1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Module.h" 34 #include <cstdarg> 35 36 using namespace clang; 37 using namespace CodeGen; 38 using llvm::Value; 39 40 //===----------------------------------------------------------------------===// 41 // Scalar Expression Emitter 42 //===----------------------------------------------------------------------===// 43 44 namespace { 45 struct BinOpInfo { 46 Value *LHS; 47 Value *RHS; 48 QualType Ty; // Computation Type. 49 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 50 bool FPContractable; 51 const Expr *E; // Entire expr, for error unsupported. May not be binop. 52 }; 53 54 static bool MustVisitNullValue(const Expr *E) { 55 // If a null pointer expression's type is the C++0x nullptr_t, then 56 // it's not necessarily a simple constant and it must be evaluated 57 // for its potential side effects. 58 return E->getType()->isNullPtrType(); 59 } 60 61 class ScalarExprEmitter 62 : public StmtVisitor<ScalarExprEmitter, Value*> { 63 CodeGenFunction &CGF; 64 CGBuilderTy &Builder; 65 bool IgnoreResultAssign; 66 llvm::LLVMContext &VMContext; 67 public: 68 69 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 70 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 71 VMContext(cgf.getLLVMContext()) { 72 } 73 74 //===--------------------------------------------------------------------===// 75 // Utilities 76 //===--------------------------------------------------------------------===// 77 78 bool TestAndClearIgnoreResultAssign() { 79 bool I = IgnoreResultAssign; 80 IgnoreResultAssign = false; 81 return I; 82 } 83 84 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 85 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 86 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 87 return CGF.EmitCheckedLValue(E, TCK); 88 } 89 90 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 91 const BinOpInfo &Info); 92 93 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 94 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 95 } 96 97 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 98 const AlignValueAttr *AVAttr = nullptr; 99 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 100 const ValueDecl *VD = DRE->getDecl(); 101 102 if (VD->getType()->isReferenceType()) { 103 if (const auto *TTy = 104 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 105 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 106 } else { 107 // Assumptions for function parameters are emitted at the start of the 108 // function, so there is no need to repeat that here. 109 if (isa<ParmVarDecl>(VD)) 110 return; 111 112 AVAttr = VD->getAttr<AlignValueAttr>(); 113 } 114 } 115 116 if (!AVAttr) 117 if (const auto *TTy = 118 dyn_cast<TypedefType>(E->getType())) 119 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 120 121 if (!AVAttr) 122 return; 123 124 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 125 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 126 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 127 } 128 129 /// EmitLoadOfLValue - Given an expression with complex type that represents a 130 /// value l-value, this method emits the address of the l-value, then loads 131 /// and returns the result. 132 Value *EmitLoadOfLValue(const Expr *E) { 133 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 134 E->getExprLoc()); 135 136 EmitLValueAlignmentAssumption(E, V); 137 return V; 138 } 139 140 /// EmitConversionToBool - Convert the specified expression value to a 141 /// boolean (i1) truth value. This is equivalent to "Val != 0". 142 Value *EmitConversionToBool(Value *Src, QualType DstTy); 143 144 /// Emit a check that a conversion to or from a floating-point type does not 145 /// overflow. 146 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 147 Value *Src, QualType SrcType, QualType DstType, 148 llvm::Type *DstTy, SourceLocation Loc); 149 150 /// Emit a conversion from the specified type to the specified destination 151 /// type, both of which are LLVM scalar types. 152 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 153 SourceLocation Loc); 154 155 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 156 SourceLocation Loc, bool TreatBooleanAsSigned); 157 158 /// Emit a conversion from the specified complex type to the specified 159 /// destination type, where the destination type is an LLVM scalar type. 160 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 161 QualType SrcTy, QualType DstTy, 162 SourceLocation Loc); 163 164 /// EmitNullValue - Emit a value that corresponds to null for the given type. 165 Value *EmitNullValue(QualType Ty); 166 167 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 168 Value *EmitFloatToBoolConversion(Value *V) { 169 // Compare against 0.0 for fp scalars. 170 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 171 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 172 } 173 174 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 175 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 176 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 177 178 return Builder.CreateICmpNE(V, Zero, "tobool"); 179 } 180 181 Value *EmitIntToBoolConversion(Value *V) { 182 // Because of the type rules of C, we often end up computing a 183 // logical value, then zero extending it to int, then wanting it 184 // as a logical value again. Optimize this common case. 185 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 186 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 187 Value *Result = ZI->getOperand(0); 188 // If there aren't any more uses, zap the instruction to save space. 189 // Note that there can be more uses, for example if this 190 // is the result of an assignment. 191 if (ZI->use_empty()) 192 ZI->eraseFromParent(); 193 return Result; 194 } 195 } 196 197 return Builder.CreateIsNotNull(V, "tobool"); 198 } 199 200 //===--------------------------------------------------------------------===// 201 // Visitor Methods 202 //===--------------------------------------------------------------------===// 203 204 Value *Visit(Expr *E) { 205 ApplyDebugLocation DL(CGF, E); 206 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 207 } 208 209 Value *VisitStmt(Stmt *S) { 210 S->dump(CGF.getContext().getSourceManager()); 211 llvm_unreachable("Stmt can't have complex result type!"); 212 } 213 Value *VisitExpr(Expr *S); 214 215 Value *VisitParenExpr(ParenExpr *PE) { 216 return Visit(PE->getSubExpr()); 217 } 218 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 219 return Visit(E->getReplacement()); 220 } 221 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 222 return Visit(GE->getResultExpr()); 223 } 224 225 // Leaves. 226 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 227 return Builder.getInt(E->getValue()); 228 } 229 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 230 return llvm::ConstantFP::get(VMContext, E->getValue()); 231 } 232 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 233 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 234 } 235 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 236 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 237 } 238 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 239 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 240 } 241 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 242 return EmitNullValue(E->getType()); 243 } 244 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 245 return EmitNullValue(E->getType()); 246 } 247 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 248 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 249 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 250 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 251 return Builder.CreateBitCast(V, ConvertType(E->getType())); 252 } 253 254 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 255 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 256 } 257 258 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 259 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 260 } 261 262 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 263 if (E->isGLValue()) 264 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 265 266 // Otherwise, assume the mapping is the scalar directly. 267 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 268 } 269 270 // l-values. 271 Value *VisitDeclRefExpr(DeclRefExpr *E) { 272 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 273 if (result.isReference()) 274 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 275 E->getExprLoc()); 276 return result.getValue(); 277 } 278 return EmitLoadOfLValue(E); 279 } 280 281 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 282 return CGF.EmitObjCSelectorExpr(E); 283 } 284 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 285 return CGF.EmitObjCProtocolExpr(E); 286 } 287 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 288 return EmitLoadOfLValue(E); 289 } 290 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 291 if (E->getMethodDecl() && 292 E->getMethodDecl()->getReturnType()->isReferenceType()) 293 return EmitLoadOfLValue(E); 294 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 295 } 296 297 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 298 LValue LV = CGF.EmitObjCIsaExpr(E); 299 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 300 return V; 301 } 302 303 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 304 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 305 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 306 Value *VisitMemberExpr(MemberExpr *E); 307 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 308 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 309 return EmitLoadOfLValue(E); 310 } 311 312 Value *VisitInitListExpr(InitListExpr *E); 313 314 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 315 assert(CGF.getArrayInitIndex() && 316 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 317 return CGF.getArrayInitIndex(); 318 } 319 320 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 321 return EmitNullValue(E->getType()); 322 } 323 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 324 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 325 return VisitCastExpr(E); 326 } 327 Value *VisitCastExpr(CastExpr *E); 328 329 Value *VisitCallExpr(const CallExpr *E) { 330 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 331 return EmitLoadOfLValue(E); 332 333 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 334 335 EmitLValueAlignmentAssumption(E, V); 336 return V; 337 } 338 339 Value *VisitStmtExpr(const StmtExpr *E); 340 341 // Unary Operators. 342 Value *VisitUnaryPostDec(const UnaryOperator *E) { 343 LValue LV = EmitLValue(E->getSubExpr()); 344 return EmitScalarPrePostIncDec(E, LV, false, false); 345 } 346 Value *VisitUnaryPostInc(const UnaryOperator *E) { 347 LValue LV = EmitLValue(E->getSubExpr()); 348 return EmitScalarPrePostIncDec(E, LV, true, false); 349 } 350 Value *VisitUnaryPreDec(const UnaryOperator *E) { 351 LValue LV = EmitLValue(E->getSubExpr()); 352 return EmitScalarPrePostIncDec(E, LV, false, true); 353 } 354 Value *VisitUnaryPreInc(const UnaryOperator *E) { 355 LValue LV = EmitLValue(E->getSubExpr()); 356 return EmitScalarPrePostIncDec(E, LV, true, true); 357 } 358 359 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 360 llvm::Value *InVal, 361 bool IsInc); 362 363 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 364 bool isInc, bool isPre); 365 366 367 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 368 if (isa<MemberPointerType>(E->getType())) // never sugared 369 return CGF.CGM.getMemberPointerConstant(E); 370 371 return EmitLValue(E->getSubExpr()).getPointer(); 372 } 373 Value *VisitUnaryDeref(const UnaryOperator *E) { 374 if (E->getType()->isVoidType()) 375 return Visit(E->getSubExpr()); // the actual value should be unused 376 return EmitLoadOfLValue(E); 377 } 378 Value *VisitUnaryPlus(const UnaryOperator *E) { 379 // This differs from gcc, though, most likely due to a bug in gcc. 380 TestAndClearIgnoreResultAssign(); 381 return Visit(E->getSubExpr()); 382 } 383 Value *VisitUnaryMinus (const UnaryOperator *E); 384 Value *VisitUnaryNot (const UnaryOperator *E); 385 Value *VisitUnaryLNot (const UnaryOperator *E); 386 Value *VisitUnaryReal (const UnaryOperator *E); 387 Value *VisitUnaryImag (const UnaryOperator *E); 388 Value *VisitUnaryExtension(const UnaryOperator *E) { 389 return Visit(E->getSubExpr()); 390 } 391 392 // C++ 393 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 394 return EmitLoadOfLValue(E); 395 } 396 397 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 398 return Visit(DAE->getExpr()); 399 } 400 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 401 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 402 return Visit(DIE->getExpr()); 403 } 404 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 405 return CGF.LoadCXXThis(); 406 } 407 408 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 409 CGF.enterFullExpression(E); 410 CodeGenFunction::RunCleanupsScope Scope(CGF); 411 return Visit(E->getSubExpr()); 412 } 413 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 414 return CGF.EmitCXXNewExpr(E); 415 } 416 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 417 CGF.EmitCXXDeleteExpr(E); 418 return nullptr; 419 } 420 421 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 422 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 423 } 424 425 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 426 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 427 } 428 429 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 430 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 431 } 432 433 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 434 // C++ [expr.pseudo]p1: 435 // The result shall only be used as the operand for the function call 436 // operator (), and the result of such a call has type void. The only 437 // effect is the evaluation of the postfix-expression before the dot or 438 // arrow. 439 CGF.EmitScalarExpr(E->getBase()); 440 return nullptr; 441 } 442 443 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 444 return EmitNullValue(E->getType()); 445 } 446 447 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 448 CGF.EmitCXXThrowExpr(E); 449 return nullptr; 450 } 451 452 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 453 return Builder.getInt1(E->getValue()); 454 } 455 456 // Binary Operators. 457 Value *EmitMul(const BinOpInfo &Ops) { 458 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 459 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 460 case LangOptions::SOB_Defined: 461 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 462 case LangOptions::SOB_Undefined: 463 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 464 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 465 // Fall through. 466 case LangOptions::SOB_Trapping: 467 return EmitOverflowCheckedBinOp(Ops); 468 } 469 } 470 471 if (Ops.Ty->isUnsignedIntegerType() && 472 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 473 return EmitOverflowCheckedBinOp(Ops); 474 475 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 476 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 477 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 478 } 479 /// Create a binary op that checks for overflow. 480 /// Currently only supports +, - and *. 481 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 482 483 // Check for undefined division and modulus behaviors. 484 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 485 llvm::Value *Zero,bool isDiv); 486 // Common helper for getting how wide LHS of shift is. 487 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 488 Value *EmitDiv(const BinOpInfo &Ops); 489 Value *EmitRem(const BinOpInfo &Ops); 490 Value *EmitAdd(const BinOpInfo &Ops); 491 Value *EmitSub(const BinOpInfo &Ops); 492 Value *EmitShl(const BinOpInfo &Ops); 493 Value *EmitShr(const BinOpInfo &Ops); 494 Value *EmitAnd(const BinOpInfo &Ops) { 495 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 496 } 497 Value *EmitXor(const BinOpInfo &Ops) { 498 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 499 } 500 Value *EmitOr (const BinOpInfo &Ops) { 501 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 502 } 503 504 BinOpInfo EmitBinOps(const BinaryOperator *E); 505 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 506 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 507 Value *&Result); 508 509 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 510 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 511 512 // Binary operators and binary compound assignment operators. 513 #define HANDLEBINOP(OP) \ 514 Value *VisitBin ## OP(const BinaryOperator *E) { \ 515 return Emit ## OP(EmitBinOps(E)); \ 516 } \ 517 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 518 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 519 } 520 HANDLEBINOP(Mul) 521 HANDLEBINOP(Div) 522 HANDLEBINOP(Rem) 523 HANDLEBINOP(Add) 524 HANDLEBINOP(Sub) 525 HANDLEBINOP(Shl) 526 HANDLEBINOP(Shr) 527 HANDLEBINOP(And) 528 HANDLEBINOP(Xor) 529 HANDLEBINOP(Or) 530 #undef HANDLEBINOP 531 532 // Comparisons. 533 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 534 llvm::CmpInst::Predicate SICmpOpc, 535 llvm::CmpInst::Predicate FCmpOpc); 536 #define VISITCOMP(CODE, UI, SI, FP) \ 537 Value *VisitBin##CODE(const BinaryOperator *E) { \ 538 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 539 llvm::FCmpInst::FP); } 540 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 541 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 542 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 543 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 544 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 545 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 546 #undef VISITCOMP 547 548 Value *VisitBinAssign (const BinaryOperator *E); 549 550 Value *VisitBinLAnd (const BinaryOperator *E); 551 Value *VisitBinLOr (const BinaryOperator *E); 552 Value *VisitBinComma (const BinaryOperator *E); 553 554 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 555 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 556 557 // Other Operators. 558 Value *VisitBlockExpr(const BlockExpr *BE); 559 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 560 Value *VisitChooseExpr(ChooseExpr *CE); 561 Value *VisitVAArgExpr(VAArgExpr *VE); 562 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 563 return CGF.EmitObjCStringLiteral(E); 564 } 565 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 566 return CGF.EmitObjCBoxedExpr(E); 567 } 568 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 569 return CGF.EmitObjCArrayLiteral(E); 570 } 571 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 572 return CGF.EmitObjCDictionaryLiteral(E); 573 } 574 Value *VisitAsTypeExpr(AsTypeExpr *CE); 575 Value *VisitAtomicExpr(AtomicExpr *AE); 576 }; 577 } // end anonymous namespace. 578 579 //===----------------------------------------------------------------------===// 580 // Utilities 581 //===----------------------------------------------------------------------===// 582 583 /// EmitConversionToBool - Convert the specified expression value to a 584 /// boolean (i1) truth value. This is equivalent to "Val != 0". 585 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 586 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 587 588 if (SrcType->isRealFloatingType()) 589 return EmitFloatToBoolConversion(Src); 590 591 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 592 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 593 594 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 595 "Unknown scalar type to convert"); 596 597 if (isa<llvm::IntegerType>(Src->getType())) 598 return EmitIntToBoolConversion(Src); 599 600 assert(isa<llvm::PointerType>(Src->getType())); 601 return EmitPointerToBoolConversion(Src, SrcType); 602 } 603 604 void ScalarExprEmitter::EmitFloatConversionCheck( 605 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 606 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 607 CodeGenFunction::SanitizerScope SanScope(&CGF); 608 using llvm::APFloat; 609 using llvm::APSInt; 610 611 llvm::Type *SrcTy = Src->getType(); 612 613 llvm::Value *Check = nullptr; 614 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 615 // Integer to floating-point. This can fail for unsigned short -> __half 616 // or unsigned __int128 -> float. 617 assert(DstType->isFloatingType()); 618 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 619 620 APFloat LargestFloat = 621 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 622 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 623 624 bool IsExact; 625 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 626 &IsExact) != APFloat::opOK) 627 // The range of representable values of this floating point type includes 628 // all values of this integer type. Don't need an overflow check. 629 return; 630 631 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 632 if (SrcIsUnsigned) 633 Check = Builder.CreateICmpULE(Src, Max); 634 else { 635 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 636 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 637 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 638 Check = Builder.CreateAnd(GE, LE); 639 } 640 } else { 641 const llvm::fltSemantics &SrcSema = 642 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 643 if (isa<llvm::IntegerType>(DstTy)) { 644 // Floating-point to integer. This has undefined behavior if the source is 645 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 646 // to an integer). 647 unsigned Width = CGF.getContext().getIntWidth(DstType); 648 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 649 650 APSInt Min = APSInt::getMinValue(Width, Unsigned); 651 APFloat MinSrc(SrcSema, APFloat::uninitialized); 652 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 653 APFloat::opOverflow) 654 // Don't need an overflow check for lower bound. Just check for 655 // -Inf/NaN. 656 MinSrc = APFloat::getInf(SrcSema, true); 657 else 658 // Find the largest value which is too small to represent (before 659 // truncation toward zero). 660 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 661 662 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 663 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 664 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 665 APFloat::opOverflow) 666 // Don't need an overflow check for upper bound. Just check for 667 // +Inf/NaN. 668 MaxSrc = APFloat::getInf(SrcSema, false); 669 else 670 // Find the smallest value which is too large to represent (before 671 // truncation toward zero). 672 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 673 674 // If we're converting from __half, convert the range to float to match 675 // the type of src. 676 if (OrigSrcType->isHalfType()) { 677 const llvm::fltSemantics &Sema = 678 CGF.getContext().getFloatTypeSemantics(SrcType); 679 bool IsInexact; 680 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 681 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 682 } 683 684 llvm::Value *GE = 685 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 686 llvm::Value *LE = 687 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 688 Check = Builder.CreateAnd(GE, LE); 689 } else { 690 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 691 // 692 // Floating-point to floating-point. This has undefined behavior if the 693 // source is not in the range of representable values of the destination 694 // type. The C and C++ standards are spectacularly unclear here. We 695 // diagnose finite out-of-range conversions, but allow infinities and NaNs 696 // to convert to the corresponding value in the smaller type. 697 // 698 // C11 Annex F gives all such conversions defined behavior for IEC 60559 699 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 700 // does not. 701 702 // Converting from a lower rank to a higher rank can never have 703 // undefined behavior, since higher-rank types must have a superset 704 // of values of lower-rank types. 705 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 706 return; 707 708 assert(!OrigSrcType->isHalfType() && 709 "should not check conversion from __half, it has the lowest rank"); 710 711 const llvm::fltSemantics &DstSema = 712 CGF.getContext().getFloatTypeSemantics(DstType); 713 APFloat MinBad = APFloat::getLargest(DstSema, false); 714 APFloat MaxBad = APFloat::getInf(DstSema, false); 715 716 bool IsInexact; 717 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 718 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 719 720 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 721 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 722 llvm::Value *GE = 723 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 724 llvm::Value *LE = 725 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 726 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 727 } 728 } 729 730 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 731 CGF.EmitCheckTypeDescriptor(OrigSrcType), 732 CGF.EmitCheckTypeDescriptor(DstType)}; 733 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 734 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 735 } 736 737 /// Emit a conversion from the specified type to the specified destination type, 738 /// both of which are LLVM scalar types. 739 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 740 QualType DstType, 741 SourceLocation Loc) { 742 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 743 } 744 745 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 746 QualType DstType, 747 SourceLocation Loc, 748 bool TreatBooleanAsSigned) { 749 SrcType = CGF.getContext().getCanonicalType(SrcType); 750 DstType = CGF.getContext().getCanonicalType(DstType); 751 if (SrcType == DstType) return Src; 752 753 if (DstType->isVoidType()) return nullptr; 754 755 llvm::Value *OrigSrc = Src; 756 QualType OrigSrcType = SrcType; 757 llvm::Type *SrcTy = Src->getType(); 758 759 // Handle conversions to bool first, they are special: comparisons against 0. 760 if (DstType->isBooleanType()) 761 return EmitConversionToBool(Src, SrcType); 762 763 llvm::Type *DstTy = ConvertType(DstType); 764 765 // Cast from half through float if half isn't a native type. 766 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 767 // Cast to FP using the intrinsic if the half type itself isn't supported. 768 if (DstTy->isFloatingPointTy()) { 769 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 770 return Builder.CreateCall( 771 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 772 Src); 773 } else { 774 // Cast to other types through float, using either the intrinsic or FPExt, 775 // depending on whether the half type itself is supported 776 // (as opposed to operations on half, available with NativeHalfType). 777 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 778 Src = Builder.CreateCall( 779 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 780 CGF.CGM.FloatTy), 781 Src); 782 } else { 783 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 784 } 785 SrcType = CGF.getContext().FloatTy; 786 SrcTy = CGF.FloatTy; 787 } 788 } 789 790 // Ignore conversions like int -> uint. 791 if (SrcTy == DstTy) 792 return Src; 793 794 // Handle pointer conversions next: pointers can only be converted to/from 795 // other pointers and integers. Check for pointer types in terms of LLVM, as 796 // some native types (like Obj-C id) may map to a pointer type. 797 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 798 // The source value may be an integer, or a pointer. 799 if (isa<llvm::PointerType>(SrcTy)) 800 return Builder.CreateBitCast(Src, DstTy, "conv"); 801 802 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 803 // First, convert to the correct width so that we control the kind of 804 // extension. 805 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 806 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 807 llvm::Value* IntResult = 808 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 809 // Then, cast to pointer. 810 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 811 } 812 813 if (isa<llvm::PointerType>(SrcTy)) { 814 // Must be an ptr to int cast. 815 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 816 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 817 } 818 819 // A scalar can be splatted to an extended vector of the same element type 820 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 821 // Sema should add casts to make sure that the source expression's type is 822 // the same as the vector's element type (sans qualifiers) 823 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 824 SrcType.getTypePtr() && 825 "Splatted expr doesn't match with vector element type?"); 826 827 // Splat the element across to all elements 828 unsigned NumElements = DstTy->getVectorNumElements(); 829 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 830 } 831 832 // Allow bitcast from vector to integer/fp of the same size. 833 if (isa<llvm::VectorType>(SrcTy) || 834 isa<llvm::VectorType>(DstTy)) 835 return Builder.CreateBitCast(Src, DstTy, "conv"); 836 837 // Finally, we have the arithmetic types: real int/float. 838 Value *Res = nullptr; 839 llvm::Type *ResTy = DstTy; 840 841 // An overflowing conversion has undefined behavior if either the source type 842 // or the destination type is a floating-point type. 843 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 844 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 845 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 846 Loc); 847 848 // Cast to half through float if half isn't a native type. 849 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 850 // Make sure we cast in a single step if from another FP type. 851 if (SrcTy->isFloatingPointTy()) { 852 // Use the intrinsic if the half type itself isn't supported 853 // (as opposed to operations on half, available with NativeHalfType). 854 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 855 return Builder.CreateCall( 856 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 857 // If the half type is supported, just use an fptrunc. 858 return Builder.CreateFPTrunc(Src, DstTy); 859 } 860 DstTy = CGF.FloatTy; 861 } 862 863 if (isa<llvm::IntegerType>(SrcTy)) { 864 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 865 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 866 InputSigned = true; 867 } 868 if (isa<llvm::IntegerType>(DstTy)) 869 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 870 else if (InputSigned) 871 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 872 else 873 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 874 } else if (isa<llvm::IntegerType>(DstTy)) { 875 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 876 if (DstType->isSignedIntegerOrEnumerationType()) 877 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 878 else 879 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 880 } else { 881 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 882 "Unknown real conversion"); 883 if (DstTy->getTypeID() < SrcTy->getTypeID()) 884 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 885 else 886 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 887 } 888 889 if (DstTy != ResTy) { 890 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 891 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 892 Res = Builder.CreateCall( 893 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 894 Res); 895 } else { 896 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 897 } 898 } 899 900 return Res; 901 } 902 903 /// Emit a conversion from the specified complex type to the specified 904 /// destination type, where the destination type is an LLVM scalar type. 905 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 906 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 907 SourceLocation Loc) { 908 // Get the source element type. 909 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 910 911 // Handle conversions to bool first, they are special: comparisons against 0. 912 if (DstTy->isBooleanType()) { 913 // Complex != 0 -> (Real != 0) | (Imag != 0) 914 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 915 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 916 return Builder.CreateOr(Src.first, Src.second, "tobool"); 917 } 918 919 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 920 // the imaginary part of the complex value is discarded and the value of the 921 // real part is converted according to the conversion rules for the 922 // corresponding real type. 923 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 924 } 925 926 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 927 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 928 } 929 930 /// \brief Emit a sanitization check for the given "binary" operation (which 931 /// might actually be a unary increment which has been lowered to a binary 932 /// operation). The check passes if all values in \p Checks (which are \c i1), 933 /// are \c true. 934 void ScalarExprEmitter::EmitBinOpCheck( 935 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 936 assert(CGF.IsSanitizerScope); 937 SanitizerHandler Check; 938 SmallVector<llvm::Constant *, 4> StaticData; 939 SmallVector<llvm::Value *, 2> DynamicData; 940 941 BinaryOperatorKind Opcode = Info.Opcode; 942 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 943 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 944 945 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 946 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 947 if (UO && UO->getOpcode() == UO_Minus) { 948 Check = SanitizerHandler::NegateOverflow; 949 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 950 DynamicData.push_back(Info.RHS); 951 } else { 952 if (BinaryOperator::isShiftOp(Opcode)) { 953 // Shift LHS negative or too large, or RHS out of bounds. 954 Check = SanitizerHandler::ShiftOutOfBounds; 955 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 956 StaticData.push_back( 957 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 958 StaticData.push_back( 959 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 960 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 961 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 962 Check = SanitizerHandler::DivremOverflow; 963 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 964 } else { 965 // Arithmetic overflow (+, -, *). 966 switch (Opcode) { 967 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 968 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 969 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 970 default: llvm_unreachable("unexpected opcode for bin op check"); 971 } 972 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 973 } 974 DynamicData.push_back(Info.LHS); 975 DynamicData.push_back(Info.RHS); 976 } 977 978 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 979 } 980 981 //===----------------------------------------------------------------------===// 982 // Visitor Methods 983 //===----------------------------------------------------------------------===// 984 985 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 986 CGF.ErrorUnsupported(E, "scalar expression"); 987 if (E->getType()->isVoidType()) 988 return nullptr; 989 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 990 } 991 992 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 993 // Vector Mask Case 994 if (E->getNumSubExprs() == 2) { 995 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 996 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 997 Value *Mask; 998 999 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1000 unsigned LHSElts = LTy->getNumElements(); 1001 1002 Mask = RHS; 1003 1004 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1005 1006 // Mask off the high bits of each shuffle index. 1007 Value *MaskBits = 1008 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1009 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1010 1011 // newv = undef 1012 // mask = mask & maskbits 1013 // for each elt 1014 // n = extract mask i 1015 // x = extract val n 1016 // newv = insert newv, x, i 1017 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1018 MTy->getNumElements()); 1019 Value* NewV = llvm::UndefValue::get(RTy); 1020 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1021 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1022 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1023 1024 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1025 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1026 } 1027 return NewV; 1028 } 1029 1030 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1031 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1032 1033 SmallVector<llvm::Constant*, 32> indices; 1034 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1035 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1036 // Check for -1 and output it as undef in the IR. 1037 if (Idx.isSigned() && Idx.isAllOnesValue()) 1038 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1039 else 1040 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1041 } 1042 1043 Value *SV = llvm::ConstantVector::get(indices); 1044 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1045 } 1046 1047 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1048 QualType SrcType = E->getSrcExpr()->getType(), 1049 DstType = E->getType(); 1050 1051 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1052 1053 SrcType = CGF.getContext().getCanonicalType(SrcType); 1054 DstType = CGF.getContext().getCanonicalType(DstType); 1055 if (SrcType == DstType) return Src; 1056 1057 assert(SrcType->isVectorType() && 1058 "ConvertVector source type must be a vector"); 1059 assert(DstType->isVectorType() && 1060 "ConvertVector destination type must be a vector"); 1061 1062 llvm::Type *SrcTy = Src->getType(); 1063 llvm::Type *DstTy = ConvertType(DstType); 1064 1065 // Ignore conversions like int -> uint. 1066 if (SrcTy == DstTy) 1067 return Src; 1068 1069 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1070 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1071 1072 assert(SrcTy->isVectorTy() && 1073 "ConvertVector source IR type must be a vector"); 1074 assert(DstTy->isVectorTy() && 1075 "ConvertVector destination IR type must be a vector"); 1076 1077 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1078 *DstEltTy = DstTy->getVectorElementType(); 1079 1080 if (DstEltType->isBooleanType()) { 1081 assert((SrcEltTy->isFloatingPointTy() || 1082 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1083 1084 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1085 if (SrcEltTy->isFloatingPointTy()) { 1086 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1087 } else { 1088 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1089 } 1090 } 1091 1092 // We have the arithmetic types: real int/float. 1093 Value *Res = nullptr; 1094 1095 if (isa<llvm::IntegerType>(SrcEltTy)) { 1096 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1097 if (isa<llvm::IntegerType>(DstEltTy)) 1098 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1099 else if (InputSigned) 1100 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1101 else 1102 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1103 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1104 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1105 if (DstEltType->isSignedIntegerOrEnumerationType()) 1106 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1107 else 1108 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1109 } else { 1110 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1111 "Unknown real conversion"); 1112 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1113 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1114 else 1115 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1116 } 1117 1118 return Res; 1119 } 1120 1121 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1122 llvm::APSInt Value; 1123 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1124 if (E->isArrow()) 1125 CGF.EmitScalarExpr(E->getBase()); 1126 else 1127 EmitLValue(E->getBase()); 1128 return Builder.getInt(Value); 1129 } 1130 1131 return EmitLoadOfLValue(E); 1132 } 1133 1134 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1135 TestAndClearIgnoreResultAssign(); 1136 1137 // Emit subscript expressions in rvalue context's. For most cases, this just 1138 // loads the lvalue formed by the subscript expr. However, we have to be 1139 // careful, because the base of a vector subscript is occasionally an rvalue, 1140 // so we can't get it as an lvalue. 1141 if (!E->getBase()->getType()->isVectorType()) 1142 return EmitLoadOfLValue(E); 1143 1144 // Handle the vector case. The base must be a vector, the index must be an 1145 // integer value. 1146 Value *Base = Visit(E->getBase()); 1147 Value *Idx = Visit(E->getIdx()); 1148 QualType IdxTy = E->getIdx()->getType(); 1149 1150 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1151 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1152 1153 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1154 } 1155 1156 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1157 unsigned Off, llvm::Type *I32Ty) { 1158 int MV = SVI->getMaskValue(Idx); 1159 if (MV == -1) 1160 return llvm::UndefValue::get(I32Ty); 1161 return llvm::ConstantInt::get(I32Ty, Off+MV); 1162 } 1163 1164 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1165 if (C->getBitWidth() != 32) { 1166 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1167 C->getZExtValue()) && 1168 "Index operand too large for shufflevector mask!"); 1169 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1170 } 1171 return C; 1172 } 1173 1174 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1175 bool Ignore = TestAndClearIgnoreResultAssign(); 1176 (void)Ignore; 1177 assert (Ignore == false && "init list ignored"); 1178 unsigned NumInitElements = E->getNumInits(); 1179 1180 if (E->hadArrayRangeDesignator()) 1181 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1182 1183 llvm::VectorType *VType = 1184 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1185 1186 if (!VType) { 1187 if (NumInitElements == 0) { 1188 // C++11 value-initialization for the scalar. 1189 return EmitNullValue(E->getType()); 1190 } 1191 // We have a scalar in braces. Just use the first element. 1192 return Visit(E->getInit(0)); 1193 } 1194 1195 unsigned ResElts = VType->getNumElements(); 1196 1197 // Loop over initializers collecting the Value for each, and remembering 1198 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1199 // us to fold the shuffle for the swizzle into the shuffle for the vector 1200 // initializer, since LLVM optimizers generally do not want to touch 1201 // shuffles. 1202 unsigned CurIdx = 0; 1203 bool VIsUndefShuffle = false; 1204 llvm::Value *V = llvm::UndefValue::get(VType); 1205 for (unsigned i = 0; i != NumInitElements; ++i) { 1206 Expr *IE = E->getInit(i); 1207 Value *Init = Visit(IE); 1208 SmallVector<llvm::Constant*, 16> Args; 1209 1210 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1211 1212 // Handle scalar elements. If the scalar initializer is actually one 1213 // element of a different vector of the same width, use shuffle instead of 1214 // extract+insert. 1215 if (!VVT) { 1216 if (isa<ExtVectorElementExpr>(IE)) { 1217 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1218 1219 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1220 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1221 Value *LHS = nullptr, *RHS = nullptr; 1222 if (CurIdx == 0) { 1223 // insert into undef -> shuffle (src, undef) 1224 // shufflemask must use an i32 1225 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1226 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1227 1228 LHS = EI->getVectorOperand(); 1229 RHS = V; 1230 VIsUndefShuffle = true; 1231 } else if (VIsUndefShuffle) { 1232 // insert into undefshuffle && size match -> shuffle (v, src) 1233 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1234 for (unsigned j = 0; j != CurIdx; ++j) 1235 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1236 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1237 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1238 1239 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1240 RHS = EI->getVectorOperand(); 1241 VIsUndefShuffle = false; 1242 } 1243 if (!Args.empty()) { 1244 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1245 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1246 ++CurIdx; 1247 continue; 1248 } 1249 } 1250 } 1251 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1252 "vecinit"); 1253 VIsUndefShuffle = false; 1254 ++CurIdx; 1255 continue; 1256 } 1257 1258 unsigned InitElts = VVT->getNumElements(); 1259 1260 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1261 // input is the same width as the vector being constructed, generate an 1262 // optimized shuffle of the swizzle input into the result. 1263 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1264 if (isa<ExtVectorElementExpr>(IE)) { 1265 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1266 Value *SVOp = SVI->getOperand(0); 1267 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1268 1269 if (OpTy->getNumElements() == ResElts) { 1270 for (unsigned j = 0; j != CurIdx; ++j) { 1271 // If the current vector initializer is a shuffle with undef, merge 1272 // this shuffle directly into it. 1273 if (VIsUndefShuffle) { 1274 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1275 CGF.Int32Ty)); 1276 } else { 1277 Args.push_back(Builder.getInt32(j)); 1278 } 1279 } 1280 for (unsigned j = 0, je = InitElts; j != je; ++j) 1281 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1282 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1283 1284 if (VIsUndefShuffle) 1285 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1286 1287 Init = SVOp; 1288 } 1289 } 1290 1291 // Extend init to result vector length, and then shuffle its contribution 1292 // to the vector initializer into V. 1293 if (Args.empty()) { 1294 for (unsigned j = 0; j != InitElts; ++j) 1295 Args.push_back(Builder.getInt32(j)); 1296 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1297 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1298 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1299 Mask, "vext"); 1300 1301 Args.clear(); 1302 for (unsigned j = 0; j != CurIdx; ++j) 1303 Args.push_back(Builder.getInt32(j)); 1304 for (unsigned j = 0; j != InitElts; ++j) 1305 Args.push_back(Builder.getInt32(j+Offset)); 1306 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1307 } 1308 1309 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1310 // merging subsequent shuffles into this one. 1311 if (CurIdx == 0) 1312 std::swap(V, Init); 1313 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1314 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1315 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1316 CurIdx += InitElts; 1317 } 1318 1319 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1320 // Emit remaining default initializers. 1321 llvm::Type *EltTy = VType->getElementType(); 1322 1323 // Emit remaining default initializers 1324 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1325 Value *Idx = Builder.getInt32(CurIdx); 1326 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1327 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1328 } 1329 return V; 1330 } 1331 1332 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1333 const Expr *E = CE->getSubExpr(); 1334 1335 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1336 return false; 1337 1338 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1339 // We always assume that 'this' is never null. 1340 return false; 1341 } 1342 1343 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1344 // And that glvalue casts are never null. 1345 if (ICE->getValueKind() != VK_RValue) 1346 return false; 1347 } 1348 1349 return true; 1350 } 1351 1352 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1353 // have to handle a more broad range of conversions than explicit casts, as they 1354 // handle things like function to ptr-to-function decay etc. 1355 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1356 Expr *E = CE->getSubExpr(); 1357 QualType DestTy = CE->getType(); 1358 CastKind Kind = CE->getCastKind(); 1359 1360 // These cases are generally not written to ignore the result of 1361 // evaluating their sub-expressions, so we clear this now. 1362 bool Ignored = TestAndClearIgnoreResultAssign(); 1363 1364 // Since almost all cast kinds apply to scalars, this switch doesn't have 1365 // a default case, so the compiler will warn on a missing case. The cases 1366 // are in the same order as in the CastKind enum. 1367 switch (Kind) { 1368 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1369 case CK_BuiltinFnToFnPtr: 1370 llvm_unreachable("builtin functions are handled elsewhere"); 1371 1372 case CK_LValueBitCast: 1373 case CK_ObjCObjectLValueCast: { 1374 Address Addr = EmitLValue(E).getAddress(); 1375 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1376 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1377 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1378 } 1379 1380 case CK_CPointerToObjCPointerCast: 1381 case CK_BlockPointerToObjCPointerCast: 1382 case CK_AnyPointerToBlockPointerCast: 1383 case CK_BitCast: { 1384 Value *Src = Visit(const_cast<Expr*>(E)); 1385 llvm::Type *SrcTy = Src->getType(); 1386 llvm::Type *DstTy = ConvertType(DestTy); 1387 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1388 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1389 llvm_unreachable("wrong cast for pointers in different address spaces" 1390 "(must be an address space cast)!"); 1391 } 1392 1393 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1394 if (auto PT = DestTy->getAs<PointerType>()) 1395 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1396 /*MayBeNull=*/true, 1397 CodeGenFunction::CFITCK_UnrelatedCast, 1398 CE->getLocStart()); 1399 } 1400 1401 return Builder.CreateBitCast(Src, DstTy); 1402 } 1403 case CK_AddressSpaceConversion: { 1404 Expr::EvalResult Result; 1405 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 1406 Result.Val.isNullPointer()) { 1407 // If E has side effect, it is emitted even if its final result is a 1408 // null pointer. In that case, a DCE pass should be able to 1409 // eliminate the useless instructions emitted during translating E. 1410 if (Result.HasSideEffects) 1411 Visit(E); 1412 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 1413 ConvertType(DestTy)), DestTy); 1414 } 1415 // Since target may map different address spaces in AST to the same address 1416 // space, an address space conversion may end up as a bitcast. 1417 auto *Src = Visit(E); 1418 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGF, Src, 1419 E->getType(), 1420 DestTy); 1421 } 1422 case CK_AtomicToNonAtomic: 1423 case CK_NonAtomicToAtomic: 1424 case CK_NoOp: 1425 case CK_UserDefinedConversion: 1426 return Visit(const_cast<Expr*>(E)); 1427 1428 case CK_BaseToDerived: { 1429 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1430 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1431 1432 Address Base = CGF.EmitPointerWithAlignment(E); 1433 Address Derived = 1434 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1435 CE->path_begin(), CE->path_end(), 1436 CGF.ShouldNullCheckClassCastValue(CE)); 1437 1438 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1439 // performed and the object is not of the derived type. 1440 if (CGF.sanitizePerformTypeCheck()) 1441 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1442 Derived.getPointer(), DestTy->getPointeeType()); 1443 1444 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1445 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1446 Derived.getPointer(), 1447 /*MayBeNull=*/true, 1448 CodeGenFunction::CFITCK_DerivedCast, 1449 CE->getLocStart()); 1450 1451 return Derived.getPointer(); 1452 } 1453 case CK_UncheckedDerivedToBase: 1454 case CK_DerivedToBase: { 1455 // The EmitPointerWithAlignment path does this fine; just discard 1456 // the alignment. 1457 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1458 } 1459 1460 case CK_Dynamic: { 1461 Address V = CGF.EmitPointerWithAlignment(E); 1462 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1463 return CGF.EmitDynamicCast(V, DCE); 1464 } 1465 1466 case CK_ArrayToPointerDecay: 1467 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1468 case CK_FunctionToPointerDecay: 1469 return EmitLValue(E).getPointer(); 1470 1471 case CK_NullToPointer: 1472 if (MustVisitNullValue(E)) 1473 (void) Visit(E); 1474 1475 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 1476 DestTy); 1477 1478 case CK_NullToMemberPointer: { 1479 if (MustVisitNullValue(E)) 1480 (void) Visit(E); 1481 1482 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1483 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1484 } 1485 1486 case CK_ReinterpretMemberPointer: 1487 case CK_BaseToDerivedMemberPointer: 1488 case CK_DerivedToBaseMemberPointer: { 1489 Value *Src = Visit(E); 1490 1491 // Note that the AST doesn't distinguish between checked and 1492 // unchecked member pointer conversions, so we always have to 1493 // implement checked conversions here. This is inefficient when 1494 // actual control flow may be required in order to perform the 1495 // check, which it is for data member pointers (but not member 1496 // function pointers on Itanium and ARM). 1497 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1498 } 1499 1500 case CK_ARCProduceObject: 1501 return CGF.EmitARCRetainScalarExpr(E); 1502 case CK_ARCConsumeObject: 1503 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1504 case CK_ARCReclaimReturnedObject: 1505 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1506 case CK_ARCExtendBlockObject: 1507 return CGF.EmitARCExtendBlockObject(E); 1508 1509 case CK_CopyAndAutoreleaseBlockObject: 1510 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1511 1512 case CK_FloatingRealToComplex: 1513 case CK_FloatingComplexCast: 1514 case CK_IntegralRealToComplex: 1515 case CK_IntegralComplexCast: 1516 case CK_IntegralComplexToFloatingComplex: 1517 case CK_FloatingComplexToIntegralComplex: 1518 case CK_ConstructorConversion: 1519 case CK_ToUnion: 1520 llvm_unreachable("scalar cast to non-scalar value"); 1521 1522 case CK_LValueToRValue: 1523 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1524 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1525 return Visit(const_cast<Expr*>(E)); 1526 1527 case CK_IntegralToPointer: { 1528 Value *Src = Visit(const_cast<Expr*>(E)); 1529 1530 // First, convert to the correct width so that we control the kind of 1531 // extension. 1532 auto DestLLVMTy = ConvertType(DestTy); 1533 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 1534 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1535 llvm::Value* IntResult = 1536 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1537 1538 return Builder.CreateIntToPtr(IntResult, DestLLVMTy); 1539 } 1540 case CK_PointerToIntegral: 1541 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1542 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1543 1544 case CK_ToVoid: { 1545 CGF.EmitIgnoredExpr(E); 1546 return nullptr; 1547 } 1548 case CK_VectorSplat: { 1549 llvm::Type *DstTy = ConvertType(DestTy); 1550 Value *Elt = Visit(const_cast<Expr*>(E)); 1551 // Splat the element across to all elements 1552 unsigned NumElements = DstTy->getVectorNumElements(); 1553 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1554 } 1555 1556 case CK_IntegralCast: 1557 case CK_IntegralToFloating: 1558 case CK_FloatingToIntegral: 1559 case CK_FloatingCast: 1560 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1561 CE->getExprLoc()); 1562 case CK_BooleanToSignedIntegral: 1563 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1564 CE->getExprLoc(), 1565 /*TreatBooleanAsSigned=*/true); 1566 case CK_IntegralToBoolean: 1567 return EmitIntToBoolConversion(Visit(E)); 1568 case CK_PointerToBoolean: 1569 return EmitPointerToBoolConversion(Visit(E), E->getType()); 1570 case CK_FloatingToBoolean: 1571 return EmitFloatToBoolConversion(Visit(E)); 1572 case CK_MemberPointerToBoolean: { 1573 llvm::Value *MemPtr = Visit(E); 1574 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1575 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1576 } 1577 1578 case CK_FloatingComplexToReal: 1579 case CK_IntegralComplexToReal: 1580 return CGF.EmitComplexExpr(E, false, true).first; 1581 1582 case CK_FloatingComplexToBoolean: 1583 case CK_IntegralComplexToBoolean: { 1584 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1585 1586 // TODO: kill this function off, inline appropriate case here 1587 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1588 CE->getExprLoc()); 1589 } 1590 1591 case CK_ZeroToOCLEvent: { 1592 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1593 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1594 } 1595 1596 case CK_ZeroToOCLQueue: { 1597 assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type"); 1598 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1599 } 1600 1601 case CK_IntToOCLSampler: 1602 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1603 1604 } // end of switch 1605 1606 llvm_unreachable("unknown scalar cast"); 1607 } 1608 1609 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1610 CodeGenFunction::StmtExprEvaluation eval(CGF); 1611 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1612 !E->getType()->isVoidType()); 1613 if (!RetAlloca.isValid()) 1614 return nullptr; 1615 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1616 E->getExprLoc()); 1617 } 1618 1619 //===----------------------------------------------------------------------===// 1620 // Unary Operators 1621 //===----------------------------------------------------------------------===// 1622 1623 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1624 llvm::Value *InVal, bool IsInc) { 1625 BinOpInfo BinOp; 1626 BinOp.LHS = InVal; 1627 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1628 BinOp.Ty = E->getType(); 1629 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1630 BinOp.FPContractable = false; 1631 BinOp.E = E; 1632 return BinOp; 1633 } 1634 1635 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1636 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1637 llvm::Value *Amount = 1638 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1639 StringRef Name = IsInc ? "inc" : "dec"; 1640 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1641 case LangOptions::SOB_Defined: 1642 return Builder.CreateAdd(InVal, Amount, Name); 1643 case LangOptions::SOB_Undefined: 1644 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1645 return Builder.CreateNSWAdd(InVal, Amount, Name); 1646 // Fall through. 1647 case LangOptions::SOB_Trapping: 1648 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1649 } 1650 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1651 } 1652 1653 llvm::Value * 1654 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1655 bool isInc, bool isPre) { 1656 1657 QualType type = E->getSubExpr()->getType(); 1658 llvm::PHINode *atomicPHI = nullptr; 1659 llvm::Value *value; 1660 llvm::Value *input; 1661 1662 int amount = (isInc ? 1 : -1); 1663 1664 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1665 type = atomicTy->getValueType(); 1666 if (isInc && type->isBooleanType()) { 1667 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1668 if (isPre) { 1669 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1670 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1671 return Builder.getTrue(); 1672 } 1673 // For atomic bool increment, we just store true and return it for 1674 // preincrement, do an atomic swap with true for postincrement 1675 return Builder.CreateAtomicRMW( 1676 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1677 llvm::AtomicOrdering::SequentiallyConsistent); 1678 } 1679 // Special case for atomic increment / decrement on integers, emit 1680 // atomicrmw instructions. We skip this if we want to be doing overflow 1681 // checking, and fall into the slow path with the atomic cmpxchg loop. 1682 if (!type->isBooleanType() && type->isIntegerType() && 1683 !(type->isUnsignedIntegerType() && 1684 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1685 CGF.getLangOpts().getSignedOverflowBehavior() != 1686 LangOptions::SOB_Trapping) { 1687 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1688 llvm::AtomicRMWInst::Sub; 1689 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1690 llvm::Instruction::Sub; 1691 llvm::Value *amt = CGF.EmitToMemory( 1692 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1693 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1694 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1695 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1696 } 1697 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1698 input = value; 1699 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1700 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1701 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1702 value = CGF.EmitToMemory(value, type); 1703 Builder.CreateBr(opBB); 1704 Builder.SetInsertPoint(opBB); 1705 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1706 atomicPHI->addIncoming(value, startBB); 1707 value = atomicPHI; 1708 } else { 1709 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1710 input = value; 1711 } 1712 1713 // Special case of integer increment that we have to check first: bool++. 1714 // Due to promotion rules, we get: 1715 // bool++ -> bool = bool + 1 1716 // -> bool = (int)bool + 1 1717 // -> bool = ((int)bool + 1 != 0) 1718 // An interesting aspect of this is that increment is always true. 1719 // Decrement does not have this property. 1720 if (isInc && type->isBooleanType()) { 1721 value = Builder.getTrue(); 1722 1723 // Most common case by far: integer increment. 1724 } else if (type->isIntegerType()) { 1725 // Note that signed integer inc/dec with width less than int can't 1726 // overflow because of promotion rules; we're just eliding a few steps here. 1727 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1728 CGF.IntTy->getIntegerBitWidth(); 1729 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1730 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1731 } else if (CanOverflow && type->isUnsignedIntegerType() && 1732 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1733 value = 1734 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1735 } else { 1736 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1737 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1738 } 1739 1740 // Next most common: pointer increment. 1741 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1742 QualType type = ptr->getPointeeType(); 1743 1744 // VLA types don't have constant size. 1745 if (const VariableArrayType *vla 1746 = CGF.getContext().getAsVariableArrayType(type)) { 1747 llvm::Value *numElts = CGF.getVLASize(vla).first; 1748 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1749 if (CGF.getLangOpts().isSignedOverflowDefined()) 1750 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1751 else 1752 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1753 1754 // Arithmetic on function pointers (!) is just +-1. 1755 } else if (type->isFunctionType()) { 1756 llvm::Value *amt = Builder.getInt32(amount); 1757 1758 value = CGF.EmitCastToVoidPtr(value); 1759 if (CGF.getLangOpts().isSignedOverflowDefined()) 1760 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1761 else 1762 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1763 value = Builder.CreateBitCast(value, input->getType()); 1764 1765 // For everything else, we can just do a simple increment. 1766 } else { 1767 llvm::Value *amt = Builder.getInt32(amount); 1768 if (CGF.getLangOpts().isSignedOverflowDefined()) 1769 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1770 else 1771 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1772 } 1773 1774 // Vector increment/decrement. 1775 } else if (type->isVectorType()) { 1776 if (type->hasIntegerRepresentation()) { 1777 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1778 1779 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1780 } else { 1781 value = Builder.CreateFAdd( 1782 value, 1783 llvm::ConstantFP::get(value->getType(), amount), 1784 isInc ? "inc" : "dec"); 1785 } 1786 1787 // Floating point. 1788 } else if (type->isRealFloatingType()) { 1789 // Add the inc/dec to the real part. 1790 llvm::Value *amt; 1791 1792 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1793 // Another special case: half FP increment should be done via float 1794 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1795 value = Builder.CreateCall( 1796 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1797 CGF.CGM.FloatTy), 1798 input, "incdec.conv"); 1799 } else { 1800 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1801 } 1802 } 1803 1804 if (value->getType()->isFloatTy()) 1805 amt = llvm::ConstantFP::get(VMContext, 1806 llvm::APFloat(static_cast<float>(amount))); 1807 else if (value->getType()->isDoubleTy()) 1808 amt = llvm::ConstantFP::get(VMContext, 1809 llvm::APFloat(static_cast<double>(amount))); 1810 else { 1811 // Remaining types are Half, LongDouble or __float128. Convert from float. 1812 llvm::APFloat F(static_cast<float>(amount)); 1813 bool ignored; 1814 const llvm::fltSemantics *FS; 1815 // Don't use getFloatTypeSemantics because Half isn't 1816 // necessarily represented using the "half" LLVM type. 1817 if (value->getType()->isFP128Ty()) 1818 FS = &CGF.getTarget().getFloat128Format(); 1819 else if (value->getType()->isHalfTy()) 1820 FS = &CGF.getTarget().getHalfFormat(); 1821 else 1822 FS = &CGF.getTarget().getLongDoubleFormat(); 1823 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 1824 amt = llvm::ConstantFP::get(VMContext, F); 1825 } 1826 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1827 1828 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1829 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1830 value = Builder.CreateCall( 1831 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1832 CGF.CGM.FloatTy), 1833 value, "incdec.conv"); 1834 } else { 1835 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1836 } 1837 } 1838 1839 // Objective-C pointer types. 1840 } else { 1841 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1842 value = CGF.EmitCastToVoidPtr(value); 1843 1844 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1845 if (!isInc) size = -size; 1846 llvm::Value *sizeValue = 1847 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1848 1849 if (CGF.getLangOpts().isSignedOverflowDefined()) 1850 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1851 else 1852 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1853 value = Builder.CreateBitCast(value, input->getType()); 1854 } 1855 1856 if (atomicPHI) { 1857 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1858 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1859 auto Pair = CGF.EmitAtomicCompareExchange( 1860 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1861 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1862 llvm::Value *success = Pair.second; 1863 atomicPHI->addIncoming(old, opBB); 1864 Builder.CreateCondBr(success, contBB, opBB); 1865 Builder.SetInsertPoint(contBB); 1866 return isPre ? value : input; 1867 } 1868 1869 // Store the updated result through the lvalue. 1870 if (LV.isBitField()) 1871 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1872 else 1873 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1874 1875 // If this is a postinc, return the value read from memory, otherwise use the 1876 // updated value. 1877 return isPre ? value : input; 1878 } 1879 1880 1881 1882 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1883 TestAndClearIgnoreResultAssign(); 1884 // Emit unary minus with EmitSub so we handle overflow cases etc. 1885 BinOpInfo BinOp; 1886 BinOp.RHS = Visit(E->getSubExpr()); 1887 1888 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1889 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1890 else 1891 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1892 BinOp.Ty = E->getType(); 1893 BinOp.Opcode = BO_Sub; 1894 BinOp.FPContractable = false; 1895 BinOp.E = E; 1896 return EmitSub(BinOp); 1897 } 1898 1899 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1900 TestAndClearIgnoreResultAssign(); 1901 Value *Op = Visit(E->getSubExpr()); 1902 return Builder.CreateNot(Op, "neg"); 1903 } 1904 1905 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1906 // Perform vector logical not on comparison with zero vector. 1907 if (E->getType()->isExtVectorType()) { 1908 Value *Oper = Visit(E->getSubExpr()); 1909 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1910 Value *Result; 1911 if (Oper->getType()->isFPOrFPVectorTy()) 1912 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1913 else 1914 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1915 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1916 } 1917 1918 // Compare operand to zero. 1919 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1920 1921 // Invert value. 1922 // TODO: Could dynamically modify easy computations here. For example, if 1923 // the operand is an icmp ne, turn into icmp eq. 1924 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1925 1926 // ZExt result to the expr type. 1927 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1928 } 1929 1930 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1931 // Try folding the offsetof to a constant. 1932 llvm::APSInt Value; 1933 if (E->EvaluateAsInt(Value, CGF.getContext())) 1934 return Builder.getInt(Value); 1935 1936 // Loop over the components of the offsetof to compute the value. 1937 unsigned n = E->getNumComponents(); 1938 llvm::Type* ResultType = ConvertType(E->getType()); 1939 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1940 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1941 for (unsigned i = 0; i != n; ++i) { 1942 OffsetOfNode ON = E->getComponent(i); 1943 llvm::Value *Offset = nullptr; 1944 switch (ON.getKind()) { 1945 case OffsetOfNode::Array: { 1946 // Compute the index 1947 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1948 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1949 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1950 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1951 1952 // Save the element type 1953 CurrentType = 1954 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1955 1956 // Compute the element size 1957 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1958 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1959 1960 // Multiply out to compute the result 1961 Offset = Builder.CreateMul(Idx, ElemSize); 1962 break; 1963 } 1964 1965 case OffsetOfNode::Field: { 1966 FieldDecl *MemberDecl = ON.getField(); 1967 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1968 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1969 1970 // Compute the index of the field in its parent. 1971 unsigned i = 0; 1972 // FIXME: It would be nice if we didn't have to loop here! 1973 for (RecordDecl::field_iterator Field = RD->field_begin(), 1974 FieldEnd = RD->field_end(); 1975 Field != FieldEnd; ++Field, ++i) { 1976 if (*Field == MemberDecl) 1977 break; 1978 } 1979 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1980 1981 // Compute the offset to the field 1982 int64_t OffsetInt = RL.getFieldOffset(i) / 1983 CGF.getContext().getCharWidth(); 1984 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1985 1986 // Save the element type. 1987 CurrentType = MemberDecl->getType(); 1988 break; 1989 } 1990 1991 case OffsetOfNode::Identifier: 1992 llvm_unreachable("dependent __builtin_offsetof"); 1993 1994 case OffsetOfNode::Base: { 1995 if (ON.getBase()->isVirtual()) { 1996 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1997 continue; 1998 } 1999 2000 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2001 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2002 2003 // Save the element type. 2004 CurrentType = ON.getBase()->getType(); 2005 2006 // Compute the offset to the base. 2007 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2008 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2009 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2010 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2011 break; 2012 } 2013 } 2014 Result = Builder.CreateAdd(Result, Offset); 2015 } 2016 return Result; 2017 } 2018 2019 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2020 /// argument of the sizeof expression as an integer. 2021 Value * 2022 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2023 const UnaryExprOrTypeTraitExpr *E) { 2024 QualType TypeToSize = E->getTypeOfArgument(); 2025 if (E->getKind() == UETT_SizeOf) { 2026 if (const VariableArrayType *VAT = 2027 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2028 if (E->isArgumentType()) { 2029 // sizeof(type) - make sure to emit the VLA size. 2030 CGF.EmitVariablyModifiedType(TypeToSize); 2031 } else { 2032 // C99 6.5.3.4p2: If the argument is an expression of type 2033 // VLA, it is evaluated. 2034 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2035 } 2036 2037 QualType eltType; 2038 llvm::Value *numElts; 2039 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2040 2041 llvm::Value *size = numElts; 2042 2043 // Scale the number of non-VLA elements by the non-VLA element size. 2044 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2045 if (!eltSize.isOne()) 2046 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2047 2048 return size; 2049 } 2050 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2051 auto Alignment = 2052 CGF.getContext() 2053 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2054 E->getTypeOfArgument()->getPointeeType())) 2055 .getQuantity(); 2056 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2057 } 2058 2059 // If this isn't sizeof(vla), the result must be constant; use the constant 2060 // folding logic so we don't have to duplicate it here. 2061 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2062 } 2063 2064 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2065 Expr *Op = E->getSubExpr(); 2066 if (Op->getType()->isAnyComplexType()) { 2067 // If it's an l-value, load through the appropriate subobject l-value. 2068 // Note that we have to ask E because Op might be an l-value that 2069 // this won't work for, e.g. an Obj-C property. 2070 if (E->isGLValue()) 2071 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2072 E->getExprLoc()).getScalarVal(); 2073 2074 // Otherwise, calculate and project. 2075 return CGF.EmitComplexExpr(Op, false, true).first; 2076 } 2077 2078 return Visit(Op); 2079 } 2080 2081 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2082 Expr *Op = E->getSubExpr(); 2083 if (Op->getType()->isAnyComplexType()) { 2084 // If it's an l-value, load through the appropriate subobject l-value. 2085 // Note that we have to ask E because Op might be an l-value that 2086 // this won't work for, e.g. an Obj-C property. 2087 if (Op->isGLValue()) 2088 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2089 E->getExprLoc()).getScalarVal(); 2090 2091 // Otherwise, calculate and project. 2092 return CGF.EmitComplexExpr(Op, true, false).second; 2093 } 2094 2095 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2096 // effects are evaluated, but not the actual value. 2097 if (Op->isGLValue()) 2098 CGF.EmitLValue(Op); 2099 else 2100 CGF.EmitScalarExpr(Op, true); 2101 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2102 } 2103 2104 //===----------------------------------------------------------------------===// 2105 // Binary Operators 2106 //===----------------------------------------------------------------------===// 2107 2108 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2109 TestAndClearIgnoreResultAssign(); 2110 BinOpInfo Result; 2111 Result.LHS = Visit(E->getLHS()); 2112 Result.RHS = Visit(E->getRHS()); 2113 Result.Ty = E->getType(); 2114 Result.Opcode = E->getOpcode(); 2115 Result.FPContractable = E->isFPContractable(); 2116 Result.E = E; 2117 return Result; 2118 } 2119 2120 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2121 const CompoundAssignOperator *E, 2122 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2123 Value *&Result) { 2124 QualType LHSTy = E->getLHS()->getType(); 2125 BinOpInfo OpInfo; 2126 2127 if (E->getComputationResultType()->isAnyComplexType()) 2128 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2129 2130 // Emit the RHS first. __block variables need to have the rhs evaluated 2131 // first, plus this should improve codegen a little. 2132 OpInfo.RHS = Visit(E->getRHS()); 2133 OpInfo.Ty = E->getComputationResultType(); 2134 OpInfo.Opcode = E->getOpcode(); 2135 OpInfo.FPContractable = E->isFPContractable(); 2136 OpInfo.E = E; 2137 // Load/convert the LHS. 2138 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2139 2140 llvm::PHINode *atomicPHI = nullptr; 2141 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2142 QualType type = atomicTy->getValueType(); 2143 if (!type->isBooleanType() && type->isIntegerType() && 2144 !(type->isUnsignedIntegerType() && 2145 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2146 CGF.getLangOpts().getSignedOverflowBehavior() != 2147 LangOptions::SOB_Trapping) { 2148 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2149 switch (OpInfo.Opcode) { 2150 // We don't have atomicrmw operands for *, %, /, <<, >> 2151 case BO_MulAssign: case BO_DivAssign: 2152 case BO_RemAssign: 2153 case BO_ShlAssign: 2154 case BO_ShrAssign: 2155 break; 2156 case BO_AddAssign: 2157 aop = llvm::AtomicRMWInst::Add; 2158 break; 2159 case BO_SubAssign: 2160 aop = llvm::AtomicRMWInst::Sub; 2161 break; 2162 case BO_AndAssign: 2163 aop = llvm::AtomicRMWInst::And; 2164 break; 2165 case BO_XorAssign: 2166 aop = llvm::AtomicRMWInst::Xor; 2167 break; 2168 case BO_OrAssign: 2169 aop = llvm::AtomicRMWInst::Or; 2170 break; 2171 default: 2172 llvm_unreachable("Invalid compound assignment type"); 2173 } 2174 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2175 llvm::Value *amt = CGF.EmitToMemory( 2176 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2177 E->getExprLoc()), 2178 LHSTy); 2179 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2180 llvm::AtomicOrdering::SequentiallyConsistent); 2181 return LHSLV; 2182 } 2183 } 2184 // FIXME: For floating point types, we should be saving and restoring the 2185 // floating point environment in the loop. 2186 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2187 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2188 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2189 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2190 Builder.CreateBr(opBB); 2191 Builder.SetInsertPoint(opBB); 2192 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2193 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2194 OpInfo.LHS = atomicPHI; 2195 } 2196 else 2197 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2198 2199 SourceLocation Loc = E->getExprLoc(); 2200 OpInfo.LHS = 2201 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2202 2203 // Expand the binary operator. 2204 Result = (this->*Func)(OpInfo); 2205 2206 // Convert the result back to the LHS type. 2207 Result = 2208 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2209 2210 if (atomicPHI) { 2211 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2212 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2213 auto Pair = CGF.EmitAtomicCompareExchange( 2214 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2215 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2216 llvm::Value *success = Pair.second; 2217 atomicPHI->addIncoming(old, opBB); 2218 Builder.CreateCondBr(success, contBB, opBB); 2219 Builder.SetInsertPoint(contBB); 2220 return LHSLV; 2221 } 2222 2223 // Store the result value into the LHS lvalue. Bit-fields are handled 2224 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2225 // 'An assignment expression has the value of the left operand after the 2226 // assignment...'. 2227 if (LHSLV.isBitField()) 2228 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2229 else 2230 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2231 2232 return LHSLV; 2233 } 2234 2235 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2236 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2237 bool Ignore = TestAndClearIgnoreResultAssign(); 2238 Value *RHS; 2239 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2240 2241 // If the result is clearly ignored, return now. 2242 if (Ignore) 2243 return nullptr; 2244 2245 // The result of an assignment in C is the assigned r-value. 2246 if (!CGF.getLangOpts().CPlusPlus) 2247 return RHS; 2248 2249 // If the lvalue is non-volatile, return the computed value of the assignment. 2250 if (!LHS.isVolatileQualified()) 2251 return RHS; 2252 2253 // Otherwise, reload the value. 2254 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2255 } 2256 2257 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2258 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2259 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2260 2261 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2262 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2263 SanitizerKind::IntegerDivideByZero)); 2264 } 2265 2266 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2267 Ops.Ty->hasSignedIntegerRepresentation()) { 2268 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2269 2270 llvm::Value *IntMin = 2271 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2272 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2273 2274 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2275 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2276 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2277 Checks.push_back( 2278 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2279 } 2280 2281 if (Checks.size() > 0) 2282 EmitBinOpCheck(Checks, Ops); 2283 } 2284 2285 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2286 { 2287 CodeGenFunction::SanitizerScope SanScope(&CGF); 2288 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2289 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2290 Ops.Ty->isIntegerType()) { 2291 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2292 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2293 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2294 Ops.Ty->isRealFloatingType()) { 2295 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2296 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2297 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2298 Ops); 2299 } 2300 } 2301 2302 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2303 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2304 if (CGF.getLangOpts().OpenCL && 2305 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2306 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2307 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2308 // build option allows an application to specify that single precision 2309 // floating-point divide (x/y and 1/x) and sqrt used in the program 2310 // source are correctly rounded. 2311 llvm::Type *ValTy = Val->getType(); 2312 if (ValTy->isFloatTy() || 2313 (isa<llvm::VectorType>(ValTy) && 2314 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2315 CGF.SetFPAccuracy(Val, 2.5); 2316 } 2317 return Val; 2318 } 2319 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2320 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2321 else 2322 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2323 } 2324 2325 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2326 // Rem in C can't be a floating point type: C99 6.5.5p2. 2327 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2328 CodeGenFunction::SanitizerScope SanScope(&CGF); 2329 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2330 2331 if (Ops.Ty->isIntegerType()) 2332 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2333 } 2334 2335 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2336 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2337 else 2338 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2339 } 2340 2341 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2342 unsigned IID; 2343 unsigned OpID = 0; 2344 2345 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2346 switch (Ops.Opcode) { 2347 case BO_Add: 2348 case BO_AddAssign: 2349 OpID = 1; 2350 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2351 llvm::Intrinsic::uadd_with_overflow; 2352 break; 2353 case BO_Sub: 2354 case BO_SubAssign: 2355 OpID = 2; 2356 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2357 llvm::Intrinsic::usub_with_overflow; 2358 break; 2359 case BO_Mul: 2360 case BO_MulAssign: 2361 OpID = 3; 2362 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2363 llvm::Intrinsic::umul_with_overflow; 2364 break; 2365 default: 2366 llvm_unreachable("Unsupported operation for overflow detection"); 2367 } 2368 OpID <<= 1; 2369 if (isSigned) 2370 OpID |= 1; 2371 2372 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2373 2374 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2375 2376 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2377 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2378 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2379 2380 // Handle overflow with llvm.trap if no custom handler has been specified. 2381 const std::string *handlerName = 2382 &CGF.getLangOpts().OverflowHandler; 2383 if (handlerName->empty()) { 2384 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2385 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2386 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2387 CodeGenFunction::SanitizerScope SanScope(&CGF); 2388 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2389 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2390 : SanitizerKind::UnsignedIntegerOverflow; 2391 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2392 } else 2393 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2394 return result; 2395 } 2396 2397 // Branch in case of overflow. 2398 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2399 llvm::BasicBlock *continueBB = 2400 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2401 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2402 2403 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2404 2405 // If an overflow handler is set, then we want to call it and then use its 2406 // result, if it returns. 2407 Builder.SetInsertPoint(overflowBB); 2408 2409 // Get the overflow handler. 2410 llvm::Type *Int8Ty = CGF.Int8Ty; 2411 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2412 llvm::FunctionType *handlerTy = 2413 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2414 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2415 2416 // Sign extend the args to 64-bit, so that we can use the same handler for 2417 // all types of overflow. 2418 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2419 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2420 2421 // Call the handler with the two arguments, the operation, and the size of 2422 // the result. 2423 llvm::Value *handlerArgs[] = { 2424 lhs, 2425 rhs, 2426 Builder.getInt8(OpID), 2427 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2428 }; 2429 llvm::Value *handlerResult = 2430 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2431 2432 // Truncate the result back to the desired size. 2433 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2434 Builder.CreateBr(continueBB); 2435 2436 Builder.SetInsertPoint(continueBB); 2437 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2438 phi->addIncoming(result, initialBB); 2439 phi->addIncoming(handlerResult, overflowBB); 2440 2441 return phi; 2442 } 2443 2444 /// Emit pointer + index arithmetic. 2445 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2446 const BinOpInfo &op, 2447 bool isSubtraction) { 2448 // Must have binary (not unary) expr here. Unary pointer 2449 // increment/decrement doesn't use this path. 2450 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2451 2452 Value *pointer = op.LHS; 2453 Expr *pointerOperand = expr->getLHS(); 2454 Value *index = op.RHS; 2455 Expr *indexOperand = expr->getRHS(); 2456 2457 // In a subtraction, the LHS is always the pointer. 2458 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2459 std::swap(pointer, index); 2460 std::swap(pointerOperand, indexOperand); 2461 } 2462 2463 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2464 auto &DL = CGF.CGM.getDataLayout(); 2465 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 2466 if (width != DL.getTypeSizeInBits(PtrTy)) { 2467 // Zero-extend or sign-extend the pointer value according to 2468 // whether the index is signed or not. 2469 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2470 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 2471 "idx.ext"); 2472 } 2473 2474 // If this is subtraction, negate the index. 2475 if (isSubtraction) 2476 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2477 2478 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2479 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2480 /*Accessed*/ false); 2481 2482 const PointerType *pointerType 2483 = pointerOperand->getType()->getAs<PointerType>(); 2484 if (!pointerType) { 2485 QualType objectType = pointerOperand->getType() 2486 ->castAs<ObjCObjectPointerType>() 2487 ->getPointeeType(); 2488 llvm::Value *objectSize 2489 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2490 2491 index = CGF.Builder.CreateMul(index, objectSize); 2492 2493 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2494 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2495 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2496 } 2497 2498 QualType elementType = pointerType->getPointeeType(); 2499 if (const VariableArrayType *vla 2500 = CGF.getContext().getAsVariableArrayType(elementType)) { 2501 // The element count here is the total number of non-VLA elements. 2502 llvm::Value *numElements = CGF.getVLASize(vla).first; 2503 2504 // Effectively, the multiply by the VLA size is part of the GEP. 2505 // GEP indexes are signed, and scaling an index isn't permitted to 2506 // signed-overflow, so we use the same semantics for our explicit 2507 // multiply. We suppress this if overflow is not undefined behavior. 2508 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2509 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2510 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2511 } else { 2512 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2513 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2514 } 2515 return pointer; 2516 } 2517 2518 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2519 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2520 // future proof. 2521 if (elementType->isVoidType() || elementType->isFunctionType()) { 2522 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2523 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2524 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2525 } 2526 2527 if (CGF.getLangOpts().isSignedOverflowDefined()) 2528 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2529 2530 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2531 } 2532 2533 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2534 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2535 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2536 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2537 // efficient operations. 2538 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2539 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2540 bool negMul, bool negAdd) { 2541 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2542 2543 Value *MulOp0 = MulOp->getOperand(0); 2544 Value *MulOp1 = MulOp->getOperand(1); 2545 if (negMul) { 2546 MulOp0 = 2547 Builder.CreateFSub( 2548 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2549 "neg"); 2550 } else if (negAdd) { 2551 Addend = 2552 Builder.CreateFSub( 2553 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2554 "neg"); 2555 } 2556 2557 Value *FMulAdd = Builder.CreateCall( 2558 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2559 {MulOp0, MulOp1, Addend}); 2560 MulOp->eraseFromParent(); 2561 2562 return FMulAdd; 2563 } 2564 2565 // Check whether it would be legal to emit an fmuladd intrinsic call to 2566 // represent op and if so, build the fmuladd. 2567 // 2568 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2569 // Does NOT check the type of the operation - it's assumed that this function 2570 // will be called from contexts where it's known that the type is contractable. 2571 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2572 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2573 bool isSub=false) { 2574 2575 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2576 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2577 "Only fadd/fsub can be the root of an fmuladd."); 2578 2579 // Check whether this op is marked as fusable. 2580 if (!op.FPContractable) 2581 return nullptr; 2582 2583 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2584 // either disabled, or handled entirely by the LLVM backend). 2585 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2586 return nullptr; 2587 2588 // We have a potentially fusable op. Look for a mul on one of the operands. 2589 // Also, make sure that the mul result isn't used directly. In that case, 2590 // there's no point creating a muladd operation. 2591 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2592 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2593 LHSBinOp->use_empty()) 2594 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2595 } 2596 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2597 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2598 RHSBinOp->use_empty()) 2599 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2600 } 2601 2602 return nullptr; 2603 } 2604 2605 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2606 if (op.LHS->getType()->isPointerTy() || 2607 op.RHS->getType()->isPointerTy()) 2608 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2609 2610 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2611 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2612 case LangOptions::SOB_Defined: 2613 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2614 case LangOptions::SOB_Undefined: 2615 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2616 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2617 // Fall through. 2618 case LangOptions::SOB_Trapping: 2619 return EmitOverflowCheckedBinOp(op); 2620 } 2621 } 2622 2623 if (op.Ty->isUnsignedIntegerType() && 2624 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2625 return EmitOverflowCheckedBinOp(op); 2626 2627 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2628 // Try to form an fmuladd. 2629 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2630 return FMulAdd; 2631 2632 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2633 } 2634 2635 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2636 } 2637 2638 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2639 // The LHS is always a pointer if either side is. 2640 if (!op.LHS->getType()->isPointerTy()) { 2641 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2642 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2643 case LangOptions::SOB_Defined: 2644 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2645 case LangOptions::SOB_Undefined: 2646 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2647 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2648 // Fall through. 2649 case LangOptions::SOB_Trapping: 2650 return EmitOverflowCheckedBinOp(op); 2651 } 2652 } 2653 2654 if (op.Ty->isUnsignedIntegerType() && 2655 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2656 return EmitOverflowCheckedBinOp(op); 2657 2658 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2659 // Try to form an fmuladd. 2660 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2661 return FMulAdd; 2662 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2663 } 2664 2665 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2666 } 2667 2668 // If the RHS is not a pointer, then we have normal pointer 2669 // arithmetic. 2670 if (!op.RHS->getType()->isPointerTy()) 2671 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2672 2673 // Otherwise, this is a pointer subtraction. 2674 2675 // Do the raw subtraction part. 2676 llvm::Value *LHS 2677 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2678 llvm::Value *RHS 2679 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2680 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2681 2682 // Okay, figure out the element size. 2683 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2684 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2685 2686 llvm::Value *divisor = nullptr; 2687 2688 // For a variable-length array, this is going to be non-constant. 2689 if (const VariableArrayType *vla 2690 = CGF.getContext().getAsVariableArrayType(elementType)) { 2691 llvm::Value *numElements; 2692 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2693 2694 divisor = numElements; 2695 2696 // Scale the number of non-VLA elements by the non-VLA element size. 2697 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2698 if (!eltSize.isOne()) 2699 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2700 2701 // For everything elese, we can just compute it, safe in the 2702 // assumption that Sema won't let anything through that we can't 2703 // safely compute the size of. 2704 } else { 2705 CharUnits elementSize; 2706 // Handle GCC extension for pointer arithmetic on void* and 2707 // function pointer types. 2708 if (elementType->isVoidType() || elementType->isFunctionType()) 2709 elementSize = CharUnits::One(); 2710 else 2711 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2712 2713 // Don't even emit the divide for element size of 1. 2714 if (elementSize.isOne()) 2715 return diffInChars; 2716 2717 divisor = CGF.CGM.getSize(elementSize); 2718 } 2719 2720 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2721 // pointer difference in C is only defined in the case where both operands 2722 // are pointing to elements of an array. 2723 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2724 } 2725 2726 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2727 llvm::IntegerType *Ty; 2728 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2729 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2730 else 2731 Ty = cast<llvm::IntegerType>(LHS->getType()); 2732 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2733 } 2734 2735 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2736 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2737 // RHS to the same size as the LHS. 2738 Value *RHS = Ops.RHS; 2739 if (Ops.LHS->getType() != RHS->getType()) 2740 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2741 2742 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2743 Ops.Ty->hasSignedIntegerRepresentation() && 2744 !CGF.getLangOpts().isSignedOverflowDefined(); 2745 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2746 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2747 if (CGF.getLangOpts().OpenCL) 2748 RHS = 2749 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2750 else if ((SanitizeBase || SanitizeExponent) && 2751 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2752 CodeGenFunction::SanitizerScope SanScope(&CGF); 2753 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2754 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2755 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2756 2757 if (SanitizeExponent) { 2758 Checks.push_back( 2759 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2760 } 2761 2762 if (SanitizeBase) { 2763 // Check whether we are shifting any non-zero bits off the top of the 2764 // integer. We only emit this check if exponent is valid - otherwise 2765 // instructions below will have undefined behavior themselves. 2766 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2767 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2768 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2769 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2770 CGF.EmitBlock(CheckShiftBase); 2771 llvm::Value *BitsShiftedOff = 2772 Builder.CreateLShr(Ops.LHS, 2773 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2774 /*NUW*/true, /*NSW*/true), 2775 "shl.check"); 2776 if (CGF.getLangOpts().CPlusPlus) { 2777 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2778 // Under C++11's rules, shifting a 1 bit into the sign bit is 2779 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2780 // define signed left shifts, so we use the C99 and C++11 rules there). 2781 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2782 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2783 } 2784 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2785 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2786 CGF.EmitBlock(Cont); 2787 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2788 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2789 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2790 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2791 } 2792 2793 assert(!Checks.empty()); 2794 EmitBinOpCheck(Checks, Ops); 2795 } 2796 2797 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2798 } 2799 2800 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2801 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2802 // RHS to the same size as the LHS. 2803 Value *RHS = Ops.RHS; 2804 if (Ops.LHS->getType() != RHS->getType()) 2805 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2806 2807 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2808 if (CGF.getLangOpts().OpenCL) 2809 RHS = 2810 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2811 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2812 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2813 CodeGenFunction::SanitizerScope SanScope(&CGF); 2814 llvm::Value *Valid = 2815 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2816 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2817 } 2818 2819 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2820 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2821 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2822 } 2823 2824 enum IntrinsicType { VCMPEQ, VCMPGT }; 2825 // return corresponding comparison intrinsic for given vector type 2826 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2827 BuiltinType::Kind ElemKind) { 2828 switch (ElemKind) { 2829 default: llvm_unreachable("unexpected element type"); 2830 case BuiltinType::Char_U: 2831 case BuiltinType::UChar: 2832 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2833 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2834 case BuiltinType::Char_S: 2835 case BuiltinType::SChar: 2836 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2837 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2838 case BuiltinType::UShort: 2839 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2840 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2841 case BuiltinType::Short: 2842 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2843 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2844 case BuiltinType::UInt: 2845 case BuiltinType::ULong: 2846 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2847 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2848 case BuiltinType::Int: 2849 case BuiltinType::Long: 2850 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2851 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2852 case BuiltinType::Float: 2853 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2854 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2855 } 2856 } 2857 2858 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 2859 llvm::CmpInst::Predicate UICmpOpc, 2860 llvm::CmpInst::Predicate SICmpOpc, 2861 llvm::CmpInst::Predicate FCmpOpc) { 2862 TestAndClearIgnoreResultAssign(); 2863 Value *Result; 2864 QualType LHSTy = E->getLHS()->getType(); 2865 QualType RHSTy = E->getRHS()->getType(); 2866 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2867 assert(E->getOpcode() == BO_EQ || 2868 E->getOpcode() == BO_NE); 2869 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2870 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2871 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2872 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2873 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2874 Value *LHS = Visit(E->getLHS()); 2875 Value *RHS = Visit(E->getRHS()); 2876 2877 // If AltiVec, the comparison results in a numeric type, so we use 2878 // intrinsics comparing vectors and giving 0 or 1 as a result 2879 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2880 // constants for mapping CR6 register bits to predicate result 2881 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2882 2883 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2884 2885 // in several cases vector arguments order will be reversed 2886 Value *FirstVecArg = LHS, 2887 *SecondVecArg = RHS; 2888 2889 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2890 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2891 BuiltinType::Kind ElementKind = BTy->getKind(); 2892 2893 switch(E->getOpcode()) { 2894 default: llvm_unreachable("is not a comparison operation"); 2895 case BO_EQ: 2896 CR6 = CR6_LT; 2897 ID = GetIntrinsic(VCMPEQ, ElementKind); 2898 break; 2899 case BO_NE: 2900 CR6 = CR6_EQ; 2901 ID = GetIntrinsic(VCMPEQ, ElementKind); 2902 break; 2903 case BO_LT: 2904 CR6 = CR6_LT; 2905 ID = GetIntrinsic(VCMPGT, ElementKind); 2906 std::swap(FirstVecArg, SecondVecArg); 2907 break; 2908 case BO_GT: 2909 CR6 = CR6_LT; 2910 ID = GetIntrinsic(VCMPGT, ElementKind); 2911 break; 2912 case BO_LE: 2913 if (ElementKind == BuiltinType::Float) { 2914 CR6 = CR6_LT; 2915 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2916 std::swap(FirstVecArg, SecondVecArg); 2917 } 2918 else { 2919 CR6 = CR6_EQ; 2920 ID = GetIntrinsic(VCMPGT, ElementKind); 2921 } 2922 break; 2923 case BO_GE: 2924 if (ElementKind == BuiltinType::Float) { 2925 CR6 = CR6_LT; 2926 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2927 } 2928 else { 2929 CR6 = CR6_EQ; 2930 ID = GetIntrinsic(VCMPGT, ElementKind); 2931 std::swap(FirstVecArg, SecondVecArg); 2932 } 2933 break; 2934 } 2935 2936 Value *CR6Param = Builder.getInt32(CR6); 2937 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2938 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2939 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2940 E->getExprLoc()); 2941 } 2942 2943 if (LHS->getType()->isFPOrFPVectorTy()) { 2944 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 2945 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2946 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 2947 } else { 2948 // Unsigned integers and pointers. 2949 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 2950 } 2951 2952 // If this is a vector comparison, sign extend the result to the appropriate 2953 // vector integer type and return it (don't convert to bool). 2954 if (LHSTy->isVectorType()) 2955 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2956 2957 } else { 2958 // Complex Comparison: can only be an equality comparison. 2959 CodeGenFunction::ComplexPairTy LHS, RHS; 2960 QualType CETy; 2961 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2962 LHS = CGF.EmitComplexExpr(E->getLHS()); 2963 CETy = CTy->getElementType(); 2964 } else { 2965 LHS.first = Visit(E->getLHS()); 2966 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2967 CETy = LHSTy; 2968 } 2969 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2970 RHS = CGF.EmitComplexExpr(E->getRHS()); 2971 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2972 CTy->getElementType()) && 2973 "The element types must always match."); 2974 (void)CTy; 2975 } else { 2976 RHS.first = Visit(E->getRHS()); 2977 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2978 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2979 "The element types must always match."); 2980 } 2981 2982 Value *ResultR, *ResultI; 2983 if (CETy->isRealFloatingType()) { 2984 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 2985 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 2986 } else { 2987 // Complex comparisons can only be equality comparisons. As such, signed 2988 // and unsigned opcodes are the same. 2989 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 2990 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 2991 } 2992 2993 if (E->getOpcode() == BO_EQ) { 2994 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2995 } else { 2996 assert(E->getOpcode() == BO_NE && 2997 "Complex comparison other than == or != ?"); 2998 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2999 } 3000 } 3001 3002 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3003 E->getExprLoc()); 3004 } 3005 3006 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3007 bool Ignore = TestAndClearIgnoreResultAssign(); 3008 3009 Value *RHS; 3010 LValue LHS; 3011 3012 switch (E->getLHS()->getType().getObjCLifetime()) { 3013 case Qualifiers::OCL_Strong: 3014 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3015 break; 3016 3017 case Qualifiers::OCL_Autoreleasing: 3018 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3019 break; 3020 3021 case Qualifiers::OCL_ExplicitNone: 3022 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3023 break; 3024 3025 case Qualifiers::OCL_Weak: 3026 RHS = Visit(E->getRHS()); 3027 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3028 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3029 break; 3030 3031 case Qualifiers::OCL_None: 3032 // __block variables need to have the rhs evaluated first, plus 3033 // this should improve codegen just a little. 3034 RHS = Visit(E->getRHS()); 3035 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3036 3037 // Store the value into the LHS. Bit-fields are handled specially 3038 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3039 // 'An assignment expression has the value of the left operand after 3040 // the assignment...'. 3041 if (LHS.isBitField()) 3042 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3043 else 3044 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3045 } 3046 3047 // If the result is clearly ignored, return now. 3048 if (Ignore) 3049 return nullptr; 3050 3051 // The result of an assignment in C is the assigned r-value. 3052 if (!CGF.getLangOpts().CPlusPlus) 3053 return RHS; 3054 3055 // If the lvalue is non-volatile, return the computed value of the assignment. 3056 if (!LHS.isVolatileQualified()) 3057 return RHS; 3058 3059 // Otherwise, reload the value. 3060 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3061 } 3062 3063 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3064 // Perform vector logical and on comparisons with zero vectors. 3065 if (E->getType()->isVectorType()) { 3066 CGF.incrementProfileCounter(E); 3067 3068 Value *LHS = Visit(E->getLHS()); 3069 Value *RHS = Visit(E->getRHS()); 3070 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3071 if (LHS->getType()->isFPOrFPVectorTy()) { 3072 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3073 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3074 } else { 3075 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3076 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3077 } 3078 Value *And = Builder.CreateAnd(LHS, RHS); 3079 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3080 } 3081 3082 llvm::Type *ResTy = ConvertType(E->getType()); 3083 3084 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3085 // If we have 1 && X, just emit X without inserting the control flow. 3086 bool LHSCondVal; 3087 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3088 if (LHSCondVal) { // If we have 1 && X, just emit X. 3089 CGF.incrementProfileCounter(E); 3090 3091 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3092 // ZExt result to int or bool. 3093 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3094 } 3095 3096 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3097 if (!CGF.ContainsLabel(E->getRHS())) 3098 return llvm::Constant::getNullValue(ResTy); 3099 } 3100 3101 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3102 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3103 3104 CodeGenFunction::ConditionalEvaluation eval(CGF); 3105 3106 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3107 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3108 CGF.getProfileCount(E->getRHS())); 3109 3110 // Any edges into the ContBlock are now from an (indeterminate number of) 3111 // edges from this first condition. All of these values will be false. Start 3112 // setting up the PHI node in the Cont Block for this. 3113 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3114 "", ContBlock); 3115 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3116 PI != PE; ++PI) 3117 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3118 3119 eval.begin(CGF); 3120 CGF.EmitBlock(RHSBlock); 3121 CGF.incrementProfileCounter(E); 3122 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3123 eval.end(CGF); 3124 3125 // Reaquire the RHS block, as there may be subblocks inserted. 3126 RHSBlock = Builder.GetInsertBlock(); 3127 3128 // Emit an unconditional branch from this block to ContBlock. 3129 { 3130 // There is no need to emit line number for unconditional branch. 3131 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3132 CGF.EmitBlock(ContBlock); 3133 } 3134 // Insert an entry into the phi node for the edge with the value of RHSCond. 3135 PN->addIncoming(RHSCond, RHSBlock); 3136 3137 // ZExt result to int. 3138 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3139 } 3140 3141 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3142 // Perform vector logical or on comparisons with zero vectors. 3143 if (E->getType()->isVectorType()) { 3144 CGF.incrementProfileCounter(E); 3145 3146 Value *LHS = Visit(E->getLHS()); 3147 Value *RHS = Visit(E->getRHS()); 3148 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3149 if (LHS->getType()->isFPOrFPVectorTy()) { 3150 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3151 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3152 } else { 3153 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3154 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3155 } 3156 Value *Or = Builder.CreateOr(LHS, RHS); 3157 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3158 } 3159 3160 llvm::Type *ResTy = ConvertType(E->getType()); 3161 3162 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3163 // If we have 0 || X, just emit X without inserting the control flow. 3164 bool LHSCondVal; 3165 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3166 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3167 CGF.incrementProfileCounter(E); 3168 3169 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3170 // ZExt result to int or bool. 3171 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3172 } 3173 3174 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3175 if (!CGF.ContainsLabel(E->getRHS())) 3176 return llvm::ConstantInt::get(ResTy, 1); 3177 } 3178 3179 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3180 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3181 3182 CodeGenFunction::ConditionalEvaluation eval(CGF); 3183 3184 // Branch on the LHS first. If it is true, go to the success (cont) block. 3185 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3186 CGF.getCurrentProfileCount() - 3187 CGF.getProfileCount(E->getRHS())); 3188 3189 // Any edges into the ContBlock are now from an (indeterminate number of) 3190 // edges from this first condition. All of these values will be true. Start 3191 // setting up the PHI node in the Cont Block for this. 3192 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3193 "", ContBlock); 3194 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3195 PI != PE; ++PI) 3196 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3197 3198 eval.begin(CGF); 3199 3200 // Emit the RHS condition as a bool value. 3201 CGF.EmitBlock(RHSBlock); 3202 CGF.incrementProfileCounter(E); 3203 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3204 3205 eval.end(CGF); 3206 3207 // Reaquire the RHS block, as there may be subblocks inserted. 3208 RHSBlock = Builder.GetInsertBlock(); 3209 3210 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3211 // into the phi node for the edge with the value of RHSCond. 3212 CGF.EmitBlock(ContBlock); 3213 PN->addIncoming(RHSCond, RHSBlock); 3214 3215 // ZExt result to int. 3216 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3217 } 3218 3219 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3220 CGF.EmitIgnoredExpr(E->getLHS()); 3221 CGF.EnsureInsertPoint(); 3222 return Visit(E->getRHS()); 3223 } 3224 3225 //===----------------------------------------------------------------------===// 3226 // Other Operators 3227 //===----------------------------------------------------------------------===// 3228 3229 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3230 /// expression is cheap enough and side-effect-free enough to evaluate 3231 /// unconditionally instead of conditionally. This is used to convert control 3232 /// flow into selects in some cases. 3233 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3234 CodeGenFunction &CGF) { 3235 // Anything that is an integer or floating point constant is fine. 3236 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3237 3238 // Even non-volatile automatic variables can't be evaluated unconditionally. 3239 // Referencing a thread_local may cause non-trivial initialization work to 3240 // occur. If we're inside a lambda and one of the variables is from the scope 3241 // outside the lambda, that function may have returned already. Reading its 3242 // locals is a bad idea. Also, these reads may introduce races there didn't 3243 // exist in the source-level program. 3244 } 3245 3246 3247 Value *ScalarExprEmitter:: 3248 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3249 TestAndClearIgnoreResultAssign(); 3250 3251 // Bind the common expression if necessary. 3252 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3253 3254 Expr *condExpr = E->getCond(); 3255 Expr *lhsExpr = E->getTrueExpr(); 3256 Expr *rhsExpr = E->getFalseExpr(); 3257 3258 // If the condition constant folds and can be elided, try to avoid emitting 3259 // the condition and the dead arm. 3260 bool CondExprBool; 3261 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3262 Expr *live = lhsExpr, *dead = rhsExpr; 3263 if (!CondExprBool) std::swap(live, dead); 3264 3265 // If the dead side doesn't have labels we need, just emit the Live part. 3266 if (!CGF.ContainsLabel(dead)) { 3267 if (CondExprBool) 3268 CGF.incrementProfileCounter(E); 3269 Value *Result = Visit(live); 3270 3271 // If the live part is a throw expression, it acts like it has a void 3272 // type, so evaluating it returns a null Value*. However, a conditional 3273 // with non-void type must return a non-null Value*. 3274 if (!Result && !E->getType()->isVoidType()) 3275 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3276 3277 return Result; 3278 } 3279 } 3280 3281 // OpenCL: If the condition is a vector, we can treat this condition like 3282 // the select function. 3283 if (CGF.getLangOpts().OpenCL 3284 && condExpr->getType()->isVectorType()) { 3285 CGF.incrementProfileCounter(E); 3286 3287 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3288 llvm::Value *LHS = Visit(lhsExpr); 3289 llvm::Value *RHS = Visit(rhsExpr); 3290 3291 llvm::Type *condType = ConvertType(condExpr->getType()); 3292 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3293 3294 unsigned numElem = vecTy->getNumElements(); 3295 llvm::Type *elemType = vecTy->getElementType(); 3296 3297 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3298 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3299 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3300 llvm::VectorType::get(elemType, 3301 numElem), 3302 "sext"); 3303 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3304 3305 // Cast float to int to perform ANDs if necessary. 3306 llvm::Value *RHSTmp = RHS; 3307 llvm::Value *LHSTmp = LHS; 3308 bool wasCast = false; 3309 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3310 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3311 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3312 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3313 wasCast = true; 3314 } 3315 3316 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3317 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3318 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3319 if (wasCast) 3320 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3321 3322 return tmp5; 3323 } 3324 3325 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3326 // select instead of as control flow. We can only do this if it is cheap and 3327 // safe to evaluate the LHS and RHS unconditionally. 3328 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3329 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3330 CGF.incrementProfileCounter(E); 3331 3332 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3333 llvm::Value *LHS = Visit(lhsExpr); 3334 llvm::Value *RHS = Visit(rhsExpr); 3335 if (!LHS) { 3336 // If the conditional has void type, make sure we return a null Value*. 3337 assert(!RHS && "LHS and RHS types must match"); 3338 return nullptr; 3339 } 3340 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3341 } 3342 3343 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3344 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3345 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3346 3347 CodeGenFunction::ConditionalEvaluation eval(CGF); 3348 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3349 CGF.getProfileCount(lhsExpr)); 3350 3351 CGF.EmitBlock(LHSBlock); 3352 CGF.incrementProfileCounter(E); 3353 eval.begin(CGF); 3354 Value *LHS = Visit(lhsExpr); 3355 eval.end(CGF); 3356 3357 LHSBlock = Builder.GetInsertBlock(); 3358 Builder.CreateBr(ContBlock); 3359 3360 CGF.EmitBlock(RHSBlock); 3361 eval.begin(CGF); 3362 Value *RHS = Visit(rhsExpr); 3363 eval.end(CGF); 3364 3365 RHSBlock = Builder.GetInsertBlock(); 3366 CGF.EmitBlock(ContBlock); 3367 3368 // If the LHS or RHS is a throw expression, it will be legitimately null. 3369 if (!LHS) 3370 return RHS; 3371 if (!RHS) 3372 return LHS; 3373 3374 // Create a PHI node for the real part. 3375 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3376 PN->addIncoming(LHS, LHSBlock); 3377 PN->addIncoming(RHS, RHSBlock); 3378 return PN; 3379 } 3380 3381 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3382 return Visit(E->getChosenSubExpr()); 3383 } 3384 3385 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3386 QualType Ty = VE->getType(); 3387 3388 if (Ty->isVariablyModifiedType()) 3389 CGF.EmitVariablyModifiedType(Ty); 3390 3391 Address ArgValue = Address::invalid(); 3392 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3393 3394 llvm::Type *ArgTy = ConvertType(VE->getType()); 3395 3396 // If EmitVAArg fails, emit an error. 3397 if (!ArgPtr.isValid()) { 3398 CGF.ErrorUnsupported(VE, "va_arg expression"); 3399 return llvm::UndefValue::get(ArgTy); 3400 } 3401 3402 // FIXME Volatility. 3403 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3404 3405 // If EmitVAArg promoted the type, we must truncate it. 3406 if (ArgTy != Val->getType()) { 3407 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3408 Val = Builder.CreateIntToPtr(Val, ArgTy); 3409 else 3410 Val = Builder.CreateTrunc(Val, ArgTy); 3411 } 3412 3413 return Val; 3414 } 3415 3416 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3417 return CGF.EmitBlockLiteral(block); 3418 } 3419 3420 // Convert a vec3 to vec4, or vice versa. 3421 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3422 Value *Src, unsigned NumElementsDst) { 3423 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3424 SmallVector<llvm::Constant*, 4> Args; 3425 Args.push_back(Builder.getInt32(0)); 3426 Args.push_back(Builder.getInt32(1)); 3427 Args.push_back(Builder.getInt32(2)); 3428 if (NumElementsDst == 4) 3429 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3430 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3431 return Builder.CreateShuffleVector(Src, UnV, Mask); 3432 } 3433 3434 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 3435 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 3436 // but could be scalar or vectors of different lengths, and either can be 3437 // pointer. 3438 // There are 4 cases: 3439 // 1. non-pointer -> non-pointer : needs 1 bitcast 3440 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 3441 // 3. pointer -> non-pointer 3442 // a) pointer -> intptr_t : needs 1 ptrtoint 3443 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 3444 // 4. non-pointer -> pointer 3445 // a) intptr_t -> pointer : needs 1 inttoptr 3446 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 3447 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 3448 // allow casting directly between pointer types and non-integer non-pointer 3449 // types. 3450 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 3451 const llvm::DataLayout &DL, 3452 Value *Src, llvm::Type *DstTy, 3453 StringRef Name = "") { 3454 auto SrcTy = Src->getType(); 3455 3456 // Case 1. 3457 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 3458 return Builder.CreateBitCast(Src, DstTy, Name); 3459 3460 // Case 2. 3461 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 3462 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 3463 3464 // Case 3. 3465 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 3466 // Case 3b. 3467 if (!DstTy->isIntegerTy()) 3468 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 3469 // Cases 3a and 3b. 3470 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 3471 } 3472 3473 // Case 4b. 3474 if (!SrcTy->isIntegerTy()) 3475 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 3476 // Cases 4a and 4b. 3477 return Builder.CreateIntToPtr(Src, DstTy, Name); 3478 } 3479 3480 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3481 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3482 llvm::Type *DstTy = ConvertType(E->getType()); 3483 3484 llvm::Type *SrcTy = Src->getType(); 3485 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3486 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3487 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3488 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3489 3490 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3491 // vector to get a vec4, then a bitcast if the target type is different. 3492 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3493 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3494 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3495 DstTy); 3496 Src->setName("astype"); 3497 return Src; 3498 } 3499 3500 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3501 // to vec4 if the original type is not vec4, then a shuffle vector to 3502 // get a vec3. 3503 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3504 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3505 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3506 Vec4Ty); 3507 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3508 Src->setName("astype"); 3509 return Src; 3510 } 3511 3512 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 3513 Src, DstTy, "astype"); 3514 } 3515 3516 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3517 return CGF.EmitAtomicExpr(E).getScalarVal(); 3518 } 3519 3520 //===----------------------------------------------------------------------===// 3521 // Entry Point into this File 3522 //===----------------------------------------------------------------------===// 3523 3524 /// Emit the computation of the specified expression of scalar type, ignoring 3525 /// the result. 3526 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3527 assert(E && hasScalarEvaluationKind(E->getType()) && 3528 "Invalid scalar expression to emit"); 3529 3530 return ScalarExprEmitter(*this, IgnoreResultAssign) 3531 .Visit(const_cast<Expr *>(E)); 3532 } 3533 3534 /// Emit a conversion from the specified type to the specified destination type, 3535 /// both of which are LLVM scalar types. 3536 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3537 QualType DstTy, 3538 SourceLocation Loc) { 3539 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3540 "Invalid scalar expression to emit"); 3541 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3542 } 3543 3544 /// Emit a conversion from the specified complex type to the specified 3545 /// destination type, where the destination type is an LLVM scalar type. 3546 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3547 QualType SrcTy, 3548 QualType DstTy, 3549 SourceLocation Loc) { 3550 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3551 "Invalid complex -> scalar conversion"); 3552 return ScalarExprEmitter(*this) 3553 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3554 } 3555 3556 3557 llvm::Value *CodeGenFunction:: 3558 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3559 bool isInc, bool isPre) { 3560 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3561 } 3562 3563 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3564 // object->isa or (*object).isa 3565 // Generate code as for: *(Class*)object 3566 3567 Expr *BaseExpr = E->getBase(); 3568 Address Addr = Address::invalid(); 3569 if (BaseExpr->isRValue()) { 3570 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3571 } else { 3572 Addr = EmitLValue(BaseExpr).getAddress(); 3573 } 3574 3575 // Cast the address to Class*. 3576 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3577 return MakeAddrLValue(Addr, E->getType()); 3578 } 3579 3580 3581 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3582 const CompoundAssignOperator *E) { 3583 ScalarExprEmitter Scalar(*this); 3584 Value *Result = nullptr; 3585 switch (E->getOpcode()) { 3586 #define COMPOUND_OP(Op) \ 3587 case BO_##Op##Assign: \ 3588 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3589 Result) 3590 COMPOUND_OP(Mul); 3591 COMPOUND_OP(Div); 3592 COMPOUND_OP(Rem); 3593 COMPOUND_OP(Add); 3594 COMPOUND_OP(Sub); 3595 COMPOUND_OP(Shl); 3596 COMPOUND_OP(Shr); 3597 COMPOUND_OP(And); 3598 COMPOUND_OP(Xor); 3599 COMPOUND_OP(Or); 3600 #undef COMPOUND_OP 3601 3602 case BO_PtrMemD: 3603 case BO_PtrMemI: 3604 case BO_Mul: 3605 case BO_Div: 3606 case BO_Rem: 3607 case BO_Add: 3608 case BO_Sub: 3609 case BO_Shl: 3610 case BO_Shr: 3611 case BO_LT: 3612 case BO_GT: 3613 case BO_LE: 3614 case BO_GE: 3615 case BO_EQ: 3616 case BO_NE: 3617 case BO_And: 3618 case BO_Xor: 3619 case BO_Or: 3620 case BO_LAnd: 3621 case BO_LOr: 3622 case BO_Assign: 3623 case BO_Comma: 3624 llvm_unreachable("Not valid compound assignment operators"); 3625 } 3626 3627 llvm_unreachable("Unhandled compound assignment operator"); 3628 } 3629