1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "CodeGenFunction.h" 16 #include "CGCXXABI.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "CGDebugInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "llvm/Constants.h" 26 #include "llvm/Function.h" 27 #include "llvm/GlobalVariable.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/Module.h" 30 #include "llvm/Support/CFG.h" 31 #include "llvm/Target/TargetData.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 const Expr *E; // Entire expr, for error unsupported. May not be binop. 49 }; 50 51 static bool MustVisitNullValue(const Expr *E) { 52 // If a null pointer expression's type is the C++0x nullptr_t, then 53 // it's not necessarily a simple constant and it must be evaluated 54 // for its potential side effects. 55 return E->getType()->isNullPtrType(); 56 } 57 58 class ScalarExprEmitter 59 : public StmtVisitor<ScalarExprEmitter, Value*> { 60 CodeGenFunction &CGF; 61 CGBuilderTy &Builder; 62 bool IgnoreResultAssign; 63 llvm::LLVMContext &VMContext; 64 public: 65 66 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 67 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 68 VMContext(cgf.getLLVMContext()) { 69 } 70 71 //===--------------------------------------------------------------------===// 72 // Utilities 73 //===--------------------------------------------------------------------===// 74 75 bool TestAndClearIgnoreResultAssign() { 76 bool I = IgnoreResultAssign; 77 IgnoreResultAssign = false; 78 return I; 79 } 80 81 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 82 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 83 LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); } 84 85 Value *EmitLoadOfLValue(LValue LV) { 86 return CGF.EmitLoadOfLValue(LV).getScalarVal(); 87 } 88 89 /// EmitLoadOfLValue - Given an expression with complex type that represents a 90 /// value l-value, this method emits the address of the l-value, then loads 91 /// and returns the result. 92 Value *EmitLoadOfLValue(const Expr *E) { 93 return EmitLoadOfLValue(EmitCheckedLValue(E)); 94 } 95 96 /// EmitConversionToBool - Convert the specified expression value to a 97 /// boolean (i1) truth value. This is equivalent to "Val != 0". 98 Value *EmitConversionToBool(Value *Src, QualType DstTy); 99 100 /// EmitScalarConversion - Emit a conversion from the specified type to the 101 /// specified destination type, both of which are LLVM scalar types. 102 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 103 104 /// EmitComplexToScalarConversion - Emit a conversion from the specified 105 /// complex type to the specified destination type, where the destination type 106 /// is an LLVM scalar type. 107 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 108 QualType SrcTy, QualType DstTy); 109 110 /// EmitNullValue - Emit a value that corresponds to null for the given type. 111 Value *EmitNullValue(QualType Ty); 112 113 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 114 Value *EmitFloatToBoolConversion(Value *V) { 115 // Compare against 0.0 for fp scalars. 116 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 117 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 118 } 119 120 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 121 Value *EmitPointerToBoolConversion(Value *V) { 122 Value *Zero = llvm::ConstantPointerNull::get( 123 cast<llvm::PointerType>(V->getType())); 124 return Builder.CreateICmpNE(V, Zero, "tobool"); 125 } 126 127 Value *EmitIntToBoolConversion(Value *V) { 128 // Because of the type rules of C, we often end up computing a 129 // logical value, then zero extending it to int, then wanting it 130 // as a logical value again. Optimize this common case. 131 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 132 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 133 Value *Result = ZI->getOperand(0); 134 // If there aren't any more uses, zap the instruction to save space. 135 // Note that there can be more uses, for example if this 136 // is the result of an assignment. 137 if (ZI->use_empty()) 138 ZI->eraseFromParent(); 139 return Result; 140 } 141 } 142 143 return Builder.CreateIsNotNull(V, "tobool"); 144 } 145 146 //===--------------------------------------------------------------------===// 147 // Visitor Methods 148 //===--------------------------------------------------------------------===// 149 150 Value *Visit(Expr *E) { 151 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 152 } 153 154 Value *VisitStmt(Stmt *S) { 155 S->dump(CGF.getContext().getSourceManager()); 156 llvm_unreachable("Stmt can't have complex result type!"); 157 } 158 Value *VisitExpr(Expr *S); 159 160 Value *VisitParenExpr(ParenExpr *PE) { 161 return Visit(PE->getSubExpr()); 162 } 163 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 164 return Visit(E->getReplacement()); 165 } 166 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 167 return Visit(GE->getResultExpr()); 168 } 169 170 // Leaves. 171 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 172 return Builder.getInt(E->getValue()); 173 } 174 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 175 return llvm::ConstantFP::get(VMContext, E->getValue()); 176 } 177 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 178 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 179 } 180 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 181 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 182 } 183 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 184 return EmitNullValue(E->getType()); 185 } 186 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 187 return EmitNullValue(E->getType()); 188 } 189 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 190 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 191 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 192 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 193 return Builder.CreateBitCast(V, ConvertType(E->getType())); 194 } 195 196 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 197 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 198 } 199 200 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 201 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 202 } 203 204 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 205 if (E->isGLValue()) 206 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E)); 207 208 // Otherwise, assume the mapping is the scalar directly. 209 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 210 } 211 212 // l-values. 213 Value *VisitDeclRefExpr(DeclRefExpr *E) { 214 Expr::EvalResult Result; 215 if (!E->EvaluateAsRValue(Result, CGF.getContext())) 216 return EmitLoadOfLValue(E); 217 218 assert(!Result.HasSideEffects && "Constant declref with side-effect?!"); 219 220 llvm::Constant *C; 221 if (Result.Val.isInt()) 222 C = Builder.getInt(Result.Val.getInt()); 223 else if (Result.Val.isFloat()) 224 C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat()); 225 else 226 return EmitLoadOfLValue(E); 227 228 // Make sure we emit a debug reference to the global variable. 229 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) { 230 if (!CGF.getContext().DeclMustBeEmitted(VD)) 231 CGF.EmitDeclRefExprDbgValue(E, C); 232 } else if (isa<EnumConstantDecl>(E->getDecl())) { 233 CGF.EmitDeclRefExprDbgValue(E, C); 234 } 235 236 return C; 237 } 238 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 239 return CGF.EmitObjCSelectorExpr(E); 240 } 241 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 242 return CGF.EmitObjCProtocolExpr(E); 243 } 244 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 245 return EmitLoadOfLValue(E); 246 } 247 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 248 if (E->getMethodDecl() && 249 E->getMethodDecl()->getResultType()->isReferenceType()) 250 return EmitLoadOfLValue(E); 251 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 252 } 253 254 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 255 LValue LV = CGF.EmitObjCIsaExpr(E); 256 Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal(); 257 return V; 258 } 259 260 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 261 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 262 Value *VisitMemberExpr(MemberExpr *E); 263 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 264 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 265 return EmitLoadOfLValue(E); 266 } 267 268 Value *VisitInitListExpr(InitListExpr *E); 269 270 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 271 return CGF.CGM.EmitNullConstant(E->getType()); 272 } 273 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 274 if (E->getType()->isVariablyModifiedType()) 275 CGF.EmitVariablyModifiedType(E->getType()); 276 return VisitCastExpr(E); 277 } 278 Value *VisitCastExpr(CastExpr *E); 279 280 Value *VisitCallExpr(const CallExpr *E) { 281 if (E->getCallReturnType()->isReferenceType()) 282 return EmitLoadOfLValue(E); 283 284 return CGF.EmitCallExpr(E).getScalarVal(); 285 } 286 287 Value *VisitStmtExpr(const StmtExpr *E); 288 289 Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E); 290 291 // Unary Operators. 292 Value *VisitUnaryPostDec(const UnaryOperator *E) { 293 LValue LV = EmitLValue(E->getSubExpr()); 294 return EmitScalarPrePostIncDec(E, LV, false, false); 295 } 296 Value *VisitUnaryPostInc(const UnaryOperator *E) { 297 LValue LV = EmitLValue(E->getSubExpr()); 298 return EmitScalarPrePostIncDec(E, LV, true, false); 299 } 300 Value *VisitUnaryPreDec(const UnaryOperator *E) { 301 LValue LV = EmitLValue(E->getSubExpr()); 302 return EmitScalarPrePostIncDec(E, LV, false, true); 303 } 304 Value *VisitUnaryPreInc(const UnaryOperator *E) { 305 LValue LV = EmitLValue(E->getSubExpr()); 306 return EmitScalarPrePostIncDec(E, LV, true, true); 307 } 308 309 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 310 llvm::Value *InVal, 311 llvm::Value *NextVal, 312 bool IsInc); 313 314 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 315 bool isInc, bool isPre); 316 317 318 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 319 if (isa<MemberPointerType>(E->getType())) // never sugared 320 return CGF.CGM.getMemberPointerConstant(E); 321 322 return EmitLValue(E->getSubExpr()).getAddress(); 323 } 324 Value *VisitUnaryDeref(const UnaryOperator *E) { 325 if (E->getType()->isVoidType()) 326 return Visit(E->getSubExpr()); // the actual value should be unused 327 return EmitLoadOfLValue(E); 328 } 329 Value *VisitUnaryPlus(const UnaryOperator *E) { 330 // This differs from gcc, though, most likely due to a bug in gcc. 331 TestAndClearIgnoreResultAssign(); 332 return Visit(E->getSubExpr()); 333 } 334 Value *VisitUnaryMinus (const UnaryOperator *E); 335 Value *VisitUnaryNot (const UnaryOperator *E); 336 Value *VisitUnaryLNot (const UnaryOperator *E); 337 Value *VisitUnaryReal (const UnaryOperator *E); 338 Value *VisitUnaryImag (const UnaryOperator *E); 339 Value *VisitUnaryExtension(const UnaryOperator *E) { 340 return Visit(E->getSubExpr()); 341 } 342 343 // C++ 344 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 345 return EmitLoadOfLValue(E); 346 } 347 348 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 349 return Visit(DAE->getExpr()); 350 } 351 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 352 return CGF.LoadCXXThis(); 353 } 354 355 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 356 CGF.enterFullExpression(E); 357 CodeGenFunction::RunCleanupsScope Scope(CGF); 358 return Visit(E->getSubExpr()); 359 } 360 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 361 return CGF.EmitCXXNewExpr(E); 362 } 363 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 364 CGF.EmitCXXDeleteExpr(E); 365 return 0; 366 } 367 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { 368 return Builder.getInt1(E->getValue()); 369 } 370 371 Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { 372 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 373 } 374 375 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 376 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 377 } 378 379 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 380 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 381 } 382 383 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 384 // C++ [expr.pseudo]p1: 385 // The result shall only be used as the operand for the function call 386 // operator (), and the result of such a call has type void. The only 387 // effect is the evaluation of the postfix-expression before the dot or 388 // arrow. 389 CGF.EmitScalarExpr(E->getBase()); 390 return 0; 391 } 392 393 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 394 return EmitNullValue(E->getType()); 395 } 396 397 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 398 CGF.EmitCXXThrowExpr(E); 399 return 0; 400 } 401 402 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 403 return Builder.getInt1(E->getValue()); 404 } 405 406 // Binary Operators. 407 Value *EmitMul(const BinOpInfo &Ops) { 408 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 409 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 410 case LangOptions::SOB_Undefined: 411 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 412 case LangOptions::SOB_Defined: 413 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 414 case LangOptions::SOB_Trapping: 415 return EmitOverflowCheckedBinOp(Ops); 416 } 417 } 418 419 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 420 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 421 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 422 } 423 bool isTrapvOverflowBehavior() { 424 return CGF.getContext().getLangOptions().getSignedOverflowBehavior() 425 == LangOptions::SOB_Trapping; 426 } 427 /// Create a binary op that checks for overflow. 428 /// Currently only supports +, - and *. 429 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 430 // Emit the overflow BB when -ftrapv option is activated. 431 void EmitOverflowBB(llvm::BasicBlock *overflowBB) { 432 Builder.SetInsertPoint(overflowBB); 433 llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap); 434 Builder.CreateCall(Trap); 435 Builder.CreateUnreachable(); 436 } 437 // Check for undefined division and modulus behaviors. 438 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 439 llvm::Value *Zero,bool isDiv); 440 Value *EmitDiv(const BinOpInfo &Ops); 441 Value *EmitRem(const BinOpInfo &Ops); 442 Value *EmitAdd(const BinOpInfo &Ops); 443 Value *EmitSub(const BinOpInfo &Ops); 444 Value *EmitShl(const BinOpInfo &Ops); 445 Value *EmitShr(const BinOpInfo &Ops); 446 Value *EmitAnd(const BinOpInfo &Ops) { 447 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 448 } 449 Value *EmitXor(const BinOpInfo &Ops) { 450 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 451 } 452 Value *EmitOr (const BinOpInfo &Ops) { 453 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 454 } 455 456 BinOpInfo EmitBinOps(const BinaryOperator *E); 457 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 458 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 459 Value *&Result); 460 461 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 462 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 463 464 // Binary operators and binary compound assignment operators. 465 #define HANDLEBINOP(OP) \ 466 Value *VisitBin ## OP(const BinaryOperator *E) { \ 467 return Emit ## OP(EmitBinOps(E)); \ 468 } \ 469 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 470 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 471 } 472 HANDLEBINOP(Mul) 473 HANDLEBINOP(Div) 474 HANDLEBINOP(Rem) 475 HANDLEBINOP(Add) 476 HANDLEBINOP(Sub) 477 HANDLEBINOP(Shl) 478 HANDLEBINOP(Shr) 479 HANDLEBINOP(And) 480 HANDLEBINOP(Xor) 481 HANDLEBINOP(Or) 482 #undef HANDLEBINOP 483 484 // Comparisons. 485 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 486 unsigned SICmpOpc, unsigned FCmpOpc); 487 #define VISITCOMP(CODE, UI, SI, FP) \ 488 Value *VisitBin##CODE(const BinaryOperator *E) { \ 489 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 490 llvm::FCmpInst::FP); } 491 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 492 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 493 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 494 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 495 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 496 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 497 #undef VISITCOMP 498 499 Value *VisitBinAssign (const BinaryOperator *E); 500 501 Value *VisitBinLAnd (const BinaryOperator *E); 502 Value *VisitBinLOr (const BinaryOperator *E); 503 Value *VisitBinComma (const BinaryOperator *E); 504 505 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 506 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 507 508 // Other Operators. 509 Value *VisitBlockExpr(const BlockExpr *BE); 510 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 511 Value *VisitChooseExpr(ChooseExpr *CE); 512 Value *VisitVAArgExpr(VAArgExpr *VE); 513 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 514 return CGF.EmitObjCStringLiteral(E); 515 } 516 Value *VisitAsTypeExpr(AsTypeExpr *CE); 517 Value *VisitAtomicExpr(AtomicExpr *AE); 518 }; 519 } // end anonymous namespace. 520 521 //===----------------------------------------------------------------------===// 522 // Utilities 523 //===----------------------------------------------------------------------===// 524 525 /// EmitConversionToBool - Convert the specified expression value to a 526 /// boolean (i1) truth value. This is equivalent to "Val != 0". 527 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 528 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 529 530 if (SrcType->isRealFloatingType()) 531 return EmitFloatToBoolConversion(Src); 532 533 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 534 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 535 536 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 537 "Unknown scalar type to convert"); 538 539 if (isa<llvm::IntegerType>(Src->getType())) 540 return EmitIntToBoolConversion(Src); 541 542 assert(isa<llvm::PointerType>(Src->getType())); 543 return EmitPointerToBoolConversion(Src); 544 } 545 546 /// EmitScalarConversion - Emit a conversion from the specified type to the 547 /// specified destination type, both of which are LLVM scalar types. 548 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 549 QualType DstType) { 550 SrcType = CGF.getContext().getCanonicalType(SrcType); 551 DstType = CGF.getContext().getCanonicalType(DstType); 552 if (SrcType == DstType) return Src; 553 554 if (DstType->isVoidType()) return 0; 555 556 llvm::Type *SrcTy = Src->getType(); 557 558 // Floating casts might be a bit special: if we're doing casts to / from half 559 // FP, we should go via special intrinsics. 560 if (SrcType->isHalfType()) { 561 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src); 562 SrcType = CGF.getContext().FloatTy; 563 SrcTy = CGF.FloatTy; 564 } 565 566 // Handle conversions to bool first, they are special: comparisons against 0. 567 if (DstType->isBooleanType()) 568 return EmitConversionToBool(Src, SrcType); 569 570 llvm::Type *DstTy = ConvertType(DstType); 571 572 // Ignore conversions like int -> uint. 573 if (SrcTy == DstTy) 574 return Src; 575 576 // Handle pointer conversions next: pointers can only be converted to/from 577 // other pointers and integers. Check for pointer types in terms of LLVM, as 578 // some native types (like Obj-C id) may map to a pointer type. 579 if (isa<llvm::PointerType>(DstTy)) { 580 // The source value may be an integer, or a pointer. 581 if (isa<llvm::PointerType>(SrcTy)) 582 return Builder.CreateBitCast(Src, DstTy, "conv"); 583 584 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 585 // First, convert to the correct width so that we control the kind of 586 // extension. 587 llvm::Type *MiddleTy = CGF.IntPtrTy; 588 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 589 llvm::Value* IntResult = 590 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 591 // Then, cast to pointer. 592 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 593 } 594 595 if (isa<llvm::PointerType>(SrcTy)) { 596 // Must be an ptr to int cast. 597 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 598 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 599 } 600 601 // A scalar can be splatted to an extended vector of the same element type 602 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 603 // Cast the scalar to element type 604 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 605 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 606 607 // Insert the element in element zero of an undef vector 608 llvm::Value *UnV = llvm::UndefValue::get(DstTy); 609 llvm::Value *Idx = Builder.getInt32(0); 610 UnV = Builder.CreateInsertElement(UnV, Elt, Idx); 611 612 // Splat the element across to all elements 613 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 614 llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, 615 Builder.getInt32(0)); 616 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); 617 return Yay; 618 } 619 620 // Allow bitcast from vector to integer/fp of the same size. 621 if (isa<llvm::VectorType>(SrcTy) || 622 isa<llvm::VectorType>(DstTy)) 623 return Builder.CreateBitCast(Src, DstTy, "conv"); 624 625 // Finally, we have the arithmetic types: real int/float. 626 Value *Res = NULL; 627 llvm::Type *ResTy = DstTy; 628 629 // Cast to half via float 630 if (DstType->isHalfType()) 631 DstTy = CGF.FloatTy; 632 633 if (isa<llvm::IntegerType>(SrcTy)) { 634 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 635 if (isa<llvm::IntegerType>(DstTy)) 636 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 637 else if (InputSigned) 638 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 639 else 640 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 641 } else if (isa<llvm::IntegerType>(DstTy)) { 642 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 643 if (DstType->isSignedIntegerOrEnumerationType()) 644 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 645 else 646 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 647 } else { 648 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 649 "Unknown real conversion"); 650 if (DstTy->getTypeID() < SrcTy->getTypeID()) 651 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 652 else 653 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 654 } 655 656 if (DstTy != ResTy) { 657 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 658 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res); 659 } 660 661 return Res; 662 } 663 664 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 665 /// type to the specified destination type, where the destination type is an 666 /// LLVM scalar type. 667 Value *ScalarExprEmitter:: 668 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 669 QualType SrcTy, QualType DstTy) { 670 // Get the source element type. 671 SrcTy = SrcTy->getAs<ComplexType>()->getElementType(); 672 673 // Handle conversions to bool first, they are special: comparisons against 0. 674 if (DstTy->isBooleanType()) { 675 // Complex != 0 -> (Real != 0) | (Imag != 0) 676 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 677 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 678 return Builder.CreateOr(Src.first, Src.second, "tobool"); 679 } 680 681 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 682 // the imaginary part of the complex value is discarded and the value of the 683 // real part is converted according to the conversion rules for the 684 // corresponding real type. 685 return EmitScalarConversion(Src.first, SrcTy, DstTy); 686 } 687 688 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 689 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) 690 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 691 692 return llvm::Constant::getNullValue(ConvertType(Ty)); 693 } 694 695 //===----------------------------------------------------------------------===// 696 // Visitor Methods 697 //===----------------------------------------------------------------------===// 698 699 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 700 CGF.ErrorUnsupported(E, "scalar expression"); 701 if (E->getType()->isVoidType()) 702 return 0; 703 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 704 } 705 706 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 707 // Vector Mask Case 708 if (E->getNumSubExprs() == 2 || 709 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 710 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 711 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 712 Value *Mask; 713 714 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 715 unsigned LHSElts = LTy->getNumElements(); 716 717 if (E->getNumSubExprs() == 3) { 718 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 719 720 // Shuffle LHS & RHS into one input vector. 721 SmallVector<llvm::Constant*, 32> concat; 722 for (unsigned i = 0; i != LHSElts; ++i) { 723 concat.push_back(Builder.getInt32(2*i)); 724 concat.push_back(Builder.getInt32(2*i+1)); 725 } 726 727 Value* CV = llvm::ConstantVector::get(concat); 728 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 729 LHSElts *= 2; 730 } else { 731 Mask = RHS; 732 } 733 734 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 735 llvm::Constant* EltMask; 736 737 // Treat vec3 like vec4. 738 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) 739 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 740 (1 << llvm::Log2_32(LHSElts+2))-1); 741 else if ((LHSElts == 3) && (E->getNumSubExprs() == 2)) 742 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 743 (1 << llvm::Log2_32(LHSElts+1))-1); 744 else 745 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 746 (1 << llvm::Log2_32(LHSElts))-1); 747 748 // Mask off the high bits of each shuffle index. 749 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 750 EltMask); 751 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 752 753 // newv = undef 754 // mask = mask & maskbits 755 // for each elt 756 // n = extract mask i 757 // x = extract val n 758 // newv = insert newv, x, i 759 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 760 MTy->getNumElements()); 761 Value* NewV = llvm::UndefValue::get(RTy); 762 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 763 Value *Indx = Builder.getInt32(i); 764 Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx"); 765 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext"); 766 767 // Handle vec3 special since the index will be off by one for the RHS. 768 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) { 769 Value *cmpIndx, *newIndx; 770 cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3), 771 "cmp_shuf_idx"); 772 newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj"); 773 Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx"); 774 } 775 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 776 NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins"); 777 } 778 return NewV; 779 } 780 781 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 782 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 783 784 // Handle vec3 special since the index will be off by one for the RHS. 785 llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType()); 786 SmallVector<llvm::Constant*, 32> indices; 787 for (unsigned i = 2; i < E->getNumSubExprs(); i++) { 788 unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 789 if (VTy->getNumElements() == 3 && Idx > 3) 790 Idx -= 1; 791 indices.push_back(Builder.getInt32(Idx)); 792 } 793 794 Value *SV = llvm::ConstantVector::get(indices); 795 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 796 } 797 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 798 llvm::APSInt Value; 799 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 800 if (E->isArrow()) 801 CGF.EmitScalarExpr(E->getBase()); 802 else 803 EmitLValue(E->getBase()); 804 return Builder.getInt(Value); 805 } 806 807 // Emit debug info for aggregate now, if it was delayed to reduce 808 // debug info size. 809 CGDebugInfo *DI = CGF.getDebugInfo(); 810 if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) { 811 QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType(); 812 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) 813 if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl())) 814 DI->getOrCreateRecordType(PTy->getPointeeType(), 815 M->getParent()->getLocation()); 816 } 817 return EmitLoadOfLValue(E); 818 } 819 820 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 821 TestAndClearIgnoreResultAssign(); 822 823 // Emit subscript expressions in rvalue context's. For most cases, this just 824 // loads the lvalue formed by the subscript expr. However, we have to be 825 // careful, because the base of a vector subscript is occasionally an rvalue, 826 // so we can't get it as an lvalue. 827 if (!E->getBase()->getType()->isVectorType()) 828 return EmitLoadOfLValue(E); 829 830 // Handle the vector case. The base must be a vector, the index must be an 831 // integer value. 832 Value *Base = Visit(E->getBase()); 833 Value *Idx = Visit(E->getIdx()); 834 bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType(); 835 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast"); 836 return Builder.CreateExtractElement(Base, Idx, "vecext"); 837 } 838 839 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 840 unsigned Off, llvm::Type *I32Ty) { 841 int MV = SVI->getMaskValue(Idx); 842 if (MV == -1) 843 return llvm::UndefValue::get(I32Ty); 844 return llvm::ConstantInt::get(I32Ty, Off+MV); 845 } 846 847 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 848 bool Ignore = TestAndClearIgnoreResultAssign(); 849 (void)Ignore; 850 assert (Ignore == false && "init list ignored"); 851 unsigned NumInitElements = E->getNumInits(); 852 853 if (E->hadArrayRangeDesignator()) 854 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 855 856 llvm::VectorType *VType = 857 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 858 859 if (!VType) { 860 if (NumInitElements == 0) { 861 // C++11 value-initialization for the scalar. 862 return EmitNullValue(E->getType()); 863 } 864 // We have a scalar in braces. Just use the first element. 865 return Visit(E->getInit(0)); 866 } 867 868 unsigned ResElts = VType->getNumElements(); 869 870 // Loop over initializers collecting the Value for each, and remembering 871 // whether the source was swizzle (ExtVectorElementExpr). This will allow 872 // us to fold the shuffle for the swizzle into the shuffle for the vector 873 // initializer, since LLVM optimizers generally do not want to touch 874 // shuffles. 875 unsigned CurIdx = 0; 876 bool VIsUndefShuffle = false; 877 llvm::Value *V = llvm::UndefValue::get(VType); 878 for (unsigned i = 0; i != NumInitElements; ++i) { 879 Expr *IE = E->getInit(i); 880 Value *Init = Visit(IE); 881 SmallVector<llvm::Constant*, 16> Args; 882 883 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 884 885 // Handle scalar elements. If the scalar initializer is actually one 886 // element of a different vector of the same width, use shuffle instead of 887 // extract+insert. 888 if (!VVT) { 889 if (isa<ExtVectorElementExpr>(IE)) { 890 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 891 892 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 893 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 894 Value *LHS = 0, *RHS = 0; 895 if (CurIdx == 0) { 896 // insert into undef -> shuffle (src, undef) 897 Args.push_back(C); 898 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 899 900 LHS = EI->getVectorOperand(); 901 RHS = V; 902 VIsUndefShuffle = true; 903 } else if (VIsUndefShuffle) { 904 // insert into undefshuffle && size match -> shuffle (v, src) 905 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 906 for (unsigned j = 0; j != CurIdx; ++j) 907 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 908 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 909 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 910 911 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 912 RHS = EI->getVectorOperand(); 913 VIsUndefShuffle = false; 914 } 915 if (!Args.empty()) { 916 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 917 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 918 ++CurIdx; 919 continue; 920 } 921 } 922 } 923 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 924 "vecinit"); 925 VIsUndefShuffle = false; 926 ++CurIdx; 927 continue; 928 } 929 930 unsigned InitElts = VVT->getNumElements(); 931 932 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 933 // input is the same width as the vector being constructed, generate an 934 // optimized shuffle of the swizzle input into the result. 935 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 936 if (isa<ExtVectorElementExpr>(IE)) { 937 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 938 Value *SVOp = SVI->getOperand(0); 939 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 940 941 if (OpTy->getNumElements() == ResElts) { 942 for (unsigned j = 0; j != CurIdx; ++j) { 943 // If the current vector initializer is a shuffle with undef, merge 944 // this shuffle directly into it. 945 if (VIsUndefShuffle) { 946 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 947 CGF.Int32Ty)); 948 } else { 949 Args.push_back(Builder.getInt32(j)); 950 } 951 } 952 for (unsigned j = 0, je = InitElts; j != je; ++j) 953 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 954 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 955 956 if (VIsUndefShuffle) 957 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 958 959 Init = SVOp; 960 } 961 } 962 963 // Extend init to result vector length, and then shuffle its contribution 964 // to the vector initializer into V. 965 if (Args.empty()) { 966 for (unsigned j = 0; j != InitElts; ++j) 967 Args.push_back(Builder.getInt32(j)); 968 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 969 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 970 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 971 Mask, "vext"); 972 973 Args.clear(); 974 for (unsigned j = 0; j != CurIdx; ++j) 975 Args.push_back(Builder.getInt32(j)); 976 for (unsigned j = 0; j != InitElts; ++j) 977 Args.push_back(Builder.getInt32(j+Offset)); 978 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 979 } 980 981 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 982 // merging subsequent shuffles into this one. 983 if (CurIdx == 0) 984 std::swap(V, Init); 985 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 986 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 987 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 988 CurIdx += InitElts; 989 } 990 991 // FIXME: evaluate codegen vs. shuffling against constant null vector. 992 // Emit remaining default initializers. 993 llvm::Type *EltTy = VType->getElementType(); 994 995 // Emit remaining default initializers 996 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 997 Value *Idx = Builder.getInt32(CurIdx); 998 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 999 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1000 } 1001 return V; 1002 } 1003 1004 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1005 const Expr *E = CE->getSubExpr(); 1006 1007 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1008 return false; 1009 1010 if (isa<CXXThisExpr>(E)) { 1011 // We always assume that 'this' is never null. 1012 return false; 1013 } 1014 1015 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1016 // And that glvalue casts are never null. 1017 if (ICE->getValueKind() != VK_RValue) 1018 return false; 1019 } 1020 1021 return true; 1022 } 1023 1024 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1025 // have to handle a more broad range of conversions than explicit casts, as they 1026 // handle things like function to ptr-to-function decay etc. 1027 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1028 Expr *E = CE->getSubExpr(); 1029 QualType DestTy = CE->getType(); 1030 CastKind Kind = CE->getCastKind(); 1031 1032 if (!DestTy->isVoidType()) 1033 TestAndClearIgnoreResultAssign(); 1034 1035 // Since almost all cast kinds apply to scalars, this switch doesn't have 1036 // a default case, so the compiler will warn on a missing case. The cases 1037 // are in the same order as in the CastKind enum. 1038 switch (Kind) { 1039 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1040 1041 case CK_LValueBitCast: 1042 case CK_ObjCObjectLValueCast: { 1043 Value *V = EmitLValue(E).getAddress(); 1044 V = Builder.CreateBitCast(V, 1045 ConvertType(CGF.getContext().getPointerType(DestTy))); 1046 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy)); 1047 } 1048 1049 case CK_CPointerToObjCPointerCast: 1050 case CK_BlockPointerToObjCPointerCast: 1051 case CK_AnyPointerToBlockPointerCast: 1052 case CK_BitCast: { 1053 Value *Src = Visit(const_cast<Expr*>(E)); 1054 return Builder.CreateBitCast(Src, ConvertType(DestTy)); 1055 } 1056 case CK_AtomicToNonAtomic: 1057 case CK_NonAtomicToAtomic: 1058 case CK_NoOp: 1059 case CK_UserDefinedConversion: 1060 return Visit(const_cast<Expr*>(E)); 1061 1062 case CK_BaseToDerived: { 1063 const CXXRecordDecl *DerivedClassDecl = 1064 DestTy->getCXXRecordDeclForPointerType(); 1065 1066 return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl, 1067 CE->path_begin(), CE->path_end(), 1068 ShouldNullCheckClassCastValue(CE)); 1069 } 1070 case CK_UncheckedDerivedToBase: 1071 case CK_DerivedToBase: { 1072 const RecordType *DerivedClassTy = 1073 E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>(); 1074 CXXRecordDecl *DerivedClassDecl = 1075 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 1076 1077 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 1078 CE->path_begin(), CE->path_end(), 1079 ShouldNullCheckClassCastValue(CE)); 1080 } 1081 case CK_Dynamic: { 1082 Value *V = Visit(const_cast<Expr*>(E)); 1083 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1084 return CGF.EmitDynamicCast(V, DCE); 1085 } 1086 1087 case CK_ArrayToPointerDecay: { 1088 assert(E->getType()->isArrayType() && 1089 "Array to pointer decay must have array source type!"); 1090 1091 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1092 1093 // Note that VLA pointers are always decayed, so we don't need to do 1094 // anything here. 1095 if (!E->getType()->isVariableArrayType()) { 1096 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1097 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1098 ->getElementType()) && 1099 "Expected pointer to array"); 1100 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1101 } 1102 1103 // Make sure the array decay ends up being the right type. This matters if 1104 // the array type was of an incomplete type. 1105 return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType())); 1106 } 1107 case CK_FunctionToPointerDecay: 1108 return EmitLValue(E).getAddress(); 1109 1110 case CK_NullToPointer: 1111 if (MustVisitNullValue(E)) 1112 (void) Visit(E); 1113 1114 return llvm::ConstantPointerNull::get( 1115 cast<llvm::PointerType>(ConvertType(DestTy))); 1116 1117 case CK_NullToMemberPointer: { 1118 if (MustVisitNullValue(E)) 1119 (void) Visit(E); 1120 1121 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1122 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1123 } 1124 1125 case CK_ReinterpretMemberPointer: 1126 case CK_BaseToDerivedMemberPointer: 1127 case CK_DerivedToBaseMemberPointer: { 1128 Value *Src = Visit(E); 1129 1130 // Note that the AST doesn't distinguish between checked and 1131 // unchecked member pointer conversions, so we always have to 1132 // implement checked conversions here. This is inefficient when 1133 // actual control flow may be required in order to perform the 1134 // check, which it is for data member pointers (but not member 1135 // function pointers on Itanium and ARM). 1136 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1137 } 1138 1139 case CK_ARCProduceObject: 1140 return CGF.EmitARCRetainScalarExpr(E); 1141 case CK_ARCConsumeObject: 1142 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1143 case CK_ARCReclaimReturnedObject: { 1144 llvm::Value *value = Visit(E); 1145 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1146 return CGF.EmitObjCConsumeObject(E->getType(), value); 1147 } 1148 case CK_ARCExtendBlockObject: 1149 return CGF.EmitARCExtendBlockObject(E); 1150 1151 case CK_FloatingRealToComplex: 1152 case CK_FloatingComplexCast: 1153 case CK_IntegralRealToComplex: 1154 case CK_IntegralComplexCast: 1155 case CK_IntegralComplexToFloatingComplex: 1156 case CK_FloatingComplexToIntegralComplex: 1157 case CK_ConstructorConversion: 1158 case CK_ToUnion: 1159 llvm_unreachable("scalar cast to non-scalar value"); 1160 1161 case CK_LValueToRValue: 1162 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1163 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1164 return Visit(const_cast<Expr*>(E)); 1165 1166 case CK_IntegralToPointer: { 1167 Value *Src = Visit(const_cast<Expr*>(E)); 1168 1169 // First, convert to the correct width so that we control the kind of 1170 // extension. 1171 llvm::Type *MiddleTy = CGF.IntPtrTy; 1172 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1173 llvm::Value* IntResult = 1174 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1175 1176 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1177 } 1178 case CK_PointerToIntegral: 1179 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1180 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1181 1182 case CK_ToVoid: { 1183 CGF.EmitIgnoredExpr(E); 1184 return 0; 1185 } 1186 case CK_VectorSplat: { 1187 llvm::Type *DstTy = ConvertType(DestTy); 1188 Value *Elt = Visit(const_cast<Expr*>(E)); 1189 Elt = EmitScalarConversion(Elt, E->getType(), 1190 DestTy->getAs<VectorType>()->getElementType()); 1191 1192 // Insert the element in element zero of an undef vector 1193 llvm::Value *UnV = llvm::UndefValue::get(DstTy); 1194 llvm::Value *Idx = Builder.getInt32(0); 1195 UnV = Builder.CreateInsertElement(UnV, Elt, Idx); 1196 1197 // Splat the element across to all elements 1198 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1199 llvm::Constant *Zero = Builder.getInt32(0); 1200 llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero); 1201 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); 1202 return Yay; 1203 } 1204 1205 case CK_IntegralCast: 1206 case CK_IntegralToFloating: 1207 case CK_FloatingToIntegral: 1208 case CK_FloatingCast: 1209 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1210 case CK_IntegralToBoolean: 1211 return EmitIntToBoolConversion(Visit(E)); 1212 case CK_PointerToBoolean: 1213 return EmitPointerToBoolConversion(Visit(E)); 1214 case CK_FloatingToBoolean: 1215 return EmitFloatToBoolConversion(Visit(E)); 1216 case CK_MemberPointerToBoolean: { 1217 llvm::Value *MemPtr = Visit(E); 1218 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1219 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1220 } 1221 1222 case CK_FloatingComplexToReal: 1223 case CK_IntegralComplexToReal: 1224 return CGF.EmitComplexExpr(E, false, true).first; 1225 1226 case CK_FloatingComplexToBoolean: 1227 case CK_IntegralComplexToBoolean: { 1228 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1229 1230 // TODO: kill this function off, inline appropriate case here 1231 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1232 } 1233 1234 } 1235 1236 llvm_unreachable("unknown scalar cast"); 1237 } 1238 1239 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1240 CodeGenFunction::StmtExprEvaluation eval(CGF); 1241 return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType()) 1242 .getScalarVal(); 1243 } 1244 1245 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 1246 LValue LV = CGF.EmitBlockDeclRefLValue(E); 1247 return CGF.EmitLoadOfLValue(LV).getScalarVal(); 1248 } 1249 1250 //===----------------------------------------------------------------------===// 1251 // Unary Operators 1252 //===----------------------------------------------------------------------===// 1253 1254 llvm::Value *ScalarExprEmitter:: 1255 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1256 llvm::Value *InVal, 1257 llvm::Value *NextVal, bool IsInc) { 1258 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 1259 case LangOptions::SOB_Undefined: 1260 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1261 case LangOptions::SOB_Defined: 1262 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1263 case LangOptions::SOB_Trapping: 1264 BinOpInfo BinOp; 1265 BinOp.LHS = InVal; 1266 BinOp.RHS = NextVal; 1267 BinOp.Ty = E->getType(); 1268 BinOp.Opcode = BO_Add; 1269 BinOp.E = E; 1270 return EmitOverflowCheckedBinOp(BinOp); 1271 } 1272 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1273 } 1274 1275 llvm::Value * 1276 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1277 bool isInc, bool isPre) { 1278 1279 QualType type = E->getSubExpr()->getType(); 1280 llvm::Value *value = EmitLoadOfLValue(LV); 1281 llvm::Value *input = value; 1282 llvm::PHINode *atomicPHI = 0; 1283 1284 int amount = (isInc ? 1 : -1); 1285 1286 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1287 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1288 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1289 Builder.CreateBr(opBB); 1290 Builder.SetInsertPoint(opBB); 1291 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1292 atomicPHI->addIncoming(value, startBB); 1293 type = atomicTy->getValueType(); 1294 value = atomicPHI; 1295 } 1296 1297 // Special case of integer increment that we have to check first: bool++. 1298 // Due to promotion rules, we get: 1299 // bool++ -> bool = bool + 1 1300 // -> bool = (int)bool + 1 1301 // -> bool = ((int)bool + 1 != 0) 1302 // An interesting aspect of this is that increment is always true. 1303 // Decrement does not have this property. 1304 if (isInc && type->isBooleanType()) { 1305 value = Builder.getTrue(); 1306 1307 // Most common case by far: integer increment. 1308 } else if (type->isIntegerType()) { 1309 1310 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1311 1312 // Note that signed integer inc/dec with width less than int can't 1313 // overflow because of promotion rules; we're just eliding a few steps here. 1314 if (type->isSignedIntegerOrEnumerationType() && 1315 value->getType()->getPrimitiveSizeInBits() >= 1316 CGF.IntTy->getBitWidth()) 1317 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1318 else 1319 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1320 1321 // Next most common: pointer increment. 1322 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1323 QualType type = ptr->getPointeeType(); 1324 1325 // VLA types don't have constant size. 1326 if (const VariableArrayType *vla 1327 = CGF.getContext().getAsVariableArrayType(type)) { 1328 llvm::Value *numElts = CGF.getVLASize(vla).first; 1329 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1330 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1331 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1332 else 1333 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1334 1335 // Arithmetic on function pointers (!) is just +-1. 1336 } else if (type->isFunctionType()) { 1337 llvm::Value *amt = Builder.getInt32(amount); 1338 1339 value = CGF.EmitCastToVoidPtr(value); 1340 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1341 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1342 else 1343 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1344 value = Builder.CreateBitCast(value, input->getType()); 1345 1346 // For everything else, we can just do a simple increment. 1347 } else { 1348 llvm::Value *amt = Builder.getInt32(amount); 1349 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1350 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1351 else 1352 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1353 } 1354 1355 // Vector increment/decrement. 1356 } else if (type->isVectorType()) { 1357 if (type->hasIntegerRepresentation()) { 1358 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1359 1360 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1361 } else { 1362 value = Builder.CreateFAdd( 1363 value, 1364 llvm::ConstantFP::get(value->getType(), amount), 1365 isInc ? "inc" : "dec"); 1366 } 1367 1368 // Floating point. 1369 } else if (type->isRealFloatingType()) { 1370 // Add the inc/dec to the real part. 1371 llvm::Value *amt; 1372 1373 if (type->isHalfType()) { 1374 // Another special case: half FP increment should be done via float 1375 value = 1376 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), 1377 input); 1378 } 1379 1380 if (value->getType()->isFloatTy()) 1381 amt = llvm::ConstantFP::get(VMContext, 1382 llvm::APFloat(static_cast<float>(amount))); 1383 else if (value->getType()->isDoubleTy()) 1384 amt = llvm::ConstantFP::get(VMContext, 1385 llvm::APFloat(static_cast<double>(amount))); 1386 else { 1387 llvm::APFloat F(static_cast<float>(amount)); 1388 bool ignored; 1389 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero, 1390 &ignored); 1391 amt = llvm::ConstantFP::get(VMContext, F); 1392 } 1393 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1394 1395 if (type->isHalfType()) 1396 value = 1397 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), 1398 value); 1399 1400 // Objective-C pointer types. 1401 } else { 1402 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1403 value = CGF.EmitCastToVoidPtr(value); 1404 1405 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1406 if (!isInc) size = -size; 1407 llvm::Value *sizeValue = 1408 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1409 1410 if (CGF.getContext().getLangOptions().isSignedOverflowDefined()) 1411 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1412 else 1413 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1414 value = Builder.CreateBitCast(value, input->getType()); 1415 } 1416 1417 if (atomicPHI) { 1418 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1419 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1420 llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI, 1421 value, llvm::SequentiallyConsistent); 1422 atomicPHI->addIncoming(old, opBB); 1423 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1424 Builder.CreateCondBr(success, contBB, opBB); 1425 Builder.SetInsertPoint(contBB); 1426 return isPre ? value : input; 1427 } 1428 1429 // Store the updated result through the lvalue. 1430 if (LV.isBitField()) 1431 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1432 else 1433 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1434 1435 // If this is a postinc, return the value read from memory, otherwise use the 1436 // updated value. 1437 return isPre ? value : input; 1438 } 1439 1440 1441 1442 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1443 TestAndClearIgnoreResultAssign(); 1444 // Emit unary minus with EmitSub so we handle overflow cases etc. 1445 BinOpInfo BinOp; 1446 BinOp.RHS = Visit(E->getSubExpr()); 1447 1448 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1449 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1450 else 1451 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1452 BinOp.Ty = E->getType(); 1453 BinOp.Opcode = BO_Sub; 1454 BinOp.E = E; 1455 return EmitSub(BinOp); 1456 } 1457 1458 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1459 TestAndClearIgnoreResultAssign(); 1460 Value *Op = Visit(E->getSubExpr()); 1461 return Builder.CreateNot(Op, "neg"); 1462 } 1463 1464 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1465 1466 // Perform vector logical not on comparison with zero vector. 1467 if (E->getType()->isExtVectorType()) { 1468 Value *Oper = Visit(E->getSubExpr()); 1469 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1470 Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1471 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1472 } 1473 1474 // Compare operand to zero. 1475 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1476 1477 // Invert value. 1478 // TODO: Could dynamically modify easy computations here. For example, if 1479 // the operand is an icmp ne, turn into icmp eq. 1480 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1481 1482 // ZExt result to the expr type. 1483 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1484 } 1485 1486 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1487 // Try folding the offsetof to a constant. 1488 llvm::APSInt Value; 1489 if (E->EvaluateAsInt(Value, CGF.getContext())) 1490 return Builder.getInt(Value); 1491 1492 // Loop over the components of the offsetof to compute the value. 1493 unsigned n = E->getNumComponents(); 1494 llvm::Type* ResultType = ConvertType(E->getType()); 1495 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1496 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1497 for (unsigned i = 0; i != n; ++i) { 1498 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1499 llvm::Value *Offset = 0; 1500 switch (ON.getKind()) { 1501 case OffsetOfExpr::OffsetOfNode::Array: { 1502 // Compute the index 1503 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1504 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1505 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1506 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1507 1508 // Save the element type 1509 CurrentType = 1510 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1511 1512 // Compute the element size 1513 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1514 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1515 1516 // Multiply out to compute the result 1517 Offset = Builder.CreateMul(Idx, ElemSize); 1518 break; 1519 } 1520 1521 case OffsetOfExpr::OffsetOfNode::Field: { 1522 FieldDecl *MemberDecl = ON.getField(); 1523 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1524 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1525 1526 // Compute the index of the field in its parent. 1527 unsigned i = 0; 1528 // FIXME: It would be nice if we didn't have to loop here! 1529 for (RecordDecl::field_iterator Field = RD->field_begin(), 1530 FieldEnd = RD->field_end(); 1531 Field != FieldEnd; (void)++Field, ++i) { 1532 if (*Field == MemberDecl) 1533 break; 1534 } 1535 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1536 1537 // Compute the offset to the field 1538 int64_t OffsetInt = RL.getFieldOffset(i) / 1539 CGF.getContext().getCharWidth(); 1540 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1541 1542 // Save the element type. 1543 CurrentType = MemberDecl->getType(); 1544 break; 1545 } 1546 1547 case OffsetOfExpr::OffsetOfNode::Identifier: 1548 llvm_unreachable("dependent __builtin_offsetof"); 1549 1550 case OffsetOfExpr::OffsetOfNode::Base: { 1551 if (ON.getBase()->isVirtual()) { 1552 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1553 continue; 1554 } 1555 1556 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1557 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1558 1559 // Save the element type. 1560 CurrentType = ON.getBase()->getType(); 1561 1562 // Compute the offset to the base. 1563 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1564 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1565 int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) / 1566 CGF.getContext().getCharWidth(); 1567 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1568 break; 1569 } 1570 } 1571 Result = Builder.CreateAdd(Result, Offset); 1572 } 1573 return Result; 1574 } 1575 1576 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1577 /// argument of the sizeof expression as an integer. 1578 Value * 1579 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1580 const UnaryExprOrTypeTraitExpr *E) { 1581 QualType TypeToSize = E->getTypeOfArgument(); 1582 if (E->getKind() == UETT_SizeOf) { 1583 if (const VariableArrayType *VAT = 1584 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1585 if (E->isArgumentType()) { 1586 // sizeof(type) - make sure to emit the VLA size. 1587 CGF.EmitVariablyModifiedType(TypeToSize); 1588 } else { 1589 // C99 6.5.3.4p2: If the argument is an expression of type 1590 // VLA, it is evaluated. 1591 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1592 } 1593 1594 QualType eltType; 1595 llvm::Value *numElts; 1596 llvm::tie(numElts, eltType) = CGF.getVLASize(VAT); 1597 1598 llvm::Value *size = numElts; 1599 1600 // Scale the number of non-VLA elements by the non-VLA element size. 1601 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1602 if (!eltSize.isOne()) 1603 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1604 1605 return size; 1606 } 1607 } 1608 1609 // If this isn't sizeof(vla), the result must be constant; use the constant 1610 // folding logic so we don't have to duplicate it here. 1611 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1612 } 1613 1614 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1615 Expr *Op = E->getSubExpr(); 1616 if (Op->getType()->isAnyComplexType()) { 1617 // If it's an l-value, load through the appropriate subobject l-value. 1618 // Note that we have to ask E because Op might be an l-value that 1619 // this won't work for, e.g. an Obj-C property. 1620 if (E->isGLValue()) 1621 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1622 1623 // Otherwise, calculate and project. 1624 return CGF.EmitComplexExpr(Op, false, true).first; 1625 } 1626 1627 return Visit(Op); 1628 } 1629 1630 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1631 Expr *Op = E->getSubExpr(); 1632 if (Op->getType()->isAnyComplexType()) { 1633 // If it's an l-value, load through the appropriate subobject l-value. 1634 // Note that we have to ask E because Op might be an l-value that 1635 // this won't work for, e.g. an Obj-C property. 1636 if (Op->isGLValue()) 1637 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1638 1639 // Otherwise, calculate and project. 1640 return CGF.EmitComplexExpr(Op, true, false).second; 1641 } 1642 1643 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1644 // effects are evaluated, but not the actual value. 1645 CGF.EmitScalarExpr(Op, true); 1646 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1647 } 1648 1649 //===----------------------------------------------------------------------===// 1650 // Binary Operators 1651 //===----------------------------------------------------------------------===// 1652 1653 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1654 TestAndClearIgnoreResultAssign(); 1655 BinOpInfo Result; 1656 Result.LHS = Visit(E->getLHS()); 1657 Result.RHS = Visit(E->getRHS()); 1658 Result.Ty = E->getType(); 1659 Result.Opcode = E->getOpcode(); 1660 Result.E = E; 1661 return Result; 1662 } 1663 1664 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 1665 const CompoundAssignOperator *E, 1666 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 1667 Value *&Result) { 1668 QualType LHSTy = E->getLHS()->getType(); 1669 BinOpInfo OpInfo; 1670 1671 if (E->getComputationResultType()->isAnyComplexType()) { 1672 // This needs to go through the complex expression emitter, but it's a tad 1673 // complicated to do that... I'm leaving it out for now. (Note that we do 1674 // actually need the imaginary part of the RHS for multiplication and 1675 // division.) 1676 CGF.ErrorUnsupported(E, "complex compound assignment"); 1677 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1678 return LValue(); 1679 } 1680 1681 // Emit the RHS first. __block variables need to have the rhs evaluated 1682 // first, plus this should improve codegen a little. 1683 OpInfo.RHS = Visit(E->getRHS()); 1684 OpInfo.Ty = E->getComputationResultType(); 1685 OpInfo.Opcode = E->getOpcode(); 1686 OpInfo.E = E; 1687 // Load/convert the LHS. 1688 LValue LHSLV = EmitCheckedLValue(E->getLHS()); 1689 OpInfo.LHS = EmitLoadOfLValue(LHSLV); 1690 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 1691 E->getComputationLHSType()); 1692 1693 llvm::PHINode *atomicPHI = 0; 1694 if (const AtomicType *atomicTy = OpInfo.Ty->getAs<AtomicType>()) { 1695 // FIXME: For floating point types, we should be saving and restoring the 1696 // floating point environment in the loop. 1697 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1698 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1699 Builder.CreateBr(opBB); 1700 Builder.SetInsertPoint(opBB); 1701 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 1702 atomicPHI->addIncoming(OpInfo.LHS, startBB); 1703 OpInfo.Ty = atomicTy->getValueType(); 1704 OpInfo.LHS = atomicPHI; 1705 } 1706 1707 // Expand the binary operator. 1708 Result = (this->*Func)(OpInfo); 1709 1710 // Convert the result back to the LHS type. 1711 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 1712 1713 if (atomicPHI) { 1714 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1715 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1716 llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI, 1717 Result, llvm::SequentiallyConsistent); 1718 atomicPHI->addIncoming(old, opBB); 1719 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1720 Builder.CreateCondBr(success, contBB, opBB); 1721 Builder.SetInsertPoint(contBB); 1722 return LHSLV; 1723 } 1724 1725 // Store the result value into the LHS lvalue. Bit-fields are handled 1726 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 1727 // 'An assignment expression has the value of the left operand after the 1728 // assignment...'. 1729 if (LHSLV.isBitField()) 1730 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 1731 else 1732 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 1733 1734 return LHSLV; 1735 } 1736 1737 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 1738 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 1739 bool Ignore = TestAndClearIgnoreResultAssign(); 1740 Value *RHS; 1741 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 1742 1743 // If the result is clearly ignored, return now. 1744 if (Ignore) 1745 return 0; 1746 1747 // The result of an assignment in C is the assigned r-value. 1748 if (!CGF.getContext().getLangOptions().CPlusPlus) 1749 return RHS; 1750 1751 // If the lvalue is non-volatile, return the computed value of the assignment. 1752 if (!LHS.isVolatileQualified()) 1753 return RHS; 1754 1755 // Otherwise, reload the value. 1756 return EmitLoadOfLValue(LHS); 1757 } 1758 1759 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 1760 const BinOpInfo &Ops, 1761 llvm::Value *Zero, bool isDiv) { 1762 llvm::Function::iterator insertPt = Builder.GetInsertBlock(); 1763 llvm::BasicBlock *contBB = 1764 CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn, 1765 llvm::next(insertPt)); 1766 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 1767 1768 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 1769 1770 if (Ops.Ty->hasSignedIntegerRepresentation()) { 1771 llvm::Value *IntMin = 1772 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 1773 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 1774 1775 llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero); 1776 llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin); 1777 llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne); 1778 llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and"); 1779 Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"), 1780 overflowBB, contBB); 1781 } else { 1782 CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero), 1783 overflowBB, contBB); 1784 } 1785 EmitOverflowBB(overflowBB); 1786 Builder.SetInsertPoint(contBB); 1787 } 1788 1789 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 1790 if (isTrapvOverflowBehavior()) { 1791 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 1792 1793 if (Ops.Ty->isIntegerType()) 1794 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 1795 else if (Ops.Ty->isRealFloatingType()) { 1796 llvm::Function::iterator insertPt = Builder.GetInsertBlock(); 1797 llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn, 1798 llvm::next(insertPt)); 1799 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", 1800 CGF.CurFn); 1801 CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero), 1802 overflowBB, DivCont); 1803 EmitOverflowBB(overflowBB); 1804 Builder.SetInsertPoint(DivCont); 1805 } 1806 } 1807 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 1808 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 1809 if (CGF.getContext().getLangOptions().OpenCL) { 1810 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 1811 llvm::Type *ValTy = Val->getType(); 1812 if (ValTy->isFloatTy() || 1813 (isa<llvm::VectorType>(ValTy) && 1814 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 1815 CGF.SetFPAccuracy(Val, 5, 2); 1816 } 1817 return Val; 1818 } 1819 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 1820 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 1821 else 1822 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 1823 } 1824 1825 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 1826 // Rem in C can't be a floating point type: C99 6.5.5p2. 1827 if (isTrapvOverflowBehavior()) { 1828 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 1829 1830 if (Ops.Ty->isIntegerType()) 1831 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 1832 } 1833 1834 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 1835 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 1836 else 1837 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 1838 } 1839 1840 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 1841 unsigned IID; 1842 unsigned OpID = 0; 1843 1844 switch (Ops.Opcode) { 1845 case BO_Add: 1846 case BO_AddAssign: 1847 OpID = 1; 1848 IID = llvm::Intrinsic::sadd_with_overflow; 1849 break; 1850 case BO_Sub: 1851 case BO_SubAssign: 1852 OpID = 2; 1853 IID = llvm::Intrinsic::ssub_with_overflow; 1854 break; 1855 case BO_Mul: 1856 case BO_MulAssign: 1857 OpID = 3; 1858 IID = llvm::Intrinsic::smul_with_overflow; 1859 break; 1860 default: 1861 llvm_unreachable("Unsupported operation for overflow detection"); 1862 } 1863 OpID <<= 1; 1864 OpID |= 1; 1865 1866 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 1867 1868 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 1869 1870 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 1871 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 1872 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 1873 1874 // Branch in case of overflow. 1875 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 1876 llvm::Function::iterator insertPt = initialBB; 1877 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 1878 llvm::next(insertPt)); 1879 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 1880 1881 Builder.CreateCondBr(overflow, overflowBB, continueBB); 1882 1883 // Handle overflow with llvm.trap. 1884 const std::string *handlerName = 1885 &CGF.getContext().getLangOptions().OverflowHandler; 1886 if (handlerName->empty()) { 1887 EmitOverflowBB(overflowBB); 1888 Builder.SetInsertPoint(continueBB); 1889 return result; 1890 } 1891 1892 // If an overflow handler is set, then we want to call it and then use its 1893 // result, if it returns. 1894 Builder.SetInsertPoint(overflowBB); 1895 1896 // Get the overflow handler. 1897 llvm::Type *Int8Ty = CGF.Int8Ty; 1898 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 1899 llvm::FunctionType *handlerTy = 1900 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 1901 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 1902 1903 // Sign extend the args to 64-bit, so that we can use the same handler for 1904 // all types of overflow. 1905 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 1906 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 1907 1908 // Call the handler with the two arguments, the operation, and the size of 1909 // the result. 1910 llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs, 1911 Builder.getInt8(OpID), 1912 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())); 1913 1914 // Truncate the result back to the desired size. 1915 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 1916 Builder.CreateBr(continueBB); 1917 1918 Builder.SetInsertPoint(continueBB); 1919 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 1920 phi->addIncoming(result, initialBB); 1921 phi->addIncoming(handlerResult, overflowBB); 1922 1923 return phi; 1924 } 1925 1926 /// Emit pointer + index arithmetic. 1927 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 1928 const BinOpInfo &op, 1929 bool isSubtraction) { 1930 // Must have binary (not unary) expr here. Unary pointer 1931 // increment/decrement doesn't use this path. 1932 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 1933 1934 Value *pointer = op.LHS; 1935 Expr *pointerOperand = expr->getLHS(); 1936 Value *index = op.RHS; 1937 Expr *indexOperand = expr->getRHS(); 1938 1939 // In a subtraction, the LHS is always the pointer. 1940 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 1941 std::swap(pointer, index); 1942 std::swap(pointerOperand, indexOperand); 1943 } 1944 1945 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 1946 if (width != CGF.PointerWidthInBits) { 1947 // Zero-extend or sign-extend the pointer value according to 1948 // whether the index is signed or not. 1949 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 1950 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 1951 "idx.ext"); 1952 } 1953 1954 // If this is subtraction, negate the index. 1955 if (isSubtraction) 1956 index = CGF.Builder.CreateNeg(index, "idx.neg"); 1957 1958 const PointerType *pointerType 1959 = pointerOperand->getType()->getAs<PointerType>(); 1960 if (!pointerType) { 1961 QualType objectType = pointerOperand->getType() 1962 ->castAs<ObjCObjectPointerType>() 1963 ->getPointeeType(); 1964 llvm::Value *objectSize 1965 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 1966 1967 index = CGF.Builder.CreateMul(index, objectSize); 1968 1969 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 1970 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 1971 return CGF.Builder.CreateBitCast(result, pointer->getType()); 1972 } 1973 1974 QualType elementType = pointerType->getPointeeType(); 1975 if (const VariableArrayType *vla 1976 = CGF.getContext().getAsVariableArrayType(elementType)) { 1977 // The element count here is the total number of non-VLA elements. 1978 llvm::Value *numElements = CGF.getVLASize(vla).first; 1979 1980 // Effectively, the multiply by the VLA size is part of the GEP. 1981 // GEP indexes are signed, and scaling an index isn't permitted to 1982 // signed-overflow, so we use the same semantics for our explicit 1983 // multiply. We suppress this if overflow is not undefined behavior. 1984 if (CGF.getLangOptions().isSignedOverflowDefined()) { 1985 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 1986 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 1987 } else { 1988 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 1989 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 1990 } 1991 return pointer; 1992 } 1993 1994 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 1995 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 1996 // future proof. 1997 if (elementType->isVoidType() || elementType->isFunctionType()) { 1998 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 1999 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2000 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2001 } 2002 2003 if (CGF.getLangOptions().isSignedOverflowDefined()) 2004 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2005 2006 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2007 } 2008 2009 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2010 if (op.LHS->getType()->isPointerTy() || 2011 op.RHS->getType()->isPointerTy()) 2012 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2013 2014 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2015 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 2016 case LangOptions::SOB_Undefined: 2017 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2018 case LangOptions::SOB_Defined: 2019 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2020 case LangOptions::SOB_Trapping: 2021 return EmitOverflowCheckedBinOp(op); 2022 } 2023 } 2024 2025 if (op.LHS->getType()->isFPOrFPVectorTy()) 2026 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2027 2028 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2029 } 2030 2031 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2032 // The LHS is always a pointer if either side is. 2033 if (!op.LHS->getType()->isPointerTy()) { 2034 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2035 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) { 2036 case LangOptions::SOB_Undefined: 2037 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2038 case LangOptions::SOB_Defined: 2039 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2040 case LangOptions::SOB_Trapping: 2041 return EmitOverflowCheckedBinOp(op); 2042 } 2043 } 2044 2045 if (op.LHS->getType()->isFPOrFPVectorTy()) 2046 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2047 2048 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2049 } 2050 2051 // If the RHS is not a pointer, then we have normal pointer 2052 // arithmetic. 2053 if (!op.RHS->getType()->isPointerTy()) 2054 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2055 2056 // Otherwise, this is a pointer subtraction. 2057 2058 // Do the raw subtraction part. 2059 llvm::Value *LHS 2060 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2061 llvm::Value *RHS 2062 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2063 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2064 2065 // Okay, figure out the element size. 2066 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2067 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2068 2069 llvm::Value *divisor = 0; 2070 2071 // For a variable-length array, this is going to be non-constant. 2072 if (const VariableArrayType *vla 2073 = CGF.getContext().getAsVariableArrayType(elementType)) { 2074 llvm::Value *numElements; 2075 llvm::tie(numElements, elementType) = CGF.getVLASize(vla); 2076 2077 divisor = numElements; 2078 2079 // Scale the number of non-VLA elements by the non-VLA element size. 2080 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2081 if (!eltSize.isOne()) 2082 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2083 2084 // For everything elese, we can just compute it, safe in the 2085 // assumption that Sema won't let anything through that we can't 2086 // safely compute the size of. 2087 } else { 2088 CharUnits elementSize; 2089 // Handle GCC extension for pointer arithmetic on void* and 2090 // function pointer types. 2091 if (elementType->isVoidType() || elementType->isFunctionType()) 2092 elementSize = CharUnits::One(); 2093 else 2094 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2095 2096 // Don't even emit the divide for element size of 1. 2097 if (elementSize.isOne()) 2098 return diffInChars; 2099 2100 divisor = CGF.CGM.getSize(elementSize); 2101 } 2102 2103 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2104 // pointer difference in C is only defined in the case where both operands 2105 // are pointing to elements of an array. 2106 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2107 } 2108 2109 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2110 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2111 // RHS to the same size as the LHS. 2112 Value *RHS = Ops.RHS; 2113 if (Ops.LHS->getType() != RHS->getType()) 2114 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2115 2116 if (CGF.CatchUndefined 2117 && isa<llvm::IntegerType>(Ops.LHS->getType())) { 2118 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth(); 2119 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2120 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS, 2121 llvm::ConstantInt::get(RHS->getType(), Width)), 2122 Cont, CGF.getTrapBB()); 2123 CGF.EmitBlock(Cont); 2124 } 2125 2126 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2127 } 2128 2129 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2130 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2131 // RHS to the same size as the LHS. 2132 Value *RHS = Ops.RHS; 2133 if (Ops.LHS->getType() != RHS->getType()) 2134 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2135 2136 if (CGF.CatchUndefined 2137 && isa<llvm::IntegerType>(Ops.LHS->getType())) { 2138 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth(); 2139 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2140 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS, 2141 llvm::ConstantInt::get(RHS->getType(), Width)), 2142 Cont, CGF.getTrapBB()); 2143 CGF.EmitBlock(Cont); 2144 } 2145 2146 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2147 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2148 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2149 } 2150 2151 enum IntrinsicType { VCMPEQ, VCMPGT }; 2152 // return corresponding comparison intrinsic for given vector type 2153 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2154 BuiltinType::Kind ElemKind) { 2155 switch (ElemKind) { 2156 default: llvm_unreachable("unexpected element type"); 2157 case BuiltinType::Char_U: 2158 case BuiltinType::UChar: 2159 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2160 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2161 case BuiltinType::Char_S: 2162 case BuiltinType::SChar: 2163 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2164 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2165 case BuiltinType::UShort: 2166 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2167 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2168 case BuiltinType::Short: 2169 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2170 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2171 case BuiltinType::UInt: 2172 case BuiltinType::ULong: 2173 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2174 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2175 case BuiltinType::Int: 2176 case BuiltinType::Long: 2177 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2178 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2179 case BuiltinType::Float: 2180 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2181 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2182 } 2183 } 2184 2185 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2186 unsigned SICmpOpc, unsigned FCmpOpc) { 2187 TestAndClearIgnoreResultAssign(); 2188 Value *Result; 2189 QualType LHSTy = E->getLHS()->getType(); 2190 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2191 assert(E->getOpcode() == BO_EQ || 2192 E->getOpcode() == BO_NE); 2193 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2194 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2195 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2196 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2197 } else if (!LHSTy->isAnyComplexType()) { 2198 Value *LHS = Visit(E->getLHS()); 2199 Value *RHS = Visit(E->getRHS()); 2200 2201 // If AltiVec, the comparison results in a numeric type, so we use 2202 // intrinsics comparing vectors and giving 0 or 1 as a result 2203 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2204 // constants for mapping CR6 register bits to predicate result 2205 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2206 2207 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2208 2209 // in several cases vector arguments order will be reversed 2210 Value *FirstVecArg = LHS, 2211 *SecondVecArg = RHS; 2212 2213 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2214 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2215 BuiltinType::Kind ElementKind = BTy->getKind(); 2216 2217 switch(E->getOpcode()) { 2218 default: llvm_unreachable("is not a comparison operation"); 2219 case BO_EQ: 2220 CR6 = CR6_LT; 2221 ID = GetIntrinsic(VCMPEQ, ElementKind); 2222 break; 2223 case BO_NE: 2224 CR6 = CR6_EQ; 2225 ID = GetIntrinsic(VCMPEQ, ElementKind); 2226 break; 2227 case BO_LT: 2228 CR6 = CR6_LT; 2229 ID = GetIntrinsic(VCMPGT, ElementKind); 2230 std::swap(FirstVecArg, SecondVecArg); 2231 break; 2232 case BO_GT: 2233 CR6 = CR6_LT; 2234 ID = GetIntrinsic(VCMPGT, ElementKind); 2235 break; 2236 case BO_LE: 2237 if (ElementKind == BuiltinType::Float) { 2238 CR6 = CR6_LT; 2239 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2240 std::swap(FirstVecArg, SecondVecArg); 2241 } 2242 else { 2243 CR6 = CR6_EQ; 2244 ID = GetIntrinsic(VCMPGT, ElementKind); 2245 } 2246 break; 2247 case BO_GE: 2248 if (ElementKind == BuiltinType::Float) { 2249 CR6 = CR6_LT; 2250 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2251 } 2252 else { 2253 CR6 = CR6_EQ; 2254 ID = GetIntrinsic(VCMPGT, ElementKind); 2255 std::swap(FirstVecArg, SecondVecArg); 2256 } 2257 break; 2258 } 2259 2260 Value *CR6Param = Builder.getInt32(CR6); 2261 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2262 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2263 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2264 } 2265 2266 if (LHS->getType()->isFPOrFPVectorTy()) { 2267 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2268 LHS, RHS, "cmp"); 2269 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2270 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2271 LHS, RHS, "cmp"); 2272 } else { 2273 // Unsigned integers and pointers. 2274 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2275 LHS, RHS, "cmp"); 2276 } 2277 2278 // If this is a vector comparison, sign extend the result to the appropriate 2279 // vector integer type and return it (don't convert to bool). 2280 if (LHSTy->isVectorType()) 2281 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2282 2283 } else { 2284 // Complex Comparison: can only be an equality comparison. 2285 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 2286 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 2287 2288 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 2289 2290 Value *ResultR, *ResultI; 2291 if (CETy->isRealFloatingType()) { 2292 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2293 LHS.first, RHS.first, "cmp.r"); 2294 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2295 LHS.second, RHS.second, "cmp.i"); 2296 } else { 2297 // Complex comparisons can only be equality comparisons. As such, signed 2298 // and unsigned opcodes are the same. 2299 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2300 LHS.first, RHS.first, "cmp.r"); 2301 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2302 LHS.second, RHS.second, "cmp.i"); 2303 } 2304 2305 if (E->getOpcode() == BO_EQ) { 2306 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2307 } else { 2308 assert(E->getOpcode() == BO_NE && 2309 "Complex comparison other than == or != ?"); 2310 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2311 } 2312 } 2313 2314 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2315 } 2316 2317 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2318 bool Ignore = TestAndClearIgnoreResultAssign(); 2319 2320 Value *RHS; 2321 LValue LHS; 2322 2323 switch (E->getLHS()->getType().getObjCLifetime()) { 2324 case Qualifiers::OCL_Strong: 2325 llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2326 break; 2327 2328 case Qualifiers::OCL_Autoreleasing: 2329 llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E); 2330 break; 2331 2332 case Qualifiers::OCL_Weak: 2333 RHS = Visit(E->getRHS()); 2334 LHS = EmitCheckedLValue(E->getLHS()); 2335 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2336 break; 2337 2338 // No reason to do any of these differently. 2339 case Qualifiers::OCL_None: 2340 case Qualifiers::OCL_ExplicitNone: 2341 // __block variables need to have the rhs evaluated first, plus 2342 // this should improve codegen just a little. 2343 RHS = Visit(E->getRHS()); 2344 LHS = EmitCheckedLValue(E->getLHS()); 2345 2346 // Store the value into the LHS. Bit-fields are handled specially 2347 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2348 // 'An assignment expression has the value of the left operand after 2349 // the assignment...'. 2350 if (LHS.isBitField()) 2351 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2352 else 2353 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2354 } 2355 2356 // If the result is clearly ignored, return now. 2357 if (Ignore) 2358 return 0; 2359 2360 // The result of an assignment in C is the assigned r-value. 2361 if (!CGF.getContext().getLangOptions().CPlusPlus) 2362 return RHS; 2363 2364 // If the lvalue is non-volatile, return the computed value of the assignment. 2365 if (!LHS.isVolatileQualified()) 2366 return RHS; 2367 2368 // Otherwise, reload the value. 2369 return EmitLoadOfLValue(LHS); 2370 } 2371 2372 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2373 2374 // Perform vector logical and on comparisons with zero vectors. 2375 if (E->getType()->isVectorType()) { 2376 Value *LHS = Visit(E->getLHS()); 2377 Value *RHS = Visit(E->getRHS()); 2378 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2379 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2380 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2381 Value *And = Builder.CreateAnd(LHS, RHS); 2382 return Builder.CreateSExt(And, Zero->getType(), "sext"); 2383 } 2384 2385 llvm::Type *ResTy = ConvertType(E->getType()); 2386 2387 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2388 // If we have 1 && X, just emit X without inserting the control flow. 2389 bool LHSCondVal; 2390 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2391 if (LHSCondVal) { // If we have 1 && X, just emit X. 2392 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2393 // ZExt result to int or bool. 2394 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2395 } 2396 2397 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2398 if (!CGF.ContainsLabel(E->getRHS())) 2399 return llvm::Constant::getNullValue(ResTy); 2400 } 2401 2402 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2403 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 2404 2405 CodeGenFunction::ConditionalEvaluation eval(CGF); 2406 2407 // Branch on the LHS first. If it is false, go to the failure (cont) block. 2408 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); 2409 2410 // Any edges into the ContBlock are now from an (indeterminate number of) 2411 // edges from this first condition. All of these values will be false. Start 2412 // setting up the PHI node in the Cont Block for this. 2413 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2414 "", ContBlock); 2415 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2416 PI != PE; ++PI) 2417 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 2418 2419 eval.begin(CGF); 2420 CGF.EmitBlock(RHSBlock); 2421 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2422 eval.end(CGF); 2423 2424 // Reaquire the RHS block, as there may be subblocks inserted. 2425 RHSBlock = Builder.GetInsertBlock(); 2426 2427 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2428 // into the phi node for the edge with the value of RHSCond. 2429 if (CGF.getDebugInfo()) 2430 // There is no need to emit line number for unconditional branch. 2431 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 2432 CGF.EmitBlock(ContBlock); 2433 PN->addIncoming(RHSCond, RHSBlock); 2434 2435 // ZExt result to int. 2436 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 2437 } 2438 2439 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 2440 2441 // Perform vector logical or on comparisons with zero vectors. 2442 if (E->getType()->isVectorType()) { 2443 Value *LHS = Visit(E->getLHS()); 2444 Value *RHS = Visit(E->getRHS()); 2445 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2446 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2447 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2448 Value *Or = Builder.CreateOr(LHS, RHS); 2449 return Builder.CreateSExt(Or, Zero->getType(), "sext"); 2450 } 2451 2452 llvm::Type *ResTy = ConvertType(E->getType()); 2453 2454 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 2455 // If we have 0 || X, just emit X without inserting the control flow. 2456 bool LHSCondVal; 2457 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2458 if (!LHSCondVal) { // If we have 0 || X, just emit X. 2459 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2460 // ZExt result to int or bool. 2461 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 2462 } 2463 2464 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 2465 if (!CGF.ContainsLabel(E->getRHS())) 2466 return llvm::ConstantInt::get(ResTy, 1); 2467 } 2468 2469 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 2470 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 2471 2472 CodeGenFunction::ConditionalEvaluation eval(CGF); 2473 2474 // Branch on the LHS first. If it is true, go to the success (cont) block. 2475 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); 2476 2477 // Any edges into the ContBlock are now from an (indeterminate number of) 2478 // edges from this first condition. All of these values will be true. Start 2479 // setting up the PHI node in the Cont Block for this. 2480 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2481 "", ContBlock); 2482 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2483 PI != PE; ++PI) 2484 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 2485 2486 eval.begin(CGF); 2487 2488 // Emit the RHS condition as a bool value. 2489 CGF.EmitBlock(RHSBlock); 2490 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2491 2492 eval.end(CGF); 2493 2494 // Reaquire the RHS block, as there may be subblocks inserted. 2495 RHSBlock = Builder.GetInsertBlock(); 2496 2497 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2498 // into the phi node for the edge with the value of RHSCond. 2499 CGF.EmitBlock(ContBlock); 2500 PN->addIncoming(RHSCond, RHSBlock); 2501 2502 // ZExt result to int. 2503 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 2504 } 2505 2506 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 2507 CGF.EmitIgnoredExpr(E->getLHS()); 2508 CGF.EnsureInsertPoint(); 2509 return Visit(E->getRHS()); 2510 } 2511 2512 //===----------------------------------------------------------------------===// 2513 // Other Operators 2514 //===----------------------------------------------------------------------===// 2515 2516 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 2517 /// expression is cheap enough and side-effect-free enough to evaluate 2518 /// unconditionally instead of conditionally. This is used to convert control 2519 /// flow into selects in some cases. 2520 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 2521 CodeGenFunction &CGF) { 2522 E = E->IgnoreParens(); 2523 2524 // Anything that is an integer or floating point constant is fine. 2525 if (E->isConstantInitializer(CGF.getContext(), false)) 2526 return true; 2527 2528 // Non-volatile automatic variables too, to get "cond ? X : Y" where 2529 // X and Y are local variables. 2530 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 2531 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2532 if (VD->hasLocalStorage() && !(CGF.getContext() 2533 .getCanonicalType(VD->getType()) 2534 .isVolatileQualified())) 2535 return true; 2536 2537 return false; 2538 } 2539 2540 2541 Value *ScalarExprEmitter:: 2542 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 2543 TestAndClearIgnoreResultAssign(); 2544 2545 // Bind the common expression if necessary. 2546 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 2547 2548 Expr *condExpr = E->getCond(); 2549 Expr *lhsExpr = E->getTrueExpr(); 2550 Expr *rhsExpr = E->getFalseExpr(); 2551 2552 // If the condition constant folds and can be elided, try to avoid emitting 2553 // the condition and the dead arm. 2554 bool CondExprBool; 2555 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2556 Expr *live = lhsExpr, *dead = rhsExpr; 2557 if (!CondExprBool) std::swap(live, dead); 2558 2559 // If the dead side doesn't have labels we need, just emit the Live part. 2560 if (!CGF.ContainsLabel(dead)) { 2561 Value *Result = Visit(live); 2562 2563 // If the live part is a throw expression, it acts like it has a void 2564 // type, so evaluating it returns a null Value*. However, a conditional 2565 // with non-void type must return a non-null Value*. 2566 if (!Result && !E->getType()->isVoidType()) 2567 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 2568 2569 return Result; 2570 } 2571 } 2572 2573 // OpenCL: If the condition is a vector, we can treat this condition like 2574 // the select function. 2575 if (CGF.getContext().getLangOptions().OpenCL 2576 && condExpr->getType()->isVectorType()) { 2577 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 2578 llvm::Value *LHS = Visit(lhsExpr); 2579 llvm::Value *RHS = Visit(rhsExpr); 2580 2581 llvm::Type *condType = ConvertType(condExpr->getType()); 2582 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 2583 2584 unsigned numElem = vecTy->getNumElements(); 2585 llvm::Type *elemType = vecTy->getElementType(); 2586 2587 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 2588 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 2589 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 2590 llvm::VectorType::get(elemType, 2591 numElem), 2592 "sext"); 2593 llvm::Value *tmp2 = Builder.CreateNot(tmp); 2594 2595 // Cast float to int to perform ANDs if necessary. 2596 llvm::Value *RHSTmp = RHS; 2597 llvm::Value *LHSTmp = LHS; 2598 bool wasCast = false; 2599 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 2600 if (rhsVTy->getElementType()->isFloatTy()) { 2601 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 2602 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 2603 wasCast = true; 2604 } 2605 2606 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 2607 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 2608 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 2609 if (wasCast) 2610 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 2611 2612 return tmp5; 2613 } 2614 2615 // If this is a really simple expression (like x ? 4 : 5), emit this as a 2616 // select instead of as control flow. We can only do this if it is cheap and 2617 // safe to evaluate the LHS and RHS unconditionally. 2618 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 2619 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 2620 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 2621 llvm::Value *LHS = Visit(lhsExpr); 2622 llvm::Value *RHS = Visit(rhsExpr); 2623 if (!LHS) { 2624 // If the conditional has void type, make sure we return a null Value*. 2625 assert(!RHS && "LHS and RHS types must match"); 2626 return 0; 2627 } 2628 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 2629 } 2630 2631 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 2632 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 2633 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 2634 2635 CodeGenFunction::ConditionalEvaluation eval(CGF); 2636 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock); 2637 2638 CGF.EmitBlock(LHSBlock); 2639 eval.begin(CGF); 2640 Value *LHS = Visit(lhsExpr); 2641 eval.end(CGF); 2642 2643 LHSBlock = Builder.GetInsertBlock(); 2644 Builder.CreateBr(ContBlock); 2645 2646 CGF.EmitBlock(RHSBlock); 2647 eval.begin(CGF); 2648 Value *RHS = Visit(rhsExpr); 2649 eval.end(CGF); 2650 2651 RHSBlock = Builder.GetInsertBlock(); 2652 CGF.EmitBlock(ContBlock); 2653 2654 // If the LHS or RHS is a throw expression, it will be legitimately null. 2655 if (!LHS) 2656 return RHS; 2657 if (!RHS) 2658 return LHS; 2659 2660 // Create a PHI node for the real part. 2661 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 2662 PN->addIncoming(LHS, LHSBlock); 2663 PN->addIncoming(RHS, RHSBlock); 2664 return PN; 2665 } 2666 2667 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 2668 return Visit(E->getChosenSubExpr(CGF.getContext())); 2669 } 2670 2671 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 2672 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 2673 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 2674 2675 // If EmitVAArg fails, we fall back to the LLVM instruction. 2676 if (!ArgPtr) 2677 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 2678 2679 // FIXME Volatility. 2680 return Builder.CreateLoad(ArgPtr); 2681 } 2682 2683 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 2684 return CGF.EmitBlockLiteral(block); 2685 } 2686 2687 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 2688 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 2689 llvm::Type *DstTy = ConvertType(E->getType()); 2690 2691 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 2692 // a shuffle vector instead of a bitcast. 2693 llvm::Type *SrcTy = Src->getType(); 2694 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 2695 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 2696 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 2697 if ((numElementsDst == 3 && numElementsSrc == 4) 2698 || (numElementsDst == 4 && numElementsSrc == 3)) { 2699 2700 2701 // In the case of going from int4->float3, a bitcast is needed before 2702 // doing a shuffle. 2703 llvm::Type *srcElemTy = 2704 cast<llvm::VectorType>(SrcTy)->getElementType(); 2705 llvm::Type *dstElemTy = 2706 cast<llvm::VectorType>(DstTy)->getElementType(); 2707 2708 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 2709 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 2710 // Create a float type of the same size as the source or destination. 2711 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 2712 numElementsSrc); 2713 2714 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 2715 } 2716 2717 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 2718 2719 SmallVector<llvm::Constant*, 3> Args; 2720 Args.push_back(Builder.getInt32(0)); 2721 Args.push_back(Builder.getInt32(1)); 2722 Args.push_back(Builder.getInt32(2)); 2723 2724 if (numElementsDst == 4) 2725 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 2726 2727 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 2728 2729 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 2730 } 2731 } 2732 2733 return Builder.CreateBitCast(Src, DstTy, "astype"); 2734 } 2735 2736 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 2737 return CGF.EmitAtomicExpr(E).getScalarVal(); 2738 } 2739 2740 //===----------------------------------------------------------------------===// 2741 // Entry Point into this File 2742 //===----------------------------------------------------------------------===// 2743 2744 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 2745 /// type, ignoring the result. 2746 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 2747 assert(E && !hasAggregateLLVMType(E->getType()) && 2748 "Invalid scalar expression to emit"); 2749 2750 if (isa<CXXDefaultArgExpr>(E)) 2751 disableDebugInfo(); 2752 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 2753 .Visit(const_cast<Expr*>(E)); 2754 if (isa<CXXDefaultArgExpr>(E)) 2755 enableDebugInfo(); 2756 return V; 2757 } 2758 2759 /// EmitScalarConversion - Emit a conversion from the specified type to the 2760 /// specified destination type, both of which are LLVM scalar types. 2761 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 2762 QualType DstTy) { 2763 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) && 2764 "Invalid scalar expression to emit"); 2765 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 2766 } 2767 2768 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 2769 /// type to the specified destination type, where the destination type is an 2770 /// LLVM scalar type. 2771 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 2772 QualType SrcTy, 2773 QualType DstTy) { 2774 assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) && 2775 "Invalid complex -> scalar conversion"); 2776 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 2777 DstTy); 2778 } 2779 2780 2781 llvm::Value *CodeGenFunction:: 2782 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2783 bool isInc, bool isPre) { 2784 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 2785 } 2786 2787 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 2788 llvm::Value *V; 2789 // object->isa or (*object).isa 2790 // Generate code as for: *(Class*)object 2791 // build Class* type 2792 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 2793 2794 Expr *BaseExpr = E->getBase(); 2795 if (BaseExpr->isRValue()) { 2796 V = CreateMemTemp(E->getType(), "resval"); 2797 llvm::Value *Src = EmitScalarExpr(BaseExpr); 2798 Builder.CreateStore(Src, V); 2799 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 2800 MakeNaturalAlignAddrLValue(V, E->getType())); 2801 } else { 2802 if (E->isArrow()) 2803 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 2804 else 2805 V = EmitLValue(BaseExpr).getAddress(); 2806 } 2807 2808 // build Class* type 2809 ClassPtrTy = ClassPtrTy->getPointerTo(); 2810 V = Builder.CreateBitCast(V, ClassPtrTy); 2811 return MakeNaturalAlignAddrLValue(V, E->getType()); 2812 } 2813 2814 2815 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 2816 const CompoundAssignOperator *E) { 2817 ScalarExprEmitter Scalar(*this); 2818 Value *Result = 0; 2819 switch (E->getOpcode()) { 2820 #define COMPOUND_OP(Op) \ 2821 case BO_##Op##Assign: \ 2822 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 2823 Result) 2824 COMPOUND_OP(Mul); 2825 COMPOUND_OP(Div); 2826 COMPOUND_OP(Rem); 2827 COMPOUND_OP(Add); 2828 COMPOUND_OP(Sub); 2829 COMPOUND_OP(Shl); 2830 COMPOUND_OP(Shr); 2831 COMPOUND_OP(And); 2832 COMPOUND_OP(Xor); 2833 COMPOUND_OP(Or); 2834 #undef COMPOUND_OP 2835 2836 case BO_PtrMemD: 2837 case BO_PtrMemI: 2838 case BO_Mul: 2839 case BO_Div: 2840 case BO_Rem: 2841 case BO_Add: 2842 case BO_Sub: 2843 case BO_Shl: 2844 case BO_Shr: 2845 case BO_LT: 2846 case BO_GT: 2847 case BO_LE: 2848 case BO_GE: 2849 case BO_EQ: 2850 case BO_NE: 2851 case BO_And: 2852 case BO_Xor: 2853 case BO_Or: 2854 case BO_LAnd: 2855 case BO_LOr: 2856 case BO_Assign: 2857 case BO_Comma: 2858 llvm_unreachable("Not valid compound assignment operators"); 2859 } 2860 2861 llvm_unreachable("Unhandled compound assignment operator"); 2862 } 2863