1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/FixedPoint.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include <cstdarg> 39 40 using namespace clang; 41 using namespace CodeGen; 42 using llvm::Value; 43 44 //===----------------------------------------------------------------------===// 45 // Scalar Expression Emitter 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 50 /// Determine whether the given binary operation may overflow. 51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 53 /// the returned overflow check is precise. The returned value is 'true' for 54 /// all other opcodes, to be conservative. 55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 56 BinaryOperator::Opcode Opcode, bool Signed, 57 llvm::APInt &Result) { 58 // Assume overflow is possible, unless we can prove otherwise. 59 bool Overflow = true; 60 const auto &LHSAP = LHS->getValue(); 61 const auto &RHSAP = RHS->getValue(); 62 if (Opcode == BO_Add) { 63 if (Signed) 64 Result = LHSAP.sadd_ov(RHSAP, Overflow); 65 else 66 Result = LHSAP.uadd_ov(RHSAP, Overflow); 67 } else if (Opcode == BO_Sub) { 68 if (Signed) 69 Result = LHSAP.ssub_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.usub_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Mul) { 73 if (Signed) 74 Result = LHSAP.smul_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.umul_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 78 if (Signed && !RHS->isZero()) 79 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 80 else 81 return false; 82 } 83 return Overflow; 84 } 85 86 struct BinOpInfo { 87 Value *LHS; 88 Value *RHS; 89 QualType Ty; // Computation Type. 90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 91 FPOptions FPFeatures; 92 const Expr *E; // Entire expr, for error unsupported. May not be binop. 93 94 /// Check if the binop can result in integer overflow. 95 bool mayHaveIntegerOverflow() const { 96 // Without constant input, we can't rule out overflow. 97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 99 if (!LHSCI || !RHSCI) 100 return true; 101 102 llvm::APInt Result; 103 return ::mayHaveIntegerOverflow( 104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 105 } 106 107 /// Check if the binop computes a division or a remainder. 108 bool isDivremOp() const { 109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 110 Opcode == BO_RemAssign; 111 } 112 113 /// Check if the binop can result in an integer division by zero. 114 bool mayHaveIntegerDivisionByZero() const { 115 if (isDivremOp()) 116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 117 return CI->isZero(); 118 return true; 119 } 120 121 /// Check if the binop can result in a float division by zero. 122 bool mayHaveFloatDivisionByZero() const { 123 if (isDivremOp()) 124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 125 return CFP->isZero(); 126 return true; 127 } 128 }; 129 130 static bool MustVisitNullValue(const Expr *E) { 131 // If a null pointer expression's type is the C++0x nullptr_t, then 132 // it's not necessarily a simple constant and it must be evaluated 133 // for its potential side effects. 134 return E->getType()->isNullPtrType(); 135 } 136 137 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 138 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 139 const Expr *E) { 140 const Expr *Base = E->IgnoreImpCasts(); 141 if (E == Base) 142 return llvm::None; 143 144 QualType BaseTy = Base->getType(); 145 if (!BaseTy->isPromotableIntegerType() || 146 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 147 return llvm::None; 148 149 return BaseTy; 150 } 151 152 /// Check if \p E is a widened promoted integer. 153 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 154 return getUnwidenedIntegerType(Ctx, E).hasValue(); 155 } 156 157 /// Check if we can skip the overflow check for \p Op. 158 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 159 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 160 "Expected a unary or binary operator"); 161 162 // If the binop has constant inputs and we can prove there is no overflow, 163 // we can elide the overflow check. 164 if (!Op.mayHaveIntegerOverflow()) 165 return true; 166 167 // If a unary op has a widened operand, the op cannot overflow. 168 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 169 return !UO->canOverflow(); 170 171 // We usually don't need overflow checks for binops with widened operands. 172 // Multiplication with promoted unsigned operands is a special case. 173 const auto *BO = cast<BinaryOperator>(Op.E); 174 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 175 if (!OptionalLHSTy) 176 return false; 177 178 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 179 if (!OptionalRHSTy) 180 return false; 181 182 QualType LHSTy = *OptionalLHSTy; 183 QualType RHSTy = *OptionalRHSTy; 184 185 // This is the simple case: binops without unsigned multiplication, and with 186 // widened operands. No overflow check is needed here. 187 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 188 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 189 return true; 190 191 // For unsigned multiplication the overflow check can be elided if either one 192 // of the unpromoted types are less than half the size of the promoted type. 193 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 194 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 195 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 196 } 197 198 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 199 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 200 FPOptions FPFeatures) { 201 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 202 } 203 204 /// Propagate fast-math flags from \p Op to the instruction in \p V. 205 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 206 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 207 llvm::FastMathFlags FMF = I->getFastMathFlags(); 208 updateFastMathFlags(FMF, Op.FPFeatures); 209 I->setFastMathFlags(FMF); 210 } 211 return V; 212 } 213 214 class ScalarExprEmitter 215 : public StmtVisitor<ScalarExprEmitter, Value*> { 216 CodeGenFunction &CGF; 217 CGBuilderTy &Builder; 218 bool IgnoreResultAssign; 219 llvm::LLVMContext &VMContext; 220 public: 221 222 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 223 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 224 VMContext(cgf.getLLVMContext()) { 225 } 226 227 //===--------------------------------------------------------------------===// 228 // Utilities 229 //===--------------------------------------------------------------------===// 230 231 bool TestAndClearIgnoreResultAssign() { 232 bool I = IgnoreResultAssign; 233 IgnoreResultAssign = false; 234 return I; 235 } 236 237 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 238 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 239 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 240 return CGF.EmitCheckedLValue(E, TCK); 241 } 242 243 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 244 const BinOpInfo &Info); 245 246 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 247 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 248 } 249 250 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 251 const AlignValueAttr *AVAttr = nullptr; 252 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 253 const ValueDecl *VD = DRE->getDecl(); 254 255 if (VD->getType()->isReferenceType()) { 256 if (const auto *TTy = 257 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 258 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 259 } else { 260 // Assumptions for function parameters are emitted at the start of the 261 // function, so there is no need to repeat that here. 262 if (isa<ParmVarDecl>(VD)) 263 return; 264 265 AVAttr = VD->getAttr<AlignValueAttr>(); 266 } 267 } 268 269 if (!AVAttr) 270 if (const auto *TTy = 271 dyn_cast<TypedefType>(E->getType())) 272 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 273 274 if (!AVAttr) 275 return; 276 277 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 278 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 279 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 280 } 281 282 /// EmitLoadOfLValue - Given an expression with complex type that represents a 283 /// value l-value, this method emits the address of the l-value, then loads 284 /// and returns the result. 285 Value *EmitLoadOfLValue(const Expr *E) { 286 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 287 E->getExprLoc()); 288 289 EmitLValueAlignmentAssumption(E, V); 290 return V; 291 } 292 293 /// EmitConversionToBool - Convert the specified expression value to a 294 /// boolean (i1) truth value. This is equivalent to "Val != 0". 295 Value *EmitConversionToBool(Value *Src, QualType DstTy); 296 297 /// Emit a check that a conversion to or from a floating-point type does not 298 /// overflow. 299 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 300 Value *Src, QualType SrcType, QualType DstType, 301 llvm::Type *DstTy, SourceLocation Loc); 302 303 /// Known implicit conversion check kinds. 304 /// Keep in sync with the enum of the same name in ubsan_handlers.h 305 enum ImplicitConversionCheckKind : unsigned char { 306 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 307 ICCK_UnsignedIntegerTruncation = 1, 308 ICCK_SignedIntegerTruncation = 2, 309 ICCK_IntegerSignChange = 3, 310 ICCK_SignedIntegerTruncationOrSignChange = 4, 311 }; 312 313 /// Emit a check that an [implicit] truncation of an integer does not 314 /// discard any bits. It is not UB, so we use the value after truncation. 315 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 316 QualType DstType, SourceLocation Loc); 317 318 /// Emit a check that an [implicit] conversion of an integer does not change 319 /// the sign of the value. It is not UB, so we use the value after conversion. 320 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 321 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 322 QualType DstType, SourceLocation Loc); 323 324 /// Emit a conversion from the specified type to the specified destination 325 /// type, both of which are LLVM scalar types. 326 struct ScalarConversionOpts { 327 bool TreatBooleanAsSigned; 328 bool EmitImplicitIntegerTruncationChecks; 329 bool EmitImplicitIntegerSignChangeChecks; 330 331 ScalarConversionOpts() 332 : TreatBooleanAsSigned(false), 333 EmitImplicitIntegerTruncationChecks(false), 334 EmitImplicitIntegerSignChangeChecks(false) {} 335 336 ScalarConversionOpts(clang::SanitizerSet SanOpts) 337 : TreatBooleanAsSigned(false), 338 EmitImplicitIntegerTruncationChecks( 339 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 340 EmitImplicitIntegerSignChangeChecks( 341 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 342 }; 343 Value * 344 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 345 SourceLocation Loc, 346 ScalarConversionOpts Opts = ScalarConversionOpts()); 347 348 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 349 SourceLocation Loc); 350 351 /// Emit a conversion from the specified complex type to the specified 352 /// destination type, where the destination type is an LLVM scalar type. 353 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 354 QualType SrcTy, QualType DstTy, 355 SourceLocation Loc); 356 357 /// EmitNullValue - Emit a value that corresponds to null for the given type. 358 Value *EmitNullValue(QualType Ty); 359 360 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 361 Value *EmitFloatToBoolConversion(Value *V) { 362 // Compare against 0.0 for fp scalars. 363 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 364 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 365 } 366 367 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 368 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 369 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 370 371 return Builder.CreateICmpNE(V, Zero, "tobool"); 372 } 373 374 Value *EmitIntToBoolConversion(Value *V) { 375 // Because of the type rules of C, we often end up computing a 376 // logical value, then zero extending it to int, then wanting it 377 // as a logical value again. Optimize this common case. 378 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 379 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 380 Value *Result = ZI->getOperand(0); 381 // If there aren't any more uses, zap the instruction to save space. 382 // Note that there can be more uses, for example if this 383 // is the result of an assignment. 384 if (ZI->use_empty()) 385 ZI->eraseFromParent(); 386 return Result; 387 } 388 } 389 390 return Builder.CreateIsNotNull(V, "tobool"); 391 } 392 393 //===--------------------------------------------------------------------===// 394 // Visitor Methods 395 //===--------------------------------------------------------------------===// 396 397 Value *Visit(Expr *E) { 398 ApplyDebugLocation DL(CGF, E); 399 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 400 } 401 402 Value *VisitStmt(Stmt *S) { 403 S->dump(CGF.getContext().getSourceManager()); 404 llvm_unreachable("Stmt can't have complex result type!"); 405 } 406 Value *VisitExpr(Expr *S); 407 408 Value *VisitConstantExpr(ConstantExpr *E) { 409 return Visit(E->getSubExpr()); 410 } 411 Value *VisitParenExpr(ParenExpr *PE) { 412 return Visit(PE->getSubExpr()); 413 } 414 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 415 return Visit(E->getReplacement()); 416 } 417 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 418 return Visit(GE->getResultExpr()); 419 } 420 Value *VisitCoawaitExpr(CoawaitExpr *S) { 421 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 422 } 423 Value *VisitCoyieldExpr(CoyieldExpr *S) { 424 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 425 } 426 Value *VisitUnaryCoawait(const UnaryOperator *E) { 427 return Visit(E->getSubExpr()); 428 } 429 430 // Leaves. 431 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 432 return Builder.getInt(E->getValue()); 433 } 434 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 435 return Builder.getInt(E->getValue()); 436 } 437 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 438 return llvm::ConstantFP::get(VMContext, E->getValue()); 439 } 440 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 441 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 442 } 443 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 444 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 445 } 446 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 447 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 448 } 449 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 450 return EmitNullValue(E->getType()); 451 } 452 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 453 return EmitNullValue(E->getType()); 454 } 455 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 456 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 457 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 458 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 459 return Builder.CreateBitCast(V, ConvertType(E->getType())); 460 } 461 462 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 463 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 464 } 465 466 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 467 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 468 } 469 470 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 471 if (E->isGLValue()) 472 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 473 E->getExprLoc()); 474 475 // Otherwise, assume the mapping is the scalar directly. 476 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 477 } 478 479 // l-values. 480 Value *VisitDeclRefExpr(DeclRefExpr *E) { 481 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 482 return CGF.emitScalarConstant(Constant, E); 483 return EmitLoadOfLValue(E); 484 } 485 486 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 487 return CGF.EmitObjCSelectorExpr(E); 488 } 489 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 490 return CGF.EmitObjCProtocolExpr(E); 491 } 492 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 493 return EmitLoadOfLValue(E); 494 } 495 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 496 if (E->getMethodDecl() && 497 E->getMethodDecl()->getReturnType()->isReferenceType()) 498 return EmitLoadOfLValue(E); 499 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 500 } 501 502 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 503 LValue LV = CGF.EmitObjCIsaExpr(E); 504 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 505 return V; 506 } 507 508 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 509 VersionTuple Version = E->getVersion(); 510 511 // If we're checking for a platform older than our minimum deployment 512 // target, we can fold the check away. 513 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 514 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 515 516 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 517 llvm::Value *Args[] = { 518 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 519 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 520 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 521 }; 522 523 return CGF.EmitBuiltinAvailable(Args); 524 } 525 526 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 527 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 528 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 529 Value *VisitMemberExpr(MemberExpr *E); 530 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 531 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 532 return EmitLoadOfLValue(E); 533 } 534 535 Value *VisitInitListExpr(InitListExpr *E); 536 537 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 538 assert(CGF.getArrayInitIndex() && 539 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 540 return CGF.getArrayInitIndex(); 541 } 542 543 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 544 return EmitNullValue(E->getType()); 545 } 546 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 547 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 548 return VisitCastExpr(E); 549 } 550 Value *VisitCastExpr(CastExpr *E); 551 552 Value *VisitCallExpr(const CallExpr *E) { 553 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 554 return EmitLoadOfLValue(E); 555 556 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 557 558 EmitLValueAlignmentAssumption(E, V); 559 return V; 560 } 561 562 Value *VisitStmtExpr(const StmtExpr *E); 563 564 // Unary Operators. 565 Value *VisitUnaryPostDec(const UnaryOperator *E) { 566 LValue LV = EmitLValue(E->getSubExpr()); 567 return EmitScalarPrePostIncDec(E, LV, false, false); 568 } 569 Value *VisitUnaryPostInc(const UnaryOperator *E) { 570 LValue LV = EmitLValue(E->getSubExpr()); 571 return EmitScalarPrePostIncDec(E, LV, true, false); 572 } 573 Value *VisitUnaryPreDec(const UnaryOperator *E) { 574 LValue LV = EmitLValue(E->getSubExpr()); 575 return EmitScalarPrePostIncDec(E, LV, false, true); 576 } 577 Value *VisitUnaryPreInc(const UnaryOperator *E) { 578 LValue LV = EmitLValue(E->getSubExpr()); 579 return EmitScalarPrePostIncDec(E, LV, true, true); 580 } 581 582 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 583 llvm::Value *InVal, 584 bool IsInc); 585 586 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 587 bool isInc, bool isPre); 588 589 590 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 591 if (isa<MemberPointerType>(E->getType())) // never sugared 592 return CGF.CGM.getMemberPointerConstant(E); 593 594 return EmitLValue(E->getSubExpr()).getPointer(); 595 } 596 Value *VisitUnaryDeref(const UnaryOperator *E) { 597 if (E->getType()->isVoidType()) 598 return Visit(E->getSubExpr()); // the actual value should be unused 599 return EmitLoadOfLValue(E); 600 } 601 Value *VisitUnaryPlus(const UnaryOperator *E) { 602 // This differs from gcc, though, most likely due to a bug in gcc. 603 TestAndClearIgnoreResultAssign(); 604 return Visit(E->getSubExpr()); 605 } 606 Value *VisitUnaryMinus (const UnaryOperator *E); 607 Value *VisitUnaryNot (const UnaryOperator *E); 608 Value *VisitUnaryLNot (const UnaryOperator *E); 609 Value *VisitUnaryReal (const UnaryOperator *E); 610 Value *VisitUnaryImag (const UnaryOperator *E); 611 Value *VisitUnaryExtension(const UnaryOperator *E) { 612 return Visit(E->getSubExpr()); 613 } 614 615 // C++ 616 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 617 return EmitLoadOfLValue(E); 618 } 619 620 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 621 return Visit(DAE->getExpr()); 622 } 623 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 624 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 625 return Visit(DIE->getExpr()); 626 } 627 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 628 return CGF.LoadCXXThis(); 629 } 630 631 Value *VisitExprWithCleanups(ExprWithCleanups *E); 632 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 633 return CGF.EmitCXXNewExpr(E); 634 } 635 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 636 CGF.EmitCXXDeleteExpr(E); 637 return nullptr; 638 } 639 640 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 641 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 642 } 643 644 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 645 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 646 } 647 648 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 649 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 650 } 651 652 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 653 // C++ [expr.pseudo]p1: 654 // The result shall only be used as the operand for the function call 655 // operator (), and the result of such a call has type void. The only 656 // effect is the evaluation of the postfix-expression before the dot or 657 // arrow. 658 CGF.EmitScalarExpr(E->getBase()); 659 return nullptr; 660 } 661 662 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 663 return EmitNullValue(E->getType()); 664 } 665 666 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 667 CGF.EmitCXXThrowExpr(E); 668 return nullptr; 669 } 670 671 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 672 return Builder.getInt1(E->getValue()); 673 } 674 675 // Binary Operators. 676 Value *EmitMul(const BinOpInfo &Ops) { 677 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 678 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 679 case LangOptions::SOB_Defined: 680 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 681 case LangOptions::SOB_Undefined: 682 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 683 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 684 LLVM_FALLTHROUGH; 685 case LangOptions::SOB_Trapping: 686 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 687 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 688 return EmitOverflowCheckedBinOp(Ops); 689 } 690 } 691 692 if (Ops.Ty->isUnsignedIntegerType() && 693 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 694 !CanElideOverflowCheck(CGF.getContext(), Ops)) 695 return EmitOverflowCheckedBinOp(Ops); 696 697 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 698 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 699 return propagateFMFlags(V, Ops); 700 } 701 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 702 } 703 /// Create a binary op that checks for overflow. 704 /// Currently only supports +, - and *. 705 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 706 707 // Check for undefined division and modulus behaviors. 708 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 709 llvm::Value *Zero,bool isDiv); 710 // Common helper for getting how wide LHS of shift is. 711 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 712 Value *EmitDiv(const BinOpInfo &Ops); 713 Value *EmitRem(const BinOpInfo &Ops); 714 Value *EmitAdd(const BinOpInfo &Ops); 715 Value *EmitSub(const BinOpInfo &Ops); 716 Value *EmitShl(const BinOpInfo &Ops); 717 Value *EmitShr(const BinOpInfo &Ops); 718 Value *EmitAnd(const BinOpInfo &Ops) { 719 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 720 } 721 Value *EmitXor(const BinOpInfo &Ops) { 722 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 723 } 724 Value *EmitOr (const BinOpInfo &Ops) { 725 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 726 } 727 728 BinOpInfo EmitBinOps(const BinaryOperator *E); 729 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 730 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 731 Value *&Result); 732 733 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 734 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 735 736 // Binary operators and binary compound assignment operators. 737 #define HANDLEBINOP(OP) \ 738 Value *VisitBin ## OP(const BinaryOperator *E) { \ 739 return Emit ## OP(EmitBinOps(E)); \ 740 } \ 741 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 742 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 743 } 744 HANDLEBINOP(Mul) 745 HANDLEBINOP(Div) 746 HANDLEBINOP(Rem) 747 HANDLEBINOP(Add) 748 HANDLEBINOP(Sub) 749 HANDLEBINOP(Shl) 750 HANDLEBINOP(Shr) 751 HANDLEBINOP(And) 752 HANDLEBINOP(Xor) 753 HANDLEBINOP(Or) 754 #undef HANDLEBINOP 755 756 // Comparisons. 757 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 758 llvm::CmpInst::Predicate SICmpOpc, 759 llvm::CmpInst::Predicate FCmpOpc); 760 #define VISITCOMP(CODE, UI, SI, FP) \ 761 Value *VisitBin##CODE(const BinaryOperator *E) { \ 762 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 763 llvm::FCmpInst::FP); } 764 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 765 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 766 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 767 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 768 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 769 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 770 #undef VISITCOMP 771 772 Value *VisitBinAssign (const BinaryOperator *E); 773 774 Value *VisitBinLAnd (const BinaryOperator *E); 775 Value *VisitBinLOr (const BinaryOperator *E); 776 Value *VisitBinComma (const BinaryOperator *E); 777 778 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 779 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 780 781 // Other Operators. 782 Value *VisitBlockExpr(const BlockExpr *BE); 783 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 784 Value *VisitChooseExpr(ChooseExpr *CE); 785 Value *VisitVAArgExpr(VAArgExpr *VE); 786 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 787 return CGF.EmitObjCStringLiteral(E); 788 } 789 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 790 return CGF.EmitObjCBoxedExpr(E); 791 } 792 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 793 return CGF.EmitObjCArrayLiteral(E); 794 } 795 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 796 return CGF.EmitObjCDictionaryLiteral(E); 797 } 798 Value *VisitAsTypeExpr(AsTypeExpr *CE); 799 Value *VisitAtomicExpr(AtomicExpr *AE); 800 }; 801 } // end anonymous namespace. 802 803 //===----------------------------------------------------------------------===// 804 // Utilities 805 //===----------------------------------------------------------------------===// 806 807 /// EmitConversionToBool - Convert the specified expression value to a 808 /// boolean (i1) truth value. This is equivalent to "Val != 0". 809 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 810 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 811 812 if (SrcType->isRealFloatingType()) 813 return EmitFloatToBoolConversion(Src); 814 815 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 816 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 817 818 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 819 "Unknown scalar type to convert"); 820 821 if (isa<llvm::IntegerType>(Src->getType())) 822 return EmitIntToBoolConversion(Src); 823 824 assert(isa<llvm::PointerType>(Src->getType())); 825 return EmitPointerToBoolConversion(Src, SrcType); 826 } 827 828 void ScalarExprEmitter::EmitFloatConversionCheck( 829 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 830 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 831 CodeGenFunction::SanitizerScope SanScope(&CGF); 832 using llvm::APFloat; 833 using llvm::APSInt; 834 835 llvm::Type *SrcTy = Src->getType(); 836 837 llvm::Value *Check = nullptr; 838 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 839 // Integer to floating-point. This can fail for unsigned short -> __half 840 // or unsigned __int128 -> float. 841 assert(DstType->isFloatingType()); 842 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 843 844 APFloat LargestFloat = 845 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 846 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 847 848 bool IsExact; 849 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 850 &IsExact) != APFloat::opOK) 851 // The range of representable values of this floating point type includes 852 // all values of this integer type. Don't need an overflow check. 853 return; 854 855 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 856 if (SrcIsUnsigned) 857 Check = Builder.CreateICmpULE(Src, Max); 858 else { 859 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 860 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 861 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 862 Check = Builder.CreateAnd(GE, LE); 863 } 864 } else { 865 const llvm::fltSemantics &SrcSema = 866 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 867 if (isa<llvm::IntegerType>(DstTy)) { 868 // Floating-point to integer. This has undefined behavior if the source is 869 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 870 // to an integer). 871 unsigned Width = CGF.getContext().getIntWidth(DstType); 872 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 873 874 APSInt Min = APSInt::getMinValue(Width, Unsigned); 875 APFloat MinSrc(SrcSema, APFloat::uninitialized); 876 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 877 APFloat::opOverflow) 878 // Don't need an overflow check for lower bound. Just check for 879 // -Inf/NaN. 880 MinSrc = APFloat::getInf(SrcSema, true); 881 else 882 // Find the largest value which is too small to represent (before 883 // truncation toward zero). 884 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 885 886 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 887 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 888 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 889 APFloat::opOverflow) 890 // Don't need an overflow check for upper bound. Just check for 891 // +Inf/NaN. 892 MaxSrc = APFloat::getInf(SrcSema, false); 893 else 894 // Find the smallest value which is too large to represent (before 895 // truncation toward zero). 896 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 897 898 // If we're converting from __half, convert the range to float to match 899 // the type of src. 900 if (OrigSrcType->isHalfType()) { 901 const llvm::fltSemantics &Sema = 902 CGF.getContext().getFloatTypeSemantics(SrcType); 903 bool IsInexact; 904 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 905 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 906 } 907 908 llvm::Value *GE = 909 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 910 llvm::Value *LE = 911 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 912 Check = Builder.CreateAnd(GE, LE); 913 } else { 914 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 915 // 916 // Floating-point to floating-point. This has undefined behavior if the 917 // source is not in the range of representable values of the destination 918 // type. The C and C++ standards are spectacularly unclear here. We 919 // diagnose finite out-of-range conversions, but allow infinities and NaNs 920 // to convert to the corresponding value in the smaller type. 921 // 922 // C11 Annex F gives all such conversions defined behavior for IEC 60559 923 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 924 // does not. 925 926 // Converting from a lower rank to a higher rank can never have 927 // undefined behavior, since higher-rank types must have a superset 928 // of values of lower-rank types. 929 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 930 return; 931 932 assert(!OrigSrcType->isHalfType() && 933 "should not check conversion from __half, it has the lowest rank"); 934 935 const llvm::fltSemantics &DstSema = 936 CGF.getContext().getFloatTypeSemantics(DstType); 937 APFloat MinBad = APFloat::getLargest(DstSema, false); 938 APFloat MaxBad = APFloat::getInf(DstSema, false); 939 940 bool IsInexact; 941 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 942 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 943 944 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 945 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 946 llvm::Value *GE = 947 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 948 llvm::Value *LE = 949 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 950 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 951 } 952 } 953 954 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 955 CGF.EmitCheckTypeDescriptor(OrigSrcType), 956 CGF.EmitCheckTypeDescriptor(DstType)}; 957 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 958 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 959 } 960 961 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 962 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 963 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 964 std::pair<llvm::Value *, SanitizerMask>> 965 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 966 QualType DstType, CGBuilderTy &Builder) { 967 llvm::Type *SrcTy = Src->getType(); 968 llvm::Type *DstTy = Dst->getType(); 969 (void)DstTy; // Only used in assert() 970 971 // This should be truncation of integral types. 972 assert(Src != Dst); 973 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 974 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 975 "non-integer llvm type"); 976 977 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 978 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 979 980 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 981 // Else, it is a signed truncation. 982 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 983 SanitizerMask Mask; 984 if (!SrcSigned && !DstSigned) { 985 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 986 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 987 } else { 988 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 989 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 990 } 991 992 llvm::Value *Check = nullptr; 993 // 1. Extend the truncated value back to the same width as the Src. 994 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 995 // 2. Equality-compare with the original source value 996 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 997 // If the comparison result is 'i1 false', then the truncation was lossy. 998 return std::make_pair(Kind, std::make_pair(Check, Mask)); 999 } 1000 1001 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1002 Value *Dst, QualType DstType, 1003 SourceLocation Loc) { 1004 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1005 return; 1006 1007 // We only care about int->int conversions here. 1008 // We ignore conversions to/from pointer and/or bool. 1009 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1010 return; 1011 1012 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1013 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1014 // This must be truncation. Else we do not care. 1015 if (SrcBits <= DstBits) 1016 return; 1017 1018 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1019 1020 // If the integer sign change sanitizer is enabled, 1021 // and we are truncating from larger unsigned type to smaller signed type, 1022 // let that next sanitizer deal with it. 1023 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1024 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1025 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1026 (!SrcSigned && DstSigned)) 1027 return; 1028 1029 CodeGenFunction::SanitizerScope SanScope(&CGF); 1030 1031 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1032 std::pair<llvm::Value *, SanitizerMask>> 1033 Check = 1034 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1035 // If the comparison result is 'i1 false', then the truncation was lossy. 1036 1037 // Do we care about this type of truncation? 1038 if (!CGF.SanOpts.has(Check.second.second)) 1039 return; 1040 1041 llvm::Constant *StaticArgs[] = { 1042 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1043 CGF.EmitCheckTypeDescriptor(DstType), 1044 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1045 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1046 {Src, Dst}); 1047 } 1048 1049 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1050 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1051 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1052 std::pair<llvm::Value *, SanitizerMask>> 1053 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1054 QualType DstType, CGBuilderTy &Builder) { 1055 llvm::Type *SrcTy = Src->getType(); 1056 llvm::Type *DstTy = Dst->getType(); 1057 1058 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1059 "non-integer llvm type"); 1060 1061 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1062 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1063 (void)SrcSigned; // Only used in assert() 1064 (void)DstSigned; // Only used in assert() 1065 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1066 unsigned DstBits = DstTy->getScalarSizeInBits(); 1067 (void)SrcBits; // Only used in assert() 1068 (void)DstBits; // Only used in assert() 1069 1070 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1071 "either the widths should be different, or the signednesses."); 1072 1073 // NOTE: zero value is considered to be non-negative. 1074 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1075 const char *Name) -> Value * { 1076 // Is this value a signed type? 1077 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1078 llvm::Type *VTy = V->getType(); 1079 if (!VSigned) { 1080 // If the value is unsigned, then it is never negative. 1081 // FIXME: can we encounter non-scalar VTy here? 1082 return llvm::ConstantInt::getFalse(VTy->getContext()); 1083 } 1084 // Get the zero of the same type with which we will be comparing. 1085 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1086 // %V.isnegative = icmp slt %V, 0 1087 // I.e is %V *strictly* less than zero, does it have negative value? 1088 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1089 llvm::Twine(Name) + "." + V->getName() + 1090 ".negativitycheck"); 1091 }; 1092 1093 // 1. Was the old Value negative? 1094 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1095 // 2. Is the new Value negative? 1096 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1097 // 3. Now, was the 'negativity status' preserved during the conversion? 1098 // NOTE: conversion from negative to zero is considered to change the sign. 1099 // (We want to get 'false' when the conversion changed the sign) 1100 // So we should just equality-compare the negativity statuses. 1101 llvm::Value *Check = nullptr; 1102 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1103 // If the comparison result is 'false', then the conversion changed the sign. 1104 return std::make_pair( 1105 ScalarExprEmitter::ICCK_IntegerSignChange, 1106 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1107 } 1108 1109 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1110 Value *Dst, QualType DstType, 1111 SourceLocation Loc) { 1112 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1113 return; 1114 1115 llvm::Type *SrcTy = Src->getType(); 1116 llvm::Type *DstTy = Dst->getType(); 1117 1118 // We only care about int->int conversions here. 1119 // We ignore conversions to/from pointer and/or bool. 1120 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1121 return; 1122 1123 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1124 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1125 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1126 unsigned DstBits = DstTy->getScalarSizeInBits(); 1127 1128 // Now, we do not need to emit the check in *all* of the cases. 1129 // We can avoid emitting it in some obvious cases where it would have been 1130 // dropped by the opt passes (instcombine) always anyways. 1131 // If it's a cast between effectively the same type, no check. 1132 // NOTE: this is *not* equivalent to checking the canonical types. 1133 if (SrcSigned == DstSigned && SrcBits == DstBits) 1134 return; 1135 // At least one of the values needs to have signed type. 1136 // If both are unsigned, then obviously, neither of them can be negative. 1137 if (!SrcSigned && !DstSigned) 1138 return; 1139 // If the conversion is to *larger* *signed* type, then no check is needed. 1140 // Because either sign-extension happens (so the sign will remain), 1141 // or zero-extension will happen (the sign bit will be zero.) 1142 if ((DstBits > SrcBits) && DstSigned) 1143 return; 1144 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1145 (SrcBits > DstBits) && SrcSigned) { 1146 // If the signed integer truncation sanitizer is enabled, 1147 // and this is a truncation from signed type, then no check is needed. 1148 // Because here sign change check is interchangeable with truncation check. 1149 return; 1150 } 1151 // That's it. We can't rule out any more cases with the data we have. 1152 1153 CodeGenFunction::SanitizerScope SanScope(&CGF); 1154 1155 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1156 std::pair<llvm::Value *, SanitizerMask>> 1157 Check; 1158 1159 // Each of these checks needs to return 'false' when an issue was detected. 1160 ImplicitConversionCheckKind CheckKind; 1161 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1162 // So we can 'and' all the checks together, and still get 'false', 1163 // if at least one of the checks detected an issue. 1164 1165 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1166 CheckKind = Check.first; 1167 Checks.emplace_back(Check.second); 1168 1169 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1170 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1171 // If the signed integer truncation sanitizer was enabled, 1172 // and we are truncating from larger unsigned type to smaller signed type, 1173 // let's handle the case we skipped in that check. 1174 Check = 1175 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1176 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1177 Checks.emplace_back(Check.second); 1178 // If the comparison result is 'i1 false', then the truncation was lossy. 1179 } 1180 1181 llvm::Constant *StaticArgs[] = { 1182 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1183 CGF.EmitCheckTypeDescriptor(DstType), 1184 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1185 // EmitCheck() will 'and' all the checks together. 1186 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1187 {Src, Dst}); 1188 } 1189 1190 /// Emit a conversion from the specified type to the specified destination type, 1191 /// both of which are LLVM scalar types. 1192 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1193 QualType DstType, 1194 SourceLocation Loc, 1195 ScalarConversionOpts Opts) { 1196 // All conversions involving fixed point types should be handled by the 1197 // EmitFixedPoint family functions. This is done to prevent bloating up this 1198 // function more, and although fixed point numbers are represented by 1199 // integers, we do not want to follow any logic that assumes they should be 1200 // treated as integers. 1201 // TODO(leonardchan): When necessary, add another if statement checking for 1202 // conversions to fixed point types from other types. 1203 if (SrcType->isFixedPointType()) { 1204 if (DstType->isFixedPointType()) { 1205 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1206 } else if (DstType->isBooleanType()) { 1207 // We do not need to check the padding bit on unsigned types if unsigned 1208 // padding is enabled because overflow into this bit is undefined 1209 // behavior. 1210 return Builder.CreateIsNotNull(Src, "tobool"); 1211 } 1212 1213 llvm_unreachable( 1214 "Unhandled scalar conversion involving a fixed point type."); 1215 } 1216 1217 QualType NoncanonicalSrcType = SrcType; 1218 QualType NoncanonicalDstType = DstType; 1219 1220 SrcType = CGF.getContext().getCanonicalType(SrcType); 1221 DstType = CGF.getContext().getCanonicalType(DstType); 1222 if (SrcType == DstType) return Src; 1223 1224 if (DstType->isVoidType()) return nullptr; 1225 1226 llvm::Value *OrigSrc = Src; 1227 QualType OrigSrcType = SrcType; 1228 llvm::Type *SrcTy = Src->getType(); 1229 1230 // Handle conversions to bool first, they are special: comparisons against 0. 1231 if (DstType->isBooleanType()) 1232 return EmitConversionToBool(Src, SrcType); 1233 1234 llvm::Type *DstTy = ConvertType(DstType); 1235 1236 // Cast from half through float if half isn't a native type. 1237 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1238 // Cast to FP using the intrinsic if the half type itself isn't supported. 1239 if (DstTy->isFloatingPointTy()) { 1240 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1241 return Builder.CreateCall( 1242 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1243 Src); 1244 } else { 1245 // Cast to other types through float, using either the intrinsic or FPExt, 1246 // depending on whether the half type itself is supported 1247 // (as opposed to operations on half, available with NativeHalfType). 1248 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1249 Src = Builder.CreateCall( 1250 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1251 CGF.CGM.FloatTy), 1252 Src); 1253 } else { 1254 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1255 } 1256 SrcType = CGF.getContext().FloatTy; 1257 SrcTy = CGF.FloatTy; 1258 } 1259 } 1260 1261 // Ignore conversions like int -> uint. 1262 if (SrcTy == DstTy) { 1263 if (Opts.EmitImplicitIntegerSignChangeChecks) 1264 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1265 NoncanonicalDstType, Loc); 1266 1267 return Src; 1268 } 1269 1270 // Handle pointer conversions next: pointers can only be converted to/from 1271 // other pointers and integers. Check for pointer types in terms of LLVM, as 1272 // some native types (like Obj-C id) may map to a pointer type. 1273 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1274 // The source value may be an integer, or a pointer. 1275 if (isa<llvm::PointerType>(SrcTy)) 1276 return Builder.CreateBitCast(Src, DstTy, "conv"); 1277 1278 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1279 // First, convert to the correct width so that we control the kind of 1280 // extension. 1281 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1282 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1283 llvm::Value* IntResult = 1284 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1285 // Then, cast to pointer. 1286 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1287 } 1288 1289 if (isa<llvm::PointerType>(SrcTy)) { 1290 // Must be an ptr to int cast. 1291 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1292 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1293 } 1294 1295 // A scalar can be splatted to an extended vector of the same element type 1296 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1297 // Sema should add casts to make sure that the source expression's type is 1298 // the same as the vector's element type (sans qualifiers) 1299 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1300 SrcType.getTypePtr() && 1301 "Splatted expr doesn't match with vector element type?"); 1302 1303 // Splat the element across to all elements 1304 unsigned NumElements = DstTy->getVectorNumElements(); 1305 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1306 } 1307 1308 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1309 // Allow bitcast from vector to integer/fp of the same size. 1310 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1311 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1312 if (SrcSize == DstSize) 1313 return Builder.CreateBitCast(Src, DstTy, "conv"); 1314 1315 // Conversions between vectors of different sizes are not allowed except 1316 // when vectors of half are involved. Operations on storage-only half 1317 // vectors require promoting half vector operands to float vectors and 1318 // truncating the result, which is either an int or float vector, to a 1319 // short or half vector. 1320 1321 // Source and destination are both expected to be vectors. 1322 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1323 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1324 (void)DstElementTy; 1325 1326 assert(((SrcElementTy->isIntegerTy() && 1327 DstElementTy->isIntegerTy()) || 1328 (SrcElementTy->isFloatingPointTy() && 1329 DstElementTy->isFloatingPointTy())) && 1330 "unexpected conversion between a floating-point vector and an " 1331 "integer vector"); 1332 1333 // Truncate an i32 vector to an i16 vector. 1334 if (SrcElementTy->isIntegerTy()) 1335 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1336 1337 // Truncate a float vector to a half vector. 1338 if (SrcSize > DstSize) 1339 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1340 1341 // Promote a half vector to a float vector. 1342 return Builder.CreateFPExt(Src, DstTy, "conv"); 1343 } 1344 1345 // Finally, we have the arithmetic types: real int/float. 1346 Value *Res = nullptr; 1347 llvm::Type *ResTy = DstTy; 1348 1349 // An overflowing conversion has undefined behavior if either the source type 1350 // or the destination type is a floating-point type. 1351 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1352 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1353 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1354 Loc); 1355 1356 // Cast to half through float if half isn't a native type. 1357 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1358 // Make sure we cast in a single step if from another FP type. 1359 if (SrcTy->isFloatingPointTy()) { 1360 // Use the intrinsic if the half type itself isn't supported 1361 // (as opposed to operations on half, available with NativeHalfType). 1362 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1363 return Builder.CreateCall( 1364 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1365 // If the half type is supported, just use an fptrunc. 1366 return Builder.CreateFPTrunc(Src, DstTy); 1367 } 1368 DstTy = CGF.FloatTy; 1369 } 1370 1371 if (isa<llvm::IntegerType>(SrcTy)) { 1372 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1373 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1374 InputSigned = true; 1375 } 1376 if (isa<llvm::IntegerType>(DstTy)) 1377 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1378 else if (InputSigned) 1379 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1380 else 1381 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1382 } else if (isa<llvm::IntegerType>(DstTy)) { 1383 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1384 if (DstType->isSignedIntegerOrEnumerationType()) 1385 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1386 else 1387 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1388 } else { 1389 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1390 "Unknown real conversion"); 1391 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1392 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1393 else 1394 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1395 } 1396 1397 if (DstTy != ResTy) { 1398 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1399 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1400 Res = Builder.CreateCall( 1401 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1402 Res); 1403 } else { 1404 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1405 } 1406 } 1407 1408 if (Opts.EmitImplicitIntegerTruncationChecks) 1409 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1410 NoncanonicalDstType, Loc); 1411 1412 if (Opts.EmitImplicitIntegerSignChangeChecks) 1413 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1414 NoncanonicalDstType, Loc); 1415 1416 return Res; 1417 } 1418 1419 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1420 QualType DstTy, 1421 SourceLocation Loc) { 1422 using llvm::APInt; 1423 using llvm::ConstantInt; 1424 using llvm::Value; 1425 1426 assert(SrcTy->isFixedPointType()); 1427 assert(DstTy->isFixedPointType()); 1428 1429 FixedPointSemantics SrcFPSema = 1430 CGF.getContext().getFixedPointSemantics(SrcTy); 1431 FixedPointSemantics DstFPSema = 1432 CGF.getContext().getFixedPointSemantics(DstTy); 1433 unsigned SrcWidth = SrcFPSema.getWidth(); 1434 unsigned DstWidth = DstFPSema.getWidth(); 1435 unsigned SrcScale = SrcFPSema.getScale(); 1436 unsigned DstScale = DstFPSema.getScale(); 1437 bool SrcIsSigned = SrcFPSema.isSigned(); 1438 bool DstIsSigned = DstFPSema.isSigned(); 1439 1440 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1441 1442 Value *Result = Src; 1443 unsigned ResultWidth = SrcWidth; 1444 1445 if (!DstFPSema.isSaturated()) { 1446 // Downscale. 1447 if (DstScale < SrcScale) 1448 Result = SrcIsSigned ? 1449 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : 1450 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1451 1452 // Resize. 1453 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1454 1455 // Upscale. 1456 if (DstScale > SrcScale) 1457 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1458 } else { 1459 // Adjust the number of fractional bits. 1460 if (DstScale > SrcScale) { 1461 ResultWidth = SrcWidth + DstScale - SrcScale; 1462 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1463 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1464 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1465 } else if (DstScale < SrcScale) { 1466 Result = SrcIsSigned ? 1467 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : 1468 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1469 } 1470 1471 // Handle saturation. 1472 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1473 if (LessIntBits) { 1474 Value *Max = ConstantInt::get( 1475 CGF.getLLVMContext(), 1476 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1477 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1478 : Builder.CreateICmpUGT(Result, Max); 1479 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1480 } 1481 // Cannot overflow min to dest type if src is unsigned since all fixed 1482 // point types can cover the unsigned min of 0. 1483 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1484 Value *Min = ConstantInt::get( 1485 CGF.getLLVMContext(), 1486 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1487 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1488 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1489 } 1490 1491 // Resize the integer part to get the final destination size. 1492 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1493 } 1494 return Result; 1495 } 1496 1497 /// Emit a conversion from the specified complex type to the specified 1498 /// destination type, where the destination type is an LLVM scalar type. 1499 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1500 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1501 SourceLocation Loc) { 1502 // Get the source element type. 1503 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1504 1505 // Handle conversions to bool first, they are special: comparisons against 0. 1506 if (DstTy->isBooleanType()) { 1507 // Complex != 0 -> (Real != 0) | (Imag != 0) 1508 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1509 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1510 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1511 } 1512 1513 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1514 // the imaginary part of the complex value is discarded and the value of the 1515 // real part is converted according to the conversion rules for the 1516 // corresponding real type. 1517 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1518 } 1519 1520 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1521 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1522 } 1523 1524 /// Emit a sanitization check for the given "binary" operation (which 1525 /// might actually be a unary increment which has been lowered to a binary 1526 /// operation). The check passes if all values in \p Checks (which are \c i1), 1527 /// are \c true. 1528 void ScalarExprEmitter::EmitBinOpCheck( 1529 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1530 assert(CGF.IsSanitizerScope); 1531 SanitizerHandler Check; 1532 SmallVector<llvm::Constant *, 4> StaticData; 1533 SmallVector<llvm::Value *, 2> DynamicData; 1534 1535 BinaryOperatorKind Opcode = Info.Opcode; 1536 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1537 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1538 1539 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1540 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1541 if (UO && UO->getOpcode() == UO_Minus) { 1542 Check = SanitizerHandler::NegateOverflow; 1543 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1544 DynamicData.push_back(Info.RHS); 1545 } else { 1546 if (BinaryOperator::isShiftOp(Opcode)) { 1547 // Shift LHS negative or too large, or RHS out of bounds. 1548 Check = SanitizerHandler::ShiftOutOfBounds; 1549 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1550 StaticData.push_back( 1551 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1552 StaticData.push_back( 1553 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1554 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1555 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1556 Check = SanitizerHandler::DivremOverflow; 1557 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1558 } else { 1559 // Arithmetic overflow (+, -, *). 1560 switch (Opcode) { 1561 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1562 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1563 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1564 default: llvm_unreachable("unexpected opcode for bin op check"); 1565 } 1566 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1567 } 1568 DynamicData.push_back(Info.LHS); 1569 DynamicData.push_back(Info.RHS); 1570 } 1571 1572 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1573 } 1574 1575 //===----------------------------------------------------------------------===// 1576 // Visitor Methods 1577 //===----------------------------------------------------------------------===// 1578 1579 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1580 CGF.ErrorUnsupported(E, "scalar expression"); 1581 if (E->getType()->isVoidType()) 1582 return nullptr; 1583 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1584 } 1585 1586 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1587 // Vector Mask Case 1588 if (E->getNumSubExprs() == 2) { 1589 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1590 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1591 Value *Mask; 1592 1593 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1594 unsigned LHSElts = LTy->getNumElements(); 1595 1596 Mask = RHS; 1597 1598 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1599 1600 // Mask off the high bits of each shuffle index. 1601 Value *MaskBits = 1602 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1603 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1604 1605 // newv = undef 1606 // mask = mask & maskbits 1607 // for each elt 1608 // n = extract mask i 1609 // x = extract val n 1610 // newv = insert newv, x, i 1611 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1612 MTy->getNumElements()); 1613 Value* NewV = llvm::UndefValue::get(RTy); 1614 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1615 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1616 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1617 1618 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1619 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1620 } 1621 return NewV; 1622 } 1623 1624 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1625 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1626 1627 SmallVector<llvm::Constant*, 32> indices; 1628 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1629 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1630 // Check for -1 and output it as undef in the IR. 1631 if (Idx.isSigned() && Idx.isAllOnesValue()) 1632 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1633 else 1634 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1635 } 1636 1637 Value *SV = llvm::ConstantVector::get(indices); 1638 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1639 } 1640 1641 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1642 QualType SrcType = E->getSrcExpr()->getType(), 1643 DstType = E->getType(); 1644 1645 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1646 1647 SrcType = CGF.getContext().getCanonicalType(SrcType); 1648 DstType = CGF.getContext().getCanonicalType(DstType); 1649 if (SrcType == DstType) return Src; 1650 1651 assert(SrcType->isVectorType() && 1652 "ConvertVector source type must be a vector"); 1653 assert(DstType->isVectorType() && 1654 "ConvertVector destination type must be a vector"); 1655 1656 llvm::Type *SrcTy = Src->getType(); 1657 llvm::Type *DstTy = ConvertType(DstType); 1658 1659 // Ignore conversions like int -> uint. 1660 if (SrcTy == DstTy) 1661 return Src; 1662 1663 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1664 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1665 1666 assert(SrcTy->isVectorTy() && 1667 "ConvertVector source IR type must be a vector"); 1668 assert(DstTy->isVectorTy() && 1669 "ConvertVector destination IR type must be a vector"); 1670 1671 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1672 *DstEltTy = DstTy->getVectorElementType(); 1673 1674 if (DstEltType->isBooleanType()) { 1675 assert((SrcEltTy->isFloatingPointTy() || 1676 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1677 1678 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1679 if (SrcEltTy->isFloatingPointTy()) { 1680 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1681 } else { 1682 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1683 } 1684 } 1685 1686 // We have the arithmetic types: real int/float. 1687 Value *Res = nullptr; 1688 1689 if (isa<llvm::IntegerType>(SrcEltTy)) { 1690 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1691 if (isa<llvm::IntegerType>(DstEltTy)) 1692 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1693 else if (InputSigned) 1694 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1695 else 1696 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1697 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1698 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1699 if (DstEltType->isSignedIntegerOrEnumerationType()) 1700 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1701 else 1702 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1703 } else { 1704 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1705 "Unknown real conversion"); 1706 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1707 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1708 else 1709 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1710 } 1711 1712 return Res; 1713 } 1714 1715 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1716 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1717 CGF.EmitIgnoredExpr(E->getBase()); 1718 return CGF.emitScalarConstant(Constant, E); 1719 } else { 1720 Expr::EvalResult Result; 1721 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1722 llvm::APSInt Value = Result.Val.getInt(); 1723 CGF.EmitIgnoredExpr(E->getBase()); 1724 return Builder.getInt(Value); 1725 } 1726 } 1727 1728 return EmitLoadOfLValue(E); 1729 } 1730 1731 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1732 TestAndClearIgnoreResultAssign(); 1733 1734 // Emit subscript expressions in rvalue context's. For most cases, this just 1735 // loads the lvalue formed by the subscript expr. However, we have to be 1736 // careful, because the base of a vector subscript is occasionally an rvalue, 1737 // so we can't get it as an lvalue. 1738 if (!E->getBase()->getType()->isVectorType()) 1739 return EmitLoadOfLValue(E); 1740 1741 // Handle the vector case. The base must be a vector, the index must be an 1742 // integer value. 1743 Value *Base = Visit(E->getBase()); 1744 Value *Idx = Visit(E->getIdx()); 1745 QualType IdxTy = E->getIdx()->getType(); 1746 1747 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1748 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1749 1750 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1751 } 1752 1753 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1754 unsigned Off, llvm::Type *I32Ty) { 1755 int MV = SVI->getMaskValue(Idx); 1756 if (MV == -1) 1757 return llvm::UndefValue::get(I32Ty); 1758 return llvm::ConstantInt::get(I32Ty, Off+MV); 1759 } 1760 1761 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1762 if (C->getBitWidth() != 32) { 1763 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1764 C->getZExtValue()) && 1765 "Index operand too large for shufflevector mask!"); 1766 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1767 } 1768 return C; 1769 } 1770 1771 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1772 bool Ignore = TestAndClearIgnoreResultAssign(); 1773 (void)Ignore; 1774 assert (Ignore == false && "init list ignored"); 1775 unsigned NumInitElements = E->getNumInits(); 1776 1777 if (E->hadArrayRangeDesignator()) 1778 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1779 1780 llvm::VectorType *VType = 1781 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1782 1783 if (!VType) { 1784 if (NumInitElements == 0) { 1785 // C++11 value-initialization for the scalar. 1786 return EmitNullValue(E->getType()); 1787 } 1788 // We have a scalar in braces. Just use the first element. 1789 return Visit(E->getInit(0)); 1790 } 1791 1792 unsigned ResElts = VType->getNumElements(); 1793 1794 // Loop over initializers collecting the Value for each, and remembering 1795 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1796 // us to fold the shuffle for the swizzle into the shuffle for the vector 1797 // initializer, since LLVM optimizers generally do not want to touch 1798 // shuffles. 1799 unsigned CurIdx = 0; 1800 bool VIsUndefShuffle = false; 1801 llvm::Value *V = llvm::UndefValue::get(VType); 1802 for (unsigned i = 0; i != NumInitElements; ++i) { 1803 Expr *IE = E->getInit(i); 1804 Value *Init = Visit(IE); 1805 SmallVector<llvm::Constant*, 16> Args; 1806 1807 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1808 1809 // Handle scalar elements. If the scalar initializer is actually one 1810 // element of a different vector of the same width, use shuffle instead of 1811 // extract+insert. 1812 if (!VVT) { 1813 if (isa<ExtVectorElementExpr>(IE)) { 1814 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1815 1816 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1817 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1818 Value *LHS = nullptr, *RHS = nullptr; 1819 if (CurIdx == 0) { 1820 // insert into undef -> shuffle (src, undef) 1821 // shufflemask must use an i32 1822 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1823 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1824 1825 LHS = EI->getVectorOperand(); 1826 RHS = V; 1827 VIsUndefShuffle = true; 1828 } else if (VIsUndefShuffle) { 1829 // insert into undefshuffle && size match -> shuffle (v, src) 1830 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1831 for (unsigned j = 0; j != CurIdx; ++j) 1832 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1833 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1834 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1835 1836 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1837 RHS = EI->getVectorOperand(); 1838 VIsUndefShuffle = false; 1839 } 1840 if (!Args.empty()) { 1841 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1842 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1843 ++CurIdx; 1844 continue; 1845 } 1846 } 1847 } 1848 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1849 "vecinit"); 1850 VIsUndefShuffle = false; 1851 ++CurIdx; 1852 continue; 1853 } 1854 1855 unsigned InitElts = VVT->getNumElements(); 1856 1857 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1858 // input is the same width as the vector being constructed, generate an 1859 // optimized shuffle of the swizzle input into the result. 1860 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1861 if (isa<ExtVectorElementExpr>(IE)) { 1862 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1863 Value *SVOp = SVI->getOperand(0); 1864 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1865 1866 if (OpTy->getNumElements() == ResElts) { 1867 for (unsigned j = 0; j != CurIdx; ++j) { 1868 // If the current vector initializer is a shuffle with undef, merge 1869 // this shuffle directly into it. 1870 if (VIsUndefShuffle) { 1871 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1872 CGF.Int32Ty)); 1873 } else { 1874 Args.push_back(Builder.getInt32(j)); 1875 } 1876 } 1877 for (unsigned j = 0, je = InitElts; j != je; ++j) 1878 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1879 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1880 1881 if (VIsUndefShuffle) 1882 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1883 1884 Init = SVOp; 1885 } 1886 } 1887 1888 // Extend init to result vector length, and then shuffle its contribution 1889 // to the vector initializer into V. 1890 if (Args.empty()) { 1891 for (unsigned j = 0; j != InitElts; ++j) 1892 Args.push_back(Builder.getInt32(j)); 1893 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1894 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1895 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1896 Mask, "vext"); 1897 1898 Args.clear(); 1899 for (unsigned j = 0; j != CurIdx; ++j) 1900 Args.push_back(Builder.getInt32(j)); 1901 for (unsigned j = 0; j != InitElts; ++j) 1902 Args.push_back(Builder.getInt32(j+Offset)); 1903 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1904 } 1905 1906 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1907 // merging subsequent shuffles into this one. 1908 if (CurIdx == 0) 1909 std::swap(V, Init); 1910 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1911 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1912 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1913 CurIdx += InitElts; 1914 } 1915 1916 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1917 // Emit remaining default initializers. 1918 llvm::Type *EltTy = VType->getElementType(); 1919 1920 // Emit remaining default initializers 1921 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1922 Value *Idx = Builder.getInt32(CurIdx); 1923 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1924 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1925 } 1926 return V; 1927 } 1928 1929 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1930 const Expr *E = CE->getSubExpr(); 1931 1932 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1933 return false; 1934 1935 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1936 // We always assume that 'this' is never null. 1937 return false; 1938 } 1939 1940 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1941 // And that glvalue casts are never null. 1942 if (ICE->getValueKind() != VK_RValue) 1943 return false; 1944 } 1945 1946 return true; 1947 } 1948 1949 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1950 // have to handle a more broad range of conversions than explicit casts, as they 1951 // handle things like function to ptr-to-function decay etc. 1952 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1953 Expr *E = CE->getSubExpr(); 1954 QualType DestTy = CE->getType(); 1955 CastKind Kind = CE->getCastKind(); 1956 1957 // These cases are generally not written to ignore the result of 1958 // evaluating their sub-expressions, so we clear this now. 1959 bool Ignored = TestAndClearIgnoreResultAssign(); 1960 1961 // Since almost all cast kinds apply to scalars, this switch doesn't have 1962 // a default case, so the compiler will warn on a missing case. The cases 1963 // are in the same order as in the CastKind enum. 1964 switch (Kind) { 1965 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1966 case CK_BuiltinFnToFnPtr: 1967 llvm_unreachable("builtin functions are handled elsewhere"); 1968 1969 case CK_LValueBitCast: 1970 case CK_ObjCObjectLValueCast: { 1971 Address Addr = EmitLValue(E).getAddress(); 1972 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1973 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1974 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1975 } 1976 1977 case CK_CPointerToObjCPointerCast: 1978 case CK_BlockPointerToObjCPointerCast: 1979 case CK_AnyPointerToBlockPointerCast: 1980 case CK_BitCast: { 1981 Value *Src = Visit(const_cast<Expr*>(E)); 1982 llvm::Type *SrcTy = Src->getType(); 1983 llvm::Type *DstTy = ConvertType(DestTy); 1984 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1985 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1986 llvm_unreachable("wrong cast for pointers in different address spaces" 1987 "(must be an address space cast)!"); 1988 } 1989 1990 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1991 if (auto PT = DestTy->getAs<PointerType>()) 1992 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1993 /*MayBeNull=*/true, 1994 CodeGenFunction::CFITCK_UnrelatedCast, 1995 CE->getBeginLoc()); 1996 } 1997 1998 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1999 const QualType SrcType = E->getType(); 2000 2001 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2002 // Casting to pointer that could carry dynamic information (provided by 2003 // invariant.group) requires launder. 2004 Src = Builder.CreateLaunderInvariantGroup(Src); 2005 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2006 // Casting to pointer that does not carry dynamic information (provided 2007 // by invariant.group) requires stripping it. Note that we don't do it 2008 // if the source could not be dynamic type and destination could be 2009 // dynamic because dynamic information is already laundered. It is 2010 // because launder(strip(src)) == launder(src), so there is no need to 2011 // add extra strip before launder. 2012 Src = Builder.CreateStripInvariantGroup(Src); 2013 } 2014 } 2015 2016 return Builder.CreateBitCast(Src, DstTy); 2017 } 2018 case CK_AddressSpaceConversion: { 2019 Expr::EvalResult Result; 2020 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2021 Result.Val.isNullPointer()) { 2022 // If E has side effect, it is emitted even if its final result is a 2023 // null pointer. In that case, a DCE pass should be able to 2024 // eliminate the useless instructions emitted during translating E. 2025 if (Result.HasSideEffects) 2026 Visit(E); 2027 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2028 ConvertType(DestTy)), DestTy); 2029 } 2030 // Since target may map different address spaces in AST to the same address 2031 // space, an address space conversion may end up as a bitcast. 2032 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2033 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2034 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2035 } 2036 case CK_AtomicToNonAtomic: 2037 case CK_NonAtomicToAtomic: 2038 case CK_NoOp: 2039 case CK_UserDefinedConversion: 2040 return Visit(const_cast<Expr*>(E)); 2041 2042 case CK_BaseToDerived: { 2043 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2044 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2045 2046 Address Base = CGF.EmitPointerWithAlignment(E); 2047 Address Derived = 2048 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2049 CE->path_begin(), CE->path_end(), 2050 CGF.ShouldNullCheckClassCastValue(CE)); 2051 2052 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2053 // performed and the object is not of the derived type. 2054 if (CGF.sanitizePerformTypeCheck()) 2055 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2056 Derived.getPointer(), DestTy->getPointeeType()); 2057 2058 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2059 CGF.EmitVTablePtrCheckForCast( 2060 DestTy->getPointeeType(), Derived.getPointer(), 2061 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2062 CE->getBeginLoc()); 2063 2064 return Derived.getPointer(); 2065 } 2066 case CK_UncheckedDerivedToBase: 2067 case CK_DerivedToBase: { 2068 // The EmitPointerWithAlignment path does this fine; just discard 2069 // the alignment. 2070 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2071 } 2072 2073 case CK_Dynamic: { 2074 Address V = CGF.EmitPointerWithAlignment(E); 2075 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2076 return CGF.EmitDynamicCast(V, DCE); 2077 } 2078 2079 case CK_ArrayToPointerDecay: 2080 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2081 case CK_FunctionToPointerDecay: 2082 return EmitLValue(E).getPointer(); 2083 2084 case CK_NullToPointer: 2085 if (MustVisitNullValue(E)) 2086 (void) Visit(E); 2087 2088 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2089 DestTy); 2090 2091 case CK_NullToMemberPointer: { 2092 if (MustVisitNullValue(E)) 2093 (void) Visit(E); 2094 2095 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2096 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2097 } 2098 2099 case CK_ReinterpretMemberPointer: 2100 case CK_BaseToDerivedMemberPointer: 2101 case CK_DerivedToBaseMemberPointer: { 2102 Value *Src = Visit(E); 2103 2104 // Note that the AST doesn't distinguish between checked and 2105 // unchecked member pointer conversions, so we always have to 2106 // implement checked conversions here. This is inefficient when 2107 // actual control flow may be required in order to perform the 2108 // check, which it is for data member pointers (but not member 2109 // function pointers on Itanium and ARM). 2110 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2111 } 2112 2113 case CK_ARCProduceObject: 2114 return CGF.EmitARCRetainScalarExpr(E); 2115 case CK_ARCConsumeObject: 2116 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2117 case CK_ARCReclaimReturnedObject: 2118 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2119 case CK_ARCExtendBlockObject: 2120 return CGF.EmitARCExtendBlockObject(E); 2121 2122 case CK_CopyAndAutoreleaseBlockObject: 2123 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2124 2125 case CK_FloatingRealToComplex: 2126 case CK_FloatingComplexCast: 2127 case CK_IntegralRealToComplex: 2128 case CK_IntegralComplexCast: 2129 case CK_IntegralComplexToFloatingComplex: 2130 case CK_FloatingComplexToIntegralComplex: 2131 case CK_ConstructorConversion: 2132 case CK_ToUnion: 2133 llvm_unreachable("scalar cast to non-scalar value"); 2134 2135 case CK_LValueToRValue: 2136 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2137 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2138 return Visit(const_cast<Expr*>(E)); 2139 2140 case CK_IntegralToPointer: { 2141 Value *Src = Visit(const_cast<Expr*>(E)); 2142 2143 // First, convert to the correct width so that we control the kind of 2144 // extension. 2145 auto DestLLVMTy = ConvertType(DestTy); 2146 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2147 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2148 llvm::Value* IntResult = 2149 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2150 2151 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2152 2153 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2154 // Going from integer to pointer that could be dynamic requires reloading 2155 // dynamic information from invariant.group. 2156 if (DestTy.mayBeDynamicClass()) 2157 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2158 } 2159 return IntToPtr; 2160 } 2161 case CK_PointerToIntegral: { 2162 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2163 auto *PtrExpr = Visit(E); 2164 2165 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2166 const QualType SrcType = E->getType(); 2167 2168 // Casting to integer requires stripping dynamic information as it does 2169 // not carries it. 2170 if (SrcType.mayBeDynamicClass()) 2171 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2172 } 2173 2174 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2175 } 2176 case CK_ToVoid: { 2177 CGF.EmitIgnoredExpr(E); 2178 return nullptr; 2179 } 2180 case CK_VectorSplat: { 2181 llvm::Type *DstTy = ConvertType(DestTy); 2182 Value *Elt = Visit(const_cast<Expr*>(E)); 2183 // Splat the element across to all elements 2184 unsigned NumElements = DstTy->getVectorNumElements(); 2185 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2186 } 2187 2188 case CK_FixedPointCast: 2189 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2190 CE->getExprLoc()); 2191 2192 case CK_FixedPointToBoolean: 2193 assert(E->getType()->isFixedPointType() && 2194 "Expected src type to be fixed point type"); 2195 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2196 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2197 CE->getExprLoc()); 2198 2199 case CK_IntegralCast: { 2200 ScalarConversionOpts Opts; 2201 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2202 if (!ICE->isPartOfExplicitCast()) 2203 Opts = ScalarConversionOpts(CGF.SanOpts); 2204 } 2205 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2206 CE->getExprLoc(), Opts); 2207 } 2208 case CK_IntegralToFloating: 2209 case CK_FloatingToIntegral: 2210 case CK_FloatingCast: 2211 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2212 CE->getExprLoc()); 2213 case CK_BooleanToSignedIntegral: { 2214 ScalarConversionOpts Opts; 2215 Opts.TreatBooleanAsSigned = true; 2216 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2217 CE->getExprLoc(), Opts); 2218 } 2219 case CK_IntegralToBoolean: 2220 return EmitIntToBoolConversion(Visit(E)); 2221 case CK_PointerToBoolean: 2222 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2223 case CK_FloatingToBoolean: 2224 return EmitFloatToBoolConversion(Visit(E)); 2225 case CK_MemberPointerToBoolean: { 2226 llvm::Value *MemPtr = Visit(E); 2227 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2228 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2229 } 2230 2231 case CK_FloatingComplexToReal: 2232 case CK_IntegralComplexToReal: 2233 return CGF.EmitComplexExpr(E, false, true).first; 2234 2235 case CK_FloatingComplexToBoolean: 2236 case CK_IntegralComplexToBoolean: { 2237 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2238 2239 // TODO: kill this function off, inline appropriate case here 2240 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2241 CE->getExprLoc()); 2242 } 2243 2244 case CK_ZeroToOCLOpaqueType: { 2245 assert((DestTy->isEventT() || DestTy->isQueueT() || 2246 DestTy->isOCLIntelSubgroupAVCType()) && 2247 "CK_ZeroToOCLEvent cast on non-event type"); 2248 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2249 } 2250 2251 case CK_IntToOCLSampler: 2252 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2253 2254 } // end of switch 2255 2256 llvm_unreachable("unknown scalar cast"); 2257 } 2258 2259 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2260 CodeGenFunction::StmtExprEvaluation eval(CGF); 2261 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2262 !E->getType()->isVoidType()); 2263 if (!RetAlloca.isValid()) 2264 return nullptr; 2265 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2266 E->getExprLoc()); 2267 } 2268 2269 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2270 CGF.enterFullExpression(E); 2271 CodeGenFunction::RunCleanupsScope Scope(CGF); 2272 Value *V = Visit(E->getSubExpr()); 2273 // Defend against dominance problems caused by jumps out of expression 2274 // evaluation through the shared cleanup block. 2275 Scope.ForceCleanup({&V}); 2276 return V; 2277 } 2278 2279 //===----------------------------------------------------------------------===// 2280 // Unary Operators 2281 //===----------------------------------------------------------------------===// 2282 2283 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2284 llvm::Value *InVal, bool IsInc) { 2285 BinOpInfo BinOp; 2286 BinOp.LHS = InVal; 2287 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2288 BinOp.Ty = E->getType(); 2289 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2290 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2291 BinOp.E = E; 2292 return BinOp; 2293 } 2294 2295 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2296 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2297 llvm::Value *Amount = 2298 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2299 StringRef Name = IsInc ? "inc" : "dec"; 2300 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2301 case LangOptions::SOB_Defined: 2302 return Builder.CreateAdd(InVal, Amount, Name); 2303 case LangOptions::SOB_Undefined: 2304 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2305 return Builder.CreateNSWAdd(InVal, Amount, Name); 2306 LLVM_FALLTHROUGH; 2307 case LangOptions::SOB_Trapping: 2308 if (!E->canOverflow()) 2309 return Builder.CreateNSWAdd(InVal, Amount, Name); 2310 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2311 } 2312 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2313 } 2314 2315 llvm::Value * 2316 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2317 bool isInc, bool isPre) { 2318 2319 QualType type = E->getSubExpr()->getType(); 2320 llvm::PHINode *atomicPHI = nullptr; 2321 llvm::Value *value; 2322 llvm::Value *input; 2323 2324 int amount = (isInc ? 1 : -1); 2325 bool isSubtraction = !isInc; 2326 2327 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2328 type = atomicTy->getValueType(); 2329 if (isInc && type->isBooleanType()) { 2330 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2331 if (isPre) { 2332 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2333 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2334 return Builder.getTrue(); 2335 } 2336 // For atomic bool increment, we just store true and return it for 2337 // preincrement, do an atomic swap with true for postincrement 2338 return Builder.CreateAtomicRMW( 2339 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2340 llvm::AtomicOrdering::SequentiallyConsistent); 2341 } 2342 // Special case for atomic increment / decrement on integers, emit 2343 // atomicrmw instructions. We skip this if we want to be doing overflow 2344 // checking, and fall into the slow path with the atomic cmpxchg loop. 2345 if (!type->isBooleanType() && type->isIntegerType() && 2346 !(type->isUnsignedIntegerType() && 2347 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2348 CGF.getLangOpts().getSignedOverflowBehavior() != 2349 LangOptions::SOB_Trapping) { 2350 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2351 llvm::AtomicRMWInst::Sub; 2352 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2353 llvm::Instruction::Sub; 2354 llvm::Value *amt = CGF.EmitToMemory( 2355 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2356 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2357 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2358 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2359 } 2360 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2361 input = value; 2362 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2363 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2364 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2365 value = CGF.EmitToMemory(value, type); 2366 Builder.CreateBr(opBB); 2367 Builder.SetInsertPoint(opBB); 2368 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2369 atomicPHI->addIncoming(value, startBB); 2370 value = atomicPHI; 2371 } else { 2372 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2373 input = value; 2374 } 2375 2376 // Special case of integer increment that we have to check first: bool++. 2377 // Due to promotion rules, we get: 2378 // bool++ -> bool = bool + 1 2379 // -> bool = (int)bool + 1 2380 // -> bool = ((int)bool + 1 != 0) 2381 // An interesting aspect of this is that increment is always true. 2382 // Decrement does not have this property. 2383 if (isInc && type->isBooleanType()) { 2384 value = Builder.getTrue(); 2385 2386 // Most common case by far: integer increment. 2387 } else if (type->isIntegerType()) { 2388 // Note that signed integer inc/dec with width less than int can't 2389 // overflow because of promotion rules; we're just eliding a few steps here. 2390 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2391 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2392 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2393 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2394 value = 2395 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2396 } else { 2397 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2398 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2399 } 2400 2401 // Next most common: pointer increment. 2402 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2403 QualType type = ptr->getPointeeType(); 2404 2405 // VLA types don't have constant size. 2406 if (const VariableArrayType *vla 2407 = CGF.getContext().getAsVariableArrayType(type)) { 2408 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2409 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2410 if (CGF.getLangOpts().isSignedOverflowDefined()) 2411 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2412 else 2413 value = CGF.EmitCheckedInBoundsGEP( 2414 value, numElts, /*SignedIndices=*/false, isSubtraction, 2415 E->getExprLoc(), "vla.inc"); 2416 2417 // Arithmetic on function pointers (!) is just +-1. 2418 } else if (type->isFunctionType()) { 2419 llvm::Value *amt = Builder.getInt32(amount); 2420 2421 value = CGF.EmitCastToVoidPtr(value); 2422 if (CGF.getLangOpts().isSignedOverflowDefined()) 2423 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2424 else 2425 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2426 isSubtraction, E->getExprLoc(), 2427 "incdec.funcptr"); 2428 value = Builder.CreateBitCast(value, input->getType()); 2429 2430 // For everything else, we can just do a simple increment. 2431 } else { 2432 llvm::Value *amt = Builder.getInt32(amount); 2433 if (CGF.getLangOpts().isSignedOverflowDefined()) 2434 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2435 else 2436 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2437 isSubtraction, E->getExprLoc(), 2438 "incdec.ptr"); 2439 } 2440 2441 // Vector increment/decrement. 2442 } else if (type->isVectorType()) { 2443 if (type->hasIntegerRepresentation()) { 2444 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2445 2446 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2447 } else { 2448 value = Builder.CreateFAdd( 2449 value, 2450 llvm::ConstantFP::get(value->getType(), amount), 2451 isInc ? "inc" : "dec"); 2452 } 2453 2454 // Floating point. 2455 } else if (type->isRealFloatingType()) { 2456 // Add the inc/dec to the real part. 2457 llvm::Value *amt; 2458 2459 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2460 // Another special case: half FP increment should be done via float 2461 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2462 value = Builder.CreateCall( 2463 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2464 CGF.CGM.FloatTy), 2465 input, "incdec.conv"); 2466 } else { 2467 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2468 } 2469 } 2470 2471 if (value->getType()->isFloatTy()) 2472 amt = llvm::ConstantFP::get(VMContext, 2473 llvm::APFloat(static_cast<float>(amount))); 2474 else if (value->getType()->isDoubleTy()) 2475 amt = llvm::ConstantFP::get(VMContext, 2476 llvm::APFloat(static_cast<double>(amount))); 2477 else { 2478 // Remaining types are Half, LongDouble or __float128. Convert from float. 2479 llvm::APFloat F(static_cast<float>(amount)); 2480 bool ignored; 2481 const llvm::fltSemantics *FS; 2482 // Don't use getFloatTypeSemantics because Half isn't 2483 // necessarily represented using the "half" LLVM type. 2484 if (value->getType()->isFP128Ty()) 2485 FS = &CGF.getTarget().getFloat128Format(); 2486 else if (value->getType()->isHalfTy()) 2487 FS = &CGF.getTarget().getHalfFormat(); 2488 else 2489 FS = &CGF.getTarget().getLongDoubleFormat(); 2490 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2491 amt = llvm::ConstantFP::get(VMContext, F); 2492 } 2493 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2494 2495 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2496 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2497 value = Builder.CreateCall( 2498 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2499 CGF.CGM.FloatTy), 2500 value, "incdec.conv"); 2501 } else { 2502 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2503 } 2504 } 2505 2506 // Objective-C pointer types. 2507 } else { 2508 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2509 value = CGF.EmitCastToVoidPtr(value); 2510 2511 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2512 if (!isInc) size = -size; 2513 llvm::Value *sizeValue = 2514 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2515 2516 if (CGF.getLangOpts().isSignedOverflowDefined()) 2517 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2518 else 2519 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2520 /*SignedIndices=*/false, isSubtraction, 2521 E->getExprLoc(), "incdec.objptr"); 2522 value = Builder.CreateBitCast(value, input->getType()); 2523 } 2524 2525 if (atomicPHI) { 2526 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2527 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2528 auto Pair = CGF.EmitAtomicCompareExchange( 2529 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2530 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2531 llvm::Value *success = Pair.second; 2532 atomicPHI->addIncoming(old, opBB); 2533 Builder.CreateCondBr(success, contBB, opBB); 2534 Builder.SetInsertPoint(contBB); 2535 return isPre ? value : input; 2536 } 2537 2538 // Store the updated result through the lvalue. 2539 if (LV.isBitField()) 2540 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2541 else 2542 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2543 2544 // If this is a postinc, return the value read from memory, otherwise use the 2545 // updated value. 2546 return isPre ? value : input; 2547 } 2548 2549 2550 2551 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2552 TestAndClearIgnoreResultAssign(); 2553 // Emit unary minus with EmitSub so we handle overflow cases etc. 2554 BinOpInfo BinOp; 2555 BinOp.RHS = Visit(E->getSubExpr()); 2556 2557 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2558 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2559 else 2560 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2561 BinOp.Ty = E->getType(); 2562 BinOp.Opcode = BO_Sub; 2563 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2564 BinOp.E = E; 2565 return EmitSub(BinOp); 2566 } 2567 2568 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2569 TestAndClearIgnoreResultAssign(); 2570 Value *Op = Visit(E->getSubExpr()); 2571 return Builder.CreateNot(Op, "neg"); 2572 } 2573 2574 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2575 // Perform vector logical not on comparison with zero vector. 2576 if (E->getType()->isExtVectorType()) { 2577 Value *Oper = Visit(E->getSubExpr()); 2578 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2579 Value *Result; 2580 if (Oper->getType()->isFPOrFPVectorTy()) 2581 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2582 else 2583 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2584 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2585 } 2586 2587 // Compare operand to zero. 2588 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2589 2590 // Invert value. 2591 // TODO: Could dynamically modify easy computations here. For example, if 2592 // the operand is an icmp ne, turn into icmp eq. 2593 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2594 2595 // ZExt result to the expr type. 2596 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2597 } 2598 2599 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2600 // Try folding the offsetof to a constant. 2601 Expr::EvalResult EVResult; 2602 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2603 llvm::APSInt Value = EVResult.Val.getInt(); 2604 return Builder.getInt(Value); 2605 } 2606 2607 // Loop over the components of the offsetof to compute the value. 2608 unsigned n = E->getNumComponents(); 2609 llvm::Type* ResultType = ConvertType(E->getType()); 2610 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2611 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2612 for (unsigned i = 0; i != n; ++i) { 2613 OffsetOfNode ON = E->getComponent(i); 2614 llvm::Value *Offset = nullptr; 2615 switch (ON.getKind()) { 2616 case OffsetOfNode::Array: { 2617 // Compute the index 2618 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2619 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2620 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2621 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2622 2623 // Save the element type 2624 CurrentType = 2625 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2626 2627 // Compute the element size 2628 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2629 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2630 2631 // Multiply out to compute the result 2632 Offset = Builder.CreateMul(Idx, ElemSize); 2633 break; 2634 } 2635 2636 case OffsetOfNode::Field: { 2637 FieldDecl *MemberDecl = ON.getField(); 2638 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2639 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2640 2641 // Compute the index of the field in its parent. 2642 unsigned i = 0; 2643 // FIXME: It would be nice if we didn't have to loop here! 2644 for (RecordDecl::field_iterator Field = RD->field_begin(), 2645 FieldEnd = RD->field_end(); 2646 Field != FieldEnd; ++Field, ++i) { 2647 if (*Field == MemberDecl) 2648 break; 2649 } 2650 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2651 2652 // Compute the offset to the field 2653 int64_t OffsetInt = RL.getFieldOffset(i) / 2654 CGF.getContext().getCharWidth(); 2655 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2656 2657 // Save the element type. 2658 CurrentType = MemberDecl->getType(); 2659 break; 2660 } 2661 2662 case OffsetOfNode::Identifier: 2663 llvm_unreachable("dependent __builtin_offsetof"); 2664 2665 case OffsetOfNode::Base: { 2666 if (ON.getBase()->isVirtual()) { 2667 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2668 continue; 2669 } 2670 2671 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2672 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2673 2674 // Save the element type. 2675 CurrentType = ON.getBase()->getType(); 2676 2677 // Compute the offset to the base. 2678 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2679 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2680 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2681 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2682 break; 2683 } 2684 } 2685 Result = Builder.CreateAdd(Result, Offset); 2686 } 2687 return Result; 2688 } 2689 2690 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2691 /// argument of the sizeof expression as an integer. 2692 Value * 2693 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2694 const UnaryExprOrTypeTraitExpr *E) { 2695 QualType TypeToSize = E->getTypeOfArgument(); 2696 if (E->getKind() == UETT_SizeOf) { 2697 if (const VariableArrayType *VAT = 2698 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2699 if (E->isArgumentType()) { 2700 // sizeof(type) - make sure to emit the VLA size. 2701 CGF.EmitVariablyModifiedType(TypeToSize); 2702 } else { 2703 // C99 6.5.3.4p2: If the argument is an expression of type 2704 // VLA, it is evaluated. 2705 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2706 } 2707 2708 auto VlaSize = CGF.getVLASize(VAT); 2709 llvm::Value *size = VlaSize.NumElts; 2710 2711 // Scale the number of non-VLA elements by the non-VLA element size. 2712 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2713 if (!eltSize.isOne()) 2714 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2715 2716 return size; 2717 } 2718 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2719 auto Alignment = 2720 CGF.getContext() 2721 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2722 E->getTypeOfArgument()->getPointeeType())) 2723 .getQuantity(); 2724 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2725 } 2726 2727 // If this isn't sizeof(vla), the result must be constant; use the constant 2728 // folding logic so we don't have to duplicate it here. 2729 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2730 } 2731 2732 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2733 Expr *Op = E->getSubExpr(); 2734 if (Op->getType()->isAnyComplexType()) { 2735 // If it's an l-value, load through the appropriate subobject l-value. 2736 // Note that we have to ask E because Op might be an l-value that 2737 // this won't work for, e.g. an Obj-C property. 2738 if (E->isGLValue()) 2739 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2740 E->getExprLoc()).getScalarVal(); 2741 2742 // Otherwise, calculate and project. 2743 return CGF.EmitComplexExpr(Op, false, true).first; 2744 } 2745 2746 return Visit(Op); 2747 } 2748 2749 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2750 Expr *Op = E->getSubExpr(); 2751 if (Op->getType()->isAnyComplexType()) { 2752 // If it's an l-value, load through the appropriate subobject l-value. 2753 // Note that we have to ask E because Op might be an l-value that 2754 // this won't work for, e.g. an Obj-C property. 2755 if (Op->isGLValue()) 2756 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2757 E->getExprLoc()).getScalarVal(); 2758 2759 // Otherwise, calculate and project. 2760 return CGF.EmitComplexExpr(Op, true, false).second; 2761 } 2762 2763 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2764 // effects are evaluated, but not the actual value. 2765 if (Op->isGLValue()) 2766 CGF.EmitLValue(Op); 2767 else 2768 CGF.EmitScalarExpr(Op, true); 2769 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2770 } 2771 2772 //===----------------------------------------------------------------------===// 2773 // Binary Operators 2774 //===----------------------------------------------------------------------===// 2775 2776 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2777 TestAndClearIgnoreResultAssign(); 2778 BinOpInfo Result; 2779 Result.LHS = Visit(E->getLHS()); 2780 Result.RHS = Visit(E->getRHS()); 2781 Result.Ty = E->getType(); 2782 Result.Opcode = E->getOpcode(); 2783 Result.FPFeatures = E->getFPFeatures(); 2784 Result.E = E; 2785 return Result; 2786 } 2787 2788 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2789 const CompoundAssignOperator *E, 2790 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2791 Value *&Result) { 2792 QualType LHSTy = E->getLHS()->getType(); 2793 BinOpInfo OpInfo; 2794 2795 if (E->getComputationResultType()->isAnyComplexType()) 2796 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2797 2798 // Emit the RHS first. __block variables need to have the rhs evaluated 2799 // first, plus this should improve codegen a little. 2800 OpInfo.RHS = Visit(E->getRHS()); 2801 OpInfo.Ty = E->getComputationResultType(); 2802 OpInfo.Opcode = E->getOpcode(); 2803 OpInfo.FPFeatures = E->getFPFeatures(); 2804 OpInfo.E = E; 2805 // Load/convert the LHS. 2806 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2807 2808 llvm::PHINode *atomicPHI = nullptr; 2809 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2810 QualType type = atomicTy->getValueType(); 2811 if (!type->isBooleanType() && type->isIntegerType() && 2812 !(type->isUnsignedIntegerType() && 2813 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2814 CGF.getLangOpts().getSignedOverflowBehavior() != 2815 LangOptions::SOB_Trapping) { 2816 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2817 switch (OpInfo.Opcode) { 2818 // We don't have atomicrmw operands for *, %, /, <<, >> 2819 case BO_MulAssign: case BO_DivAssign: 2820 case BO_RemAssign: 2821 case BO_ShlAssign: 2822 case BO_ShrAssign: 2823 break; 2824 case BO_AddAssign: 2825 aop = llvm::AtomicRMWInst::Add; 2826 break; 2827 case BO_SubAssign: 2828 aop = llvm::AtomicRMWInst::Sub; 2829 break; 2830 case BO_AndAssign: 2831 aop = llvm::AtomicRMWInst::And; 2832 break; 2833 case BO_XorAssign: 2834 aop = llvm::AtomicRMWInst::Xor; 2835 break; 2836 case BO_OrAssign: 2837 aop = llvm::AtomicRMWInst::Or; 2838 break; 2839 default: 2840 llvm_unreachable("Invalid compound assignment type"); 2841 } 2842 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2843 llvm::Value *amt = CGF.EmitToMemory( 2844 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2845 E->getExprLoc()), 2846 LHSTy); 2847 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2848 llvm::AtomicOrdering::SequentiallyConsistent); 2849 return LHSLV; 2850 } 2851 } 2852 // FIXME: For floating point types, we should be saving and restoring the 2853 // floating point environment in the loop. 2854 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2855 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2856 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2857 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2858 Builder.CreateBr(opBB); 2859 Builder.SetInsertPoint(opBB); 2860 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2861 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2862 OpInfo.LHS = atomicPHI; 2863 } 2864 else 2865 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2866 2867 SourceLocation Loc = E->getExprLoc(); 2868 OpInfo.LHS = 2869 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2870 2871 // Expand the binary operator. 2872 Result = (this->*Func)(OpInfo); 2873 2874 // Convert the result back to the LHS type, 2875 // potentially with Implicit Conversion sanitizer check. 2876 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2877 Loc, ScalarConversionOpts(CGF.SanOpts)); 2878 2879 if (atomicPHI) { 2880 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2881 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2882 auto Pair = CGF.EmitAtomicCompareExchange( 2883 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2884 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2885 llvm::Value *success = Pair.second; 2886 atomicPHI->addIncoming(old, opBB); 2887 Builder.CreateCondBr(success, contBB, opBB); 2888 Builder.SetInsertPoint(contBB); 2889 return LHSLV; 2890 } 2891 2892 // Store the result value into the LHS lvalue. Bit-fields are handled 2893 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2894 // 'An assignment expression has the value of the left operand after the 2895 // assignment...'. 2896 if (LHSLV.isBitField()) 2897 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2898 else 2899 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2900 2901 return LHSLV; 2902 } 2903 2904 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2905 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2906 bool Ignore = TestAndClearIgnoreResultAssign(); 2907 Value *RHS; 2908 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2909 2910 // If the result is clearly ignored, return now. 2911 if (Ignore) 2912 return nullptr; 2913 2914 // The result of an assignment in C is the assigned r-value. 2915 if (!CGF.getLangOpts().CPlusPlus) 2916 return RHS; 2917 2918 // If the lvalue is non-volatile, return the computed value of the assignment. 2919 if (!LHS.isVolatileQualified()) 2920 return RHS; 2921 2922 // Otherwise, reload the value. 2923 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2924 } 2925 2926 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2927 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2928 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2929 2930 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2931 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2932 SanitizerKind::IntegerDivideByZero)); 2933 } 2934 2935 const auto *BO = cast<BinaryOperator>(Ops.E); 2936 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2937 Ops.Ty->hasSignedIntegerRepresentation() && 2938 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2939 Ops.mayHaveIntegerOverflow()) { 2940 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2941 2942 llvm::Value *IntMin = 2943 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2944 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2945 2946 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2947 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2948 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2949 Checks.push_back( 2950 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2951 } 2952 2953 if (Checks.size() > 0) 2954 EmitBinOpCheck(Checks, Ops); 2955 } 2956 2957 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2958 { 2959 CodeGenFunction::SanitizerScope SanScope(&CGF); 2960 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2961 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2962 Ops.Ty->isIntegerType() && 2963 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2964 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2965 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2966 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2967 Ops.Ty->isRealFloatingType() && 2968 Ops.mayHaveFloatDivisionByZero()) { 2969 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2970 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2971 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2972 Ops); 2973 } 2974 } 2975 2976 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2977 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2978 if (CGF.getLangOpts().OpenCL && 2979 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2980 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2981 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2982 // build option allows an application to specify that single precision 2983 // floating-point divide (x/y and 1/x) and sqrt used in the program 2984 // source are correctly rounded. 2985 llvm::Type *ValTy = Val->getType(); 2986 if (ValTy->isFloatTy() || 2987 (isa<llvm::VectorType>(ValTy) && 2988 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2989 CGF.SetFPAccuracy(Val, 2.5); 2990 } 2991 return Val; 2992 } 2993 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2994 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2995 else 2996 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2997 } 2998 2999 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3000 // Rem in C can't be a floating point type: C99 6.5.5p2. 3001 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3002 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3003 Ops.Ty->isIntegerType() && 3004 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3005 CodeGenFunction::SanitizerScope SanScope(&CGF); 3006 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3007 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3008 } 3009 3010 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3011 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3012 else 3013 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3014 } 3015 3016 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3017 unsigned IID; 3018 unsigned OpID = 0; 3019 3020 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3021 switch (Ops.Opcode) { 3022 case BO_Add: 3023 case BO_AddAssign: 3024 OpID = 1; 3025 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3026 llvm::Intrinsic::uadd_with_overflow; 3027 break; 3028 case BO_Sub: 3029 case BO_SubAssign: 3030 OpID = 2; 3031 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3032 llvm::Intrinsic::usub_with_overflow; 3033 break; 3034 case BO_Mul: 3035 case BO_MulAssign: 3036 OpID = 3; 3037 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3038 llvm::Intrinsic::umul_with_overflow; 3039 break; 3040 default: 3041 llvm_unreachable("Unsupported operation for overflow detection"); 3042 } 3043 OpID <<= 1; 3044 if (isSigned) 3045 OpID |= 1; 3046 3047 CodeGenFunction::SanitizerScope SanScope(&CGF); 3048 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3049 3050 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3051 3052 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3053 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3054 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3055 3056 // Handle overflow with llvm.trap if no custom handler has been specified. 3057 const std::string *handlerName = 3058 &CGF.getLangOpts().OverflowHandler; 3059 if (handlerName->empty()) { 3060 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3061 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3062 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3063 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3064 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3065 : SanitizerKind::UnsignedIntegerOverflow; 3066 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3067 } else 3068 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3069 return result; 3070 } 3071 3072 // Branch in case of overflow. 3073 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3074 llvm::BasicBlock *continueBB = 3075 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3076 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3077 3078 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3079 3080 // If an overflow handler is set, then we want to call it and then use its 3081 // result, if it returns. 3082 Builder.SetInsertPoint(overflowBB); 3083 3084 // Get the overflow handler. 3085 llvm::Type *Int8Ty = CGF.Int8Ty; 3086 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3087 llvm::FunctionType *handlerTy = 3088 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3089 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3090 3091 // Sign extend the args to 64-bit, so that we can use the same handler for 3092 // all types of overflow. 3093 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3094 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3095 3096 // Call the handler with the two arguments, the operation, and the size of 3097 // the result. 3098 llvm::Value *handlerArgs[] = { 3099 lhs, 3100 rhs, 3101 Builder.getInt8(OpID), 3102 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3103 }; 3104 llvm::Value *handlerResult = 3105 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3106 3107 // Truncate the result back to the desired size. 3108 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3109 Builder.CreateBr(continueBB); 3110 3111 Builder.SetInsertPoint(continueBB); 3112 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3113 phi->addIncoming(result, initialBB); 3114 phi->addIncoming(handlerResult, overflowBB); 3115 3116 return phi; 3117 } 3118 3119 /// Emit pointer + index arithmetic. 3120 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3121 const BinOpInfo &op, 3122 bool isSubtraction) { 3123 // Must have binary (not unary) expr here. Unary pointer 3124 // increment/decrement doesn't use this path. 3125 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3126 3127 Value *pointer = op.LHS; 3128 Expr *pointerOperand = expr->getLHS(); 3129 Value *index = op.RHS; 3130 Expr *indexOperand = expr->getRHS(); 3131 3132 // In a subtraction, the LHS is always the pointer. 3133 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3134 std::swap(pointer, index); 3135 std::swap(pointerOperand, indexOperand); 3136 } 3137 3138 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3139 3140 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3141 auto &DL = CGF.CGM.getDataLayout(); 3142 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3143 3144 // Some versions of glibc and gcc use idioms (particularly in their malloc 3145 // routines) that add a pointer-sized integer (known to be a pointer value) 3146 // to a null pointer in order to cast the value back to an integer or as 3147 // part of a pointer alignment algorithm. This is undefined behavior, but 3148 // we'd like to be able to compile programs that use it. 3149 // 3150 // Normally, we'd generate a GEP with a null-pointer base here in response 3151 // to that code, but it's also UB to dereference a pointer created that 3152 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3153 // generate a direct cast of the integer value to a pointer. 3154 // 3155 // The idiom (p = nullptr + N) is not met if any of the following are true: 3156 // 3157 // The operation is subtraction. 3158 // The index is not pointer-sized. 3159 // The pointer type is not byte-sized. 3160 // 3161 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3162 op.Opcode, 3163 expr->getLHS(), 3164 expr->getRHS())) 3165 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3166 3167 if (width != DL.getTypeSizeInBits(PtrTy)) { 3168 // Zero-extend or sign-extend the pointer value according to 3169 // whether the index is signed or not. 3170 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3171 "idx.ext"); 3172 } 3173 3174 // If this is subtraction, negate the index. 3175 if (isSubtraction) 3176 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3177 3178 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3179 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3180 /*Accessed*/ false); 3181 3182 const PointerType *pointerType 3183 = pointerOperand->getType()->getAs<PointerType>(); 3184 if (!pointerType) { 3185 QualType objectType = pointerOperand->getType() 3186 ->castAs<ObjCObjectPointerType>() 3187 ->getPointeeType(); 3188 llvm::Value *objectSize 3189 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3190 3191 index = CGF.Builder.CreateMul(index, objectSize); 3192 3193 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3194 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3195 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3196 } 3197 3198 QualType elementType = pointerType->getPointeeType(); 3199 if (const VariableArrayType *vla 3200 = CGF.getContext().getAsVariableArrayType(elementType)) { 3201 // The element count here is the total number of non-VLA elements. 3202 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3203 3204 // Effectively, the multiply by the VLA size is part of the GEP. 3205 // GEP indexes are signed, and scaling an index isn't permitted to 3206 // signed-overflow, so we use the same semantics for our explicit 3207 // multiply. We suppress this if overflow is not undefined behavior. 3208 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3209 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3210 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3211 } else { 3212 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3213 pointer = 3214 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3215 op.E->getExprLoc(), "add.ptr"); 3216 } 3217 return pointer; 3218 } 3219 3220 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3221 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3222 // future proof. 3223 if (elementType->isVoidType() || elementType->isFunctionType()) { 3224 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3225 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3226 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3227 } 3228 3229 if (CGF.getLangOpts().isSignedOverflowDefined()) 3230 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3231 3232 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3233 op.E->getExprLoc(), "add.ptr"); 3234 } 3235 3236 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3237 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3238 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3239 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3240 // efficient operations. 3241 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3242 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3243 bool negMul, bool negAdd) { 3244 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3245 3246 Value *MulOp0 = MulOp->getOperand(0); 3247 Value *MulOp1 = MulOp->getOperand(1); 3248 if (negMul) { 3249 MulOp0 = 3250 Builder.CreateFSub( 3251 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3252 "neg"); 3253 } else if (negAdd) { 3254 Addend = 3255 Builder.CreateFSub( 3256 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3257 "neg"); 3258 } 3259 3260 Value *FMulAdd = Builder.CreateCall( 3261 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3262 {MulOp0, MulOp1, Addend}); 3263 MulOp->eraseFromParent(); 3264 3265 return FMulAdd; 3266 } 3267 3268 // Check whether it would be legal to emit an fmuladd intrinsic call to 3269 // represent op and if so, build the fmuladd. 3270 // 3271 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3272 // Does NOT check the type of the operation - it's assumed that this function 3273 // will be called from contexts where it's known that the type is contractable. 3274 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3275 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3276 bool isSub=false) { 3277 3278 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3279 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3280 "Only fadd/fsub can be the root of an fmuladd."); 3281 3282 // Check whether this op is marked as fusable. 3283 if (!op.FPFeatures.allowFPContractWithinStatement()) 3284 return nullptr; 3285 3286 // We have a potentially fusable op. Look for a mul on one of the operands. 3287 // Also, make sure that the mul result isn't used directly. In that case, 3288 // there's no point creating a muladd operation. 3289 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3290 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3291 LHSBinOp->use_empty()) 3292 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3293 } 3294 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3295 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3296 RHSBinOp->use_empty()) 3297 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3298 } 3299 3300 return nullptr; 3301 } 3302 3303 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3304 if (op.LHS->getType()->isPointerTy() || 3305 op.RHS->getType()->isPointerTy()) 3306 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3307 3308 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3309 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3310 case LangOptions::SOB_Defined: 3311 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3312 case LangOptions::SOB_Undefined: 3313 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3314 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3315 LLVM_FALLTHROUGH; 3316 case LangOptions::SOB_Trapping: 3317 if (CanElideOverflowCheck(CGF.getContext(), op)) 3318 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3319 return EmitOverflowCheckedBinOp(op); 3320 } 3321 } 3322 3323 if (op.Ty->isUnsignedIntegerType() && 3324 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3325 !CanElideOverflowCheck(CGF.getContext(), op)) 3326 return EmitOverflowCheckedBinOp(op); 3327 3328 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3329 // Try to form an fmuladd. 3330 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3331 return FMulAdd; 3332 3333 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3334 return propagateFMFlags(V, op); 3335 } 3336 3337 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3338 } 3339 3340 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3341 // The LHS is always a pointer if either side is. 3342 if (!op.LHS->getType()->isPointerTy()) { 3343 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3344 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3345 case LangOptions::SOB_Defined: 3346 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3347 case LangOptions::SOB_Undefined: 3348 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3349 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3350 LLVM_FALLTHROUGH; 3351 case LangOptions::SOB_Trapping: 3352 if (CanElideOverflowCheck(CGF.getContext(), op)) 3353 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3354 return EmitOverflowCheckedBinOp(op); 3355 } 3356 } 3357 3358 if (op.Ty->isUnsignedIntegerType() && 3359 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3360 !CanElideOverflowCheck(CGF.getContext(), op)) 3361 return EmitOverflowCheckedBinOp(op); 3362 3363 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3364 // Try to form an fmuladd. 3365 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3366 return FMulAdd; 3367 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3368 return propagateFMFlags(V, op); 3369 } 3370 3371 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3372 } 3373 3374 // If the RHS is not a pointer, then we have normal pointer 3375 // arithmetic. 3376 if (!op.RHS->getType()->isPointerTy()) 3377 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3378 3379 // Otherwise, this is a pointer subtraction. 3380 3381 // Do the raw subtraction part. 3382 llvm::Value *LHS 3383 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3384 llvm::Value *RHS 3385 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3386 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3387 3388 // Okay, figure out the element size. 3389 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3390 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3391 3392 llvm::Value *divisor = nullptr; 3393 3394 // For a variable-length array, this is going to be non-constant. 3395 if (const VariableArrayType *vla 3396 = CGF.getContext().getAsVariableArrayType(elementType)) { 3397 auto VlaSize = CGF.getVLASize(vla); 3398 elementType = VlaSize.Type; 3399 divisor = VlaSize.NumElts; 3400 3401 // Scale the number of non-VLA elements by the non-VLA element size. 3402 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3403 if (!eltSize.isOne()) 3404 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3405 3406 // For everything elese, we can just compute it, safe in the 3407 // assumption that Sema won't let anything through that we can't 3408 // safely compute the size of. 3409 } else { 3410 CharUnits elementSize; 3411 // Handle GCC extension for pointer arithmetic on void* and 3412 // function pointer types. 3413 if (elementType->isVoidType() || elementType->isFunctionType()) 3414 elementSize = CharUnits::One(); 3415 else 3416 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3417 3418 // Don't even emit the divide for element size of 1. 3419 if (elementSize.isOne()) 3420 return diffInChars; 3421 3422 divisor = CGF.CGM.getSize(elementSize); 3423 } 3424 3425 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3426 // pointer difference in C is only defined in the case where both operands 3427 // are pointing to elements of an array. 3428 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3429 } 3430 3431 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3432 llvm::IntegerType *Ty; 3433 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3434 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3435 else 3436 Ty = cast<llvm::IntegerType>(LHS->getType()); 3437 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3438 } 3439 3440 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3441 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3442 // RHS to the same size as the LHS. 3443 Value *RHS = Ops.RHS; 3444 if (Ops.LHS->getType() != RHS->getType()) 3445 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3446 3447 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3448 Ops.Ty->hasSignedIntegerRepresentation() && 3449 !CGF.getLangOpts().isSignedOverflowDefined(); 3450 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3451 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3452 if (CGF.getLangOpts().OpenCL) 3453 RHS = 3454 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3455 else if ((SanitizeBase || SanitizeExponent) && 3456 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3457 CodeGenFunction::SanitizerScope SanScope(&CGF); 3458 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3459 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3460 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3461 3462 if (SanitizeExponent) { 3463 Checks.push_back( 3464 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3465 } 3466 3467 if (SanitizeBase) { 3468 // Check whether we are shifting any non-zero bits off the top of the 3469 // integer. We only emit this check if exponent is valid - otherwise 3470 // instructions below will have undefined behavior themselves. 3471 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3472 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3473 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3474 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3475 llvm::Value *PromotedWidthMinusOne = 3476 (RHS == Ops.RHS) ? WidthMinusOne 3477 : GetWidthMinusOneValue(Ops.LHS, RHS); 3478 CGF.EmitBlock(CheckShiftBase); 3479 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3480 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3481 /*NUW*/ true, /*NSW*/ true), 3482 "shl.check"); 3483 if (CGF.getLangOpts().CPlusPlus) { 3484 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3485 // Under C++11's rules, shifting a 1 bit into the sign bit is 3486 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3487 // define signed left shifts, so we use the C99 and C++11 rules there). 3488 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3489 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3490 } 3491 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3492 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3493 CGF.EmitBlock(Cont); 3494 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3495 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3496 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3497 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3498 } 3499 3500 assert(!Checks.empty()); 3501 EmitBinOpCheck(Checks, Ops); 3502 } 3503 3504 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3505 } 3506 3507 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3508 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3509 // RHS to the same size as the LHS. 3510 Value *RHS = Ops.RHS; 3511 if (Ops.LHS->getType() != RHS->getType()) 3512 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3513 3514 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3515 if (CGF.getLangOpts().OpenCL) 3516 RHS = 3517 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3518 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3519 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3520 CodeGenFunction::SanitizerScope SanScope(&CGF); 3521 llvm::Value *Valid = 3522 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3523 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3524 } 3525 3526 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3527 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3528 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3529 } 3530 3531 enum IntrinsicType { VCMPEQ, VCMPGT }; 3532 // return corresponding comparison intrinsic for given vector type 3533 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3534 BuiltinType::Kind ElemKind) { 3535 switch (ElemKind) { 3536 default: llvm_unreachable("unexpected element type"); 3537 case BuiltinType::Char_U: 3538 case BuiltinType::UChar: 3539 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3540 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3541 case BuiltinType::Char_S: 3542 case BuiltinType::SChar: 3543 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3544 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3545 case BuiltinType::UShort: 3546 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3547 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3548 case BuiltinType::Short: 3549 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3550 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3551 case BuiltinType::UInt: 3552 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3553 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3554 case BuiltinType::Int: 3555 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3556 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3557 case BuiltinType::ULong: 3558 case BuiltinType::ULongLong: 3559 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3560 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3561 case BuiltinType::Long: 3562 case BuiltinType::LongLong: 3563 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3564 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3565 case BuiltinType::Float: 3566 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3567 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3568 case BuiltinType::Double: 3569 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3570 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3571 } 3572 } 3573 3574 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3575 llvm::CmpInst::Predicate UICmpOpc, 3576 llvm::CmpInst::Predicate SICmpOpc, 3577 llvm::CmpInst::Predicate FCmpOpc) { 3578 TestAndClearIgnoreResultAssign(); 3579 Value *Result; 3580 QualType LHSTy = E->getLHS()->getType(); 3581 QualType RHSTy = E->getRHS()->getType(); 3582 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3583 assert(E->getOpcode() == BO_EQ || 3584 E->getOpcode() == BO_NE); 3585 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3586 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3587 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3588 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3589 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3590 Value *LHS = Visit(E->getLHS()); 3591 Value *RHS = Visit(E->getRHS()); 3592 3593 // If AltiVec, the comparison results in a numeric type, so we use 3594 // intrinsics comparing vectors and giving 0 or 1 as a result 3595 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3596 // constants for mapping CR6 register bits to predicate result 3597 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3598 3599 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3600 3601 // in several cases vector arguments order will be reversed 3602 Value *FirstVecArg = LHS, 3603 *SecondVecArg = RHS; 3604 3605 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3606 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3607 BuiltinType::Kind ElementKind = BTy->getKind(); 3608 3609 switch(E->getOpcode()) { 3610 default: llvm_unreachable("is not a comparison operation"); 3611 case BO_EQ: 3612 CR6 = CR6_LT; 3613 ID = GetIntrinsic(VCMPEQ, ElementKind); 3614 break; 3615 case BO_NE: 3616 CR6 = CR6_EQ; 3617 ID = GetIntrinsic(VCMPEQ, ElementKind); 3618 break; 3619 case BO_LT: 3620 CR6 = CR6_LT; 3621 ID = GetIntrinsic(VCMPGT, ElementKind); 3622 std::swap(FirstVecArg, SecondVecArg); 3623 break; 3624 case BO_GT: 3625 CR6 = CR6_LT; 3626 ID = GetIntrinsic(VCMPGT, ElementKind); 3627 break; 3628 case BO_LE: 3629 if (ElementKind == BuiltinType::Float) { 3630 CR6 = CR6_LT; 3631 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3632 std::swap(FirstVecArg, SecondVecArg); 3633 } 3634 else { 3635 CR6 = CR6_EQ; 3636 ID = GetIntrinsic(VCMPGT, ElementKind); 3637 } 3638 break; 3639 case BO_GE: 3640 if (ElementKind == BuiltinType::Float) { 3641 CR6 = CR6_LT; 3642 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3643 } 3644 else { 3645 CR6 = CR6_EQ; 3646 ID = GetIntrinsic(VCMPGT, ElementKind); 3647 std::swap(FirstVecArg, SecondVecArg); 3648 } 3649 break; 3650 } 3651 3652 Value *CR6Param = Builder.getInt32(CR6); 3653 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3654 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3655 3656 // The result type of intrinsic may not be same as E->getType(). 3657 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3658 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3659 // do nothing, if ResultTy is not i1 at the same time, it will cause 3660 // crash later. 3661 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3662 if (ResultTy->getBitWidth() > 1 && 3663 E->getType() == CGF.getContext().BoolTy) 3664 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3665 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3666 E->getExprLoc()); 3667 } 3668 3669 if (LHS->getType()->isFPOrFPVectorTy()) { 3670 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3671 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3672 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3673 } else { 3674 // Unsigned integers and pointers. 3675 3676 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3677 !isa<llvm::ConstantPointerNull>(LHS) && 3678 !isa<llvm::ConstantPointerNull>(RHS)) { 3679 3680 // Dynamic information is required to be stripped for comparisons, 3681 // because it could leak the dynamic information. Based on comparisons 3682 // of pointers to dynamic objects, the optimizer can replace one pointer 3683 // with another, which might be incorrect in presence of invariant 3684 // groups. Comparison with null is safe because null does not carry any 3685 // dynamic information. 3686 if (LHSTy.mayBeDynamicClass()) 3687 LHS = Builder.CreateStripInvariantGroup(LHS); 3688 if (RHSTy.mayBeDynamicClass()) 3689 RHS = Builder.CreateStripInvariantGroup(RHS); 3690 } 3691 3692 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3693 } 3694 3695 // If this is a vector comparison, sign extend the result to the appropriate 3696 // vector integer type and return it (don't convert to bool). 3697 if (LHSTy->isVectorType()) 3698 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3699 3700 } else { 3701 // Complex Comparison: can only be an equality comparison. 3702 CodeGenFunction::ComplexPairTy LHS, RHS; 3703 QualType CETy; 3704 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3705 LHS = CGF.EmitComplexExpr(E->getLHS()); 3706 CETy = CTy->getElementType(); 3707 } else { 3708 LHS.first = Visit(E->getLHS()); 3709 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3710 CETy = LHSTy; 3711 } 3712 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3713 RHS = CGF.EmitComplexExpr(E->getRHS()); 3714 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3715 CTy->getElementType()) && 3716 "The element types must always match."); 3717 (void)CTy; 3718 } else { 3719 RHS.first = Visit(E->getRHS()); 3720 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3721 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3722 "The element types must always match."); 3723 } 3724 3725 Value *ResultR, *ResultI; 3726 if (CETy->isRealFloatingType()) { 3727 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3728 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3729 } else { 3730 // Complex comparisons can only be equality comparisons. As such, signed 3731 // and unsigned opcodes are the same. 3732 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3733 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3734 } 3735 3736 if (E->getOpcode() == BO_EQ) { 3737 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3738 } else { 3739 assert(E->getOpcode() == BO_NE && 3740 "Complex comparison other than == or != ?"); 3741 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3742 } 3743 } 3744 3745 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3746 E->getExprLoc()); 3747 } 3748 3749 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3750 bool Ignore = TestAndClearIgnoreResultAssign(); 3751 3752 Value *RHS; 3753 LValue LHS; 3754 3755 switch (E->getLHS()->getType().getObjCLifetime()) { 3756 case Qualifiers::OCL_Strong: 3757 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3758 break; 3759 3760 case Qualifiers::OCL_Autoreleasing: 3761 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3762 break; 3763 3764 case Qualifiers::OCL_ExplicitNone: 3765 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3766 break; 3767 3768 case Qualifiers::OCL_Weak: 3769 RHS = Visit(E->getRHS()); 3770 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3771 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3772 break; 3773 3774 case Qualifiers::OCL_None: 3775 // __block variables need to have the rhs evaluated first, plus 3776 // this should improve codegen just a little. 3777 RHS = Visit(E->getRHS()); 3778 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3779 3780 // Store the value into the LHS. Bit-fields are handled specially 3781 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3782 // 'An assignment expression has the value of the left operand after 3783 // the assignment...'. 3784 if (LHS.isBitField()) { 3785 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3786 } else { 3787 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3788 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3789 } 3790 } 3791 3792 // If the result is clearly ignored, return now. 3793 if (Ignore) 3794 return nullptr; 3795 3796 // The result of an assignment in C is the assigned r-value. 3797 if (!CGF.getLangOpts().CPlusPlus) 3798 return RHS; 3799 3800 // If the lvalue is non-volatile, return the computed value of the assignment. 3801 if (!LHS.isVolatileQualified()) 3802 return RHS; 3803 3804 // Otherwise, reload the value. 3805 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3806 } 3807 3808 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3809 // Perform vector logical and on comparisons with zero vectors. 3810 if (E->getType()->isVectorType()) { 3811 CGF.incrementProfileCounter(E); 3812 3813 Value *LHS = Visit(E->getLHS()); 3814 Value *RHS = Visit(E->getRHS()); 3815 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3816 if (LHS->getType()->isFPOrFPVectorTy()) { 3817 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3818 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3819 } else { 3820 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3821 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3822 } 3823 Value *And = Builder.CreateAnd(LHS, RHS); 3824 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3825 } 3826 3827 llvm::Type *ResTy = ConvertType(E->getType()); 3828 3829 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3830 // If we have 1 && X, just emit X without inserting the control flow. 3831 bool LHSCondVal; 3832 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3833 if (LHSCondVal) { // If we have 1 && X, just emit X. 3834 CGF.incrementProfileCounter(E); 3835 3836 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3837 // ZExt result to int or bool. 3838 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3839 } 3840 3841 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3842 if (!CGF.ContainsLabel(E->getRHS())) 3843 return llvm::Constant::getNullValue(ResTy); 3844 } 3845 3846 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3847 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3848 3849 CodeGenFunction::ConditionalEvaluation eval(CGF); 3850 3851 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3852 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3853 CGF.getProfileCount(E->getRHS())); 3854 3855 // Any edges into the ContBlock are now from an (indeterminate number of) 3856 // edges from this first condition. All of these values will be false. Start 3857 // setting up the PHI node in the Cont Block for this. 3858 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3859 "", ContBlock); 3860 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3861 PI != PE; ++PI) 3862 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3863 3864 eval.begin(CGF); 3865 CGF.EmitBlock(RHSBlock); 3866 CGF.incrementProfileCounter(E); 3867 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3868 eval.end(CGF); 3869 3870 // Reaquire the RHS block, as there may be subblocks inserted. 3871 RHSBlock = Builder.GetInsertBlock(); 3872 3873 // Emit an unconditional branch from this block to ContBlock. 3874 { 3875 // There is no need to emit line number for unconditional branch. 3876 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3877 CGF.EmitBlock(ContBlock); 3878 } 3879 // Insert an entry into the phi node for the edge with the value of RHSCond. 3880 PN->addIncoming(RHSCond, RHSBlock); 3881 3882 // Artificial location to preserve the scope information 3883 { 3884 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 3885 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 3886 } 3887 3888 // ZExt result to int. 3889 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3890 } 3891 3892 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3893 // Perform vector logical or on comparisons with zero vectors. 3894 if (E->getType()->isVectorType()) { 3895 CGF.incrementProfileCounter(E); 3896 3897 Value *LHS = Visit(E->getLHS()); 3898 Value *RHS = Visit(E->getRHS()); 3899 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3900 if (LHS->getType()->isFPOrFPVectorTy()) { 3901 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3902 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3903 } else { 3904 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3905 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3906 } 3907 Value *Or = Builder.CreateOr(LHS, RHS); 3908 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3909 } 3910 3911 llvm::Type *ResTy = ConvertType(E->getType()); 3912 3913 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3914 // If we have 0 || X, just emit X without inserting the control flow. 3915 bool LHSCondVal; 3916 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3917 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3918 CGF.incrementProfileCounter(E); 3919 3920 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3921 // ZExt result to int or bool. 3922 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3923 } 3924 3925 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3926 if (!CGF.ContainsLabel(E->getRHS())) 3927 return llvm::ConstantInt::get(ResTy, 1); 3928 } 3929 3930 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3931 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3932 3933 CodeGenFunction::ConditionalEvaluation eval(CGF); 3934 3935 // Branch on the LHS first. If it is true, go to the success (cont) block. 3936 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3937 CGF.getCurrentProfileCount() - 3938 CGF.getProfileCount(E->getRHS())); 3939 3940 // Any edges into the ContBlock are now from an (indeterminate number of) 3941 // edges from this first condition. All of these values will be true. Start 3942 // setting up the PHI node in the Cont Block for this. 3943 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3944 "", ContBlock); 3945 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3946 PI != PE; ++PI) 3947 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3948 3949 eval.begin(CGF); 3950 3951 // Emit the RHS condition as a bool value. 3952 CGF.EmitBlock(RHSBlock); 3953 CGF.incrementProfileCounter(E); 3954 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3955 3956 eval.end(CGF); 3957 3958 // Reaquire the RHS block, as there may be subblocks inserted. 3959 RHSBlock = Builder.GetInsertBlock(); 3960 3961 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3962 // into the phi node for the edge with the value of RHSCond. 3963 CGF.EmitBlock(ContBlock); 3964 PN->addIncoming(RHSCond, RHSBlock); 3965 3966 // ZExt result to int. 3967 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3968 } 3969 3970 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3971 CGF.EmitIgnoredExpr(E->getLHS()); 3972 CGF.EnsureInsertPoint(); 3973 return Visit(E->getRHS()); 3974 } 3975 3976 //===----------------------------------------------------------------------===// 3977 // Other Operators 3978 //===----------------------------------------------------------------------===// 3979 3980 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3981 /// expression is cheap enough and side-effect-free enough to evaluate 3982 /// unconditionally instead of conditionally. This is used to convert control 3983 /// flow into selects in some cases. 3984 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3985 CodeGenFunction &CGF) { 3986 // Anything that is an integer or floating point constant is fine. 3987 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3988 3989 // Even non-volatile automatic variables can't be evaluated unconditionally. 3990 // Referencing a thread_local may cause non-trivial initialization work to 3991 // occur. If we're inside a lambda and one of the variables is from the scope 3992 // outside the lambda, that function may have returned already. Reading its 3993 // locals is a bad idea. Also, these reads may introduce races there didn't 3994 // exist in the source-level program. 3995 } 3996 3997 3998 Value *ScalarExprEmitter:: 3999 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4000 TestAndClearIgnoreResultAssign(); 4001 4002 // Bind the common expression if necessary. 4003 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4004 4005 Expr *condExpr = E->getCond(); 4006 Expr *lhsExpr = E->getTrueExpr(); 4007 Expr *rhsExpr = E->getFalseExpr(); 4008 4009 // If the condition constant folds and can be elided, try to avoid emitting 4010 // the condition and the dead arm. 4011 bool CondExprBool; 4012 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4013 Expr *live = lhsExpr, *dead = rhsExpr; 4014 if (!CondExprBool) std::swap(live, dead); 4015 4016 // If the dead side doesn't have labels we need, just emit the Live part. 4017 if (!CGF.ContainsLabel(dead)) { 4018 if (CondExprBool) 4019 CGF.incrementProfileCounter(E); 4020 Value *Result = Visit(live); 4021 4022 // If the live part is a throw expression, it acts like it has a void 4023 // type, so evaluating it returns a null Value*. However, a conditional 4024 // with non-void type must return a non-null Value*. 4025 if (!Result && !E->getType()->isVoidType()) 4026 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4027 4028 return Result; 4029 } 4030 } 4031 4032 // OpenCL: If the condition is a vector, we can treat this condition like 4033 // the select function. 4034 if (CGF.getLangOpts().OpenCL 4035 && condExpr->getType()->isVectorType()) { 4036 CGF.incrementProfileCounter(E); 4037 4038 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4039 llvm::Value *LHS = Visit(lhsExpr); 4040 llvm::Value *RHS = Visit(rhsExpr); 4041 4042 llvm::Type *condType = ConvertType(condExpr->getType()); 4043 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4044 4045 unsigned numElem = vecTy->getNumElements(); 4046 llvm::Type *elemType = vecTy->getElementType(); 4047 4048 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4049 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4050 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4051 llvm::VectorType::get(elemType, 4052 numElem), 4053 "sext"); 4054 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4055 4056 // Cast float to int to perform ANDs if necessary. 4057 llvm::Value *RHSTmp = RHS; 4058 llvm::Value *LHSTmp = LHS; 4059 bool wasCast = false; 4060 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4061 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4062 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4063 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4064 wasCast = true; 4065 } 4066 4067 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4068 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4069 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4070 if (wasCast) 4071 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4072 4073 return tmp5; 4074 } 4075 4076 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4077 // select instead of as control flow. We can only do this if it is cheap and 4078 // safe to evaluate the LHS and RHS unconditionally. 4079 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4080 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4081 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4082 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4083 4084 CGF.incrementProfileCounter(E, StepV); 4085 4086 llvm::Value *LHS = Visit(lhsExpr); 4087 llvm::Value *RHS = Visit(rhsExpr); 4088 if (!LHS) { 4089 // If the conditional has void type, make sure we return a null Value*. 4090 assert(!RHS && "LHS and RHS types must match"); 4091 return nullptr; 4092 } 4093 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4094 } 4095 4096 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4097 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4098 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4099 4100 CodeGenFunction::ConditionalEvaluation eval(CGF); 4101 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4102 CGF.getProfileCount(lhsExpr)); 4103 4104 CGF.EmitBlock(LHSBlock); 4105 CGF.incrementProfileCounter(E); 4106 eval.begin(CGF); 4107 Value *LHS = Visit(lhsExpr); 4108 eval.end(CGF); 4109 4110 LHSBlock = Builder.GetInsertBlock(); 4111 Builder.CreateBr(ContBlock); 4112 4113 CGF.EmitBlock(RHSBlock); 4114 eval.begin(CGF); 4115 Value *RHS = Visit(rhsExpr); 4116 eval.end(CGF); 4117 4118 RHSBlock = Builder.GetInsertBlock(); 4119 CGF.EmitBlock(ContBlock); 4120 4121 // If the LHS or RHS is a throw expression, it will be legitimately null. 4122 if (!LHS) 4123 return RHS; 4124 if (!RHS) 4125 return LHS; 4126 4127 // Create a PHI node for the real part. 4128 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4129 PN->addIncoming(LHS, LHSBlock); 4130 PN->addIncoming(RHS, RHSBlock); 4131 return PN; 4132 } 4133 4134 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4135 return Visit(E->getChosenSubExpr()); 4136 } 4137 4138 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4139 QualType Ty = VE->getType(); 4140 4141 if (Ty->isVariablyModifiedType()) 4142 CGF.EmitVariablyModifiedType(Ty); 4143 4144 Address ArgValue = Address::invalid(); 4145 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4146 4147 llvm::Type *ArgTy = ConvertType(VE->getType()); 4148 4149 // If EmitVAArg fails, emit an error. 4150 if (!ArgPtr.isValid()) { 4151 CGF.ErrorUnsupported(VE, "va_arg expression"); 4152 return llvm::UndefValue::get(ArgTy); 4153 } 4154 4155 // FIXME Volatility. 4156 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4157 4158 // If EmitVAArg promoted the type, we must truncate it. 4159 if (ArgTy != Val->getType()) { 4160 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4161 Val = Builder.CreateIntToPtr(Val, ArgTy); 4162 else 4163 Val = Builder.CreateTrunc(Val, ArgTy); 4164 } 4165 4166 return Val; 4167 } 4168 4169 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4170 return CGF.EmitBlockLiteral(block); 4171 } 4172 4173 // Convert a vec3 to vec4, or vice versa. 4174 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4175 Value *Src, unsigned NumElementsDst) { 4176 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4177 SmallVector<llvm::Constant*, 4> Args; 4178 Args.push_back(Builder.getInt32(0)); 4179 Args.push_back(Builder.getInt32(1)); 4180 Args.push_back(Builder.getInt32(2)); 4181 if (NumElementsDst == 4) 4182 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4183 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4184 return Builder.CreateShuffleVector(Src, UnV, Mask); 4185 } 4186 4187 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4188 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4189 // but could be scalar or vectors of different lengths, and either can be 4190 // pointer. 4191 // There are 4 cases: 4192 // 1. non-pointer -> non-pointer : needs 1 bitcast 4193 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4194 // 3. pointer -> non-pointer 4195 // a) pointer -> intptr_t : needs 1 ptrtoint 4196 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4197 // 4. non-pointer -> pointer 4198 // a) intptr_t -> pointer : needs 1 inttoptr 4199 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4200 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4201 // allow casting directly between pointer types and non-integer non-pointer 4202 // types. 4203 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4204 const llvm::DataLayout &DL, 4205 Value *Src, llvm::Type *DstTy, 4206 StringRef Name = "") { 4207 auto SrcTy = Src->getType(); 4208 4209 // Case 1. 4210 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4211 return Builder.CreateBitCast(Src, DstTy, Name); 4212 4213 // Case 2. 4214 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4215 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4216 4217 // Case 3. 4218 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4219 // Case 3b. 4220 if (!DstTy->isIntegerTy()) 4221 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4222 // Cases 3a and 3b. 4223 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4224 } 4225 4226 // Case 4b. 4227 if (!SrcTy->isIntegerTy()) 4228 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4229 // Cases 4a and 4b. 4230 return Builder.CreateIntToPtr(Src, DstTy, Name); 4231 } 4232 4233 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4234 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4235 llvm::Type *DstTy = ConvertType(E->getType()); 4236 4237 llvm::Type *SrcTy = Src->getType(); 4238 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4239 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4240 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4241 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4242 4243 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4244 // vector to get a vec4, then a bitcast if the target type is different. 4245 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4246 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4247 4248 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4249 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4250 DstTy); 4251 } 4252 4253 Src->setName("astype"); 4254 return Src; 4255 } 4256 4257 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4258 // to vec4 if the original type is not vec4, then a shuffle vector to 4259 // get a vec3. 4260 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4261 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4262 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4263 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4264 Vec4Ty); 4265 } 4266 4267 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4268 Src->setName("astype"); 4269 return Src; 4270 } 4271 4272 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4273 Src, DstTy, "astype"); 4274 } 4275 4276 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4277 return CGF.EmitAtomicExpr(E).getScalarVal(); 4278 } 4279 4280 //===----------------------------------------------------------------------===// 4281 // Entry Point into this File 4282 //===----------------------------------------------------------------------===// 4283 4284 /// Emit the computation of the specified expression of scalar type, ignoring 4285 /// the result. 4286 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4287 assert(E && hasScalarEvaluationKind(E->getType()) && 4288 "Invalid scalar expression to emit"); 4289 4290 return ScalarExprEmitter(*this, IgnoreResultAssign) 4291 .Visit(const_cast<Expr *>(E)); 4292 } 4293 4294 /// Emit a conversion from the specified type to the specified destination type, 4295 /// both of which are LLVM scalar types. 4296 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4297 QualType DstTy, 4298 SourceLocation Loc) { 4299 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4300 "Invalid scalar expression to emit"); 4301 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4302 } 4303 4304 /// Emit a conversion from the specified complex type to the specified 4305 /// destination type, where the destination type is an LLVM scalar type. 4306 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4307 QualType SrcTy, 4308 QualType DstTy, 4309 SourceLocation Loc) { 4310 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4311 "Invalid complex -> scalar conversion"); 4312 return ScalarExprEmitter(*this) 4313 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4314 } 4315 4316 4317 llvm::Value *CodeGenFunction:: 4318 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4319 bool isInc, bool isPre) { 4320 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4321 } 4322 4323 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4324 // object->isa or (*object).isa 4325 // Generate code as for: *(Class*)object 4326 4327 Expr *BaseExpr = E->getBase(); 4328 Address Addr = Address::invalid(); 4329 if (BaseExpr->isRValue()) { 4330 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4331 } else { 4332 Addr = EmitLValue(BaseExpr).getAddress(); 4333 } 4334 4335 // Cast the address to Class*. 4336 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4337 return MakeAddrLValue(Addr, E->getType()); 4338 } 4339 4340 4341 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4342 const CompoundAssignOperator *E) { 4343 ScalarExprEmitter Scalar(*this); 4344 Value *Result = nullptr; 4345 switch (E->getOpcode()) { 4346 #define COMPOUND_OP(Op) \ 4347 case BO_##Op##Assign: \ 4348 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4349 Result) 4350 COMPOUND_OP(Mul); 4351 COMPOUND_OP(Div); 4352 COMPOUND_OP(Rem); 4353 COMPOUND_OP(Add); 4354 COMPOUND_OP(Sub); 4355 COMPOUND_OP(Shl); 4356 COMPOUND_OP(Shr); 4357 COMPOUND_OP(And); 4358 COMPOUND_OP(Xor); 4359 COMPOUND_OP(Or); 4360 #undef COMPOUND_OP 4361 4362 case BO_PtrMemD: 4363 case BO_PtrMemI: 4364 case BO_Mul: 4365 case BO_Div: 4366 case BO_Rem: 4367 case BO_Add: 4368 case BO_Sub: 4369 case BO_Shl: 4370 case BO_Shr: 4371 case BO_LT: 4372 case BO_GT: 4373 case BO_LE: 4374 case BO_GE: 4375 case BO_EQ: 4376 case BO_NE: 4377 case BO_Cmp: 4378 case BO_And: 4379 case BO_Xor: 4380 case BO_Or: 4381 case BO_LAnd: 4382 case BO_LOr: 4383 case BO_Assign: 4384 case BO_Comma: 4385 llvm_unreachable("Not valid compound assignment operators"); 4386 } 4387 4388 llvm_unreachable("Unhandled compound assignment operator"); 4389 } 4390 4391 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 4392 ArrayRef<Value *> IdxList, 4393 bool SignedIndices, 4394 bool IsSubtraction, 4395 SourceLocation Loc, 4396 const Twine &Name) { 4397 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4398 4399 // If the pointer overflow sanitizer isn't enabled, do nothing. 4400 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4401 return GEPVal; 4402 4403 // If the GEP has already been reduced to a constant, leave it be. 4404 if (isa<llvm::Constant>(GEPVal)) 4405 return GEPVal; 4406 4407 // Only check for overflows in the default address space. 4408 if (GEPVal->getType()->getPointerAddressSpace()) 4409 return GEPVal; 4410 4411 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4412 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4413 4414 SanitizerScope SanScope(this); 4415 auto &VMContext = getLLVMContext(); 4416 const auto &DL = CGM.getDataLayout(); 4417 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4418 4419 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4420 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4421 auto *SAddIntrinsic = 4422 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4423 auto *SMulIntrinsic = 4424 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4425 4426 // The total (signed) byte offset for the GEP. 4427 llvm::Value *TotalOffset = nullptr; 4428 // The offset overflow flag - true if the total offset overflows. 4429 llvm::Value *OffsetOverflows = Builder.getFalse(); 4430 4431 /// Return the result of the given binary operation. 4432 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4433 llvm::Value *RHS) -> llvm::Value * { 4434 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4435 4436 // If the operands are constants, return a constant result. 4437 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4438 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4439 llvm::APInt N; 4440 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4441 /*Signed=*/true, N); 4442 if (HasOverflow) 4443 OffsetOverflows = Builder.getTrue(); 4444 return llvm::ConstantInt::get(VMContext, N); 4445 } 4446 } 4447 4448 // Otherwise, compute the result with checked arithmetic. 4449 auto *ResultAndOverflow = Builder.CreateCall( 4450 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4451 OffsetOverflows = Builder.CreateOr( 4452 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4453 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4454 }; 4455 4456 // Determine the total byte offset by looking at each GEP operand. 4457 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4458 GTI != GTE; ++GTI) { 4459 llvm::Value *LocalOffset; 4460 auto *Index = GTI.getOperand(); 4461 // Compute the local offset contributed by this indexing step: 4462 if (auto *STy = GTI.getStructTypeOrNull()) { 4463 // For struct indexing, the local offset is the byte position of the 4464 // specified field. 4465 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4466 LocalOffset = llvm::ConstantInt::get( 4467 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4468 } else { 4469 // Otherwise this is array-like indexing. The local offset is the index 4470 // multiplied by the element size. 4471 auto *ElementSize = llvm::ConstantInt::get( 4472 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4473 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4474 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4475 } 4476 4477 // If this is the first offset, set it as the total offset. Otherwise, add 4478 // the local offset into the running total. 4479 if (!TotalOffset || TotalOffset == Zero) 4480 TotalOffset = LocalOffset; 4481 else 4482 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4483 } 4484 4485 // Common case: if the total offset is zero, don't emit a check. 4486 if (TotalOffset == Zero) 4487 return GEPVal; 4488 4489 // Now that we've computed the total offset, add it to the base pointer (with 4490 // wrapping semantics). 4491 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4492 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4493 4494 // The GEP is valid if: 4495 // 1) The total offset doesn't overflow, and 4496 // 2) The sign of the difference between the computed address and the base 4497 // pointer matches the sign of the total offset. 4498 llvm::Value *ValidGEP; 4499 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4500 if (SignedIndices) { 4501 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4502 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4503 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4504 ValidGEP = Builder.CreateAnd( 4505 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4506 NoOffsetOverflow); 4507 } else if (!SignedIndices && !IsSubtraction) { 4508 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4509 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4510 } else { 4511 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4512 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4513 } 4514 4515 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4516 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4517 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4518 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4519 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4520 4521 return GEPVal; 4522 } 4523