visit(GE->getResultExpr());
218   }
219 
220   // Leaves.
221   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
222     return Builder.getInt(E->getValue());
223   }
224   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
225     return llvm::ConstantFP::get(VMContext, E->getValue());
226   }
227   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
228     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
229   }
230   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
231     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
232   }
233   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
234     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
235   }
236   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
237     return EmitNullValue(E->getType());
238   }
239   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
240     return EmitNullValue(E->getType());
241   }
242   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
243   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
244   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
245     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
246     return Builder.CreateBitCast(V, ConvertType(E->getType()));
247   }
248 
249   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
250     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
251   }
252 
253   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
254     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
255   }
256 
257   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
258     if (E->isGLValue())
259       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
260 
261     // Otherwise, assume the mapping is the scalar directly.
262     return CGF.getOpaqueRValueMapping(E).getScalarVal();
263   }
264 
265   // l-values.
266   Value *VisitDeclRefExpr(DeclRefExpr *E) {
267     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
268       if (result.isReference())
269         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
270                                 E->getExprLoc());
271       return result.getValue();
272     }
273     return EmitLoadOfLValue(E);
274   }
275 
276   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
277     return CGF.EmitObjCSelectorExpr(E);
278   }
279   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
280     return CGF.EmitObjCProtocolExpr(E);
281   }
282   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
283     return EmitLoadOfLValue(E);
284   }
285   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
286     if (E->getMethodDecl() &&
287         E->getMethodDecl()->getReturnType()->isReferenceType())
288       return EmitLoadOfLValue(E);
289     return CGF.EmitObjCMessageExpr(E).getScalarVal();
290   }
291 
292   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
293     LValue LV = CGF.EmitObjCIsaExpr(E);
294     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
295     return V;
296   }
297 
298   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
299   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
300   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
301   Value *VisitMemberExpr(MemberExpr *E);
302   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
303   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
304     return EmitLoadOfLValue(E);
305   }
306 
307   Value *VisitInitListExpr(InitListExpr *E);
308 
309   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
310     return EmitNullValue(E->getType());
311   }
312   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
313     if (E->getType()->isVariablyModifiedType())
314       CGF.EmitVariablyModifiedType(E->getType());
315 
316     if (CGDebugInfo *DI = CGF.getDebugInfo())
317       DI->EmitExplicitCastType(E->getType());
318 
319     return VisitCastExpr(E);
320   }
321   Value *VisitCastExpr(CastExpr *E);
322 
323   Value *VisitCallExpr(const CallExpr *E) {
324     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
325       return EmitLoadOfLValue(E);
326 
327     Value *V = CGF.EmitCallExpr(E).getScalarVal();
328 
329     EmitLValueAlignmentAssumption(E, V);
330     return V;
331   }
332 
333   Value *VisitStmtExpr(const StmtExpr *E);
334 
335   // Unary Operators.
336   Value *VisitUnaryPostDec(const UnaryOperator *E) {
337     LValue LV = EmitLValue(E->getSubExpr());
338     return EmitScalarPrePostIncDec(E, LV, false, false);
339   }
340   Value *VisitUnaryPostInc(const UnaryOperator *E) {
341     LValue LV = EmitLValue(E->getSubExpr());
342     return EmitScalarPrePostIncDec(E, LV, true, false);
343   }
344   Value *VisitUnaryPreDec(const UnaryOperator *E) {
345     LValue LV = EmitLValue(E->getSubExpr());
346     return EmitScalarPrePostIncDec(E, LV, false, true);
347   }
348   Value *VisitUnaryPreInc(const UnaryOperator *E) {
349     LValue LV = EmitLValue(E->getSubExpr());
350     return EmitScalarPrePostIncDec(E, LV, true, true);
351   }
352 
353   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
354                                                   llvm::Value *InVal,
355                                                   bool IsInc);
356 
357   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
358                                        bool isInc, bool isPre);
359 
360 
361   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
362     if (isa<MemberPointerType>(E->getType())) // never sugared
363       return CGF.CGM.getMemberPointerConstant(E);
364 
365     return EmitLValue(E->getSubExpr()).getAddress();
366   }
367   Value *VisitUnaryDeref(const UnaryOperator *E) {
368     if (E->getType()->isVoidType())
369       return Visit(E->getSubExpr()); // the actual value should be unused
370     return EmitLoadOfLValue(E);
371   }
372   Value *VisitUnaryPlus(const UnaryOperator *E) {
373     // This differs from gcc, though, most likely due to a bug in gcc.
374     TestAndClearIgnoreResultAssign();
375     return Visit(E->getSubExpr());
376   }
377   Value *VisitUnaryMinus    (const UnaryOperator *E);
378   Value *VisitUnaryNot      (const UnaryOperator *E);
379   Value *VisitUnaryLNot     (const UnaryOperator *E);
380   Value *VisitUnaryReal     (const UnaryOperator *E);
381   Value *VisitUnaryImag     (const UnaryOperator *E);
382   Value *VisitUnaryExtension(const UnaryOperator *E) {
383     return Visit(E->getSubExpr());
384   }
385 
386   // C++
387   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
388     return EmitLoadOfLValue(E);
389   }
390 
391   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
392     return Visit(DAE->getExpr());
393   }
394   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
395     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
396     return Visit(DIE->getExpr());
397   }
398   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
399     return CGF.LoadCXXThis();
400   }
401 
402   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
403     CGF.enterFullExpression(E);
404     CodeGenFunction::RunCleanupsScope Scope(CGF);
405     return Visit(E->getSubExpr());
406   }
407   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
408     return CGF.EmitCXXNewExpr(E);
409   }
410   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
411     CGF.EmitCXXDeleteExpr(E);
412     return nullptr;
413   }
414 
415   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
416     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
417   }
418 
419   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
420     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
421   }
422 
423   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
424     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
425   }
426 
427   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
428     // C++ [expr.pseudo]p1:
429     //   The result shall only be used as the operand for the function call
430     //   operator (), and the result of such a call has type void. The only
431     //   effect is the evaluation of the postfix-expression before the dot or
432     //   arrow.
433     CGF.EmitScalarExpr(E->getBase());
434     return nullptr;
435   }
436 
437   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
438     return EmitNullValue(E->getType());
439   }
440 
441   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
442     CGF.EmitCXXThrowExpr(E);
443     return nullptr;
444   }
445 
446   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
447     return Builder.getInt1(E->getValue());
448   }
449 
450   // Binary Operators.
451   Value *EmitMul(const BinOpInfo &Ops) {
452     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
453       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
454       case LangOptions::SOB_Defined:
455         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
456       case LangOptions::SOB_Undefined:
457         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
458           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
459         // Fall through.
460       case LangOptions::SOB_Trapping:
461         return EmitOverflowCheckedBinOp(Ops);
462       }
463     }
464 
465     if (Ops.Ty->isUnsignedIntegerType() &&
466         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
467       return EmitOverflowCheckedBinOp(Ops);
468 
469     if (Ops.LHS->getType()->isFPOrFPVectorTy())
470       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
471     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
472   }
473   /// Create a binary op that checks for overflow.
474   /// Currently only supports +, - and *.
475   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
476 
477   // Check for undefined division and modulus behaviors.
478   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
479                                                   llvm::Value *Zero,bool isDiv);
480   // Common helper for getting how wide LHS of shift is.
481   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
482   Value *EmitDiv(const BinOpInfo &Ops);
483   Value *EmitRem(const BinOpInfo &Ops);
484   Value *EmitAdd(const BinOpInfo &Ops);
485   Value *EmitSub(const BinOpInfo &Ops);
486   Value *EmitShl(const BinOpInfo &Ops);
487   Value *EmitShr(const BinOpInfo &Ops);
488   Value *EmitAnd(const BinOpInfo &Ops) {
489     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
490   }
491   Value *EmitXor(const BinOpInfo &Ops) {
492     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
493   }
494   Value *EmitOr (const BinOpInfo &Ops) {
495     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
496   }
497 
498   BinOpInfo EmitBinOps(const BinaryOperator *E);
499   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
500                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
501                                   Value *&Result);
502 
503   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
504                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
505 
506   // Binary operators and binary compound assignment operators.
507 #define HANDLEBINOP(OP) \
508   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
509     return Emit ## OP(EmitBinOps(E));                                      \
510   }                                                                        \
511   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
512     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
513   }
514   HANDLEBINOP(Mul)
515   HANDLEBINOP(Div)
516   HANDLEBINOP(Rem)
517   HANDLEBINOP(Add)
518   HANDLEBINOP(Sub)
519   HANDLEBINOP(Shl)
520   HANDLEBINOP(Shr)
521   HANDLEBINOP(And)
522   HANDLEBINOP(Xor)
523   HANDLEBINOP(Or)
524 #undef HANDLEBINOP
525 
526   // Comparisons.
527   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
528                      unsigned SICmpOpc, unsigned FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530     Value *VisitBin##CODE(const BinaryOperator *E) { \
531       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532                          llvm::FCmpInst::FP); }
533   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540 
541   Value *VisitBinAssign     (const BinaryOperator *E);
542 
543   Value *VisitBinLAnd       (const BinaryOperator *E);
544   Value *VisitBinLOr        (const BinaryOperator *E);
545   Value *VisitBinComma      (const BinaryOperator *E);
546 
547   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
548   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549 
550   // Other Operators.
551   Value *VisitBlockExpr(const BlockExpr *BE);
552   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553   Value *VisitChooseExpr(ChooseExpr *CE);
554   Value *VisitVAArgExpr(VAArgExpr *VE);
555   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556     return CGF.EmitObjCStringLiteral(E);
557   }
558   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559     return CGF.EmitObjCBoxedExpr(E);
560   }
561   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562     return CGF.EmitObjCArrayLiteral(E);
563   }
564   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565     return CGF.EmitObjCDictionaryLiteral(E);
566   }
567   Value *VisitAsTypeExpr(AsTypeExpr *CE);
568   Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 }  // end anonymous namespace.
571 
572 //===----------------------------------------------------------------------===//
573 //                                Utilities
574 //===----------------------------------------------------------------------===//
575 
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580 
581   if (SrcType->isRealFloatingType())
582     return EmitFloatToBoolConversion(Src);
583 
584   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586 
587   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588          "Unknown scalar type to convert");
589 
590   if (isa<llvm::IntegerType>(Src->getType()))
591     return EmitIntToBoolConversion(Src);
592 
593   assert(isa<llvm::PointerType>(Src->getType()));
594   return EmitPointerToBoolConversion(Src);
595 }
596 
597 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
598                                                  QualType OrigSrcType,
599                                                  Value *Src, QualType SrcType,
600                                                  QualType DstType,
601                                                  llvm::Type *DstTy) {
602   CodeGenFunction::SanitizerScope SanScope(&CGF);
603   using llvm::APFloat;
604   using llvm::APSInt;
605 
606   llvm::Type *SrcTy = Src->getType();
607 
608   llvm::Value *Check = nullptr;
609   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
610     // Integer to floating-point. This can fail for unsigned short -> __half
611     // or unsigned __int128 -> float.
612     assert(DstType->isFloatingType());
613     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
614 
615     APFloat LargestFloat =
616       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
617     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
618 
619     bool IsExact;
620     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
621                                       &IsExact) != APFloat::opOK)
622       // The range of representable values of this floating point type includes
623       // all values of this integer type. Don't need an overflow check.
624       return;
625 
626     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
627     if (SrcIsUnsigned)
628       Check = Builder.CreateICmpULE(Src, Max);
629     else {
630       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
631       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
632       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
633       Check = Builder.CreateAnd(GE, LE);
634     }
635   } else {
636     const llvm::fltSemantics &SrcSema =
637       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
638     if (isa<llvm::IntegerType>(DstTy)) {
639       // Floating-point to integer. This has undefined behavior if the source is
640       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
641       // to an integer).
642       unsigned Width = CGF.getContext().getIntWidth(DstType);
643       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
644 
645       APSInt Min = APSInt::getMinValue(Width, Unsigned);
646       APFloat MinSrc(SrcSema, APFloat::uninitialized);
647       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
648           APFloat::opOverflow)
649         // Don't need an overflow check for lower bound. Just check for
650         // -Inf/NaN.
651         MinSrc = APFloat::getInf(SrcSema, true);
652       else
653         // Find the largest value which is too small to represent (before
654         // truncation toward zero).
655         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
656 
657       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
658       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
659       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
660           APFloat::opOverflow)
661         // Don't need an overflow check for upper bound. Just check for
662         // +Inf/NaN.
663         MaxSrc = APFloat::getInf(SrcSema, false);
664       else
665         // Find the smallest value which is too large to represent (before
666         // truncation toward zero).
667         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
668 
669       // If we're converting from __half, convert the range to float to match
670       // the type of src.
671       if (OrigSrcType->isHalfType()) {
672         const llvm::fltSemantics &Sema =
673           CGF.getContext().getFloatTypeSemantics(SrcType);
674         bool IsInexact;
675         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
676         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
677       }
678 
679       llvm::Value *GE =
680         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
681       llvm::Value *LE =
682         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
683       Check = Builder.CreateAnd(GE, LE);
684     } else {
685       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
686       //
687       // Floating-point to floating-point. This has undefined behavior if the
688       // source is not in the range of representable values of the destination
689       // type. The C and C++ standards are spectacularly unclear here. We
690       // diagnose finite out-of-range conversions, but allow infinities and NaNs
691       // to convert to the corresponding value in the smaller type.
692       //
693       // C11 Annex F gives all such conversions defined behavior for IEC 60559
694       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
695       // does not.
696 
697       // Converting from a lower rank to a higher rank can never have
698       // undefined behavior, since higher-rank types must have a superset
699       // of values of lower-rank types.
700       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
701         return;
702 
703       assert(!OrigSrcType->isHalfType() &&
704              "should not check conversion from __half, it has the lowest rank");
705 
706       const llvm::fltSemantics &DstSema =
707         CGF.getContext().getFloatTypeSemantics(DstType);
708       APFloat MinBad = APFloat::getLargest(DstSema, false);
709       APFloat MaxBad = APFloat::getInf(DstSema, false);
710 
711       bool IsInexact;
712       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
713       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
714 
715       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
716         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
717       llvm::Value *GE =
718         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
719       llvm::Value *LE =
720         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
721       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
722     }
723   }
724 
725   // FIXME: Provide a SourceLocation.
726   llvm::Constant *StaticArgs[] = {
727     CGF.EmitCheckTypeDescriptor(OrigSrcType),
728     CGF.EmitCheckTypeDescriptor(DstType)
729   };
730   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
731                 "float_cast_overflow", StaticArgs, OrigSrc);
732 }
733 
734 /// EmitScalarConversion - Emit a conversion from the specified type to the
735 /// specified destination type, both of which are LLVM scalar types.
736 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
737                                                QualType DstType) {
738   SrcType = CGF.getContext().getCanonicalType(SrcType);
739   DstType = CGF.getContext().getCanonicalType(DstType);
740   if (SrcType == DstType) return Src;
741 
742   if (DstType->isVoidType()) return nullptr;
743 
744   llvm::Value *OrigSrc = Src;
745   QualType OrigSrcType = SrcType;
746   llvm::Type *SrcTy = Src->getType();
747 
748   // Handle conversions to bool first, they are special: comparisons against 0.
749   if (DstType->isBooleanType())
750     return EmitConversionToBool(Src, SrcType);
751 
752   llvm::Type *DstTy = ConvertType(DstType);
753 
754   // Cast from half through float if half isn't a native type.
755   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
756     // Cast to FP using the intrinsic if the half type itself isn't supported.
757     if (DstTy->isFloatingPointTy()) {
758       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
759         return Builder.CreateCall(
760             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
761             Src);
762     } else {
763       // Cast to other types through float, using either the intrinsic or FPExt,
764       // depending on whether the half type itself is supported
765       // (as opposed to operations on half, available with NativeHalfType).
766       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
767         Src = Builder.CreateCall(
768             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
769                                  CGF.CGM.FloatTy),
770             Src);
771       } else {
772         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
773       }
774       SrcType = CGF.getContext().FloatTy;
775       SrcTy = CGF.FloatTy;
776     }
777   }
778 
779   // Ignore conversions like int -> uint.
780   if (SrcTy == DstTy)
781     return Src;
782 
783   // Handle pointer conversions next: pointers can only be converted to/from
784   // other pointers and integers. Check for pointer types in terms of LLVM, as
785   // some native types (like Obj-C id) may map to a pointer type.
786   if (isa<llvm::PointerType>(DstTy)) {
787     // The source value may be an integer, or a pointer.
788     if (isa<llvm::PointerType>(SrcTy))
789       return Builder.CreateBitCast(Src, DstTy, "conv");
790 
791     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
792     // First, convert to the correct width so that we control the kind of
793     // extension.
794     llvm::Type *MiddleTy = CGF.IntPtrTy;
795     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
796     llvm::Value* IntResult =
797         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
798     // Then, cast to pointer.
799     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
800   }
801 
802   if (isa<llvm::PointerType>(SrcTy)) {
803     // Must be an ptr to int cast.
804     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
805     return Builder.CreatePtrToInt(Src, DstTy, "conv");
806   }
807 
808   // A scalar can be splatted to an extended vector of the same element type
809   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
810     // Cast the scalar to element type
811     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
812     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
813 
814     // Splat the element across to all elements
815     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
816     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
817   }
818 
819   // Allow bitcast from vector to integer/fp of the same size.
820   if (isa<llvm::VectorType>(SrcTy) ||
821       isa<llvm::VectorType>(DstTy))
822     return Builder.CreateBitCast(Src, DstTy, "conv");
823 
824   // Finally, we have the arithmetic types: real int/float.
825   Value *Res = nullptr;
826   llvm::Type *ResTy = DstTy;
827 
828   // An overflowing conversion has undefined behavior if either the source type
829   // or the destination type is a floating-point type.
830   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
831       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
832     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
833                              DstTy);
834 
835   // Cast to half through float if half isn't a native type.
836   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
837     // Make sure we cast in a single step if from another FP type.
838     if (SrcTy->isFloatingPointTy()) {
839       // Use the intrinsic if the half type itself isn't supported
840       // (as opposed to operations on half, available with NativeHalfType).
841       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
842         return Builder.CreateCall(
843             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
844       // If the half type is supported, just use an fptrunc.
845       return Builder.CreateFPTrunc(Src, DstTy);
846     }
847     DstTy = CGF.FloatTy;
848   }
849 
850   if (isa<llvm::IntegerType>(SrcTy)) {
851     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
852     if (isa<llvm::IntegerType>(DstTy))
853       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
854     else if (InputSigned)
855       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
856     else
857       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
858   } else if (isa<llvm::IntegerType>(DstTy)) {
859     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
860     if (DstType->isSignedIntegerOrEnumerationType())
861       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
862     else
863       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
864   } else {
865     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
866            "Unknown real conversion");
867     if (DstTy->getTypeID() < SrcTy->getTypeID())
868       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
869     else
870       Res = Builder.CreateFPExt(Src, DstTy, "conv");
871   }
872 
873   if (DstTy != ResTy) {
874     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
875       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
876       Res = Builder.CreateCall(
877         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
878         Res);
879     } else {
880       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
881     }
882   }
883 
884   return Res;
885 }
886 
887 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
888 /// type to the specified destination type, where the destination type is an
889 /// LLVM scalar type.
890 Value *ScalarExprEmitter::
891 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
892                               QualType SrcTy, QualType DstTy) {
893   // Get the source element type.
894   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
895 
896   // Handle conversions to bool first, they are special: comparisons against 0.
897   if (DstTy->isBooleanType()) {
898     //  Complex != 0  -> (Real != 0) | (Imag != 0)
899     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
900     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
901     return Builder.CreateOr(Src.first, Src.second, "tobool");
902   }
903 
904   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
905   // the imaginary part of the complex value is discarded and the value of the
906   // real part is converted according to the conversion rules for the
907   // corresponding real type.
908   return EmitScalarConversion(Src.first, SrcTy, DstTy);
909 }
910 
911 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
912   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
913 }
914 
915 /// \brief Emit a sanitization check for the given "binary" operation (which
916 /// might actually be a unary increment which has been lowered to a binary
917 /// operation). The check passes if all values in \p Checks (which are \c i1),
918 /// are \c true.
919 void ScalarExprEmitter::EmitBinOpCheck(
920     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
921   assert(CGF.IsSanitizerScope);
922   StringRef CheckName;
923   SmallVector<llvm::Constant *, 4> StaticData;
924   SmallVector<llvm::Value *, 2> DynamicData;
925 
926   BinaryOperatorKind Opcode = Info.Opcode;
927   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
928     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
929 
930   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
931   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
932   if (UO && UO->getOpcode() == UO_Minus) {
933     CheckName = "negate_overflow";
934     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
935     DynamicData.push_back(Info.RHS);
936   } else {
937     if (BinaryOperator::isShiftOp(Opcode)) {
938       // Shift LHS negative or too large, or RHS out of bounds.
939       CheckName = "shift_out_of_bounds";
940       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
941       StaticData.push_back(
942         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
943       StaticData.push_back(
944         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
945     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
946       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
947       CheckName = "divrem_overflow";
948       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
949     } else {
950       // Arithmetic overflow (+, -, *).
951       switch (Opcode) {
952       case BO_Add: CheckName = "add_overflow"; break;
953       case BO_Sub: CheckName = "sub_overflow"; break;
954       case BO_Mul: CheckName = "mul_overflow"; break;
955       default: llvm_unreachable("unexpected opcode for bin op check");
956       }
957       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
958     }
959     DynamicData.push_back(Info.LHS);
960     DynamicData.push_back(Info.RHS);
961   }
962 
963   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
964 }
965 
966 //===----------------------------------------------------------------------===//
967 //                            Visitor Methods
968 //===----------------------------------------------------------------------===//
969 
970 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
971   CGF.ErrorUnsupported(E, "scalar expression");
972   if (E->getType()->isVoidType())
973     return nullptr;
974   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
975 }
976 
977 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
978   // Vector Mask Case
979   if (E->getNumSubExprs() == 2 ||
980       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
981     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
982     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
983     Value *Mask;
984 
985     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
986     unsigned LHSElts = LTy->getNumElements();
987 
988     if (E->getNumSubExprs() == 3) {
989       Mask = CGF.EmitScalarExpr(E->getExpr(2));
990 
991       // Shuffle LHS & RHS into one input vector.
992       SmallVector<llvm::Constant*, 32> concat;
993       for (unsigned i = 0; i != LHSElts; ++i) {
994         concat.push_back(Builder.getInt32(2*i));
995         concat.push_back(Builder.getInt32(2*i+1));
996       }
997 
998       Value* CV = llvm::ConstantVector::get(concat);
999       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1000       LHSElts *= 2;
1001     } else {
1002       Mask = RHS;
1003     }
1004 
1005     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1006     llvm::Constant* EltMask;
1007 
1008     EltMask = llvm::ConstantInt::get(MTy->getElementType(),
1009                                      llvm::NextPowerOf2(LHSElts-1)-1);
1010 
1011     // Mask off the high bits of each shuffle index.
1012     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
1013                                                      EltMask);
1014     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1015 
1016     // newv = undef
1017     // mask = mask & maskbits
1018     // for each elt
1019     //   n = extract mask i
1020     //   x = extract val n
1021     //   newv = insert newv, x, i
1022     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1023                                                   MTy->getNumElements());
1024     Value* NewV = llvm::UndefValue::get(RTy);
1025     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1026       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1027       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1028 
1029       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1030       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1031     }
1032     return NewV;
1033   }
1034 
1035   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1036   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1037 
1038   SmallVector<llvm::Constant*, 32> indices;
1039   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1040     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1041     // Check for -1 and output it as undef in the IR.
1042     if (Idx.isSigned() && Idx.isAllOnesValue())
1043       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1044     else
1045       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1046   }
1047 
1048   Value *SV = llvm::ConstantVector::get(indices);
1049   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1050 }
1051 
1052 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1053   QualType SrcType = E->getSrcExpr()->getType(),
1054            DstType = E->getType();
1055 
1056   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1057 
1058   SrcType = CGF.getContext().getCanonicalType(SrcType);
1059   DstType = CGF.getContext().getCanonicalType(DstType);
1060   if (SrcType == DstType) return Src;
1061 
1062   assert(SrcType->isVectorType() &&
1063          "ConvertVector source type must be a vector");
1064   assert(DstType->isVectorType() &&
1065          "ConvertVector destination type must be a vector");
1066 
1067   llvm::Type *SrcTy = Src->getType();
1068   llvm::Type *DstTy = ConvertType(DstType);
1069 
1070   // Ignore conversions like int -> uint.
1071   if (SrcTy == DstTy)
1072     return Src;
1073 
1074   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1075            DstEltType = DstType->getAs<VectorType>()->getElementType();
1076 
1077   assert(SrcTy->isVectorTy() &&
1078          "ConvertVector source IR type must be a vector");
1079   assert(DstTy->isVectorTy() &&
1080          "ConvertVector destination IR type must be a vector");
1081 
1082   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1083              *DstEltTy = DstTy->getVectorElementType();
1084 
1085   if (DstEltType->isBooleanType()) {
1086     assert((SrcEltTy->isFloatingPointTy() ||
1087             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1088 
1089     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1090     if (SrcEltTy->isFloatingPointTy()) {
1091       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1092     } else {
1093       return Builder.CreateICmpNE(Src, Zero, "tobool");
1094     }
1095   }
1096 
1097   // We have the arithmetic types: real int/float.
1098   Value *Res = nullptr;
1099 
1100   if (isa<llvm::IntegerType>(SrcEltTy)) {
1101     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1102     if (isa<llvm::IntegerType>(DstEltTy))
1103       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1104     else if (InputSigned)
1105       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1106     else
1107       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1108   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1109     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1110     if (DstEltType->isSignedIntegerOrEnumerationType())
1111       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1112     else
1113       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1114   } else {
1115     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1116            "Unknown real conversion");
1117     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1118       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1119     else
1120       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1121   }
1122 
1123   return Res;
1124 }
1125 
1126 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1127   llvm::APSInt Value;
1128   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1129     if (E->isArrow())
1130       CGF.EmitScalarExpr(E->getBase());
1131     else
1132       EmitLValue(E->getBase());
1133     return Builder.getInt(Value);
1134   }
1135 
1136   return EmitLoadOfLValue(E);
1137 }
1138 
1139 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1140   TestAndClearIgnoreResultAssign();
1141 
1142   // Emit subscript expressions in rvalue context's.  For most cases, this just
1143   // loads the lvalue formed by the subscript expr.  However, we have to be
1144   // careful, because the base of a vector subscript is occasionally an rvalue,
1145   // so we can't get it as an lvalue.
1146   if (!E->getBase()->getType()->isVectorType())
1147     return EmitLoadOfLValue(E);
1148 
1149   // Handle the vector case.  The base must be a vector, the index must be an
1150   // integer value.
1151   Value *Base = Visit(E->getBase());
1152   Value *Idx  = Visit(E->getIdx());
1153   QualType IdxTy = E->getIdx()->getType();
1154 
1155   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1156     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1157 
1158   return Builder.CreateExtractElement(Base, Idx, "vecext");
1159 }
1160 
1161 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1162                                   unsigned Off, llvm::Type *I32Ty) {
1163   int MV = SVI->getMaskValue(Idx);
1164   if (MV == -1)
1165     return llvm::UndefValue::get(I32Ty);
1166   return llvm::ConstantInt::get(I32Ty, Off+MV);
1167 }
1168 
1169 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1170   bool Ignore = TestAndClearIgnoreResultAssign();
1171   (void)Ignore;
1172   assert (Ignore == false && "init list ignored");
1173   unsigned NumInitElements = E->getNumInits();
1174 
1175   if (E->hadArrayRangeDesignator())
1176     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1177 
1178   llvm::VectorType *VType =
1179     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1180 
1181   if (!VType) {
1182     if (NumInitElements == 0) {
1183       // C++11 value-initialization for the scalar.
1184       return EmitNullValue(E->getType());
1185     }
1186     // We have a scalar in braces. Just use the first element.
1187     return Visit(E->getInit(0));
1188   }
1189 
1190   unsigned ResElts = VType->getNumElements();
1191 
1192   // Loop over initializers collecting the Value for each, and remembering
1193   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1194   // us to fold the shuffle for the swizzle into the shuffle for the vector
1195   // initializer, since LLVM optimizers generally do not want to touch
1196   // shuffles.
1197   unsigned CurIdx = 0;
1198   bool VIsUndefShuffle = false;
1199   llvm::Value *V = llvm::UndefValue::get(VType);
1200   for (unsigned i = 0; i != NumInitElements; ++i) {
1201     Expr *IE = E->getInit(i);
1202     Value *Init = Visit(IE);
1203     SmallVector<llvm::Constant*, 16> Args;
1204 
1205     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1206 
1207     // Handle scalar elements.  If the scalar initializer is actually one
1208     // element of a different vector of the same width, use shuffle instead of
1209     // extract+insert.
1210     if (!VVT) {
1211       if (isa<ExtVectorElementExpr>(IE)) {
1212         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1213 
1214         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1215           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1216           Value *LHS = nullptr, *RHS = nullptr;
1217           if (CurIdx == 0) {
1218             // insert into undef -> shuffle (src, undef)
1219             Args.push_back(C);
1220             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1221 
1222             LHS = EI->getVectorOperand();
1223             RHS = V;
1224             VIsUndefShuffle = true;
1225           } else if (VIsUndefShuffle) {
1226             // insert into undefshuffle && size match -> shuffle (v, src)
1227             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1228             for (unsigned j = 0; j != CurIdx; ++j)
1229               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1230             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1231             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1232 
1233             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1234             RHS = EI->getVectorOperand();
1235             VIsUndefShuffle = false;
1236           }
1237           if (!Args.empty()) {
1238             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1239             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1240             ++CurIdx;
1241             continue;
1242           }
1243         }
1244       }
1245       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1246                                       "vecinit");
1247       VIsUndefShuffle = false;
1248       ++CurIdx;
1249       continue;
1250     }
1251 
1252     unsigned InitElts = VVT->getNumElements();
1253 
1254     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1255     // input is the same width as the vector being constructed, generate an
1256     // optimized shuffle of the swizzle input into the result.
1257     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1258     if (isa<ExtVectorElementExpr>(IE)) {
1259       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1260       Value *SVOp = SVI->getOperand(0);
1261       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1262 
1263       if (OpTy->getNumElements() == ResElts) {
1264         for (unsigned j = 0; j != CurIdx; ++j) {
1265           // If the current vector initializer is a shuffle with undef, merge
1266           // this shuffle directly into it.
1267           if (VIsUndefShuffle) {
1268             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1269                                       CGF.Int32Ty));
1270           } else {
1271             Args.push_back(Builder.getInt32(j));
1272           }
1273         }
1274         for (unsigned j = 0, je = InitElts; j != je; ++j)
1275           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1276         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1277 
1278         if (VIsUndefShuffle)
1279           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1280 
1281         Init = SVOp;
1282       }
1283     }
1284 
1285     // Extend init to result vector length, and then shuffle its contribution
1286     // to the vector initializer into V.
1287     if (Args.empty()) {
1288       for (unsigned j = 0; j != InitElts; ++j)
1289         Args.push_back(Builder.getInt32(j));
1290       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1291       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1292       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1293                                          Mask, "vext");
1294 
1295       Args.clear();
1296       for (unsigned j = 0; j != CurIdx; ++j)
1297         Args.push_back(Builder.getInt32(j));
1298       for (unsigned j = 0; j != InitElts; ++j)
1299         Args.push_back(Builder.getInt32(j+Offset));
1300       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1301     }
1302 
1303     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1304     // merging subsequent shuffles into this one.
1305     if (CurIdx == 0)
1306       std::swap(V, Init);
1307     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1308     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1309     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1310     CurIdx += InitElts;
1311   }
1312 
1313   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1314   // Emit remaining default initializers.
1315   llvm::Type *EltTy = VType->getElementType();
1316 
1317   // Emit remaining default initializers
1318   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1319     Value *Idx = Builder.getInt32(CurIdx);
1320     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1321     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1322   }
1323   return V;
1324 }
1325 
1326 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1327   const Expr *E = CE->getSubExpr();
1328 
1329   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1330     return false;
1331 
1332   if (isa<CXXThisExpr>(E)) {
1333     // We always assume that 'this' is never null.
1334     return false;
1335   }
1336 
1337   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1338     // And that glvalue casts are never null.
1339     if (ICE->getValueKind() != VK_RValue)
1340       return false;
1341   }
1342 
1343   return true;
1344 }
1345 
1346 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1347 // have to handle a more broad range of conversions than explicit casts, as they
1348 // handle things like function to ptr-to-function decay etc.
1349 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1350   Expr *E = CE->getSubExpr();
1351   QualType DestTy = CE->getType();
1352   CastKind Kind = CE->getCastKind();
1353 
1354   if (!DestTy->isVoidType())
1355     TestAndClearIgnoreResultAssign();
1356 
1357   // Since almost all cast kinds apply to scalars, this switch doesn't have
1358   // a default case, so the compiler will warn on a missing case.  The cases
1359   // are in the same order as in the CastKind enum.
1360   switch (Kind) {
1361   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1362   case CK_BuiltinFnToFnPtr:
1363     llvm_unreachable("builtin functions are handled elsewhere");
1364 
1365   case CK_LValueBitCast:
1366   case CK_ObjCObjectLValueCast: {
1367     Value *V = EmitLValue(E).getAddress();
1368     V = Builder.CreateBitCast(V,
1369                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1370     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
1371                             CE->getExprLoc());
1372   }
1373 
1374   case CK_CPointerToObjCPointerCast:
1375   case CK_BlockPointerToObjCPointerCast:
1376   case CK_AnyPointerToBlockPointerCast:
1377   case CK_BitCast: {
1378     Value *Src = Visit(const_cast<Expr*>(E));
1379     llvm::Type *SrcTy = Src->getType();
1380     llvm::Type *DstTy = ConvertType(DestTy);
1381     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1382         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1383       llvm_unreachable("wrong cast for pointers in different address spaces"
1384                        "(must be an address space cast)!");
1385     }
1386 
1387     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1388       if (auto PT = DestTy->getAs<PointerType>())
1389         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1390                                       /*MayBeNull=*/true,
1391                                       CodeGenFunction::CFITCK_UnrelatedCast,
1392                                       CE->getLocStart());
1393     }
1394 
1395     return Builder.CreateBitCast(Src, DstTy);
1396   }
1397   case CK_AddressSpaceConversion: {
1398     Value *Src = Visit(const_cast<Expr*>(E));
1399     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1400   }
1401   case CK_AtomicToNonAtomic:
1402   case CK_NonAtomicToAtomic:
1403   case CK_NoOp:
1404   case CK_UserDefinedConversion:
1405     return Visit(const_cast<Expr*>(E));
1406 
1407   case CK_BaseToDerived: {
1408     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1409     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1410 
1411     llvm::Value *V = Visit(E);
1412 
1413     llvm::Value *Derived =
1414       CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1415                                    CE->path_begin(), CE->path_end(),
1416                                    ShouldNullCheckClassCastValue(CE));
1417 
1418     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1419     // performed and the object is not of the derived type.
1420     if (CGF.sanitizePerformTypeCheck())
1421       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1422                         Derived, DestTy->getPointeeType());
1423 
1424     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1425       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
1426                                     /*MayBeNull=*/true,
1427                                     CodeGenFunction::CFITCK_DerivedCast,
1428                                     CE->getLocStart());
1429 
1430     return Derived;
1431   }
1432   case CK_UncheckedDerivedToBase:
1433   case CK_DerivedToBase: {
1434     const CXXRecordDecl *DerivedClassDecl =
1435       E->getType()->getPointeeCXXRecordDecl();
1436     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1437 
1438     return CGF.GetAddressOfBaseClass(
1439         Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
1440         ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
1441   }
1442   case CK_Dynamic: {
1443     Value *V = Visit(const_cast<Expr*>(E));
1444     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1445     return CGF.EmitDynamicCast(V, DCE);
1446   }
1447 
1448   case CK_ArrayToPointerDecay: {
1449     assert(E->getType()->isArrayType() &&
1450            "Array to pointer decay must have array source type!");
1451 
1452     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1453 
1454     // Note that VLA pointers are always decayed, so we don't need to do
1455     // anything here.
1456     if (!E->getType()->isVariableArrayType()) {
1457       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1458       llvm::Type *NewTy = ConvertType(E->getType());
1459       V = CGF.Builder.CreatePointerCast(
1460           V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
1461 
1462       assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
1463              "Expected pointer to array");
1464       V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
1465     }
1466 
1467     // Make sure the array decay ends up being the right type.  This matters if
1468     // the array type was of an incomplete type.
1469     return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
1470   }
1471   case CK_FunctionToPointerDecay:
1472     return EmitLValue(E).getAddress();
1473 
1474   case CK_NullToPointer:
1475     if (MustVisitNullValue(E))
1476       (void) Visit(E);
1477 
1478     return llvm::ConstantPointerNull::get(
1479                                cast<llvm::PointerType>(ConvertType(DestTy)));
1480 
1481   case CK_NullToMemberPointer: {
1482     if (MustVisitNullValue(E))
1483       (void) Visit(E);
1484 
1485     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1486     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1487   }
1488 
1489   case CK_ReinterpretMemberPointer:
1490   case CK_BaseToDerivedMemberPointer:
1491   case CK_DerivedToBaseMemberPointer: {
1492     Value *Src = Visit(E);
1493 
1494     // Note that the AST doesn't distinguish between checked and
1495     // unchecked member pointer conversions, so we always have to
1496     // implement checked conversions here.  This is inefficient when
1497     // actual control flow may be required in order to perform the
1498     // check, which it is for data member pointers (but not member
1499     // function pointers on Itanium and ARM).
1500     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1501   }
1502 
1503   case CK_ARCProduceObject:
1504     return CGF.EmitARCRetainScalarExpr(E);
1505   case CK_ARCConsumeObject:
1506     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1507   case CK_ARCReclaimReturnedObject: {
1508     llvm::Value *value = Visit(E);
1509     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1510     return CGF.EmitObjCConsumeObject(E->getType(), value);
1511   }
1512   case CK_ARCExtendBlockObject:
1513     return CGF.EmitARCExtendBlockObject(E);
1514 
1515   case CK_CopyAndAutoreleaseBlockObject:
1516     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1517 
1518   case CK_FloatingRealToComplex:
1519   case CK_FloatingComplexCast:
1520   case CK_IntegralRealToComplex:
1521   case CK_IntegralComplexCast:
1522   case CK_IntegralComplexToFloatingComplex:
1523   case CK_FloatingComplexToIntegralComplex:
1524   case CK_ConstructorConversion:
1525   case CK_ToUnion:
1526     llvm_unreachable("scalar cast to non-scalar value");
1527 
1528   case CK_LValueToRValue:
1529     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1530     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1531     return Visit(const_cast<Expr*>(E));
1532 
1533   case CK_IntegralToPointer: {
1534     Value *Src = Visit(const_cast<Expr*>(E));
1535 
1536     // First, convert to the correct width so that we control the kind of
1537     // extension.
1538     llvm::Type *MiddleTy = CGF.IntPtrTy;
1539     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1540     llvm::Value* IntResult =
1541       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1542 
1543     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1544   }
1545   case CK_PointerToIntegral:
1546     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1547     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1548 
1549   case CK_ToVoid: {
1550     CGF.EmitIgnoredExpr(E);
1551     return nullptr;
1552   }
1553   case CK_VectorSplat: {
1554     llvm::Type *DstTy = ConvertType(DestTy);
1555     Value *Elt = Visit(const_cast<Expr*>(E));
1556     Elt = EmitScalarConversion(Elt, E->getType(),
1557                                DestTy->getAs<VectorType>()->getElementType());
1558 
1559     // Splat the element across to all elements
1560     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1561     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1562   }
1563 
1564   case CK_IntegralCast:
1565   case CK_IntegralToFloating:
1566   case CK_FloatingToIntegral:
1567   case CK_FloatingCast:
1568     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1569   case CK_IntegralToBoolean:
1570     return EmitIntToBoolConversion(Visit(E));
1571   case CK_PointerToBoolean:
1572     return EmitPointerToBoolConversion(Visit(E));
1573   case CK_FloatingToBoolean:
1574     return EmitFloatToBoolConversion(Visit(E));
1575   case CK_MemberPointerToBoolean: {
1576     llvm::Value *MemPtr = Visit(E);
1577     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1578     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1579   }
1580 
1581   case CK_FloatingComplexToReal:
1582   case CK_IntegralComplexToReal:
1583     return CGF.EmitComplexExpr(E, false, true).first;
1584 
1585   case CK_FloatingComplexToBoolean:
1586   case CK_IntegralComplexToBoolean: {
1587     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1588 
1589     // TODO: kill this function off, inline appropriate case here
1590     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1591   }
1592 
1593   case CK_ZeroToOCLEvent: {
1594     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1595     return llvm::Constant::getNullValue(ConvertType(DestTy));
1596   }
1597 
1598   }
1599 
1600   llvm_unreachable("unknown scalar cast");
1601 }
1602 
1603 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1604   CodeGenFunction::StmtExprEvaluation eval(CGF);
1605   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1606                                                 !E->getType()->isVoidType());
1607   if (!RetAlloca)
1608     return nullptr;
1609   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1610                               E->getExprLoc());
1611 }
1612 
1613 //===----------------------------------------------------------------------===//
1614 //                             Unary Operators
1615 //===----------------------------------------------------------------------===//
1616 
1617 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1618                                            llvm::Value *InVal, bool IsInc) {
1619   BinOpInfo BinOp;
1620   BinOp.LHS = InVal;
1621   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1622   BinOp.Ty = E->getType();
1623   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1624   BinOp.FPContractable = false;
1625   BinOp.E = E;
1626   return BinOp;
1627 }
1628 
1629 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1630     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1631   llvm::Value *Amount =
1632       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1633   StringRef Name = IsInc ? "inc" : "dec";
1634   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1635   case LangOptions::SOB_Defined:
1636     return Builder.CreateAdd(InVal, Amount, Name);
1637   case LangOptions::SOB_Undefined:
1638     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1639       return Builder.CreateNSWAdd(InVal, Amount, Name);
1640     // Fall through.
1641   case LangOptions::SOB_Trapping:
1642     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1643   }
1644   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1645 }
1646 
1647 llvm::Value *
1648 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1649                                            bool isInc, bool isPre) {
1650 
1651   QualType type = E->getSubExpr()->getType();
1652   llvm::PHINode *atomicPHI = nullptr;
1653   llvm::Value *value;
1654   llvm::Value *input;
1655 
1656   int amount = (isInc ? 1 : -1);
1657 
1658   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1659     type = atomicTy->getValueType();
1660     if (isInc && type->isBooleanType()) {
1661       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1662       if (isPre) {
1663         Builder.Insert(new llvm::StoreInst(True,
1664               LV.getAddress(), LV.isVolatileQualified(),
1665               LV.getAlignment().getQuantity(),
1666               llvm::SequentiallyConsistent));
1667         return Builder.getTrue();
1668       }
1669       // For atomic bool increment, we just store true and return it for
1670       // preincrement, do an atomic swap with true for postincrement
1671         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1672             LV.getAddress(), True, llvm::SequentiallyConsistent);
1673     }
1674     // Special case for atomic increment / decrement on integers, emit
1675     // atomicrmw instructions.  We skip this if we want to be doing overflow
1676     // checking, and fall into the slow path with the atomic cmpxchg loop.
1677     if (!type->isBooleanType() && type->isIntegerType() &&
1678         !(type->isUnsignedIntegerType() &&
1679           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1680         CGF.getLangOpts().getSignedOverflowBehavior() !=
1681             LangOptions::SOB_Trapping) {
1682       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1683         llvm::AtomicRMWInst::Sub;
1684       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1685         llvm::Instruction::Sub;
1686       llvm::Value *amt = CGF.EmitToMemory(
1687           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1688       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1689           LV.getAddress(), amt, llvm::SequentiallyConsistent);
1690       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1691     }
1692     value = EmitLoadOfLValue(LV, E->getExprLoc());
1693     input = value;
1694     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1695     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1696     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1697     value = CGF.EmitToMemory(value, type);
1698     Builder.CreateBr(opBB);
1699     Builder.SetInsertPoint(opBB);
1700     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1701     atomicPHI->addIncoming(value, startBB);
1702     value = atomicPHI;
1703   } else {
1704     value = EmitLoadOfLValue(LV, E->getExprLoc());
1705     input = value;
1706   }
1707 
1708   // Special case of integer increment that we have to check first: bool++.
1709   // Due to promotion rules, we get:
1710   //   bool++ -> bool = bool + 1
1711   //          -> bool = (int)bool + 1
1712   //          -> bool = ((int)bool + 1 != 0)
1713   // An interesting aspect of this is that increment is always true.
1714   // Decrement does not have this property.
1715   if (isInc && type->isBooleanType()) {
1716     value = Builder.getTrue();
1717 
1718   // Most common case by far: integer increment.
1719   } else if (type->isIntegerType()) {
1720     // Note that signed integer inc/dec with width less than int can't
1721     // overflow because of promotion rules; we're just eliding a few steps here.
1722     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1723                        CGF.IntTy->getIntegerBitWidth();
1724     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1725       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1726     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1727                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1728       value =
1729           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1730     } else {
1731       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1732       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1733     }
1734 
1735   // Next most common: pointer increment.
1736   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1737     QualType type = ptr->getPointeeType();
1738 
1739     // VLA types don't have constant size.
1740     if (const VariableArrayType *vla
1741           = CGF.getContext().getAsVariableArrayType(type)) {
1742       llvm::Value *numElts = CGF.getVLASize(vla).first;
1743       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1744       if (CGF.getLangOpts().isSignedOverflowDefined())
1745         value = Builder.CreateGEP(value, numElts, "vla.inc");
1746       else
1747         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1748 
1749     // Arithmetic on function pointers (!) is just +-1.
1750     } else if (type->isFunctionType()) {
1751       llvm::Value *amt = Builder.getInt32(amount);
1752 
1753       value = CGF.EmitCastToVoidPtr(value);
1754       if (CGF.getLangOpts().isSignedOverflowDefined())
1755         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1756       else
1757         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1758       value = Builder.CreateBitCast(value, input->getType());
1759 
1760     // For everything else, we can just do a simple increment.
1761     } else {
1762       llvm::Value *amt = Builder.getInt32(amount);
1763       if (CGF.getLangOpts().isSignedOverflowDefined())
1764         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1765       else
1766         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1767     }
1768 
1769   // Vector increment/decrement.
1770   } else if (type->isVectorType()) {
1771     if (type->hasIntegerRepresentation()) {
1772       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1773 
1774       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1775     } else {
1776       value = Builder.CreateFAdd(
1777                   value,
1778                   llvm::ConstantFP::get(value->getType(), amount),
1779                   isInc ? "inc" : "dec");
1780     }
1781 
1782   // Floating point.
1783   } else if (type->isRealFloatingType()) {
1784     // Add the inc/dec to the real part.
1785     llvm::Value *amt;
1786 
1787     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1788       // Another special case: half FP increment should be done via float
1789       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1790         value = Builder.CreateCall(
1791             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1792                                  CGF.CGM.FloatTy),
1793             input, "incdec.conv");
1794       } else {
1795         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1796       }
1797     }
1798 
1799     if (value->getType()->isFloatTy())
1800       amt = llvm::ConstantFP::get(VMContext,
1801                                   llvm::APFloat(static_cast<float>(amount)));
1802     else if (value->getType()->isDoubleTy())
1803       amt = llvm::ConstantFP::get(VMContext,
1804                                   llvm::APFloat(static_cast<double>(amount)));
1805     else {
1806       // Remaining types are either Half or LongDouble.  Convert from float.
1807       llvm::APFloat F(static_cast<float>(amount));
1808       bool ignored;
1809       // Don't use getFloatTypeSemantics because Half isn't
1810       // necessarily represented using the "half" LLVM type.
1811       F.convert(value->getType()->isHalfTy()
1812                     ? CGF.getTarget().getHalfFormat()
1813                     : CGF.getTarget().getLongDoubleFormat(),
1814                 llvm::APFloat::rmTowardZero, &ignored);
1815       amt = llvm::ConstantFP::get(VMContext, F);
1816     }
1817     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1818 
1819     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1820       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1821         value = Builder.CreateCall(
1822             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1823                                  CGF.CGM.FloatTy),
1824             value, "incdec.conv");
1825       } else {
1826         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1827       }
1828     }
1829 
1830   // Objective-C pointer types.
1831   } else {
1832     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1833     value = CGF.EmitCastToVoidPtr(value);
1834 
1835     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1836     if (!isInc) size = -size;
1837     llvm::Value *sizeValue =
1838       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1839 
1840     if (CGF.getLangOpts().isSignedOverflowDefined())
1841       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1842     else
1843       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1844     value = Builder.CreateBitCast(value, input->getType());
1845   }
1846 
1847   if (atomicPHI) {
1848     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1849     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1850     auto Pair = CGF.EmitAtomicCompareExchange(
1851         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1852     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1853     llvm::Value *success = Pair.second;
1854     atomicPHI->addIncoming(old, opBB);
1855     Builder.CreateCondBr(success, contBB, opBB);
1856     Builder.SetInsertPoint(contBB);
1857     return isPre ? value : input;
1858   }
1859 
1860   // Store the updated result through the lvalue.
1861   if (LV.isBitField())
1862     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1863   else
1864     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1865 
1866   // If this is a postinc, return the value read from memory, otherwise use the
1867   // updated value.
1868   return isPre ? value : input;
1869 }
1870 
1871 
1872 
1873 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1874   TestAndClearIgnoreResultAssign();
1875   // Emit unary minus with EmitSub so we handle overflow cases etc.
1876   BinOpInfo BinOp;
1877   BinOp.RHS = Visit(E->getSubExpr());
1878 
1879   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1880     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1881   else
1882     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1883   BinOp.Ty = E->getType();
1884   BinOp.Opcode = BO_Sub;
1885   BinOp.FPContractable = false;
1886   BinOp.E = E;
1887   return EmitSub(BinOp);
1888 }
1889 
1890 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1891   TestAndClearIgnoreResultAssign();
1892   Value *Op = Visit(E->getSubExpr());
1893   return Builder.CreateNot(Op, "neg");
1894 }
1895 
1896 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1897   // Perform vector logical not on comparison with zero vector.
1898   if (E->getType()->isExtVectorType()) {
1899     Value *Oper = Visit(E->getSubExpr());
1900     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1901     Value *Result;
1902     if (Oper->getType()->isFPOrFPVectorTy())
1903       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1904     else
1905       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1906     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1907   }
1908 
1909   // Compare operand to zero.
1910   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1911 
1912   // Invert value.
1913   // TODO: Could dynamically modify easy computations here.  For example, if
1914   // the operand is an icmp ne, turn into icmp eq.
1915   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1916 
1917   // ZExt result to the expr type.
1918   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1919 }
1920 
1921 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1922   // Try folding the offsetof to a constant.
1923   llvm::APSInt Value;
1924   if (E->EvaluateAsInt(Value, CGF.getContext()))
1925     return Builder.getInt(Value);
1926 
1927   // Loop over the components of the offsetof to compute the value.
1928   unsigned n = E->getNumComponents();
1929   llvm::Type* ResultType = ConvertType(E->getType());
1930   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1931   QualType CurrentType = E->getTypeSourceInfo()->getType();
1932   for (unsigned i = 0; i != n; ++i) {
1933     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1934     llvm::Value *Offset = nullptr;
1935     switch (ON.getKind()) {
1936     case OffsetOfExpr::OffsetOfNode::Array: {
1937       // Compute the index
1938       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1939       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1940       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1941       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1942 
1943       // Save the element type
1944       CurrentType =
1945           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1946 
1947       // Compute the element size
1948       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1949           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1950 
1951       // Multiply out to compute the result
1952       Offset = Builder.CreateMul(Idx, ElemSize);
1953       break;
1954     }
1955 
1956     case OffsetOfExpr::OffsetOfNode::Field: {
1957       FieldDecl *MemberDecl = ON.getField();
1958       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1959       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1960 
1961       // Compute the index of the field in its parent.
1962       unsigned i = 0;
1963       // FIXME: It would be nice if we didn't have to loop here!
1964       for (RecordDecl::field_iterator Field = RD->field_begin(),
1965                                       FieldEnd = RD->field_end();
1966            Field != FieldEnd; ++Field, ++i) {
1967         if (*Field == MemberDecl)
1968           break;
1969       }
1970       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1971 
1972       // Compute the offset to the field
1973       int64_t OffsetInt = RL.getFieldOffset(i) /
1974                           CGF.getContext().getCharWidth();
1975       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1976 
1977       // Save the element type.
1978       CurrentType = MemberDecl->getType();
1979       break;
1980     }
1981 
1982     case OffsetOfExpr::OffsetOfNode::Identifier:
1983       llvm_unreachable("dependent __builtin_offsetof");
1984 
1985     case OffsetOfExpr::OffsetOfNode::Base: {
1986       if (ON.getBase()->isVirtual()) {
1987         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1988         continue;
1989       }
1990 
1991       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1992       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1993 
1994       // Save the element type.
1995       CurrentType = ON.getBase()->getType();
1996 
1997       // Compute the offset to the base.
1998       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1999       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2000       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2001       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2002       break;
2003     }
2004     }
2005     Result = Builder.CreateAdd(Result, Offset);
2006   }
2007   return Result;
2008 }
2009 
2010 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2011 /// argument of the sizeof expression as an integer.
2012 Value *
2013 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2014                               const UnaryExprOrTypeTraitExpr *E) {
2015   QualType TypeToSize = E->getTypeOfArgument();
2016   if (E->getKind() == UETT_SizeOf) {
2017     if (const VariableArrayType *VAT =
2018           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2019       if (E->isArgumentType()) {
2020         // sizeof(type) - make sure to emit the VLA size.
2021         CGF.EmitVariablyModifiedType(TypeToSize);
2022       } else {
2023         // C99 6.5.3.4p2: If the argument is an expression of type
2024         // VLA, it is evaluated.
2025         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2026       }
2027 
2028       QualType eltType;
2029       llvm::Value *numElts;
2030       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2031 
2032       llvm::Value *size = numElts;
2033 
2034       // Scale the number of non-VLA elements by the non-VLA element size.
2035       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2036       if (!eltSize.isOne())
2037         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2038 
2039       return size;
2040     }
2041   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2042     auto Alignment =
2043         CGF.getContext()
2044             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2045                 E->getTypeOfArgument()->getPointeeType()))
2046             .getQuantity();
2047     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2048   }
2049 
2050   // If this isn't sizeof(vla), the result must be constant; use the constant
2051   // folding logic so we don't have to duplicate it here.
2052   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2053 }
2054 
2055 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2056   Expr *Op = E->getSubExpr();
2057   if (Op->getType()->isAnyComplexType()) {
2058     // If it's an l-value, load through the appropriate subobject l-value.
2059     // Note that we have to ask E because Op might be an l-value that
2060     // this won't work for, e.g. an Obj-C property.
2061     if (E->isGLValue())
2062       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2063                                   E->getExprLoc()).getScalarVal();
2064 
2065     // Otherwise, calculate and project.
2066     return CGF.EmitComplexExpr(Op, false, true).first;
2067   }
2068 
2069   return Visit(Op);
2070 }
2071 
2072 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2073   Expr *Op = E->getSubExpr();
2074   if (Op->getType()->isAnyComplexType()) {
2075     // If it's an l-value, load through the appropriate subobject l-value.
2076     // Note that we have to ask E because Op might be an l-value that
2077     // this won't work for, e.g. an Obj-C property.
2078     if (Op->isGLValue())
2079       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2080                                   E->getExprLoc()).getScalarVal();
2081 
2082     // Otherwise, calculate and project.
2083     return CGF.EmitComplexExpr(Op, true, false).second;
2084   }
2085 
2086   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2087   // effects are evaluated, but not the actual value.
2088   if (Op->isGLValue())
2089     CGF.EmitLValue(Op);
2090   else
2091     CGF.EmitScalarExpr(Op, true);
2092   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2093 }
2094 
2095 //===----------------------------------------------------------------------===//
2096 //                           Binary Operators
2097 //===----------------------------------------------------------------------===//
2098 
2099 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2100   TestAndClearIgnoreResultAssign();
2101   BinOpInfo Result;
2102   Result.LHS = Visit(E->getLHS());
2103   Result.RHS = Visit(E->getRHS());
2104   Result.Ty  = E->getType();
2105   Result.Opcode = E->getOpcode();
2106   Result.FPContractable = E->isFPContractable();
2107   Result.E = E;
2108   return Result;
2109 }
2110 
2111 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2112                                               const CompoundAssignOperator *E,
2113                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2114                                                    Value *&Result) {
2115   QualType LHSTy = E->getLHS()->getType();
2116   BinOpInfo OpInfo;
2117 
2118   if (E->getComputationResultType()->isAnyComplexType())
2119     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2120 
2121   // Emit the RHS first.  __block variables need to have the rhs evaluated
2122   // first, plus this should improve codegen a little.
2123   OpInfo.RHS = Visit(E->getRHS());
2124   OpInfo.Ty = E->getComputationResultType();
2125   OpInfo.Opcode = E->getOpcode();
2126   OpInfo.FPContractable = false;
2127   OpInfo.E = E;
2128   // Load/convert the LHS.
2129   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2130 
2131   llvm::PHINode *atomicPHI = nullptr;
2132   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2133     QualType type = atomicTy->getValueType();
2134     if (!type->isBooleanType() && type->isIntegerType() &&
2135         !(type->isUnsignedIntegerType() &&
2136           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2137         CGF.getLangOpts().getSignedOverflowBehavior() !=
2138             LangOptions::SOB_Trapping) {
2139       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2140       switch (OpInfo.Opcode) {
2141         // We don't have atomicrmw operands for *, %, /, <<, >>
2142         case BO_MulAssign: case BO_DivAssign:
2143         case BO_RemAssign:
2144         case BO_ShlAssign:
2145         case BO_ShrAssign:
2146           break;
2147         case BO_AddAssign:
2148           aop = llvm::AtomicRMWInst::Add;
2149           break;
2150         case BO_SubAssign:
2151           aop = llvm::AtomicRMWInst::Sub;
2152           break;
2153         case BO_AndAssign:
2154           aop = llvm::AtomicRMWInst::And;
2155           break;
2156         case BO_XorAssign:
2157           aop = llvm::AtomicRMWInst::Xor;
2158           break;
2159         case BO_OrAssign:
2160           aop = llvm::AtomicRMWInst::Or;
2161           break;
2162         default:
2163           llvm_unreachable("Invalid compound assignment type");
2164       }
2165       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2166         llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
2167               E->getRHS()->getType(), LHSTy), LHSTy);
2168         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
2169             llvm::SequentiallyConsistent);
2170         return LHSLV;
2171       }
2172     }
2173     // FIXME: For floating point types, we should be saving and restoring the
2174     // floating point environment in the loop.
2175     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2176     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2177     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2178     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2179     Builder.CreateBr(opBB);
2180     Builder.SetInsertPoint(opBB);
2181     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2182     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2183     OpInfo.LHS = atomicPHI;
2184   }
2185   else
2186     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2187 
2188   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2189                                     E->getComputationLHSType());
2190 
2191   // Expand the binary operator.
2192   Result = (this->*Func)(OpInfo);
2193 
2194   // Convert the result back to the LHS type.
2195   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2196 
2197   if (atomicPHI) {
2198     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2199     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2200     auto Pair = CGF.EmitAtomicCompareExchange(
2201         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2202     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2203     llvm::Value *success = Pair.second;
2204     atomicPHI->addIncoming(old, opBB);
2205     Builder.CreateCondBr(success, contBB, opBB);
2206     Builder.SetInsertPoint(contBB);
2207     return LHSLV;
2208   }
2209 
2210   // Store the result value into the LHS lvalue. Bit-fields are handled
2211   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2212   // 'An assignment expression has the value of the left operand after the
2213   // assignment...'.
2214   if (LHSLV.isBitField())
2215     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2216   else
2217     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2218 
2219   return LHSLV;
2220 }
2221 
2222 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2223                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2224   bool Ignore = TestAndClearIgnoreResultAssign();
2225   Value *RHS;
2226   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2227 
2228   // If the result is clearly ignored, return now.
2229   if (Ignore)
2230     return nullptr;
2231 
2232   // The result of an assignment in C is the assigned r-value.
2233   if (!CGF.getLangOpts().CPlusPlus)
2234     return RHS;
2235 
2236   // If the lvalue is non-volatile, return the computed value of the assignment.
2237   if (!LHS.isVolatileQualified())
2238     return RHS;
2239 
2240   // Otherwise, reload the value.
2241   return EmitLoadOfLValue(LHS, E->getExprLoc());
2242 }
2243 
2244 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2245     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2246   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2247 
2248   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2249     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2250                                     SanitizerKind::IntegerDivideByZero));
2251   }
2252 
2253   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2254       Ops.Ty->hasSignedIntegerRepresentation()) {
2255     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2256 
2257     llvm::Value *IntMin =
2258       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2259     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2260 
2261     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2262     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2263     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2264     Checks.push_back(
2265         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2266   }
2267 
2268   if (Checks.size() > 0)
2269     EmitBinOpCheck(Checks, Ops);
2270 }
2271 
2272 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2273   {
2274     CodeGenFunction::SanitizerScope SanScope(&CGF);
2275     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2276          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2277         Ops.Ty->isIntegerType()) {
2278       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2279       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2280     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2281                Ops.Ty->isRealFloatingType()) {
2282       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2283       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2284       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2285                      Ops);
2286     }
2287   }
2288 
2289   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2290     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2291     if (CGF.getLangOpts().OpenCL) {
2292       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2293       llvm::Type *ValTy = Val->getType();
2294       if (ValTy->isFloatTy() ||
2295           (isa<llvm::VectorType>(ValTy) &&
2296            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2297         CGF.SetFPAccuracy(Val, 2.5);
2298     }
2299     return Val;
2300   }
2301   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2302     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2303   else
2304     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2305 }
2306 
2307 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2308   // Rem in C can't be a floating point type: C99 6.5.5p2.
2309   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2310     CodeGenFunction::SanitizerScope SanScope(&CGF);
2311     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2312 
2313     if (Ops.Ty->isIntegerType())
2314       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2315   }
2316 
2317   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2318     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2319   else
2320     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2321 }
2322 
2323 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2324   unsigned IID;
2325   unsigned OpID = 0;
2326 
2327   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2328   switch (Ops.Opcode) {
2329   case BO_Add:
2330   case BO_AddAssign:
2331     OpID = 1;
2332     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2333                      llvm::Intrinsic::uadd_with_overflow;
2334     break;
2335   case BO_Sub:
2336   case BO_SubAssign:
2337     OpID = 2;
2338     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2339                      llvm::Intrinsic::usub_with_overflow;
2340     break;
2341   case BO_Mul:
2342   case BO_MulAssign:
2343     OpID = 3;
2344     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2345                      llvm::Intrinsic::umul_with_overflow;
2346     break;
2347   default:
2348     llvm_unreachable("Unsupported operation for overflow detection");
2349   }
2350   OpID <<= 1;
2351   if (isSigned)
2352     OpID |= 1;
2353 
2354   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2355 
2356   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2357 
2358   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2359   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2360   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2361 
2362   // Handle overflow with llvm.trap if no custom handler has been specified.
2363   const std::string *handlerName =
2364     &CGF.getLangOpts().OverflowHandler;
2365   if (handlerName->empty()) {
2366     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2367     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2368     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2369       CodeGenFunction::SanitizerScope SanScope(&CGF);
2370       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2371       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2372                               : SanitizerKind::UnsignedIntegerOverflow;
2373       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2374     } else
2375       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2376     return result;
2377   }
2378 
2379   // Branch in case of overflow.
2380   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2381   llvm::Function::iterator insertPt = initialBB;
2382   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2383                                                       std::next(insertPt));
2384   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2385 
2386   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2387 
2388   // If an overflow handler is set, then we want to call it and then use its
2389   // result, if it returns.
2390   Builder.SetInsertPoint(overflowBB);
2391 
2392   // Get the overflow handler.
2393   llvm::Type *Int8Ty = CGF.Int8Ty;
2394   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2395   llvm::FunctionType *handlerTy =
2396       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2397   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2398 
2399   // Sign extend the args to 64-bit, so that we can use the same handler for
2400   // all types of overflow.
2401   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2402   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2403 
2404   // Call the handler with the two arguments, the operation, and the size of
2405   // the result.
2406   llvm::Value *handlerArgs[] = {
2407     lhs,
2408     rhs,
2409     Builder.getInt8(OpID),
2410     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2411   };
2412   llvm::Value *handlerResult =
2413     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2414 
2415   // Truncate the result back to the desired size.
2416   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2417   Builder.CreateBr(continueBB);
2418 
2419   Builder.SetInsertPoint(continueBB);
2420   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2421   phi->addIncoming(result, initialBB);
2422   phi->addIncoming(handlerResult, overflowBB);
2423 
2424   return phi;
2425 }
2426 
2427 /// Emit pointer + index arithmetic.
2428 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2429                                     const BinOpInfo &op,
2430                                     bool isSubtraction) {
2431   // Must have binary (not unary) expr here.  Unary pointer
2432   // increment/decrement doesn't use this path.
2433   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2434 
2435   Value *pointer = op.LHS;
2436   Expr *pointerOperand = expr->getLHS();
2437   Value *index = op.RHS;
2438   Expr *indexOperand = expr->getRHS();
2439 
2440   // In a subtraction, the LHS is always the pointer.
2441   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2442     std::swap(pointer, index);
2443     std::swap(pointerOperand, indexOperand);
2444   }
2445 
2446   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2447   if (width != CGF.PointerWidthInBits) {
2448     // Zero-extend or sign-extend the pointer value according to
2449     // whether the index is signed or not.
2450     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2451     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2452                                       "idx.ext");
2453   }
2454 
2455   // If this is subtraction, negate the index.
2456   if (isSubtraction)
2457     index = CGF.Builder.CreateNeg(index, "idx.neg");
2458 
2459   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2460     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2461                         /*Accessed*/ false);
2462 
2463   const PointerType *pointerType
2464     = pointerOperand->getType()->getAs<PointerType>();
2465   if (!pointerType) {
2466     QualType objectType = pointerOperand->getType()
2467                                         ->castAs<ObjCObjectPointerType>()
2468                                         ->getPointeeType();
2469     llvm::Value *objectSize
2470       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2471 
2472     index = CGF.Builder.CreateMul(index, objectSize);
2473 
2474     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2475     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2476     return CGF.Builder.CreateBitCast(result, pointer->getType());
2477   }
2478 
2479   QualType elementType = pointerType->getPointeeType();
2480   if (const VariableArrayType *vla
2481         = CGF.getContext().getAsVariableArrayType(elementType)) {
2482     // The element count here is the total number of non-VLA elements.
2483     llvm::Value *numElements = CGF.getVLASize(vla).first;
2484 
2485     // Effectively, the multiply by the VLA size is part of the GEP.
2486     // GEP indexes are signed, and scaling an index isn't permitted to
2487     // signed-overflow, so we use the same semantics for our explicit
2488     // multiply.  We suppress this if overflow is not undefined behavior.
2489     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2490       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2491       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2492     } else {
2493       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2494       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2495     }
2496     return pointer;
2497   }
2498 
2499   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2500   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2501   // future proof.
2502   if (elementType->isVoidType() || elementType->isFunctionType()) {
2503     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2504     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2505     return CGF.Builder.CreateBitCast(result, pointer->getType());
2506   }
2507 
2508   if (CGF.getLangOpts().isSignedOverflowDefined())
2509     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2510 
2511   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2512 }
2513 
2514 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2515 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2516 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2517 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2518 // efficient operations.
2519 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2520                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2521                            bool negMul, bool negAdd) {
2522   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2523 
2524   Value *MulOp0 = MulOp->getOperand(0);
2525   Value *MulOp1 = MulOp->getOperand(1);
2526   if (negMul) {
2527     MulOp0 =
2528       Builder.CreateFSub(
2529         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2530         "neg");
2531   } else if (negAdd) {
2532     Addend =
2533       Builder.CreateFSub(
2534         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2535         "neg");
2536   }
2537 
2538   Value *FMulAdd = Builder.CreateCall(
2539       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2540       {MulOp0, MulOp1, Addend});
2541    MulOp->eraseFromParent();
2542 
2543    return FMulAdd;
2544 }
2545 
2546 // Check whether it would be legal to emit an fmuladd intrinsic call to
2547 // represent op and if so, build the fmuladd.
2548 //
2549 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2550 // Does NOT check the type of the operation - it's assumed that this function
2551 // will be called from contexts where it's known that the type is contractable.
2552 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2553                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2554                          bool isSub=false) {
2555 
2556   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2557           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2558          "Only fadd/fsub can be the root of an fmuladd.");
2559 
2560   // Check whether this op is marked as fusable.
2561   if (!op.FPContractable)
2562     return nullptr;
2563 
2564   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2565   // either disabled, or handled entirely by the LLVM backend).
2566   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2567     return nullptr;
2568 
2569   // We have a potentially fusable op. Look for a mul on one of the operands.
2570   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2571     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2572       assert(LHSBinOp->getNumUses() == 0 &&
2573              "Operations with multiple uses shouldn't be contracted.");
2574       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2575     }
2576   } else if (llvm::BinaryOperator* RHSBinOp =
2577                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2578     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2579       assert(RHSBinOp->getNumUses() == 0 &&
2580              "Operations with multiple uses shouldn't be contracted.");
2581       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2582     }
2583   }
2584 
2585   return nullptr;
2586 }
2587 
2588 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2589   if (op.LHS->getType()->isPointerTy() ||
2590       op.RHS->getType()->isPointerTy())
2591     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2592 
2593   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2594     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2595     case LangOptions::SOB_Defined:
2596       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2597     case LangOptions::SOB_Undefined:
2598       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2599         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2600       // Fall through.
2601     case LangOptions::SOB_Trapping:
2602       return EmitOverflowCheckedBinOp(op);
2603     }
2604   }
2605 
2606   if (op.Ty->isUnsignedIntegerType() &&
2607       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2608     return EmitOverflowCheckedBinOp(op);
2609 
2610   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2611     // Try to form an fmuladd.
2612     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2613       return FMulAdd;
2614 
2615     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2616   }
2617 
2618   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2619 }
2620 
2621 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2622   // The LHS is always a pointer if either side is.
2623   if (!op.LHS->getType()->isPointerTy()) {
2624     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2625       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2626       case LangOptions::SOB_Defined:
2627         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2628       case LangOptions::SOB_Undefined:
2629         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2630           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2631         // Fall through.
2632       case LangOptions::SOB_Trapping:
2633         return EmitOverflowCheckedBinOp(op);
2634       }
2635     }
2636 
2637     if (op.Ty->isUnsignedIntegerType() &&
2638         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2639       return EmitOverflowCheckedBinOp(op);
2640 
2641     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2642       // Try to form an fmuladd.
2643       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2644         return FMulAdd;
2645       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2646     }
2647 
2648     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2649   }
2650 
2651   // If the RHS is not a pointer, then we have normal pointer
2652   // arithmetic.
2653   if (!op.RHS->getType()->isPointerTy())
2654     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2655 
2656   // Otherwise, this is a pointer subtraction.
2657 
2658   // Do the raw subtraction part.
2659   llvm::Value *LHS
2660     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2661   llvm::Value *RHS
2662     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2663   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2664 
2665   // Okay, figure out the element size.
2666   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2667   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2668 
2669   llvm::Value *divisor = nullptr;
2670 
2671   // For a variable-length array, this is going to be non-constant.
2672   if (const VariableArrayType *vla
2673         = CGF.getContext().getAsVariableArrayType(elementType)) {
2674     llvm::Value *numElements;
2675     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2676 
2677     divisor = numElements;
2678 
2679     // Scale the number of non-VLA elements by the non-VLA element size.
2680     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2681     if (!eltSize.isOne())
2682       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2683 
2684   // For everything elese, we can just compute it, safe in the
2685   // assumption that Sema won't let anything through that we can't
2686   // safely compute the size of.
2687   } else {
2688     CharUnits elementSize;
2689     // Handle GCC extension for pointer arithmetic on void* and
2690     // function pointer types.
2691     if (elementType->isVoidType() || elementType->isFunctionType())
2692       elementSize = CharUnits::One();
2693     else
2694       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2695 
2696     // Don't even emit the divide for element size of 1.
2697     if (elementSize.isOne())
2698       return diffInChars;
2699 
2700     divisor = CGF.CGM.getSize(elementSize);
2701   }
2702 
2703   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2704   // pointer difference in C is only defined in the case where both operands
2705   // are pointing to elements of an array.
2706   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2707 }
2708 
2709 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2710   llvm::IntegerType *Ty;
2711   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2712     Ty = cast<llvm::IntegerType>(VT->getElementType());
2713   else
2714     Ty = cast<llvm::IntegerType>(LHS->getType());
2715   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2716 }
2717 
2718 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2719   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2720   // RHS to the same size as the LHS.
2721   Value *RHS = Ops.RHS;
2722   if (Ops.LHS->getType() != RHS->getType())
2723     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2724 
2725   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2726                       Ops.Ty->hasSignedIntegerRepresentation();
2727   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2728   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2729   if (CGF.getLangOpts().OpenCL)
2730     RHS =
2731         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2732   else if ((SanitizeBase || SanitizeExponent) &&
2733            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2734     CodeGenFunction::SanitizerScope SanScope(&CGF);
2735     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2736     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2737     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2738 
2739     if (SanitizeExponent) {
2740       Checks.push_back(
2741           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2742     }
2743 
2744     if (SanitizeBase) {
2745       // Check whether we are shifting any non-zero bits off the top of the
2746       // integer. We only emit this check if exponent is valid - otherwise
2747       // instructions below will have undefined behavior themselves.
2748       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2749       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2750       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2751       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2752       CGF.EmitBlock(CheckShiftBase);
2753       llvm::Value *BitsShiftedOff =
2754         Builder.CreateLShr(Ops.LHS,
2755                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2756                                              /*NUW*/true, /*NSW*/true),
2757                            "shl.check");
2758       if (CGF.getLangOpts().CPlusPlus) {
2759         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2760         // Under C++11's rules, shifting a 1 bit into the sign bit is
2761         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2762         // define signed left shifts, so we use the C99 and C++11 rules there).
2763         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2764         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2765       }
2766       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2767       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2768       CGF.EmitBlock(Cont);
2769       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2770       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2771       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2772       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2773     }
2774 
2775     assert(!Checks.empty());
2776     EmitBinOpCheck(Checks, Ops);
2777   }
2778 
2779   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2780 }
2781 
2782 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2783   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2784   // RHS to the same size as the LHS.
2785   Value *RHS = Ops.RHS;
2786   if (Ops.LHS->getType() != RHS->getType())
2787     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2788 
2789   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2790   if (CGF.getLangOpts().OpenCL)
2791     RHS =
2792         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2793   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2794            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2795     CodeGenFunction::SanitizerScope SanScope(&CGF);
2796     llvm::Value *Valid =
2797         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2798     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2799   }
2800 
2801   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2802     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2803   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2804 }
2805 
2806 enum IntrinsicType { VCMPEQ, VCMPGT };
2807 // return corresponding comparison intrinsic for given vector type
2808 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2809                                         BuiltinType::Kind ElemKind) {
2810   switch (ElemKind) {
2811   default: llvm_unreachable("unexpected element type");
2812   case BuiltinType::Char_U:
2813   case BuiltinType::UChar:
2814     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2815                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2816   case BuiltinType::Char_S:
2817   case BuiltinType::SChar:
2818     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2819                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2820   case BuiltinType::UShort:
2821     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2822                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2823   case BuiltinType::Short:
2824     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2825                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2826   case BuiltinType::UInt:
2827   case BuiltinType::ULong:
2828     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2829                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2830   case BuiltinType::Int:
2831   case BuiltinType::Long:
2832     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2833                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2834   case BuiltinType::Float:
2835     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2836                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2837   }
2838 }
2839 
2840 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2841                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2842   TestAndClearIgnoreResultAssign();
2843   Value *Result;
2844   QualType LHSTy = E->getLHS()->getType();
2845   QualType RHSTy = E->getRHS()->getType();
2846   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2847     assert(E->getOpcode() == BO_EQ ||
2848            E->getOpcode() == BO_NE);
2849     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2850     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2851     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2852                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2853   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2854     Value *LHS = Visit(E->getLHS());
2855     Value *RHS = Visit(E->getRHS());
2856 
2857     // If AltiVec, the comparison results in a numeric type, so we use
2858     // intrinsics comparing vectors and giving 0 or 1 as a result
2859     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2860       // constants for mapping CR6 register bits to predicate result
2861       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2862 
2863       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2864 
2865       // in several cases vector arguments order will be reversed
2866       Value *FirstVecArg = LHS,
2867             *SecondVecArg = RHS;
2868 
2869       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2870       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2871       BuiltinType::Kind ElementKind = BTy->getKind();
2872 
2873       switch(E->getOpcode()) {
2874       default: llvm_unreachable("is not a comparison operation");
2875       case BO_EQ:
2876         CR6 = CR6_LT;
2877         ID = GetIntrinsic(VCMPEQ, ElementKind);
2878         break;
2879       case BO_NE:
2880         CR6 = CR6_EQ;
2881         ID = GetIntrinsic(VCMPEQ, ElementKind);
2882         break;
2883       case BO_LT:
2884         CR6 = CR6_LT;
2885         ID = GetIntrinsic(VCMPGT, ElementKind);
2886         std::swap(FirstVecArg, SecondVecArg);
2887         break;
2888       case BO_GT:
2889         CR6 = CR6_LT;
2890         ID = GetIntrinsic(VCMPGT, ElementKind);
2891         break;
2892       case BO_LE:
2893         if (ElementKind == BuiltinType::Float) {
2894           CR6 = CR6_LT;
2895           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2896           std::swap(FirstVecArg, SecondVecArg);
2897         }
2898         else {
2899           CR6 = CR6_EQ;
2900           ID = GetIntrinsic(VCMPGT, ElementKind);
2901         }
2902         break;
2903       case BO_GE:
2904         if (ElementKind == BuiltinType::Float) {
2905           CR6 = CR6_LT;
2906           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2907         }
2908         else {
2909           CR6 = CR6_EQ;
2910           ID = GetIntrinsic(VCMPGT, ElementKind);
2911           std::swap(FirstVecArg, SecondVecArg);
2912         }
2913         break;
2914       }
2915 
2916       Value *CR6Param = Builder.getInt32(CR6);
2917       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2918       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2919       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2920     }
2921 
2922     if (LHS->getType()->isFPOrFPVectorTy()) {
2923       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2924                                   LHS, RHS, "cmp");
2925     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2926       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2927                                   LHS, RHS, "cmp");
2928     } else {
2929       // Unsigned integers and pointers.
2930       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2931                                   LHS, RHS, "cmp");
2932     }
2933 
2934     // If this is a vector comparison, sign extend the result to the appropriate
2935     // vector integer type and return it (don't convert to bool).
2936     if (LHSTy->isVectorType())
2937       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2938 
2939   } else {
2940     // Complex Comparison: can only be an equality comparison.
2941     CodeGenFunction::ComplexPairTy LHS, RHS;
2942     QualType CETy;
2943     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2944       LHS = CGF.EmitComplexExpr(E->getLHS());
2945       CETy = CTy->getElementType();
2946     } else {
2947       LHS.first = Visit(E->getLHS());
2948       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2949       CETy = LHSTy;
2950     }
2951     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2952       RHS = CGF.EmitComplexExpr(E->getRHS());
2953       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2954                                                      CTy->getElementType()) &&
2955              "The element types must always match.");
2956       (void)CTy;
2957     } else {
2958       RHS.first = Visit(E->getRHS());
2959       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2960       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2961              "The element types must always match.");
2962     }
2963 
2964     Value *ResultR, *ResultI;
2965     if (CETy->isRealFloatingType()) {
2966       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2967                                    LHS.first, RHS.first, "cmp.r");
2968       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2969                                    LHS.second, RHS.second, "cmp.i");
2970     } else {
2971       // Complex comparisons can only be equality comparisons.  As such, signed
2972       // and unsigned opcodes are the same.
2973       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2974                                    LHS.first, RHS.first, "cmp.r");
2975       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2976                                    LHS.second, RHS.second, "cmp.i");
2977     }
2978 
2979     if (E->getOpcode() == BO_EQ) {
2980       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2981     } else {
2982       assert(E->getOpcode() == BO_NE &&
2983              "Complex comparison other than == or != ?");
2984       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2985     }
2986   }
2987 
2988   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2989 }
2990 
2991 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2992   bool Ignore = TestAndClearIgnoreResultAssign();
2993 
2994   Value *RHS;
2995   LValue LHS;
2996 
2997   switch (E->getLHS()->getType().getObjCLifetime()) {
2998   case Qualifiers::OCL_Strong:
2999     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3000     break;
3001 
3002   case Qualifiers::OCL_Autoreleasing:
3003     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3004     break;
3005 
3006   case Qualifiers::OCL_Weak:
3007     RHS = Visit(E->getRHS());
3008     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3009     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3010     break;
3011 
3012   // No reason to do any of these differently.
3013   case Qualifiers::OCL_None:
3014   case Qualifiers::OCL_ExplicitNone:
3015     // __block variables need to have the rhs evaluated first, plus
3016     // this should improve codegen just a little.
3017     RHS = Visit(E->getRHS());
3018     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3019 
3020     // Store the value into the LHS.  Bit-fields are handled specially
3021     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3022     // 'An assignment expression has the value of the left operand after
3023     // the assignment...'.
3024     if (LHS.isBitField())
3025       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3026     else
3027       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3028   }
3029 
3030   // If the result is clearly ignored, return now.
3031   if (Ignore)
3032     return nullptr;
3033 
3034   // The result of an assignment in C is the assigned r-value.
3035   if (!CGF.getLangOpts().CPlusPlus)
3036     return RHS;
3037 
3038   // If the lvalue is non-volatile, return the computed value of the assignment.
3039   if (!LHS.isVolatileQualified())
3040     return RHS;
3041 
3042   // Otherwise, reload the value.
3043   return EmitLoadOfLValue(LHS, E->getExprLoc());
3044 }
3045 
3046 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3047   // Perform vector logical and on comparisons with zero vectors.
3048   if (E->getType()->isVectorType()) {
3049     CGF.incrementProfileCounter(E);
3050 
3051     Value *LHS = Visit(E->getLHS());
3052     Value *RHS = Visit(E->getRHS());
3053     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3054     if (LHS->getType()->isFPOrFPVectorTy()) {
3055       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3056       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3057     } else {
3058       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3059       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3060     }
3061     Value *And = Builder.CreateAnd(LHS, RHS);
3062     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3063   }
3064 
3065   llvm::Type *ResTy = ConvertType(E->getType());
3066 
3067   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3068   // If we have 1 && X, just emit X without inserting the control flow.
3069   bool LHSCondVal;
3070   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3071     if (LHSCondVal) { // If we have 1 && X, just emit X.
3072       CGF.incrementProfileCounter(E);
3073 
3074       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3075       // ZExt result to int or bool.
3076       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3077     }
3078 
3079     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3080     if (!CGF.ContainsLabel(E->getRHS()))
3081       return llvm::Constant::getNullValue(ResTy);
3082   }
3083 
3084   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3085   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3086 
3087   CodeGenFunction::ConditionalEvaluation eval(CGF);
3088 
3089   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3090   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3091                            CGF.getProfileCount(E->getRHS()));
3092 
3093   // Any edges into the ContBlock are now from an (indeterminate number of)
3094   // edges from this first condition.  All of these values will be false.  Start
3095   // setting up the PHI node in the Cont Block for this.
3096   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3097                                             "", ContBlock);
3098   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3099        PI != PE; ++PI)
3100     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3101 
3102   eval.begin(CGF);
3103   CGF.EmitBlock(RHSBlock);
3104   CGF.incrementProfileCounter(E);
3105   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3106   eval.end(CGF);
3107 
3108   // Reaquire the RHS block, as there may be subblocks inserted.
3109   RHSBlock = Builder.GetInsertBlock();
3110 
3111   // Emit an unconditional branch from this block to ContBlock.
3112   {
3113     // There is no need to emit line number for unconditional branch.
3114     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3115     CGF.EmitBlock(ContBlock);
3116   }
3117   // Insert an entry into the phi node for the edge with the value of RHSCond.
3118   PN->addIncoming(RHSCond, RHSBlock);
3119 
3120   // ZExt result to int.
3121   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3122 }
3123 
3124 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3125   // Perform vector logical or on comparisons with zero vectors.
3126   if (E->getType()->isVectorType()) {
3127     CGF.incrementProfileCounter(E);
3128 
3129     Value *LHS = Visit(E->getLHS());
3130     Value *RHS = Visit(E->getRHS());
3131     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3132     if (LHS->getType()->isFPOrFPVectorTy()) {
3133       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3134       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3135     } else {
3136       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3137       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3138     }
3139     Value *Or = Builder.CreateOr(LHS, RHS);
3140     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3141   }
3142 
3143   llvm::Type *ResTy = ConvertType(E->getType());
3144 
3145   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3146   // If we have 0 || X, just emit X without inserting the control flow.
3147   bool LHSCondVal;
3148   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3149     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3150       CGF.incrementProfileCounter(E);
3151 
3152       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3153       // ZExt result to int or bool.
3154       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3155     }
3156 
3157     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3158     if (!CGF.ContainsLabel(E->getRHS()))
3159       return llvm::ConstantInt::get(ResTy, 1);
3160   }
3161 
3162   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3163   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3164 
3165   CodeGenFunction::ConditionalEvaluation eval(CGF);
3166 
3167   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3168   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3169                            CGF.getCurrentProfileCount() -
3170                                CGF.getProfileCount(E->getRHS()));
3171 
3172   // Any edges into the ContBlock are now from an (indeterminate number of)
3173   // edges from this first condition.  All of these values will be true.  Start
3174   // setting up the PHI node in the Cont Block for this.
3175   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3176                                             "", ContBlock);
3177   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3178        PI != PE; ++PI)
3179     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3180 
3181   eval.begin(CGF);
3182 
3183   // Emit the RHS condition as a bool value.
3184   CGF.EmitBlock(RHSBlock);
3185   CGF.incrementProfileCounter(E);
3186   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3187 
3188   eval.end(CGF);
3189 
3190   // Reaquire the RHS block, as there may be subblocks inserted.
3191   RHSBlock = Builder.GetInsertBlock();
3192 
3193   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3194   // into the phi node for the edge with the value of RHSCond.
3195   CGF.EmitBlock(ContBlock);
3196   PN->addIncoming(RHSCond, RHSBlock);
3197 
3198   // ZExt result to int.
3199   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3200 }
3201 
3202 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3203   CGF.EmitIgnoredExpr(E->getLHS());
3204   CGF.EnsureInsertPoint();
3205   return Visit(E->getRHS());
3206 }
3207 
3208 //===----------------------------------------------------------------------===//
3209 //                             Other Operators
3210 //===----------------------------------------------------------------------===//
3211 
3212 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3213 /// expression is cheap enough and side-effect-free enough to evaluate
3214 /// unconditionally instead of conditionally.  This is used to convert control
3215 /// flow into selects in some cases.
3216 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3217                                                    CodeGenFunction &CGF) {
3218   // Anything that is an integer or floating point constant is fine.
3219   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3220 
3221   // Even non-volatile automatic variables can't be evaluated unconditionally.
3222   // Referencing a thread_local may cause non-trivial initialization work to
3223   // occur. If we're inside a lambda and one of the variables is from the scope
3224   // outside the lambda, that function may have returned already. Reading its
3225   // locals is a bad idea. Also, these reads may introduce races there didn't
3226   // exist in the source-level program.
3227 }
3228 
3229 
3230 Value *ScalarExprEmitter::
3231 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3232   TestAndClearIgnoreResultAssign();
3233 
3234   // Bind the common expression if necessary.
3235   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3236 
3237   Expr *condExpr = E->getCond();
3238   Expr *lhsExpr = E->getTrueExpr();
3239   Expr *rhsExpr = E->getFalseExpr();
3240 
3241   // If the condition constant folds and can be elided, try to avoid emitting
3242   // the condition and the dead arm.
3243   bool CondExprBool;
3244   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3245     Expr *live = lhsExpr, *dead = rhsExpr;
3246     if (!CondExprBool) std::swap(live, dead);
3247 
3248     // If the dead side doesn't have labels we need, just emit the Live part.
3249     if (!CGF.ContainsLabel(dead)) {
3250       if (CondExprBool)
3251         CGF.incrementProfileCounter(E);
3252       Value *Result = Visit(live);
3253 
3254       // If the live part is a throw expression, it acts like it has a void
3255       // type, so evaluating it returns a null Value*.  However, a conditional
3256       // with non-void type must return a non-null Value*.
3257       if (!Result && !E->getType()->isVoidType())
3258         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3259 
3260       return Result;
3261     }
3262   }
3263 
3264   // OpenCL: If the condition is a vector, we can treat this condition like
3265   // the select function.
3266   if (CGF.getLangOpts().OpenCL
3267       && condExpr->getType()->isVectorType()) {
3268     CGF.incrementProfileCounter(E);
3269 
3270     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3271     llvm::Value *LHS = Visit(lhsExpr);
3272     llvm::Value *RHS = Visit(rhsExpr);
3273 
3274     llvm::Type *condType = ConvertType(condExpr->getType());
3275     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3276 
3277     unsigned numElem = vecTy->getNumElements();
3278     llvm::Type *elemType = vecTy->getElementType();
3279 
3280     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3281     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3282     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3283                                           llvm::VectorType::get(elemType,
3284                                                                 numElem),
3285                                           "sext");
3286     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3287 
3288     // Cast float to int to perform ANDs if necessary.
3289     llvm::Value *RHSTmp = RHS;
3290     llvm::Value *LHSTmp = LHS;
3291     bool wasCast = false;
3292     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3293     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3294       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3295       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3296       wasCast = true;
3297     }
3298 
3299     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3300     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3301     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3302     if (wasCast)
3303       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3304 
3305     return tmp5;
3306   }
3307 
3308   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3309   // select instead of as control flow.  We can only do this if it is cheap and
3310   // safe to evaluate the LHS and RHS unconditionally.
3311   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3312       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3313     CGF.incrementProfileCounter(E);
3314 
3315     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3316     llvm::Value *LHS = Visit(lhsExpr);
3317     llvm::Value *RHS = Visit(rhsExpr);
3318     if (!LHS) {
3319       // If the conditional has void type, make sure we return a null Value*.
3320       assert(!RHS && "LHS and RHS types must match");
3321       return nullptr;
3322     }
3323     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3324   }
3325 
3326   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3327   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3328   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3329 
3330   CodeGenFunction::ConditionalEvaluation eval(CGF);
3331   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3332                            CGF.getProfileCount(lhsExpr));
3333 
3334   CGF.EmitBlock(LHSBlock);
3335   CGF.incrementProfileCounter(E);
3336   eval.begin(CGF);
3337   Value *LHS = Visit(lhsExpr);
3338   eval.end(CGF);
3339 
3340   LHSBlock = Builder.GetInsertBlock();
3341   Builder.CreateBr(ContBlock);
3342 
3343   CGF.EmitBlock(RHSBlock);
3344   eval.begin(CGF);
3345   Value *RHS = Visit(rhsExpr);
3346   eval.end(CGF);
3347 
3348   RHSBlock = Builder.GetInsertBlock();
3349   CGF.EmitBlock(ContBlock);
3350 
3351   // If the LHS or RHS is a throw expression, it will be legitimately null.
3352   if (!LHS)
3353     return RHS;
3354   if (!RHS)
3355     return LHS;
3356 
3357   // Create a PHI node for the real part.
3358   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3359   PN->addIncoming(LHS, LHSBlock);
3360   PN->addIncoming(RHS, RHSBlock);
3361   return PN;
3362 }
3363 
3364 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3365   return Visit(E->getChosenSubExpr());
3366 }
3367 
3368 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3369   QualType Ty = VE->getType();
3370 
3371   if (Ty->isVariablyModifiedType())
3372     CGF.EmitVariablyModifiedType(Ty);
3373 
3374   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3375   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3376   llvm::Type *ArgTy = ConvertType(VE->getType());
3377 
3378   // If EmitVAArg fails, we fall back to the LLVM instruction.
3379   if (!ArgPtr)
3380     return Builder.CreateVAArg(ArgValue, ArgTy);
3381 
3382   // FIXME Volatility.
3383   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3384 
3385   // If EmitVAArg promoted the type, we must truncate it.
3386   if (ArgTy != Val->getType()) {
3387     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3388       Val = Builder.CreateIntToPtr(Val, ArgTy);
3389     else
3390       Val = Builder.CreateTrunc(Val, ArgTy);
3391   }
3392 
3393   return Val;
3394 }
3395 
3396 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3397   return CGF.EmitBlockLiteral(block);
3398 }
3399 
3400 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3401   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3402   llvm::Type *DstTy = ConvertType(E->getType());
3403 
3404   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3405   // a shuffle vector instead of a bitcast.
3406   llvm::Type *SrcTy = Src->getType();
3407   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3408     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3409     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3410     if ((numElementsDst == 3 && numElementsSrc == 4)
3411         || (numElementsDst == 4 && numElementsSrc == 3)) {
3412 
3413 
3414       // In the case of going from int4->float3, a bitcast is needed before
3415       // doing a shuffle.
3416       llvm::Type *srcElemTy =
3417       cast<llvm::VectorType>(SrcTy)->getElementType();
3418       llvm::Type *dstElemTy =
3419       cast<llvm::VectorType>(DstTy)->getElementType();
3420 
3421       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3422           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3423         // Create a float type of the same size as the source or destination.
3424         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3425                                                                  numElementsSrc);
3426 
3427         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3428       }
3429 
3430       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3431 
3432       SmallVector<llvm::Constant*, 3> Args;
3433       Args.push_back(Builder.getInt32(0));
3434       Args.push_back(Builder.getInt32(1));
3435       Args.push_back(Builder.getInt32(2));
3436 
3437       if (numElementsDst == 4)
3438         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3439 
3440       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3441 
3442       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3443     }
3444   }
3445 
3446   return Builder.CreateBitCast(Src, DstTy, "astype");
3447 }
3448 
3449 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3450   return CGF.EmitAtomicExpr(E).getScalarVal();
3451 }
3452 
3453 //===----------------------------------------------------------------------===//
3454 //                         Entry Point into this File
3455 //===----------------------------------------------------------------------===//
3456 
3457 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3458 /// type, ignoring the result.
3459 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3460   assert(E && hasScalarEvaluationKind(E->getType()) &&
3461          "Invalid scalar expression to emit");
3462 
3463   return ScalarExprEmitter(*this, IgnoreResultAssign)
3464       .Visit(const_cast<Expr *>(E));
3465 }
3466 
3467 /// EmitScalarConversion - Emit a conversion from the specified type to the
3468 /// specified destination type, both of which are LLVM scalar types.
3469 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3470                                              QualType DstTy) {
3471   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3472          "Invalid scalar expression to emit");
3473   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3474 }
3475 
3476 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3477 /// type to the specified destination type, where the destination type is an
3478 /// LLVM scalar type.
3479 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3480                                                       QualType SrcTy,
3481                                                       QualType DstTy) {
3482   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3483          "Invalid complex -> scalar conversion");
3484   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3485                                                                 DstTy);
3486 }
3487 
3488 
3489 llvm::Value *CodeGenFunction::
3490 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3491                         bool isInc, bool isPre) {
3492   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3493 }
3494 
3495 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3496   llvm::Value *V;
3497   // object->isa or (*object).isa
3498   // Generate code as for: *(Class*)object
3499   // build Class* type
3500   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3501 
3502   Expr *BaseExpr = E->getBase();
3503   if (BaseExpr->isRValue()) {
3504     V = CreateMemTemp(E->getType(), "resval");
3505     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3506     Builder.CreateStore(Src, V);
3507     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3508       MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
3509   } else {
3510     if (E->isArrow())
3511       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3512     else
3513       V = EmitLValue(BaseExpr).getAddress();
3514   }
3515 
3516   // build Class* type
3517   ClassPtrTy = ClassPtrTy->getPointerTo();
3518   V = Builder.CreateBitCast(V, ClassPtrTy);
3519   return MakeNaturalAlignAddrLValue(V, E->getType());
3520 }
3521 
3522 
3523 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3524                                             const CompoundAssignOperator *E) {
3525   ScalarExprEmitter Scalar(*this);
3526   Value *Result = nullptr;
3527   switch (E->getOpcode()) {
3528 #define COMPOUND_OP(Op)                                                       \
3529     case BO_##Op##Assign:                                                     \
3530       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3531                                              Result)
3532   COMPOUND_OP(Mul);
3533   COMPOUND_OP(Div);
3534   COMPOUND_OP(Rem);
3535   COMPOUND_OP(Add);
3536   COMPOUND_OP(Sub);
3537   COMPOUND_OP(Shl);
3538   COMPOUND_OP(Shr);
3539   COMPOUND_OP(And);
3540   COMPOUND_OP(Xor);
3541   COMPOUND_OP(Or);
3542 #undef COMPOUND_OP
3543 
3544   case BO_PtrMemD:
3545   case BO_PtrMemI:
3546   case BO_Mul:
3547   case BO_Div:
3548   case BO_Rem:
3549   case BO_Add:
3550   case BO_Sub:
3551   case BO_Shl:
3552   case BO_Shr:
3553   case BO_LT:
3554   case BO_GT:
3555   case BO_LE:
3556   case BO_GE:
3557   case BO_EQ:
3558   case BO_NE:
3559   case BO_And:
3560   case BO_Xor:
3561   case BO_Or:
3562   case BO_LAnd:
3563   case BO_LOr:
3564   case BO_Assign:
3565   case BO_Comma:
3566     llvm_unreachable("Not valid compound assignment operators");
3567   }
3568 
3569   llvm_unreachable("Unhandled compound assignment operator");
3570 }
3571