1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 //                         Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45   Value *LHS;
46   Value *RHS;
47   QualType Ty;  // Computation Type.
48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49   bool FPContractable;
50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54   // If a null pointer expression's type is the C++0x nullptr_t, then
55   // it's not necessarily a simple constant and it must be evaluated
56   // for its potential side effects.
57   return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61   : public StmtVisitor<ScalarExprEmitter, Value*> {
62   CodeGenFunction &CGF;
63   CGBuilderTy &Builder;
64   bool IgnoreResultAssign;
65   llvm::LLVMContext &VMContext;
66 public:
67 
68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70       VMContext(cgf.getLLVMContext()) {
71   }
72 
73   //===--------------------------------------------------------------------===//
74   //                               Utilities
75   //===--------------------------------------------------------------------===//
76 
77   bool TestAndClearIgnoreResultAssign() {
78     bool I = IgnoreResultAssign;
79     IgnoreResultAssign = false;
80     return I;
81   }
82 
83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86     return CGF.EmitCheckedLValue(E, TCK);
87   }
88 
89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                       const BinOpInfo &Info);
91 
92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94   }
95 
96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97     const AlignValueAttr *AVAttr = nullptr;
98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99       const ValueDecl *VD = DRE->getDecl();
100 
101       if (VD->getType()->isReferenceType()) {
102         if (const auto *TTy =
103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105       } else {
106         // Assumptions for function parameters are emitted at the start of the
107         // function, so there is no need to repeat that here.
108         if (isa<ParmVarDecl>(VD))
109           return;
110 
111         AVAttr = VD->getAttr<AlignValueAttr>();
112       }
113     }
114 
115     if (!AVAttr)
116       if (const auto *TTy =
117           dyn_cast<TypedefType>(E->getType()))
118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120     if (!AVAttr)
121       return;
122 
123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126   }
127 
128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129   /// value l-value, this method emits the address of the l-value, then loads
130   /// and returns the result.
131   Value *EmitLoadOfLValue(const Expr *E) {
132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                 E->getExprLoc());
134 
135     EmitLValueAlignmentAssumption(E, V);
136     return V;
137   }
138 
139   /// EmitConversionToBool - Convert the specified expression value to a
140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143   /// Emit a check that a conversion to or from a floating-point type does not
144   /// overflow.
145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                 Value *Src, QualType SrcType, QualType DstType,
147                                 llvm::Type *DstTy, SourceLocation Loc);
148 
149   /// Emit a conversion from the specified type to the specified destination
150   /// type, both of which are LLVM scalar types.
151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152                               SourceLocation Loc);
153 
154   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155                               SourceLocation Loc, bool TreatBooleanAsSigned);
156 
157   /// Emit a conversion from the specified complex type to the specified
158   /// destination type, where the destination type is an LLVM scalar type.
159   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160                                        QualType SrcTy, QualType DstTy,
161                                        SourceLocation Loc);
162 
163   /// EmitNullValue - Emit a value that corresponds to null for the given type.
164   Value *EmitNullValue(QualType Ty);
165 
166   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
167   Value *EmitFloatToBoolConversion(Value *V) {
168     // Compare against 0.0 for fp scalars.
169     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170     return Builder.CreateFCmpUNE(V, Zero, "tobool");
171   }
172 
173   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
174   Value *EmitPointerToBoolConversion(Value *V) {
175     Value *Zero = llvm::ConstantPointerNull::get(
176                                       cast<llvm::PointerType>(V->getType()));
177     return Builder.CreateICmpNE(V, Zero, "tobool");
178   }
179 
180   Value *EmitIntToBoolConversion(Value *V) {
181     // Because of the type rules of C, we often end up computing a
182     // logical value, then zero extending it to int, then wanting it
183     // as a logical value again.  Optimize this common case.
184     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186         Value *Result = ZI->getOperand(0);
187         // If there aren't any more uses, zap the instruction to save space.
188         // Note that there can be more uses, for example if this
189         // is the result of an assignment.
190         if (ZI->use_empty())
191           ZI->eraseFromParent();
192         return Result;
193       }
194     }
195 
196     return Builder.CreateIsNotNull(V, "tobool");
197   }
198 
199   //===--------------------------------------------------------------------===//
200   //                            Visitor Methods
201   //===--------------------------------------------------------------------===//
202 
203   Value *Visit(Expr *E) {
204     ApplyDebugLocation DL(CGF, E);
205     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
206   }
207 
208   Value *VisitStmt(Stmt *S) {
209     S->dump(CGF.getContext().getSourceManager());
210     llvm_unreachable("Stmt can't have complex result type!");
211   }
212   Value *VisitExpr(Expr *S);
213 
214   Value *VisitParenExpr(ParenExpr *PE) {
215     return Visit(PE->getSubExpr());
216   }
217   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218     return Visit(E->getReplacement());
219   }
220   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221     return Visit(GE->getResultExpr());
222   }
223 
224   // Leaves.
225   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226     return Builder.getInt(E->getValue());
227   }
228   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229     return llvm::ConstantFP::get(VMContext, E->getValue());
230   }
231   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233   }
234   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236   }
237   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239   }
240   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241     return EmitNullValue(E->getType());
242   }
243   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244     return EmitNullValue(E->getType());
245   }
246   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
248   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250     return Builder.CreateBitCast(V, ConvertType(E->getType()));
251   }
252 
253   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255   }
256 
257   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259   }
260 
261   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262     if (E->isGLValue())
263       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264 
265     // Otherwise, assume the mapping is the scalar directly.
266     return CGF.getOpaqueRValueMapping(E).getScalarVal();
267   }
268 
269   // l-values.
270   Value *VisitDeclRefExpr(DeclRefExpr *E) {
271     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272       if (result.isReference())
273         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274                                 E->getExprLoc());
275       return result.getValue();
276     }
277     return EmitLoadOfLValue(E);
278   }
279 
280   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281     return CGF.EmitObjCSelectorExpr(E);
282   }
283   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284     return CGF.EmitObjCProtocolExpr(E);
285   }
286   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287     return EmitLoadOfLValue(E);
288   }
289   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290     if (E->getMethodDecl() &&
291         E->getMethodDecl()->getReturnType()->isReferenceType())
292       return EmitLoadOfLValue(E);
293     return CGF.EmitObjCMessageExpr(E).getScalarVal();
294   }
295 
296   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297     LValue LV = CGF.EmitObjCIsaExpr(E);
298     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299     return V;
300   }
301 
302   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305   Value *VisitMemberExpr(MemberExpr *E);
306   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
307   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308     return EmitLoadOfLValue(E);
309   }
310 
311   Value *VisitInitListExpr(InitListExpr *E);
312 
313   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314     return EmitNullValue(E->getType());
315   }
316   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
318     return VisitCastExpr(E);
319   }
320   Value *VisitCastExpr(CastExpr *E);
321 
322   Value *VisitCallExpr(const CallExpr *E) {
323     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324       return EmitLoadOfLValue(E);
325 
326     Value *V = CGF.EmitCallExpr(E).getScalarVal();
327 
328     EmitLValueAlignmentAssumption(E, V);
329     return V;
330   }
331 
332   Value *VisitStmtExpr(const StmtExpr *E);
333 
334   // Unary Operators.
335   Value *VisitUnaryPostDec(const UnaryOperator *E) {
336     LValue LV = EmitLValue(E->getSubExpr());
337     return EmitScalarPrePostIncDec(E, LV, false, false);
338   }
339   Value *VisitUnaryPostInc(const UnaryOperator *E) {
340     LValue LV = EmitLValue(E->getSubExpr());
341     return EmitScalarPrePostIncDec(E, LV, true, false);
342   }
343   Value *VisitUnaryPreDec(const UnaryOperator *E) {
344     LValue LV = EmitLValue(E->getSubExpr());
345     return EmitScalarPrePostIncDec(E, LV, false, true);
346   }
347   Value *VisitUnaryPreInc(const UnaryOperator *E) {
348     LValue LV = EmitLValue(E->getSubExpr());
349     return EmitScalarPrePostIncDec(E, LV, true, true);
350   }
351 
352   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353                                                   llvm::Value *InVal,
354                                                   bool IsInc);
355 
356   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357                                        bool isInc, bool isPre);
358 
359 
360   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361     if (isa<MemberPointerType>(E->getType())) // never sugared
362       return CGF.CGM.getMemberPointerConstant(E);
363 
364     return EmitLValue(E->getSubExpr()).getPointer();
365   }
366   Value *VisitUnaryDeref(const UnaryOperator *E) {
367     if (E->getType()->isVoidType())
368       return Visit(E->getSubExpr()); // the actual value should be unused
369     return EmitLoadOfLValue(E);
370   }
371   Value *VisitUnaryPlus(const UnaryOperator *E) {
372     // This differs from gcc, though, most likely due to a bug in gcc.
373     TestAndClearIgnoreResultAssign();
374     return Visit(E->getSubExpr());
375   }
376   Value *VisitUnaryMinus    (const UnaryOperator *E);
377   Value *VisitUnaryNot      (const UnaryOperator *E);
378   Value *VisitUnaryLNot     (const UnaryOperator *E);
379   Value *VisitUnaryReal     (const UnaryOperator *E);
380   Value *VisitUnaryImag     (const UnaryOperator *E);
381   Value *VisitUnaryExtension(const UnaryOperator *E) {
382     return Visit(E->getSubExpr());
383   }
384 
385   // C++
386   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387     return EmitLoadOfLValue(E);
388   }
389 
390   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391     return Visit(DAE->getExpr());
392   }
393   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
394     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
395     return Visit(DIE->getExpr());
396   }
397   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398     return CGF.LoadCXXThis();
399   }
400 
401   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402     CGF.enterFullExpression(E);
403     CodeGenFunction::RunCleanupsScope Scope(CGF);
404     return Visit(E->getSubExpr());
405   }
406   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407     return CGF.EmitCXXNewExpr(E);
408   }
409   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410     CGF.EmitCXXDeleteExpr(E);
411     return nullptr;
412   }
413 
414   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416   }
417 
418   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420   }
421 
422   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424   }
425 
426   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427     // C++ [expr.pseudo]p1:
428     //   The result shall only be used as the operand for the function call
429     //   operator (), and the result of such a call has type void. The only
430     //   effect is the evaluation of the postfix-expression before the dot or
431     //   arrow.
432     CGF.EmitScalarExpr(E->getBase());
433     return nullptr;
434   }
435 
436   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437     return EmitNullValue(E->getType());
438   }
439 
440   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441     CGF.EmitCXXThrowExpr(E);
442     return nullptr;
443   }
444 
445   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446     return Builder.getInt1(E->getValue());
447   }
448 
449   // Binary Operators.
450   Value *EmitMul(const BinOpInfo &Ops) {
451     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
453       case LangOptions::SOB_Defined:
454         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
455       case LangOptions::SOB_Undefined:
456         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458         // Fall through.
459       case LangOptions::SOB_Trapping:
460         return EmitOverflowCheckedBinOp(Ops);
461       }
462     }
463 
464     if (Ops.Ty->isUnsignedIntegerType() &&
465         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466       return EmitOverflowCheckedBinOp(Ops);
467 
468     if (Ops.LHS->getType()->isFPOrFPVectorTy())
469       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471   }
472   /// Create a binary op that checks for overflow.
473   /// Currently only supports +, - and *.
474   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475 
476   // Check for undefined division and modulus behaviors.
477   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478                                                   llvm::Value *Zero,bool isDiv);
479   // Common helper for getting how wide LHS of shift is.
480   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481   Value *EmitDiv(const BinOpInfo &Ops);
482   Value *EmitRem(const BinOpInfo &Ops);
483   Value *EmitAdd(const BinOpInfo &Ops);
484   Value *EmitSub(const BinOpInfo &Ops);
485   Value *EmitShl(const BinOpInfo &Ops);
486   Value *EmitShr(const BinOpInfo &Ops);
487   Value *EmitAnd(const BinOpInfo &Ops) {
488     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489   }
490   Value *EmitXor(const BinOpInfo &Ops) {
491     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492   }
493   Value *EmitOr (const BinOpInfo &Ops) {
494     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495   }
496 
497   BinOpInfo EmitBinOps(const BinaryOperator *E);
498   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500                                   Value *&Result);
501 
502   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504 
505   // Binary operators and binary compound assignment operators.
506 #define HANDLEBINOP(OP) \
507   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
508     return Emit ## OP(EmitBinOps(E));                                      \
509   }                                                                        \
510   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
511     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
512   }
513   HANDLEBINOP(Mul)
514   HANDLEBINOP(Div)
515   HANDLEBINOP(Rem)
516   HANDLEBINOP(Add)
517   HANDLEBINOP(Sub)
518   HANDLEBINOP(Shl)
519   HANDLEBINOP(Shr)
520   HANDLEBINOP(And)
521   HANDLEBINOP(Xor)
522   HANDLEBINOP(Or)
523 #undef HANDLEBINOP
524 
525   // Comparisons.
526   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
527                      llvm::CmpInst::Predicate SICmpOpc,
528                      llvm::CmpInst::Predicate FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530     Value *VisitBin##CODE(const BinaryOperator *E) { \
531       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532                          llvm::FCmpInst::FP); }
533   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540 
541   Value *VisitBinAssign     (const BinaryOperator *E);
542 
543   Value *VisitBinLAnd       (const BinaryOperator *E);
544   Value *VisitBinLOr        (const BinaryOperator *E);
545   Value *VisitBinComma      (const BinaryOperator *E);
546 
547   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
548   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549 
550   // Other Operators.
551   Value *VisitBlockExpr(const BlockExpr *BE);
552   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553   Value *VisitChooseExpr(ChooseExpr *CE);
554   Value *VisitVAArgExpr(VAArgExpr *VE);
555   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556     return CGF.EmitObjCStringLiteral(E);
557   }
558   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559     return CGF.EmitObjCBoxedExpr(E);
560   }
561   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562     return CGF.EmitObjCArrayLiteral(E);
563   }
564   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565     return CGF.EmitObjCDictionaryLiteral(E);
566   }
567   Value *VisitAsTypeExpr(AsTypeExpr *CE);
568   Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 }  // end anonymous namespace.
571 
572 //===----------------------------------------------------------------------===//
573 //                                Utilities
574 //===----------------------------------------------------------------------===//
575 
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580 
581   if (SrcType->isRealFloatingType())
582     return EmitFloatToBoolConversion(Src);
583 
584   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586 
587   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588          "Unknown scalar type to convert");
589 
590   if (isa<llvm::IntegerType>(Src->getType()))
591     return EmitIntToBoolConversion(Src);
592 
593   assert(isa<llvm::PointerType>(Src->getType()));
594   return EmitPointerToBoolConversion(Src);
595 }
596 
597 void ScalarExprEmitter::EmitFloatConversionCheck(
598     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
599     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
600   CodeGenFunction::SanitizerScope SanScope(&CGF);
601   using llvm::APFloat;
602   using llvm::APSInt;
603 
604   llvm::Type *SrcTy = Src->getType();
605 
606   llvm::Value *Check = nullptr;
607   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
608     // Integer to floating-point. This can fail for unsigned short -> __half
609     // or unsigned __int128 -> float.
610     assert(DstType->isFloatingType());
611     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
612 
613     APFloat LargestFloat =
614       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
615     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
616 
617     bool IsExact;
618     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
619                                       &IsExact) != APFloat::opOK)
620       // The range of representable values of this floating point type includes
621       // all values of this integer type. Don't need an overflow check.
622       return;
623 
624     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
625     if (SrcIsUnsigned)
626       Check = Builder.CreateICmpULE(Src, Max);
627     else {
628       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
629       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
630       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
631       Check = Builder.CreateAnd(GE, LE);
632     }
633   } else {
634     const llvm::fltSemantics &SrcSema =
635       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
636     if (isa<llvm::IntegerType>(DstTy)) {
637       // Floating-point to integer. This has undefined behavior if the source is
638       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
639       // to an integer).
640       unsigned Width = CGF.getContext().getIntWidth(DstType);
641       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
642 
643       APSInt Min = APSInt::getMinValue(Width, Unsigned);
644       APFloat MinSrc(SrcSema, APFloat::uninitialized);
645       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
646           APFloat::opOverflow)
647         // Don't need an overflow check for lower bound. Just check for
648         // -Inf/NaN.
649         MinSrc = APFloat::getInf(SrcSema, true);
650       else
651         // Find the largest value which is too small to represent (before
652         // truncation toward zero).
653         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
654 
655       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
656       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
657       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
658           APFloat::opOverflow)
659         // Don't need an overflow check for upper bound. Just check for
660         // +Inf/NaN.
661         MaxSrc = APFloat::getInf(SrcSema, false);
662       else
663         // Find the smallest value which is too large to represent (before
664         // truncation toward zero).
665         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
666 
667       // If we're converting from __half, convert the range to float to match
668       // the type of src.
669       if (OrigSrcType->isHalfType()) {
670         const llvm::fltSemantics &Sema =
671           CGF.getContext().getFloatTypeSemantics(SrcType);
672         bool IsInexact;
673         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
674         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675       }
676 
677       llvm::Value *GE =
678         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
679       llvm::Value *LE =
680         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
681       Check = Builder.CreateAnd(GE, LE);
682     } else {
683       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
684       //
685       // Floating-point to floating-point. This has undefined behavior if the
686       // source is not in the range of representable values of the destination
687       // type. The C and C++ standards are spectacularly unclear here. We
688       // diagnose finite out-of-range conversions, but allow infinities and NaNs
689       // to convert to the corresponding value in the smaller type.
690       //
691       // C11 Annex F gives all such conversions defined behavior for IEC 60559
692       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
693       // does not.
694 
695       // Converting from a lower rank to a higher rank can never have
696       // undefined behavior, since higher-rank types must have a superset
697       // of values of lower-rank types.
698       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
699         return;
700 
701       assert(!OrigSrcType->isHalfType() &&
702              "should not check conversion from __half, it has the lowest rank");
703 
704       const llvm::fltSemantics &DstSema =
705         CGF.getContext().getFloatTypeSemantics(DstType);
706       APFloat MinBad = APFloat::getLargest(DstSema, false);
707       APFloat MaxBad = APFloat::getInf(DstSema, false);
708 
709       bool IsInexact;
710       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
711       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712 
713       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
714         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
715       llvm::Value *GE =
716         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
717       llvm::Value *LE =
718         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
719       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
720     }
721   }
722 
723   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
724                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
725                                   CGF.EmitCheckTypeDescriptor(DstType)};
726   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
727                 "float_cast_overflow", StaticArgs, OrigSrc);
728 }
729 
730 /// Emit a conversion from the specified type to the specified destination type,
731 /// both of which are LLVM scalar types.
732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
733                                                QualType DstType,
734                                                SourceLocation Loc) {
735   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
736 }
737 
738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
739                                                QualType DstType,
740                                                SourceLocation Loc,
741                                                bool TreatBooleanAsSigned) {
742   SrcType = CGF.getContext().getCanonicalType(SrcType);
743   DstType = CGF.getContext().getCanonicalType(DstType);
744   if (SrcType == DstType) return Src;
745 
746   if (DstType->isVoidType()) return nullptr;
747 
748   llvm::Value *OrigSrc = Src;
749   QualType OrigSrcType = SrcType;
750   llvm::Type *SrcTy = Src->getType();
751 
752   // Handle conversions to bool first, they are special: comparisons against 0.
753   if (DstType->isBooleanType())
754     return EmitConversionToBool(Src, SrcType);
755 
756   llvm::Type *DstTy = ConvertType(DstType);
757 
758   // Cast from half through float if half isn't a native type.
759   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
760     // Cast to FP using the intrinsic if the half type itself isn't supported.
761     if (DstTy->isFloatingPointTy()) {
762       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
763         return Builder.CreateCall(
764             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
765             Src);
766     } else {
767       // Cast to other types through float, using either the intrinsic or FPExt,
768       // depending on whether the half type itself is supported
769       // (as opposed to operations on half, available with NativeHalfType).
770       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
771         Src = Builder.CreateCall(
772             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
773                                  CGF.CGM.FloatTy),
774             Src);
775       } else {
776         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
777       }
778       SrcType = CGF.getContext().FloatTy;
779       SrcTy = CGF.FloatTy;
780     }
781   }
782 
783   // Ignore conversions like int -> uint.
784   if (SrcTy == DstTy)
785     return Src;
786 
787   // Handle pointer conversions next: pointers can only be converted to/from
788   // other pointers and integers. Check for pointer types in terms of LLVM, as
789   // some native types (like Obj-C id) may map to a pointer type.
790   if (isa<llvm::PointerType>(DstTy)) {
791     // The source value may be an integer, or a pointer.
792     if (isa<llvm::PointerType>(SrcTy))
793       return Builder.CreateBitCast(Src, DstTy, "conv");
794 
795     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
796     // First, convert to the correct width so that we control the kind of
797     // extension.
798     llvm::Type *MiddleTy = CGF.IntPtrTy;
799     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
800     llvm::Value* IntResult =
801         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
802     // Then, cast to pointer.
803     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
804   }
805 
806   if (isa<llvm::PointerType>(SrcTy)) {
807     // Must be an ptr to int cast.
808     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
809     return Builder.CreatePtrToInt(Src, DstTy, "conv");
810   }
811 
812   // A scalar can be splatted to an extended vector of the same element type
813   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
814     // Sema should add casts to make sure that the source expression's type is
815     // the same as the vector's element type (sans qualifiers)
816     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
817                SrcType.getTypePtr() &&
818            "Splatted expr doesn't match with vector element type?");
819 
820     // Splat the element across to all elements
821     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
822     return Builder.CreateVectorSplat(NumElements, Src, "splat");
823   }
824 
825   // Allow bitcast from vector to integer/fp of the same size.
826   if (isa<llvm::VectorType>(SrcTy) ||
827       isa<llvm::VectorType>(DstTy))
828     return Builder.CreateBitCast(Src, DstTy, "conv");
829 
830   // Finally, we have the arithmetic types: real int/float.
831   Value *Res = nullptr;
832   llvm::Type *ResTy = DstTy;
833 
834   // An overflowing conversion has undefined behavior if either the source type
835   // or the destination type is a floating-point type.
836   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
837       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
838     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
839                              Loc);
840 
841   // Cast to half through float if half isn't a native type.
842   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
843     // Make sure we cast in a single step if from another FP type.
844     if (SrcTy->isFloatingPointTy()) {
845       // Use the intrinsic if the half type itself isn't supported
846       // (as opposed to operations on half, available with NativeHalfType).
847       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
848         return Builder.CreateCall(
849             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
850       // If the half type is supported, just use an fptrunc.
851       return Builder.CreateFPTrunc(Src, DstTy);
852     }
853     DstTy = CGF.FloatTy;
854   }
855 
856   if (isa<llvm::IntegerType>(SrcTy)) {
857     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
858     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
859       InputSigned = true;
860     }
861     if (isa<llvm::IntegerType>(DstTy))
862       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
863     else if (InputSigned)
864       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
865     else
866       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
867   } else if (isa<llvm::IntegerType>(DstTy)) {
868     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
869     if (DstType->isSignedIntegerOrEnumerationType())
870       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
871     else
872       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
873   } else {
874     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
875            "Unknown real conversion");
876     if (DstTy->getTypeID() < SrcTy->getTypeID())
877       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
878     else
879       Res = Builder.CreateFPExt(Src, DstTy, "conv");
880   }
881 
882   if (DstTy != ResTy) {
883     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
884       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
885       Res = Builder.CreateCall(
886         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
887         Res);
888     } else {
889       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
890     }
891   }
892 
893   return Res;
894 }
895 
896 /// Emit a conversion from the specified complex type to the specified
897 /// destination type, where the destination type is an LLVM scalar type.
898 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
899     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
900     SourceLocation Loc) {
901   // Get the source element type.
902   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
903 
904   // Handle conversions to bool first, they are special: comparisons against 0.
905   if (DstTy->isBooleanType()) {
906     //  Complex != 0  -> (Real != 0) | (Imag != 0)
907     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
908     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
909     return Builder.CreateOr(Src.first, Src.second, "tobool");
910   }
911 
912   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
913   // the imaginary part of the complex value is discarded and the value of the
914   // real part is converted according to the conversion rules for the
915   // corresponding real type.
916   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
917 }
918 
919 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
920   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
921 }
922 
923 /// \brief Emit a sanitization check for the given "binary" operation (which
924 /// might actually be a unary increment which has been lowered to a binary
925 /// operation). The check passes if all values in \p Checks (which are \c i1),
926 /// are \c true.
927 void ScalarExprEmitter::EmitBinOpCheck(
928     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
929   assert(CGF.IsSanitizerScope);
930   StringRef CheckName;
931   SmallVector<llvm::Constant *, 4> StaticData;
932   SmallVector<llvm::Value *, 2> DynamicData;
933 
934   BinaryOperatorKind Opcode = Info.Opcode;
935   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
936     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
937 
938   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
939   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
940   if (UO && UO->getOpcode() == UO_Minus) {
941     CheckName = "negate_overflow";
942     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
943     DynamicData.push_back(Info.RHS);
944   } else {
945     if (BinaryOperator::isShiftOp(Opcode)) {
946       // Shift LHS negative or too large, or RHS out of bounds.
947       CheckName = "shift_out_of_bounds";
948       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
949       StaticData.push_back(
950         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
951       StaticData.push_back(
952         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
953     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
954       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
955       CheckName = "divrem_overflow";
956       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
957     } else {
958       // Arithmetic overflow (+, -, *).
959       switch (Opcode) {
960       case BO_Add: CheckName = "add_overflow"; break;
961       case BO_Sub: CheckName = "sub_overflow"; break;
962       case BO_Mul: CheckName = "mul_overflow"; break;
963       default: llvm_unreachable("unexpected opcode for bin op check");
964       }
965       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
966     }
967     DynamicData.push_back(Info.LHS);
968     DynamicData.push_back(Info.RHS);
969   }
970 
971   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
972 }
973 
974 //===----------------------------------------------------------------------===//
975 //                            Visitor Methods
976 //===----------------------------------------------------------------------===//
977 
978 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
979   CGF.ErrorUnsupported(E, "scalar expression");
980   if (E->getType()->isVoidType())
981     return nullptr;
982   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
983 }
984 
985 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
986   // Vector Mask Case
987   if (E->getNumSubExprs() == 2 ||
988       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
989     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
990     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
991     Value *Mask;
992 
993     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
994     unsigned LHSElts = LTy->getNumElements();
995 
996     if (E->getNumSubExprs() == 3) {
997       Mask = CGF.EmitScalarExpr(E->getExpr(2));
998 
999       // Shuffle LHS & RHS into one input vector.
1000       SmallVector<llvm::Constant*, 32> concat;
1001       for (unsigned i = 0; i != LHSElts; ++i) {
1002         concat.push_back(Builder.getInt32(2*i));
1003         concat.push_back(Builder.getInt32(2*i+1));
1004       }
1005 
1006       Value* CV = llvm::ConstantVector::get(concat);
1007       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1008       LHSElts *= 2;
1009     } else {
1010       Mask = RHS;
1011     }
1012 
1013     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1014 
1015     // Mask off the high bits of each shuffle index.
1016     Value *MaskBits =
1017         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1018     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1019 
1020     // newv = undef
1021     // mask = mask & maskbits
1022     // for each elt
1023     //   n = extract mask i
1024     //   x = extract val n
1025     //   newv = insert newv, x, i
1026     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1027                                                   MTy->getNumElements());
1028     Value* NewV = llvm::UndefValue::get(RTy);
1029     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1030       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1031       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1032 
1033       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1034       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1035     }
1036     return NewV;
1037   }
1038 
1039   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1040   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1041 
1042   SmallVector<llvm::Constant*, 32> indices;
1043   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1044     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1045     // Check for -1 and output it as undef in the IR.
1046     if (Idx.isSigned() && Idx.isAllOnesValue())
1047       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1048     else
1049       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1050   }
1051 
1052   Value *SV = llvm::ConstantVector::get(indices);
1053   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1054 }
1055 
1056 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1057   QualType SrcType = E->getSrcExpr()->getType(),
1058            DstType = E->getType();
1059 
1060   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1061 
1062   SrcType = CGF.getContext().getCanonicalType(SrcType);
1063   DstType = CGF.getContext().getCanonicalType(DstType);
1064   if (SrcType == DstType) return Src;
1065 
1066   assert(SrcType->isVectorType() &&
1067          "ConvertVector source type must be a vector");
1068   assert(DstType->isVectorType() &&
1069          "ConvertVector destination type must be a vector");
1070 
1071   llvm::Type *SrcTy = Src->getType();
1072   llvm::Type *DstTy = ConvertType(DstType);
1073 
1074   // Ignore conversions like int -> uint.
1075   if (SrcTy == DstTy)
1076     return Src;
1077 
1078   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1079            DstEltType = DstType->getAs<VectorType>()->getElementType();
1080 
1081   assert(SrcTy->isVectorTy() &&
1082          "ConvertVector source IR type must be a vector");
1083   assert(DstTy->isVectorTy() &&
1084          "ConvertVector destination IR type must be a vector");
1085 
1086   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1087              *DstEltTy = DstTy->getVectorElementType();
1088 
1089   if (DstEltType->isBooleanType()) {
1090     assert((SrcEltTy->isFloatingPointTy() ||
1091             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1092 
1093     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1094     if (SrcEltTy->isFloatingPointTy()) {
1095       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1096     } else {
1097       return Builder.CreateICmpNE(Src, Zero, "tobool");
1098     }
1099   }
1100 
1101   // We have the arithmetic types: real int/float.
1102   Value *Res = nullptr;
1103 
1104   if (isa<llvm::IntegerType>(SrcEltTy)) {
1105     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1106     if (isa<llvm::IntegerType>(DstEltTy))
1107       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1108     else if (InputSigned)
1109       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1110     else
1111       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1112   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1113     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1114     if (DstEltType->isSignedIntegerOrEnumerationType())
1115       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1116     else
1117       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1118   } else {
1119     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1120            "Unknown real conversion");
1121     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1122       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1123     else
1124       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1125   }
1126 
1127   return Res;
1128 }
1129 
1130 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1131   llvm::APSInt Value;
1132   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1133     if (E->isArrow())
1134       CGF.EmitScalarExpr(E->getBase());
1135     else
1136       EmitLValue(E->getBase());
1137     return Builder.getInt(Value);
1138   }
1139 
1140   return EmitLoadOfLValue(E);
1141 }
1142 
1143 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1144   TestAndClearIgnoreResultAssign();
1145 
1146   // Emit subscript expressions in rvalue context's.  For most cases, this just
1147   // loads the lvalue formed by the subscript expr.  However, we have to be
1148   // careful, because the base of a vector subscript is occasionally an rvalue,
1149   // so we can't get it as an lvalue.
1150   if (!E->getBase()->getType()->isVectorType())
1151     return EmitLoadOfLValue(E);
1152 
1153   // Handle the vector case.  The base must be a vector, the index must be an
1154   // integer value.
1155   Value *Base = Visit(E->getBase());
1156   Value *Idx  = Visit(E->getIdx());
1157   QualType IdxTy = E->getIdx()->getType();
1158 
1159   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1160     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1161 
1162   return Builder.CreateExtractElement(Base, Idx, "vecext");
1163 }
1164 
1165 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1166                                   unsigned Off, llvm::Type *I32Ty) {
1167   int MV = SVI->getMaskValue(Idx);
1168   if (MV == -1)
1169     return llvm::UndefValue::get(I32Ty);
1170   return llvm::ConstantInt::get(I32Ty, Off+MV);
1171 }
1172 
1173 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1174   if (C->getBitWidth() != 32) {
1175       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1176                                                     C->getZExtValue()) &&
1177              "Index operand too large for shufflevector mask!");
1178       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1179   }
1180   return C;
1181 }
1182 
1183 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1184   bool Ignore = TestAndClearIgnoreResultAssign();
1185   (void)Ignore;
1186   assert (Ignore == false && "init list ignored");
1187   unsigned NumInitElements = E->getNumInits();
1188 
1189   if (E->hadArrayRangeDesignator())
1190     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1191 
1192   llvm::VectorType *VType =
1193     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1194 
1195   if (!VType) {
1196     if (NumInitElements == 0) {
1197       // C++11 value-initialization for the scalar.
1198       return EmitNullValue(E->getType());
1199     }
1200     // We have a scalar in braces. Just use the first element.
1201     return Visit(E->getInit(0));
1202   }
1203 
1204   unsigned ResElts = VType->getNumElements();
1205 
1206   // Loop over initializers collecting the Value for each, and remembering
1207   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1208   // us to fold the shuffle for the swizzle into the shuffle for the vector
1209   // initializer, since LLVM optimizers generally do not want to touch
1210   // shuffles.
1211   unsigned CurIdx = 0;
1212   bool VIsUndefShuffle = false;
1213   llvm::Value *V = llvm::UndefValue::get(VType);
1214   for (unsigned i = 0; i != NumInitElements; ++i) {
1215     Expr *IE = E->getInit(i);
1216     Value *Init = Visit(IE);
1217     SmallVector<llvm::Constant*, 16> Args;
1218 
1219     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1220 
1221     // Handle scalar elements.  If the scalar initializer is actually one
1222     // element of a different vector of the same width, use shuffle instead of
1223     // extract+insert.
1224     if (!VVT) {
1225       if (isa<ExtVectorElementExpr>(IE)) {
1226         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1227 
1228         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1229           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1230           Value *LHS = nullptr, *RHS = nullptr;
1231           if (CurIdx == 0) {
1232             // insert into undef -> shuffle (src, undef)
1233             // shufflemask must use an i32
1234             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1235             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1236 
1237             LHS = EI->getVectorOperand();
1238             RHS = V;
1239             VIsUndefShuffle = true;
1240           } else if (VIsUndefShuffle) {
1241             // insert into undefshuffle && size match -> shuffle (v, src)
1242             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1243             for (unsigned j = 0; j != CurIdx; ++j)
1244               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1245             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1246             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1247 
1248             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1249             RHS = EI->getVectorOperand();
1250             VIsUndefShuffle = false;
1251           }
1252           if (!Args.empty()) {
1253             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1254             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1255             ++CurIdx;
1256             continue;
1257           }
1258         }
1259       }
1260       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1261                                       "vecinit");
1262       VIsUndefShuffle = false;
1263       ++CurIdx;
1264       continue;
1265     }
1266 
1267     unsigned InitElts = VVT->getNumElements();
1268 
1269     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1270     // input is the same width as the vector being constructed, generate an
1271     // optimized shuffle of the swizzle input into the result.
1272     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1273     if (isa<ExtVectorElementExpr>(IE)) {
1274       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1275       Value *SVOp = SVI->getOperand(0);
1276       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1277 
1278       if (OpTy->getNumElements() == ResElts) {
1279         for (unsigned j = 0; j != CurIdx; ++j) {
1280           // If the current vector initializer is a shuffle with undef, merge
1281           // this shuffle directly into it.
1282           if (VIsUndefShuffle) {
1283             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1284                                       CGF.Int32Ty));
1285           } else {
1286             Args.push_back(Builder.getInt32(j));
1287           }
1288         }
1289         for (unsigned j = 0, je = InitElts; j != je; ++j)
1290           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1291         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1292 
1293         if (VIsUndefShuffle)
1294           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1295 
1296         Init = SVOp;
1297       }
1298     }
1299 
1300     // Extend init to result vector length, and then shuffle its contribution
1301     // to the vector initializer into V.
1302     if (Args.empty()) {
1303       for (unsigned j = 0; j != InitElts; ++j)
1304         Args.push_back(Builder.getInt32(j));
1305       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1306       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1307       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1308                                          Mask, "vext");
1309 
1310       Args.clear();
1311       for (unsigned j = 0; j != CurIdx; ++j)
1312         Args.push_back(Builder.getInt32(j));
1313       for (unsigned j = 0; j != InitElts; ++j)
1314         Args.push_back(Builder.getInt32(j+Offset));
1315       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1316     }
1317 
1318     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1319     // merging subsequent shuffles into this one.
1320     if (CurIdx == 0)
1321       std::swap(V, Init);
1322     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1323     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1324     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1325     CurIdx += InitElts;
1326   }
1327 
1328   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1329   // Emit remaining default initializers.
1330   llvm::Type *EltTy = VType->getElementType();
1331 
1332   // Emit remaining default initializers
1333   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1334     Value *Idx = Builder.getInt32(CurIdx);
1335     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1336     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1337   }
1338   return V;
1339 }
1340 
1341 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1342   const Expr *E = CE->getSubExpr();
1343 
1344   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1345     return false;
1346 
1347   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1348     // We always assume that 'this' is never null.
1349     return false;
1350   }
1351 
1352   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1353     // And that glvalue casts are never null.
1354     if (ICE->getValueKind() != VK_RValue)
1355       return false;
1356   }
1357 
1358   return true;
1359 }
1360 
1361 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1362 // have to handle a more broad range of conversions than explicit casts, as they
1363 // handle things like function to ptr-to-function decay etc.
1364 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1365   Expr *E = CE->getSubExpr();
1366   QualType DestTy = CE->getType();
1367   CastKind Kind = CE->getCastKind();
1368 
1369   // These cases are generally not written to ignore the result of
1370   // evaluating their sub-expressions, so we clear this now.
1371   bool Ignored = TestAndClearIgnoreResultAssign();
1372 
1373   // Since almost all cast kinds apply to scalars, this switch doesn't have
1374   // a default case, so the compiler will warn on a missing case.  The cases
1375   // are in the same order as in the CastKind enum.
1376   switch (Kind) {
1377   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1378   case CK_BuiltinFnToFnPtr:
1379     llvm_unreachable("builtin functions are handled elsewhere");
1380 
1381   case CK_LValueBitCast:
1382   case CK_ObjCObjectLValueCast: {
1383     Address Addr = EmitLValue(E).getAddress();
1384     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1385     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1386     return EmitLoadOfLValue(LV, CE->getExprLoc());
1387   }
1388 
1389   case CK_CPointerToObjCPointerCast:
1390   case CK_BlockPointerToObjCPointerCast:
1391   case CK_AnyPointerToBlockPointerCast:
1392   case CK_BitCast: {
1393     Value *Src = Visit(const_cast<Expr*>(E));
1394     llvm::Type *SrcTy = Src->getType();
1395     llvm::Type *DstTy = ConvertType(DestTy);
1396     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1397         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1398       llvm_unreachable("wrong cast for pointers in different address spaces"
1399                        "(must be an address space cast)!");
1400     }
1401 
1402     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1403       if (auto PT = DestTy->getAs<PointerType>())
1404         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1405                                       /*MayBeNull=*/true,
1406                                       CodeGenFunction::CFITCK_UnrelatedCast,
1407                                       CE->getLocStart());
1408     }
1409 
1410     return Builder.CreateBitCast(Src, DstTy);
1411   }
1412   case CK_AddressSpaceConversion: {
1413     Value *Src = Visit(const_cast<Expr*>(E));
1414     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1415   }
1416   case CK_AtomicToNonAtomic:
1417   case CK_NonAtomicToAtomic:
1418   case CK_NoOp:
1419   case CK_UserDefinedConversion:
1420     return Visit(const_cast<Expr*>(E));
1421 
1422   case CK_BaseToDerived: {
1423     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1424     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1425 
1426     Address Base = CGF.EmitPointerWithAlignment(E);
1427     Address Derived =
1428       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1429                                    CE->path_begin(), CE->path_end(),
1430                                    CGF.ShouldNullCheckClassCastValue(CE));
1431 
1432     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1433     // performed and the object is not of the derived type.
1434     if (CGF.sanitizePerformTypeCheck())
1435       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1436                         Derived.getPointer(), DestTy->getPointeeType());
1437 
1438     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1439       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1440                                     Derived.getPointer(),
1441                                     /*MayBeNull=*/true,
1442                                     CodeGenFunction::CFITCK_DerivedCast,
1443                                     CE->getLocStart());
1444 
1445     return Derived.getPointer();
1446   }
1447   case CK_UncheckedDerivedToBase:
1448   case CK_DerivedToBase: {
1449     // The EmitPointerWithAlignment path does this fine; just discard
1450     // the alignment.
1451     return CGF.EmitPointerWithAlignment(CE).getPointer();
1452   }
1453 
1454   case CK_Dynamic: {
1455     Address V = CGF.EmitPointerWithAlignment(E);
1456     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1457     return CGF.EmitDynamicCast(V, DCE);
1458   }
1459 
1460   case CK_ArrayToPointerDecay:
1461     return CGF.EmitArrayToPointerDecay(E).getPointer();
1462   case CK_FunctionToPointerDecay:
1463     return EmitLValue(E).getPointer();
1464 
1465   case CK_NullToPointer:
1466     if (MustVisitNullValue(E))
1467       (void) Visit(E);
1468 
1469     return llvm::ConstantPointerNull::get(
1470                                cast<llvm::PointerType>(ConvertType(DestTy)));
1471 
1472   case CK_NullToMemberPointer: {
1473     if (MustVisitNullValue(E))
1474       (void) Visit(E);
1475 
1476     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1477     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1478   }
1479 
1480   case CK_ReinterpretMemberPointer:
1481   case CK_BaseToDerivedMemberPointer:
1482   case CK_DerivedToBaseMemberPointer: {
1483     Value *Src = Visit(E);
1484 
1485     // Note that the AST doesn't distinguish between checked and
1486     // unchecked member pointer conversions, so we always have to
1487     // implement checked conversions here.  This is inefficient when
1488     // actual control flow may be required in order to perform the
1489     // check, which it is for data member pointers (but not member
1490     // function pointers on Itanium and ARM).
1491     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1492   }
1493 
1494   case CK_ARCProduceObject:
1495     return CGF.EmitARCRetainScalarExpr(E);
1496   case CK_ARCConsumeObject:
1497     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1498   case CK_ARCReclaimReturnedObject:
1499     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1500   case CK_ARCExtendBlockObject:
1501     return CGF.EmitARCExtendBlockObject(E);
1502 
1503   case CK_CopyAndAutoreleaseBlockObject:
1504     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1505 
1506   case CK_FloatingRealToComplex:
1507   case CK_FloatingComplexCast:
1508   case CK_IntegralRealToComplex:
1509   case CK_IntegralComplexCast:
1510   case CK_IntegralComplexToFloatingComplex:
1511   case CK_FloatingComplexToIntegralComplex:
1512   case CK_ConstructorConversion:
1513   case CK_ToUnion:
1514     llvm_unreachable("scalar cast to non-scalar value");
1515 
1516   case CK_LValueToRValue:
1517     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1518     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1519     return Visit(const_cast<Expr*>(E));
1520 
1521   case CK_IntegralToPointer: {
1522     Value *Src = Visit(const_cast<Expr*>(E));
1523 
1524     // First, convert to the correct width so that we control the kind of
1525     // extension.
1526     llvm::Type *MiddleTy = CGF.IntPtrTy;
1527     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1528     llvm::Value* IntResult =
1529       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1530 
1531     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1532   }
1533   case CK_PointerToIntegral:
1534     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1535     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1536 
1537   case CK_ToVoid: {
1538     CGF.EmitIgnoredExpr(E);
1539     return nullptr;
1540   }
1541   case CK_VectorSplat: {
1542     llvm::Type *DstTy = ConvertType(DestTy);
1543     Value *Elt = Visit(const_cast<Expr*>(E));
1544     // Splat the element across to all elements
1545     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1546     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1547   }
1548 
1549   case CK_IntegralCast:
1550   case CK_IntegralToFloating:
1551   case CK_FloatingToIntegral:
1552   case CK_FloatingCast:
1553     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1554                                 CE->getExprLoc());
1555   case CK_BooleanToSignedIntegral:
1556     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1557                                 CE->getExprLoc(),
1558                                 /*TreatBooleanAsSigned=*/true);
1559   case CK_IntegralToBoolean:
1560     return EmitIntToBoolConversion(Visit(E));
1561   case CK_PointerToBoolean:
1562     return EmitPointerToBoolConversion(Visit(E));
1563   case CK_FloatingToBoolean:
1564     return EmitFloatToBoolConversion(Visit(E));
1565   case CK_MemberPointerToBoolean: {
1566     llvm::Value *MemPtr = Visit(E);
1567     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1568     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1569   }
1570 
1571   case CK_FloatingComplexToReal:
1572   case CK_IntegralComplexToReal:
1573     return CGF.EmitComplexExpr(E, false, true).first;
1574 
1575   case CK_FloatingComplexToBoolean:
1576   case CK_IntegralComplexToBoolean: {
1577     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1578 
1579     // TODO: kill this function off, inline appropriate case here
1580     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1581                                          CE->getExprLoc());
1582   }
1583 
1584   case CK_ZeroToOCLEvent: {
1585     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1586     return llvm::Constant::getNullValue(ConvertType(DestTy));
1587   }
1588 
1589   }
1590 
1591   llvm_unreachable("unknown scalar cast");
1592 }
1593 
1594 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1595   CodeGenFunction::StmtExprEvaluation eval(CGF);
1596   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1597                                            !E->getType()->isVoidType());
1598   if (!RetAlloca.isValid())
1599     return nullptr;
1600   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1601                               E->getExprLoc());
1602 }
1603 
1604 //===----------------------------------------------------------------------===//
1605 //                             Unary Operators
1606 //===----------------------------------------------------------------------===//
1607 
1608 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1609                                            llvm::Value *InVal, bool IsInc) {
1610   BinOpInfo BinOp;
1611   BinOp.LHS = InVal;
1612   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1613   BinOp.Ty = E->getType();
1614   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1615   BinOp.FPContractable = false;
1616   BinOp.E = E;
1617   return BinOp;
1618 }
1619 
1620 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1621     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1622   llvm::Value *Amount =
1623       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1624   StringRef Name = IsInc ? "inc" : "dec";
1625   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1626   case LangOptions::SOB_Defined:
1627     return Builder.CreateAdd(InVal, Amount, Name);
1628   case LangOptions::SOB_Undefined:
1629     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1630       return Builder.CreateNSWAdd(InVal, Amount, Name);
1631     // Fall through.
1632   case LangOptions::SOB_Trapping:
1633     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1634   }
1635   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1636 }
1637 
1638 llvm::Value *
1639 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1640                                            bool isInc, bool isPre) {
1641 
1642   QualType type = E->getSubExpr()->getType();
1643   llvm::PHINode *atomicPHI = nullptr;
1644   llvm::Value *value;
1645   llvm::Value *input;
1646 
1647   int amount = (isInc ? 1 : -1);
1648 
1649   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1650     type = atomicTy->getValueType();
1651     if (isInc && type->isBooleanType()) {
1652       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1653       if (isPre) {
1654         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1655           ->setAtomic(llvm::SequentiallyConsistent);
1656         return Builder.getTrue();
1657       }
1658       // For atomic bool increment, we just store true and return it for
1659       // preincrement, do an atomic swap with true for postincrement
1660         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1661             LV.getPointer(), True, llvm::SequentiallyConsistent);
1662     }
1663     // Special case for atomic increment / decrement on integers, emit
1664     // atomicrmw instructions.  We skip this if we want to be doing overflow
1665     // checking, and fall into the slow path with the atomic cmpxchg loop.
1666     if (!type->isBooleanType() && type->isIntegerType() &&
1667         !(type->isUnsignedIntegerType() &&
1668           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1669         CGF.getLangOpts().getSignedOverflowBehavior() !=
1670             LangOptions::SOB_Trapping) {
1671       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1672         llvm::AtomicRMWInst::Sub;
1673       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1674         llvm::Instruction::Sub;
1675       llvm::Value *amt = CGF.EmitToMemory(
1676           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1677       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1678           LV.getPointer(), amt, llvm::SequentiallyConsistent);
1679       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1680     }
1681     value = EmitLoadOfLValue(LV, E->getExprLoc());
1682     input = value;
1683     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1684     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1685     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1686     value = CGF.EmitToMemory(value, type);
1687     Builder.CreateBr(opBB);
1688     Builder.SetInsertPoint(opBB);
1689     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1690     atomicPHI->addIncoming(value, startBB);
1691     value = atomicPHI;
1692   } else {
1693     value = EmitLoadOfLValue(LV, E->getExprLoc());
1694     input = value;
1695   }
1696 
1697   // Special case of integer increment that we have to check first: bool++.
1698   // Due to promotion rules, we get:
1699   //   bool++ -> bool = bool + 1
1700   //          -> bool = (int)bool + 1
1701   //          -> bool = ((int)bool + 1 != 0)
1702   // An interesting aspect of this is that increment is always true.
1703   // Decrement does not have this property.
1704   if (isInc && type->isBooleanType()) {
1705     value = Builder.getTrue();
1706 
1707   // Most common case by far: integer increment.
1708   } else if (type->isIntegerType()) {
1709     // Note that signed integer inc/dec with width less than int can't
1710     // overflow because of promotion rules; we're just eliding a few steps here.
1711     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1712                        CGF.IntTy->getIntegerBitWidth();
1713     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1714       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1715     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1716                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1717       value =
1718           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1719     } else {
1720       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1721       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1722     }
1723 
1724   // Next most common: pointer increment.
1725   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1726     QualType type = ptr->getPointeeType();
1727 
1728     // VLA types don't have constant size.
1729     if (const VariableArrayType *vla
1730           = CGF.getContext().getAsVariableArrayType(type)) {
1731       llvm::Value *numElts = CGF.getVLASize(vla).first;
1732       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1733       if (CGF.getLangOpts().isSignedOverflowDefined())
1734         value = Builder.CreateGEP(value, numElts, "vla.inc");
1735       else
1736         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1737 
1738     // Arithmetic on function pointers (!) is just +-1.
1739     } else if (type->isFunctionType()) {
1740       llvm::Value *amt = Builder.getInt32(amount);
1741 
1742       value = CGF.EmitCastToVoidPtr(value);
1743       if (CGF.getLangOpts().isSignedOverflowDefined())
1744         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1745       else
1746         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1747       value = Builder.CreateBitCast(value, input->getType());
1748 
1749     // For everything else, we can just do a simple increment.
1750     } else {
1751       llvm::Value *amt = Builder.getInt32(amount);
1752       if (CGF.getLangOpts().isSignedOverflowDefined())
1753         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1754       else
1755         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1756     }
1757 
1758   // Vector increment/decrement.
1759   } else if (type->isVectorType()) {
1760     if (type->hasIntegerRepresentation()) {
1761       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1762 
1763       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1764     } else {
1765       value = Builder.CreateFAdd(
1766                   value,
1767                   llvm::ConstantFP::get(value->getType(), amount),
1768                   isInc ? "inc" : "dec");
1769     }
1770 
1771   // Floating point.
1772   } else if (type->isRealFloatingType()) {
1773     // Add the inc/dec to the real part.
1774     llvm::Value *amt;
1775 
1776     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1777       // Another special case: half FP increment should be done via float
1778       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1779         value = Builder.CreateCall(
1780             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1781                                  CGF.CGM.FloatTy),
1782             input, "incdec.conv");
1783       } else {
1784         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1785       }
1786     }
1787 
1788     if (value->getType()->isFloatTy())
1789       amt = llvm::ConstantFP::get(VMContext,
1790                                   llvm::APFloat(static_cast<float>(amount)));
1791     else if (value->getType()->isDoubleTy())
1792       amt = llvm::ConstantFP::get(VMContext,
1793                                   llvm::APFloat(static_cast<double>(amount)));
1794     else {
1795       // Remaining types are either Half or LongDouble.  Convert from float.
1796       llvm::APFloat F(static_cast<float>(amount));
1797       bool ignored;
1798       // Don't use getFloatTypeSemantics because Half isn't
1799       // necessarily represented using the "half" LLVM type.
1800       F.convert(value->getType()->isHalfTy()
1801                     ? CGF.getTarget().getHalfFormat()
1802                     : CGF.getTarget().getLongDoubleFormat(),
1803                 llvm::APFloat::rmTowardZero, &ignored);
1804       amt = llvm::ConstantFP::get(VMContext, F);
1805     }
1806     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1807 
1808     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1809       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1810         value = Builder.CreateCall(
1811             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1812                                  CGF.CGM.FloatTy),
1813             value, "incdec.conv");
1814       } else {
1815         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1816       }
1817     }
1818 
1819   // Objective-C pointer types.
1820   } else {
1821     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1822     value = CGF.EmitCastToVoidPtr(value);
1823 
1824     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1825     if (!isInc) size = -size;
1826     llvm::Value *sizeValue =
1827       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1828 
1829     if (CGF.getLangOpts().isSignedOverflowDefined())
1830       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1831     else
1832       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1833     value = Builder.CreateBitCast(value, input->getType());
1834   }
1835 
1836   if (atomicPHI) {
1837     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1838     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1839     auto Pair = CGF.EmitAtomicCompareExchange(
1840         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1841     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1842     llvm::Value *success = Pair.second;
1843     atomicPHI->addIncoming(old, opBB);
1844     Builder.CreateCondBr(success, contBB, opBB);
1845     Builder.SetInsertPoint(contBB);
1846     return isPre ? value : input;
1847   }
1848 
1849   // Store the updated result through the lvalue.
1850   if (LV.isBitField())
1851     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1852   else
1853     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1854 
1855   // If this is a postinc, return the value read from memory, otherwise use the
1856   // updated value.
1857   return isPre ? value : input;
1858 }
1859 
1860 
1861 
1862 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1863   TestAndClearIgnoreResultAssign();
1864   // Emit unary minus with EmitSub so we handle overflow cases etc.
1865   BinOpInfo BinOp;
1866   BinOp.RHS = Visit(E->getSubExpr());
1867 
1868   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1869     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1870   else
1871     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1872   BinOp.Ty = E->getType();
1873   BinOp.Opcode = BO_Sub;
1874   BinOp.FPContractable = false;
1875   BinOp.E = E;
1876   return EmitSub(BinOp);
1877 }
1878 
1879 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1880   TestAndClearIgnoreResultAssign();
1881   Value *Op = Visit(E->getSubExpr());
1882   return Builder.CreateNot(Op, "neg");
1883 }
1884 
1885 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1886   // Perform vector logical not on comparison with zero vector.
1887   if (E->getType()->isExtVectorType()) {
1888     Value *Oper = Visit(E->getSubExpr());
1889     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1890     Value *Result;
1891     if (Oper->getType()->isFPOrFPVectorTy())
1892       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1893     else
1894       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1895     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1896   }
1897 
1898   // Compare operand to zero.
1899   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1900 
1901   // Invert value.
1902   // TODO: Could dynamically modify easy computations here.  For example, if
1903   // the operand is an icmp ne, turn into icmp eq.
1904   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1905 
1906   // ZExt result to the expr type.
1907   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1908 }
1909 
1910 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1911   // Try folding the offsetof to a constant.
1912   llvm::APSInt Value;
1913   if (E->EvaluateAsInt(Value, CGF.getContext()))
1914     return Builder.getInt(Value);
1915 
1916   // Loop over the components of the offsetof to compute the value.
1917   unsigned n = E->getNumComponents();
1918   llvm::Type* ResultType = ConvertType(E->getType());
1919   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1920   QualType CurrentType = E->getTypeSourceInfo()->getType();
1921   for (unsigned i = 0; i != n; ++i) {
1922     OffsetOfNode ON = E->getComponent(i);
1923     llvm::Value *Offset = nullptr;
1924     switch (ON.getKind()) {
1925     case OffsetOfNode::Array: {
1926       // Compute the index
1927       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1928       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1929       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1930       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1931 
1932       // Save the element type
1933       CurrentType =
1934           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1935 
1936       // Compute the element size
1937       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1938           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1939 
1940       // Multiply out to compute the result
1941       Offset = Builder.CreateMul(Idx, ElemSize);
1942       break;
1943     }
1944 
1945     case OffsetOfNode::Field: {
1946       FieldDecl *MemberDecl = ON.getField();
1947       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1948       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1949 
1950       // Compute the index of the field in its parent.
1951       unsigned i = 0;
1952       // FIXME: It would be nice if we didn't have to loop here!
1953       for (RecordDecl::field_iterator Field = RD->field_begin(),
1954                                       FieldEnd = RD->field_end();
1955            Field != FieldEnd; ++Field, ++i) {
1956         if (*Field == MemberDecl)
1957           break;
1958       }
1959       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1960 
1961       // Compute the offset to the field
1962       int64_t OffsetInt = RL.getFieldOffset(i) /
1963                           CGF.getContext().getCharWidth();
1964       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1965 
1966       // Save the element type.
1967       CurrentType = MemberDecl->getType();
1968       break;
1969     }
1970 
1971     case OffsetOfNode::Identifier:
1972       llvm_unreachable("dependent __builtin_offsetof");
1973 
1974     case OffsetOfNode::Base: {
1975       if (ON.getBase()->isVirtual()) {
1976         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1977         continue;
1978       }
1979 
1980       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1981       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1982 
1983       // Save the element type.
1984       CurrentType = ON.getBase()->getType();
1985 
1986       // Compute the offset to the base.
1987       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1988       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1989       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1990       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1991       break;
1992     }
1993     }
1994     Result = Builder.CreateAdd(Result, Offset);
1995   }
1996   return Result;
1997 }
1998 
1999 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2000 /// argument of the sizeof expression as an integer.
2001 Value *
2002 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2003                               const UnaryExprOrTypeTraitExpr *E) {
2004   QualType TypeToSize = E->getTypeOfArgument();
2005   if (E->getKind() == UETT_SizeOf) {
2006     if (const VariableArrayType *VAT =
2007           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2008       if (E->isArgumentType()) {
2009         // sizeof(type) - make sure to emit the VLA size.
2010         CGF.EmitVariablyModifiedType(TypeToSize);
2011       } else {
2012         // C99 6.5.3.4p2: If the argument is an expression of type
2013         // VLA, it is evaluated.
2014         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2015       }
2016 
2017       QualType eltType;
2018       llvm::Value *numElts;
2019       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2020 
2021       llvm::Value *size = numElts;
2022 
2023       // Scale the number of non-VLA elements by the non-VLA element size.
2024       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2025       if (!eltSize.isOne())
2026         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2027 
2028       return size;
2029     }
2030   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2031     auto Alignment =
2032         CGF.getContext()
2033             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2034                 E->getTypeOfArgument()->getPointeeType()))
2035             .getQuantity();
2036     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2037   }
2038 
2039   // If this isn't sizeof(vla), the result must be constant; use the constant
2040   // folding logic so we don't have to duplicate it here.
2041   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2042 }
2043 
2044 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2045   Expr *Op = E->getSubExpr();
2046   if (Op->getType()->isAnyComplexType()) {
2047     // If it's an l-value, load through the appropriate subobject l-value.
2048     // Note that we have to ask E because Op might be an l-value that
2049     // this won't work for, e.g. an Obj-C property.
2050     if (E->isGLValue())
2051       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2052                                   E->getExprLoc()).getScalarVal();
2053 
2054     // Otherwise, calculate and project.
2055     return CGF.EmitComplexExpr(Op, false, true).first;
2056   }
2057 
2058   return Visit(Op);
2059 }
2060 
2061 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2062   Expr *Op = E->getSubExpr();
2063   if (Op->getType()->isAnyComplexType()) {
2064     // If it's an l-value, load through the appropriate subobject l-value.
2065     // Note that we have to ask E because Op might be an l-value that
2066     // this won't work for, e.g. an Obj-C property.
2067     if (Op->isGLValue())
2068       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2069                                   E->getExprLoc()).getScalarVal();
2070 
2071     // Otherwise, calculate and project.
2072     return CGF.EmitComplexExpr(Op, true, false).second;
2073   }
2074 
2075   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2076   // effects are evaluated, but not the actual value.
2077   if (Op->isGLValue())
2078     CGF.EmitLValue(Op);
2079   else
2080     CGF.EmitScalarExpr(Op, true);
2081   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2082 }
2083 
2084 //===----------------------------------------------------------------------===//
2085 //                           Binary Operators
2086 //===----------------------------------------------------------------------===//
2087 
2088 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2089   TestAndClearIgnoreResultAssign();
2090   BinOpInfo Result;
2091   Result.LHS = Visit(E->getLHS());
2092   Result.RHS = Visit(E->getRHS());
2093   Result.Ty  = E->getType();
2094   Result.Opcode = E->getOpcode();
2095   Result.FPContractable = E->isFPContractable();
2096   Result.E = E;
2097   return Result;
2098 }
2099 
2100 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2101                                               const CompoundAssignOperator *E,
2102                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2103                                                    Value *&Result) {
2104   QualType LHSTy = E->getLHS()->getType();
2105   BinOpInfo OpInfo;
2106 
2107   if (E->getComputationResultType()->isAnyComplexType())
2108     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2109 
2110   // Emit the RHS first.  __block variables need to have the rhs evaluated
2111   // first, plus this should improve codegen a little.
2112   OpInfo.RHS = Visit(E->getRHS());
2113   OpInfo.Ty = E->getComputationResultType();
2114   OpInfo.Opcode = E->getOpcode();
2115   OpInfo.FPContractable = E->isFPContractable();
2116   OpInfo.E = E;
2117   // Load/convert the LHS.
2118   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2119 
2120   llvm::PHINode *atomicPHI = nullptr;
2121   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2122     QualType type = atomicTy->getValueType();
2123     if (!type->isBooleanType() && type->isIntegerType() &&
2124         !(type->isUnsignedIntegerType() &&
2125           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2126         CGF.getLangOpts().getSignedOverflowBehavior() !=
2127             LangOptions::SOB_Trapping) {
2128       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2129       switch (OpInfo.Opcode) {
2130         // We don't have atomicrmw operands for *, %, /, <<, >>
2131         case BO_MulAssign: case BO_DivAssign:
2132         case BO_RemAssign:
2133         case BO_ShlAssign:
2134         case BO_ShrAssign:
2135           break;
2136         case BO_AddAssign:
2137           aop = llvm::AtomicRMWInst::Add;
2138           break;
2139         case BO_SubAssign:
2140           aop = llvm::AtomicRMWInst::Sub;
2141           break;
2142         case BO_AndAssign:
2143           aop = llvm::AtomicRMWInst::And;
2144           break;
2145         case BO_XorAssign:
2146           aop = llvm::AtomicRMWInst::Xor;
2147           break;
2148         case BO_OrAssign:
2149           aop = llvm::AtomicRMWInst::Or;
2150           break;
2151         default:
2152           llvm_unreachable("Invalid compound assignment type");
2153       }
2154       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2155         llvm::Value *amt = CGF.EmitToMemory(
2156             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2157                                  E->getExprLoc()),
2158             LHSTy);
2159         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2160             llvm::SequentiallyConsistent);
2161         return LHSLV;
2162       }
2163     }
2164     // FIXME: For floating point types, we should be saving and restoring the
2165     // floating point environment in the loop.
2166     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2167     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2168     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2169     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2170     Builder.CreateBr(opBB);
2171     Builder.SetInsertPoint(opBB);
2172     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2173     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2174     OpInfo.LHS = atomicPHI;
2175   }
2176   else
2177     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2178 
2179   SourceLocation Loc = E->getExprLoc();
2180   OpInfo.LHS =
2181       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2182 
2183   // Expand the binary operator.
2184   Result = (this->*Func)(OpInfo);
2185 
2186   // Convert the result back to the LHS type.
2187   Result =
2188       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2189 
2190   if (atomicPHI) {
2191     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2192     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2193     auto Pair = CGF.EmitAtomicCompareExchange(
2194         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2195     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2196     llvm::Value *success = Pair.second;
2197     atomicPHI->addIncoming(old, opBB);
2198     Builder.CreateCondBr(success, contBB, opBB);
2199     Builder.SetInsertPoint(contBB);
2200     return LHSLV;
2201   }
2202 
2203   // Store the result value into the LHS lvalue. Bit-fields are handled
2204   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2205   // 'An assignment expression has the value of the left operand after the
2206   // assignment...'.
2207   if (LHSLV.isBitField())
2208     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2209   else
2210     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2211 
2212   return LHSLV;
2213 }
2214 
2215 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2216                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2217   bool Ignore = TestAndClearIgnoreResultAssign();
2218   Value *RHS;
2219   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2220 
2221   // If the result is clearly ignored, return now.
2222   if (Ignore)
2223     return nullptr;
2224 
2225   // The result of an assignment in C is the assigned r-value.
2226   if (!CGF.getLangOpts().CPlusPlus)
2227     return RHS;
2228 
2229   // If the lvalue is non-volatile, return the computed value of the assignment.
2230   if (!LHS.isVolatileQualified())
2231     return RHS;
2232 
2233   // Otherwise, reload the value.
2234   return EmitLoadOfLValue(LHS, E->getExprLoc());
2235 }
2236 
2237 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2238     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2239   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2240 
2241   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2242     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2243                                     SanitizerKind::IntegerDivideByZero));
2244   }
2245 
2246   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2247       Ops.Ty->hasSignedIntegerRepresentation()) {
2248     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2249 
2250     llvm::Value *IntMin =
2251       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2252     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2253 
2254     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2255     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2256     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2257     Checks.push_back(
2258         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2259   }
2260 
2261   if (Checks.size() > 0)
2262     EmitBinOpCheck(Checks, Ops);
2263 }
2264 
2265 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2266   {
2267     CodeGenFunction::SanitizerScope SanScope(&CGF);
2268     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2269          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2270         Ops.Ty->isIntegerType()) {
2271       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2272       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2273     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2274                Ops.Ty->isRealFloatingType()) {
2275       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2276       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2277       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2278                      Ops);
2279     }
2280   }
2281 
2282   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2283     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2284     if (CGF.getLangOpts().OpenCL) {
2285       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2286       llvm::Type *ValTy = Val->getType();
2287       if (ValTy->isFloatTy() ||
2288           (isa<llvm::VectorType>(ValTy) &&
2289            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2290         CGF.SetFPAccuracy(Val, 2.5);
2291     }
2292     return Val;
2293   }
2294   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2295     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2296   else
2297     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2298 }
2299 
2300 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2301   // Rem in C can't be a floating point type: C99 6.5.5p2.
2302   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2303     CodeGenFunction::SanitizerScope SanScope(&CGF);
2304     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2305 
2306     if (Ops.Ty->isIntegerType())
2307       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2308   }
2309 
2310   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2311     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2312   else
2313     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2314 }
2315 
2316 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2317   unsigned IID;
2318   unsigned OpID = 0;
2319 
2320   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2321   switch (Ops.Opcode) {
2322   case BO_Add:
2323   case BO_AddAssign:
2324     OpID = 1;
2325     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2326                      llvm::Intrinsic::uadd_with_overflow;
2327     break;
2328   case BO_Sub:
2329   case BO_SubAssign:
2330     OpID = 2;
2331     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2332                      llvm::Intrinsic::usub_with_overflow;
2333     break;
2334   case BO_Mul:
2335   case BO_MulAssign:
2336     OpID = 3;
2337     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2338                      llvm::Intrinsic::umul_with_overflow;
2339     break;
2340   default:
2341     llvm_unreachable("Unsupported operation for overflow detection");
2342   }
2343   OpID <<= 1;
2344   if (isSigned)
2345     OpID |= 1;
2346 
2347   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2348 
2349   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2350 
2351   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2352   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2353   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2354 
2355   // Handle overflow with llvm.trap if no custom handler has been specified.
2356   const std::string *handlerName =
2357     &CGF.getLangOpts().OverflowHandler;
2358   if (handlerName->empty()) {
2359     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2360     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2361     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2362       CodeGenFunction::SanitizerScope SanScope(&CGF);
2363       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2364       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2365                               : SanitizerKind::UnsignedIntegerOverflow;
2366       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2367     } else
2368       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2369     return result;
2370   }
2371 
2372   // Branch in case of overflow.
2373   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2374   llvm::Function::iterator insertPt = initialBB->getIterator();
2375   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2376                                                       &*std::next(insertPt));
2377   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2378 
2379   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2380 
2381   // If an overflow handler is set, then we want to call it and then use its
2382   // result, if it returns.
2383   Builder.SetInsertPoint(overflowBB);
2384 
2385   // Get the overflow handler.
2386   llvm::Type *Int8Ty = CGF.Int8Ty;
2387   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2388   llvm::FunctionType *handlerTy =
2389       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2390   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2391 
2392   // Sign extend the args to 64-bit, so that we can use the same handler for
2393   // all types of overflow.
2394   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2395   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2396 
2397   // Call the handler with the two arguments, the operation, and the size of
2398   // the result.
2399   llvm::Value *handlerArgs[] = {
2400     lhs,
2401     rhs,
2402     Builder.getInt8(OpID),
2403     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2404   };
2405   llvm::Value *handlerResult =
2406     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2407 
2408   // Truncate the result back to the desired size.
2409   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2410   Builder.CreateBr(continueBB);
2411 
2412   Builder.SetInsertPoint(continueBB);
2413   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2414   phi->addIncoming(result, initialBB);
2415   phi->addIncoming(handlerResult, overflowBB);
2416 
2417   return phi;
2418 }
2419 
2420 /// Emit pointer + index arithmetic.
2421 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2422                                     const BinOpInfo &op,
2423                                     bool isSubtraction) {
2424   // Must have binary (not unary) expr here.  Unary pointer
2425   // increment/decrement doesn't use this path.
2426   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2427 
2428   Value *pointer = op.LHS;
2429   Expr *pointerOperand = expr->getLHS();
2430   Value *index = op.RHS;
2431   Expr *indexOperand = expr->getRHS();
2432 
2433   // In a subtraction, the LHS is always the pointer.
2434   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2435     std::swap(pointer, index);
2436     std::swap(pointerOperand, indexOperand);
2437   }
2438 
2439   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2440   if (width != CGF.PointerWidthInBits) {
2441     // Zero-extend or sign-extend the pointer value according to
2442     // whether the index is signed or not.
2443     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2444     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2445                                       "idx.ext");
2446   }
2447 
2448   // If this is subtraction, negate the index.
2449   if (isSubtraction)
2450     index = CGF.Builder.CreateNeg(index, "idx.neg");
2451 
2452   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2453     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2454                         /*Accessed*/ false);
2455 
2456   const PointerType *pointerType
2457     = pointerOperand->getType()->getAs<PointerType>();
2458   if (!pointerType) {
2459     QualType objectType = pointerOperand->getType()
2460                                         ->castAs<ObjCObjectPointerType>()
2461                                         ->getPointeeType();
2462     llvm::Value *objectSize
2463       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2464 
2465     index = CGF.Builder.CreateMul(index, objectSize);
2466 
2467     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2468     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2469     return CGF.Builder.CreateBitCast(result, pointer->getType());
2470   }
2471 
2472   QualType elementType = pointerType->getPointeeType();
2473   if (const VariableArrayType *vla
2474         = CGF.getContext().getAsVariableArrayType(elementType)) {
2475     // The element count here is the total number of non-VLA elements.
2476     llvm::Value *numElements = CGF.getVLASize(vla).first;
2477 
2478     // Effectively, the multiply by the VLA size is part of the GEP.
2479     // GEP indexes are signed, and scaling an index isn't permitted to
2480     // signed-overflow, so we use the same semantics for our explicit
2481     // multiply.  We suppress this if overflow is not undefined behavior.
2482     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2483       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2484       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2485     } else {
2486       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2487       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2488     }
2489     return pointer;
2490   }
2491 
2492   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2493   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2494   // future proof.
2495   if (elementType->isVoidType() || elementType->isFunctionType()) {
2496     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2497     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2498     return CGF.Builder.CreateBitCast(result, pointer->getType());
2499   }
2500 
2501   if (CGF.getLangOpts().isSignedOverflowDefined())
2502     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2503 
2504   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2505 }
2506 
2507 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2508 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2509 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2510 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2511 // efficient operations.
2512 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2513                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2514                            bool negMul, bool negAdd) {
2515   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2516 
2517   Value *MulOp0 = MulOp->getOperand(0);
2518   Value *MulOp1 = MulOp->getOperand(1);
2519   if (negMul) {
2520     MulOp0 =
2521       Builder.CreateFSub(
2522         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2523         "neg");
2524   } else if (negAdd) {
2525     Addend =
2526       Builder.CreateFSub(
2527         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2528         "neg");
2529   }
2530 
2531   Value *FMulAdd = Builder.CreateCall(
2532       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2533       {MulOp0, MulOp1, Addend});
2534    MulOp->eraseFromParent();
2535 
2536    return FMulAdd;
2537 }
2538 
2539 // Check whether it would be legal to emit an fmuladd intrinsic call to
2540 // represent op and if so, build the fmuladd.
2541 //
2542 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2543 // Does NOT check the type of the operation - it's assumed that this function
2544 // will be called from contexts where it's known that the type is contractable.
2545 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2546                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2547                          bool isSub=false) {
2548 
2549   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2550           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2551          "Only fadd/fsub can be the root of an fmuladd.");
2552 
2553   // Check whether this op is marked as fusable.
2554   if (!op.FPContractable)
2555     return nullptr;
2556 
2557   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2558   // either disabled, or handled entirely by the LLVM backend).
2559   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2560     return nullptr;
2561 
2562   // We have a potentially fusable op. Look for a mul on one of the operands.
2563   // Also, make sure that the mul result isn't used directly. In that case,
2564   // there's no point creating a muladd operation.
2565   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2566     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2567         LHSBinOp->use_empty())
2568       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2569   }
2570   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2571     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2572         RHSBinOp->use_empty())
2573       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2574   }
2575 
2576   return nullptr;
2577 }
2578 
2579 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2580   if (op.LHS->getType()->isPointerTy() ||
2581       op.RHS->getType()->isPointerTy())
2582     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2583 
2584   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2585     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2586     case LangOptions::SOB_Defined:
2587       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2588     case LangOptions::SOB_Undefined:
2589       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2590         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2591       // Fall through.
2592     case LangOptions::SOB_Trapping:
2593       return EmitOverflowCheckedBinOp(op);
2594     }
2595   }
2596 
2597   if (op.Ty->isUnsignedIntegerType() &&
2598       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2599     return EmitOverflowCheckedBinOp(op);
2600 
2601   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2602     // Try to form an fmuladd.
2603     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2604       return FMulAdd;
2605 
2606     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2607   }
2608 
2609   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2610 }
2611 
2612 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2613   // The LHS is always a pointer if either side is.
2614   if (!op.LHS->getType()->isPointerTy()) {
2615     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2616       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2617       case LangOptions::SOB_Defined:
2618         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2619       case LangOptions::SOB_Undefined:
2620         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2621           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2622         // Fall through.
2623       case LangOptions::SOB_Trapping:
2624         return EmitOverflowCheckedBinOp(op);
2625       }
2626     }
2627 
2628     if (op.Ty->isUnsignedIntegerType() &&
2629         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2630       return EmitOverflowCheckedBinOp(op);
2631 
2632     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2633       // Try to form an fmuladd.
2634       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2635         return FMulAdd;
2636       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2637     }
2638 
2639     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2640   }
2641 
2642   // If the RHS is not a pointer, then we have normal pointer
2643   // arithmetic.
2644   if (!op.RHS->getType()->isPointerTy())
2645     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2646 
2647   // Otherwise, this is a pointer subtraction.
2648 
2649   // Do the raw subtraction part.
2650   llvm::Value *LHS
2651     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2652   llvm::Value *RHS
2653     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2654   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2655 
2656   // Okay, figure out the element size.
2657   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2658   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2659 
2660   llvm::Value *divisor = nullptr;
2661 
2662   // For a variable-length array, this is going to be non-constant.
2663   if (const VariableArrayType *vla
2664         = CGF.getContext().getAsVariableArrayType(elementType)) {
2665     llvm::Value *numElements;
2666     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2667 
2668     divisor = numElements;
2669 
2670     // Scale the number of non-VLA elements by the non-VLA element size.
2671     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2672     if (!eltSize.isOne())
2673       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2674 
2675   // For everything elese, we can just compute it, safe in the
2676   // assumption that Sema won't let anything through that we can't
2677   // safely compute the size of.
2678   } else {
2679     CharUnits elementSize;
2680     // Handle GCC extension for pointer arithmetic on void* and
2681     // function pointer types.
2682     if (elementType->isVoidType() || elementType->isFunctionType())
2683       elementSize = CharUnits::One();
2684     else
2685       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2686 
2687     // Don't even emit the divide for element size of 1.
2688     if (elementSize.isOne())
2689       return diffInChars;
2690 
2691     divisor = CGF.CGM.getSize(elementSize);
2692   }
2693 
2694   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2695   // pointer difference in C is only defined in the case where both operands
2696   // are pointing to elements of an array.
2697   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2698 }
2699 
2700 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2701   llvm::IntegerType *Ty;
2702   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2703     Ty = cast<llvm::IntegerType>(VT->getElementType());
2704   else
2705     Ty = cast<llvm::IntegerType>(LHS->getType());
2706   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2707 }
2708 
2709 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2710   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2711   // RHS to the same size as the LHS.
2712   Value *RHS = Ops.RHS;
2713   if (Ops.LHS->getType() != RHS->getType())
2714     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2715 
2716   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2717                       Ops.Ty->hasSignedIntegerRepresentation();
2718   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2719   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2720   if (CGF.getLangOpts().OpenCL)
2721     RHS =
2722         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2723   else if ((SanitizeBase || SanitizeExponent) &&
2724            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2725     CodeGenFunction::SanitizerScope SanScope(&CGF);
2726     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2727     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2728     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2729 
2730     if (SanitizeExponent) {
2731       Checks.push_back(
2732           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2733     }
2734 
2735     if (SanitizeBase) {
2736       // Check whether we are shifting any non-zero bits off the top of the
2737       // integer. We only emit this check if exponent is valid - otherwise
2738       // instructions below will have undefined behavior themselves.
2739       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2740       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2741       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2742       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2743       CGF.EmitBlock(CheckShiftBase);
2744       llvm::Value *BitsShiftedOff =
2745         Builder.CreateLShr(Ops.LHS,
2746                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2747                                              /*NUW*/true, /*NSW*/true),
2748                            "shl.check");
2749       if (CGF.getLangOpts().CPlusPlus) {
2750         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2751         // Under C++11's rules, shifting a 1 bit into the sign bit is
2752         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2753         // define signed left shifts, so we use the C99 and C++11 rules there).
2754         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2755         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2756       }
2757       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2758       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2759       CGF.EmitBlock(Cont);
2760       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2761       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2762       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2763       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2764     }
2765 
2766     assert(!Checks.empty());
2767     EmitBinOpCheck(Checks, Ops);
2768   }
2769 
2770   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2771 }
2772 
2773 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2774   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2775   // RHS to the same size as the LHS.
2776   Value *RHS = Ops.RHS;
2777   if (Ops.LHS->getType() != RHS->getType())
2778     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2779 
2780   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2781   if (CGF.getLangOpts().OpenCL)
2782     RHS =
2783         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2784   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2785            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2786     CodeGenFunction::SanitizerScope SanScope(&CGF);
2787     llvm::Value *Valid =
2788         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2789     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2790   }
2791 
2792   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2793     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2794   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2795 }
2796 
2797 enum IntrinsicType { VCMPEQ, VCMPGT };
2798 // return corresponding comparison intrinsic for given vector type
2799 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2800                                         BuiltinType::Kind ElemKind) {
2801   switch (ElemKind) {
2802   default: llvm_unreachable("unexpected element type");
2803   case BuiltinType::Char_U:
2804   case BuiltinType::UChar:
2805     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2806                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2807   case BuiltinType::Char_S:
2808   case BuiltinType::SChar:
2809     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2810                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2811   case BuiltinType::UShort:
2812     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2813                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2814   case BuiltinType::Short:
2815     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2816                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2817   case BuiltinType::UInt:
2818   case BuiltinType::ULong:
2819     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2820                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2821   case BuiltinType::Int:
2822   case BuiltinType::Long:
2823     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2824                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2825   case BuiltinType::Float:
2826     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2827                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2828   }
2829 }
2830 
2831 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2832                                       llvm::CmpInst::Predicate UICmpOpc,
2833                                       llvm::CmpInst::Predicate SICmpOpc,
2834                                       llvm::CmpInst::Predicate FCmpOpc) {
2835   TestAndClearIgnoreResultAssign();
2836   Value *Result;
2837   QualType LHSTy = E->getLHS()->getType();
2838   QualType RHSTy = E->getRHS()->getType();
2839   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2840     assert(E->getOpcode() == BO_EQ ||
2841            E->getOpcode() == BO_NE);
2842     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2843     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2844     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2845                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2846   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2847     Value *LHS = Visit(E->getLHS());
2848     Value *RHS = Visit(E->getRHS());
2849 
2850     // If AltiVec, the comparison results in a numeric type, so we use
2851     // intrinsics comparing vectors and giving 0 or 1 as a result
2852     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2853       // constants for mapping CR6 register bits to predicate result
2854       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2855 
2856       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2857 
2858       // in several cases vector arguments order will be reversed
2859       Value *FirstVecArg = LHS,
2860             *SecondVecArg = RHS;
2861 
2862       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2863       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2864       BuiltinType::Kind ElementKind = BTy->getKind();
2865 
2866       switch(E->getOpcode()) {
2867       default: llvm_unreachable("is not a comparison operation");
2868       case BO_EQ:
2869         CR6 = CR6_LT;
2870         ID = GetIntrinsic(VCMPEQ, ElementKind);
2871         break;
2872       case BO_NE:
2873         CR6 = CR6_EQ;
2874         ID = GetIntrinsic(VCMPEQ, ElementKind);
2875         break;
2876       case BO_LT:
2877         CR6 = CR6_LT;
2878         ID = GetIntrinsic(VCMPGT, ElementKind);
2879         std::swap(FirstVecArg, SecondVecArg);
2880         break;
2881       case BO_GT:
2882         CR6 = CR6_LT;
2883         ID = GetIntrinsic(VCMPGT, ElementKind);
2884         break;
2885       case BO_LE:
2886         if (ElementKind == BuiltinType::Float) {
2887           CR6 = CR6_LT;
2888           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2889           std::swap(FirstVecArg, SecondVecArg);
2890         }
2891         else {
2892           CR6 = CR6_EQ;
2893           ID = GetIntrinsic(VCMPGT, ElementKind);
2894         }
2895         break;
2896       case BO_GE:
2897         if (ElementKind == BuiltinType::Float) {
2898           CR6 = CR6_LT;
2899           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2900         }
2901         else {
2902           CR6 = CR6_EQ;
2903           ID = GetIntrinsic(VCMPGT, ElementKind);
2904           std::swap(FirstVecArg, SecondVecArg);
2905         }
2906         break;
2907       }
2908 
2909       Value *CR6Param = Builder.getInt32(CR6);
2910       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2911       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2912       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2913                                   E->getExprLoc());
2914     }
2915 
2916     if (LHS->getType()->isFPOrFPVectorTy()) {
2917       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2918     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2919       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2920     } else {
2921       // Unsigned integers and pointers.
2922       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2923     }
2924 
2925     // If this is a vector comparison, sign extend the result to the appropriate
2926     // vector integer type and return it (don't convert to bool).
2927     if (LHSTy->isVectorType())
2928       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2929 
2930   } else {
2931     // Complex Comparison: can only be an equality comparison.
2932     CodeGenFunction::ComplexPairTy LHS, RHS;
2933     QualType CETy;
2934     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2935       LHS = CGF.EmitComplexExpr(E->getLHS());
2936       CETy = CTy->getElementType();
2937     } else {
2938       LHS.first = Visit(E->getLHS());
2939       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2940       CETy = LHSTy;
2941     }
2942     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2943       RHS = CGF.EmitComplexExpr(E->getRHS());
2944       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2945                                                      CTy->getElementType()) &&
2946              "The element types must always match.");
2947       (void)CTy;
2948     } else {
2949       RHS.first = Visit(E->getRHS());
2950       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2951       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2952              "The element types must always match.");
2953     }
2954 
2955     Value *ResultR, *ResultI;
2956     if (CETy->isRealFloatingType()) {
2957       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2958       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2959     } else {
2960       // Complex comparisons can only be equality comparisons.  As such, signed
2961       // and unsigned opcodes are the same.
2962       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2963       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2964     }
2965 
2966     if (E->getOpcode() == BO_EQ) {
2967       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2968     } else {
2969       assert(E->getOpcode() == BO_NE &&
2970              "Complex comparison other than == or != ?");
2971       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2972     }
2973   }
2974 
2975   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2976                               E->getExprLoc());
2977 }
2978 
2979 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2980   bool Ignore = TestAndClearIgnoreResultAssign();
2981 
2982   Value *RHS;
2983   LValue LHS;
2984 
2985   switch (E->getLHS()->getType().getObjCLifetime()) {
2986   case Qualifiers::OCL_Strong:
2987     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2988     break;
2989 
2990   case Qualifiers::OCL_Autoreleasing:
2991     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2992     break;
2993 
2994   case Qualifiers::OCL_ExplicitNone:
2995     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
2996     break;
2997 
2998   case Qualifiers::OCL_Weak:
2999     RHS = Visit(E->getRHS());
3000     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3001     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3002     break;
3003 
3004   case Qualifiers::OCL_None:
3005     // __block variables need to have the rhs evaluated first, plus
3006     // this should improve codegen just a little.
3007     RHS = Visit(E->getRHS());
3008     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3009 
3010     // Store the value into the LHS.  Bit-fields are handled specially
3011     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3012     // 'An assignment expression has the value of the left operand after
3013     // the assignment...'.
3014     if (LHS.isBitField())
3015       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3016     else
3017       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3018   }
3019 
3020   // If the result is clearly ignored, return now.
3021   if (Ignore)
3022     return nullptr;
3023 
3024   // The result of an assignment in C is the assigned r-value.
3025   if (!CGF.getLangOpts().CPlusPlus)
3026     return RHS;
3027 
3028   // If the lvalue is non-volatile, return the computed value of the assignment.
3029   if (!LHS.isVolatileQualified())
3030     return RHS;
3031 
3032   // Otherwise, reload the value.
3033   return EmitLoadOfLValue(LHS, E->getExprLoc());
3034 }
3035 
3036 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3037   // Perform vector logical and on comparisons with zero vectors.
3038   if (E->getType()->isVectorType()) {
3039     CGF.incrementProfileCounter(E);
3040 
3041     Value *LHS = Visit(E->getLHS());
3042     Value *RHS = Visit(E->getRHS());
3043     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3044     if (LHS->getType()->isFPOrFPVectorTy()) {
3045       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3046       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3047     } else {
3048       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3049       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3050     }
3051     Value *And = Builder.CreateAnd(LHS, RHS);
3052     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3053   }
3054 
3055   llvm::Type *ResTy = ConvertType(E->getType());
3056 
3057   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3058   // If we have 1 && X, just emit X without inserting the control flow.
3059   bool LHSCondVal;
3060   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3061     if (LHSCondVal) { // If we have 1 && X, just emit X.
3062       CGF.incrementProfileCounter(E);
3063 
3064       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3065       // ZExt result to int or bool.
3066       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3067     }
3068 
3069     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3070     if (!CGF.ContainsLabel(E->getRHS()))
3071       return llvm::Constant::getNullValue(ResTy);
3072   }
3073 
3074   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3075   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3076 
3077   CodeGenFunction::ConditionalEvaluation eval(CGF);
3078 
3079   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3080   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3081                            CGF.getProfileCount(E->getRHS()));
3082 
3083   // Any edges into the ContBlock are now from an (indeterminate number of)
3084   // edges from this first condition.  All of these values will be false.  Start
3085   // setting up the PHI node in the Cont Block for this.
3086   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3087                                             "", ContBlock);
3088   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3089        PI != PE; ++PI)
3090     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3091 
3092   eval.begin(CGF);
3093   CGF.EmitBlock(RHSBlock);
3094   CGF.incrementProfileCounter(E);
3095   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3096   eval.end(CGF);
3097 
3098   // Reaquire the RHS block, as there may be subblocks inserted.
3099   RHSBlock = Builder.GetInsertBlock();
3100 
3101   // Emit an unconditional branch from this block to ContBlock.
3102   {
3103     // There is no need to emit line number for unconditional branch.
3104     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3105     CGF.EmitBlock(ContBlock);
3106   }
3107   // Insert an entry into the phi node for the edge with the value of RHSCond.
3108   PN->addIncoming(RHSCond, RHSBlock);
3109 
3110   // ZExt result to int.
3111   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3112 }
3113 
3114 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3115   // Perform vector logical or on comparisons with zero vectors.
3116   if (E->getType()->isVectorType()) {
3117     CGF.incrementProfileCounter(E);
3118 
3119     Value *LHS = Visit(E->getLHS());
3120     Value *RHS = Visit(E->getRHS());
3121     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3122     if (LHS->getType()->isFPOrFPVectorTy()) {
3123       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3124       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3125     } else {
3126       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3127       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3128     }
3129     Value *Or = Builder.CreateOr(LHS, RHS);
3130     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3131   }
3132 
3133   llvm::Type *ResTy = ConvertType(E->getType());
3134 
3135   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3136   // If we have 0 || X, just emit X without inserting the control flow.
3137   bool LHSCondVal;
3138   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3139     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3140       CGF.incrementProfileCounter(E);
3141 
3142       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3143       // ZExt result to int or bool.
3144       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3145     }
3146 
3147     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3148     if (!CGF.ContainsLabel(E->getRHS()))
3149       return llvm::ConstantInt::get(ResTy, 1);
3150   }
3151 
3152   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3153   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3154 
3155   CodeGenFunction::ConditionalEvaluation eval(CGF);
3156 
3157   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3158   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3159                            CGF.getCurrentProfileCount() -
3160                                CGF.getProfileCount(E->getRHS()));
3161 
3162   // Any edges into the ContBlock are now from an (indeterminate number of)
3163   // edges from this first condition.  All of these values will be true.  Start
3164   // setting up the PHI node in the Cont Block for this.
3165   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3166                                             "", ContBlock);
3167   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3168        PI != PE; ++PI)
3169     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3170 
3171   eval.begin(CGF);
3172 
3173   // Emit the RHS condition as a bool value.
3174   CGF.EmitBlock(RHSBlock);
3175   CGF.incrementProfileCounter(E);
3176   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3177 
3178   eval.end(CGF);
3179 
3180   // Reaquire the RHS block, as there may be subblocks inserted.
3181   RHSBlock = Builder.GetInsertBlock();
3182 
3183   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3184   // into the phi node for the edge with the value of RHSCond.
3185   CGF.EmitBlock(ContBlock);
3186   PN->addIncoming(RHSCond, RHSBlock);
3187 
3188   // ZExt result to int.
3189   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3190 }
3191 
3192 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3193   CGF.EmitIgnoredExpr(E->getLHS());
3194   CGF.EnsureInsertPoint();
3195   return Visit(E->getRHS());
3196 }
3197 
3198 //===----------------------------------------------------------------------===//
3199 //                             Other Operators
3200 //===----------------------------------------------------------------------===//
3201 
3202 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3203 /// expression is cheap enough and side-effect-free enough to evaluate
3204 /// unconditionally instead of conditionally.  This is used to convert control
3205 /// flow into selects in some cases.
3206 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3207                                                    CodeGenFunction &CGF) {
3208   // Anything that is an integer or floating point constant is fine.
3209   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3210 
3211   // Even non-volatile automatic variables can't be evaluated unconditionally.
3212   // Referencing a thread_local may cause non-trivial initialization work to
3213   // occur. If we're inside a lambda and one of the variables is from the scope
3214   // outside the lambda, that function may have returned already. Reading its
3215   // locals is a bad idea. Also, these reads may introduce races there didn't
3216   // exist in the source-level program.
3217 }
3218 
3219 
3220 Value *ScalarExprEmitter::
3221 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3222   TestAndClearIgnoreResultAssign();
3223 
3224   // Bind the common expression if necessary.
3225   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3226 
3227   Expr *condExpr = E->getCond();
3228   Expr *lhsExpr = E->getTrueExpr();
3229   Expr *rhsExpr = E->getFalseExpr();
3230 
3231   // If the condition constant folds and can be elided, try to avoid emitting
3232   // the condition and the dead arm.
3233   bool CondExprBool;
3234   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3235     Expr *live = lhsExpr, *dead = rhsExpr;
3236     if (!CondExprBool) std::swap(live, dead);
3237 
3238     // If the dead side doesn't have labels we need, just emit the Live part.
3239     if (!CGF.ContainsLabel(dead)) {
3240       if (CondExprBool)
3241         CGF.incrementProfileCounter(E);
3242       Value *Result = Visit(live);
3243 
3244       // If the live part is a throw expression, it acts like it has a void
3245       // type, so evaluating it returns a null Value*.  However, a conditional
3246       // with non-void type must return a non-null Value*.
3247       if (!Result && !E->getType()->isVoidType())
3248         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3249 
3250       return Result;
3251     }
3252   }
3253 
3254   // OpenCL: If the condition is a vector, we can treat this condition like
3255   // the select function.
3256   if (CGF.getLangOpts().OpenCL
3257       && condExpr->getType()->isVectorType()) {
3258     CGF.incrementProfileCounter(E);
3259 
3260     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3261     llvm::Value *LHS = Visit(lhsExpr);
3262     llvm::Value *RHS = Visit(rhsExpr);
3263 
3264     llvm::Type *condType = ConvertType(condExpr->getType());
3265     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3266 
3267     unsigned numElem = vecTy->getNumElements();
3268     llvm::Type *elemType = vecTy->getElementType();
3269 
3270     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3271     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3272     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3273                                           llvm::VectorType::get(elemType,
3274                                                                 numElem),
3275                                           "sext");
3276     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3277 
3278     // Cast float to int to perform ANDs if necessary.
3279     llvm::Value *RHSTmp = RHS;
3280     llvm::Value *LHSTmp = LHS;
3281     bool wasCast = false;
3282     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3283     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3284       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3285       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3286       wasCast = true;
3287     }
3288 
3289     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3290     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3291     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3292     if (wasCast)
3293       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3294 
3295     return tmp5;
3296   }
3297 
3298   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3299   // select instead of as control flow.  We can only do this if it is cheap and
3300   // safe to evaluate the LHS and RHS unconditionally.
3301   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3302       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3303     CGF.incrementProfileCounter(E);
3304 
3305     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3306     llvm::Value *LHS = Visit(lhsExpr);
3307     llvm::Value *RHS = Visit(rhsExpr);
3308     if (!LHS) {
3309       // If the conditional has void type, make sure we return a null Value*.
3310       assert(!RHS && "LHS and RHS types must match");
3311       return nullptr;
3312     }
3313     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3314   }
3315 
3316   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3317   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3318   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3319 
3320   CodeGenFunction::ConditionalEvaluation eval(CGF);
3321   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3322                            CGF.getProfileCount(lhsExpr));
3323 
3324   CGF.EmitBlock(LHSBlock);
3325   CGF.incrementProfileCounter(E);
3326   eval.begin(CGF);
3327   Value *LHS = Visit(lhsExpr);
3328   eval.end(CGF);
3329 
3330   LHSBlock = Builder.GetInsertBlock();
3331   Builder.CreateBr(ContBlock);
3332 
3333   CGF.EmitBlock(RHSBlock);
3334   eval.begin(CGF);
3335   Value *RHS = Visit(rhsExpr);
3336   eval.end(CGF);
3337 
3338   RHSBlock = Builder.GetInsertBlock();
3339   CGF.EmitBlock(ContBlock);
3340 
3341   // If the LHS or RHS is a throw expression, it will be legitimately null.
3342   if (!LHS)
3343     return RHS;
3344   if (!RHS)
3345     return LHS;
3346 
3347   // Create a PHI node for the real part.
3348   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3349   PN->addIncoming(LHS, LHSBlock);
3350   PN->addIncoming(RHS, RHSBlock);
3351   return PN;
3352 }
3353 
3354 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3355   return Visit(E->getChosenSubExpr());
3356 }
3357 
3358 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3359   QualType Ty = VE->getType();
3360 
3361   if (Ty->isVariablyModifiedType())
3362     CGF.EmitVariablyModifiedType(Ty);
3363 
3364   Address ArgValue = Address::invalid();
3365   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3366 
3367   llvm::Type *ArgTy = ConvertType(VE->getType());
3368 
3369   // If EmitVAArg fails, emit an error.
3370   if (!ArgPtr.isValid()) {
3371     CGF.ErrorUnsupported(VE, "va_arg expression");
3372     return llvm::UndefValue::get(ArgTy);
3373   }
3374 
3375   // FIXME Volatility.
3376   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3377 
3378   // If EmitVAArg promoted the type, we must truncate it.
3379   if (ArgTy != Val->getType()) {
3380     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3381       Val = Builder.CreateIntToPtr(Val, ArgTy);
3382     else
3383       Val = Builder.CreateTrunc(Val, ArgTy);
3384   }
3385 
3386   return Val;
3387 }
3388 
3389 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3390   return CGF.EmitBlockLiteral(block);
3391 }
3392 
3393 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3394   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3395   llvm::Type *DstTy = ConvertType(E->getType());
3396 
3397   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3398   // a shuffle vector instead of a bitcast.
3399   llvm::Type *SrcTy = Src->getType();
3400   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3401     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3402     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3403     if ((numElementsDst == 3 && numElementsSrc == 4)
3404         || (numElementsDst == 4 && numElementsSrc == 3)) {
3405 
3406 
3407       // In the case of going from int4->float3, a bitcast is needed before
3408       // doing a shuffle.
3409       llvm::Type *srcElemTy =
3410       cast<llvm::VectorType>(SrcTy)->getElementType();
3411       llvm::Type *dstElemTy =
3412       cast<llvm::VectorType>(DstTy)->getElementType();
3413 
3414       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3415           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3416         // Create a float type of the same size as the source or destination.
3417         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3418                                                                  numElementsSrc);
3419 
3420         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3421       }
3422 
3423       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3424 
3425       SmallVector<llvm::Constant*, 3> Args;
3426       Args.push_back(Builder.getInt32(0));
3427       Args.push_back(Builder.getInt32(1));
3428       Args.push_back(Builder.getInt32(2));
3429 
3430       if (numElementsDst == 4)
3431         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3432 
3433       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3434 
3435       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3436     }
3437   }
3438 
3439   return Builder.CreateBitCast(Src, DstTy, "astype");
3440 }
3441 
3442 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3443   return CGF.EmitAtomicExpr(E).getScalarVal();
3444 }
3445 
3446 //===----------------------------------------------------------------------===//
3447 //                         Entry Point into this File
3448 //===----------------------------------------------------------------------===//
3449 
3450 /// Emit the computation of the specified expression of scalar type, ignoring
3451 /// the result.
3452 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3453   assert(E && hasScalarEvaluationKind(E->getType()) &&
3454          "Invalid scalar expression to emit");
3455 
3456   return ScalarExprEmitter(*this, IgnoreResultAssign)
3457       .Visit(const_cast<Expr *>(E));
3458 }
3459 
3460 /// Emit a conversion from the specified type to the specified destination type,
3461 /// both of which are LLVM scalar types.
3462 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3463                                              QualType DstTy,
3464                                              SourceLocation Loc) {
3465   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3466          "Invalid scalar expression to emit");
3467   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3468 }
3469 
3470 /// Emit a conversion from the specified complex type to the specified
3471 /// destination type, where the destination type is an LLVM scalar type.
3472 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3473                                                       QualType SrcTy,
3474                                                       QualType DstTy,
3475                                                       SourceLocation Loc) {
3476   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3477          "Invalid complex -> scalar conversion");
3478   return ScalarExprEmitter(*this)
3479       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3480 }
3481 
3482 
3483 llvm::Value *CodeGenFunction::
3484 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3485                         bool isInc, bool isPre) {
3486   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3487 }
3488 
3489 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3490   // object->isa or (*object).isa
3491   // Generate code as for: *(Class*)object
3492 
3493   Expr *BaseExpr = E->getBase();
3494   Address Addr = Address::invalid();
3495   if (BaseExpr->isRValue()) {
3496     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3497   } else {
3498     Addr = EmitLValue(BaseExpr).getAddress();
3499   }
3500 
3501   // Cast the address to Class*.
3502   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3503   return MakeAddrLValue(Addr, E->getType());
3504 }
3505 
3506 
3507 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3508                                             const CompoundAssignOperator *E) {
3509   ScalarExprEmitter Scalar(*this);
3510   Value *Result = nullptr;
3511   switch (E->getOpcode()) {
3512 #define COMPOUND_OP(Op)                                                       \
3513     case BO_##Op##Assign:                                                     \
3514       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3515                                              Result)
3516   COMPOUND_OP(Mul);
3517   COMPOUND_OP(Div);
3518   COMPOUND_OP(Rem);
3519   COMPOUND_OP(Add);
3520   COMPOUND_OP(Sub);
3521   COMPOUND_OP(Shl);
3522   COMPOUND_OP(Shr);
3523   COMPOUND_OP(And);
3524   COMPOUND_OP(Xor);
3525   COMPOUND_OP(Or);
3526 #undef COMPOUND_OP
3527 
3528   case BO_PtrMemD:
3529   case BO_PtrMemI:
3530   case BO_Mul:
3531   case BO_Div:
3532   case BO_Rem:
3533   case BO_Add:
3534   case BO_Sub:
3535   case BO_Shl:
3536   case BO_Shr:
3537   case BO_LT:
3538   case BO_GT:
3539   case BO_LE:
3540   case BO_GE:
3541   case BO_EQ:
3542   case BO_NE:
3543   case BO_And:
3544   case BO_Xor:
3545   case BO_Or:
3546   case BO_LAnd:
3547   case BO_LOr:
3548   case BO_Assign:
3549   case BO_Comma:
3550     llvm_unreachable("Not valid compound assignment operators");
3551   }
3552 
3553   llvm_unreachable("Unhandled compound assignment operator");
3554 }
3555