1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Module.h" 37 #include <cstdarg> 38 39 using namespace clang; 40 using namespace CodeGen; 41 using llvm::Value; 42 43 //===----------------------------------------------------------------------===// 44 // Scalar Expression Emitter 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 49 /// Determine whether the given binary operation may overflow. 50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 52 /// the returned overflow check is precise. The returned value is 'true' for 53 /// all other opcodes, to be conservative. 54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 55 BinaryOperator::Opcode Opcode, bool Signed, 56 llvm::APInt &Result) { 57 // Assume overflow is possible, unless we can prove otherwise. 58 bool Overflow = true; 59 const auto &LHSAP = LHS->getValue(); 60 const auto &RHSAP = RHS->getValue(); 61 if (Opcode == BO_Add) { 62 if (Signed) 63 Result = LHSAP.sadd_ov(RHSAP, Overflow); 64 else 65 Result = LHSAP.uadd_ov(RHSAP, Overflow); 66 } else if (Opcode == BO_Sub) { 67 if (Signed) 68 Result = LHSAP.ssub_ov(RHSAP, Overflow); 69 else 70 Result = LHSAP.usub_ov(RHSAP, Overflow); 71 } else if (Opcode == BO_Mul) { 72 if (Signed) 73 Result = LHSAP.smul_ov(RHSAP, Overflow); 74 else 75 Result = LHSAP.umul_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 77 if (Signed && !RHS->isZero()) 78 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 79 else 80 return false; 81 } 82 return Overflow; 83 } 84 85 struct BinOpInfo { 86 Value *LHS; 87 Value *RHS; 88 QualType Ty; // Computation Type. 89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 90 FPOptions FPFeatures; 91 const Expr *E; // Entire expr, for error unsupported. May not be binop. 92 93 /// Check if the binop can result in integer overflow. 94 bool mayHaveIntegerOverflow() const { 95 // Without constant input, we can't rule out overflow. 96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 98 if (!LHSCI || !RHSCI) 99 return true; 100 101 llvm::APInt Result; 102 return ::mayHaveIntegerOverflow( 103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 104 } 105 106 /// Check if the binop computes a division or a remainder. 107 bool isDivremOp() const { 108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 109 Opcode == BO_RemAssign; 110 } 111 112 /// Check if the binop can result in an integer division by zero. 113 bool mayHaveIntegerDivisionByZero() const { 114 if (isDivremOp()) 115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 116 return CI->isZero(); 117 return true; 118 } 119 120 /// Check if the binop can result in a float division by zero. 121 bool mayHaveFloatDivisionByZero() const { 122 if (isDivremOp()) 123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 124 return CFP->isZero(); 125 return true; 126 } 127 }; 128 129 static bool MustVisitNullValue(const Expr *E) { 130 // If a null pointer expression's type is the C++0x nullptr_t, then 131 // it's not necessarily a simple constant and it must be evaluated 132 // for its potential side effects. 133 return E->getType()->isNullPtrType(); 134 } 135 136 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 138 const Expr *E) { 139 const Expr *Base = E->IgnoreImpCasts(); 140 if (E == Base) 141 return llvm::None; 142 143 QualType BaseTy = Base->getType(); 144 if (!BaseTy->isPromotableIntegerType() || 145 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 146 return llvm::None; 147 148 return BaseTy; 149 } 150 151 /// Check if \p E is a widened promoted integer. 152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 153 return getUnwidenedIntegerType(Ctx, E).hasValue(); 154 } 155 156 /// Check if we can skip the overflow check for \p Op. 157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 158 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 159 "Expected a unary or binary operator"); 160 161 // If the binop has constant inputs and we can prove there is no overflow, 162 // we can elide the overflow check. 163 if (!Op.mayHaveIntegerOverflow()) 164 return true; 165 166 // If a unary op has a widened operand, the op cannot overflow. 167 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 168 return IsWidenedIntegerOp(Ctx, UO->getSubExpr()); 169 170 // We usually don't need overflow checks for binops with widened operands. 171 // Multiplication with promoted unsigned operands is a special case. 172 const auto *BO = cast<BinaryOperator>(Op.E); 173 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 174 if (!OptionalLHSTy) 175 return false; 176 177 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 178 if (!OptionalRHSTy) 179 return false; 180 181 QualType LHSTy = *OptionalLHSTy; 182 QualType RHSTy = *OptionalRHSTy; 183 184 // This is the simple case: binops without unsigned multiplication, and with 185 // widened operands. No overflow check is needed here. 186 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 187 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 188 return true; 189 190 // For unsigned multiplication the overflow check can be elided if either one 191 // of the unpromoted types are less than half the size of the promoted type. 192 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 193 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 194 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 195 } 196 197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 198 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 199 FPOptions FPFeatures) { 200 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 201 } 202 203 /// Propagate fast-math flags from \p Op to the instruction in \p V. 204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 205 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 206 llvm::FastMathFlags FMF = I->getFastMathFlags(); 207 updateFastMathFlags(FMF, Op.FPFeatures); 208 I->setFastMathFlags(FMF); 209 } 210 return V; 211 } 212 213 class ScalarExprEmitter 214 : public StmtVisitor<ScalarExprEmitter, Value*> { 215 CodeGenFunction &CGF; 216 CGBuilderTy &Builder; 217 bool IgnoreResultAssign; 218 llvm::LLVMContext &VMContext; 219 public: 220 221 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 222 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 223 VMContext(cgf.getLLVMContext()) { 224 } 225 226 //===--------------------------------------------------------------------===// 227 // Utilities 228 //===--------------------------------------------------------------------===// 229 230 bool TestAndClearIgnoreResultAssign() { 231 bool I = IgnoreResultAssign; 232 IgnoreResultAssign = false; 233 return I; 234 } 235 236 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 237 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 238 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 239 return CGF.EmitCheckedLValue(E, TCK); 240 } 241 242 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 243 const BinOpInfo &Info); 244 245 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 246 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 247 } 248 249 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 250 const AlignValueAttr *AVAttr = nullptr; 251 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 252 const ValueDecl *VD = DRE->getDecl(); 253 254 if (VD->getType()->isReferenceType()) { 255 if (const auto *TTy = 256 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 257 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 258 } else { 259 // Assumptions for function parameters are emitted at the start of the 260 // function, so there is no need to repeat that here. 261 if (isa<ParmVarDecl>(VD)) 262 return; 263 264 AVAttr = VD->getAttr<AlignValueAttr>(); 265 } 266 } 267 268 if (!AVAttr) 269 if (const auto *TTy = 270 dyn_cast<TypedefType>(E->getType())) 271 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 272 273 if (!AVAttr) 274 return; 275 276 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 277 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 278 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 279 } 280 281 /// EmitLoadOfLValue - Given an expression with complex type that represents a 282 /// value l-value, this method emits the address of the l-value, then loads 283 /// and returns the result. 284 Value *EmitLoadOfLValue(const Expr *E) { 285 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 286 E->getExprLoc()); 287 288 EmitLValueAlignmentAssumption(E, V); 289 return V; 290 } 291 292 /// EmitConversionToBool - Convert the specified expression value to a 293 /// boolean (i1) truth value. This is equivalent to "Val != 0". 294 Value *EmitConversionToBool(Value *Src, QualType DstTy); 295 296 /// Emit a check that a conversion to or from a floating-point type does not 297 /// overflow. 298 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 299 Value *Src, QualType SrcType, QualType DstType, 300 llvm::Type *DstTy, SourceLocation Loc); 301 302 /// Emit a conversion from the specified type to the specified destination 303 /// type, both of which are LLVM scalar types. 304 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 305 SourceLocation Loc); 306 307 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 308 SourceLocation Loc, bool TreatBooleanAsSigned); 309 310 /// Emit a conversion from the specified complex type to the specified 311 /// destination type, where the destination type is an LLVM scalar type. 312 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 313 QualType SrcTy, QualType DstTy, 314 SourceLocation Loc); 315 316 /// EmitNullValue - Emit a value that corresponds to null for the given type. 317 Value *EmitNullValue(QualType Ty); 318 319 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 320 Value *EmitFloatToBoolConversion(Value *V) { 321 // Compare against 0.0 for fp scalars. 322 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 323 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 324 } 325 326 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 327 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 328 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 329 330 return Builder.CreateICmpNE(V, Zero, "tobool"); 331 } 332 333 Value *EmitIntToBoolConversion(Value *V) { 334 // Because of the type rules of C, we often end up computing a 335 // logical value, then zero extending it to int, then wanting it 336 // as a logical value again. Optimize this common case. 337 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 338 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 339 Value *Result = ZI->getOperand(0); 340 // If there aren't any more uses, zap the instruction to save space. 341 // Note that there can be more uses, for example if this 342 // is the result of an assignment. 343 if (ZI->use_empty()) 344 ZI->eraseFromParent(); 345 return Result; 346 } 347 } 348 349 return Builder.CreateIsNotNull(V, "tobool"); 350 } 351 352 //===--------------------------------------------------------------------===// 353 // Visitor Methods 354 //===--------------------------------------------------------------------===// 355 356 Value *Visit(Expr *E) { 357 ApplyDebugLocation DL(CGF, E); 358 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 359 } 360 361 Value *VisitStmt(Stmt *S) { 362 S->dump(CGF.getContext().getSourceManager()); 363 llvm_unreachable("Stmt can't have complex result type!"); 364 } 365 Value *VisitExpr(Expr *S); 366 367 Value *VisitParenExpr(ParenExpr *PE) { 368 return Visit(PE->getSubExpr()); 369 } 370 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 371 return Visit(E->getReplacement()); 372 } 373 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 374 return Visit(GE->getResultExpr()); 375 } 376 Value *VisitCoawaitExpr(CoawaitExpr *S) { 377 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 378 } 379 Value *VisitCoyieldExpr(CoyieldExpr *S) { 380 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 381 } 382 Value *VisitUnaryCoawait(const UnaryOperator *E) { 383 return Visit(E->getSubExpr()); 384 } 385 386 // Leaves. 387 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 388 return Builder.getInt(E->getValue()); 389 } 390 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 391 return llvm::ConstantFP::get(VMContext, E->getValue()); 392 } 393 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 394 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 395 } 396 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 397 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 398 } 399 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 400 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 401 } 402 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 403 return EmitNullValue(E->getType()); 404 } 405 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 406 return EmitNullValue(E->getType()); 407 } 408 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 409 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 410 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 411 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 412 return Builder.CreateBitCast(V, ConvertType(E->getType())); 413 } 414 415 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 416 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 417 } 418 419 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 420 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 421 } 422 423 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 424 if (E->isGLValue()) 425 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 426 427 // Otherwise, assume the mapping is the scalar directly. 428 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 429 } 430 431 // l-values. 432 Value *VisitDeclRefExpr(DeclRefExpr *E) { 433 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 434 if (result.isReference()) 435 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 436 E->getExprLoc()); 437 return result.getValue(); 438 } 439 return EmitLoadOfLValue(E); 440 } 441 442 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 443 return CGF.EmitObjCSelectorExpr(E); 444 } 445 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 446 return CGF.EmitObjCProtocolExpr(E); 447 } 448 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 449 return EmitLoadOfLValue(E); 450 } 451 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 452 if (E->getMethodDecl() && 453 E->getMethodDecl()->getReturnType()->isReferenceType()) 454 return EmitLoadOfLValue(E); 455 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 456 } 457 458 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 459 LValue LV = CGF.EmitObjCIsaExpr(E); 460 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 461 return V; 462 } 463 464 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 465 VersionTuple Version = E->getVersion(); 466 467 // If we're checking for a platform older than our minimum deployment 468 // target, we can fold the check away. 469 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 470 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 471 472 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 473 llvm::Value *Args[] = { 474 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 475 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 476 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 477 }; 478 479 return CGF.EmitBuiltinAvailable(Args); 480 } 481 482 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 483 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 484 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 485 Value *VisitMemberExpr(MemberExpr *E); 486 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 487 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 488 return EmitLoadOfLValue(E); 489 } 490 491 Value *VisitInitListExpr(InitListExpr *E); 492 493 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 494 assert(CGF.getArrayInitIndex() && 495 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 496 return CGF.getArrayInitIndex(); 497 } 498 499 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 500 return EmitNullValue(E->getType()); 501 } 502 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 503 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 504 return VisitCastExpr(E); 505 } 506 Value *VisitCastExpr(CastExpr *E); 507 508 Value *VisitCallExpr(const CallExpr *E) { 509 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 510 return EmitLoadOfLValue(E); 511 512 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 513 514 EmitLValueAlignmentAssumption(E, V); 515 return V; 516 } 517 518 Value *VisitStmtExpr(const StmtExpr *E); 519 520 // Unary Operators. 521 Value *VisitUnaryPostDec(const UnaryOperator *E) { 522 LValue LV = EmitLValue(E->getSubExpr()); 523 return EmitScalarPrePostIncDec(E, LV, false, false); 524 } 525 Value *VisitUnaryPostInc(const UnaryOperator *E) { 526 LValue LV = EmitLValue(E->getSubExpr()); 527 return EmitScalarPrePostIncDec(E, LV, true, false); 528 } 529 Value *VisitUnaryPreDec(const UnaryOperator *E) { 530 LValue LV = EmitLValue(E->getSubExpr()); 531 return EmitScalarPrePostIncDec(E, LV, false, true); 532 } 533 Value *VisitUnaryPreInc(const UnaryOperator *E) { 534 LValue LV = EmitLValue(E->getSubExpr()); 535 return EmitScalarPrePostIncDec(E, LV, true, true); 536 } 537 538 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 539 llvm::Value *InVal, 540 bool IsInc); 541 542 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 543 bool isInc, bool isPre); 544 545 546 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 547 if (isa<MemberPointerType>(E->getType())) // never sugared 548 return CGF.CGM.getMemberPointerConstant(E); 549 550 return EmitLValue(E->getSubExpr()).getPointer(); 551 } 552 Value *VisitUnaryDeref(const UnaryOperator *E) { 553 if (E->getType()->isVoidType()) 554 return Visit(E->getSubExpr()); // the actual value should be unused 555 return EmitLoadOfLValue(E); 556 } 557 Value *VisitUnaryPlus(const UnaryOperator *E) { 558 // This differs from gcc, though, most likely due to a bug in gcc. 559 TestAndClearIgnoreResultAssign(); 560 return Visit(E->getSubExpr()); 561 } 562 Value *VisitUnaryMinus (const UnaryOperator *E); 563 Value *VisitUnaryNot (const UnaryOperator *E); 564 Value *VisitUnaryLNot (const UnaryOperator *E); 565 Value *VisitUnaryReal (const UnaryOperator *E); 566 Value *VisitUnaryImag (const UnaryOperator *E); 567 Value *VisitUnaryExtension(const UnaryOperator *E) { 568 return Visit(E->getSubExpr()); 569 } 570 571 // C++ 572 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 573 return EmitLoadOfLValue(E); 574 } 575 576 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 577 return Visit(DAE->getExpr()); 578 } 579 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 580 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 581 return Visit(DIE->getExpr()); 582 } 583 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 584 return CGF.LoadCXXThis(); 585 } 586 587 Value *VisitExprWithCleanups(ExprWithCleanups *E); 588 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 589 return CGF.EmitCXXNewExpr(E); 590 } 591 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 592 CGF.EmitCXXDeleteExpr(E); 593 return nullptr; 594 } 595 596 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 597 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 598 } 599 600 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 601 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 602 } 603 604 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 605 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 606 } 607 608 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 609 // C++ [expr.pseudo]p1: 610 // The result shall only be used as the operand for the function call 611 // operator (), and the result of such a call has type void. The only 612 // effect is the evaluation of the postfix-expression before the dot or 613 // arrow. 614 CGF.EmitScalarExpr(E->getBase()); 615 return nullptr; 616 } 617 618 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 619 return EmitNullValue(E->getType()); 620 } 621 622 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 623 CGF.EmitCXXThrowExpr(E); 624 return nullptr; 625 } 626 627 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 628 return Builder.getInt1(E->getValue()); 629 } 630 631 // Binary Operators. 632 Value *EmitMul(const BinOpInfo &Ops) { 633 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 634 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 635 case LangOptions::SOB_Defined: 636 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 637 case LangOptions::SOB_Undefined: 638 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 639 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 640 // Fall through. 641 case LangOptions::SOB_Trapping: 642 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 643 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 644 return EmitOverflowCheckedBinOp(Ops); 645 } 646 } 647 648 if (Ops.Ty->isUnsignedIntegerType() && 649 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 650 !CanElideOverflowCheck(CGF.getContext(), Ops)) 651 return EmitOverflowCheckedBinOp(Ops); 652 653 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 654 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 655 return propagateFMFlags(V, Ops); 656 } 657 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 658 } 659 /// Create a binary op that checks for overflow. 660 /// Currently only supports +, - and *. 661 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 662 663 // Check for undefined division and modulus behaviors. 664 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 665 llvm::Value *Zero,bool isDiv); 666 // Common helper for getting how wide LHS of shift is. 667 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 668 Value *EmitDiv(const BinOpInfo &Ops); 669 Value *EmitRem(const BinOpInfo &Ops); 670 Value *EmitAdd(const BinOpInfo &Ops); 671 Value *EmitSub(const BinOpInfo &Ops); 672 Value *EmitShl(const BinOpInfo &Ops); 673 Value *EmitShr(const BinOpInfo &Ops); 674 Value *EmitAnd(const BinOpInfo &Ops) { 675 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 676 } 677 Value *EmitXor(const BinOpInfo &Ops) { 678 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 679 } 680 Value *EmitOr (const BinOpInfo &Ops) { 681 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 682 } 683 684 BinOpInfo EmitBinOps(const BinaryOperator *E); 685 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 686 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 687 Value *&Result); 688 689 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 690 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 691 692 // Binary operators and binary compound assignment operators. 693 #define HANDLEBINOP(OP) \ 694 Value *VisitBin ## OP(const BinaryOperator *E) { \ 695 return Emit ## OP(EmitBinOps(E)); \ 696 } \ 697 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 698 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 699 } 700 HANDLEBINOP(Mul) 701 HANDLEBINOP(Div) 702 HANDLEBINOP(Rem) 703 HANDLEBINOP(Add) 704 HANDLEBINOP(Sub) 705 HANDLEBINOP(Shl) 706 HANDLEBINOP(Shr) 707 HANDLEBINOP(And) 708 HANDLEBINOP(Xor) 709 HANDLEBINOP(Or) 710 #undef HANDLEBINOP 711 712 // Comparisons. 713 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 714 llvm::CmpInst::Predicate SICmpOpc, 715 llvm::CmpInst::Predicate FCmpOpc); 716 #define VISITCOMP(CODE, UI, SI, FP) \ 717 Value *VisitBin##CODE(const BinaryOperator *E) { \ 718 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 719 llvm::FCmpInst::FP); } 720 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 721 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 722 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 723 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 724 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 725 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 726 #undef VISITCOMP 727 728 Value *VisitBinAssign (const BinaryOperator *E); 729 730 Value *VisitBinLAnd (const BinaryOperator *E); 731 Value *VisitBinLOr (const BinaryOperator *E); 732 Value *VisitBinComma (const BinaryOperator *E); 733 734 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 735 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 736 737 // Other Operators. 738 Value *VisitBlockExpr(const BlockExpr *BE); 739 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 740 Value *VisitChooseExpr(ChooseExpr *CE); 741 Value *VisitVAArgExpr(VAArgExpr *VE); 742 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 743 return CGF.EmitObjCStringLiteral(E); 744 } 745 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 746 return CGF.EmitObjCBoxedExpr(E); 747 } 748 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 749 return CGF.EmitObjCArrayLiteral(E); 750 } 751 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 752 return CGF.EmitObjCDictionaryLiteral(E); 753 } 754 Value *VisitAsTypeExpr(AsTypeExpr *CE); 755 Value *VisitAtomicExpr(AtomicExpr *AE); 756 }; 757 } // end anonymous namespace. 758 759 //===----------------------------------------------------------------------===// 760 // Utilities 761 //===----------------------------------------------------------------------===// 762 763 /// EmitConversionToBool - Convert the specified expression value to a 764 /// boolean (i1) truth value. This is equivalent to "Val != 0". 765 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 766 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 767 768 if (SrcType->isRealFloatingType()) 769 return EmitFloatToBoolConversion(Src); 770 771 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 772 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 773 774 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 775 "Unknown scalar type to convert"); 776 777 if (isa<llvm::IntegerType>(Src->getType())) 778 return EmitIntToBoolConversion(Src); 779 780 assert(isa<llvm::PointerType>(Src->getType())); 781 return EmitPointerToBoolConversion(Src, SrcType); 782 } 783 784 void ScalarExprEmitter::EmitFloatConversionCheck( 785 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 786 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 787 CodeGenFunction::SanitizerScope SanScope(&CGF); 788 using llvm::APFloat; 789 using llvm::APSInt; 790 791 llvm::Type *SrcTy = Src->getType(); 792 793 llvm::Value *Check = nullptr; 794 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 795 // Integer to floating-point. This can fail for unsigned short -> __half 796 // or unsigned __int128 -> float. 797 assert(DstType->isFloatingType()); 798 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 799 800 APFloat LargestFloat = 801 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 802 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 803 804 bool IsExact; 805 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 806 &IsExact) != APFloat::opOK) 807 // The range of representable values of this floating point type includes 808 // all values of this integer type. Don't need an overflow check. 809 return; 810 811 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 812 if (SrcIsUnsigned) 813 Check = Builder.CreateICmpULE(Src, Max); 814 else { 815 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 816 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 817 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 818 Check = Builder.CreateAnd(GE, LE); 819 } 820 } else { 821 const llvm::fltSemantics &SrcSema = 822 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 823 if (isa<llvm::IntegerType>(DstTy)) { 824 // Floating-point to integer. This has undefined behavior if the source is 825 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 826 // to an integer). 827 unsigned Width = CGF.getContext().getIntWidth(DstType); 828 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 829 830 APSInt Min = APSInt::getMinValue(Width, Unsigned); 831 APFloat MinSrc(SrcSema, APFloat::uninitialized); 832 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 833 APFloat::opOverflow) 834 // Don't need an overflow check for lower bound. Just check for 835 // -Inf/NaN. 836 MinSrc = APFloat::getInf(SrcSema, true); 837 else 838 // Find the largest value which is too small to represent (before 839 // truncation toward zero). 840 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 841 842 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 843 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 844 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 845 APFloat::opOverflow) 846 // Don't need an overflow check for upper bound. Just check for 847 // +Inf/NaN. 848 MaxSrc = APFloat::getInf(SrcSema, false); 849 else 850 // Find the smallest value which is too large to represent (before 851 // truncation toward zero). 852 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 853 854 // If we're converting from __half, convert the range to float to match 855 // the type of src. 856 if (OrigSrcType->isHalfType()) { 857 const llvm::fltSemantics &Sema = 858 CGF.getContext().getFloatTypeSemantics(SrcType); 859 bool IsInexact; 860 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 861 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 862 } 863 864 llvm::Value *GE = 865 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 866 llvm::Value *LE = 867 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 868 Check = Builder.CreateAnd(GE, LE); 869 } else { 870 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 871 // 872 // Floating-point to floating-point. This has undefined behavior if the 873 // source is not in the range of representable values of the destination 874 // type. The C and C++ standards are spectacularly unclear here. We 875 // diagnose finite out-of-range conversions, but allow infinities and NaNs 876 // to convert to the corresponding value in the smaller type. 877 // 878 // C11 Annex F gives all such conversions defined behavior for IEC 60559 879 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 880 // does not. 881 882 // Converting from a lower rank to a higher rank can never have 883 // undefined behavior, since higher-rank types must have a superset 884 // of values of lower-rank types. 885 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 886 return; 887 888 assert(!OrigSrcType->isHalfType() && 889 "should not check conversion from __half, it has the lowest rank"); 890 891 const llvm::fltSemantics &DstSema = 892 CGF.getContext().getFloatTypeSemantics(DstType); 893 APFloat MinBad = APFloat::getLargest(DstSema, false); 894 APFloat MaxBad = APFloat::getInf(DstSema, false); 895 896 bool IsInexact; 897 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 898 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 899 900 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 901 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 902 llvm::Value *GE = 903 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 904 llvm::Value *LE = 905 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 906 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 907 } 908 } 909 910 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 911 CGF.EmitCheckTypeDescriptor(OrigSrcType), 912 CGF.EmitCheckTypeDescriptor(DstType)}; 913 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 914 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 915 } 916 917 /// Emit a conversion from the specified type to the specified destination type, 918 /// both of which are LLVM scalar types. 919 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 920 QualType DstType, 921 SourceLocation Loc) { 922 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 923 } 924 925 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 926 QualType DstType, 927 SourceLocation Loc, 928 bool TreatBooleanAsSigned) { 929 SrcType = CGF.getContext().getCanonicalType(SrcType); 930 DstType = CGF.getContext().getCanonicalType(DstType); 931 if (SrcType == DstType) return Src; 932 933 if (DstType->isVoidType()) return nullptr; 934 935 llvm::Value *OrigSrc = Src; 936 QualType OrigSrcType = SrcType; 937 llvm::Type *SrcTy = Src->getType(); 938 939 // Handle conversions to bool first, they are special: comparisons against 0. 940 if (DstType->isBooleanType()) 941 return EmitConversionToBool(Src, SrcType); 942 943 llvm::Type *DstTy = ConvertType(DstType); 944 945 // Cast from half through float if half isn't a native type. 946 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 947 // Cast to FP using the intrinsic if the half type itself isn't supported. 948 if (DstTy->isFloatingPointTy()) { 949 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 950 return Builder.CreateCall( 951 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 952 Src); 953 } else { 954 // Cast to other types through float, using either the intrinsic or FPExt, 955 // depending on whether the half type itself is supported 956 // (as opposed to operations on half, available with NativeHalfType). 957 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 958 Src = Builder.CreateCall( 959 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 960 CGF.CGM.FloatTy), 961 Src); 962 } else { 963 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 964 } 965 SrcType = CGF.getContext().FloatTy; 966 SrcTy = CGF.FloatTy; 967 } 968 } 969 970 // Ignore conversions like int -> uint. 971 if (SrcTy == DstTy) 972 return Src; 973 974 // Handle pointer conversions next: pointers can only be converted to/from 975 // other pointers and integers. Check for pointer types in terms of LLVM, as 976 // some native types (like Obj-C id) may map to a pointer type. 977 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 978 // The source value may be an integer, or a pointer. 979 if (isa<llvm::PointerType>(SrcTy)) 980 return Builder.CreateBitCast(Src, DstTy, "conv"); 981 982 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 983 // First, convert to the correct width so that we control the kind of 984 // extension. 985 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 986 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 987 llvm::Value* IntResult = 988 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 989 // Then, cast to pointer. 990 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 991 } 992 993 if (isa<llvm::PointerType>(SrcTy)) { 994 // Must be an ptr to int cast. 995 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 996 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 997 } 998 999 // A scalar can be splatted to an extended vector of the same element type 1000 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1001 // Sema should add casts to make sure that the source expression's type is 1002 // the same as the vector's element type (sans qualifiers) 1003 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1004 SrcType.getTypePtr() && 1005 "Splatted expr doesn't match with vector element type?"); 1006 1007 // Splat the element across to all elements 1008 unsigned NumElements = DstTy->getVectorNumElements(); 1009 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1010 } 1011 1012 // Allow bitcast from vector to integer/fp of the same size. 1013 if (isa<llvm::VectorType>(SrcTy) || 1014 isa<llvm::VectorType>(DstTy)) 1015 return Builder.CreateBitCast(Src, DstTy, "conv"); 1016 1017 // Finally, we have the arithmetic types: real int/float. 1018 Value *Res = nullptr; 1019 llvm::Type *ResTy = DstTy; 1020 1021 // An overflowing conversion has undefined behavior if either the source type 1022 // or the destination type is a floating-point type. 1023 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1024 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1025 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1026 Loc); 1027 1028 // Cast to half through float if half isn't a native type. 1029 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1030 // Make sure we cast in a single step if from another FP type. 1031 if (SrcTy->isFloatingPointTy()) { 1032 // Use the intrinsic if the half type itself isn't supported 1033 // (as opposed to operations on half, available with NativeHalfType). 1034 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 1035 return Builder.CreateCall( 1036 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1037 // If the half type is supported, just use an fptrunc. 1038 return Builder.CreateFPTrunc(Src, DstTy); 1039 } 1040 DstTy = CGF.FloatTy; 1041 } 1042 1043 if (isa<llvm::IntegerType>(SrcTy)) { 1044 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1045 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 1046 InputSigned = true; 1047 } 1048 if (isa<llvm::IntegerType>(DstTy)) 1049 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1050 else if (InputSigned) 1051 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1052 else 1053 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1054 } else if (isa<llvm::IntegerType>(DstTy)) { 1055 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1056 if (DstType->isSignedIntegerOrEnumerationType()) 1057 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1058 else 1059 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1060 } else { 1061 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1062 "Unknown real conversion"); 1063 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1064 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1065 else 1066 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1067 } 1068 1069 if (DstTy != ResTy) { 1070 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1071 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1072 Res = Builder.CreateCall( 1073 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1074 Res); 1075 } else { 1076 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1077 } 1078 } 1079 1080 return Res; 1081 } 1082 1083 /// Emit a conversion from the specified complex type to the specified 1084 /// destination type, where the destination type is an LLVM scalar type. 1085 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1086 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1087 SourceLocation Loc) { 1088 // Get the source element type. 1089 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1090 1091 // Handle conversions to bool first, they are special: comparisons against 0. 1092 if (DstTy->isBooleanType()) { 1093 // Complex != 0 -> (Real != 0) | (Imag != 0) 1094 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1095 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1096 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1097 } 1098 1099 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1100 // the imaginary part of the complex value is discarded and the value of the 1101 // real part is converted according to the conversion rules for the 1102 // corresponding real type. 1103 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1104 } 1105 1106 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1107 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1108 } 1109 1110 /// \brief Emit a sanitization check for the given "binary" operation (which 1111 /// might actually be a unary increment which has been lowered to a binary 1112 /// operation). The check passes if all values in \p Checks (which are \c i1), 1113 /// are \c true. 1114 void ScalarExprEmitter::EmitBinOpCheck( 1115 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1116 assert(CGF.IsSanitizerScope); 1117 SanitizerHandler Check; 1118 SmallVector<llvm::Constant *, 4> StaticData; 1119 SmallVector<llvm::Value *, 2> DynamicData; 1120 1121 BinaryOperatorKind Opcode = Info.Opcode; 1122 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1123 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1124 1125 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1126 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1127 if (UO && UO->getOpcode() == UO_Minus) { 1128 Check = SanitizerHandler::NegateOverflow; 1129 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1130 DynamicData.push_back(Info.RHS); 1131 } else { 1132 if (BinaryOperator::isShiftOp(Opcode)) { 1133 // Shift LHS negative or too large, or RHS out of bounds. 1134 Check = SanitizerHandler::ShiftOutOfBounds; 1135 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1136 StaticData.push_back( 1137 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1138 StaticData.push_back( 1139 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1140 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1141 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1142 Check = SanitizerHandler::DivremOverflow; 1143 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1144 } else { 1145 // Arithmetic overflow (+, -, *). 1146 switch (Opcode) { 1147 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1148 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1149 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1150 default: llvm_unreachable("unexpected opcode for bin op check"); 1151 } 1152 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1153 } 1154 DynamicData.push_back(Info.LHS); 1155 DynamicData.push_back(Info.RHS); 1156 } 1157 1158 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1159 } 1160 1161 //===----------------------------------------------------------------------===// 1162 // Visitor Methods 1163 //===----------------------------------------------------------------------===// 1164 1165 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1166 CGF.ErrorUnsupported(E, "scalar expression"); 1167 if (E->getType()->isVoidType()) 1168 return nullptr; 1169 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1170 } 1171 1172 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1173 // Vector Mask Case 1174 if (E->getNumSubExprs() == 2) { 1175 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1176 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1177 Value *Mask; 1178 1179 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1180 unsigned LHSElts = LTy->getNumElements(); 1181 1182 Mask = RHS; 1183 1184 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1185 1186 // Mask off the high bits of each shuffle index. 1187 Value *MaskBits = 1188 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1189 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1190 1191 // newv = undef 1192 // mask = mask & maskbits 1193 // for each elt 1194 // n = extract mask i 1195 // x = extract val n 1196 // newv = insert newv, x, i 1197 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1198 MTy->getNumElements()); 1199 Value* NewV = llvm::UndefValue::get(RTy); 1200 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1201 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1202 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1203 1204 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1205 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1206 } 1207 return NewV; 1208 } 1209 1210 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1211 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1212 1213 SmallVector<llvm::Constant*, 32> indices; 1214 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1215 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1216 // Check for -1 and output it as undef in the IR. 1217 if (Idx.isSigned() && Idx.isAllOnesValue()) 1218 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1219 else 1220 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1221 } 1222 1223 Value *SV = llvm::ConstantVector::get(indices); 1224 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1225 } 1226 1227 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1228 QualType SrcType = E->getSrcExpr()->getType(), 1229 DstType = E->getType(); 1230 1231 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1232 1233 SrcType = CGF.getContext().getCanonicalType(SrcType); 1234 DstType = CGF.getContext().getCanonicalType(DstType); 1235 if (SrcType == DstType) return Src; 1236 1237 assert(SrcType->isVectorType() && 1238 "ConvertVector source type must be a vector"); 1239 assert(DstType->isVectorType() && 1240 "ConvertVector destination type must be a vector"); 1241 1242 llvm::Type *SrcTy = Src->getType(); 1243 llvm::Type *DstTy = ConvertType(DstType); 1244 1245 // Ignore conversions like int -> uint. 1246 if (SrcTy == DstTy) 1247 return Src; 1248 1249 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1250 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1251 1252 assert(SrcTy->isVectorTy() && 1253 "ConvertVector source IR type must be a vector"); 1254 assert(DstTy->isVectorTy() && 1255 "ConvertVector destination IR type must be a vector"); 1256 1257 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1258 *DstEltTy = DstTy->getVectorElementType(); 1259 1260 if (DstEltType->isBooleanType()) { 1261 assert((SrcEltTy->isFloatingPointTy() || 1262 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1263 1264 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1265 if (SrcEltTy->isFloatingPointTy()) { 1266 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1267 } else { 1268 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1269 } 1270 } 1271 1272 // We have the arithmetic types: real int/float. 1273 Value *Res = nullptr; 1274 1275 if (isa<llvm::IntegerType>(SrcEltTy)) { 1276 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1277 if (isa<llvm::IntegerType>(DstEltTy)) 1278 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1279 else if (InputSigned) 1280 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1281 else 1282 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1283 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1284 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1285 if (DstEltType->isSignedIntegerOrEnumerationType()) 1286 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1287 else 1288 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1289 } else { 1290 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1291 "Unknown real conversion"); 1292 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1293 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1294 else 1295 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1296 } 1297 1298 return Res; 1299 } 1300 1301 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1302 llvm::APSInt Value; 1303 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1304 if (E->isArrow()) 1305 CGF.EmitScalarExpr(E->getBase()); 1306 else 1307 EmitLValue(E->getBase()); 1308 return Builder.getInt(Value); 1309 } 1310 1311 return EmitLoadOfLValue(E); 1312 } 1313 1314 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1315 TestAndClearIgnoreResultAssign(); 1316 1317 // Emit subscript expressions in rvalue context's. For most cases, this just 1318 // loads the lvalue formed by the subscript expr. However, we have to be 1319 // careful, because the base of a vector subscript is occasionally an rvalue, 1320 // so we can't get it as an lvalue. 1321 if (!E->getBase()->getType()->isVectorType()) 1322 return EmitLoadOfLValue(E); 1323 1324 // Handle the vector case. The base must be a vector, the index must be an 1325 // integer value. 1326 Value *Base = Visit(E->getBase()); 1327 Value *Idx = Visit(E->getIdx()); 1328 QualType IdxTy = E->getIdx()->getType(); 1329 1330 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1331 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1332 1333 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1334 } 1335 1336 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1337 unsigned Off, llvm::Type *I32Ty) { 1338 int MV = SVI->getMaskValue(Idx); 1339 if (MV == -1) 1340 return llvm::UndefValue::get(I32Ty); 1341 return llvm::ConstantInt::get(I32Ty, Off+MV); 1342 } 1343 1344 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1345 if (C->getBitWidth() != 32) { 1346 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1347 C->getZExtValue()) && 1348 "Index operand too large for shufflevector mask!"); 1349 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1350 } 1351 return C; 1352 } 1353 1354 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1355 bool Ignore = TestAndClearIgnoreResultAssign(); 1356 (void)Ignore; 1357 assert (Ignore == false && "init list ignored"); 1358 unsigned NumInitElements = E->getNumInits(); 1359 1360 if (E->hadArrayRangeDesignator()) 1361 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1362 1363 llvm::VectorType *VType = 1364 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1365 1366 if (!VType) { 1367 if (NumInitElements == 0) { 1368 // C++11 value-initialization for the scalar. 1369 return EmitNullValue(E->getType()); 1370 } 1371 // We have a scalar in braces. Just use the first element. 1372 return Visit(E->getInit(0)); 1373 } 1374 1375 unsigned ResElts = VType->getNumElements(); 1376 1377 // Loop over initializers collecting the Value for each, and remembering 1378 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1379 // us to fold the shuffle for the swizzle into the shuffle for the vector 1380 // initializer, since LLVM optimizers generally do not want to touch 1381 // shuffles. 1382 unsigned CurIdx = 0; 1383 bool VIsUndefShuffle = false; 1384 llvm::Value *V = llvm::UndefValue::get(VType); 1385 for (unsigned i = 0; i != NumInitElements; ++i) { 1386 Expr *IE = E->getInit(i); 1387 Value *Init = Visit(IE); 1388 SmallVector<llvm::Constant*, 16> Args; 1389 1390 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1391 1392 // Handle scalar elements. If the scalar initializer is actually one 1393 // element of a different vector of the same width, use shuffle instead of 1394 // extract+insert. 1395 if (!VVT) { 1396 if (isa<ExtVectorElementExpr>(IE)) { 1397 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1398 1399 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1400 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1401 Value *LHS = nullptr, *RHS = nullptr; 1402 if (CurIdx == 0) { 1403 // insert into undef -> shuffle (src, undef) 1404 // shufflemask must use an i32 1405 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1406 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1407 1408 LHS = EI->getVectorOperand(); 1409 RHS = V; 1410 VIsUndefShuffle = true; 1411 } else if (VIsUndefShuffle) { 1412 // insert into undefshuffle && size match -> shuffle (v, src) 1413 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1414 for (unsigned j = 0; j != CurIdx; ++j) 1415 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1416 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1417 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1418 1419 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1420 RHS = EI->getVectorOperand(); 1421 VIsUndefShuffle = false; 1422 } 1423 if (!Args.empty()) { 1424 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1425 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1426 ++CurIdx; 1427 continue; 1428 } 1429 } 1430 } 1431 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1432 "vecinit"); 1433 VIsUndefShuffle = false; 1434 ++CurIdx; 1435 continue; 1436 } 1437 1438 unsigned InitElts = VVT->getNumElements(); 1439 1440 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1441 // input is the same width as the vector being constructed, generate an 1442 // optimized shuffle of the swizzle input into the result. 1443 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1444 if (isa<ExtVectorElementExpr>(IE)) { 1445 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1446 Value *SVOp = SVI->getOperand(0); 1447 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1448 1449 if (OpTy->getNumElements() == ResElts) { 1450 for (unsigned j = 0; j != CurIdx; ++j) { 1451 // If the current vector initializer is a shuffle with undef, merge 1452 // this shuffle directly into it. 1453 if (VIsUndefShuffle) { 1454 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1455 CGF.Int32Ty)); 1456 } else { 1457 Args.push_back(Builder.getInt32(j)); 1458 } 1459 } 1460 for (unsigned j = 0, je = InitElts; j != je; ++j) 1461 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1462 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1463 1464 if (VIsUndefShuffle) 1465 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1466 1467 Init = SVOp; 1468 } 1469 } 1470 1471 // Extend init to result vector length, and then shuffle its contribution 1472 // to the vector initializer into V. 1473 if (Args.empty()) { 1474 for (unsigned j = 0; j != InitElts; ++j) 1475 Args.push_back(Builder.getInt32(j)); 1476 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1477 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1478 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1479 Mask, "vext"); 1480 1481 Args.clear(); 1482 for (unsigned j = 0; j != CurIdx; ++j) 1483 Args.push_back(Builder.getInt32(j)); 1484 for (unsigned j = 0; j != InitElts; ++j) 1485 Args.push_back(Builder.getInt32(j+Offset)); 1486 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1487 } 1488 1489 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1490 // merging subsequent shuffles into this one. 1491 if (CurIdx == 0) 1492 std::swap(V, Init); 1493 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1494 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1495 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1496 CurIdx += InitElts; 1497 } 1498 1499 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1500 // Emit remaining default initializers. 1501 llvm::Type *EltTy = VType->getElementType(); 1502 1503 // Emit remaining default initializers 1504 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1505 Value *Idx = Builder.getInt32(CurIdx); 1506 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1507 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1508 } 1509 return V; 1510 } 1511 1512 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1513 const Expr *E = CE->getSubExpr(); 1514 1515 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1516 return false; 1517 1518 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1519 // We always assume that 'this' is never null. 1520 return false; 1521 } 1522 1523 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1524 // And that glvalue casts are never null. 1525 if (ICE->getValueKind() != VK_RValue) 1526 return false; 1527 } 1528 1529 return true; 1530 } 1531 1532 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1533 // have to handle a more broad range of conversions than explicit casts, as they 1534 // handle things like function to ptr-to-function decay etc. 1535 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1536 Expr *E = CE->getSubExpr(); 1537 QualType DestTy = CE->getType(); 1538 CastKind Kind = CE->getCastKind(); 1539 1540 // These cases are generally not written to ignore the result of 1541 // evaluating their sub-expressions, so we clear this now. 1542 bool Ignored = TestAndClearIgnoreResultAssign(); 1543 1544 // Since almost all cast kinds apply to scalars, this switch doesn't have 1545 // a default case, so the compiler will warn on a missing case. The cases 1546 // are in the same order as in the CastKind enum. 1547 switch (Kind) { 1548 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1549 case CK_BuiltinFnToFnPtr: 1550 llvm_unreachable("builtin functions are handled elsewhere"); 1551 1552 case CK_LValueBitCast: 1553 case CK_ObjCObjectLValueCast: { 1554 Address Addr = EmitLValue(E).getAddress(); 1555 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1556 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1557 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1558 } 1559 1560 case CK_CPointerToObjCPointerCast: 1561 case CK_BlockPointerToObjCPointerCast: 1562 case CK_AnyPointerToBlockPointerCast: 1563 case CK_BitCast: { 1564 Value *Src = Visit(const_cast<Expr*>(E)); 1565 llvm::Type *SrcTy = Src->getType(); 1566 llvm::Type *DstTy = ConvertType(DestTy); 1567 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1568 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1569 llvm_unreachable("wrong cast for pointers in different address spaces" 1570 "(must be an address space cast)!"); 1571 } 1572 1573 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1574 if (auto PT = DestTy->getAs<PointerType>()) 1575 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1576 /*MayBeNull=*/true, 1577 CodeGenFunction::CFITCK_UnrelatedCast, 1578 CE->getLocStart()); 1579 } 1580 1581 return Builder.CreateBitCast(Src, DstTy); 1582 } 1583 case CK_AddressSpaceConversion: { 1584 Expr::EvalResult Result; 1585 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 1586 Result.Val.isNullPointer()) { 1587 // If E has side effect, it is emitted even if its final result is a 1588 // null pointer. In that case, a DCE pass should be able to 1589 // eliminate the useless instructions emitted during translating E. 1590 if (Result.HasSideEffects) 1591 Visit(E); 1592 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 1593 ConvertType(DestTy)), DestTy); 1594 } 1595 // Since target may map different address spaces in AST to the same address 1596 // space, an address space conversion may end up as a bitcast. 1597 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 1598 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 1599 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 1600 } 1601 case CK_AtomicToNonAtomic: 1602 case CK_NonAtomicToAtomic: 1603 case CK_NoOp: 1604 case CK_UserDefinedConversion: 1605 return Visit(const_cast<Expr*>(E)); 1606 1607 case CK_BaseToDerived: { 1608 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1609 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1610 1611 Address Base = CGF.EmitPointerWithAlignment(E); 1612 Address Derived = 1613 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1614 CE->path_begin(), CE->path_end(), 1615 CGF.ShouldNullCheckClassCastValue(CE)); 1616 1617 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1618 // performed and the object is not of the derived type. 1619 if (CGF.sanitizePerformTypeCheck()) 1620 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1621 Derived.getPointer(), DestTy->getPointeeType()); 1622 1623 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1624 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1625 Derived.getPointer(), 1626 /*MayBeNull=*/true, 1627 CodeGenFunction::CFITCK_DerivedCast, 1628 CE->getLocStart()); 1629 1630 return Derived.getPointer(); 1631 } 1632 case CK_UncheckedDerivedToBase: 1633 case CK_DerivedToBase: { 1634 // The EmitPointerWithAlignment path does this fine; just discard 1635 // the alignment. 1636 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1637 } 1638 1639 case CK_Dynamic: { 1640 Address V = CGF.EmitPointerWithAlignment(E); 1641 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1642 return CGF.EmitDynamicCast(V, DCE); 1643 } 1644 1645 case CK_ArrayToPointerDecay: 1646 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1647 case CK_FunctionToPointerDecay: 1648 return EmitLValue(E).getPointer(); 1649 1650 case CK_NullToPointer: 1651 if (MustVisitNullValue(E)) 1652 (void) Visit(E); 1653 1654 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 1655 DestTy); 1656 1657 case CK_NullToMemberPointer: { 1658 if (MustVisitNullValue(E)) 1659 (void) Visit(E); 1660 1661 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1662 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1663 } 1664 1665 case CK_ReinterpretMemberPointer: 1666 case CK_BaseToDerivedMemberPointer: 1667 case CK_DerivedToBaseMemberPointer: { 1668 Value *Src = Visit(E); 1669 1670 // Note that the AST doesn't distinguish between checked and 1671 // unchecked member pointer conversions, so we always have to 1672 // implement checked conversions here. This is inefficient when 1673 // actual control flow may be required in order to perform the 1674 // check, which it is for data member pointers (but not member 1675 // function pointers on Itanium and ARM). 1676 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1677 } 1678 1679 case CK_ARCProduceObject: 1680 return CGF.EmitARCRetainScalarExpr(E); 1681 case CK_ARCConsumeObject: 1682 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1683 case CK_ARCReclaimReturnedObject: 1684 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1685 case CK_ARCExtendBlockObject: 1686 return CGF.EmitARCExtendBlockObject(E); 1687 1688 case CK_CopyAndAutoreleaseBlockObject: 1689 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1690 1691 case CK_FloatingRealToComplex: 1692 case CK_FloatingComplexCast: 1693 case CK_IntegralRealToComplex: 1694 case CK_IntegralComplexCast: 1695 case CK_IntegralComplexToFloatingComplex: 1696 case CK_FloatingComplexToIntegralComplex: 1697 case CK_ConstructorConversion: 1698 case CK_ToUnion: 1699 llvm_unreachable("scalar cast to non-scalar value"); 1700 1701 case CK_LValueToRValue: 1702 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1703 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1704 return Visit(const_cast<Expr*>(E)); 1705 1706 case CK_IntegralToPointer: { 1707 Value *Src = Visit(const_cast<Expr*>(E)); 1708 1709 // First, convert to the correct width so that we control the kind of 1710 // extension. 1711 auto DestLLVMTy = ConvertType(DestTy); 1712 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 1713 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1714 llvm::Value* IntResult = 1715 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1716 1717 return Builder.CreateIntToPtr(IntResult, DestLLVMTy); 1718 } 1719 case CK_PointerToIntegral: 1720 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1721 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1722 1723 case CK_ToVoid: { 1724 CGF.EmitIgnoredExpr(E); 1725 return nullptr; 1726 } 1727 case CK_VectorSplat: { 1728 llvm::Type *DstTy = ConvertType(DestTy); 1729 Value *Elt = Visit(const_cast<Expr*>(E)); 1730 // Splat the element across to all elements 1731 unsigned NumElements = DstTy->getVectorNumElements(); 1732 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1733 } 1734 1735 case CK_IntegralCast: 1736 case CK_IntegralToFloating: 1737 case CK_FloatingToIntegral: 1738 case CK_FloatingCast: 1739 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1740 CE->getExprLoc()); 1741 case CK_BooleanToSignedIntegral: 1742 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1743 CE->getExprLoc(), 1744 /*TreatBooleanAsSigned=*/true); 1745 case CK_IntegralToBoolean: 1746 return EmitIntToBoolConversion(Visit(E)); 1747 case CK_PointerToBoolean: 1748 return EmitPointerToBoolConversion(Visit(E), E->getType()); 1749 case CK_FloatingToBoolean: 1750 return EmitFloatToBoolConversion(Visit(E)); 1751 case CK_MemberPointerToBoolean: { 1752 llvm::Value *MemPtr = Visit(E); 1753 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1754 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1755 } 1756 1757 case CK_FloatingComplexToReal: 1758 case CK_IntegralComplexToReal: 1759 return CGF.EmitComplexExpr(E, false, true).first; 1760 1761 case CK_FloatingComplexToBoolean: 1762 case CK_IntegralComplexToBoolean: { 1763 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1764 1765 // TODO: kill this function off, inline appropriate case here 1766 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1767 CE->getExprLoc()); 1768 } 1769 1770 case CK_ZeroToOCLEvent: { 1771 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1772 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1773 } 1774 1775 case CK_ZeroToOCLQueue: { 1776 assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type"); 1777 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1778 } 1779 1780 case CK_IntToOCLSampler: 1781 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1782 1783 } // end of switch 1784 1785 llvm_unreachable("unknown scalar cast"); 1786 } 1787 1788 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1789 CodeGenFunction::StmtExprEvaluation eval(CGF); 1790 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1791 !E->getType()->isVoidType()); 1792 if (!RetAlloca.isValid()) 1793 return nullptr; 1794 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1795 E->getExprLoc()); 1796 } 1797 1798 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1799 CGF.enterFullExpression(E); 1800 CodeGenFunction::RunCleanupsScope Scope(CGF); 1801 Value *V = Visit(E->getSubExpr()); 1802 // Defend against dominance problems caused by jumps out of expression 1803 // evaluation through the shared cleanup block. 1804 Scope.ForceCleanup({&V}); 1805 return V; 1806 } 1807 1808 //===----------------------------------------------------------------------===// 1809 // Unary Operators 1810 //===----------------------------------------------------------------------===// 1811 1812 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1813 llvm::Value *InVal, bool IsInc) { 1814 BinOpInfo BinOp; 1815 BinOp.LHS = InVal; 1816 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1817 BinOp.Ty = E->getType(); 1818 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1819 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 1820 BinOp.E = E; 1821 return BinOp; 1822 } 1823 1824 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1825 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1826 llvm::Value *Amount = 1827 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1828 StringRef Name = IsInc ? "inc" : "dec"; 1829 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1830 case LangOptions::SOB_Defined: 1831 return Builder.CreateAdd(InVal, Amount, Name); 1832 case LangOptions::SOB_Undefined: 1833 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1834 return Builder.CreateNSWAdd(InVal, Amount, Name); 1835 // Fall through. 1836 case LangOptions::SOB_Trapping: 1837 if (IsWidenedIntegerOp(CGF.getContext(), E->getSubExpr())) 1838 return Builder.CreateNSWAdd(InVal, Amount, Name); 1839 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1840 } 1841 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1842 } 1843 1844 llvm::Value * 1845 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1846 bool isInc, bool isPre) { 1847 1848 QualType type = E->getSubExpr()->getType(); 1849 llvm::PHINode *atomicPHI = nullptr; 1850 llvm::Value *value; 1851 llvm::Value *input; 1852 1853 int amount = (isInc ? 1 : -1); 1854 bool isSubtraction = !isInc; 1855 1856 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1857 type = atomicTy->getValueType(); 1858 if (isInc && type->isBooleanType()) { 1859 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1860 if (isPre) { 1861 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1862 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1863 return Builder.getTrue(); 1864 } 1865 // For atomic bool increment, we just store true and return it for 1866 // preincrement, do an atomic swap with true for postincrement 1867 return Builder.CreateAtomicRMW( 1868 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1869 llvm::AtomicOrdering::SequentiallyConsistent); 1870 } 1871 // Special case for atomic increment / decrement on integers, emit 1872 // atomicrmw instructions. We skip this if we want to be doing overflow 1873 // checking, and fall into the slow path with the atomic cmpxchg loop. 1874 if (!type->isBooleanType() && type->isIntegerType() && 1875 !(type->isUnsignedIntegerType() && 1876 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1877 CGF.getLangOpts().getSignedOverflowBehavior() != 1878 LangOptions::SOB_Trapping) { 1879 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1880 llvm::AtomicRMWInst::Sub; 1881 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1882 llvm::Instruction::Sub; 1883 llvm::Value *amt = CGF.EmitToMemory( 1884 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1885 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1886 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1887 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1888 } 1889 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1890 input = value; 1891 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1892 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1893 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1894 value = CGF.EmitToMemory(value, type); 1895 Builder.CreateBr(opBB); 1896 Builder.SetInsertPoint(opBB); 1897 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1898 atomicPHI->addIncoming(value, startBB); 1899 value = atomicPHI; 1900 } else { 1901 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1902 input = value; 1903 } 1904 1905 // Special case of integer increment that we have to check first: bool++. 1906 // Due to promotion rules, we get: 1907 // bool++ -> bool = bool + 1 1908 // -> bool = (int)bool + 1 1909 // -> bool = ((int)bool + 1 != 0) 1910 // An interesting aspect of this is that increment is always true. 1911 // Decrement does not have this property. 1912 if (isInc && type->isBooleanType()) { 1913 value = Builder.getTrue(); 1914 1915 // Most common case by far: integer increment. 1916 } else if (type->isIntegerType()) { 1917 // Note that signed integer inc/dec with width less than int can't 1918 // overflow because of promotion rules; we're just eliding a few steps here. 1919 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1920 CGF.IntTy->getIntegerBitWidth(); 1921 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1922 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1923 } else if (CanOverflow && type->isUnsignedIntegerType() && 1924 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1925 value = 1926 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1927 } else { 1928 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1929 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1930 } 1931 1932 // Next most common: pointer increment. 1933 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1934 QualType type = ptr->getPointeeType(); 1935 1936 // VLA types don't have constant size. 1937 if (const VariableArrayType *vla 1938 = CGF.getContext().getAsVariableArrayType(type)) { 1939 llvm::Value *numElts = CGF.getVLASize(vla).first; 1940 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1941 if (CGF.getLangOpts().isSignedOverflowDefined()) 1942 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1943 else 1944 value = CGF.EmitCheckedInBoundsGEP( 1945 value, numElts, /*SignedIndices=*/false, isSubtraction, 1946 E->getExprLoc(), "vla.inc"); 1947 1948 // Arithmetic on function pointers (!) is just +-1. 1949 } else if (type->isFunctionType()) { 1950 llvm::Value *amt = Builder.getInt32(amount); 1951 1952 value = CGF.EmitCastToVoidPtr(value); 1953 if (CGF.getLangOpts().isSignedOverflowDefined()) 1954 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1955 else 1956 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 1957 isSubtraction, E->getExprLoc(), 1958 "incdec.funcptr"); 1959 value = Builder.CreateBitCast(value, input->getType()); 1960 1961 // For everything else, we can just do a simple increment. 1962 } else { 1963 llvm::Value *amt = Builder.getInt32(amount); 1964 if (CGF.getLangOpts().isSignedOverflowDefined()) 1965 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1966 else 1967 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 1968 isSubtraction, E->getExprLoc(), 1969 "incdec.ptr"); 1970 } 1971 1972 // Vector increment/decrement. 1973 } else if (type->isVectorType()) { 1974 if (type->hasIntegerRepresentation()) { 1975 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1976 1977 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1978 } else { 1979 value = Builder.CreateFAdd( 1980 value, 1981 llvm::ConstantFP::get(value->getType(), amount), 1982 isInc ? "inc" : "dec"); 1983 } 1984 1985 // Floating point. 1986 } else if (type->isRealFloatingType()) { 1987 // Add the inc/dec to the real part. 1988 llvm::Value *amt; 1989 1990 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1991 // Another special case: half FP increment should be done via float 1992 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1993 value = Builder.CreateCall( 1994 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1995 CGF.CGM.FloatTy), 1996 input, "incdec.conv"); 1997 } else { 1998 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1999 } 2000 } 2001 2002 if (value->getType()->isFloatTy()) 2003 amt = llvm::ConstantFP::get(VMContext, 2004 llvm::APFloat(static_cast<float>(amount))); 2005 else if (value->getType()->isDoubleTy()) 2006 amt = llvm::ConstantFP::get(VMContext, 2007 llvm::APFloat(static_cast<double>(amount))); 2008 else { 2009 // Remaining types are Half, LongDouble or __float128. Convert from float. 2010 llvm::APFloat F(static_cast<float>(amount)); 2011 bool ignored; 2012 const llvm::fltSemantics *FS; 2013 // Don't use getFloatTypeSemantics because Half isn't 2014 // necessarily represented using the "half" LLVM type. 2015 if (value->getType()->isFP128Ty()) 2016 FS = &CGF.getTarget().getFloat128Format(); 2017 else if (value->getType()->isHalfTy()) 2018 FS = &CGF.getTarget().getHalfFormat(); 2019 else 2020 FS = &CGF.getTarget().getLongDoubleFormat(); 2021 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2022 amt = llvm::ConstantFP::get(VMContext, F); 2023 } 2024 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2025 2026 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2027 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 2028 value = Builder.CreateCall( 2029 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2030 CGF.CGM.FloatTy), 2031 value, "incdec.conv"); 2032 } else { 2033 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2034 } 2035 } 2036 2037 // Objective-C pointer types. 2038 } else { 2039 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2040 value = CGF.EmitCastToVoidPtr(value); 2041 2042 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2043 if (!isInc) size = -size; 2044 llvm::Value *sizeValue = 2045 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2046 2047 if (CGF.getLangOpts().isSignedOverflowDefined()) 2048 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2049 else 2050 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2051 /*SignedIndices=*/false, isSubtraction, 2052 E->getExprLoc(), "incdec.objptr"); 2053 value = Builder.CreateBitCast(value, input->getType()); 2054 } 2055 2056 if (atomicPHI) { 2057 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2058 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2059 auto Pair = CGF.EmitAtomicCompareExchange( 2060 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2061 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2062 llvm::Value *success = Pair.second; 2063 atomicPHI->addIncoming(old, opBB); 2064 Builder.CreateCondBr(success, contBB, opBB); 2065 Builder.SetInsertPoint(contBB); 2066 return isPre ? value : input; 2067 } 2068 2069 // Store the updated result through the lvalue. 2070 if (LV.isBitField()) 2071 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2072 else 2073 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2074 2075 // If this is a postinc, return the value read from memory, otherwise use the 2076 // updated value. 2077 return isPre ? value : input; 2078 } 2079 2080 2081 2082 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2083 TestAndClearIgnoreResultAssign(); 2084 // Emit unary minus with EmitSub so we handle overflow cases etc. 2085 BinOpInfo BinOp; 2086 BinOp.RHS = Visit(E->getSubExpr()); 2087 2088 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2089 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2090 else 2091 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2092 BinOp.Ty = E->getType(); 2093 BinOp.Opcode = BO_Sub; 2094 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2095 BinOp.E = E; 2096 return EmitSub(BinOp); 2097 } 2098 2099 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2100 TestAndClearIgnoreResultAssign(); 2101 Value *Op = Visit(E->getSubExpr()); 2102 return Builder.CreateNot(Op, "neg"); 2103 } 2104 2105 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2106 // Perform vector logical not on comparison with zero vector. 2107 if (E->getType()->isExtVectorType()) { 2108 Value *Oper = Visit(E->getSubExpr()); 2109 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2110 Value *Result; 2111 if (Oper->getType()->isFPOrFPVectorTy()) 2112 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2113 else 2114 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2115 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2116 } 2117 2118 // Compare operand to zero. 2119 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2120 2121 // Invert value. 2122 // TODO: Could dynamically modify easy computations here. For example, if 2123 // the operand is an icmp ne, turn into icmp eq. 2124 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2125 2126 // ZExt result to the expr type. 2127 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2128 } 2129 2130 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2131 // Try folding the offsetof to a constant. 2132 llvm::APSInt Value; 2133 if (E->EvaluateAsInt(Value, CGF.getContext())) 2134 return Builder.getInt(Value); 2135 2136 // Loop over the components of the offsetof to compute the value. 2137 unsigned n = E->getNumComponents(); 2138 llvm::Type* ResultType = ConvertType(E->getType()); 2139 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2140 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2141 for (unsigned i = 0; i != n; ++i) { 2142 OffsetOfNode ON = E->getComponent(i); 2143 llvm::Value *Offset = nullptr; 2144 switch (ON.getKind()) { 2145 case OffsetOfNode::Array: { 2146 // Compute the index 2147 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2148 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2149 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2150 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2151 2152 // Save the element type 2153 CurrentType = 2154 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2155 2156 // Compute the element size 2157 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2158 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2159 2160 // Multiply out to compute the result 2161 Offset = Builder.CreateMul(Idx, ElemSize); 2162 break; 2163 } 2164 2165 case OffsetOfNode::Field: { 2166 FieldDecl *MemberDecl = ON.getField(); 2167 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2168 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2169 2170 // Compute the index of the field in its parent. 2171 unsigned i = 0; 2172 // FIXME: It would be nice if we didn't have to loop here! 2173 for (RecordDecl::field_iterator Field = RD->field_begin(), 2174 FieldEnd = RD->field_end(); 2175 Field != FieldEnd; ++Field, ++i) { 2176 if (*Field == MemberDecl) 2177 break; 2178 } 2179 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2180 2181 // Compute the offset to the field 2182 int64_t OffsetInt = RL.getFieldOffset(i) / 2183 CGF.getContext().getCharWidth(); 2184 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2185 2186 // Save the element type. 2187 CurrentType = MemberDecl->getType(); 2188 break; 2189 } 2190 2191 case OffsetOfNode::Identifier: 2192 llvm_unreachable("dependent __builtin_offsetof"); 2193 2194 case OffsetOfNode::Base: { 2195 if (ON.getBase()->isVirtual()) { 2196 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2197 continue; 2198 } 2199 2200 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2201 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2202 2203 // Save the element type. 2204 CurrentType = ON.getBase()->getType(); 2205 2206 // Compute the offset to the base. 2207 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2208 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2209 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2210 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2211 break; 2212 } 2213 } 2214 Result = Builder.CreateAdd(Result, Offset); 2215 } 2216 return Result; 2217 } 2218 2219 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2220 /// argument of the sizeof expression as an integer. 2221 Value * 2222 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2223 const UnaryExprOrTypeTraitExpr *E) { 2224 QualType TypeToSize = E->getTypeOfArgument(); 2225 if (E->getKind() == UETT_SizeOf) { 2226 if (const VariableArrayType *VAT = 2227 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2228 if (E->isArgumentType()) { 2229 // sizeof(type) - make sure to emit the VLA size. 2230 CGF.EmitVariablyModifiedType(TypeToSize); 2231 } else { 2232 // C99 6.5.3.4p2: If the argument is an expression of type 2233 // VLA, it is evaluated. 2234 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2235 } 2236 2237 QualType eltType; 2238 llvm::Value *numElts; 2239 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2240 2241 llvm::Value *size = numElts; 2242 2243 // Scale the number of non-VLA elements by the non-VLA element size. 2244 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2245 if (!eltSize.isOne()) 2246 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2247 2248 return size; 2249 } 2250 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2251 auto Alignment = 2252 CGF.getContext() 2253 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2254 E->getTypeOfArgument()->getPointeeType())) 2255 .getQuantity(); 2256 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2257 } 2258 2259 // If this isn't sizeof(vla), the result must be constant; use the constant 2260 // folding logic so we don't have to duplicate it here. 2261 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2262 } 2263 2264 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2265 Expr *Op = E->getSubExpr(); 2266 if (Op->getType()->isAnyComplexType()) { 2267 // If it's an l-value, load through the appropriate subobject l-value. 2268 // Note that we have to ask E because Op might be an l-value that 2269 // this won't work for, e.g. an Obj-C property. 2270 if (E->isGLValue()) 2271 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2272 E->getExprLoc()).getScalarVal(); 2273 2274 // Otherwise, calculate and project. 2275 return CGF.EmitComplexExpr(Op, false, true).first; 2276 } 2277 2278 return Visit(Op); 2279 } 2280 2281 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2282 Expr *Op = E->getSubExpr(); 2283 if (Op->getType()->isAnyComplexType()) { 2284 // If it's an l-value, load through the appropriate subobject l-value. 2285 // Note that we have to ask E because Op might be an l-value that 2286 // this won't work for, e.g. an Obj-C property. 2287 if (Op->isGLValue()) 2288 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2289 E->getExprLoc()).getScalarVal(); 2290 2291 // Otherwise, calculate and project. 2292 return CGF.EmitComplexExpr(Op, true, false).second; 2293 } 2294 2295 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2296 // effects are evaluated, but not the actual value. 2297 if (Op->isGLValue()) 2298 CGF.EmitLValue(Op); 2299 else 2300 CGF.EmitScalarExpr(Op, true); 2301 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2302 } 2303 2304 //===----------------------------------------------------------------------===// 2305 // Binary Operators 2306 //===----------------------------------------------------------------------===// 2307 2308 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2309 TestAndClearIgnoreResultAssign(); 2310 BinOpInfo Result; 2311 Result.LHS = Visit(E->getLHS()); 2312 Result.RHS = Visit(E->getRHS()); 2313 Result.Ty = E->getType(); 2314 Result.Opcode = E->getOpcode(); 2315 Result.FPFeatures = E->getFPFeatures(); 2316 Result.E = E; 2317 return Result; 2318 } 2319 2320 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2321 const CompoundAssignOperator *E, 2322 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2323 Value *&Result) { 2324 QualType LHSTy = E->getLHS()->getType(); 2325 BinOpInfo OpInfo; 2326 2327 if (E->getComputationResultType()->isAnyComplexType()) 2328 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2329 2330 // Emit the RHS first. __block variables need to have the rhs evaluated 2331 // first, plus this should improve codegen a little. 2332 OpInfo.RHS = Visit(E->getRHS()); 2333 OpInfo.Ty = E->getComputationResultType(); 2334 OpInfo.Opcode = E->getOpcode(); 2335 OpInfo.FPFeatures = E->getFPFeatures(); 2336 OpInfo.E = E; 2337 // Load/convert the LHS. 2338 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2339 2340 llvm::PHINode *atomicPHI = nullptr; 2341 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2342 QualType type = atomicTy->getValueType(); 2343 if (!type->isBooleanType() && type->isIntegerType() && 2344 !(type->isUnsignedIntegerType() && 2345 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2346 CGF.getLangOpts().getSignedOverflowBehavior() != 2347 LangOptions::SOB_Trapping) { 2348 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2349 switch (OpInfo.Opcode) { 2350 // We don't have atomicrmw operands for *, %, /, <<, >> 2351 case BO_MulAssign: case BO_DivAssign: 2352 case BO_RemAssign: 2353 case BO_ShlAssign: 2354 case BO_ShrAssign: 2355 break; 2356 case BO_AddAssign: 2357 aop = llvm::AtomicRMWInst::Add; 2358 break; 2359 case BO_SubAssign: 2360 aop = llvm::AtomicRMWInst::Sub; 2361 break; 2362 case BO_AndAssign: 2363 aop = llvm::AtomicRMWInst::And; 2364 break; 2365 case BO_XorAssign: 2366 aop = llvm::AtomicRMWInst::Xor; 2367 break; 2368 case BO_OrAssign: 2369 aop = llvm::AtomicRMWInst::Or; 2370 break; 2371 default: 2372 llvm_unreachable("Invalid compound assignment type"); 2373 } 2374 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2375 llvm::Value *amt = CGF.EmitToMemory( 2376 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2377 E->getExprLoc()), 2378 LHSTy); 2379 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2380 llvm::AtomicOrdering::SequentiallyConsistent); 2381 return LHSLV; 2382 } 2383 } 2384 // FIXME: For floating point types, we should be saving and restoring the 2385 // floating point environment in the loop. 2386 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2387 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2388 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2389 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2390 Builder.CreateBr(opBB); 2391 Builder.SetInsertPoint(opBB); 2392 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2393 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2394 OpInfo.LHS = atomicPHI; 2395 } 2396 else 2397 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2398 2399 SourceLocation Loc = E->getExprLoc(); 2400 OpInfo.LHS = 2401 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2402 2403 // Expand the binary operator. 2404 Result = (this->*Func)(OpInfo); 2405 2406 // Convert the result back to the LHS type. 2407 Result = 2408 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2409 2410 if (atomicPHI) { 2411 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2412 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2413 auto Pair = CGF.EmitAtomicCompareExchange( 2414 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2415 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2416 llvm::Value *success = Pair.second; 2417 atomicPHI->addIncoming(old, opBB); 2418 Builder.CreateCondBr(success, contBB, opBB); 2419 Builder.SetInsertPoint(contBB); 2420 return LHSLV; 2421 } 2422 2423 // Store the result value into the LHS lvalue. Bit-fields are handled 2424 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2425 // 'An assignment expression has the value of the left operand after the 2426 // assignment...'. 2427 if (LHSLV.isBitField()) 2428 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2429 else 2430 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2431 2432 return LHSLV; 2433 } 2434 2435 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2436 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2437 bool Ignore = TestAndClearIgnoreResultAssign(); 2438 Value *RHS; 2439 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2440 2441 // If the result is clearly ignored, return now. 2442 if (Ignore) 2443 return nullptr; 2444 2445 // The result of an assignment in C is the assigned r-value. 2446 if (!CGF.getLangOpts().CPlusPlus) 2447 return RHS; 2448 2449 // If the lvalue is non-volatile, return the computed value of the assignment. 2450 if (!LHS.isVolatileQualified()) 2451 return RHS; 2452 2453 // Otherwise, reload the value. 2454 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2455 } 2456 2457 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2458 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2459 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2460 2461 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2462 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2463 SanitizerKind::IntegerDivideByZero)); 2464 } 2465 2466 const auto *BO = cast<BinaryOperator>(Ops.E); 2467 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2468 Ops.Ty->hasSignedIntegerRepresentation() && 2469 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2470 Ops.mayHaveIntegerOverflow()) { 2471 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2472 2473 llvm::Value *IntMin = 2474 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2475 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2476 2477 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2478 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2479 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2480 Checks.push_back( 2481 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2482 } 2483 2484 if (Checks.size() > 0) 2485 EmitBinOpCheck(Checks, Ops); 2486 } 2487 2488 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2489 { 2490 CodeGenFunction::SanitizerScope SanScope(&CGF); 2491 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2492 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2493 Ops.Ty->isIntegerType() && 2494 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2495 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2496 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2497 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2498 Ops.Ty->isRealFloatingType() && 2499 Ops.mayHaveFloatDivisionByZero()) { 2500 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2501 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2502 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2503 Ops); 2504 } 2505 } 2506 2507 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2508 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2509 if (CGF.getLangOpts().OpenCL && 2510 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2511 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2512 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2513 // build option allows an application to specify that single precision 2514 // floating-point divide (x/y and 1/x) and sqrt used in the program 2515 // source are correctly rounded. 2516 llvm::Type *ValTy = Val->getType(); 2517 if (ValTy->isFloatTy() || 2518 (isa<llvm::VectorType>(ValTy) && 2519 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2520 CGF.SetFPAccuracy(Val, 2.5); 2521 } 2522 return Val; 2523 } 2524 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2525 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2526 else 2527 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2528 } 2529 2530 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2531 // Rem in C can't be a floating point type: C99 6.5.5p2. 2532 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2533 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2534 Ops.Ty->isIntegerType() && 2535 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2536 CodeGenFunction::SanitizerScope SanScope(&CGF); 2537 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2538 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2539 } 2540 2541 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2542 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2543 else 2544 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2545 } 2546 2547 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2548 unsigned IID; 2549 unsigned OpID = 0; 2550 2551 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2552 switch (Ops.Opcode) { 2553 case BO_Add: 2554 case BO_AddAssign: 2555 OpID = 1; 2556 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2557 llvm::Intrinsic::uadd_with_overflow; 2558 break; 2559 case BO_Sub: 2560 case BO_SubAssign: 2561 OpID = 2; 2562 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2563 llvm::Intrinsic::usub_with_overflow; 2564 break; 2565 case BO_Mul: 2566 case BO_MulAssign: 2567 OpID = 3; 2568 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2569 llvm::Intrinsic::umul_with_overflow; 2570 break; 2571 default: 2572 llvm_unreachable("Unsupported operation for overflow detection"); 2573 } 2574 OpID <<= 1; 2575 if (isSigned) 2576 OpID |= 1; 2577 2578 CodeGenFunction::SanitizerScope SanScope(&CGF); 2579 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2580 2581 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2582 2583 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2584 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2585 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2586 2587 // Handle overflow with llvm.trap if no custom handler has been specified. 2588 const std::string *handlerName = 2589 &CGF.getLangOpts().OverflowHandler; 2590 if (handlerName->empty()) { 2591 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2592 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2593 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2594 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2595 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2596 : SanitizerKind::UnsignedIntegerOverflow; 2597 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2598 } else 2599 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2600 return result; 2601 } 2602 2603 // Branch in case of overflow. 2604 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2605 llvm::BasicBlock *continueBB = 2606 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2607 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2608 2609 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2610 2611 // If an overflow handler is set, then we want to call it and then use its 2612 // result, if it returns. 2613 Builder.SetInsertPoint(overflowBB); 2614 2615 // Get the overflow handler. 2616 llvm::Type *Int8Ty = CGF.Int8Ty; 2617 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2618 llvm::FunctionType *handlerTy = 2619 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2620 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2621 2622 // Sign extend the args to 64-bit, so that we can use the same handler for 2623 // all types of overflow. 2624 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2625 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2626 2627 // Call the handler with the two arguments, the operation, and the size of 2628 // the result. 2629 llvm::Value *handlerArgs[] = { 2630 lhs, 2631 rhs, 2632 Builder.getInt8(OpID), 2633 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2634 }; 2635 llvm::Value *handlerResult = 2636 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2637 2638 // Truncate the result back to the desired size. 2639 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2640 Builder.CreateBr(continueBB); 2641 2642 Builder.SetInsertPoint(continueBB); 2643 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2644 phi->addIncoming(result, initialBB); 2645 phi->addIncoming(handlerResult, overflowBB); 2646 2647 return phi; 2648 } 2649 2650 /// Emit pointer + index arithmetic. 2651 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2652 const BinOpInfo &op, 2653 bool isSubtraction) { 2654 // Must have binary (not unary) expr here. Unary pointer 2655 // increment/decrement doesn't use this path. 2656 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2657 2658 Value *pointer = op.LHS; 2659 Expr *pointerOperand = expr->getLHS(); 2660 Value *index = op.RHS; 2661 Expr *indexOperand = expr->getRHS(); 2662 2663 // In a subtraction, the LHS is always the pointer. 2664 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2665 std::swap(pointer, index); 2666 std::swap(pointerOperand, indexOperand); 2667 } 2668 2669 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2670 2671 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2672 auto &DL = CGF.CGM.getDataLayout(); 2673 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 2674 if (width != DL.getTypeSizeInBits(PtrTy)) { 2675 // Zero-extend or sign-extend the pointer value according to 2676 // whether the index is signed or not. 2677 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 2678 "idx.ext"); 2679 } 2680 2681 // If this is subtraction, negate the index. 2682 if (isSubtraction) 2683 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2684 2685 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2686 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2687 /*Accessed*/ false); 2688 2689 const PointerType *pointerType 2690 = pointerOperand->getType()->getAs<PointerType>(); 2691 if (!pointerType) { 2692 QualType objectType = pointerOperand->getType() 2693 ->castAs<ObjCObjectPointerType>() 2694 ->getPointeeType(); 2695 llvm::Value *objectSize 2696 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2697 2698 index = CGF.Builder.CreateMul(index, objectSize); 2699 2700 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2701 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2702 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2703 } 2704 2705 QualType elementType = pointerType->getPointeeType(); 2706 if (const VariableArrayType *vla 2707 = CGF.getContext().getAsVariableArrayType(elementType)) { 2708 // The element count here is the total number of non-VLA elements. 2709 llvm::Value *numElements = CGF.getVLASize(vla).first; 2710 2711 // Effectively, the multiply by the VLA size is part of the GEP. 2712 // GEP indexes are signed, and scaling an index isn't permitted to 2713 // signed-overflow, so we use the same semantics for our explicit 2714 // multiply. We suppress this if overflow is not undefined behavior. 2715 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2716 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2717 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2718 } else { 2719 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2720 pointer = 2721 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2722 op.E->getExprLoc(), "add.ptr"); 2723 } 2724 return pointer; 2725 } 2726 2727 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2728 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2729 // future proof. 2730 if (elementType->isVoidType() || elementType->isFunctionType()) { 2731 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2732 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2733 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2734 } 2735 2736 if (CGF.getLangOpts().isSignedOverflowDefined()) 2737 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2738 2739 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2740 op.E->getExprLoc(), "add.ptr"); 2741 } 2742 2743 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2744 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2745 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2746 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2747 // efficient operations. 2748 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2749 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2750 bool negMul, bool negAdd) { 2751 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2752 2753 Value *MulOp0 = MulOp->getOperand(0); 2754 Value *MulOp1 = MulOp->getOperand(1); 2755 if (negMul) { 2756 MulOp0 = 2757 Builder.CreateFSub( 2758 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2759 "neg"); 2760 } else if (negAdd) { 2761 Addend = 2762 Builder.CreateFSub( 2763 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2764 "neg"); 2765 } 2766 2767 Value *FMulAdd = Builder.CreateCall( 2768 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2769 {MulOp0, MulOp1, Addend}); 2770 MulOp->eraseFromParent(); 2771 2772 return FMulAdd; 2773 } 2774 2775 // Check whether it would be legal to emit an fmuladd intrinsic call to 2776 // represent op and if so, build the fmuladd. 2777 // 2778 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2779 // Does NOT check the type of the operation - it's assumed that this function 2780 // will be called from contexts where it's known that the type is contractable. 2781 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2782 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2783 bool isSub=false) { 2784 2785 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2786 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2787 "Only fadd/fsub can be the root of an fmuladd."); 2788 2789 // Check whether this op is marked as fusable. 2790 if (!op.FPFeatures.allowFPContractWithinStatement()) 2791 return nullptr; 2792 2793 // We have a potentially fusable op. Look for a mul on one of the operands. 2794 // Also, make sure that the mul result isn't used directly. In that case, 2795 // there's no point creating a muladd operation. 2796 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2797 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2798 LHSBinOp->use_empty()) 2799 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2800 } 2801 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2802 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2803 RHSBinOp->use_empty()) 2804 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2805 } 2806 2807 return nullptr; 2808 } 2809 2810 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2811 if (op.LHS->getType()->isPointerTy() || 2812 op.RHS->getType()->isPointerTy()) 2813 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 2814 2815 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2816 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2817 case LangOptions::SOB_Defined: 2818 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2819 case LangOptions::SOB_Undefined: 2820 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2821 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2822 // Fall through. 2823 case LangOptions::SOB_Trapping: 2824 if (CanElideOverflowCheck(CGF.getContext(), op)) 2825 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2826 return EmitOverflowCheckedBinOp(op); 2827 } 2828 } 2829 2830 if (op.Ty->isUnsignedIntegerType() && 2831 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2832 !CanElideOverflowCheck(CGF.getContext(), op)) 2833 return EmitOverflowCheckedBinOp(op); 2834 2835 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2836 // Try to form an fmuladd. 2837 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2838 return FMulAdd; 2839 2840 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2841 return propagateFMFlags(V, op); 2842 } 2843 2844 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2845 } 2846 2847 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2848 // The LHS is always a pointer if either side is. 2849 if (!op.LHS->getType()->isPointerTy()) { 2850 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2851 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2852 case LangOptions::SOB_Defined: 2853 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2854 case LangOptions::SOB_Undefined: 2855 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2856 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2857 // Fall through. 2858 case LangOptions::SOB_Trapping: 2859 if (CanElideOverflowCheck(CGF.getContext(), op)) 2860 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2861 return EmitOverflowCheckedBinOp(op); 2862 } 2863 } 2864 2865 if (op.Ty->isUnsignedIntegerType() && 2866 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2867 !CanElideOverflowCheck(CGF.getContext(), op)) 2868 return EmitOverflowCheckedBinOp(op); 2869 2870 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2871 // Try to form an fmuladd. 2872 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2873 return FMulAdd; 2874 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2875 return propagateFMFlags(V, op); 2876 } 2877 2878 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2879 } 2880 2881 // If the RHS is not a pointer, then we have normal pointer 2882 // arithmetic. 2883 if (!op.RHS->getType()->isPointerTy()) 2884 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 2885 2886 // Otherwise, this is a pointer subtraction. 2887 2888 // Do the raw subtraction part. 2889 llvm::Value *LHS 2890 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2891 llvm::Value *RHS 2892 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2893 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2894 2895 // Okay, figure out the element size. 2896 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2897 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2898 2899 llvm::Value *divisor = nullptr; 2900 2901 // For a variable-length array, this is going to be non-constant. 2902 if (const VariableArrayType *vla 2903 = CGF.getContext().getAsVariableArrayType(elementType)) { 2904 llvm::Value *numElements; 2905 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2906 2907 divisor = numElements; 2908 2909 // Scale the number of non-VLA elements by the non-VLA element size. 2910 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2911 if (!eltSize.isOne()) 2912 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2913 2914 // For everything elese, we can just compute it, safe in the 2915 // assumption that Sema won't let anything through that we can't 2916 // safely compute the size of. 2917 } else { 2918 CharUnits elementSize; 2919 // Handle GCC extension for pointer arithmetic on void* and 2920 // function pointer types. 2921 if (elementType->isVoidType() || elementType->isFunctionType()) 2922 elementSize = CharUnits::One(); 2923 else 2924 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2925 2926 // Don't even emit the divide for element size of 1. 2927 if (elementSize.isOne()) 2928 return diffInChars; 2929 2930 divisor = CGF.CGM.getSize(elementSize); 2931 } 2932 2933 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2934 // pointer difference in C is only defined in the case where both operands 2935 // are pointing to elements of an array. 2936 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2937 } 2938 2939 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2940 llvm::IntegerType *Ty; 2941 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2942 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2943 else 2944 Ty = cast<llvm::IntegerType>(LHS->getType()); 2945 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2946 } 2947 2948 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2949 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2950 // RHS to the same size as the LHS. 2951 Value *RHS = Ops.RHS; 2952 if (Ops.LHS->getType() != RHS->getType()) 2953 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2954 2955 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2956 Ops.Ty->hasSignedIntegerRepresentation() && 2957 !CGF.getLangOpts().isSignedOverflowDefined(); 2958 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2959 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2960 if (CGF.getLangOpts().OpenCL) 2961 RHS = 2962 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2963 else if ((SanitizeBase || SanitizeExponent) && 2964 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2965 CodeGenFunction::SanitizerScope SanScope(&CGF); 2966 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2967 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 2968 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 2969 2970 if (SanitizeExponent) { 2971 Checks.push_back( 2972 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2973 } 2974 2975 if (SanitizeBase) { 2976 // Check whether we are shifting any non-zero bits off the top of the 2977 // integer. We only emit this check if exponent is valid - otherwise 2978 // instructions below will have undefined behavior themselves. 2979 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2980 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2981 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2982 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2983 llvm::Value *PromotedWidthMinusOne = 2984 (RHS == Ops.RHS) ? WidthMinusOne 2985 : GetWidthMinusOneValue(Ops.LHS, RHS); 2986 CGF.EmitBlock(CheckShiftBase); 2987 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 2988 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 2989 /*NUW*/ true, /*NSW*/ true), 2990 "shl.check"); 2991 if (CGF.getLangOpts().CPlusPlus) { 2992 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2993 // Under C++11's rules, shifting a 1 bit into the sign bit is 2994 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2995 // define signed left shifts, so we use the C99 and C++11 rules there). 2996 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2997 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2998 } 2999 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3000 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3001 CGF.EmitBlock(Cont); 3002 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3003 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3004 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3005 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3006 } 3007 3008 assert(!Checks.empty()); 3009 EmitBinOpCheck(Checks, Ops); 3010 } 3011 3012 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3013 } 3014 3015 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3016 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3017 // RHS to the same size as the LHS. 3018 Value *RHS = Ops.RHS; 3019 if (Ops.LHS->getType() != RHS->getType()) 3020 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3021 3022 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3023 if (CGF.getLangOpts().OpenCL) 3024 RHS = 3025 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3026 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3027 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3028 CodeGenFunction::SanitizerScope SanScope(&CGF); 3029 llvm::Value *Valid = 3030 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3031 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3032 } 3033 3034 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3035 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3036 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3037 } 3038 3039 enum IntrinsicType { VCMPEQ, VCMPGT }; 3040 // return corresponding comparison intrinsic for given vector type 3041 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3042 BuiltinType::Kind ElemKind) { 3043 switch (ElemKind) { 3044 default: llvm_unreachable("unexpected element type"); 3045 case BuiltinType::Char_U: 3046 case BuiltinType::UChar: 3047 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3048 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3049 case BuiltinType::Char_S: 3050 case BuiltinType::SChar: 3051 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3052 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3053 case BuiltinType::UShort: 3054 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3055 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3056 case BuiltinType::Short: 3057 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3058 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3059 case BuiltinType::UInt: 3060 case BuiltinType::ULong: 3061 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3062 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3063 case BuiltinType::Int: 3064 case BuiltinType::Long: 3065 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3066 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3067 case BuiltinType::Float: 3068 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3069 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3070 } 3071 } 3072 3073 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3074 llvm::CmpInst::Predicate UICmpOpc, 3075 llvm::CmpInst::Predicate SICmpOpc, 3076 llvm::CmpInst::Predicate FCmpOpc) { 3077 TestAndClearIgnoreResultAssign(); 3078 Value *Result; 3079 QualType LHSTy = E->getLHS()->getType(); 3080 QualType RHSTy = E->getRHS()->getType(); 3081 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3082 assert(E->getOpcode() == BO_EQ || 3083 E->getOpcode() == BO_NE); 3084 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3085 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3086 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3087 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3088 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3089 Value *LHS = Visit(E->getLHS()); 3090 Value *RHS = Visit(E->getRHS()); 3091 3092 // If AltiVec, the comparison results in a numeric type, so we use 3093 // intrinsics comparing vectors and giving 0 or 1 as a result 3094 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3095 // constants for mapping CR6 register bits to predicate result 3096 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3097 3098 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3099 3100 // in several cases vector arguments order will be reversed 3101 Value *FirstVecArg = LHS, 3102 *SecondVecArg = RHS; 3103 3104 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3105 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3106 BuiltinType::Kind ElementKind = BTy->getKind(); 3107 3108 switch(E->getOpcode()) { 3109 default: llvm_unreachable("is not a comparison operation"); 3110 case BO_EQ: 3111 CR6 = CR6_LT; 3112 ID = GetIntrinsic(VCMPEQ, ElementKind); 3113 break; 3114 case BO_NE: 3115 CR6 = CR6_EQ; 3116 ID = GetIntrinsic(VCMPEQ, ElementKind); 3117 break; 3118 case BO_LT: 3119 CR6 = CR6_LT; 3120 ID = GetIntrinsic(VCMPGT, ElementKind); 3121 std::swap(FirstVecArg, SecondVecArg); 3122 break; 3123 case BO_GT: 3124 CR6 = CR6_LT; 3125 ID = GetIntrinsic(VCMPGT, ElementKind); 3126 break; 3127 case BO_LE: 3128 if (ElementKind == BuiltinType::Float) { 3129 CR6 = CR6_LT; 3130 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3131 std::swap(FirstVecArg, SecondVecArg); 3132 } 3133 else { 3134 CR6 = CR6_EQ; 3135 ID = GetIntrinsic(VCMPGT, ElementKind); 3136 } 3137 break; 3138 case BO_GE: 3139 if (ElementKind == BuiltinType::Float) { 3140 CR6 = CR6_LT; 3141 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3142 } 3143 else { 3144 CR6 = CR6_EQ; 3145 ID = GetIntrinsic(VCMPGT, ElementKind); 3146 std::swap(FirstVecArg, SecondVecArg); 3147 } 3148 break; 3149 } 3150 3151 Value *CR6Param = Builder.getInt32(CR6); 3152 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3153 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3154 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3155 E->getExprLoc()); 3156 } 3157 3158 if (LHS->getType()->isFPOrFPVectorTy()) { 3159 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3160 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3161 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3162 } else { 3163 // Unsigned integers and pointers. 3164 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3165 } 3166 3167 // If this is a vector comparison, sign extend the result to the appropriate 3168 // vector integer type and return it (don't convert to bool). 3169 if (LHSTy->isVectorType()) 3170 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3171 3172 } else { 3173 // Complex Comparison: can only be an equality comparison. 3174 CodeGenFunction::ComplexPairTy LHS, RHS; 3175 QualType CETy; 3176 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3177 LHS = CGF.EmitComplexExpr(E->getLHS()); 3178 CETy = CTy->getElementType(); 3179 } else { 3180 LHS.first = Visit(E->getLHS()); 3181 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3182 CETy = LHSTy; 3183 } 3184 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3185 RHS = CGF.EmitComplexExpr(E->getRHS()); 3186 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3187 CTy->getElementType()) && 3188 "The element types must always match."); 3189 (void)CTy; 3190 } else { 3191 RHS.first = Visit(E->getRHS()); 3192 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3193 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3194 "The element types must always match."); 3195 } 3196 3197 Value *ResultR, *ResultI; 3198 if (CETy->isRealFloatingType()) { 3199 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3200 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3201 } else { 3202 // Complex comparisons can only be equality comparisons. As such, signed 3203 // and unsigned opcodes are the same. 3204 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3205 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3206 } 3207 3208 if (E->getOpcode() == BO_EQ) { 3209 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3210 } else { 3211 assert(E->getOpcode() == BO_NE && 3212 "Complex comparison other than == or != ?"); 3213 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3214 } 3215 } 3216 3217 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3218 E->getExprLoc()); 3219 } 3220 3221 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3222 bool Ignore = TestAndClearIgnoreResultAssign(); 3223 3224 Value *RHS; 3225 LValue LHS; 3226 3227 switch (E->getLHS()->getType().getObjCLifetime()) { 3228 case Qualifiers::OCL_Strong: 3229 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3230 break; 3231 3232 case Qualifiers::OCL_Autoreleasing: 3233 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3234 break; 3235 3236 case Qualifiers::OCL_ExplicitNone: 3237 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3238 break; 3239 3240 case Qualifiers::OCL_Weak: 3241 RHS = Visit(E->getRHS()); 3242 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3243 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3244 break; 3245 3246 case Qualifiers::OCL_None: 3247 // __block variables need to have the rhs evaluated first, plus 3248 // this should improve codegen just a little. 3249 RHS = Visit(E->getRHS()); 3250 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3251 3252 // Store the value into the LHS. Bit-fields are handled specially 3253 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3254 // 'An assignment expression has the value of the left operand after 3255 // the assignment...'. 3256 if (LHS.isBitField()) { 3257 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3258 } else { 3259 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3260 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3261 } 3262 } 3263 3264 // If the result is clearly ignored, return now. 3265 if (Ignore) 3266 return nullptr; 3267 3268 // The result of an assignment in C is the assigned r-value. 3269 if (!CGF.getLangOpts().CPlusPlus) 3270 return RHS; 3271 3272 // If the lvalue is non-volatile, return the computed value of the assignment. 3273 if (!LHS.isVolatileQualified()) 3274 return RHS; 3275 3276 // Otherwise, reload the value. 3277 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3278 } 3279 3280 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3281 // Perform vector logical and on comparisons with zero vectors. 3282 if (E->getType()->isVectorType()) { 3283 CGF.incrementProfileCounter(E); 3284 3285 Value *LHS = Visit(E->getLHS()); 3286 Value *RHS = Visit(E->getRHS()); 3287 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3288 if (LHS->getType()->isFPOrFPVectorTy()) { 3289 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3290 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3291 } else { 3292 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3293 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3294 } 3295 Value *And = Builder.CreateAnd(LHS, RHS); 3296 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3297 } 3298 3299 llvm::Type *ResTy = ConvertType(E->getType()); 3300 3301 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3302 // If we have 1 && X, just emit X without inserting the control flow. 3303 bool LHSCondVal; 3304 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3305 if (LHSCondVal) { // If we have 1 && X, just emit X. 3306 CGF.incrementProfileCounter(E); 3307 3308 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3309 // ZExt result to int or bool. 3310 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3311 } 3312 3313 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3314 if (!CGF.ContainsLabel(E->getRHS())) 3315 return llvm::Constant::getNullValue(ResTy); 3316 } 3317 3318 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3319 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3320 3321 CodeGenFunction::ConditionalEvaluation eval(CGF); 3322 3323 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3324 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3325 CGF.getProfileCount(E->getRHS())); 3326 3327 // Any edges into the ContBlock are now from an (indeterminate number of) 3328 // edges from this first condition. All of these values will be false. Start 3329 // setting up the PHI node in the Cont Block for this. 3330 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3331 "", ContBlock); 3332 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3333 PI != PE; ++PI) 3334 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3335 3336 eval.begin(CGF); 3337 CGF.EmitBlock(RHSBlock); 3338 CGF.incrementProfileCounter(E); 3339 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3340 eval.end(CGF); 3341 3342 // Reaquire the RHS block, as there may be subblocks inserted. 3343 RHSBlock = Builder.GetInsertBlock(); 3344 3345 // Emit an unconditional branch from this block to ContBlock. 3346 { 3347 // There is no need to emit line number for unconditional branch. 3348 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3349 CGF.EmitBlock(ContBlock); 3350 } 3351 // Insert an entry into the phi node for the edge with the value of RHSCond. 3352 PN->addIncoming(RHSCond, RHSBlock); 3353 3354 // ZExt result to int. 3355 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3356 } 3357 3358 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3359 // Perform vector logical or on comparisons with zero vectors. 3360 if (E->getType()->isVectorType()) { 3361 CGF.incrementProfileCounter(E); 3362 3363 Value *LHS = Visit(E->getLHS()); 3364 Value *RHS = Visit(E->getRHS()); 3365 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3366 if (LHS->getType()->isFPOrFPVectorTy()) { 3367 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3368 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3369 } else { 3370 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3371 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3372 } 3373 Value *Or = Builder.CreateOr(LHS, RHS); 3374 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3375 } 3376 3377 llvm::Type *ResTy = ConvertType(E->getType()); 3378 3379 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3380 // If we have 0 || X, just emit X without inserting the control flow. 3381 bool LHSCondVal; 3382 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3383 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3384 CGF.incrementProfileCounter(E); 3385 3386 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3387 // ZExt result to int or bool. 3388 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3389 } 3390 3391 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3392 if (!CGF.ContainsLabel(E->getRHS())) 3393 return llvm::ConstantInt::get(ResTy, 1); 3394 } 3395 3396 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3397 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3398 3399 CodeGenFunction::ConditionalEvaluation eval(CGF); 3400 3401 // Branch on the LHS first. If it is true, go to the success (cont) block. 3402 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3403 CGF.getCurrentProfileCount() - 3404 CGF.getProfileCount(E->getRHS())); 3405 3406 // Any edges into the ContBlock are now from an (indeterminate number of) 3407 // edges from this first condition. All of these values will be true. Start 3408 // setting up the PHI node in the Cont Block for this. 3409 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3410 "", ContBlock); 3411 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3412 PI != PE; ++PI) 3413 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3414 3415 eval.begin(CGF); 3416 3417 // Emit the RHS condition as a bool value. 3418 CGF.EmitBlock(RHSBlock); 3419 CGF.incrementProfileCounter(E); 3420 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3421 3422 eval.end(CGF); 3423 3424 // Reaquire the RHS block, as there may be subblocks inserted. 3425 RHSBlock = Builder.GetInsertBlock(); 3426 3427 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3428 // into the phi node for the edge with the value of RHSCond. 3429 CGF.EmitBlock(ContBlock); 3430 PN->addIncoming(RHSCond, RHSBlock); 3431 3432 // ZExt result to int. 3433 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3434 } 3435 3436 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3437 CGF.EmitIgnoredExpr(E->getLHS()); 3438 CGF.EnsureInsertPoint(); 3439 return Visit(E->getRHS()); 3440 } 3441 3442 //===----------------------------------------------------------------------===// 3443 // Other Operators 3444 //===----------------------------------------------------------------------===// 3445 3446 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3447 /// expression is cheap enough and side-effect-free enough to evaluate 3448 /// unconditionally instead of conditionally. This is used to convert control 3449 /// flow into selects in some cases. 3450 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3451 CodeGenFunction &CGF) { 3452 // Anything that is an integer or floating point constant is fine. 3453 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3454 3455 // Even non-volatile automatic variables can't be evaluated unconditionally. 3456 // Referencing a thread_local may cause non-trivial initialization work to 3457 // occur. If we're inside a lambda and one of the variables is from the scope 3458 // outside the lambda, that function may have returned already. Reading its 3459 // locals is a bad idea. Also, these reads may introduce races there didn't 3460 // exist in the source-level program. 3461 } 3462 3463 3464 Value *ScalarExprEmitter:: 3465 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3466 TestAndClearIgnoreResultAssign(); 3467 3468 // Bind the common expression if necessary. 3469 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3470 3471 Expr *condExpr = E->getCond(); 3472 Expr *lhsExpr = E->getTrueExpr(); 3473 Expr *rhsExpr = E->getFalseExpr(); 3474 3475 // If the condition constant folds and can be elided, try to avoid emitting 3476 // the condition and the dead arm. 3477 bool CondExprBool; 3478 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3479 Expr *live = lhsExpr, *dead = rhsExpr; 3480 if (!CondExprBool) std::swap(live, dead); 3481 3482 // If the dead side doesn't have labels we need, just emit the Live part. 3483 if (!CGF.ContainsLabel(dead)) { 3484 if (CondExprBool) 3485 CGF.incrementProfileCounter(E); 3486 Value *Result = Visit(live); 3487 3488 // If the live part is a throw expression, it acts like it has a void 3489 // type, so evaluating it returns a null Value*. However, a conditional 3490 // with non-void type must return a non-null Value*. 3491 if (!Result && !E->getType()->isVoidType()) 3492 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3493 3494 return Result; 3495 } 3496 } 3497 3498 // OpenCL: If the condition is a vector, we can treat this condition like 3499 // the select function. 3500 if (CGF.getLangOpts().OpenCL 3501 && condExpr->getType()->isVectorType()) { 3502 CGF.incrementProfileCounter(E); 3503 3504 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3505 llvm::Value *LHS = Visit(lhsExpr); 3506 llvm::Value *RHS = Visit(rhsExpr); 3507 3508 llvm::Type *condType = ConvertType(condExpr->getType()); 3509 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3510 3511 unsigned numElem = vecTy->getNumElements(); 3512 llvm::Type *elemType = vecTy->getElementType(); 3513 3514 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3515 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3516 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3517 llvm::VectorType::get(elemType, 3518 numElem), 3519 "sext"); 3520 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3521 3522 // Cast float to int to perform ANDs if necessary. 3523 llvm::Value *RHSTmp = RHS; 3524 llvm::Value *LHSTmp = LHS; 3525 bool wasCast = false; 3526 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3527 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3528 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3529 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3530 wasCast = true; 3531 } 3532 3533 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3534 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3535 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3536 if (wasCast) 3537 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3538 3539 return tmp5; 3540 } 3541 3542 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3543 // select instead of as control flow. We can only do this if it is cheap and 3544 // safe to evaluate the LHS and RHS unconditionally. 3545 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3546 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3547 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3548 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 3549 3550 CGF.incrementProfileCounter(E, StepV); 3551 3552 llvm::Value *LHS = Visit(lhsExpr); 3553 llvm::Value *RHS = Visit(rhsExpr); 3554 if (!LHS) { 3555 // If the conditional has void type, make sure we return a null Value*. 3556 assert(!RHS && "LHS and RHS types must match"); 3557 return nullptr; 3558 } 3559 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3560 } 3561 3562 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3563 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3564 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3565 3566 CodeGenFunction::ConditionalEvaluation eval(CGF); 3567 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3568 CGF.getProfileCount(lhsExpr)); 3569 3570 CGF.EmitBlock(LHSBlock); 3571 CGF.incrementProfileCounter(E); 3572 eval.begin(CGF); 3573 Value *LHS = Visit(lhsExpr); 3574 eval.end(CGF); 3575 3576 LHSBlock = Builder.GetInsertBlock(); 3577 Builder.CreateBr(ContBlock); 3578 3579 CGF.EmitBlock(RHSBlock); 3580 eval.begin(CGF); 3581 Value *RHS = Visit(rhsExpr); 3582 eval.end(CGF); 3583 3584 RHSBlock = Builder.GetInsertBlock(); 3585 CGF.EmitBlock(ContBlock); 3586 3587 // If the LHS or RHS is a throw expression, it will be legitimately null. 3588 if (!LHS) 3589 return RHS; 3590 if (!RHS) 3591 return LHS; 3592 3593 // Create a PHI node for the real part. 3594 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3595 PN->addIncoming(LHS, LHSBlock); 3596 PN->addIncoming(RHS, RHSBlock); 3597 return PN; 3598 } 3599 3600 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3601 return Visit(E->getChosenSubExpr()); 3602 } 3603 3604 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3605 QualType Ty = VE->getType(); 3606 3607 if (Ty->isVariablyModifiedType()) 3608 CGF.EmitVariablyModifiedType(Ty); 3609 3610 Address ArgValue = Address::invalid(); 3611 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3612 3613 llvm::Type *ArgTy = ConvertType(VE->getType()); 3614 3615 // If EmitVAArg fails, emit an error. 3616 if (!ArgPtr.isValid()) { 3617 CGF.ErrorUnsupported(VE, "va_arg expression"); 3618 return llvm::UndefValue::get(ArgTy); 3619 } 3620 3621 // FIXME Volatility. 3622 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3623 3624 // If EmitVAArg promoted the type, we must truncate it. 3625 if (ArgTy != Val->getType()) { 3626 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3627 Val = Builder.CreateIntToPtr(Val, ArgTy); 3628 else 3629 Val = Builder.CreateTrunc(Val, ArgTy); 3630 } 3631 3632 return Val; 3633 } 3634 3635 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3636 return CGF.EmitBlockLiteral(block); 3637 } 3638 3639 // Convert a vec3 to vec4, or vice versa. 3640 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3641 Value *Src, unsigned NumElementsDst) { 3642 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3643 SmallVector<llvm::Constant*, 4> Args; 3644 Args.push_back(Builder.getInt32(0)); 3645 Args.push_back(Builder.getInt32(1)); 3646 Args.push_back(Builder.getInt32(2)); 3647 if (NumElementsDst == 4) 3648 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3649 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3650 return Builder.CreateShuffleVector(Src, UnV, Mask); 3651 } 3652 3653 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 3654 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 3655 // but could be scalar or vectors of different lengths, and either can be 3656 // pointer. 3657 // There are 4 cases: 3658 // 1. non-pointer -> non-pointer : needs 1 bitcast 3659 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 3660 // 3. pointer -> non-pointer 3661 // a) pointer -> intptr_t : needs 1 ptrtoint 3662 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 3663 // 4. non-pointer -> pointer 3664 // a) intptr_t -> pointer : needs 1 inttoptr 3665 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 3666 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 3667 // allow casting directly between pointer types and non-integer non-pointer 3668 // types. 3669 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 3670 const llvm::DataLayout &DL, 3671 Value *Src, llvm::Type *DstTy, 3672 StringRef Name = "") { 3673 auto SrcTy = Src->getType(); 3674 3675 // Case 1. 3676 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 3677 return Builder.CreateBitCast(Src, DstTy, Name); 3678 3679 // Case 2. 3680 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 3681 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 3682 3683 // Case 3. 3684 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 3685 // Case 3b. 3686 if (!DstTy->isIntegerTy()) 3687 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 3688 // Cases 3a and 3b. 3689 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 3690 } 3691 3692 // Case 4b. 3693 if (!SrcTy->isIntegerTy()) 3694 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 3695 // Cases 4a and 4b. 3696 return Builder.CreateIntToPtr(Src, DstTy, Name); 3697 } 3698 3699 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3700 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3701 llvm::Type *DstTy = ConvertType(E->getType()); 3702 3703 llvm::Type *SrcTy = Src->getType(); 3704 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3705 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3706 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3707 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3708 3709 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3710 // vector to get a vec4, then a bitcast if the target type is different. 3711 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3712 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3713 3714 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3715 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3716 DstTy); 3717 } 3718 3719 Src->setName("astype"); 3720 return Src; 3721 } 3722 3723 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3724 // to vec4 if the original type is not vec4, then a shuffle vector to 3725 // get a vec3. 3726 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3727 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3728 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3729 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3730 Vec4Ty); 3731 } 3732 3733 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3734 Src->setName("astype"); 3735 return Src; 3736 } 3737 3738 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 3739 Src, DstTy, "astype"); 3740 } 3741 3742 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3743 return CGF.EmitAtomicExpr(E).getScalarVal(); 3744 } 3745 3746 //===----------------------------------------------------------------------===// 3747 // Entry Point into this File 3748 //===----------------------------------------------------------------------===// 3749 3750 /// Emit the computation of the specified expression of scalar type, ignoring 3751 /// the result. 3752 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3753 assert(E && hasScalarEvaluationKind(E->getType()) && 3754 "Invalid scalar expression to emit"); 3755 3756 return ScalarExprEmitter(*this, IgnoreResultAssign) 3757 .Visit(const_cast<Expr *>(E)); 3758 } 3759 3760 /// Emit a conversion from the specified type to the specified destination type, 3761 /// both of which are LLVM scalar types. 3762 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3763 QualType DstTy, 3764 SourceLocation Loc) { 3765 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3766 "Invalid scalar expression to emit"); 3767 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3768 } 3769 3770 /// Emit a conversion from the specified complex type to the specified 3771 /// destination type, where the destination type is an LLVM scalar type. 3772 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3773 QualType SrcTy, 3774 QualType DstTy, 3775 SourceLocation Loc) { 3776 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3777 "Invalid complex -> scalar conversion"); 3778 return ScalarExprEmitter(*this) 3779 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3780 } 3781 3782 3783 llvm::Value *CodeGenFunction:: 3784 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3785 bool isInc, bool isPre) { 3786 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3787 } 3788 3789 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3790 // object->isa or (*object).isa 3791 // Generate code as for: *(Class*)object 3792 3793 Expr *BaseExpr = E->getBase(); 3794 Address Addr = Address::invalid(); 3795 if (BaseExpr->isRValue()) { 3796 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3797 } else { 3798 Addr = EmitLValue(BaseExpr).getAddress(); 3799 } 3800 3801 // Cast the address to Class*. 3802 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3803 return MakeAddrLValue(Addr, E->getType()); 3804 } 3805 3806 3807 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3808 const CompoundAssignOperator *E) { 3809 ScalarExprEmitter Scalar(*this); 3810 Value *Result = nullptr; 3811 switch (E->getOpcode()) { 3812 #define COMPOUND_OP(Op) \ 3813 case BO_##Op##Assign: \ 3814 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3815 Result) 3816 COMPOUND_OP(Mul); 3817 COMPOUND_OP(Div); 3818 COMPOUND_OP(Rem); 3819 COMPOUND_OP(Add); 3820 COMPOUND_OP(Sub); 3821 COMPOUND_OP(Shl); 3822 COMPOUND_OP(Shr); 3823 COMPOUND_OP(And); 3824 COMPOUND_OP(Xor); 3825 COMPOUND_OP(Or); 3826 #undef COMPOUND_OP 3827 3828 case BO_PtrMemD: 3829 case BO_PtrMemI: 3830 case BO_Mul: 3831 case BO_Div: 3832 case BO_Rem: 3833 case BO_Add: 3834 case BO_Sub: 3835 case BO_Shl: 3836 case BO_Shr: 3837 case BO_LT: 3838 case BO_GT: 3839 case BO_LE: 3840 case BO_GE: 3841 case BO_EQ: 3842 case BO_NE: 3843 case BO_And: 3844 case BO_Xor: 3845 case BO_Or: 3846 case BO_LAnd: 3847 case BO_LOr: 3848 case BO_Assign: 3849 case BO_Comma: 3850 llvm_unreachable("Not valid compound assignment operators"); 3851 } 3852 3853 llvm_unreachable("Unhandled compound assignment operator"); 3854 } 3855 3856 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 3857 ArrayRef<Value *> IdxList, 3858 bool SignedIndices, 3859 bool IsSubtraction, 3860 SourceLocation Loc, 3861 const Twine &Name) { 3862 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 3863 3864 // If the pointer overflow sanitizer isn't enabled, do nothing. 3865 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 3866 return GEPVal; 3867 3868 // If the GEP has already been reduced to a constant, leave it be. 3869 if (isa<llvm::Constant>(GEPVal)) 3870 return GEPVal; 3871 3872 // Only check for overflows in the default address space. 3873 if (GEPVal->getType()->getPointerAddressSpace()) 3874 return GEPVal; 3875 3876 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 3877 assert(GEP->isInBounds() && "Expected inbounds GEP"); 3878 3879 SanitizerScope SanScope(this); 3880 auto &VMContext = getLLVMContext(); 3881 const auto &DL = CGM.getDataLayout(); 3882 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 3883 3884 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 3885 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 3886 auto *SAddIntrinsic = 3887 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 3888 auto *SMulIntrinsic = 3889 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 3890 3891 // The total (signed) byte offset for the GEP. 3892 llvm::Value *TotalOffset = nullptr; 3893 // The offset overflow flag - true if the total offset overflows. 3894 llvm::Value *OffsetOverflows = Builder.getFalse(); 3895 3896 /// Return the result of the given binary operation. 3897 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 3898 llvm::Value *RHS) -> llvm::Value * { 3899 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 3900 3901 // If the operands are constants, return a constant result. 3902 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 3903 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 3904 llvm::APInt N; 3905 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 3906 /*Signed=*/true, N); 3907 if (HasOverflow) 3908 OffsetOverflows = Builder.getTrue(); 3909 return llvm::ConstantInt::get(VMContext, N); 3910 } 3911 } 3912 3913 // Otherwise, compute the result with checked arithmetic. 3914 auto *ResultAndOverflow = Builder.CreateCall( 3915 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 3916 OffsetOverflows = Builder.CreateOr( 3917 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 3918 return Builder.CreateExtractValue(ResultAndOverflow, 0); 3919 }; 3920 3921 // Determine the total byte offset by looking at each GEP operand. 3922 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 3923 GTI != GTE; ++GTI) { 3924 llvm::Value *LocalOffset; 3925 auto *Index = GTI.getOperand(); 3926 // Compute the local offset contributed by this indexing step: 3927 if (auto *STy = GTI.getStructTypeOrNull()) { 3928 // For struct indexing, the local offset is the byte position of the 3929 // specified field. 3930 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 3931 LocalOffset = llvm::ConstantInt::get( 3932 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 3933 } else { 3934 // Otherwise this is array-like indexing. The local offset is the index 3935 // multiplied by the element size. 3936 auto *ElementSize = llvm::ConstantInt::get( 3937 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 3938 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 3939 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 3940 } 3941 3942 // If this is the first offset, set it as the total offset. Otherwise, add 3943 // the local offset into the running total. 3944 if (!TotalOffset || TotalOffset == Zero) 3945 TotalOffset = LocalOffset; 3946 else 3947 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 3948 } 3949 3950 // Common case: if the total offset is zero, don't emit a check. 3951 if (TotalOffset == Zero) 3952 return GEPVal; 3953 3954 // Now that we've computed the total offset, add it to the base pointer (with 3955 // wrapping semantics). 3956 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 3957 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 3958 3959 // The GEP is valid if: 3960 // 1) The total offset doesn't overflow, and 3961 // 2) The sign of the difference between the computed address and the base 3962 // pointer matches the sign of the total offset. 3963 llvm::Value *ValidGEP; 3964 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 3965 if (SignedIndices) { 3966 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 3967 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 3968 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 3969 ValidGEP = Builder.CreateAnd( 3970 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 3971 NoOffsetOverflow); 3972 } else if (!SignedIndices && !IsSubtraction) { 3973 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 3974 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 3975 } else { 3976 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 3977 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 3978 } 3979 3980 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 3981 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 3982 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 3983 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 3984 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 3985 3986 return GEPVal; 3987 } 3988