1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
352                         llvm::Type *SrcTy, llvm::Type *DstTy,
353                         ScalarConversionOpts Opts);
354   Value *
355   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
356                        SourceLocation Loc,
357                        ScalarConversionOpts Opts = ScalarConversionOpts());
358 
359   /// Convert between either a fixed point and other fixed point or fixed point
360   /// and an integer.
361   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
362                                   SourceLocation Loc);
363 
364   /// Emit a conversion from the specified complex type to the specified
365   /// destination type, where the destination type is an LLVM scalar type.
366   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367                                        QualType SrcTy, QualType DstTy,
368                                        SourceLocation Loc);
369 
370   /// EmitNullValue - Emit a value that corresponds to null for the given type.
371   Value *EmitNullValue(QualType Ty);
372 
373   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
374   Value *EmitFloatToBoolConversion(Value *V) {
375     // Compare against 0.0 for fp scalars.
376     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377     return Builder.CreateFCmpUNE(V, Zero, "tobool");
378   }
379 
380   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
381   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384     return Builder.CreateICmpNE(V, Zero, "tobool");
385   }
386 
387   Value *EmitIntToBoolConversion(Value *V) {
388     // Because of the type rules of C, we often end up computing a
389     // logical value, then zero extending it to int, then wanting it
390     // as a logical value again.  Optimize this common case.
391     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393         Value *Result = ZI->getOperand(0);
394         // If there aren't any more uses, zap the instruction to save space.
395         // Note that there can be more uses, for example if this
396         // is the result of an assignment.
397         if (ZI->use_empty())
398           ZI->eraseFromParent();
399         return Result;
400       }
401     }
402 
403     return Builder.CreateIsNotNull(V, "tobool");
404   }
405 
406   //===--------------------------------------------------------------------===//
407   //                            Visitor Methods
408   //===--------------------------------------------------------------------===//
409 
410   Value *Visit(Expr *E) {
411     ApplyDebugLocation DL(CGF, E);
412     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
413   }
414 
415   Value *VisitStmt(Stmt *S) {
416     S->dump(llvm::errs(), CGF.getContext());
417     llvm_unreachable("Stmt can't have complex result type!");
418   }
419   Value *VisitExpr(Expr *S);
420 
421   Value *VisitConstantExpr(ConstantExpr *E) {
422     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423       if (E->isGLValue())
424         return CGF.Builder.CreateLoad(Address(
425             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
426       return Result;
427     }
428     return Visit(E->getSubExpr());
429   }
430   Value *VisitParenExpr(ParenExpr *PE) {
431     return Visit(PE->getSubExpr());
432   }
433   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
434     return Visit(E->getReplacement());
435   }
436   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
437     return Visit(GE->getResultExpr());
438   }
439   Value *VisitCoawaitExpr(CoawaitExpr *S) {
440     return CGF.EmitCoawaitExpr(*S).getScalarVal();
441   }
442   Value *VisitCoyieldExpr(CoyieldExpr *S) {
443     return CGF.EmitCoyieldExpr(*S).getScalarVal();
444   }
445   Value *VisitUnaryCoawait(const UnaryOperator *E) {
446     return Visit(E->getSubExpr());
447   }
448 
449   // Leaves.
450   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
454     return Builder.getInt(E->getValue());
455   }
456   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
457     return llvm::ConstantFP::get(VMContext, E->getValue());
458   }
459   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
466     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467   }
468   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
472     return EmitNullValue(E->getType());
473   }
474   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
475   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
476   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
477     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
478     return Builder.CreateBitCast(V, ConvertType(E->getType()));
479   }
480 
481   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
482     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
483   }
484 
485   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
486     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
487   }
488 
489   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
490 
491   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
492     if (E->isGLValue())
493       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
494                               E->getExprLoc());
495 
496     // Otherwise, assume the mapping is the scalar directly.
497     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
498   }
499 
500   // l-values.
501   Value *VisitDeclRefExpr(DeclRefExpr *E) {
502     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
503       return CGF.emitScalarConstant(Constant, E);
504     return EmitLoadOfLValue(E);
505   }
506 
507   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
508     return CGF.EmitObjCSelectorExpr(E);
509   }
510   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
511     return CGF.EmitObjCProtocolExpr(E);
512   }
513   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
514     return EmitLoadOfLValue(E);
515   }
516   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
517     if (E->getMethodDecl() &&
518         E->getMethodDecl()->getReturnType()->isReferenceType())
519       return EmitLoadOfLValue(E);
520     return CGF.EmitObjCMessageExpr(E).getScalarVal();
521   }
522 
523   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
524     LValue LV = CGF.EmitObjCIsaExpr(E);
525     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
526     return V;
527   }
528 
529   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
530     VersionTuple Version = E->getVersion();
531 
532     // If we're checking for a platform older than our minimum deployment
533     // target, we can fold the check away.
534     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
535       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
536 
537     return CGF.EmitBuiltinAvailable(Version);
538   }
539 
540   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
541   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
542   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
543   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
544   Value *VisitMemberExpr(MemberExpr *E);
545   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
546   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
547     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
548     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
549     // literals aren't l-values in C++. We do so simply because that's the
550     // cleanest way to handle compound literals in C++.
551     // See the discussion here: https://reviews.llvm.org/D64464
552     return EmitLoadOfLValue(E);
553   }
554 
555   Value *VisitInitListExpr(InitListExpr *E);
556 
557   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
558     assert(CGF.getArrayInitIndex() &&
559            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
560     return CGF.getArrayInitIndex();
561   }
562 
563   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
564     return EmitNullValue(E->getType());
565   }
566   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
567     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
568     return VisitCastExpr(E);
569   }
570   Value *VisitCastExpr(CastExpr *E);
571 
572   Value *VisitCallExpr(const CallExpr *E) {
573     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
574       return EmitLoadOfLValue(E);
575 
576     Value *V = CGF.EmitCallExpr(E).getScalarVal();
577 
578     EmitLValueAlignmentAssumption(E, V);
579     return V;
580   }
581 
582   Value *VisitStmtExpr(const StmtExpr *E);
583 
584   // Unary Operators.
585   Value *VisitUnaryPostDec(const UnaryOperator *E) {
586     LValue LV = EmitLValue(E->getSubExpr());
587     return EmitScalarPrePostIncDec(E, LV, false, false);
588   }
589   Value *VisitUnaryPostInc(const UnaryOperator *E) {
590     LValue LV = EmitLValue(E->getSubExpr());
591     return EmitScalarPrePostIncDec(E, LV, true, false);
592   }
593   Value *VisitUnaryPreDec(const UnaryOperator *E) {
594     LValue LV = EmitLValue(E->getSubExpr());
595     return EmitScalarPrePostIncDec(E, LV, false, true);
596   }
597   Value *VisitUnaryPreInc(const UnaryOperator *E) {
598     LValue LV = EmitLValue(E->getSubExpr());
599     return EmitScalarPrePostIncDec(E, LV, true, true);
600   }
601 
602   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
603                                                   llvm::Value *InVal,
604                                                   bool IsInc);
605 
606   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
607                                        bool isInc, bool isPre);
608 
609 
610   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
611     if (isa<MemberPointerType>(E->getType())) // never sugared
612       return CGF.CGM.getMemberPointerConstant(E);
613 
614     return EmitLValue(E->getSubExpr()).getPointer(CGF);
615   }
616   Value *VisitUnaryDeref(const UnaryOperator *E) {
617     if (E->getType()->isVoidType())
618       return Visit(E->getSubExpr()); // the actual value should be unused
619     return EmitLoadOfLValue(E);
620   }
621   Value *VisitUnaryPlus(const UnaryOperator *E) {
622     // This differs from gcc, though, most likely due to a bug in gcc.
623     TestAndClearIgnoreResultAssign();
624     return Visit(E->getSubExpr());
625   }
626   Value *VisitUnaryMinus    (const UnaryOperator *E);
627   Value *VisitUnaryNot      (const UnaryOperator *E);
628   Value *VisitUnaryLNot     (const UnaryOperator *E);
629   Value *VisitUnaryReal     (const UnaryOperator *E);
630   Value *VisitUnaryImag     (const UnaryOperator *E);
631   Value *VisitUnaryExtension(const UnaryOperator *E) {
632     return Visit(E->getSubExpr());
633   }
634 
635   // C++
636   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
637     return EmitLoadOfLValue(E);
638   }
639   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
640     auto &Ctx = CGF.getContext();
641     APValue Evaluated =
642         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
643     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
644                                              SLE->getType());
645   }
646 
647   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
648     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
649     return Visit(DAE->getExpr());
650   }
651   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
652     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
653     return Visit(DIE->getExpr());
654   }
655   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
656     return CGF.LoadCXXThis();
657   }
658 
659   Value *VisitExprWithCleanups(ExprWithCleanups *E);
660   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
661     return CGF.EmitCXXNewExpr(E);
662   }
663   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
664     CGF.EmitCXXDeleteExpr(E);
665     return nullptr;
666   }
667 
668   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
669     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
670   }
671 
672   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
673     return Builder.getInt1(E->isSatisfied());
674   }
675 
676   Value *VisitRequiresExpr(const RequiresExpr *E) {
677     return Builder.getInt1(E->isSatisfied());
678   }
679 
680   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
681     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
682   }
683 
684   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
685     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
686   }
687 
688   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
689     // C++ [expr.pseudo]p1:
690     //   The result shall only be used as the operand for the function call
691     //   operator (), and the result of such a call has type void. The only
692     //   effect is the evaluation of the postfix-expression before the dot or
693     //   arrow.
694     CGF.EmitScalarExpr(E->getBase());
695     return nullptr;
696   }
697 
698   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
699     return EmitNullValue(E->getType());
700   }
701 
702   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
703     CGF.EmitCXXThrowExpr(E);
704     return nullptr;
705   }
706 
707   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
708     return Builder.getInt1(E->getValue());
709   }
710 
711   // Binary Operators.
712   Value *EmitMul(const BinOpInfo &Ops) {
713     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
714       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
715       case LangOptions::SOB_Defined:
716         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
717       case LangOptions::SOB_Undefined:
718         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
719           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
720         LLVM_FALLTHROUGH;
721       case LangOptions::SOB_Trapping:
722         if (CanElideOverflowCheck(CGF.getContext(), Ops))
723           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
724         return EmitOverflowCheckedBinOp(Ops);
725       }
726     }
727 
728     if (Ops.Ty->isConstantMatrixType()) {
729       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
730       // We need to check the types of the operands of the operator to get the
731       // correct matrix dimensions.
732       auto *BO = cast<BinaryOperator>(Ops.E);
733       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
734           BO->getLHS()->getType().getCanonicalType());
735       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
736           BO->getRHS()->getType().getCanonicalType());
737       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
738       if (LHSMatTy && RHSMatTy)
739         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
740                                        LHSMatTy->getNumColumns(),
741                                        RHSMatTy->getNumColumns());
742       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
743     }
744 
745     if (Ops.Ty->isUnsignedIntegerType() &&
746         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
747         !CanElideOverflowCheck(CGF.getContext(), Ops))
748       return EmitOverflowCheckedBinOp(Ops);
749 
750     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
751       //  Preserve the old values
752       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
753       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
754     }
755     if (Ops.isFixedPointOp())
756       return EmitFixedPointBinOp(Ops);
757     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
758   }
759   /// Create a binary op that checks for overflow.
760   /// Currently only supports +, - and *.
761   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
762 
763   // Check for undefined division and modulus behaviors.
764   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
765                                                   llvm::Value *Zero,bool isDiv);
766   // Common helper for getting how wide LHS of shift is.
767   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
768 
769   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
770   // non powers of two.
771   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
772 
773   Value *EmitDiv(const BinOpInfo &Ops);
774   Value *EmitRem(const BinOpInfo &Ops);
775   Value *EmitAdd(const BinOpInfo &Ops);
776   Value *EmitSub(const BinOpInfo &Ops);
777   Value *EmitShl(const BinOpInfo &Ops);
778   Value *EmitShr(const BinOpInfo &Ops);
779   Value *EmitAnd(const BinOpInfo &Ops) {
780     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
781   }
782   Value *EmitXor(const BinOpInfo &Ops) {
783     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
784   }
785   Value *EmitOr (const BinOpInfo &Ops) {
786     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
787   }
788 
789   // Helper functions for fixed point binary operations.
790   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
791 
792   BinOpInfo EmitBinOps(const BinaryOperator *E);
793   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
794                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
795                                   Value *&Result);
796 
797   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
798                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
799 
800   // Binary operators and binary compound assignment operators.
801 #define HANDLEBINOP(OP) \
802   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
803     return Emit ## OP(EmitBinOps(E));                                      \
804   }                                                                        \
805   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
806     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
807   }
808   HANDLEBINOP(Mul)
809   HANDLEBINOP(Div)
810   HANDLEBINOP(Rem)
811   HANDLEBINOP(Add)
812   HANDLEBINOP(Sub)
813   HANDLEBINOP(Shl)
814   HANDLEBINOP(Shr)
815   HANDLEBINOP(And)
816   HANDLEBINOP(Xor)
817   HANDLEBINOP(Or)
818 #undef HANDLEBINOP
819 
820   // Comparisons.
821   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
822                      llvm::CmpInst::Predicate SICmpOpc,
823                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
824 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
825     Value *VisitBin##CODE(const BinaryOperator *E) { \
826       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
827                          llvm::FCmpInst::FP, SIG); }
828   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
829   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
830   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
831   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
832   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
833   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
834 #undef VISITCOMP
835 
836   Value *VisitBinAssign     (const BinaryOperator *E);
837 
838   Value *VisitBinLAnd       (const BinaryOperator *E);
839   Value *VisitBinLOr        (const BinaryOperator *E);
840   Value *VisitBinComma      (const BinaryOperator *E);
841 
842   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
843   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
844 
845   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
846     return Visit(E->getSemanticForm());
847   }
848 
849   // Other Operators.
850   Value *VisitBlockExpr(const BlockExpr *BE);
851   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
852   Value *VisitChooseExpr(ChooseExpr *CE);
853   Value *VisitVAArgExpr(VAArgExpr *VE);
854   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
855     return CGF.EmitObjCStringLiteral(E);
856   }
857   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
858     return CGF.EmitObjCBoxedExpr(E);
859   }
860   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
861     return CGF.EmitObjCArrayLiteral(E);
862   }
863   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
864     return CGF.EmitObjCDictionaryLiteral(E);
865   }
866   Value *VisitAsTypeExpr(AsTypeExpr *CE);
867   Value *VisitAtomicExpr(AtomicExpr *AE);
868 };
869 }  // end anonymous namespace.
870 
871 //===----------------------------------------------------------------------===//
872 //                                Utilities
873 //===----------------------------------------------------------------------===//
874 
875 /// EmitConversionToBool - Convert the specified expression value to a
876 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
877 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
878   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
879 
880   if (SrcType->isRealFloatingType())
881     return EmitFloatToBoolConversion(Src);
882 
883   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
884     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
885 
886   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
887          "Unknown scalar type to convert");
888 
889   if (isa<llvm::IntegerType>(Src->getType()))
890     return EmitIntToBoolConversion(Src);
891 
892   assert(isa<llvm::PointerType>(Src->getType()));
893   return EmitPointerToBoolConversion(Src, SrcType);
894 }
895 
896 void ScalarExprEmitter::EmitFloatConversionCheck(
897     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
898     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
899   assert(SrcType->isFloatingType() && "not a conversion from floating point");
900   if (!isa<llvm::IntegerType>(DstTy))
901     return;
902 
903   CodeGenFunction::SanitizerScope SanScope(&CGF);
904   using llvm::APFloat;
905   using llvm::APSInt;
906 
907   llvm::Value *Check = nullptr;
908   const llvm::fltSemantics &SrcSema =
909     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
910 
911   // Floating-point to integer. This has undefined behavior if the source is
912   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
913   // to an integer).
914   unsigned Width = CGF.getContext().getIntWidth(DstType);
915   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
916 
917   APSInt Min = APSInt::getMinValue(Width, Unsigned);
918   APFloat MinSrc(SrcSema, APFloat::uninitialized);
919   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
920       APFloat::opOverflow)
921     // Don't need an overflow check for lower bound. Just check for
922     // -Inf/NaN.
923     MinSrc = APFloat::getInf(SrcSema, true);
924   else
925     // Find the largest value which is too small to represent (before
926     // truncation toward zero).
927     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
928 
929   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
930   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
931   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
932       APFloat::opOverflow)
933     // Don't need an overflow check for upper bound. Just check for
934     // +Inf/NaN.
935     MaxSrc = APFloat::getInf(SrcSema, false);
936   else
937     // Find the smallest value which is too large to represent (before
938     // truncation toward zero).
939     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
940 
941   // If we're converting from __half, convert the range to float to match
942   // the type of src.
943   if (OrigSrcType->isHalfType()) {
944     const llvm::fltSemantics &Sema =
945       CGF.getContext().getFloatTypeSemantics(SrcType);
946     bool IsInexact;
947     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
948     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
949   }
950 
951   llvm::Value *GE =
952     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
953   llvm::Value *LE =
954     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
955   Check = Builder.CreateAnd(GE, LE);
956 
957   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
958                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
959                                   CGF.EmitCheckTypeDescriptor(DstType)};
960   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
961                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
962 }
963 
964 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
965 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
966 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
967                  std::pair<llvm::Value *, SanitizerMask>>
968 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
969                                  QualType DstType, CGBuilderTy &Builder) {
970   llvm::Type *SrcTy = Src->getType();
971   llvm::Type *DstTy = Dst->getType();
972   (void)DstTy; // Only used in assert()
973 
974   // This should be truncation of integral types.
975   assert(Src != Dst);
976   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
977   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
978          "non-integer llvm type");
979 
980   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
981   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
982 
983   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
984   // Else, it is a signed truncation.
985   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
986   SanitizerMask Mask;
987   if (!SrcSigned && !DstSigned) {
988     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
989     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
990   } else {
991     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
992     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
993   }
994 
995   llvm::Value *Check = nullptr;
996   // 1. Extend the truncated value back to the same width as the Src.
997   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
998   // 2. Equality-compare with the original source value
999   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1000   // If the comparison result is 'i1 false', then the truncation was lossy.
1001   return std::make_pair(Kind, std::make_pair(Check, Mask));
1002 }
1003 
1004 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1005     QualType SrcType, QualType DstType) {
1006   return SrcType->isIntegerType() && DstType->isIntegerType();
1007 }
1008 
1009 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1010                                                    Value *Dst, QualType DstType,
1011                                                    SourceLocation Loc) {
1012   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1013     return;
1014 
1015   // We only care about int->int conversions here.
1016   // We ignore conversions to/from pointer and/or bool.
1017   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1018                                                                        DstType))
1019     return;
1020 
1021   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1022   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1023   // This must be truncation. Else we do not care.
1024   if (SrcBits <= DstBits)
1025     return;
1026 
1027   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1028 
1029   // If the integer sign change sanitizer is enabled,
1030   // and we are truncating from larger unsigned type to smaller signed type,
1031   // let that next sanitizer deal with it.
1032   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1033   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1034   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1035       (!SrcSigned && DstSigned))
1036     return;
1037 
1038   CodeGenFunction::SanitizerScope SanScope(&CGF);
1039 
1040   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1041             std::pair<llvm::Value *, SanitizerMask>>
1042       Check =
1043           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1044   // If the comparison result is 'i1 false', then the truncation was lossy.
1045 
1046   // Do we care about this type of truncation?
1047   if (!CGF.SanOpts.has(Check.second.second))
1048     return;
1049 
1050   llvm::Constant *StaticArgs[] = {
1051       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1052       CGF.EmitCheckTypeDescriptor(DstType),
1053       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1054   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1055                 {Src, Dst});
1056 }
1057 
1058 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1059 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1060 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1061                  std::pair<llvm::Value *, SanitizerMask>>
1062 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1063                                  QualType DstType, CGBuilderTy &Builder) {
1064   llvm::Type *SrcTy = Src->getType();
1065   llvm::Type *DstTy = Dst->getType();
1066 
1067   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1068          "non-integer llvm type");
1069 
1070   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1071   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1072   (void)SrcSigned; // Only used in assert()
1073   (void)DstSigned; // Only used in assert()
1074   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1075   unsigned DstBits = DstTy->getScalarSizeInBits();
1076   (void)SrcBits; // Only used in assert()
1077   (void)DstBits; // Only used in assert()
1078 
1079   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1080          "either the widths should be different, or the signednesses.");
1081 
1082   // NOTE: zero value is considered to be non-negative.
1083   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1084                                        const char *Name) -> Value * {
1085     // Is this value a signed type?
1086     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1087     llvm::Type *VTy = V->getType();
1088     if (!VSigned) {
1089       // If the value is unsigned, then it is never negative.
1090       // FIXME: can we encounter non-scalar VTy here?
1091       return llvm::ConstantInt::getFalse(VTy->getContext());
1092     }
1093     // Get the zero of the same type with which we will be comparing.
1094     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1095     // %V.isnegative = icmp slt %V, 0
1096     // I.e is %V *strictly* less than zero, does it have negative value?
1097     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1098                               llvm::Twine(Name) + "." + V->getName() +
1099                                   ".negativitycheck");
1100   };
1101 
1102   // 1. Was the old Value negative?
1103   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1104   // 2. Is the new Value negative?
1105   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1106   // 3. Now, was the 'negativity status' preserved during the conversion?
1107   //    NOTE: conversion from negative to zero is considered to change the sign.
1108   //    (We want to get 'false' when the conversion changed the sign)
1109   //    So we should just equality-compare the negativity statuses.
1110   llvm::Value *Check = nullptr;
1111   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1112   // If the comparison result is 'false', then the conversion changed the sign.
1113   return std::make_pair(
1114       ScalarExprEmitter::ICCK_IntegerSignChange,
1115       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1116 }
1117 
1118 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1119                                                    Value *Dst, QualType DstType,
1120                                                    SourceLocation Loc) {
1121   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1122     return;
1123 
1124   llvm::Type *SrcTy = Src->getType();
1125   llvm::Type *DstTy = Dst->getType();
1126 
1127   // We only care about int->int conversions here.
1128   // We ignore conversions to/from pointer and/or bool.
1129   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1130                                                                        DstType))
1131     return;
1132 
1133   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1134   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1135   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1136   unsigned DstBits = DstTy->getScalarSizeInBits();
1137 
1138   // Now, we do not need to emit the check in *all* of the cases.
1139   // We can avoid emitting it in some obvious cases where it would have been
1140   // dropped by the opt passes (instcombine) always anyways.
1141   // If it's a cast between effectively the same type, no check.
1142   // NOTE: this is *not* equivalent to checking the canonical types.
1143   if (SrcSigned == DstSigned && SrcBits == DstBits)
1144     return;
1145   // At least one of the values needs to have signed type.
1146   // If both are unsigned, then obviously, neither of them can be negative.
1147   if (!SrcSigned && !DstSigned)
1148     return;
1149   // If the conversion is to *larger* *signed* type, then no check is needed.
1150   // Because either sign-extension happens (so the sign will remain),
1151   // or zero-extension will happen (the sign bit will be zero.)
1152   if ((DstBits > SrcBits) && DstSigned)
1153     return;
1154   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1155       (SrcBits > DstBits) && SrcSigned) {
1156     // If the signed integer truncation sanitizer is enabled,
1157     // and this is a truncation from signed type, then no check is needed.
1158     // Because here sign change check is interchangeable with truncation check.
1159     return;
1160   }
1161   // That's it. We can't rule out any more cases with the data we have.
1162 
1163   CodeGenFunction::SanitizerScope SanScope(&CGF);
1164 
1165   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1166             std::pair<llvm::Value *, SanitizerMask>>
1167       Check;
1168 
1169   // Each of these checks needs to return 'false' when an issue was detected.
1170   ImplicitConversionCheckKind CheckKind;
1171   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1172   // So we can 'and' all the checks together, and still get 'false',
1173   // if at least one of the checks detected an issue.
1174 
1175   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1176   CheckKind = Check.first;
1177   Checks.emplace_back(Check.second);
1178 
1179   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1180       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1181     // If the signed integer truncation sanitizer was enabled,
1182     // and we are truncating from larger unsigned type to smaller signed type,
1183     // let's handle the case we skipped in that check.
1184     Check =
1185         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1186     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1187     Checks.emplace_back(Check.second);
1188     // If the comparison result is 'i1 false', then the truncation was lossy.
1189   }
1190 
1191   llvm::Constant *StaticArgs[] = {
1192       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1193       CGF.EmitCheckTypeDescriptor(DstType),
1194       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1195   // EmitCheck() will 'and' all the checks together.
1196   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1197                 {Src, Dst});
1198 }
1199 
1200 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1201                                          QualType DstType, llvm::Type *SrcTy,
1202                                          llvm::Type *DstTy,
1203                                          ScalarConversionOpts Opts) {
1204   // The Element types determine the type of cast to perform.
1205   llvm::Type *SrcElementTy;
1206   llvm::Type *DstElementTy;
1207   QualType SrcElementType;
1208   QualType DstElementType;
1209   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1210     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1211     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1212     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1213     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1214   } else {
1215     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1216            "cannot cast between matrix and non-matrix types");
1217     SrcElementTy = SrcTy;
1218     DstElementTy = DstTy;
1219     SrcElementType = SrcType;
1220     DstElementType = DstType;
1221   }
1222 
1223   if (isa<llvm::IntegerType>(SrcElementTy)) {
1224     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1225     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1226       InputSigned = true;
1227     }
1228 
1229     if (isa<llvm::IntegerType>(DstElementTy))
1230       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1231     if (InputSigned)
1232       return Builder.CreateSIToFP(Src, DstTy, "conv");
1233     return Builder.CreateUIToFP(Src, DstTy, "conv");
1234   }
1235 
1236   if (isa<llvm::IntegerType>(DstElementTy)) {
1237     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1238     if (DstElementType->isSignedIntegerOrEnumerationType())
1239       return Builder.CreateFPToSI(Src, DstTy, "conv");
1240     return Builder.CreateFPToUI(Src, DstTy, "conv");
1241   }
1242 
1243   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1244     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1245   return Builder.CreateFPExt(Src, DstTy, "conv");
1246 }
1247 
1248 /// Emit a conversion from the specified type to the specified destination type,
1249 /// both of which are LLVM scalar types.
1250 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1251                                                QualType DstType,
1252                                                SourceLocation Loc,
1253                                                ScalarConversionOpts Opts) {
1254   // All conversions involving fixed point types should be handled by the
1255   // EmitFixedPoint family functions. This is done to prevent bloating up this
1256   // function more, and although fixed point numbers are represented by
1257   // integers, we do not want to follow any logic that assumes they should be
1258   // treated as integers.
1259   // TODO(leonardchan): When necessary, add another if statement checking for
1260   // conversions to fixed point types from other types.
1261   if (SrcType->isFixedPointType()) {
1262     if (DstType->isBooleanType())
1263       // It is important that we check this before checking if the dest type is
1264       // an integer because booleans are technically integer types.
1265       // We do not need to check the padding bit on unsigned types if unsigned
1266       // padding is enabled because overflow into this bit is undefined
1267       // behavior.
1268       return Builder.CreateIsNotNull(Src, "tobool");
1269     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1270         DstType->isRealFloatingType())
1271       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1272 
1273     llvm_unreachable(
1274         "Unhandled scalar conversion from a fixed point type to another type.");
1275   } else if (DstType->isFixedPointType()) {
1276     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1277       // This also includes converting booleans and enums to fixed point types.
1278       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1279 
1280     llvm_unreachable(
1281         "Unhandled scalar conversion to a fixed point type from another type.");
1282   }
1283 
1284   QualType NoncanonicalSrcType = SrcType;
1285   QualType NoncanonicalDstType = DstType;
1286 
1287   SrcType = CGF.getContext().getCanonicalType(SrcType);
1288   DstType = CGF.getContext().getCanonicalType(DstType);
1289   if (SrcType == DstType) return Src;
1290 
1291   if (DstType->isVoidType()) return nullptr;
1292 
1293   llvm::Value *OrigSrc = Src;
1294   QualType OrigSrcType = SrcType;
1295   llvm::Type *SrcTy = Src->getType();
1296 
1297   // Handle conversions to bool first, they are special: comparisons against 0.
1298   if (DstType->isBooleanType())
1299     return EmitConversionToBool(Src, SrcType);
1300 
1301   llvm::Type *DstTy = ConvertType(DstType);
1302 
1303   // Cast from half through float if half isn't a native type.
1304   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1305     // Cast to FP using the intrinsic if the half type itself isn't supported.
1306     if (DstTy->isFloatingPointTy()) {
1307       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1308         return Builder.CreateCall(
1309             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1310             Src);
1311     } else {
1312       // Cast to other types through float, using either the intrinsic or FPExt,
1313       // depending on whether the half type itself is supported
1314       // (as opposed to operations on half, available with NativeHalfType).
1315       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1316         Src = Builder.CreateCall(
1317             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1318                                  CGF.CGM.FloatTy),
1319             Src);
1320       } else {
1321         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1322       }
1323       SrcType = CGF.getContext().FloatTy;
1324       SrcTy = CGF.FloatTy;
1325     }
1326   }
1327 
1328   // Ignore conversions like int -> uint.
1329   if (SrcTy == DstTy) {
1330     if (Opts.EmitImplicitIntegerSignChangeChecks)
1331       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1332                                  NoncanonicalDstType, Loc);
1333 
1334     return Src;
1335   }
1336 
1337   // Handle pointer conversions next: pointers can only be converted to/from
1338   // other pointers and integers. Check for pointer types in terms of LLVM, as
1339   // some native types (like Obj-C id) may map to a pointer type.
1340   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1341     // The source value may be an integer, or a pointer.
1342     if (isa<llvm::PointerType>(SrcTy))
1343       return Builder.CreateBitCast(Src, DstTy, "conv");
1344 
1345     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1346     // First, convert to the correct width so that we control the kind of
1347     // extension.
1348     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1349     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1350     llvm::Value* IntResult =
1351         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1352     // Then, cast to pointer.
1353     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1354   }
1355 
1356   if (isa<llvm::PointerType>(SrcTy)) {
1357     // Must be an ptr to int cast.
1358     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1359     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1360   }
1361 
1362   // A scalar can be splatted to an extended vector of the same element type
1363   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1364     // Sema should add casts to make sure that the source expression's type is
1365     // the same as the vector's element type (sans qualifiers)
1366     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1367                SrcType.getTypePtr() &&
1368            "Splatted expr doesn't match with vector element type?");
1369 
1370     // Splat the element across to all elements
1371     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1372     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1373   }
1374 
1375   if (SrcType->isMatrixType() && DstType->isMatrixType())
1376     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1377 
1378   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1379     // Allow bitcast from vector to integer/fp of the same size.
1380     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1381     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1382     if (SrcSize == DstSize)
1383       return Builder.CreateBitCast(Src, DstTy, "conv");
1384 
1385     // Conversions between vectors of different sizes are not allowed except
1386     // when vectors of half are involved. Operations on storage-only half
1387     // vectors require promoting half vector operands to float vectors and
1388     // truncating the result, which is either an int or float vector, to a
1389     // short or half vector.
1390 
1391     // Source and destination are both expected to be vectors.
1392     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1393     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1394     (void)DstElementTy;
1395 
1396     assert(((SrcElementTy->isIntegerTy() &&
1397              DstElementTy->isIntegerTy()) ||
1398             (SrcElementTy->isFloatingPointTy() &&
1399              DstElementTy->isFloatingPointTy())) &&
1400            "unexpected conversion between a floating-point vector and an "
1401            "integer vector");
1402 
1403     // Truncate an i32 vector to an i16 vector.
1404     if (SrcElementTy->isIntegerTy())
1405       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1406 
1407     // Truncate a float vector to a half vector.
1408     if (SrcSize > DstSize)
1409       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1410 
1411     // Promote a half vector to a float vector.
1412     return Builder.CreateFPExt(Src, DstTy, "conv");
1413   }
1414 
1415   // Finally, we have the arithmetic types: real int/float.
1416   Value *Res = nullptr;
1417   llvm::Type *ResTy = DstTy;
1418 
1419   // An overflowing conversion has undefined behavior if either the source type
1420   // or the destination type is a floating-point type. However, we consider the
1421   // range of representable values for all floating-point types to be
1422   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1423   // floating-point type.
1424   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1425       OrigSrcType->isFloatingType())
1426     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1427                              Loc);
1428 
1429   // Cast to half through float if half isn't a native type.
1430   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1431     // Make sure we cast in a single step if from another FP type.
1432     if (SrcTy->isFloatingPointTy()) {
1433       // Use the intrinsic if the half type itself isn't supported
1434       // (as opposed to operations on half, available with NativeHalfType).
1435       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1436         return Builder.CreateCall(
1437             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1438       // If the half type is supported, just use an fptrunc.
1439       return Builder.CreateFPTrunc(Src, DstTy);
1440     }
1441     DstTy = CGF.FloatTy;
1442   }
1443 
1444   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1445 
1446   if (DstTy != ResTy) {
1447     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1448       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1449       Res = Builder.CreateCall(
1450         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1451         Res);
1452     } else {
1453       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1454     }
1455   }
1456 
1457   if (Opts.EmitImplicitIntegerTruncationChecks)
1458     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1459                                NoncanonicalDstType, Loc);
1460 
1461   if (Opts.EmitImplicitIntegerSignChangeChecks)
1462     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1463                                NoncanonicalDstType, Loc);
1464 
1465   return Res;
1466 }
1467 
1468 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1469                                                    QualType DstTy,
1470                                                    SourceLocation Loc) {
1471   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1472   llvm::Value *Result;
1473   if (SrcTy->isRealFloatingType())
1474     Result = FPBuilder.CreateFloatingToFixed(Src,
1475         CGF.getContext().getFixedPointSemantics(DstTy));
1476   else if (DstTy->isRealFloatingType())
1477     Result = FPBuilder.CreateFixedToFloating(Src,
1478         CGF.getContext().getFixedPointSemantics(SrcTy),
1479         ConvertType(DstTy));
1480   else {
1481     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1482     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1483 
1484     if (DstTy->isIntegerType())
1485       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1486                                               DstFPSema.getWidth(),
1487                                               DstFPSema.isSigned());
1488     else if (SrcTy->isIntegerType())
1489       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1490                                                DstFPSema);
1491     else
1492       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1493   }
1494   return Result;
1495 }
1496 
1497 /// Emit a conversion from the specified complex type to the specified
1498 /// destination type, where the destination type is an LLVM scalar type.
1499 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1500     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1501     SourceLocation Loc) {
1502   // Get the source element type.
1503   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1504 
1505   // Handle conversions to bool first, they are special: comparisons against 0.
1506   if (DstTy->isBooleanType()) {
1507     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1508     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1509     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1510     return Builder.CreateOr(Src.first, Src.second, "tobool");
1511   }
1512 
1513   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1514   // the imaginary part of the complex value is discarded and the value of the
1515   // real part is converted according to the conversion rules for the
1516   // corresponding real type.
1517   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1518 }
1519 
1520 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1521   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1522 }
1523 
1524 /// Emit a sanitization check for the given "binary" operation (which
1525 /// might actually be a unary increment which has been lowered to a binary
1526 /// operation). The check passes if all values in \p Checks (which are \c i1),
1527 /// are \c true.
1528 void ScalarExprEmitter::EmitBinOpCheck(
1529     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1530   assert(CGF.IsSanitizerScope);
1531   SanitizerHandler Check;
1532   SmallVector<llvm::Constant *, 4> StaticData;
1533   SmallVector<llvm::Value *, 2> DynamicData;
1534 
1535   BinaryOperatorKind Opcode = Info.Opcode;
1536   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1537     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1538 
1539   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1540   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1541   if (UO && UO->getOpcode() == UO_Minus) {
1542     Check = SanitizerHandler::NegateOverflow;
1543     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1544     DynamicData.push_back(Info.RHS);
1545   } else {
1546     if (BinaryOperator::isShiftOp(Opcode)) {
1547       // Shift LHS negative or too large, or RHS out of bounds.
1548       Check = SanitizerHandler::ShiftOutOfBounds;
1549       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1550       StaticData.push_back(
1551         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1552       StaticData.push_back(
1553         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1554     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1555       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1556       Check = SanitizerHandler::DivremOverflow;
1557       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1558     } else {
1559       // Arithmetic overflow (+, -, *).
1560       switch (Opcode) {
1561       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1562       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1563       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1564       default: llvm_unreachable("unexpected opcode for bin op check");
1565       }
1566       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1567     }
1568     DynamicData.push_back(Info.LHS);
1569     DynamicData.push_back(Info.RHS);
1570   }
1571 
1572   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1573 }
1574 
1575 //===----------------------------------------------------------------------===//
1576 //                            Visitor Methods
1577 //===----------------------------------------------------------------------===//
1578 
1579 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1580   CGF.ErrorUnsupported(E, "scalar expression");
1581   if (E->getType()->isVoidType())
1582     return nullptr;
1583   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1584 }
1585 
1586 Value *
1587 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1588   ASTContext &Context = CGF.getContext();
1589   llvm::Optional<LangAS> GlobalAS =
1590       Context.getTargetInfo().getConstantAddressSpace();
1591   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1592       E->ComputeName(Context), "__usn_str",
1593       static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default)));
1594 
1595   unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
1596 
1597   if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
1598     return GlobalConstStr;
1599 
1600   llvm::Type *EltTy = GlobalConstStr->getType()->getPointerElementType();
1601   llvm::PointerType *NewPtrTy = llvm::PointerType::get(EltTy, ExprAS);
1602   return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
1603 }
1604 
1605 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1606   // Vector Mask Case
1607   if (E->getNumSubExprs() == 2) {
1608     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1609     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1610     Value *Mask;
1611 
1612     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1613     unsigned LHSElts = LTy->getNumElements();
1614 
1615     Mask = RHS;
1616 
1617     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1618 
1619     // Mask off the high bits of each shuffle index.
1620     Value *MaskBits =
1621         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1622     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1623 
1624     // newv = undef
1625     // mask = mask & maskbits
1626     // for each elt
1627     //   n = extract mask i
1628     //   x = extract val n
1629     //   newv = insert newv, x, i
1630     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1631                                            MTy->getNumElements());
1632     Value* NewV = llvm::UndefValue::get(RTy);
1633     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1634       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1635       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1636 
1637       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1638       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1639     }
1640     return NewV;
1641   }
1642 
1643   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1644   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1645 
1646   SmallVector<int, 32> Indices;
1647   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1648     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1649     // Check for -1 and output it as undef in the IR.
1650     if (Idx.isSigned() && Idx.isAllOnesValue())
1651       Indices.push_back(-1);
1652     else
1653       Indices.push_back(Idx.getZExtValue());
1654   }
1655 
1656   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1657 }
1658 
1659 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1660   QualType SrcType = E->getSrcExpr()->getType(),
1661            DstType = E->getType();
1662 
1663   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1664 
1665   SrcType = CGF.getContext().getCanonicalType(SrcType);
1666   DstType = CGF.getContext().getCanonicalType(DstType);
1667   if (SrcType == DstType) return Src;
1668 
1669   assert(SrcType->isVectorType() &&
1670          "ConvertVector source type must be a vector");
1671   assert(DstType->isVectorType() &&
1672          "ConvertVector destination type must be a vector");
1673 
1674   llvm::Type *SrcTy = Src->getType();
1675   llvm::Type *DstTy = ConvertType(DstType);
1676 
1677   // Ignore conversions like int -> uint.
1678   if (SrcTy == DstTy)
1679     return Src;
1680 
1681   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1682            DstEltType = DstType->castAs<VectorType>()->getElementType();
1683 
1684   assert(SrcTy->isVectorTy() &&
1685          "ConvertVector source IR type must be a vector");
1686   assert(DstTy->isVectorTy() &&
1687          "ConvertVector destination IR type must be a vector");
1688 
1689   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1690              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1691 
1692   if (DstEltType->isBooleanType()) {
1693     assert((SrcEltTy->isFloatingPointTy() ||
1694             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1695 
1696     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1697     if (SrcEltTy->isFloatingPointTy()) {
1698       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1699     } else {
1700       return Builder.CreateICmpNE(Src, Zero, "tobool");
1701     }
1702   }
1703 
1704   // We have the arithmetic types: real int/float.
1705   Value *Res = nullptr;
1706 
1707   if (isa<llvm::IntegerType>(SrcEltTy)) {
1708     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1709     if (isa<llvm::IntegerType>(DstEltTy))
1710       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1711     else if (InputSigned)
1712       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1713     else
1714       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1715   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1716     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1717     if (DstEltType->isSignedIntegerOrEnumerationType())
1718       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1719     else
1720       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1721   } else {
1722     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1723            "Unknown real conversion");
1724     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1725       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1726     else
1727       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1728   }
1729 
1730   return Res;
1731 }
1732 
1733 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1734   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1735     CGF.EmitIgnoredExpr(E->getBase());
1736     return CGF.emitScalarConstant(Constant, E);
1737   } else {
1738     Expr::EvalResult Result;
1739     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1740       llvm::APSInt Value = Result.Val.getInt();
1741       CGF.EmitIgnoredExpr(E->getBase());
1742       return Builder.getInt(Value);
1743     }
1744   }
1745 
1746   return EmitLoadOfLValue(E);
1747 }
1748 
1749 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1750   TestAndClearIgnoreResultAssign();
1751 
1752   // Emit subscript expressions in rvalue context's.  For most cases, this just
1753   // loads the lvalue formed by the subscript expr.  However, we have to be
1754   // careful, because the base of a vector subscript is occasionally an rvalue,
1755   // so we can't get it as an lvalue.
1756   if (!E->getBase()->getType()->isVectorType())
1757     return EmitLoadOfLValue(E);
1758 
1759   // Handle the vector case.  The base must be a vector, the index must be an
1760   // integer value.
1761   Value *Base = Visit(E->getBase());
1762   Value *Idx  = Visit(E->getIdx());
1763   QualType IdxTy = E->getIdx()->getType();
1764 
1765   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1766     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1767 
1768   return Builder.CreateExtractElement(Base, Idx, "vecext");
1769 }
1770 
1771 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1772   TestAndClearIgnoreResultAssign();
1773 
1774   // Handle the vector case.  The base must be a vector, the index must be an
1775   // integer value.
1776   Value *RowIdx = Visit(E->getRowIdx());
1777   Value *ColumnIdx = Visit(E->getColumnIdx());
1778   Value *Matrix = Visit(E->getBase());
1779 
1780   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1781   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1782   return MB.CreateExtractElement(
1783       Matrix, RowIdx, ColumnIdx,
1784       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
1785 }
1786 
1787 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1788                       unsigned Off) {
1789   int MV = SVI->getMaskValue(Idx);
1790   if (MV == -1)
1791     return -1;
1792   return Off + MV;
1793 }
1794 
1795 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1796   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1797          "Index operand too large for shufflevector mask!");
1798   return C->getZExtValue();
1799 }
1800 
1801 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1802   bool Ignore = TestAndClearIgnoreResultAssign();
1803   (void)Ignore;
1804   assert (Ignore == false && "init list ignored");
1805   unsigned NumInitElements = E->getNumInits();
1806 
1807   if (E->hadArrayRangeDesignator())
1808     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1809 
1810   llvm::VectorType *VType =
1811     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1812 
1813   if (!VType) {
1814     if (NumInitElements == 0) {
1815       // C++11 value-initialization for the scalar.
1816       return EmitNullValue(E->getType());
1817     }
1818     // We have a scalar in braces. Just use the first element.
1819     return Visit(E->getInit(0));
1820   }
1821 
1822   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1823 
1824   // Loop over initializers collecting the Value for each, and remembering
1825   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1826   // us to fold the shuffle for the swizzle into the shuffle for the vector
1827   // initializer, since LLVM optimizers generally do not want to touch
1828   // shuffles.
1829   unsigned CurIdx = 0;
1830   bool VIsUndefShuffle = false;
1831   llvm::Value *V = llvm::UndefValue::get(VType);
1832   for (unsigned i = 0; i != NumInitElements; ++i) {
1833     Expr *IE = E->getInit(i);
1834     Value *Init = Visit(IE);
1835     SmallVector<int, 16> Args;
1836 
1837     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1838 
1839     // Handle scalar elements.  If the scalar initializer is actually one
1840     // element of a different vector of the same width, use shuffle instead of
1841     // extract+insert.
1842     if (!VVT) {
1843       if (isa<ExtVectorElementExpr>(IE)) {
1844         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1845 
1846         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1847                 ->getNumElements() == ResElts) {
1848           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1849           Value *LHS = nullptr, *RHS = nullptr;
1850           if (CurIdx == 0) {
1851             // insert into undef -> shuffle (src, undef)
1852             // shufflemask must use an i32
1853             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1854             Args.resize(ResElts, -1);
1855 
1856             LHS = EI->getVectorOperand();
1857             RHS = V;
1858             VIsUndefShuffle = true;
1859           } else if (VIsUndefShuffle) {
1860             // insert into undefshuffle && size match -> shuffle (v, src)
1861             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1862             for (unsigned j = 0; j != CurIdx; ++j)
1863               Args.push_back(getMaskElt(SVV, j, 0));
1864             Args.push_back(ResElts + C->getZExtValue());
1865             Args.resize(ResElts, -1);
1866 
1867             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1868             RHS = EI->getVectorOperand();
1869             VIsUndefShuffle = false;
1870           }
1871           if (!Args.empty()) {
1872             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1873             ++CurIdx;
1874             continue;
1875           }
1876         }
1877       }
1878       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1879                                       "vecinit");
1880       VIsUndefShuffle = false;
1881       ++CurIdx;
1882       continue;
1883     }
1884 
1885     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1886 
1887     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1888     // input is the same width as the vector being constructed, generate an
1889     // optimized shuffle of the swizzle input into the result.
1890     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1891     if (isa<ExtVectorElementExpr>(IE)) {
1892       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1893       Value *SVOp = SVI->getOperand(0);
1894       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1895 
1896       if (OpTy->getNumElements() == ResElts) {
1897         for (unsigned j = 0; j != CurIdx; ++j) {
1898           // If the current vector initializer is a shuffle with undef, merge
1899           // this shuffle directly into it.
1900           if (VIsUndefShuffle) {
1901             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1902           } else {
1903             Args.push_back(j);
1904           }
1905         }
1906         for (unsigned j = 0, je = InitElts; j != je; ++j)
1907           Args.push_back(getMaskElt(SVI, j, Offset));
1908         Args.resize(ResElts, -1);
1909 
1910         if (VIsUndefShuffle)
1911           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1912 
1913         Init = SVOp;
1914       }
1915     }
1916 
1917     // Extend init to result vector length, and then shuffle its contribution
1918     // to the vector initializer into V.
1919     if (Args.empty()) {
1920       for (unsigned j = 0; j != InitElts; ++j)
1921         Args.push_back(j);
1922       Args.resize(ResElts, -1);
1923       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1924 
1925       Args.clear();
1926       for (unsigned j = 0; j != CurIdx; ++j)
1927         Args.push_back(j);
1928       for (unsigned j = 0; j != InitElts; ++j)
1929         Args.push_back(j + Offset);
1930       Args.resize(ResElts, -1);
1931     }
1932 
1933     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1934     // merging subsequent shuffles into this one.
1935     if (CurIdx == 0)
1936       std::swap(V, Init);
1937     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1938     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1939     CurIdx += InitElts;
1940   }
1941 
1942   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1943   // Emit remaining default initializers.
1944   llvm::Type *EltTy = VType->getElementType();
1945 
1946   // Emit remaining default initializers
1947   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1948     Value *Idx = Builder.getInt32(CurIdx);
1949     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1950     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1951   }
1952   return V;
1953 }
1954 
1955 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1956   const Expr *E = CE->getSubExpr();
1957 
1958   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1959     return false;
1960 
1961   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1962     // We always assume that 'this' is never null.
1963     return false;
1964   }
1965 
1966   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1967     // And that glvalue casts are never null.
1968     if (ICE->isGLValue())
1969       return false;
1970   }
1971 
1972   return true;
1973 }
1974 
1975 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1976 // have to handle a more broad range of conversions than explicit casts, as they
1977 // handle things like function to ptr-to-function decay etc.
1978 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1979   Expr *E = CE->getSubExpr();
1980   QualType DestTy = CE->getType();
1981   CastKind Kind = CE->getCastKind();
1982 
1983   // These cases are generally not written to ignore the result of
1984   // evaluating their sub-expressions, so we clear this now.
1985   bool Ignored = TestAndClearIgnoreResultAssign();
1986 
1987   // Since almost all cast kinds apply to scalars, this switch doesn't have
1988   // a default case, so the compiler will warn on a missing case.  The cases
1989   // are in the same order as in the CastKind enum.
1990   switch (Kind) {
1991   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1992   case CK_BuiltinFnToFnPtr:
1993     llvm_unreachable("builtin functions are handled elsewhere");
1994 
1995   case CK_LValueBitCast:
1996   case CK_ObjCObjectLValueCast: {
1997     Address Addr = EmitLValue(E).getAddress(CGF);
1998     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1999     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2000     return EmitLoadOfLValue(LV, CE->getExprLoc());
2001   }
2002 
2003   case CK_LValueToRValueBitCast: {
2004     LValue SourceLVal = CGF.EmitLValue(E);
2005     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2006                                                 CGF.ConvertTypeForMem(DestTy));
2007     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2008     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2009     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2010   }
2011 
2012   case CK_CPointerToObjCPointerCast:
2013   case CK_BlockPointerToObjCPointerCast:
2014   case CK_AnyPointerToBlockPointerCast:
2015   case CK_BitCast: {
2016     Value *Src = Visit(const_cast<Expr*>(E));
2017     llvm::Type *SrcTy = Src->getType();
2018     llvm::Type *DstTy = ConvertType(DestTy);
2019     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2020         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2021       llvm_unreachable("wrong cast for pointers in different address spaces"
2022                        "(must be an address space cast)!");
2023     }
2024 
2025     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2026       if (auto PT = DestTy->getAs<PointerType>())
2027         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2028                                       /*MayBeNull=*/true,
2029                                       CodeGenFunction::CFITCK_UnrelatedCast,
2030                                       CE->getBeginLoc());
2031     }
2032 
2033     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2034       const QualType SrcType = E->getType();
2035 
2036       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2037         // Casting to pointer that could carry dynamic information (provided by
2038         // invariant.group) requires launder.
2039         Src = Builder.CreateLaunderInvariantGroup(Src);
2040       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2041         // Casting to pointer that does not carry dynamic information (provided
2042         // by invariant.group) requires stripping it.  Note that we don't do it
2043         // if the source could not be dynamic type and destination could be
2044         // dynamic because dynamic information is already laundered.  It is
2045         // because launder(strip(src)) == launder(src), so there is no need to
2046         // add extra strip before launder.
2047         Src = Builder.CreateStripInvariantGroup(Src);
2048       }
2049     }
2050 
2051     // Update heapallocsite metadata when there is an explicit pointer cast.
2052     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2053       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2054         QualType PointeeType = DestTy->getPointeeType();
2055         if (!PointeeType.isNull())
2056           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2057                                                        CE->getExprLoc());
2058       }
2059     }
2060 
2061     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2062     // same element type, use the llvm.experimental.vector.insert intrinsic to
2063     // perform the bitcast.
2064     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2065       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2066         // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2067         // vector, use a vector insert and bitcast the result.
2068         bool NeedsBitCast = false;
2069         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2070         llvm::Type *OrigType = DstTy;
2071         if (ScalableDst == PredType &&
2072             FixedSrc->getElementType() == Builder.getInt8Ty()) {
2073           DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2074           ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy);
2075           NeedsBitCast = true;
2076         }
2077         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2078           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2079           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2080           llvm::Value *Result = Builder.CreateInsertVector(
2081               DstTy, UndefVec, Src, Zero, "castScalableSve");
2082           if (NeedsBitCast)
2083             Result = Builder.CreateBitCast(Result, OrigType);
2084           return Result;
2085         }
2086       }
2087     }
2088 
2089     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2090     // same element type, use the llvm.experimental.vector.extract intrinsic to
2091     // perform the bitcast.
2092     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2093       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2094         // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2095         // vector, bitcast the source and use a vector extract.
2096         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2097         if (ScalableSrc == PredType &&
2098             FixedDst->getElementType() == Builder.getInt8Ty()) {
2099           SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2100           ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy);
2101           Src = Builder.CreateBitCast(Src, SrcTy);
2102         }
2103         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2104           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2105           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2106         }
2107       }
2108     }
2109 
2110     // Perform VLAT <-> VLST bitcast through memory.
2111     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2112     //       require the element types of the vectors to be the same, we
2113     //       need to keep this around for bitcasts between VLAT <-> VLST where
2114     //       the element types of the vectors are not the same, until we figure
2115     //       out a better way of doing these casts.
2116     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2117          isa<llvm::ScalableVectorType>(DstTy)) ||
2118         (isa<llvm::ScalableVectorType>(SrcTy) &&
2119          isa<llvm::FixedVectorType>(DstTy))) {
2120       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2121       LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2122       CGF.EmitStoreOfScalar(Src, LV);
2123       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2124                                           "castFixedSve");
2125       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2126       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2127       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2128     }
2129 
2130     return Builder.CreateBitCast(Src, DstTy);
2131   }
2132   case CK_AddressSpaceConversion: {
2133     Expr::EvalResult Result;
2134     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2135         Result.Val.isNullPointer()) {
2136       // If E has side effect, it is emitted even if its final result is a
2137       // null pointer. In that case, a DCE pass should be able to
2138       // eliminate the useless instructions emitted during translating E.
2139       if (Result.HasSideEffects)
2140         Visit(E);
2141       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2142           ConvertType(DestTy)), DestTy);
2143     }
2144     // Since target may map different address spaces in AST to the same address
2145     // space, an address space conversion may end up as a bitcast.
2146     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2147         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2148         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2149   }
2150   case CK_AtomicToNonAtomic:
2151   case CK_NonAtomicToAtomic:
2152   case CK_NoOp:
2153   case CK_UserDefinedConversion:
2154     return Visit(const_cast<Expr*>(E));
2155 
2156   case CK_BaseToDerived: {
2157     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2158     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2159 
2160     Address Base = CGF.EmitPointerWithAlignment(E);
2161     Address Derived =
2162       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2163                                    CE->path_begin(), CE->path_end(),
2164                                    CGF.ShouldNullCheckClassCastValue(CE));
2165 
2166     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2167     // performed and the object is not of the derived type.
2168     if (CGF.sanitizePerformTypeCheck())
2169       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2170                         Derived.getPointer(), DestTy->getPointeeType());
2171 
2172     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2173       CGF.EmitVTablePtrCheckForCast(
2174           DestTy->getPointeeType(), Derived.getPointer(),
2175           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2176           CE->getBeginLoc());
2177 
2178     return Derived.getPointer();
2179   }
2180   case CK_UncheckedDerivedToBase:
2181   case CK_DerivedToBase: {
2182     // The EmitPointerWithAlignment path does this fine; just discard
2183     // the alignment.
2184     return CGF.EmitPointerWithAlignment(CE).getPointer();
2185   }
2186 
2187   case CK_Dynamic: {
2188     Address V = CGF.EmitPointerWithAlignment(E);
2189     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2190     return CGF.EmitDynamicCast(V, DCE);
2191   }
2192 
2193   case CK_ArrayToPointerDecay:
2194     return CGF.EmitArrayToPointerDecay(E).getPointer();
2195   case CK_FunctionToPointerDecay:
2196     return EmitLValue(E).getPointer(CGF);
2197 
2198   case CK_NullToPointer:
2199     if (MustVisitNullValue(E))
2200       CGF.EmitIgnoredExpr(E);
2201 
2202     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2203                               DestTy);
2204 
2205   case CK_NullToMemberPointer: {
2206     if (MustVisitNullValue(E))
2207       CGF.EmitIgnoredExpr(E);
2208 
2209     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2210     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2211   }
2212 
2213   case CK_ReinterpretMemberPointer:
2214   case CK_BaseToDerivedMemberPointer:
2215   case CK_DerivedToBaseMemberPointer: {
2216     Value *Src = Visit(E);
2217 
2218     // Note that the AST doesn't distinguish between checked and
2219     // unchecked member pointer conversions, so we always have to
2220     // implement checked conversions here.  This is inefficient when
2221     // actual control flow may be required in order to perform the
2222     // check, which it is for data member pointers (but not member
2223     // function pointers on Itanium and ARM).
2224     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2225   }
2226 
2227   case CK_ARCProduceObject:
2228     return CGF.EmitARCRetainScalarExpr(E);
2229   case CK_ARCConsumeObject:
2230     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2231   case CK_ARCReclaimReturnedObject:
2232     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2233   case CK_ARCExtendBlockObject:
2234     return CGF.EmitARCExtendBlockObject(E);
2235 
2236   case CK_CopyAndAutoreleaseBlockObject:
2237     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2238 
2239   case CK_FloatingRealToComplex:
2240   case CK_FloatingComplexCast:
2241   case CK_IntegralRealToComplex:
2242   case CK_IntegralComplexCast:
2243   case CK_IntegralComplexToFloatingComplex:
2244   case CK_FloatingComplexToIntegralComplex:
2245   case CK_ConstructorConversion:
2246   case CK_ToUnion:
2247     llvm_unreachable("scalar cast to non-scalar value");
2248 
2249   case CK_LValueToRValue:
2250     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2251     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2252     return Visit(const_cast<Expr*>(E));
2253 
2254   case CK_IntegralToPointer: {
2255     Value *Src = Visit(const_cast<Expr*>(E));
2256 
2257     // First, convert to the correct width so that we control the kind of
2258     // extension.
2259     auto DestLLVMTy = ConvertType(DestTy);
2260     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2261     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2262     llvm::Value* IntResult =
2263       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2264 
2265     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2266 
2267     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2268       // Going from integer to pointer that could be dynamic requires reloading
2269       // dynamic information from invariant.group.
2270       if (DestTy.mayBeDynamicClass())
2271         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2272     }
2273     return IntToPtr;
2274   }
2275   case CK_PointerToIntegral: {
2276     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2277     auto *PtrExpr = Visit(E);
2278 
2279     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2280       const QualType SrcType = E->getType();
2281 
2282       // Casting to integer requires stripping dynamic information as it does
2283       // not carries it.
2284       if (SrcType.mayBeDynamicClass())
2285         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2286     }
2287 
2288     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2289   }
2290   case CK_ToVoid: {
2291     CGF.EmitIgnoredExpr(E);
2292     return nullptr;
2293   }
2294   case CK_MatrixCast: {
2295     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2296                                 CE->getExprLoc());
2297   }
2298   case CK_VectorSplat: {
2299     llvm::Type *DstTy = ConvertType(DestTy);
2300     Value *Elt = Visit(const_cast<Expr*>(E));
2301     // Splat the element across to all elements
2302     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2303     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2304   }
2305 
2306   case CK_FixedPointCast:
2307     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2308                                 CE->getExprLoc());
2309 
2310   case CK_FixedPointToBoolean:
2311     assert(E->getType()->isFixedPointType() &&
2312            "Expected src type to be fixed point type");
2313     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2314     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2315                                 CE->getExprLoc());
2316 
2317   case CK_FixedPointToIntegral:
2318     assert(E->getType()->isFixedPointType() &&
2319            "Expected src type to be fixed point type");
2320     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2321     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2322                                 CE->getExprLoc());
2323 
2324   case CK_IntegralToFixedPoint:
2325     assert(E->getType()->isIntegerType() &&
2326            "Expected src type to be an integer");
2327     assert(DestTy->isFixedPointType() &&
2328            "Expected dest type to be fixed point type");
2329     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2330                                 CE->getExprLoc());
2331 
2332   case CK_IntegralCast: {
2333     ScalarConversionOpts Opts;
2334     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2335       if (!ICE->isPartOfExplicitCast())
2336         Opts = ScalarConversionOpts(CGF.SanOpts);
2337     }
2338     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2339                                 CE->getExprLoc(), Opts);
2340   }
2341   case CK_IntegralToFloating:
2342   case CK_FloatingToIntegral:
2343   case CK_FloatingCast:
2344   case CK_FixedPointToFloating:
2345   case CK_FloatingToFixedPoint: {
2346     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2347     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2348                                 CE->getExprLoc());
2349   }
2350   case CK_BooleanToSignedIntegral: {
2351     ScalarConversionOpts Opts;
2352     Opts.TreatBooleanAsSigned = true;
2353     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2354                                 CE->getExprLoc(), Opts);
2355   }
2356   case CK_IntegralToBoolean:
2357     return EmitIntToBoolConversion(Visit(E));
2358   case CK_PointerToBoolean:
2359     return EmitPointerToBoolConversion(Visit(E), E->getType());
2360   case CK_FloatingToBoolean: {
2361     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2362     return EmitFloatToBoolConversion(Visit(E));
2363   }
2364   case CK_MemberPointerToBoolean: {
2365     llvm::Value *MemPtr = Visit(E);
2366     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2367     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2368   }
2369 
2370   case CK_FloatingComplexToReal:
2371   case CK_IntegralComplexToReal:
2372     return CGF.EmitComplexExpr(E, false, true).first;
2373 
2374   case CK_FloatingComplexToBoolean:
2375   case CK_IntegralComplexToBoolean: {
2376     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2377 
2378     // TODO: kill this function off, inline appropriate case here
2379     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2380                                          CE->getExprLoc());
2381   }
2382 
2383   case CK_ZeroToOCLOpaqueType: {
2384     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2385             DestTy->isOCLIntelSubgroupAVCType()) &&
2386            "CK_ZeroToOCLEvent cast on non-event type");
2387     return llvm::Constant::getNullValue(ConvertType(DestTy));
2388   }
2389 
2390   case CK_IntToOCLSampler:
2391     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2392 
2393   } // end of switch
2394 
2395   llvm_unreachable("unknown scalar cast");
2396 }
2397 
2398 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2399   CodeGenFunction::StmtExprEvaluation eval(CGF);
2400   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2401                                            !E->getType()->isVoidType());
2402   if (!RetAlloca.isValid())
2403     return nullptr;
2404   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2405                               E->getExprLoc());
2406 }
2407 
2408 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2409   CodeGenFunction::RunCleanupsScope Scope(CGF);
2410   Value *V = Visit(E->getSubExpr());
2411   // Defend against dominance problems caused by jumps out of expression
2412   // evaluation through the shared cleanup block.
2413   Scope.ForceCleanup({&V});
2414   return V;
2415 }
2416 
2417 //===----------------------------------------------------------------------===//
2418 //                             Unary Operators
2419 //===----------------------------------------------------------------------===//
2420 
2421 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2422                                            llvm::Value *InVal, bool IsInc,
2423                                            FPOptions FPFeatures) {
2424   BinOpInfo BinOp;
2425   BinOp.LHS = InVal;
2426   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2427   BinOp.Ty = E->getType();
2428   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2429   BinOp.FPFeatures = FPFeatures;
2430   BinOp.E = E;
2431   return BinOp;
2432 }
2433 
2434 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2435     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2436   llvm::Value *Amount =
2437       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2438   StringRef Name = IsInc ? "inc" : "dec";
2439   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2440   case LangOptions::SOB_Defined:
2441     return Builder.CreateAdd(InVal, Amount, Name);
2442   case LangOptions::SOB_Undefined:
2443     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2444       return Builder.CreateNSWAdd(InVal, Amount, Name);
2445     LLVM_FALLTHROUGH;
2446   case LangOptions::SOB_Trapping:
2447     if (!E->canOverflow())
2448       return Builder.CreateNSWAdd(InVal, Amount, Name);
2449     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2450         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2451   }
2452   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2453 }
2454 
2455 namespace {
2456 /// Handles check and update for lastprivate conditional variables.
2457 class OMPLastprivateConditionalUpdateRAII {
2458 private:
2459   CodeGenFunction &CGF;
2460   const UnaryOperator *E;
2461 
2462 public:
2463   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2464                                       const UnaryOperator *E)
2465       : CGF(CGF), E(E) {}
2466   ~OMPLastprivateConditionalUpdateRAII() {
2467     if (CGF.getLangOpts().OpenMP)
2468       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2469           CGF, E->getSubExpr());
2470   }
2471 };
2472 } // namespace
2473 
2474 llvm::Value *
2475 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2476                                            bool isInc, bool isPre) {
2477   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2478   QualType type = E->getSubExpr()->getType();
2479   llvm::PHINode *atomicPHI = nullptr;
2480   llvm::Value *value;
2481   llvm::Value *input;
2482 
2483   int amount = (isInc ? 1 : -1);
2484   bool isSubtraction = !isInc;
2485 
2486   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2487     type = atomicTy->getValueType();
2488     if (isInc && type->isBooleanType()) {
2489       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2490       if (isPre) {
2491         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2492             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2493         return Builder.getTrue();
2494       }
2495       // For atomic bool increment, we just store true and return it for
2496       // preincrement, do an atomic swap with true for postincrement
2497       return Builder.CreateAtomicRMW(
2498           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2499           llvm::AtomicOrdering::SequentiallyConsistent);
2500     }
2501     // Special case for atomic increment / decrement on integers, emit
2502     // atomicrmw instructions.  We skip this if we want to be doing overflow
2503     // checking, and fall into the slow path with the atomic cmpxchg loop.
2504     if (!type->isBooleanType() && type->isIntegerType() &&
2505         !(type->isUnsignedIntegerType() &&
2506           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2507         CGF.getLangOpts().getSignedOverflowBehavior() !=
2508             LangOptions::SOB_Trapping) {
2509       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2510         llvm::AtomicRMWInst::Sub;
2511       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2512         llvm::Instruction::Sub;
2513       llvm::Value *amt = CGF.EmitToMemory(
2514           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2515       llvm::Value *old =
2516           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2517                                   llvm::AtomicOrdering::SequentiallyConsistent);
2518       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2519     }
2520     value = EmitLoadOfLValue(LV, E->getExprLoc());
2521     input = value;
2522     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2523     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2524     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2525     value = CGF.EmitToMemory(value, type);
2526     Builder.CreateBr(opBB);
2527     Builder.SetInsertPoint(opBB);
2528     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2529     atomicPHI->addIncoming(value, startBB);
2530     value = atomicPHI;
2531   } else {
2532     value = EmitLoadOfLValue(LV, E->getExprLoc());
2533     input = value;
2534   }
2535 
2536   // Special case of integer increment that we have to check first: bool++.
2537   // Due to promotion rules, we get:
2538   //   bool++ -> bool = bool + 1
2539   //          -> bool = (int)bool + 1
2540   //          -> bool = ((int)bool + 1 != 0)
2541   // An interesting aspect of this is that increment is always true.
2542   // Decrement does not have this property.
2543   if (isInc && type->isBooleanType()) {
2544     value = Builder.getTrue();
2545 
2546   // Most common case by far: integer increment.
2547   } else if (type->isIntegerType()) {
2548     QualType promotedType;
2549     bool canPerformLossyDemotionCheck = false;
2550     if (type->isPromotableIntegerType()) {
2551       promotedType = CGF.getContext().getPromotedIntegerType(type);
2552       assert(promotedType != type && "Shouldn't promote to the same type.");
2553       canPerformLossyDemotionCheck = true;
2554       canPerformLossyDemotionCheck &=
2555           CGF.getContext().getCanonicalType(type) !=
2556           CGF.getContext().getCanonicalType(promotedType);
2557       canPerformLossyDemotionCheck &=
2558           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2559               type, promotedType);
2560       assert((!canPerformLossyDemotionCheck ||
2561               type->isSignedIntegerOrEnumerationType() ||
2562               promotedType->isSignedIntegerOrEnumerationType() ||
2563               ConvertType(type)->getScalarSizeInBits() ==
2564                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2565              "The following check expects that if we do promotion to different "
2566              "underlying canonical type, at least one of the types (either "
2567              "base or promoted) will be signed, or the bitwidths will match.");
2568     }
2569     if (CGF.SanOpts.hasOneOf(
2570             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2571         canPerformLossyDemotionCheck) {
2572       // While `x += 1` (for `x` with width less than int) is modeled as
2573       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2574       // ease; inc/dec with width less than int can't overflow because of
2575       // promotion rules, so we omit promotion+demotion, which means that we can
2576       // not catch lossy "demotion". Because we still want to catch these cases
2577       // when the sanitizer is enabled, we perform the promotion, then perform
2578       // the increment/decrement in the wider type, and finally
2579       // perform the demotion. This will catch lossy demotions.
2580 
2581       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2582       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2583       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2584       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2585       // emitted.
2586       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2587                                    ScalarConversionOpts(CGF.SanOpts));
2588 
2589       // Note that signed integer inc/dec with width less than int can't
2590       // overflow because of promotion rules; we're just eliding a few steps
2591       // here.
2592     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2593       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2594     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2595                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2596       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2597           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2598     } else {
2599       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2600       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2601     }
2602 
2603   // Next most common: pointer increment.
2604   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2605     QualType type = ptr->getPointeeType();
2606 
2607     // VLA types don't have constant size.
2608     if (const VariableArrayType *vla
2609           = CGF.getContext().getAsVariableArrayType(type)) {
2610       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2611       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2612       if (CGF.getLangOpts().isSignedOverflowDefined())
2613         value = Builder.CreateGEP(value->getType()->getPointerElementType(),
2614                                   value, numElts, "vla.inc");
2615       else
2616         value = CGF.EmitCheckedInBoundsGEP(
2617             value, numElts, /*SignedIndices=*/false, isSubtraction,
2618             E->getExprLoc(), "vla.inc");
2619 
2620     // Arithmetic on function pointers (!) is just +-1.
2621     } else if (type->isFunctionType()) {
2622       llvm::Value *amt = Builder.getInt32(amount);
2623 
2624       value = CGF.EmitCastToVoidPtr(value);
2625       if (CGF.getLangOpts().isSignedOverflowDefined())
2626         value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2627       else
2628         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2629                                            isSubtraction, E->getExprLoc(),
2630                                            "incdec.funcptr");
2631       value = Builder.CreateBitCast(value, input->getType());
2632 
2633     // For everything else, we can just do a simple increment.
2634     } else {
2635       llvm::Value *amt = Builder.getInt32(amount);
2636       if (CGF.getLangOpts().isSignedOverflowDefined())
2637         value = Builder.CreateGEP(value->getType()->getPointerElementType(),
2638                                   value, amt, "incdec.ptr");
2639       else
2640         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2641                                            isSubtraction, E->getExprLoc(),
2642                                            "incdec.ptr");
2643     }
2644 
2645   // Vector increment/decrement.
2646   } else if (type->isVectorType()) {
2647     if (type->hasIntegerRepresentation()) {
2648       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2649 
2650       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2651     } else {
2652       value = Builder.CreateFAdd(
2653                   value,
2654                   llvm::ConstantFP::get(value->getType(), amount),
2655                   isInc ? "inc" : "dec");
2656     }
2657 
2658   // Floating point.
2659   } else if (type->isRealFloatingType()) {
2660     // Add the inc/dec to the real part.
2661     llvm::Value *amt;
2662     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2663 
2664     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2665       // Another special case: half FP increment should be done via float
2666       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2667         value = Builder.CreateCall(
2668             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2669                                  CGF.CGM.FloatTy),
2670             input, "incdec.conv");
2671       } else {
2672         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2673       }
2674     }
2675 
2676     if (value->getType()->isFloatTy())
2677       amt = llvm::ConstantFP::get(VMContext,
2678                                   llvm::APFloat(static_cast<float>(amount)));
2679     else if (value->getType()->isDoubleTy())
2680       amt = llvm::ConstantFP::get(VMContext,
2681                                   llvm::APFloat(static_cast<double>(amount)));
2682     else {
2683       // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2684       // from float.
2685       llvm::APFloat F(static_cast<float>(amount));
2686       bool ignored;
2687       const llvm::fltSemantics *FS;
2688       // Don't use getFloatTypeSemantics because Half isn't
2689       // necessarily represented using the "half" LLVM type.
2690       if (value->getType()->isFP128Ty())
2691         FS = &CGF.getTarget().getFloat128Format();
2692       else if (value->getType()->isHalfTy())
2693         FS = &CGF.getTarget().getHalfFormat();
2694       else if (value->getType()->isPPC_FP128Ty())
2695         FS = &CGF.getTarget().getIbm128Format();
2696       else
2697         FS = &CGF.getTarget().getLongDoubleFormat();
2698       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2699       amt = llvm::ConstantFP::get(VMContext, F);
2700     }
2701     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2702 
2703     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2704       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2705         value = Builder.CreateCall(
2706             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2707                                  CGF.CGM.FloatTy),
2708             value, "incdec.conv");
2709       } else {
2710         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2711       }
2712     }
2713 
2714   // Fixed-point types.
2715   } else if (type->isFixedPointType()) {
2716     // Fixed-point types are tricky. In some cases, it isn't possible to
2717     // represent a 1 or a -1 in the type at all. Piggyback off of
2718     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2719     BinOpInfo Info;
2720     Info.E = E;
2721     Info.Ty = E->getType();
2722     Info.Opcode = isInc ? BO_Add : BO_Sub;
2723     Info.LHS = value;
2724     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2725     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2726     // since -1 is guaranteed to be representable.
2727     if (type->isSignedFixedPointType()) {
2728       Info.Opcode = isInc ? BO_Sub : BO_Add;
2729       Info.RHS = Builder.CreateNeg(Info.RHS);
2730     }
2731     // Now, convert from our invented integer literal to the type of the unary
2732     // op. This will upscale and saturate if necessary. This value can become
2733     // undef in some cases.
2734     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2735     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2736     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2737     value = EmitFixedPointBinOp(Info);
2738 
2739   // Objective-C pointer types.
2740   } else {
2741     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2742     value = CGF.EmitCastToVoidPtr(value);
2743 
2744     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2745     if (!isInc) size = -size;
2746     llvm::Value *sizeValue =
2747       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2748 
2749     if (CGF.getLangOpts().isSignedOverflowDefined())
2750       value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2751     else
2752       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2753                                          /*SignedIndices=*/false, isSubtraction,
2754                                          E->getExprLoc(), "incdec.objptr");
2755     value = Builder.CreateBitCast(value, input->getType());
2756   }
2757 
2758   if (atomicPHI) {
2759     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2760     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2761     auto Pair = CGF.EmitAtomicCompareExchange(
2762         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2763     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2764     llvm::Value *success = Pair.second;
2765     atomicPHI->addIncoming(old, curBlock);
2766     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2767     Builder.SetInsertPoint(contBB);
2768     return isPre ? value : input;
2769   }
2770 
2771   // Store the updated result through the lvalue.
2772   if (LV.isBitField())
2773     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2774   else
2775     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2776 
2777   // If this is a postinc, return the value read from memory, otherwise use the
2778   // updated value.
2779   return isPre ? value : input;
2780 }
2781 
2782 
2783 
2784 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2785   TestAndClearIgnoreResultAssign();
2786   Value *Op = Visit(E->getSubExpr());
2787 
2788   // Generate a unary FNeg for FP ops.
2789   if (Op->getType()->isFPOrFPVectorTy())
2790     return Builder.CreateFNeg(Op, "fneg");
2791 
2792   // Emit unary minus with EmitSub so we handle overflow cases etc.
2793   BinOpInfo BinOp;
2794   BinOp.RHS = Op;
2795   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2796   BinOp.Ty = E->getType();
2797   BinOp.Opcode = BO_Sub;
2798   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2799   BinOp.E = E;
2800   return EmitSub(BinOp);
2801 }
2802 
2803 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2804   TestAndClearIgnoreResultAssign();
2805   Value *Op = Visit(E->getSubExpr());
2806   return Builder.CreateNot(Op, "neg");
2807 }
2808 
2809 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2810   // Perform vector logical not on comparison with zero vector.
2811   if (E->getType()->isVectorType() &&
2812       E->getType()->castAs<VectorType>()->getVectorKind() ==
2813           VectorType::GenericVector) {
2814     Value *Oper = Visit(E->getSubExpr());
2815     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2816     Value *Result;
2817     if (Oper->getType()->isFPOrFPVectorTy()) {
2818       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2819           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2820       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2821     } else
2822       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2823     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2824   }
2825 
2826   // Compare operand to zero.
2827   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2828 
2829   // Invert value.
2830   // TODO: Could dynamically modify easy computations here.  For example, if
2831   // the operand is an icmp ne, turn into icmp eq.
2832   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2833 
2834   // ZExt result to the expr type.
2835   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2836 }
2837 
2838 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2839   // Try folding the offsetof to a constant.
2840   Expr::EvalResult EVResult;
2841   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2842     llvm::APSInt Value = EVResult.Val.getInt();
2843     return Builder.getInt(Value);
2844   }
2845 
2846   // Loop over the components of the offsetof to compute the value.
2847   unsigned n = E->getNumComponents();
2848   llvm::Type* ResultType = ConvertType(E->getType());
2849   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2850   QualType CurrentType = E->getTypeSourceInfo()->getType();
2851   for (unsigned i = 0; i != n; ++i) {
2852     OffsetOfNode ON = E->getComponent(i);
2853     llvm::Value *Offset = nullptr;
2854     switch (ON.getKind()) {
2855     case OffsetOfNode::Array: {
2856       // Compute the index
2857       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2858       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2859       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2860       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2861 
2862       // Save the element type
2863       CurrentType =
2864           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2865 
2866       // Compute the element size
2867       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2868           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2869 
2870       // Multiply out to compute the result
2871       Offset = Builder.CreateMul(Idx, ElemSize);
2872       break;
2873     }
2874 
2875     case OffsetOfNode::Field: {
2876       FieldDecl *MemberDecl = ON.getField();
2877       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2878       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2879 
2880       // Compute the index of the field in its parent.
2881       unsigned i = 0;
2882       // FIXME: It would be nice if we didn't have to loop here!
2883       for (RecordDecl::field_iterator Field = RD->field_begin(),
2884                                       FieldEnd = RD->field_end();
2885            Field != FieldEnd; ++Field, ++i) {
2886         if (*Field == MemberDecl)
2887           break;
2888       }
2889       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2890 
2891       // Compute the offset to the field
2892       int64_t OffsetInt = RL.getFieldOffset(i) /
2893                           CGF.getContext().getCharWidth();
2894       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2895 
2896       // Save the element type.
2897       CurrentType = MemberDecl->getType();
2898       break;
2899     }
2900 
2901     case OffsetOfNode::Identifier:
2902       llvm_unreachable("dependent __builtin_offsetof");
2903 
2904     case OffsetOfNode::Base: {
2905       if (ON.getBase()->isVirtual()) {
2906         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2907         continue;
2908       }
2909 
2910       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2911       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2912 
2913       // Save the element type.
2914       CurrentType = ON.getBase()->getType();
2915 
2916       // Compute the offset to the base.
2917       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2918       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2919       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2920       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2921       break;
2922     }
2923     }
2924     Result = Builder.CreateAdd(Result, Offset);
2925   }
2926   return Result;
2927 }
2928 
2929 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2930 /// argument of the sizeof expression as an integer.
2931 Value *
2932 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2933                               const UnaryExprOrTypeTraitExpr *E) {
2934   QualType TypeToSize = E->getTypeOfArgument();
2935   if (E->getKind() == UETT_SizeOf) {
2936     if (const VariableArrayType *VAT =
2937           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2938       if (E->isArgumentType()) {
2939         // sizeof(type) - make sure to emit the VLA size.
2940         CGF.EmitVariablyModifiedType(TypeToSize);
2941       } else {
2942         // C99 6.5.3.4p2: If the argument is an expression of type
2943         // VLA, it is evaluated.
2944         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2945       }
2946 
2947       auto VlaSize = CGF.getVLASize(VAT);
2948       llvm::Value *size = VlaSize.NumElts;
2949 
2950       // Scale the number of non-VLA elements by the non-VLA element size.
2951       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2952       if (!eltSize.isOne())
2953         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2954 
2955       return size;
2956     }
2957   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2958     auto Alignment =
2959         CGF.getContext()
2960             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2961                 E->getTypeOfArgument()->getPointeeType()))
2962             .getQuantity();
2963     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2964   }
2965 
2966   // If this isn't sizeof(vla), the result must be constant; use the constant
2967   // folding logic so we don't have to duplicate it here.
2968   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2969 }
2970 
2971 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2972   Expr *Op = E->getSubExpr();
2973   if (Op->getType()->isAnyComplexType()) {
2974     // If it's an l-value, load through the appropriate subobject l-value.
2975     // Note that we have to ask E because Op might be an l-value that
2976     // this won't work for, e.g. an Obj-C property.
2977     if (E->isGLValue())
2978       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2979                                   E->getExprLoc()).getScalarVal();
2980 
2981     // Otherwise, calculate and project.
2982     return CGF.EmitComplexExpr(Op, false, true).first;
2983   }
2984 
2985   return Visit(Op);
2986 }
2987 
2988 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2989   Expr *Op = E->getSubExpr();
2990   if (Op->getType()->isAnyComplexType()) {
2991     // If it's an l-value, load through the appropriate subobject l-value.
2992     // Note that we have to ask E because Op might be an l-value that
2993     // this won't work for, e.g. an Obj-C property.
2994     if (Op->isGLValue())
2995       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2996                                   E->getExprLoc()).getScalarVal();
2997 
2998     // Otherwise, calculate and project.
2999     return CGF.EmitComplexExpr(Op, true, false).second;
3000   }
3001 
3002   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
3003   // effects are evaluated, but not the actual value.
3004   if (Op->isGLValue())
3005     CGF.EmitLValue(Op);
3006   else
3007     CGF.EmitScalarExpr(Op, true);
3008   return llvm::Constant::getNullValue(ConvertType(E->getType()));
3009 }
3010 
3011 //===----------------------------------------------------------------------===//
3012 //                           Binary Operators
3013 //===----------------------------------------------------------------------===//
3014 
3015 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
3016   TestAndClearIgnoreResultAssign();
3017   BinOpInfo Result;
3018   Result.LHS = Visit(E->getLHS());
3019   Result.RHS = Visit(E->getRHS());
3020   Result.Ty  = E->getType();
3021   Result.Opcode = E->getOpcode();
3022   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3023   Result.E = E;
3024   return Result;
3025 }
3026 
3027 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3028                                               const CompoundAssignOperator *E,
3029                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3030                                                    Value *&Result) {
3031   QualType LHSTy = E->getLHS()->getType();
3032   BinOpInfo OpInfo;
3033 
3034   if (E->getComputationResultType()->isAnyComplexType())
3035     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3036 
3037   // Emit the RHS first.  __block variables need to have the rhs evaluated
3038   // first, plus this should improve codegen a little.
3039   OpInfo.RHS = Visit(E->getRHS());
3040   OpInfo.Ty = E->getComputationResultType();
3041   OpInfo.Opcode = E->getOpcode();
3042   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3043   OpInfo.E = E;
3044   // Load/convert the LHS.
3045   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3046 
3047   llvm::PHINode *atomicPHI = nullptr;
3048   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3049     QualType type = atomicTy->getValueType();
3050     if (!type->isBooleanType() && type->isIntegerType() &&
3051         !(type->isUnsignedIntegerType() &&
3052           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3053         CGF.getLangOpts().getSignedOverflowBehavior() !=
3054             LangOptions::SOB_Trapping) {
3055       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3056       llvm::Instruction::BinaryOps Op;
3057       switch (OpInfo.Opcode) {
3058         // We don't have atomicrmw operands for *, %, /, <<, >>
3059         case BO_MulAssign: case BO_DivAssign:
3060         case BO_RemAssign:
3061         case BO_ShlAssign:
3062         case BO_ShrAssign:
3063           break;
3064         case BO_AddAssign:
3065           AtomicOp = llvm::AtomicRMWInst::Add;
3066           Op = llvm::Instruction::Add;
3067           break;
3068         case BO_SubAssign:
3069           AtomicOp = llvm::AtomicRMWInst::Sub;
3070           Op = llvm::Instruction::Sub;
3071           break;
3072         case BO_AndAssign:
3073           AtomicOp = llvm::AtomicRMWInst::And;
3074           Op = llvm::Instruction::And;
3075           break;
3076         case BO_XorAssign:
3077           AtomicOp = llvm::AtomicRMWInst::Xor;
3078           Op = llvm::Instruction::Xor;
3079           break;
3080         case BO_OrAssign:
3081           AtomicOp = llvm::AtomicRMWInst::Or;
3082           Op = llvm::Instruction::Or;
3083           break;
3084         default:
3085           llvm_unreachable("Invalid compound assignment type");
3086       }
3087       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3088         llvm::Value *Amt = CGF.EmitToMemory(
3089             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3090                                  E->getExprLoc()),
3091             LHSTy);
3092         Value *OldVal = Builder.CreateAtomicRMW(
3093             AtomicOp, LHSLV.getPointer(CGF), Amt,
3094             llvm::AtomicOrdering::SequentiallyConsistent);
3095 
3096         // Since operation is atomic, the result type is guaranteed to be the
3097         // same as the input in LLVM terms.
3098         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3099         return LHSLV;
3100       }
3101     }
3102     // FIXME: For floating point types, we should be saving and restoring the
3103     // floating point environment in the loop.
3104     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3105     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3106     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3107     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3108     Builder.CreateBr(opBB);
3109     Builder.SetInsertPoint(opBB);
3110     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3111     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3112     OpInfo.LHS = atomicPHI;
3113   }
3114   else
3115     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3116 
3117   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3118   SourceLocation Loc = E->getExprLoc();
3119   OpInfo.LHS =
3120       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3121 
3122   // Expand the binary operator.
3123   Result = (this->*Func)(OpInfo);
3124 
3125   // Convert the result back to the LHS type,
3126   // potentially with Implicit Conversion sanitizer check.
3127   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3128                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3129 
3130   if (atomicPHI) {
3131     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3132     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3133     auto Pair = CGF.EmitAtomicCompareExchange(
3134         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3135     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3136     llvm::Value *success = Pair.second;
3137     atomicPHI->addIncoming(old, curBlock);
3138     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3139     Builder.SetInsertPoint(contBB);
3140     return LHSLV;
3141   }
3142 
3143   // Store the result value into the LHS lvalue. Bit-fields are handled
3144   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3145   // 'An assignment expression has the value of the left operand after the
3146   // assignment...'.
3147   if (LHSLV.isBitField())
3148     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3149   else
3150     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3151 
3152   if (CGF.getLangOpts().OpenMP)
3153     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3154                                                                   E->getLHS());
3155   return LHSLV;
3156 }
3157 
3158 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3159                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3160   bool Ignore = TestAndClearIgnoreResultAssign();
3161   Value *RHS = nullptr;
3162   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3163 
3164   // If the result is clearly ignored, return now.
3165   if (Ignore)
3166     return nullptr;
3167 
3168   // The result of an assignment in C is the assigned r-value.
3169   if (!CGF.getLangOpts().CPlusPlus)
3170     return RHS;
3171 
3172   // If the lvalue is non-volatile, return the computed value of the assignment.
3173   if (!LHS.isVolatileQualified())
3174     return RHS;
3175 
3176   // Otherwise, reload the value.
3177   return EmitLoadOfLValue(LHS, E->getExprLoc());
3178 }
3179 
3180 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3181     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3182   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3183 
3184   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3185     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3186                                     SanitizerKind::IntegerDivideByZero));
3187   }
3188 
3189   const auto *BO = cast<BinaryOperator>(Ops.E);
3190   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3191       Ops.Ty->hasSignedIntegerRepresentation() &&
3192       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3193       Ops.mayHaveIntegerOverflow()) {
3194     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3195 
3196     llvm::Value *IntMin =
3197       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3198     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3199 
3200     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3201     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3202     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3203     Checks.push_back(
3204         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3205   }
3206 
3207   if (Checks.size() > 0)
3208     EmitBinOpCheck(Checks, Ops);
3209 }
3210 
3211 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3212   {
3213     CodeGenFunction::SanitizerScope SanScope(&CGF);
3214     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3215          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3216         Ops.Ty->isIntegerType() &&
3217         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3218       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3219       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3220     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3221                Ops.Ty->isRealFloatingType() &&
3222                Ops.mayHaveFloatDivisionByZero()) {
3223       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3224       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3225       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3226                      Ops);
3227     }
3228   }
3229 
3230   if (Ops.Ty->isConstantMatrixType()) {
3231     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3232     // We need to check the types of the operands of the operator to get the
3233     // correct matrix dimensions.
3234     auto *BO = cast<BinaryOperator>(Ops.E);
3235     (void)BO;
3236     assert(
3237         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3238         "first operand must be a matrix");
3239     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3240            "second operand must be an arithmetic type");
3241     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3242     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3243                               Ops.Ty->hasUnsignedIntegerRepresentation());
3244   }
3245 
3246   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3247     llvm::Value *Val;
3248     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3249     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3250     if ((CGF.getLangOpts().OpenCL &&
3251          !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3252         (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3253          !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3254       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3255       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3256       // build option allows an application to specify that single precision
3257       // floating-point divide (x/y and 1/x) and sqrt used in the program
3258       // source are correctly rounded.
3259       llvm::Type *ValTy = Val->getType();
3260       if (ValTy->isFloatTy() ||
3261           (isa<llvm::VectorType>(ValTy) &&
3262            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3263         CGF.SetFPAccuracy(Val, 2.5);
3264     }
3265     return Val;
3266   }
3267   else if (Ops.isFixedPointOp())
3268     return EmitFixedPointBinOp(Ops);
3269   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3270     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3271   else
3272     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3273 }
3274 
3275 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3276   // Rem in C can't be a floating point type: C99 6.5.5p2.
3277   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3278        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3279       Ops.Ty->isIntegerType() &&
3280       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3281     CodeGenFunction::SanitizerScope SanScope(&CGF);
3282     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3283     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3284   }
3285 
3286   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3287     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3288   else
3289     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3290 }
3291 
3292 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3293   unsigned IID;
3294   unsigned OpID = 0;
3295   SanitizerHandler OverflowKind;
3296 
3297   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3298   switch (Ops.Opcode) {
3299   case BO_Add:
3300   case BO_AddAssign:
3301     OpID = 1;
3302     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3303                      llvm::Intrinsic::uadd_with_overflow;
3304     OverflowKind = SanitizerHandler::AddOverflow;
3305     break;
3306   case BO_Sub:
3307   case BO_SubAssign:
3308     OpID = 2;
3309     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3310                      llvm::Intrinsic::usub_with_overflow;
3311     OverflowKind = SanitizerHandler::SubOverflow;
3312     break;
3313   case BO_Mul:
3314   case BO_MulAssign:
3315     OpID = 3;
3316     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3317                      llvm::Intrinsic::umul_with_overflow;
3318     OverflowKind = SanitizerHandler::MulOverflow;
3319     break;
3320   default:
3321     llvm_unreachable("Unsupported operation for overflow detection");
3322   }
3323   OpID <<= 1;
3324   if (isSigned)
3325     OpID |= 1;
3326 
3327   CodeGenFunction::SanitizerScope SanScope(&CGF);
3328   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3329 
3330   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3331 
3332   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3333   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3334   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3335 
3336   // Handle overflow with llvm.trap if no custom handler has been specified.
3337   const std::string *handlerName =
3338     &CGF.getLangOpts().OverflowHandler;
3339   if (handlerName->empty()) {
3340     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3341     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3342     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3343       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3344       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3345                               : SanitizerKind::UnsignedIntegerOverflow;
3346       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3347     } else
3348       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3349     return result;
3350   }
3351 
3352   // Branch in case of overflow.
3353   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3354   llvm::BasicBlock *continueBB =
3355       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3356   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3357 
3358   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3359 
3360   // If an overflow handler is set, then we want to call it and then use its
3361   // result, if it returns.
3362   Builder.SetInsertPoint(overflowBB);
3363 
3364   // Get the overflow handler.
3365   llvm::Type *Int8Ty = CGF.Int8Ty;
3366   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3367   llvm::FunctionType *handlerTy =
3368       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3369   llvm::FunctionCallee handler =
3370       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3371 
3372   // Sign extend the args to 64-bit, so that we can use the same handler for
3373   // all types of overflow.
3374   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3375   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3376 
3377   // Call the handler with the two arguments, the operation, and the size of
3378   // the result.
3379   llvm::Value *handlerArgs[] = {
3380     lhs,
3381     rhs,
3382     Builder.getInt8(OpID),
3383     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3384   };
3385   llvm::Value *handlerResult =
3386     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3387 
3388   // Truncate the result back to the desired size.
3389   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3390   Builder.CreateBr(continueBB);
3391 
3392   Builder.SetInsertPoint(continueBB);
3393   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3394   phi->addIncoming(result, initialBB);
3395   phi->addIncoming(handlerResult, overflowBB);
3396 
3397   return phi;
3398 }
3399 
3400 /// Emit pointer + index arithmetic.
3401 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3402                                     const BinOpInfo &op,
3403                                     bool isSubtraction) {
3404   // Must have binary (not unary) expr here.  Unary pointer
3405   // increment/decrement doesn't use this path.
3406   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3407 
3408   Value *pointer = op.LHS;
3409   Expr *pointerOperand = expr->getLHS();
3410   Value *index = op.RHS;
3411   Expr *indexOperand = expr->getRHS();
3412 
3413   // In a subtraction, the LHS is always the pointer.
3414   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3415     std::swap(pointer, index);
3416     std::swap(pointerOperand, indexOperand);
3417   }
3418 
3419   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3420 
3421   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3422   auto &DL = CGF.CGM.getDataLayout();
3423   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3424 
3425   // Some versions of glibc and gcc use idioms (particularly in their malloc
3426   // routines) that add a pointer-sized integer (known to be a pointer value)
3427   // to a null pointer in order to cast the value back to an integer or as
3428   // part of a pointer alignment algorithm.  This is undefined behavior, but
3429   // we'd like to be able to compile programs that use it.
3430   //
3431   // Normally, we'd generate a GEP with a null-pointer base here in response
3432   // to that code, but it's also UB to dereference a pointer created that
3433   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3434   // generate a direct cast of the integer value to a pointer.
3435   //
3436   // The idiom (p = nullptr + N) is not met if any of the following are true:
3437   //
3438   //   The operation is subtraction.
3439   //   The index is not pointer-sized.
3440   //   The pointer type is not byte-sized.
3441   //
3442   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3443                                                        op.Opcode,
3444                                                        expr->getLHS(),
3445                                                        expr->getRHS()))
3446     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3447 
3448   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3449     // Zero-extend or sign-extend the pointer value according to
3450     // whether the index is signed or not.
3451     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3452                                       "idx.ext");
3453   }
3454 
3455   // If this is subtraction, negate the index.
3456   if (isSubtraction)
3457     index = CGF.Builder.CreateNeg(index, "idx.neg");
3458 
3459   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3460     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3461                         /*Accessed*/ false);
3462 
3463   const PointerType *pointerType
3464     = pointerOperand->getType()->getAs<PointerType>();
3465   if (!pointerType) {
3466     QualType objectType = pointerOperand->getType()
3467                                         ->castAs<ObjCObjectPointerType>()
3468                                         ->getPointeeType();
3469     llvm::Value *objectSize
3470       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3471 
3472     index = CGF.Builder.CreateMul(index, objectSize);
3473 
3474     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3475     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3476     return CGF.Builder.CreateBitCast(result, pointer->getType());
3477   }
3478 
3479   QualType elementType = pointerType->getPointeeType();
3480   if (const VariableArrayType *vla
3481         = CGF.getContext().getAsVariableArrayType(elementType)) {
3482     // The element count here is the total number of non-VLA elements.
3483     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3484 
3485     // Effectively, the multiply by the VLA size is part of the GEP.
3486     // GEP indexes are signed, and scaling an index isn't permitted to
3487     // signed-overflow, so we use the same semantics for our explicit
3488     // multiply.  We suppress this if overflow is not undefined behavior.
3489     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3490       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3491       pointer = CGF.Builder.CreateGEP(
3492           pointer->getType()->getPointerElementType(), pointer, index,
3493           "add.ptr");
3494     } else {
3495       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3496       pointer =
3497           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3498                                      op.E->getExprLoc(), "add.ptr");
3499     }
3500     return pointer;
3501   }
3502 
3503   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3504   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3505   // future proof.
3506   if (elementType->isVoidType() || elementType->isFunctionType()) {
3507     Value *result = CGF.EmitCastToVoidPtr(pointer);
3508     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3509     return CGF.Builder.CreateBitCast(result, pointer->getType());
3510   }
3511 
3512   if (CGF.getLangOpts().isSignedOverflowDefined())
3513     return CGF.Builder.CreateGEP(
3514         pointer->getType()->getPointerElementType(), pointer, index, "add.ptr");
3515 
3516   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3517                                     op.E->getExprLoc(), "add.ptr");
3518 }
3519 
3520 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3521 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3522 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3523 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3524 // efficient operations.
3525 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3526                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3527                            bool negMul, bool negAdd) {
3528   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3529 
3530   Value *MulOp0 = MulOp->getOperand(0);
3531   Value *MulOp1 = MulOp->getOperand(1);
3532   if (negMul)
3533     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3534   if (negAdd)
3535     Addend = Builder.CreateFNeg(Addend, "neg");
3536 
3537   Value *FMulAdd = nullptr;
3538   if (Builder.getIsFPConstrained()) {
3539     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3540            "Only constrained operation should be created when Builder is in FP "
3541            "constrained mode");
3542     FMulAdd = Builder.CreateConstrainedFPCall(
3543         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3544                              Addend->getType()),
3545         {MulOp0, MulOp1, Addend});
3546   } else {
3547     FMulAdd = Builder.CreateCall(
3548         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3549         {MulOp0, MulOp1, Addend});
3550   }
3551   MulOp->eraseFromParent();
3552 
3553   return FMulAdd;
3554 }
3555 
3556 // Check whether it would be legal to emit an fmuladd intrinsic call to
3557 // represent op and if so, build the fmuladd.
3558 //
3559 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3560 // Does NOT check the type of the operation - it's assumed that this function
3561 // will be called from contexts where it's known that the type is contractable.
3562 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3563                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3564                          bool isSub=false) {
3565 
3566   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3567           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3568          "Only fadd/fsub can be the root of an fmuladd.");
3569 
3570   // Check whether this op is marked as fusable.
3571   if (!op.FPFeatures.allowFPContractWithinStatement())
3572     return nullptr;
3573 
3574   // We have a potentially fusable op. Look for a mul on one of the operands.
3575   // Also, make sure that the mul result isn't used directly. In that case,
3576   // there's no point creating a muladd operation.
3577   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3578     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3579         LHSBinOp->use_empty())
3580       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3581   }
3582   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3583     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3584         RHSBinOp->use_empty())
3585       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3586   }
3587 
3588   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3589     if (LHSBinOp->getIntrinsicID() ==
3590             llvm::Intrinsic::experimental_constrained_fmul &&
3591         LHSBinOp->use_empty())
3592       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3593   }
3594   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3595     if (RHSBinOp->getIntrinsicID() ==
3596             llvm::Intrinsic::experimental_constrained_fmul &&
3597         RHSBinOp->use_empty())
3598       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3599   }
3600 
3601   return nullptr;
3602 }
3603 
3604 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3605   if (op.LHS->getType()->isPointerTy() ||
3606       op.RHS->getType()->isPointerTy())
3607     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3608 
3609   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3610     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3611     case LangOptions::SOB_Defined:
3612       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3613     case LangOptions::SOB_Undefined:
3614       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3615         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3616       LLVM_FALLTHROUGH;
3617     case LangOptions::SOB_Trapping:
3618       if (CanElideOverflowCheck(CGF.getContext(), op))
3619         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3620       return EmitOverflowCheckedBinOp(op);
3621     }
3622   }
3623 
3624   if (op.Ty->isConstantMatrixType()) {
3625     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3626     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3627     return MB.CreateAdd(op.LHS, op.RHS);
3628   }
3629 
3630   if (op.Ty->isUnsignedIntegerType() &&
3631       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3632       !CanElideOverflowCheck(CGF.getContext(), op))
3633     return EmitOverflowCheckedBinOp(op);
3634 
3635   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3636     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3637     // Try to form an fmuladd.
3638     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3639       return FMulAdd;
3640 
3641     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3642   }
3643 
3644   if (op.isFixedPointOp())
3645     return EmitFixedPointBinOp(op);
3646 
3647   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3648 }
3649 
3650 /// The resulting value must be calculated with exact precision, so the operands
3651 /// may not be the same type.
3652 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3653   using llvm::APSInt;
3654   using llvm::ConstantInt;
3655 
3656   // This is either a binary operation where at least one of the operands is
3657   // a fixed-point type, or a unary operation where the operand is a fixed-point
3658   // type. The result type of a binary operation is determined by
3659   // Sema::handleFixedPointConversions().
3660   QualType ResultTy = op.Ty;
3661   QualType LHSTy, RHSTy;
3662   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3663     RHSTy = BinOp->getRHS()->getType();
3664     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3665       // For compound assignment, the effective type of the LHS at this point
3666       // is the computation LHS type, not the actual LHS type, and the final
3667       // result type is not the type of the expression but rather the
3668       // computation result type.
3669       LHSTy = CAO->getComputationLHSType();
3670       ResultTy = CAO->getComputationResultType();
3671     } else
3672       LHSTy = BinOp->getLHS()->getType();
3673   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3674     LHSTy = UnOp->getSubExpr()->getType();
3675     RHSTy = UnOp->getSubExpr()->getType();
3676   }
3677   ASTContext &Ctx = CGF.getContext();
3678   Value *LHS = op.LHS;
3679   Value *RHS = op.RHS;
3680 
3681   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3682   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3683   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3684   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3685 
3686   // Perform the actual operation.
3687   Value *Result;
3688   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3689   switch (op.Opcode) {
3690   case BO_AddAssign:
3691   case BO_Add:
3692     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3693     break;
3694   case BO_SubAssign:
3695   case BO_Sub:
3696     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3697     break;
3698   case BO_MulAssign:
3699   case BO_Mul:
3700     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3701     break;
3702   case BO_DivAssign:
3703   case BO_Div:
3704     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3705     break;
3706   case BO_ShlAssign:
3707   case BO_Shl:
3708     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3709     break;
3710   case BO_ShrAssign:
3711   case BO_Shr:
3712     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3713     break;
3714   case BO_LT:
3715     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3716   case BO_GT:
3717     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3718   case BO_LE:
3719     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3720   case BO_GE:
3721     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3722   case BO_EQ:
3723     // For equality operations, we assume any padding bits on unsigned types are
3724     // zero'd out. They could be overwritten through non-saturating operations
3725     // that cause overflow, but this leads to undefined behavior.
3726     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3727   case BO_NE:
3728     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3729   case BO_Cmp:
3730   case BO_LAnd:
3731   case BO_LOr:
3732     llvm_unreachable("Found unimplemented fixed point binary operation");
3733   case BO_PtrMemD:
3734   case BO_PtrMemI:
3735   case BO_Rem:
3736   case BO_Xor:
3737   case BO_And:
3738   case BO_Or:
3739   case BO_Assign:
3740   case BO_RemAssign:
3741   case BO_AndAssign:
3742   case BO_XorAssign:
3743   case BO_OrAssign:
3744   case BO_Comma:
3745     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3746   }
3747 
3748   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3749                  BinaryOperator::isShiftAssignOp(op.Opcode);
3750   // Convert to the result type.
3751   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3752                                                       : CommonFixedSema,
3753                                       ResultFixedSema);
3754 }
3755 
3756 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3757   // The LHS is always a pointer if either side is.
3758   if (!op.LHS->getType()->isPointerTy()) {
3759     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3760       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3761       case LangOptions::SOB_Defined:
3762         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3763       case LangOptions::SOB_Undefined:
3764         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3765           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3766         LLVM_FALLTHROUGH;
3767       case LangOptions::SOB_Trapping:
3768         if (CanElideOverflowCheck(CGF.getContext(), op))
3769           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3770         return EmitOverflowCheckedBinOp(op);
3771       }
3772     }
3773 
3774     if (op.Ty->isConstantMatrixType()) {
3775       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3776       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3777       return MB.CreateSub(op.LHS, op.RHS);
3778     }
3779 
3780     if (op.Ty->isUnsignedIntegerType() &&
3781         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3782         !CanElideOverflowCheck(CGF.getContext(), op))
3783       return EmitOverflowCheckedBinOp(op);
3784 
3785     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3786       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3787       // Try to form an fmuladd.
3788       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3789         return FMulAdd;
3790       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3791     }
3792 
3793     if (op.isFixedPointOp())
3794       return EmitFixedPointBinOp(op);
3795 
3796     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3797   }
3798 
3799   // If the RHS is not a pointer, then we have normal pointer
3800   // arithmetic.
3801   if (!op.RHS->getType()->isPointerTy())
3802     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3803 
3804   // Otherwise, this is a pointer subtraction.
3805 
3806   // Do the raw subtraction part.
3807   llvm::Value *LHS
3808     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3809   llvm::Value *RHS
3810     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3811   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3812 
3813   // Okay, figure out the element size.
3814   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3815   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3816 
3817   llvm::Value *divisor = nullptr;
3818 
3819   // For a variable-length array, this is going to be non-constant.
3820   if (const VariableArrayType *vla
3821         = CGF.getContext().getAsVariableArrayType(elementType)) {
3822     auto VlaSize = CGF.getVLASize(vla);
3823     elementType = VlaSize.Type;
3824     divisor = VlaSize.NumElts;
3825 
3826     // Scale the number of non-VLA elements by the non-VLA element size.
3827     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3828     if (!eltSize.isOne())
3829       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3830 
3831   // For everything elese, we can just compute it, safe in the
3832   // assumption that Sema won't let anything through that we can't
3833   // safely compute the size of.
3834   } else {
3835     CharUnits elementSize;
3836     // Handle GCC extension for pointer arithmetic on void* and
3837     // function pointer types.
3838     if (elementType->isVoidType() || elementType->isFunctionType())
3839       elementSize = CharUnits::One();
3840     else
3841       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3842 
3843     // Don't even emit the divide for element size of 1.
3844     if (elementSize.isOne())
3845       return diffInChars;
3846 
3847     divisor = CGF.CGM.getSize(elementSize);
3848   }
3849 
3850   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3851   // pointer difference in C is only defined in the case where both operands
3852   // are pointing to elements of an array.
3853   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3854 }
3855 
3856 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3857   llvm::IntegerType *Ty;
3858   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3859     Ty = cast<llvm::IntegerType>(VT->getElementType());
3860   else
3861     Ty = cast<llvm::IntegerType>(LHS->getType());
3862   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3863 }
3864 
3865 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3866                                               const Twine &Name) {
3867   llvm::IntegerType *Ty;
3868   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3869     Ty = cast<llvm::IntegerType>(VT->getElementType());
3870   else
3871     Ty = cast<llvm::IntegerType>(LHS->getType());
3872 
3873   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3874         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3875 
3876   return Builder.CreateURem(
3877       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3878 }
3879 
3880 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3881   // TODO: This misses out on the sanitizer check below.
3882   if (Ops.isFixedPointOp())
3883     return EmitFixedPointBinOp(Ops);
3884 
3885   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3886   // RHS to the same size as the LHS.
3887   Value *RHS = Ops.RHS;
3888   if (Ops.LHS->getType() != RHS->getType())
3889     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3890 
3891   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3892                             Ops.Ty->hasSignedIntegerRepresentation() &&
3893                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3894                             !CGF.getLangOpts().CPlusPlus20;
3895   bool SanitizeUnsignedBase =
3896       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3897       Ops.Ty->hasUnsignedIntegerRepresentation();
3898   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3899   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3900   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3901   if (CGF.getLangOpts().OpenCL)
3902     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3903   else if ((SanitizeBase || SanitizeExponent) &&
3904            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3905     CodeGenFunction::SanitizerScope SanScope(&CGF);
3906     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3907     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3908     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3909 
3910     if (SanitizeExponent) {
3911       Checks.push_back(
3912           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3913     }
3914 
3915     if (SanitizeBase) {
3916       // Check whether we are shifting any non-zero bits off the top of the
3917       // integer. We only emit this check if exponent is valid - otherwise
3918       // instructions below will have undefined behavior themselves.
3919       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3920       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3921       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3922       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3923       llvm::Value *PromotedWidthMinusOne =
3924           (RHS == Ops.RHS) ? WidthMinusOne
3925                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3926       CGF.EmitBlock(CheckShiftBase);
3927       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3928           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3929                                      /*NUW*/ true, /*NSW*/ true),
3930           "shl.check");
3931       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3932         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3933         // Under C++11's rules, shifting a 1 bit into the sign bit is
3934         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3935         // define signed left shifts, so we use the C99 and C++11 rules there).
3936         // Unsigned shifts can always shift into the top bit.
3937         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3938         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3939       }
3940       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3941       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3942       CGF.EmitBlock(Cont);
3943       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3944       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3945       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3946       Checks.push_back(std::make_pair(
3947           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3948                                         : SanitizerKind::UnsignedShiftBase));
3949     }
3950 
3951     assert(!Checks.empty());
3952     EmitBinOpCheck(Checks, Ops);
3953   }
3954 
3955   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3956 }
3957 
3958 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3959   // TODO: This misses out on the sanitizer check below.
3960   if (Ops.isFixedPointOp())
3961     return EmitFixedPointBinOp(Ops);
3962 
3963   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3964   // RHS to the same size as the LHS.
3965   Value *RHS = Ops.RHS;
3966   if (Ops.LHS->getType() != RHS->getType())
3967     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3968 
3969   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3970   if (CGF.getLangOpts().OpenCL)
3971     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3972   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3973            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3974     CodeGenFunction::SanitizerScope SanScope(&CGF);
3975     llvm::Value *Valid =
3976         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3977     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3978   }
3979 
3980   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3981     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3982   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3983 }
3984 
3985 enum IntrinsicType { VCMPEQ, VCMPGT };
3986 // return corresponding comparison intrinsic for given vector type
3987 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3988                                         BuiltinType::Kind ElemKind) {
3989   switch (ElemKind) {
3990   default: llvm_unreachable("unexpected element type");
3991   case BuiltinType::Char_U:
3992   case BuiltinType::UChar:
3993     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3994                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3995   case BuiltinType::Char_S:
3996   case BuiltinType::SChar:
3997     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3998                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3999   case BuiltinType::UShort:
4000     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4001                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4002   case BuiltinType::Short:
4003     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4004                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4005   case BuiltinType::UInt:
4006     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4007                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4008   case BuiltinType::Int:
4009     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4010                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4011   case BuiltinType::ULong:
4012   case BuiltinType::ULongLong:
4013     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4014                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4015   case BuiltinType::Long:
4016   case BuiltinType::LongLong:
4017     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4018                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4019   case BuiltinType::Float:
4020     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4021                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4022   case BuiltinType::Double:
4023     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4024                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4025   case BuiltinType::UInt128:
4026     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4027                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4028   case BuiltinType::Int128:
4029     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4030                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4031   }
4032 }
4033 
4034 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4035                                       llvm::CmpInst::Predicate UICmpOpc,
4036                                       llvm::CmpInst::Predicate SICmpOpc,
4037                                       llvm::CmpInst::Predicate FCmpOpc,
4038                                       bool IsSignaling) {
4039   TestAndClearIgnoreResultAssign();
4040   Value *Result;
4041   QualType LHSTy = E->getLHS()->getType();
4042   QualType RHSTy = E->getRHS()->getType();
4043   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4044     assert(E->getOpcode() == BO_EQ ||
4045            E->getOpcode() == BO_NE);
4046     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4047     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4048     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4049                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4050   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4051     BinOpInfo BOInfo = EmitBinOps(E);
4052     Value *LHS = BOInfo.LHS;
4053     Value *RHS = BOInfo.RHS;
4054 
4055     // If AltiVec, the comparison results in a numeric type, so we use
4056     // intrinsics comparing vectors and giving 0 or 1 as a result
4057     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4058       // constants for mapping CR6 register bits to predicate result
4059       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4060 
4061       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4062 
4063       // in several cases vector arguments order will be reversed
4064       Value *FirstVecArg = LHS,
4065             *SecondVecArg = RHS;
4066 
4067       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4068       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4069 
4070       switch(E->getOpcode()) {
4071       default: llvm_unreachable("is not a comparison operation");
4072       case BO_EQ:
4073         CR6 = CR6_LT;
4074         ID = GetIntrinsic(VCMPEQ, ElementKind);
4075         break;
4076       case BO_NE:
4077         CR6 = CR6_EQ;
4078         ID = GetIntrinsic(VCMPEQ, ElementKind);
4079         break;
4080       case BO_LT:
4081         CR6 = CR6_LT;
4082         ID = GetIntrinsic(VCMPGT, ElementKind);
4083         std::swap(FirstVecArg, SecondVecArg);
4084         break;
4085       case BO_GT:
4086         CR6 = CR6_LT;
4087         ID = GetIntrinsic(VCMPGT, ElementKind);
4088         break;
4089       case BO_LE:
4090         if (ElementKind == BuiltinType::Float) {
4091           CR6 = CR6_LT;
4092           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4093           std::swap(FirstVecArg, SecondVecArg);
4094         }
4095         else {
4096           CR6 = CR6_EQ;
4097           ID = GetIntrinsic(VCMPGT, ElementKind);
4098         }
4099         break;
4100       case BO_GE:
4101         if (ElementKind == BuiltinType::Float) {
4102           CR6 = CR6_LT;
4103           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4104         }
4105         else {
4106           CR6 = CR6_EQ;
4107           ID = GetIntrinsic(VCMPGT, ElementKind);
4108           std::swap(FirstVecArg, SecondVecArg);
4109         }
4110         break;
4111       }
4112 
4113       Value *CR6Param = Builder.getInt32(CR6);
4114       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4115       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4116 
4117       // The result type of intrinsic may not be same as E->getType().
4118       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4119       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4120       // do nothing, if ResultTy is not i1 at the same time, it will cause
4121       // crash later.
4122       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4123       if (ResultTy->getBitWidth() > 1 &&
4124           E->getType() == CGF.getContext().BoolTy)
4125         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4126       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4127                                   E->getExprLoc());
4128     }
4129 
4130     if (BOInfo.isFixedPointOp()) {
4131       Result = EmitFixedPointBinOp(BOInfo);
4132     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4133       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4134       if (!IsSignaling)
4135         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4136       else
4137         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4138     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4139       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4140     } else {
4141       // Unsigned integers and pointers.
4142 
4143       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4144           !isa<llvm::ConstantPointerNull>(LHS) &&
4145           !isa<llvm::ConstantPointerNull>(RHS)) {
4146 
4147         // Dynamic information is required to be stripped for comparisons,
4148         // because it could leak the dynamic information.  Based on comparisons
4149         // of pointers to dynamic objects, the optimizer can replace one pointer
4150         // with another, which might be incorrect in presence of invariant
4151         // groups. Comparison with null is safe because null does not carry any
4152         // dynamic information.
4153         if (LHSTy.mayBeDynamicClass())
4154           LHS = Builder.CreateStripInvariantGroup(LHS);
4155         if (RHSTy.mayBeDynamicClass())
4156           RHS = Builder.CreateStripInvariantGroup(RHS);
4157       }
4158 
4159       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4160     }
4161 
4162     // If this is a vector comparison, sign extend the result to the appropriate
4163     // vector integer type and return it (don't convert to bool).
4164     if (LHSTy->isVectorType())
4165       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4166 
4167   } else {
4168     // Complex Comparison: can only be an equality comparison.
4169     CodeGenFunction::ComplexPairTy LHS, RHS;
4170     QualType CETy;
4171     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4172       LHS = CGF.EmitComplexExpr(E->getLHS());
4173       CETy = CTy->getElementType();
4174     } else {
4175       LHS.first = Visit(E->getLHS());
4176       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4177       CETy = LHSTy;
4178     }
4179     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4180       RHS = CGF.EmitComplexExpr(E->getRHS());
4181       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4182                                                      CTy->getElementType()) &&
4183              "The element types must always match.");
4184       (void)CTy;
4185     } else {
4186       RHS.first = Visit(E->getRHS());
4187       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4188       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4189              "The element types must always match.");
4190     }
4191 
4192     Value *ResultR, *ResultI;
4193     if (CETy->isRealFloatingType()) {
4194       // As complex comparisons can only be equality comparisons, they
4195       // are never signaling comparisons.
4196       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4197       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4198     } else {
4199       // Complex comparisons can only be equality comparisons.  As such, signed
4200       // and unsigned opcodes are the same.
4201       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4202       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4203     }
4204 
4205     if (E->getOpcode() == BO_EQ) {
4206       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4207     } else {
4208       assert(E->getOpcode() == BO_NE &&
4209              "Complex comparison other than == or != ?");
4210       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4211     }
4212   }
4213 
4214   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4215                               E->getExprLoc());
4216 }
4217 
4218 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4219   bool Ignore = TestAndClearIgnoreResultAssign();
4220 
4221   Value *RHS;
4222   LValue LHS;
4223 
4224   switch (E->getLHS()->getType().getObjCLifetime()) {
4225   case Qualifiers::OCL_Strong:
4226     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4227     break;
4228 
4229   case Qualifiers::OCL_Autoreleasing:
4230     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4231     break;
4232 
4233   case Qualifiers::OCL_ExplicitNone:
4234     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4235     break;
4236 
4237   case Qualifiers::OCL_Weak:
4238     RHS = Visit(E->getRHS());
4239     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4240     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4241     break;
4242 
4243   case Qualifiers::OCL_None:
4244     // __block variables need to have the rhs evaluated first, plus
4245     // this should improve codegen just a little.
4246     RHS = Visit(E->getRHS());
4247     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4248 
4249     // Store the value into the LHS.  Bit-fields are handled specially
4250     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4251     // 'An assignment expression has the value of the left operand after
4252     // the assignment...'.
4253     if (LHS.isBitField()) {
4254       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4255     } else {
4256       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4257       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4258     }
4259   }
4260 
4261   // If the result is clearly ignored, return now.
4262   if (Ignore)
4263     return nullptr;
4264 
4265   // The result of an assignment in C is the assigned r-value.
4266   if (!CGF.getLangOpts().CPlusPlus)
4267     return RHS;
4268 
4269   // If the lvalue is non-volatile, return the computed value of the assignment.
4270   if (!LHS.isVolatileQualified())
4271     return RHS;
4272 
4273   // Otherwise, reload the value.
4274   return EmitLoadOfLValue(LHS, E->getExprLoc());
4275 }
4276 
4277 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4278   // Perform vector logical and on comparisons with zero vectors.
4279   if (E->getType()->isVectorType()) {
4280     CGF.incrementProfileCounter(E);
4281 
4282     Value *LHS = Visit(E->getLHS());
4283     Value *RHS = Visit(E->getRHS());
4284     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4285     if (LHS->getType()->isFPOrFPVectorTy()) {
4286       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4287           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4288       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4289       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4290     } else {
4291       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4292       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4293     }
4294     Value *And = Builder.CreateAnd(LHS, RHS);
4295     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4296   }
4297 
4298   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4299   llvm::Type *ResTy = ConvertType(E->getType());
4300 
4301   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4302   // If we have 1 && X, just emit X without inserting the control flow.
4303   bool LHSCondVal;
4304   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4305     if (LHSCondVal) { // If we have 1 && X, just emit X.
4306       CGF.incrementProfileCounter(E);
4307 
4308       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4309 
4310       // If we're generating for profiling or coverage, generate a branch to a
4311       // block that increments the RHS counter needed to track branch condition
4312       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4313       // "FalseBlock" after the increment is done.
4314       if (InstrumentRegions &&
4315           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4316         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4317         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4318         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4319         CGF.EmitBlock(RHSBlockCnt);
4320         CGF.incrementProfileCounter(E->getRHS());
4321         CGF.EmitBranch(FBlock);
4322         CGF.EmitBlock(FBlock);
4323       }
4324 
4325       // ZExt result to int or bool.
4326       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4327     }
4328 
4329     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4330     if (!CGF.ContainsLabel(E->getRHS()))
4331       return llvm::Constant::getNullValue(ResTy);
4332   }
4333 
4334   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4335   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4336 
4337   CodeGenFunction::ConditionalEvaluation eval(CGF);
4338 
4339   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4340   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4341                            CGF.getProfileCount(E->getRHS()));
4342 
4343   // Any edges into the ContBlock are now from an (indeterminate number of)
4344   // edges from this first condition.  All of these values will be false.  Start
4345   // setting up the PHI node in the Cont Block for this.
4346   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4347                                             "", ContBlock);
4348   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4349        PI != PE; ++PI)
4350     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4351 
4352   eval.begin(CGF);
4353   CGF.EmitBlock(RHSBlock);
4354   CGF.incrementProfileCounter(E);
4355   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4356   eval.end(CGF);
4357 
4358   // Reaquire the RHS block, as there may be subblocks inserted.
4359   RHSBlock = Builder.GetInsertBlock();
4360 
4361   // If we're generating for profiling or coverage, generate a branch on the
4362   // RHS to a block that increments the RHS true counter needed to track branch
4363   // condition coverage.
4364   if (InstrumentRegions &&
4365       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4366     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4367     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4368     CGF.EmitBlock(RHSBlockCnt);
4369     CGF.incrementProfileCounter(E->getRHS());
4370     CGF.EmitBranch(ContBlock);
4371     PN->addIncoming(RHSCond, RHSBlockCnt);
4372   }
4373 
4374   // Emit an unconditional branch from this block to ContBlock.
4375   {
4376     // There is no need to emit line number for unconditional branch.
4377     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4378     CGF.EmitBlock(ContBlock);
4379   }
4380   // Insert an entry into the phi node for the edge with the value of RHSCond.
4381   PN->addIncoming(RHSCond, RHSBlock);
4382 
4383   // Artificial location to preserve the scope information
4384   {
4385     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4386     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4387   }
4388 
4389   // ZExt result to int.
4390   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4391 }
4392 
4393 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4394   // Perform vector logical or on comparisons with zero vectors.
4395   if (E->getType()->isVectorType()) {
4396     CGF.incrementProfileCounter(E);
4397 
4398     Value *LHS = Visit(E->getLHS());
4399     Value *RHS = Visit(E->getRHS());
4400     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4401     if (LHS->getType()->isFPOrFPVectorTy()) {
4402       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4403           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4404       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4405       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4406     } else {
4407       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4408       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4409     }
4410     Value *Or = Builder.CreateOr(LHS, RHS);
4411     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4412   }
4413 
4414   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4415   llvm::Type *ResTy = ConvertType(E->getType());
4416 
4417   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4418   // If we have 0 || X, just emit X without inserting the control flow.
4419   bool LHSCondVal;
4420   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4421     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4422       CGF.incrementProfileCounter(E);
4423 
4424       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4425 
4426       // If we're generating for profiling or coverage, generate a branch to a
4427       // block that increments the RHS counter need to track branch condition
4428       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4429       // "FalseBlock" after the increment is done.
4430       if (InstrumentRegions &&
4431           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4432         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4433         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4434         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4435         CGF.EmitBlock(RHSBlockCnt);
4436         CGF.incrementProfileCounter(E->getRHS());
4437         CGF.EmitBranch(FBlock);
4438         CGF.EmitBlock(FBlock);
4439       }
4440 
4441       // ZExt result to int or bool.
4442       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4443     }
4444 
4445     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4446     if (!CGF.ContainsLabel(E->getRHS()))
4447       return llvm::ConstantInt::get(ResTy, 1);
4448   }
4449 
4450   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4451   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4452 
4453   CodeGenFunction::ConditionalEvaluation eval(CGF);
4454 
4455   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4456   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4457                            CGF.getCurrentProfileCount() -
4458                                CGF.getProfileCount(E->getRHS()));
4459 
4460   // Any edges into the ContBlock are now from an (indeterminate number of)
4461   // edges from this first condition.  All of these values will be true.  Start
4462   // setting up the PHI node in the Cont Block for this.
4463   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4464                                             "", ContBlock);
4465   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4466        PI != PE; ++PI)
4467     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4468 
4469   eval.begin(CGF);
4470 
4471   // Emit the RHS condition as a bool value.
4472   CGF.EmitBlock(RHSBlock);
4473   CGF.incrementProfileCounter(E);
4474   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4475 
4476   eval.end(CGF);
4477 
4478   // Reaquire the RHS block, as there may be subblocks inserted.
4479   RHSBlock = Builder.GetInsertBlock();
4480 
4481   // If we're generating for profiling or coverage, generate a branch on the
4482   // RHS to a block that increments the RHS true counter needed to track branch
4483   // condition coverage.
4484   if (InstrumentRegions &&
4485       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4486     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4487     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4488     CGF.EmitBlock(RHSBlockCnt);
4489     CGF.incrementProfileCounter(E->getRHS());
4490     CGF.EmitBranch(ContBlock);
4491     PN->addIncoming(RHSCond, RHSBlockCnt);
4492   }
4493 
4494   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4495   // into the phi node for the edge with the value of RHSCond.
4496   CGF.EmitBlock(ContBlock);
4497   PN->addIncoming(RHSCond, RHSBlock);
4498 
4499   // ZExt result to int.
4500   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4501 }
4502 
4503 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4504   CGF.EmitIgnoredExpr(E->getLHS());
4505   CGF.EnsureInsertPoint();
4506   return Visit(E->getRHS());
4507 }
4508 
4509 //===----------------------------------------------------------------------===//
4510 //                             Other Operators
4511 //===----------------------------------------------------------------------===//
4512 
4513 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4514 /// expression is cheap enough and side-effect-free enough to evaluate
4515 /// unconditionally instead of conditionally.  This is used to convert control
4516 /// flow into selects in some cases.
4517 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4518                                                    CodeGenFunction &CGF) {
4519   // Anything that is an integer or floating point constant is fine.
4520   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4521 
4522   // Even non-volatile automatic variables can't be evaluated unconditionally.
4523   // Referencing a thread_local may cause non-trivial initialization work to
4524   // occur. If we're inside a lambda and one of the variables is from the scope
4525   // outside the lambda, that function may have returned already. Reading its
4526   // locals is a bad idea. Also, these reads may introduce races there didn't
4527   // exist in the source-level program.
4528 }
4529 
4530 
4531 Value *ScalarExprEmitter::
4532 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4533   TestAndClearIgnoreResultAssign();
4534 
4535   // Bind the common expression if necessary.
4536   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4537 
4538   Expr *condExpr = E->getCond();
4539   Expr *lhsExpr = E->getTrueExpr();
4540   Expr *rhsExpr = E->getFalseExpr();
4541 
4542   // If the condition constant folds and can be elided, try to avoid emitting
4543   // the condition and the dead arm.
4544   bool CondExprBool;
4545   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4546     Expr *live = lhsExpr, *dead = rhsExpr;
4547     if (!CondExprBool) std::swap(live, dead);
4548 
4549     // If the dead side doesn't have labels we need, just emit the Live part.
4550     if (!CGF.ContainsLabel(dead)) {
4551       if (CondExprBool)
4552         CGF.incrementProfileCounter(E);
4553       Value *Result = Visit(live);
4554 
4555       // If the live part is a throw expression, it acts like it has a void
4556       // type, so evaluating it returns a null Value*.  However, a conditional
4557       // with non-void type must return a non-null Value*.
4558       if (!Result && !E->getType()->isVoidType())
4559         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4560 
4561       return Result;
4562     }
4563   }
4564 
4565   // OpenCL: If the condition is a vector, we can treat this condition like
4566   // the select function.
4567   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4568       condExpr->getType()->isExtVectorType()) {
4569     CGF.incrementProfileCounter(E);
4570 
4571     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4572     llvm::Value *LHS = Visit(lhsExpr);
4573     llvm::Value *RHS = Visit(rhsExpr);
4574 
4575     llvm::Type *condType = ConvertType(condExpr->getType());
4576     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4577 
4578     unsigned numElem = vecTy->getNumElements();
4579     llvm::Type *elemType = vecTy->getElementType();
4580 
4581     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4582     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4583     llvm::Value *tmp = Builder.CreateSExt(
4584         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4585     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4586 
4587     // Cast float to int to perform ANDs if necessary.
4588     llvm::Value *RHSTmp = RHS;
4589     llvm::Value *LHSTmp = LHS;
4590     bool wasCast = false;
4591     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4592     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4593       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4594       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4595       wasCast = true;
4596     }
4597 
4598     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4599     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4600     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4601     if (wasCast)
4602       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4603 
4604     return tmp5;
4605   }
4606 
4607   if (condExpr->getType()->isVectorType()) {
4608     CGF.incrementProfileCounter(E);
4609 
4610     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4611     llvm::Value *LHS = Visit(lhsExpr);
4612     llvm::Value *RHS = Visit(rhsExpr);
4613 
4614     llvm::Type *CondType = ConvertType(condExpr->getType());
4615     auto *VecTy = cast<llvm::VectorType>(CondType);
4616     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4617 
4618     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4619     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4620   }
4621 
4622   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4623   // select instead of as control flow.  We can only do this if it is cheap and
4624   // safe to evaluate the LHS and RHS unconditionally.
4625   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4626       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4627     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4628     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4629 
4630     CGF.incrementProfileCounter(E, StepV);
4631 
4632     llvm::Value *LHS = Visit(lhsExpr);
4633     llvm::Value *RHS = Visit(rhsExpr);
4634     if (!LHS) {
4635       // If the conditional has void type, make sure we return a null Value*.
4636       assert(!RHS && "LHS and RHS types must match");
4637       return nullptr;
4638     }
4639     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4640   }
4641 
4642   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4643   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4644   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4645 
4646   CodeGenFunction::ConditionalEvaluation eval(CGF);
4647   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4648                            CGF.getProfileCount(lhsExpr));
4649 
4650   CGF.EmitBlock(LHSBlock);
4651   CGF.incrementProfileCounter(E);
4652   eval.begin(CGF);
4653   Value *LHS = Visit(lhsExpr);
4654   eval.end(CGF);
4655 
4656   LHSBlock = Builder.GetInsertBlock();
4657   Builder.CreateBr(ContBlock);
4658 
4659   CGF.EmitBlock(RHSBlock);
4660   eval.begin(CGF);
4661   Value *RHS = Visit(rhsExpr);
4662   eval.end(CGF);
4663 
4664   RHSBlock = Builder.GetInsertBlock();
4665   CGF.EmitBlock(ContBlock);
4666 
4667   // If the LHS or RHS is a throw expression, it will be legitimately null.
4668   if (!LHS)
4669     return RHS;
4670   if (!RHS)
4671     return LHS;
4672 
4673   // Create a PHI node for the real part.
4674   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4675   PN->addIncoming(LHS, LHSBlock);
4676   PN->addIncoming(RHS, RHSBlock);
4677   return PN;
4678 }
4679 
4680 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4681   return Visit(E->getChosenSubExpr());
4682 }
4683 
4684 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4685   QualType Ty = VE->getType();
4686 
4687   if (Ty->isVariablyModifiedType())
4688     CGF.EmitVariablyModifiedType(Ty);
4689 
4690   Address ArgValue = Address::invalid();
4691   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4692 
4693   llvm::Type *ArgTy = ConvertType(VE->getType());
4694 
4695   // If EmitVAArg fails, emit an error.
4696   if (!ArgPtr.isValid()) {
4697     CGF.ErrorUnsupported(VE, "va_arg expression");
4698     return llvm::UndefValue::get(ArgTy);
4699   }
4700 
4701   // FIXME Volatility.
4702   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4703 
4704   // If EmitVAArg promoted the type, we must truncate it.
4705   if (ArgTy != Val->getType()) {
4706     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4707       Val = Builder.CreateIntToPtr(Val, ArgTy);
4708     else
4709       Val = Builder.CreateTrunc(Val, ArgTy);
4710   }
4711 
4712   return Val;
4713 }
4714 
4715 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4716   return CGF.EmitBlockLiteral(block);
4717 }
4718 
4719 // Convert a vec3 to vec4, or vice versa.
4720 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4721                                  Value *Src, unsigned NumElementsDst) {
4722   static constexpr int Mask[] = {0, 1, 2, -1};
4723   return Builder.CreateShuffleVector(Src,
4724                                      llvm::makeArrayRef(Mask, NumElementsDst));
4725 }
4726 
4727 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4728 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4729 // but could be scalar or vectors of different lengths, and either can be
4730 // pointer.
4731 // There are 4 cases:
4732 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4733 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4734 // 3. pointer -> non-pointer
4735 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4736 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4737 // 4. non-pointer -> pointer
4738 //   a) intptr_t -> pointer       : needs 1 inttoptr
4739 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4740 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4741 // allow casting directly between pointer types and non-integer non-pointer
4742 // types.
4743 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4744                                            const llvm::DataLayout &DL,
4745                                            Value *Src, llvm::Type *DstTy,
4746                                            StringRef Name = "") {
4747   auto SrcTy = Src->getType();
4748 
4749   // Case 1.
4750   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4751     return Builder.CreateBitCast(Src, DstTy, Name);
4752 
4753   // Case 2.
4754   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4755     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4756 
4757   // Case 3.
4758   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4759     // Case 3b.
4760     if (!DstTy->isIntegerTy())
4761       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4762     // Cases 3a and 3b.
4763     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4764   }
4765 
4766   // Case 4b.
4767   if (!SrcTy->isIntegerTy())
4768     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4769   // Cases 4a and 4b.
4770   return Builder.CreateIntToPtr(Src, DstTy, Name);
4771 }
4772 
4773 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4774   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4775   llvm::Type *DstTy = ConvertType(E->getType());
4776 
4777   llvm::Type *SrcTy = Src->getType();
4778   unsigned NumElementsSrc =
4779       isa<llvm::VectorType>(SrcTy)
4780           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4781           : 0;
4782   unsigned NumElementsDst =
4783       isa<llvm::VectorType>(DstTy)
4784           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4785           : 0;
4786 
4787   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4788   // vector to get a vec4, then a bitcast if the target type is different.
4789   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4790     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4791     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4792                                        DstTy);
4793 
4794     Src->setName("astype");
4795     return Src;
4796   }
4797 
4798   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4799   // to vec4 if the original type is not vec4, then a shuffle vector to
4800   // get a vec3.
4801   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4802     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4803       auto *Vec4Ty = llvm::FixedVectorType::get(
4804           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4805       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4806                                          Vec4Ty);
4807     }
4808 
4809     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4810     Src->setName("astype");
4811     return Src;
4812   }
4813 
4814   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4815                                       Src, DstTy, "astype");
4816 }
4817 
4818 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4819   return CGF.EmitAtomicExpr(E).getScalarVal();
4820 }
4821 
4822 //===----------------------------------------------------------------------===//
4823 //                         Entry Point into this File
4824 //===----------------------------------------------------------------------===//
4825 
4826 /// Emit the computation of the specified expression of scalar type, ignoring
4827 /// the result.
4828 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4829   assert(E && hasScalarEvaluationKind(E->getType()) &&
4830          "Invalid scalar expression to emit");
4831 
4832   return ScalarExprEmitter(*this, IgnoreResultAssign)
4833       .Visit(const_cast<Expr *>(E));
4834 }
4835 
4836 /// Emit a conversion from the specified type to the specified destination type,
4837 /// both of which are LLVM scalar types.
4838 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4839                                              QualType DstTy,
4840                                              SourceLocation Loc) {
4841   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4842          "Invalid scalar expression to emit");
4843   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4844 }
4845 
4846 /// Emit a conversion from the specified complex type to the specified
4847 /// destination type, where the destination type is an LLVM scalar type.
4848 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4849                                                       QualType SrcTy,
4850                                                       QualType DstTy,
4851                                                       SourceLocation Loc) {
4852   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4853          "Invalid complex -> scalar conversion");
4854   return ScalarExprEmitter(*this)
4855       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4856 }
4857 
4858 
4859 llvm::Value *CodeGenFunction::
4860 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4861                         bool isInc, bool isPre) {
4862   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4863 }
4864 
4865 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4866   // object->isa or (*object).isa
4867   // Generate code as for: *(Class*)object
4868 
4869   Expr *BaseExpr = E->getBase();
4870   Address Addr = Address::invalid();
4871   if (BaseExpr->isPRValue()) {
4872     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4873   } else {
4874     Addr = EmitLValue(BaseExpr).getAddress(*this);
4875   }
4876 
4877   // Cast the address to Class*.
4878   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4879   return MakeAddrLValue(Addr, E->getType());
4880 }
4881 
4882 
4883 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4884                                             const CompoundAssignOperator *E) {
4885   ScalarExprEmitter Scalar(*this);
4886   Value *Result = nullptr;
4887   switch (E->getOpcode()) {
4888 #define COMPOUND_OP(Op)                                                       \
4889     case BO_##Op##Assign:                                                     \
4890       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4891                                              Result)
4892   COMPOUND_OP(Mul);
4893   COMPOUND_OP(Div);
4894   COMPOUND_OP(Rem);
4895   COMPOUND_OP(Add);
4896   COMPOUND_OP(Sub);
4897   COMPOUND_OP(Shl);
4898   COMPOUND_OP(Shr);
4899   COMPOUND_OP(And);
4900   COMPOUND_OP(Xor);
4901   COMPOUND_OP(Or);
4902 #undef COMPOUND_OP
4903 
4904   case BO_PtrMemD:
4905   case BO_PtrMemI:
4906   case BO_Mul:
4907   case BO_Div:
4908   case BO_Rem:
4909   case BO_Add:
4910   case BO_Sub:
4911   case BO_Shl:
4912   case BO_Shr:
4913   case BO_LT:
4914   case BO_GT:
4915   case BO_LE:
4916   case BO_GE:
4917   case BO_EQ:
4918   case BO_NE:
4919   case BO_Cmp:
4920   case BO_And:
4921   case BO_Xor:
4922   case BO_Or:
4923   case BO_LAnd:
4924   case BO_LOr:
4925   case BO_Assign:
4926   case BO_Comma:
4927     llvm_unreachable("Not valid compound assignment operators");
4928   }
4929 
4930   llvm_unreachable("Unhandled compound assignment operator");
4931 }
4932 
4933 struct GEPOffsetAndOverflow {
4934   // The total (signed) byte offset for the GEP.
4935   llvm::Value *TotalOffset;
4936   // The offset overflow flag - true if the total offset overflows.
4937   llvm::Value *OffsetOverflows;
4938 };
4939 
4940 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4941 /// and compute the total offset it applies from it's base pointer BasePtr.
4942 /// Returns offset in bytes and a boolean flag whether an overflow happened
4943 /// during evaluation.
4944 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4945                                                  llvm::LLVMContext &VMContext,
4946                                                  CodeGenModule &CGM,
4947                                                  CGBuilderTy &Builder) {
4948   const auto &DL = CGM.getDataLayout();
4949 
4950   // The total (signed) byte offset for the GEP.
4951   llvm::Value *TotalOffset = nullptr;
4952 
4953   // Was the GEP already reduced to a constant?
4954   if (isa<llvm::Constant>(GEPVal)) {
4955     // Compute the offset by casting both pointers to integers and subtracting:
4956     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4957     Value *BasePtr_int =
4958         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4959     Value *GEPVal_int =
4960         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4961     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4962     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4963   }
4964 
4965   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4966   assert(GEP->getPointerOperand() == BasePtr &&
4967          "BasePtr must be the base of the GEP.");
4968   assert(GEP->isInBounds() && "Expected inbounds GEP");
4969 
4970   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4971 
4972   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4973   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4974   auto *SAddIntrinsic =
4975       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4976   auto *SMulIntrinsic =
4977       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4978 
4979   // The offset overflow flag - true if the total offset overflows.
4980   llvm::Value *OffsetOverflows = Builder.getFalse();
4981 
4982   /// Return the result of the given binary operation.
4983   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4984                   llvm::Value *RHS) -> llvm::Value * {
4985     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4986 
4987     // If the operands are constants, return a constant result.
4988     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4989       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4990         llvm::APInt N;
4991         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4992                                                   /*Signed=*/true, N);
4993         if (HasOverflow)
4994           OffsetOverflows = Builder.getTrue();
4995         return llvm::ConstantInt::get(VMContext, N);
4996       }
4997     }
4998 
4999     // Otherwise, compute the result with checked arithmetic.
5000     auto *ResultAndOverflow = Builder.CreateCall(
5001         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5002     OffsetOverflows = Builder.CreateOr(
5003         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5004     return Builder.CreateExtractValue(ResultAndOverflow, 0);
5005   };
5006 
5007   // Determine the total byte offset by looking at each GEP operand.
5008   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5009        GTI != GTE; ++GTI) {
5010     llvm::Value *LocalOffset;
5011     auto *Index = GTI.getOperand();
5012     // Compute the local offset contributed by this indexing step:
5013     if (auto *STy = GTI.getStructTypeOrNull()) {
5014       // For struct indexing, the local offset is the byte position of the
5015       // specified field.
5016       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5017       LocalOffset = llvm::ConstantInt::get(
5018           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5019     } else {
5020       // Otherwise this is array-like indexing. The local offset is the index
5021       // multiplied by the element size.
5022       auto *ElementSize = llvm::ConstantInt::get(
5023           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5024       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5025       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5026     }
5027 
5028     // If this is the first offset, set it as the total offset. Otherwise, add
5029     // the local offset into the running total.
5030     if (!TotalOffset || TotalOffset == Zero)
5031       TotalOffset = LocalOffset;
5032     else
5033       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5034   }
5035 
5036   return {TotalOffset, OffsetOverflows};
5037 }
5038 
5039 Value *
5040 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
5041                                         bool SignedIndices, bool IsSubtraction,
5042                                         SourceLocation Loc, const Twine &Name) {
5043   llvm::Type *PtrTy = Ptr->getType();
5044   Value *GEPVal = Builder.CreateInBoundsGEP(
5045       PtrTy->getPointerElementType(), Ptr, IdxList, Name);
5046 
5047   // If the pointer overflow sanitizer isn't enabled, do nothing.
5048   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5049     return GEPVal;
5050 
5051   // Perform nullptr-and-offset check unless the nullptr is defined.
5052   bool PerformNullCheck = !NullPointerIsDefined(
5053       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5054   // Check for overflows unless the GEP got constant-folded,
5055   // and only in the default address space
5056   bool PerformOverflowCheck =
5057       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5058 
5059   if (!(PerformNullCheck || PerformOverflowCheck))
5060     return GEPVal;
5061 
5062   const auto &DL = CGM.getDataLayout();
5063 
5064   SanitizerScope SanScope(this);
5065   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5066 
5067   GEPOffsetAndOverflow EvaluatedGEP =
5068       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5069 
5070   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5071           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5072          "If the offset got constant-folded, we don't expect that there was an "
5073          "overflow.");
5074 
5075   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5076 
5077   // Common case: if the total offset is zero, and we are using C++ semantics,
5078   // where nullptr+0 is defined, don't emit a check.
5079   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5080     return GEPVal;
5081 
5082   // Now that we've computed the total offset, add it to the base pointer (with
5083   // wrapping semantics).
5084   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5085   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5086 
5087   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5088 
5089   if (PerformNullCheck) {
5090     // In C++, if the base pointer evaluates to a null pointer value,
5091     // the only valid  pointer this inbounds GEP can produce is also
5092     // a null pointer, so the offset must also evaluate to zero.
5093     // Likewise, if we have non-zero base pointer, we can not get null pointer
5094     // as a result, so the offset can not be -intptr_t(BasePtr).
5095     // In other words, both pointers are either null, or both are non-null,
5096     // or the behaviour is undefined.
5097     //
5098     // C, however, is more strict in this regard, and gives more
5099     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5100     // So both the input to the 'gep inbounds' AND the output must not be null.
5101     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5102     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5103     auto *Valid =
5104         CGM.getLangOpts().CPlusPlus
5105             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5106             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5107     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5108   }
5109 
5110   if (PerformOverflowCheck) {
5111     // The GEP is valid if:
5112     // 1) The total offset doesn't overflow, and
5113     // 2) The sign of the difference between the computed address and the base
5114     // pointer matches the sign of the total offset.
5115     llvm::Value *ValidGEP;
5116     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5117     if (SignedIndices) {
5118       // GEP is computed as `unsigned base + signed offset`, therefore:
5119       // * If offset was positive, then the computed pointer can not be
5120       //   [unsigned] less than the base pointer, unless it overflowed.
5121       // * If offset was negative, then the computed pointer can not be
5122       //   [unsigned] greater than the bas pointere, unless it overflowed.
5123       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5124       auto *PosOrZeroOffset =
5125           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5126       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5127       ValidGEP =
5128           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5129     } else if (!IsSubtraction) {
5130       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5131       // computed pointer can not be [unsigned] less than base pointer,
5132       // unless there was an overflow.
5133       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5134       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5135     } else {
5136       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5137       // computed pointer can not be [unsigned] greater than base pointer,
5138       // unless there was an overflow.
5139       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5140       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5141     }
5142     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5143     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5144   }
5145 
5146   assert(!Checks.empty() && "Should have produced some checks.");
5147 
5148   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5149   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5150   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5151   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5152 
5153   return GEPVal;
5154 }
5155