1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
352                         llvm::Type *SrcTy, llvm::Type *DstTy,
353                         ScalarConversionOpts Opts);
354   Value *
355   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
356                        SourceLocation Loc,
357                        ScalarConversionOpts Opts = ScalarConversionOpts());
358 
359   /// Convert between either a fixed point and other fixed point or fixed point
360   /// and an integer.
361   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
362                                   SourceLocation Loc);
363 
364   /// Emit a conversion from the specified complex type to the specified
365   /// destination type, where the destination type is an LLVM scalar type.
366   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367                                        QualType SrcTy, QualType DstTy,
368                                        SourceLocation Loc);
369 
370   /// EmitNullValue - Emit a value that corresponds to null for the given type.
371   Value *EmitNullValue(QualType Ty);
372 
373   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
374   Value *EmitFloatToBoolConversion(Value *V) {
375     // Compare against 0.0 for fp scalars.
376     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377     return Builder.CreateFCmpUNE(V, Zero, "tobool");
378   }
379 
380   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
381   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384     return Builder.CreateICmpNE(V, Zero, "tobool");
385   }
386 
387   Value *EmitIntToBoolConversion(Value *V) {
388     // Because of the type rules of C, we often end up computing a
389     // logical value, then zero extending it to int, then wanting it
390     // as a logical value again.  Optimize this common case.
391     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393         Value *Result = ZI->getOperand(0);
394         // If there aren't any more uses, zap the instruction to save space.
395         // Note that there can be more uses, for example if this
396         // is the result of an assignment.
397         if (ZI->use_empty())
398           ZI->eraseFromParent();
399         return Result;
400       }
401     }
402 
403     return Builder.CreateIsNotNull(V, "tobool");
404   }
405 
406   //===--------------------------------------------------------------------===//
407   //                            Visitor Methods
408   //===--------------------------------------------------------------------===//
409 
410   Value *Visit(Expr *E) {
411     ApplyDebugLocation DL(CGF, E);
412     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
413   }
414 
415   Value *VisitStmt(Stmt *S) {
416     S->dump(llvm::errs(), CGF.getContext());
417     llvm_unreachable("Stmt can't have complex result type!");
418   }
419   Value *VisitExpr(Expr *S);
420 
421   Value *VisitConstantExpr(ConstantExpr *E) {
422     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423       if (E->isGLValue())
424         return CGF.Builder.CreateLoad(Address(
425             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
426       return Result;
427     }
428     return Visit(E->getSubExpr());
429   }
430   Value *VisitParenExpr(ParenExpr *PE) {
431     return Visit(PE->getSubExpr());
432   }
433   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
434     return Visit(E->getReplacement());
435   }
436   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
437     return Visit(GE->getResultExpr());
438   }
439   Value *VisitCoawaitExpr(CoawaitExpr *S) {
440     return CGF.EmitCoawaitExpr(*S).getScalarVal();
441   }
442   Value *VisitCoyieldExpr(CoyieldExpr *S) {
443     return CGF.EmitCoyieldExpr(*S).getScalarVal();
444   }
445   Value *VisitUnaryCoawait(const UnaryOperator *E) {
446     return Visit(E->getSubExpr());
447   }
448 
449   // Leaves.
450   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
454     return Builder.getInt(E->getValue());
455   }
456   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
457     return llvm::ConstantFP::get(VMContext, E->getValue());
458   }
459   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
466     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467   }
468   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
472     return EmitNullValue(E->getType());
473   }
474   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
475   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
476   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
477     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
478     return Builder.CreateBitCast(V, ConvertType(E->getType()));
479   }
480 
481   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
482     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
483   }
484 
485   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
486     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
487   }
488 
489   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
490 
491   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
492     if (E->isGLValue())
493       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
494                               E->getExprLoc());
495 
496     // Otherwise, assume the mapping is the scalar directly.
497     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
498   }
499 
500   // l-values.
501   Value *VisitDeclRefExpr(DeclRefExpr *E) {
502     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
503       return CGF.emitScalarConstant(Constant, E);
504     return EmitLoadOfLValue(E);
505   }
506 
507   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
508     return CGF.EmitObjCSelectorExpr(E);
509   }
510   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
511     return CGF.EmitObjCProtocolExpr(E);
512   }
513   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
514     return EmitLoadOfLValue(E);
515   }
516   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
517     if (E->getMethodDecl() &&
518         E->getMethodDecl()->getReturnType()->isReferenceType())
519       return EmitLoadOfLValue(E);
520     return CGF.EmitObjCMessageExpr(E).getScalarVal();
521   }
522 
523   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
524     LValue LV = CGF.EmitObjCIsaExpr(E);
525     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
526     return V;
527   }
528 
529   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
530     VersionTuple Version = E->getVersion();
531 
532     // If we're checking for a platform older than our minimum deployment
533     // target, we can fold the check away.
534     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
535       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
536 
537     return CGF.EmitBuiltinAvailable(Version);
538   }
539 
540   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
541   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
542   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
543   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
544   Value *VisitMemberExpr(MemberExpr *E);
545   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
546   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
547     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
548     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
549     // literals aren't l-values in C++. We do so simply because that's the
550     // cleanest way to handle compound literals in C++.
551     // See the discussion here: https://reviews.llvm.org/D64464
552     return EmitLoadOfLValue(E);
553   }
554 
555   Value *VisitInitListExpr(InitListExpr *E);
556 
557   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
558     assert(CGF.getArrayInitIndex() &&
559            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
560     return CGF.getArrayInitIndex();
561   }
562 
563   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
564     return EmitNullValue(E->getType());
565   }
566   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
567     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
568     return VisitCastExpr(E);
569   }
570   Value *VisitCastExpr(CastExpr *E);
571 
572   Value *VisitCallExpr(const CallExpr *E) {
573     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
574       return EmitLoadOfLValue(E);
575 
576     Value *V = CGF.EmitCallExpr(E).getScalarVal();
577 
578     EmitLValueAlignmentAssumption(E, V);
579     return V;
580   }
581 
582   Value *VisitStmtExpr(const StmtExpr *E);
583 
584   // Unary Operators.
585   Value *VisitUnaryPostDec(const UnaryOperator *E) {
586     LValue LV = EmitLValue(E->getSubExpr());
587     return EmitScalarPrePostIncDec(E, LV, false, false);
588   }
589   Value *VisitUnaryPostInc(const UnaryOperator *E) {
590     LValue LV = EmitLValue(E->getSubExpr());
591     return EmitScalarPrePostIncDec(E, LV, true, false);
592   }
593   Value *VisitUnaryPreDec(const UnaryOperator *E) {
594     LValue LV = EmitLValue(E->getSubExpr());
595     return EmitScalarPrePostIncDec(E, LV, false, true);
596   }
597   Value *VisitUnaryPreInc(const UnaryOperator *E) {
598     LValue LV = EmitLValue(E->getSubExpr());
599     return EmitScalarPrePostIncDec(E, LV, true, true);
600   }
601 
602   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
603                                                   llvm::Value *InVal,
604                                                   bool IsInc);
605 
606   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
607                                        bool isInc, bool isPre);
608 
609 
610   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
611     if (isa<MemberPointerType>(E->getType())) // never sugared
612       return CGF.CGM.getMemberPointerConstant(E);
613 
614     return EmitLValue(E->getSubExpr()).getPointer(CGF);
615   }
616   Value *VisitUnaryDeref(const UnaryOperator *E) {
617     if (E->getType()->isVoidType())
618       return Visit(E->getSubExpr()); // the actual value should be unused
619     return EmitLoadOfLValue(E);
620   }
621   Value *VisitUnaryPlus(const UnaryOperator *E) {
622     // This differs from gcc, though, most likely due to a bug in gcc.
623     TestAndClearIgnoreResultAssign();
624     return Visit(E->getSubExpr());
625   }
626   Value *VisitUnaryMinus    (const UnaryOperator *E);
627   Value *VisitUnaryNot      (const UnaryOperator *E);
628   Value *VisitUnaryLNot     (const UnaryOperator *E);
629   Value *VisitUnaryReal     (const UnaryOperator *E);
630   Value *VisitUnaryImag     (const UnaryOperator *E);
631   Value *VisitUnaryExtension(const UnaryOperator *E) {
632     return Visit(E->getSubExpr());
633   }
634 
635   // C++
636   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
637     return EmitLoadOfLValue(E);
638   }
639   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
640     auto &Ctx = CGF.getContext();
641     APValue Evaluated =
642         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
643     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
644                                              SLE->getType());
645   }
646 
647   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
648     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
649     return Visit(DAE->getExpr());
650   }
651   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
652     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
653     return Visit(DIE->getExpr());
654   }
655   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
656     return CGF.LoadCXXThis();
657   }
658 
659   Value *VisitExprWithCleanups(ExprWithCleanups *E);
660   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
661     return CGF.EmitCXXNewExpr(E);
662   }
663   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
664     CGF.EmitCXXDeleteExpr(E);
665     return nullptr;
666   }
667 
668   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
669     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
670   }
671 
672   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
673     return Builder.getInt1(E->isSatisfied());
674   }
675 
676   Value *VisitRequiresExpr(const RequiresExpr *E) {
677     return Builder.getInt1(E->isSatisfied());
678   }
679 
680   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
681     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
682   }
683 
684   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
685     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
686   }
687 
688   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
689     // C++ [expr.pseudo]p1:
690     //   The result shall only be used as the operand for the function call
691     //   operator (), and the result of such a call has type void. The only
692     //   effect is the evaluation of the postfix-expression before the dot or
693     //   arrow.
694     CGF.EmitScalarExpr(E->getBase());
695     return nullptr;
696   }
697 
698   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
699     return EmitNullValue(E->getType());
700   }
701 
702   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
703     CGF.EmitCXXThrowExpr(E);
704     return nullptr;
705   }
706 
707   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
708     return Builder.getInt1(E->getValue());
709   }
710 
711   // Binary Operators.
712   Value *EmitMul(const BinOpInfo &Ops) {
713     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
714       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
715       case LangOptions::SOB_Defined:
716         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
717       case LangOptions::SOB_Undefined:
718         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
719           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
720         LLVM_FALLTHROUGH;
721       case LangOptions::SOB_Trapping:
722         if (CanElideOverflowCheck(CGF.getContext(), Ops))
723           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
724         return EmitOverflowCheckedBinOp(Ops);
725       }
726     }
727 
728     if (Ops.Ty->isConstantMatrixType()) {
729       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
730       // We need to check the types of the operands of the operator to get the
731       // correct matrix dimensions.
732       auto *BO = cast<BinaryOperator>(Ops.E);
733       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
734           BO->getLHS()->getType().getCanonicalType());
735       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
736           BO->getRHS()->getType().getCanonicalType());
737       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
738       if (LHSMatTy && RHSMatTy)
739         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
740                                        LHSMatTy->getNumColumns(),
741                                        RHSMatTy->getNumColumns());
742       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
743     }
744 
745     if (Ops.Ty->isUnsignedIntegerType() &&
746         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
747         !CanElideOverflowCheck(CGF.getContext(), Ops))
748       return EmitOverflowCheckedBinOp(Ops);
749 
750     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
751       //  Preserve the old values
752       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
753       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
754     }
755     if (Ops.isFixedPointOp())
756       return EmitFixedPointBinOp(Ops);
757     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
758   }
759   /// Create a binary op that checks for overflow.
760   /// Currently only supports +, - and *.
761   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
762 
763   // Check for undefined division and modulus behaviors.
764   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
765                                                   llvm::Value *Zero,bool isDiv);
766   // Common helper for getting how wide LHS of shift is.
767   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
768 
769   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
770   // non powers of two.
771   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
772 
773   Value *EmitDiv(const BinOpInfo &Ops);
774   Value *EmitRem(const BinOpInfo &Ops);
775   Value *EmitAdd(const BinOpInfo &Ops);
776   Value *EmitSub(const BinOpInfo &Ops);
777   Value *EmitShl(const BinOpInfo &Ops);
778   Value *EmitShr(const BinOpInfo &Ops);
779   Value *EmitAnd(const BinOpInfo &Ops) {
780     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
781   }
782   Value *EmitXor(const BinOpInfo &Ops) {
783     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
784   }
785   Value *EmitOr (const BinOpInfo &Ops) {
786     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
787   }
788 
789   // Helper functions for fixed point binary operations.
790   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
791 
792   BinOpInfo EmitBinOps(const BinaryOperator *E);
793   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
794                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
795                                   Value *&Result);
796 
797   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
798                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
799 
800   // Binary operators and binary compound assignment operators.
801 #define HANDLEBINOP(OP) \
802   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
803     return Emit ## OP(EmitBinOps(E));                                      \
804   }                                                                        \
805   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
806     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
807   }
808   HANDLEBINOP(Mul)
809   HANDLEBINOP(Div)
810   HANDLEBINOP(Rem)
811   HANDLEBINOP(Add)
812   HANDLEBINOP(Sub)
813   HANDLEBINOP(Shl)
814   HANDLEBINOP(Shr)
815   HANDLEBINOP(And)
816   HANDLEBINOP(Xor)
817   HANDLEBINOP(Or)
818 #undef HANDLEBINOP
819 
820   // Comparisons.
821   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
822                      llvm::CmpInst::Predicate SICmpOpc,
823                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
824 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
825     Value *VisitBin##CODE(const BinaryOperator *E) { \
826       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
827                          llvm::FCmpInst::FP, SIG); }
828   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
829   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
830   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
831   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
832   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
833   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
834 #undef VISITCOMP
835 
836   Value *VisitBinAssign     (const BinaryOperator *E);
837 
838   Value *VisitBinLAnd       (const BinaryOperator *E);
839   Value *VisitBinLOr        (const BinaryOperator *E);
840   Value *VisitBinComma      (const BinaryOperator *E);
841 
842   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
843   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
844 
845   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
846     return Visit(E->getSemanticForm());
847   }
848 
849   // Other Operators.
850   Value *VisitBlockExpr(const BlockExpr *BE);
851   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
852   Value *VisitChooseExpr(ChooseExpr *CE);
853   Value *VisitVAArgExpr(VAArgExpr *VE);
854   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
855     return CGF.EmitObjCStringLiteral(E);
856   }
857   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
858     return CGF.EmitObjCBoxedExpr(E);
859   }
860   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
861     return CGF.EmitObjCArrayLiteral(E);
862   }
863   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
864     return CGF.EmitObjCDictionaryLiteral(E);
865   }
866   Value *VisitAsTypeExpr(AsTypeExpr *CE);
867   Value *VisitAtomicExpr(AtomicExpr *AE);
868 };
869 }  // end anonymous namespace.
870 
871 //===----------------------------------------------------------------------===//
872 //                                Utilities
873 //===----------------------------------------------------------------------===//
874 
875 /// EmitConversionToBool - Convert the specified expression value to a
876 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
877 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
878   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
879 
880   if (SrcType->isRealFloatingType())
881     return EmitFloatToBoolConversion(Src);
882 
883   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
884     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
885 
886   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
887          "Unknown scalar type to convert");
888 
889   if (isa<llvm::IntegerType>(Src->getType()))
890     return EmitIntToBoolConversion(Src);
891 
892   assert(isa<llvm::PointerType>(Src->getType()));
893   return EmitPointerToBoolConversion(Src, SrcType);
894 }
895 
896 void ScalarExprEmitter::EmitFloatConversionCheck(
897     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
898     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
899   assert(SrcType->isFloatingType() && "not a conversion from floating point");
900   if (!isa<llvm::IntegerType>(DstTy))
901     return;
902 
903   CodeGenFunction::SanitizerScope SanScope(&CGF);
904   using llvm::APFloat;
905   using llvm::APSInt;
906 
907   llvm::Value *Check = nullptr;
908   const llvm::fltSemantics &SrcSema =
909     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
910 
911   // Floating-point to integer. This has undefined behavior if the source is
912   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
913   // to an integer).
914   unsigned Width = CGF.getContext().getIntWidth(DstType);
915   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
916 
917   APSInt Min = APSInt::getMinValue(Width, Unsigned);
918   APFloat MinSrc(SrcSema, APFloat::uninitialized);
919   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
920       APFloat::opOverflow)
921     // Don't need an overflow check for lower bound. Just check for
922     // -Inf/NaN.
923     MinSrc = APFloat::getInf(SrcSema, true);
924   else
925     // Find the largest value which is too small to represent (before
926     // truncation toward zero).
927     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
928 
929   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
930   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
931   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
932       APFloat::opOverflow)
933     // Don't need an overflow check for upper bound. Just check for
934     // +Inf/NaN.
935     MaxSrc = APFloat::getInf(SrcSema, false);
936   else
937     // Find the smallest value which is too large to represent (before
938     // truncation toward zero).
939     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
940 
941   // If we're converting from __half, convert the range to float to match
942   // the type of src.
943   if (OrigSrcType->isHalfType()) {
944     const llvm::fltSemantics &Sema =
945       CGF.getContext().getFloatTypeSemantics(SrcType);
946     bool IsInexact;
947     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
948     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
949   }
950 
951   llvm::Value *GE =
952     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
953   llvm::Value *LE =
954     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
955   Check = Builder.CreateAnd(GE, LE);
956 
957   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
958                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
959                                   CGF.EmitCheckTypeDescriptor(DstType)};
960   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
961                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
962 }
963 
964 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
965 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
966 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
967                  std::pair<llvm::Value *, SanitizerMask>>
968 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
969                                  QualType DstType, CGBuilderTy &Builder) {
970   llvm::Type *SrcTy = Src->getType();
971   llvm::Type *DstTy = Dst->getType();
972   (void)DstTy; // Only used in assert()
973 
974   // This should be truncation of integral types.
975   assert(Src != Dst);
976   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
977   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
978          "non-integer llvm type");
979 
980   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
981   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
982 
983   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
984   // Else, it is a signed truncation.
985   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
986   SanitizerMask Mask;
987   if (!SrcSigned && !DstSigned) {
988     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
989     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
990   } else {
991     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
992     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
993   }
994 
995   llvm::Value *Check = nullptr;
996   // 1. Extend the truncated value back to the same width as the Src.
997   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
998   // 2. Equality-compare with the original source value
999   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1000   // If the comparison result is 'i1 false', then the truncation was lossy.
1001   return std::make_pair(Kind, std::make_pair(Check, Mask));
1002 }
1003 
1004 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1005     QualType SrcType, QualType DstType) {
1006   return SrcType->isIntegerType() && DstType->isIntegerType();
1007 }
1008 
1009 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1010                                                    Value *Dst, QualType DstType,
1011                                                    SourceLocation Loc) {
1012   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1013     return;
1014 
1015   // We only care about int->int conversions here.
1016   // We ignore conversions to/from pointer and/or bool.
1017   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1018                                                                        DstType))
1019     return;
1020 
1021   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1022   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1023   // This must be truncation. Else we do not care.
1024   if (SrcBits <= DstBits)
1025     return;
1026 
1027   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1028 
1029   // If the integer sign change sanitizer is enabled,
1030   // and we are truncating from larger unsigned type to smaller signed type,
1031   // let that next sanitizer deal with it.
1032   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1033   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1034   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1035       (!SrcSigned && DstSigned))
1036     return;
1037 
1038   CodeGenFunction::SanitizerScope SanScope(&CGF);
1039 
1040   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1041             std::pair<llvm::Value *, SanitizerMask>>
1042       Check =
1043           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1044   // If the comparison result is 'i1 false', then the truncation was lossy.
1045 
1046   // Do we care about this type of truncation?
1047   if (!CGF.SanOpts.has(Check.second.second))
1048     return;
1049 
1050   llvm::Constant *StaticArgs[] = {
1051       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1052       CGF.EmitCheckTypeDescriptor(DstType),
1053       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1054   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1055                 {Src, Dst});
1056 }
1057 
1058 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1059 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1060 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1061                  std::pair<llvm::Value *, SanitizerMask>>
1062 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1063                                  QualType DstType, CGBuilderTy &Builder) {
1064   llvm::Type *SrcTy = Src->getType();
1065   llvm::Type *DstTy = Dst->getType();
1066 
1067   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1068          "non-integer llvm type");
1069 
1070   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1071   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1072   (void)SrcSigned; // Only used in assert()
1073   (void)DstSigned; // Only used in assert()
1074   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1075   unsigned DstBits = DstTy->getScalarSizeInBits();
1076   (void)SrcBits; // Only used in assert()
1077   (void)DstBits; // Only used in assert()
1078 
1079   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1080          "either the widths should be different, or the signednesses.");
1081 
1082   // NOTE: zero value is considered to be non-negative.
1083   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1084                                        const char *Name) -> Value * {
1085     // Is this value a signed type?
1086     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1087     llvm::Type *VTy = V->getType();
1088     if (!VSigned) {
1089       // If the value is unsigned, then it is never negative.
1090       // FIXME: can we encounter non-scalar VTy here?
1091       return llvm::ConstantInt::getFalse(VTy->getContext());
1092     }
1093     // Get the zero of the same type with which we will be comparing.
1094     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1095     // %V.isnegative = icmp slt %V, 0
1096     // I.e is %V *strictly* less than zero, does it have negative value?
1097     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1098                               llvm::Twine(Name) + "." + V->getName() +
1099                                   ".negativitycheck");
1100   };
1101 
1102   // 1. Was the old Value negative?
1103   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1104   // 2. Is the new Value negative?
1105   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1106   // 3. Now, was the 'negativity status' preserved during the conversion?
1107   //    NOTE: conversion from negative to zero is considered to change the sign.
1108   //    (We want to get 'false' when the conversion changed the sign)
1109   //    So we should just equality-compare the negativity statuses.
1110   llvm::Value *Check = nullptr;
1111   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1112   // If the comparison result is 'false', then the conversion changed the sign.
1113   return std::make_pair(
1114       ScalarExprEmitter::ICCK_IntegerSignChange,
1115       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1116 }
1117 
1118 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1119                                                    Value *Dst, QualType DstType,
1120                                                    SourceLocation Loc) {
1121   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1122     return;
1123 
1124   llvm::Type *SrcTy = Src->getType();
1125   llvm::Type *DstTy = Dst->getType();
1126 
1127   // We only care about int->int conversions here.
1128   // We ignore conversions to/from pointer and/or bool.
1129   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1130                                                                        DstType))
1131     return;
1132 
1133   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1134   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1135   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1136   unsigned DstBits = DstTy->getScalarSizeInBits();
1137 
1138   // Now, we do not need to emit the check in *all* of the cases.
1139   // We can avoid emitting it in some obvious cases where it would have been
1140   // dropped by the opt passes (instcombine) always anyways.
1141   // If it's a cast between effectively the same type, no check.
1142   // NOTE: this is *not* equivalent to checking the canonical types.
1143   if (SrcSigned == DstSigned && SrcBits == DstBits)
1144     return;
1145   // At least one of the values needs to have signed type.
1146   // If both are unsigned, then obviously, neither of them can be negative.
1147   if (!SrcSigned && !DstSigned)
1148     return;
1149   // If the conversion is to *larger* *signed* type, then no check is needed.
1150   // Because either sign-extension happens (so the sign will remain),
1151   // or zero-extension will happen (the sign bit will be zero.)
1152   if ((DstBits > SrcBits) && DstSigned)
1153     return;
1154   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1155       (SrcBits > DstBits) && SrcSigned) {
1156     // If the signed integer truncation sanitizer is enabled,
1157     // and this is a truncation from signed type, then no check is needed.
1158     // Because here sign change check is interchangeable with truncation check.
1159     return;
1160   }
1161   // That's it. We can't rule out any more cases with the data we have.
1162 
1163   CodeGenFunction::SanitizerScope SanScope(&CGF);
1164 
1165   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1166             std::pair<llvm::Value *, SanitizerMask>>
1167       Check;
1168 
1169   // Each of these checks needs to return 'false' when an issue was detected.
1170   ImplicitConversionCheckKind CheckKind;
1171   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1172   // So we can 'and' all the checks together, and still get 'false',
1173   // if at least one of the checks detected an issue.
1174 
1175   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1176   CheckKind = Check.first;
1177   Checks.emplace_back(Check.second);
1178 
1179   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1180       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1181     // If the signed integer truncation sanitizer was enabled,
1182     // and we are truncating from larger unsigned type to smaller signed type,
1183     // let's handle the case we skipped in that check.
1184     Check =
1185         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1186     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1187     Checks.emplace_back(Check.second);
1188     // If the comparison result is 'i1 false', then the truncation was lossy.
1189   }
1190 
1191   llvm::Constant *StaticArgs[] = {
1192       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1193       CGF.EmitCheckTypeDescriptor(DstType),
1194       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1195   // EmitCheck() will 'and' all the checks together.
1196   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1197                 {Src, Dst});
1198 }
1199 
1200 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1201                                          QualType DstType, llvm::Type *SrcTy,
1202                                          llvm::Type *DstTy,
1203                                          ScalarConversionOpts Opts) {
1204   // The Element types determine the type of cast to perform.
1205   llvm::Type *SrcElementTy;
1206   llvm::Type *DstElementTy;
1207   QualType SrcElementType;
1208   QualType DstElementType;
1209   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1210     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1211     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1212     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1213     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1214   } else {
1215     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1216            "cannot cast between matrix and non-matrix types");
1217     SrcElementTy = SrcTy;
1218     DstElementTy = DstTy;
1219     SrcElementType = SrcType;
1220     DstElementType = DstType;
1221   }
1222 
1223   if (isa<llvm::IntegerType>(SrcElementTy)) {
1224     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1225     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1226       InputSigned = true;
1227     }
1228 
1229     if (isa<llvm::IntegerType>(DstElementTy))
1230       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1231     if (InputSigned)
1232       return Builder.CreateSIToFP(Src, DstTy, "conv");
1233     return Builder.CreateUIToFP(Src, DstTy, "conv");
1234   }
1235 
1236   if (isa<llvm::IntegerType>(DstElementTy)) {
1237     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1238     if (DstElementType->isSignedIntegerOrEnumerationType())
1239       return Builder.CreateFPToSI(Src, DstTy, "conv");
1240     return Builder.CreateFPToUI(Src, DstTy, "conv");
1241   }
1242 
1243   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1244     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1245   return Builder.CreateFPExt(Src, DstTy, "conv");
1246 }
1247 
1248 /// Emit a conversion from the specified type to the specified destination type,
1249 /// both of which are LLVM scalar types.
1250 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1251                                                QualType DstType,
1252                                                SourceLocation Loc,
1253                                                ScalarConversionOpts Opts) {
1254   // All conversions involving fixed point types should be handled by the
1255   // EmitFixedPoint family functions. This is done to prevent bloating up this
1256   // function more, and although fixed point numbers are represented by
1257   // integers, we do not want to follow any logic that assumes they should be
1258   // treated as integers.
1259   // TODO(leonardchan): When necessary, add another if statement checking for
1260   // conversions to fixed point types from other types.
1261   if (SrcType->isFixedPointType()) {
1262     if (DstType->isBooleanType())
1263       // It is important that we check this before checking if the dest type is
1264       // an integer because booleans are technically integer types.
1265       // We do not need to check the padding bit on unsigned types if unsigned
1266       // padding is enabled because overflow into this bit is undefined
1267       // behavior.
1268       return Builder.CreateIsNotNull(Src, "tobool");
1269     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1270         DstType->isRealFloatingType())
1271       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1272 
1273     llvm_unreachable(
1274         "Unhandled scalar conversion from a fixed point type to another type.");
1275   } else if (DstType->isFixedPointType()) {
1276     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1277       // This also includes converting booleans and enums to fixed point types.
1278       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1279 
1280     llvm_unreachable(
1281         "Unhandled scalar conversion to a fixed point type from another type.");
1282   }
1283 
1284   QualType NoncanonicalSrcType = SrcType;
1285   QualType NoncanonicalDstType = DstType;
1286 
1287   SrcType = CGF.getContext().getCanonicalType(SrcType);
1288   DstType = CGF.getContext().getCanonicalType(DstType);
1289   if (SrcType == DstType) return Src;
1290 
1291   if (DstType->isVoidType()) return nullptr;
1292 
1293   llvm::Value *OrigSrc = Src;
1294   QualType OrigSrcType = SrcType;
1295   llvm::Type *SrcTy = Src->getType();
1296 
1297   // Handle conversions to bool first, they are special: comparisons against 0.
1298   if (DstType->isBooleanType())
1299     return EmitConversionToBool(Src, SrcType);
1300 
1301   llvm::Type *DstTy = ConvertType(DstType);
1302 
1303   // Cast from half through float if half isn't a native type.
1304   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1305     // Cast to FP using the intrinsic if the half type itself isn't supported.
1306     if (DstTy->isFloatingPointTy()) {
1307       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1308         return Builder.CreateCall(
1309             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1310             Src);
1311     } else {
1312       // Cast to other types through float, using either the intrinsic or FPExt,
1313       // depending on whether the half type itself is supported
1314       // (as opposed to operations on half, available with NativeHalfType).
1315       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1316         Src = Builder.CreateCall(
1317             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1318                                  CGF.CGM.FloatTy),
1319             Src);
1320       } else {
1321         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1322       }
1323       SrcType = CGF.getContext().FloatTy;
1324       SrcTy = CGF.FloatTy;
1325     }
1326   }
1327 
1328   // Ignore conversions like int -> uint.
1329   if (SrcTy == DstTy) {
1330     if (Opts.EmitImplicitIntegerSignChangeChecks)
1331       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1332                                  NoncanonicalDstType, Loc);
1333 
1334     return Src;
1335   }
1336 
1337   // Handle pointer conversions next: pointers can only be converted to/from
1338   // other pointers and integers. Check for pointer types in terms of LLVM, as
1339   // some native types (like Obj-C id) may map to a pointer type.
1340   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1341     // The source value may be an integer, or a pointer.
1342     if (isa<llvm::PointerType>(SrcTy))
1343       return Builder.CreateBitCast(Src, DstTy, "conv");
1344 
1345     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1346     // First, convert to the correct width so that we control the kind of
1347     // extension.
1348     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1349     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1350     llvm::Value* IntResult =
1351         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1352     // Then, cast to pointer.
1353     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1354   }
1355 
1356   if (isa<llvm::PointerType>(SrcTy)) {
1357     // Must be an ptr to int cast.
1358     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1359     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1360   }
1361 
1362   // A scalar can be splatted to an extended vector of the same element type
1363   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1364     // Sema should add casts to make sure that the source expression's type is
1365     // the same as the vector's element type (sans qualifiers)
1366     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1367                SrcType.getTypePtr() &&
1368            "Splatted expr doesn't match with vector element type?");
1369 
1370     // Splat the element across to all elements
1371     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1372     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1373   }
1374 
1375   if (SrcType->isMatrixType() && DstType->isMatrixType())
1376     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1377 
1378   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1379     // Allow bitcast from vector to integer/fp of the same size.
1380     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1381     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1382     if (SrcSize == DstSize)
1383       return Builder.CreateBitCast(Src, DstTy, "conv");
1384 
1385     // Conversions between vectors of different sizes are not allowed except
1386     // when vectors of half are involved. Operations on storage-only half
1387     // vectors require promoting half vector operands to float vectors and
1388     // truncating the result, which is either an int or float vector, to a
1389     // short or half vector.
1390 
1391     // Source and destination are both expected to be vectors.
1392     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1393     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1394     (void)DstElementTy;
1395 
1396     assert(((SrcElementTy->isIntegerTy() &&
1397              DstElementTy->isIntegerTy()) ||
1398             (SrcElementTy->isFloatingPointTy() &&
1399              DstElementTy->isFloatingPointTy())) &&
1400            "unexpected conversion between a floating-point vector and an "
1401            "integer vector");
1402 
1403     // Truncate an i32 vector to an i16 vector.
1404     if (SrcElementTy->isIntegerTy())
1405       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1406 
1407     // Truncate a float vector to a half vector.
1408     if (SrcSize > DstSize)
1409       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1410 
1411     // Promote a half vector to a float vector.
1412     return Builder.CreateFPExt(Src, DstTy, "conv");
1413   }
1414 
1415   // Finally, we have the arithmetic types: real int/float.
1416   Value *Res = nullptr;
1417   llvm::Type *ResTy = DstTy;
1418 
1419   // An overflowing conversion has undefined behavior if either the source type
1420   // or the destination type is a floating-point type. However, we consider the
1421   // range of representable values for all floating-point types to be
1422   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1423   // floating-point type.
1424   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1425       OrigSrcType->isFloatingType())
1426     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1427                              Loc);
1428 
1429   // Cast to half through float if half isn't a native type.
1430   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1431     // Make sure we cast in a single step if from another FP type.
1432     if (SrcTy->isFloatingPointTy()) {
1433       // Use the intrinsic if the half type itself isn't supported
1434       // (as opposed to operations on half, available with NativeHalfType).
1435       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1436         return Builder.CreateCall(
1437             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1438       // If the half type is supported, just use an fptrunc.
1439       return Builder.CreateFPTrunc(Src, DstTy);
1440     }
1441     DstTy = CGF.FloatTy;
1442   }
1443 
1444   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1445 
1446   if (DstTy != ResTy) {
1447     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1448       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1449       Res = Builder.CreateCall(
1450         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1451         Res);
1452     } else {
1453       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1454     }
1455   }
1456 
1457   if (Opts.EmitImplicitIntegerTruncationChecks)
1458     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1459                                NoncanonicalDstType, Loc);
1460 
1461   if (Opts.EmitImplicitIntegerSignChangeChecks)
1462     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1463                                NoncanonicalDstType, Loc);
1464 
1465   return Res;
1466 }
1467 
1468 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1469                                                    QualType DstTy,
1470                                                    SourceLocation Loc) {
1471   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1472   llvm::Value *Result;
1473   if (SrcTy->isRealFloatingType())
1474     Result = FPBuilder.CreateFloatingToFixed(Src,
1475         CGF.getContext().getFixedPointSemantics(DstTy));
1476   else if (DstTy->isRealFloatingType())
1477     Result = FPBuilder.CreateFixedToFloating(Src,
1478         CGF.getContext().getFixedPointSemantics(SrcTy),
1479         ConvertType(DstTy));
1480   else {
1481     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1482     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1483 
1484     if (DstTy->isIntegerType())
1485       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1486                                               DstFPSema.getWidth(),
1487                                               DstFPSema.isSigned());
1488     else if (SrcTy->isIntegerType())
1489       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1490                                                DstFPSema);
1491     else
1492       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1493   }
1494   return Result;
1495 }
1496 
1497 /// Emit a conversion from the specified complex type to the specified
1498 /// destination type, where the destination type is an LLVM scalar type.
1499 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1500     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1501     SourceLocation Loc) {
1502   // Get the source element type.
1503   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1504 
1505   // Handle conversions to bool first, they are special: comparisons against 0.
1506   if (DstTy->isBooleanType()) {
1507     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1508     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1509     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1510     return Builder.CreateOr(Src.first, Src.second, "tobool");
1511   }
1512 
1513   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1514   // the imaginary part of the complex value is discarded and the value of the
1515   // real part is converted according to the conversion rules for the
1516   // corresponding real type.
1517   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1518 }
1519 
1520 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1521   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1522 }
1523 
1524 /// Emit a sanitization check for the given "binary" operation (which
1525 /// might actually be a unary increment which has been lowered to a binary
1526 /// operation). The check passes if all values in \p Checks (which are \c i1),
1527 /// are \c true.
1528 void ScalarExprEmitter::EmitBinOpCheck(
1529     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1530   assert(CGF.IsSanitizerScope);
1531   SanitizerHandler Check;
1532   SmallVector<llvm::Constant *, 4> StaticData;
1533   SmallVector<llvm::Value *, 2> DynamicData;
1534 
1535   BinaryOperatorKind Opcode = Info.Opcode;
1536   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1537     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1538 
1539   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1540   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1541   if (UO && UO->getOpcode() == UO_Minus) {
1542     Check = SanitizerHandler::NegateOverflow;
1543     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1544     DynamicData.push_back(Info.RHS);
1545   } else {
1546     if (BinaryOperator::isShiftOp(Opcode)) {
1547       // Shift LHS negative or too large, or RHS out of bounds.
1548       Check = SanitizerHandler::ShiftOutOfBounds;
1549       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1550       StaticData.push_back(
1551         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1552       StaticData.push_back(
1553         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1554     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1555       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1556       Check = SanitizerHandler::DivremOverflow;
1557       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1558     } else {
1559       // Arithmetic overflow (+, -, *).
1560       switch (Opcode) {
1561       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1562       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1563       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1564       default: llvm_unreachable("unexpected opcode for bin op check");
1565       }
1566       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1567     }
1568     DynamicData.push_back(Info.LHS);
1569     DynamicData.push_back(Info.RHS);
1570   }
1571 
1572   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1573 }
1574 
1575 //===----------------------------------------------------------------------===//
1576 //                            Visitor Methods
1577 //===----------------------------------------------------------------------===//
1578 
1579 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1580   CGF.ErrorUnsupported(E, "scalar expression");
1581   if (E->getType()->isVoidType())
1582     return nullptr;
1583   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1584 }
1585 
1586 Value *
1587 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1588   ASTContext &Context = CGF.getContext();
1589   llvm::Optional<LangAS> GlobalAS =
1590       Context.getTargetInfo().getConstantAddressSpace();
1591   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1592       E->ComputeName(Context), "__usn_str",
1593       static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default)));
1594 
1595   unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
1596 
1597   if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
1598     return GlobalConstStr;
1599 
1600   llvm::Type *EltTy = GlobalConstStr->getType()->getPointerElementType();
1601   llvm::PointerType *NewPtrTy = llvm::PointerType::get(EltTy, ExprAS);
1602   return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
1603 }
1604 
1605 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1606   // Vector Mask Case
1607   if (E->getNumSubExprs() == 2) {
1608     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1609     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1610     Value *Mask;
1611 
1612     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1613     unsigned LHSElts = LTy->getNumElements();
1614 
1615     Mask = RHS;
1616 
1617     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1618 
1619     // Mask off the high bits of each shuffle index.
1620     Value *MaskBits =
1621         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1622     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1623 
1624     // newv = undef
1625     // mask = mask & maskbits
1626     // for each elt
1627     //   n = extract mask i
1628     //   x = extract val n
1629     //   newv = insert newv, x, i
1630     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1631                                            MTy->getNumElements());
1632     Value* NewV = llvm::UndefValue::get(RTy);
1633     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1634       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1635       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1636 
1637       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1638       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1639     }
1640     return NewV;
1641   }
1642 
1643   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1644   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1645 
1646   SmallVector<int, 32> Indices;
1647   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1648     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1649     // Check for -1 and output it as undef in the IR.
1650     if (Idx.isSigned() && Idx.isAllOnes())
1651       Indices.push_back(-1);
1652     else
1653       Indices.push_back(Idx.getZExtValue());
1654   }
1655 
1656   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1657 }
1658 
1659 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1660   QualType SrcType = E->getSrcExpr()->getType(),
1661            DstType = E->getType();
1662 
1663   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1664 
1665   SrcType = CGF.getContext().getCanonicalType(SrcType);
1666   DstType = CGF.getContext().getCanonicalType(DstType);
1667   if (SrcType == DstType) return Src;
1668 
1669   assert(SrcType->isVectorType() &&
1670          "ConvertVector source type must be a vector");
1671   assert(DstType->isVectorType() &&
1672          "ConvertVector destination type must be a vector");
1673 
1674   llvm::Type *SrcTy = Src->getType();
1675   llvm::Type *DstTy = ConvertType(DstType);
1676 
1677   // Ignore conversions like int -> uint.
1678   if (SrcTy == DstTy)
1679     return Src;
1680 
1681   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1682            DstEltType = DstType->castAs<VectorType>()->getElementType();
1683 
1684   assert(SrcTy->isVectorTy() &&
1685          "ConvertVector source IR type must be a vector");
1686   assert(DstTy->isVectorTy() &&
1687          "ConvertVector destination IR type must be a vector");
1688 
1689   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1690              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1691 
1692   if (DstEltType->isBooleanType()) {
1693     assert((SrcEltTy->isFloatingPointTy() ||
1694             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1695 
1696     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1697     if (SrcEltTy->isFloatingPointTy()) {
1698       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1699     } else {
1700       return Builder.CreateICmpNE(Src, Zero, "tobool");
1701     }
1702   }
1703 
1704   // We have the arithmetic types: real int/float.
1705   Value *Res = nullptr;
1706 
1707   if (isa<llvm::IntegerType>(SrcEltTy)) {
1708     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1709     if (isa<llvm::IntegerType>(DstEltTy))
1710       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1711     else if (InputSigned)
1712       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1713     else
1714       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1715   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1716     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1717     if (DstEltType->isSignedIntegerOrEnumerationType())
1718       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1719     else
1720       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1721   } else {
1722     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1723            "Unknown real conversion");
1724     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1725       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1726     else
1727       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1728   }
1729 
1730   return Res;
1731 }
1732 
1733 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1734   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1735     CGF.EmitIgnoredExpr(E->getBase());
1736     return CGF.emitScalarConstant(Constant, E);
1737   } else {
1738     Expr::EvalResult Result;
1739     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1740       llvm::APSInt Value = Result.Val.getInt();
1741       CGF.EmitIgnoredExpr(E->getBase());
1742       return Builder.getInt(Value);
1743     }
1744   }
1745 
1746   return EmitLoadOfLValue(E);
1747 }
1748 
1749 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1750   TestAndClearIgnoreResultAssign();
1751 
1752   // Emit subscript expressions in rvalue context's.  For most cases, this just
1753   // loads the lvalue formed by the subscript expr.  However, we have to be
1754   // careful, because the base of a vector subscript is occasionally an rvalue,
1755   // so we can't get it as an lvalue.
1756   if (!E->getBase()->getType()->isVectorType())
1757     return EmitLoadOfLValue(E);
1758 
1759   // Handle the vector case.  The base must be a vector, the index must be an
1760   // integer value.
1761   Value *Base = Visit(E->getBase());
1762   Value *Idx  = Visit(E->getIdx());
1763   QualType IdxTy = E->getIdx()->getType();
1764 
1765   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1766     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1767 
1768   return Builder.CreateExtractElement(Base, Idx, "vecext");
1769 }
1770 
1771 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1772   TestAndClearIgnoreResultAssign();
1773 
1774   // Handle the vector case.  The base must be a vector, the index must be an
1775   // integer value.
1776   Value *RowIdx = Visit(E->getRowIdx());
1777   Value *ColumnIdx = Visit(E->getColumnIdx());
1778 
1779   const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1780   unsigned NumRows = MatrixTy->getNumRows();
1781   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1782   Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1783   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1784     MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1785 
1786   Value *Matrix = Visit(E->getBase());
1787 
1788   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1789   return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1790 }
1791 
1792 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1793                       unsigned Off) {
1794   int MV = SVI->getMaskValue(Idx);
1795   if (MV == -1)
1796     return -1;
1797   return Off + MV;
1798 }
1799 
1800 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1801   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1802          "Index operand too large for shufflevector mask!");
1803   return C->getZExtValue();
1804 }
1805 
1806 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1807   bool Ignore = TestAndClearIgnoreResultAssign();
1808   (void)Ignore;
1809   assert (Ignore == false && "init list ignored");
1810   unsigned NumInitElements = E->getNumInits();
1811 
1812   if (E->hadArrayRangeDesignator())
1813     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1814 
1815   llvm::VectorType *VType =
1816     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1817 
1818   if (!VType) {
1819     if (NumInitElements == 0) {
1820       // C++11 value-initialization for the scalar.
1821       return EmitNullValue(E->getType());
1822     }
1823     // We have a scalar in braces. Just use the first element.
1824     return Visit(E->getInit(0));
1825   }
1826 
1827   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1828 
1829   // Loop over initializers collecting the Value for each, and remembering
1830   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1831   // us to fold the shuffle for the swizzle into the shuffle for the vector
1832   // initializer, since LLVM optimizers generally do not want to touch
1833   // shuffles.
1834   unsigned CurIdx = 0;
1835   bool VIsUndefShuffle = false;
1836   llvm::Value *V = llvm::UndefValue::get(VType);
1837   for (unsigned i = 0; i != NumInitElements; ++i) {
1838     Expr *IE = E->getInit(i);
1839     Value *Init = Visit(IE);
1840     SmallVector<int, 16> Args;
1841 
1842     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1843 
1844     // Handle scalar elements.  If the scalar initializer is actually one
1845     // element of a different vector of the same width, use shuffle instead of
1846     // extract+insert.
1847     if (!VVT) {
1848       if (isa<ExtVectorElementExpr>(IE)) {
1849         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1850 
1851         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1852                 ->getNumElements() == ResElts) {
1853           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1854           Value *LHS = nullptr, *RHS = nullptr;
1855           if (CurIdx == 0) {
1856             // insert into undef -> shuffle (src, undef)
1857             // shufflemask must use an i32
1858             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1859             Args.resize(ResElts, -1);
1860 
1861             LHS = EI->getVectorOperand();
1862             RHS = V;
1863             VIsUndefShuffle = true;
1864           } else if (VIsUndefShuffle) {
1865             // insert into undefshuffle && size match -> shuffle (v, src)
1866             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1867             for (unsigned j = 0; j != CurIdx; ++j)
1868               Args.push_back(getMaskElt(SVV, j, 0));
1869             Args.push_back(ResElts + C->getZExtValue());
1870             Args.resize(ResElts, -1);
1871 
1872             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1873             RHS = EI->getVectorOperand();
1874             VIsUndefShuffle = false;
1875           }
1876           if (!Args.empty()) {
1877             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1878             ++CurIdx;
1879             continue;
1880           }
1881         }
1882       }
1883       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1884                                       "vecinit");
1885       VIsUndefShuffle = false;
1886       ++CurIdx;
1887       continue;
1888     }
1889 
1890     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1891 
1892     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1893     // input is the same width as the vector being constructed, generate an
1894     // optimized shuffle of the swizzle input into the result.
1895     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1896     if (isa<ExtVectorElementExpr>(IE)) {
1897       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1898       Value *SVOp = SVI->getOperand(0);
1899       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1900 
1901       if (OpTy->getNumElements() == ResElts) {
1902         for (unsigned j = 0; j != CurIdx; ++j) {
1903           // If the current vector initializer is a shuffle with undef, merge
1904           // this shuffle directly into it.
1905           if (VIsUndefShuffle) {
1906             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1907           } else {
1908             Args.push_back(j);
1909           }
1910         }
1911         for (unsigned j = 0, je = InitElts; j != je; ++j)
1912           Args.push_back(getMaskElt(SVI, j, Offset));
1913         Args.resize(ResElts, -1);
1914 
1915         if (VIsUndefShuffle)
1916           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1917 
1918         Init = SVOp;
1919       }
1920     }
1921 
1922     // Extend init to result vector length, and then shuffle its contribution
1923     // to the vector initializer into V.
1924     if (Args.empty()) {
1925       for (unsigned j = 0; j != InitElts; ++j)
1926         Args.push_back(j);
1927       Args.resize(ResElts, -1);
1928       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1929 
1930       Args.clear();
1931       for (unsigned j = 0; j != CurIdx; ++j)
1932         Args.push_back(j);
1933       for (unsigned j = 0; j != InitElts; ++j)
1934         Args.push_back(j + Offset);
1935       Args.resize(ResElts, -1);
1936     }
1937 
1938     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1939     // merging subsequent shuffles into this one.
1940     if (CurIdx == 0)
1941       std::swap(V, Init);
1942     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1943     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1944     CurIdx += InitElts;
1945   }
1946 
1947   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1948   // Emit remaining default initializers.
1949   llvm::Type *EltTy = VType->getElementType();
1950 
1951   // Emit remaining default initializers
1952   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1953     Value *Idx = Builder.getInt32(CurIdx);
1954     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1955     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1956   }
1957   return V;
1958 }
1959 
1960 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1961   const Expr *E = CE->getSubExpr();
1962 
1963   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1964     return false;
1965 
1966   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1967     // We always assume that 'this' is never null.
1968     return false;
1969   }
1970 
1971   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1972     // And that glvalue casts are never null.
1973     if (ICE->isGLValue())
1974       return false;
1975   }
1976 
1977   return true;
1978 }
1979 
1980 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1981 // have to handle a more broad range of conversions than explicit casts, as they
1982 // handle things like function to ptr-to-function decay etc.
1983 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1984   Expr *E = CE->getSubExpr();
1985   QualType DestTy = CE->getType();
1986   CastKind Kind = CE->getCastKind();
1987 
1988   // These cases are generally not written to ignore the result of
1989   // evaluating their sub-expressions, so we clear this now.
1990   bool Ignored = TestAndClearIgnoreResultAssign();
1991 
1992   // Since almost all cast kinds apply to scalars, this switch doesn't have
1993   // a default case, so the compiler will warn on a missing case.  The cases
1994   // are in the same order as in the CastKind enum.
1995   switch (Kind) {
1996   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1997   case CK_BuiltinFnToFnPtr:
1998     llvm_unreachable("builtin functions are handled elsewhere");
1999 
2000   case CK_LValueBitCast:
2001   case CK_ObjCObjectLValueCast: {
2002     Address Addr = EmitLValue(E).getAddress(CGF);
2003     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2004     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2005     return EmitLoadOfLValue(LV, CE->getExprLoc());
2006   }
2007 
2008   case CK_LValueToRValueBitCast: {
2009     LValue SourceLVal = CGF.EmitLValue(E);
2010     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2011                                                 CGF.ConvertTypeForMem(DestTy));
2012     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2013     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2014     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2015   }
2016 
2017   case CK_CPointerToObjCPointerCast:
2018   case CK_BlockPointerToObjCPointerCast:
2019   case CK_AnyPointerToBlockPointerCast:
2020   case CK_BitCast: {
2021     Value *Src = Visit(const_cast<Expr*>(E));
2022     llvm::Type *SrcTy = Src->getType();
2023     llvm::Type *DstTy = ConvertType(DestTy);
2024     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2025         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2026       llvm_unreachable("wrong cast for pointers in different address spaces"
2027                        "(must be an address space cast)!");
2028     }
2029 
2030     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2031       if (auto PT = DestTy->getAs<PointerType>())
2032         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2033                                       /*MayBeNull=*/true,
2034                                       CodeGenFunction::CFITCK_UnrelatedCast,
2035                                       CE->getBeginLoc());
2036     }
2037 
2038     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2039       const QualType SrcType = E->getType();
2040 
2041       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2042         // Casting to pointer that could carry dynamic information (provided by
2043         // invariant.group) requires launder.
2044         Src = Builder.CreateLaunderInvariantGroup(Src);
2045       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2046         // Casting to pointer that does not carry dynamic information (provided
2047         // by invariant.group) requires stripping it.  Note that we don't do it
2048         // if the source could not be dynamic type and destination could be
2049         // dynamic because dynamic information is already laundered.  It is
2050         // because launder(strip(src)) == launder(src), so there is no need to
2051         // add extra strip before launder.
2052         Src = Builder.CreateStripInvariantGroup(Src);
2053       }
2054     }
2055 
2056     // Update heapallocsite metadata when there is an explicit pointer cast.
2057     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2058       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2059         QualType PointeeType = DestTy->getPointeeType();
2060         if (!PointeeType.isNull())
2061           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2062                                                        CE->getExprLoc());
2063       }
2064     }
2065 
2066     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2067     // same element type, use the llvm.experimental.vector.insert intrinsic to
2068     // perform the bitcast.
2069     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2070       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2071         // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2072         // vector, use a vector insert and bitcast the result.
2073         bool NeedsBitCast = false;
2074         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2075         llvm::Type *OrigType = DstTy;
2076         if (ScalableDst == PredType &&
2077             FixedSrc->getElementType() == Builder.getInt8Ty()) {
2078           DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2079           ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy);
2080           NeedsBitCast = true;
2081         }
2082         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2083           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2084           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2085           llvm::Value *Result = Builder.CreateInsertVector(
2086               DstTy, UndefVec, Src, Zero, "castScalableSve");
2087           if (NeedsBitCast)
2088             Result = Builder.CreateBitCast(Result, OrigType);
2089           return Result;
2090         }
2091       }
2092     }
2093 
2094     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2095     // same element type, use the llvm.experimental.vector.extract intrinsic to
2096     // perform the bitcast.
2097     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2098       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2099         // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2100         // vector, bitcast the source and use a vector extract.
2101         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2102         if (ScalableSrc == PredType &&
2103             FixedDst->getElementType() == Builder.getInt8Ty()) {
2104           SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2105           ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy);
2106           Src = Builder.CreateBitCast(Src, SrcTy);
2107         }
2108         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2109           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2110           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2111         }
2112       }
2113     }
2114 
2115     // Perform VLAT <-> VLST bitcast through memory.
2116     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2117     //       require the element types of the vectors to be the same, we
2118     //       need to keep this around for bitcasts between VLAT <-> VLST where
2119     //       the element types of the vectors are not the same, until we figure
2120     //       out a better way of doing these casts.
2121     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2122          isa<llvm::ScalableVectorType>(DstTy)) ||
2123         (isa<llvm::ScalableVectorType>(SrcTy) &&
2124          isa<llvm::FixedVectorType>(DstTy))) {
2125       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2126       LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2127       CGF.EmitStoreOfScalar(Src, LV);
2128       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2129                                           "castFixedSve");
2130       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2131       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2132       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2133     }
2134 
2135     return Builder.CreateBitCast(Src, DstTy);
2136   }
2137   case CK_AddressSpaceConversion: {
2138     Expr::EvalResult Result;
2139     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2140         Result.Val.isNullPointer()) {
2141       // If E has side effect, it is emitted even if its final result is a
2142       // null pointer. In that case, a DCE pass should be able to
2143       // eliminate the useless instructions emitted during translating E.
2144       if (Result.HasSideEffects)
2145         Visit(E);
2146       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2147           ConvertType(DestTy)), DestTy);
2148     }
2149     // Since target may map different address spaces in AST to the same address
2150     // space, an address space conversion may end up as a bitcast.
2151     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2152         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2153         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2154   }
2155   case CK_AtomicToNonAtomic:
2156   case CK_NonAtomicToAtomic:
2157   case CK_UserDefinedConversion:
2158     return Visit(const_cast<Expr*>(E));
2159 
2160   case CK_NoOp: {
2161     llvm::Value *V = Visit(const_cast<Expr *>(E));
2162     if (V) {
2163       // CK_NoOp can model a pointer qualification conversion, which can remove
2164       // an array bound and change the IR type.
2165       // FIXME: Once pointee types are removed from IR, remove this.
2166       llvm::Type *T = ConvertType(DestTy);
2167       if (T != V->getType())
2168         V = Builder.CreateBitCast(V, T);
2169     }
2170     return V;
2171   }
2172 
2173   case CK_BaseToDerived: {
2174     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2175     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2176 
2177     Address Base = CGF.EmitPointerWithAlignment(E);
2178     Address Derived =
2179       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2180                                    CE->path_begin(), CE->path_end(),
2181                                    CGF.ShouldNullCheckClassCastValue(CE));
2182 
2183     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2184     // performed and the object is not of the derived type.
2185     if (CGF.sanitizePerformTypeCheck())
2186       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2187                         Derived.getPointer(), DestTy->getPointeeType());
2188 
2189     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2190       CGF.EmitVTablePtrCheckForCast(
2191           DestTy->getPointeeType(), Derived.getPointer(),
2192           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2193           CE->getBeginLoc());
2194 
2195     return Derived.getPointer();
2196   }
2197   case CK_UncheckedDerivedToBase:
2198   case CK_DerivedToBase: {
2199     // The EmitPointerWithAlignment path does this fine; just discard
2200     // the alignment.
2201     return CGF.EmitPointerWithAlignment(CE).getPointer();
2202   }
2203 
2204   case CK_Dynamic: {
2205     Address V = CGF.EmitPointerWithAlignment(E);
2206     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2207     return CGF.EmitDynamicCast(V, DCE);
2208   }
2209 
2210   case CK_ArrayToPointerDecay:
2211     return CGF.EmitArrayToPointerDecay(E).getPointer();
2212   case CK_FunctionToPointerDecay:
2213     return EmitLValue(E).getPointer(CGF);
2214 
2215   case CK_NullToPointer:
2216     if (MustVisitNullValue(E))
2217       CGF.EmitIgnoredExpr(E);
2218 
2219     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2220                               DestTy);
2221 
2222   case CK_NullToMemberPointer: {
2223     if (MustVisitNullValue(E))
2224       CGF.EmitIgnoredExpr(E);
2225 
2226     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2227     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2228   }
2229 
2230   case CK_ReinterpretMemberPointer:
2231   case CK_BaseToDerivedMemberPointer:
2232   case CK_DerivedToBaseMemberPointer: {
2233     Value *Src = Visit(E);
2234 
2235     // Note that the AST doesn't distinguish between checked and
2236     // unchecked member pointer conversions, so we always have to
2237     // implement checked conversions here.  This is inefficient when
2238     // actual control flow may be required in order to perform the
2239     // check, which it is for data member pointers (but not member
2240     // function pointers on Itanium and ARM).
2241     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2242   }
2243 
2244   case CK_ARCProduceObject:
2245     return CGF.EmitARCRetainScalarExpr(E);
2246   case CK_ARCConsumeObject:
2247     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2248   case CK_ARCReclaimReturnedObject:
2249     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2250   case CK_ARCExtendBlockObject:
2251     return CGF.EmitARCExtendBlockObject(E);
2252 
2253   case CK_CopyAndAutoreleaseBlockObject:
2254     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2255 
2256   case CK_FloatingRealToComplex:
2257   case CK_FloatingComplexCast:
2258   case CK_IntegralRealToComplex:
2259   case CK_IntegralComplexCast:
2260   case CK_IntegralComplexToFloatingComplex:
2261   case CK_FloatingComplexToIntegralComplex:
2262   case CK_ConstructorConversion:
2263   case CK_ToUnion:
2264     llvm_unreachable("scalar cast to non-scalar value");
2265 
2266   case CK_LValueToRValue:
2267     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2268     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2269     return Visit(const_cast<Expr*>(E));
2270 
2271   case CK_IntegralToPointer: {
2272     Value *Src = Visit(const_cast<Expr*>(E));
2273 
2274     // First, convert to the correct width so that we control the kind of
2275     // extension.
2276     auto DestLLVMTy = ConvertType(DestTy);
2277     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2278     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2279     llvm::Value* IntResult =
2280       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2281 
2282     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2283 
2284     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2285       // Going from integer to pointer that could be dynamic requires reloading
2286       // dynamic information from invariant.group.
2287       if (DestTy.mayBeDynamicClass())
2288         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2289     }
2290     return IntToPtr;
2291   }
2292   case CK_PointerToIntegral: {
2293     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2294     auto *PtrExpr = Visit(E);
2295 
2296     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2297       const QualType SrcType = E->getType();
2298 
2299       // Casting to integer requires stripping dynamic information as it does
2300       // not carries it.
2301       if (SrcType.mayBeDynamicClass())
2302         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2303     }
2304 
2305     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2306   }
2307   case CK_ToVoid: {
2308     CGF.EmitIgnoredExpr(E);
2309     return nullptr;
2310   }
2311   case CK_MatrixCast: {
2312     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2313                                 CE->getExprLoc());
2314   }
2315   case CK_VectorSplat: {
2316     llvm::Type *DstTy = ConvertType(DestTy);
2317     Value *Elt = Visit(const_cast<Expr*>(E));
2318     // Splat the element across to all elements
2319     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2320     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2321   }
2322 
2323   case CK_FixedPointCast:
2324     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2325                                 CE->getExprLoc());
2326 
2327   case CK_FixedPointToBoolean:
2328     assert(E->getType()->isFixedPointType() &&
2329            "Expected src type to be fixed point type");
2330     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2331     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2332                                 CE->getExprLoc());
2333 
2334   case CK_FixedPointToIntegral:
2335     assert(E->getType()->isFixedPointType() &&
2336            "Expected src type to be fixed point type");
2337     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2338     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2339                                 CE->getExprLoc());
2340 
2341   case CK_IntegralToFixedPoint:
2342     assert(E->getType()->isIntegerType() &&
2343            "Expected src type to be an integer");
2344     assert(DestTy->isFixedPointType() &&
2345            "Expected dest type to be fixed point type");
2346     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2347                                 CE->getExprLoc());
2348 
2349   case CK_IntegralCast: {
2350     ScalarConversionOpts Opts;
2351     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2352       if (!ICE->isPartOfExplicitCast())
2353         Opts = ScalarConversionOpts(CGF.SanOpts);
2354     }
2355     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2356                                 CE->getExprLoc(), Opts);
2357   }
2358   case CK_IntegralToFloating:
2359   case CK_FloatingToIntegral:
2360   case CK_FloatingCast:
2361   case CK_FixedPointToFloating:
2362   case CK_FloatingToFixedPoint: {
2363     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2364     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2365                                 CE->getExprLoc());
2366   }
2367   case CK_BooleanToSignedIntegral: {
2368     ScalarConversionOpts Opts;
2369     Opts.TreatBooleanAsSigned = true;
2370     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2371                                 CE->getExprLoc(), Opts);
2372   }
2373   case CK_IntegralToBoolean:
2374     return EmitIntToBoolConversion(Visit(E));
2375   case CK_PointerToBoolean:
2376     return EmitPointerToBoolConversion(Visit(E), E->getType());
2377   case CK_FloatingToBoolean: {
2378     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2379     return EmitFloatToBoolConversion(Visit(E));
2380   }
2381   case CK_MemberPointerToBoolean: {
2382     llvm::Value *MemPtr = Visit(E);
2383     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2384     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2385   }
2386 
2387   case CK_FloatingComplexToReal:
2388   case CK_IntegralComplexToReal:
2389     return CGF.EmitComplexExpr(E, false, true).first;
2390 
2391   case CK_FloatingComplexToBoolean:
2392   case CK_IntegralComplexToBoolean: {
2393     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2394 
2395     // TODO: kill this function off, inline appropriate case here
2396     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2397                                          CE->getExprLoc());
2398   }
2399 
2400   case CK_ZeroToOCLOpaqueType: {
2401     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2402             DestTy->isOCLIntelSubgroupAVCType()) &&
2403            "CK_ZeroToOCLEvent cast on non-event type");
2404     return llvm::Constant::getNullValue(ConvertType(DestTy));
2405   }
2406 
2407   case CK_IntToOCLSampler:
2408     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2409 
2410   } // end of switch
2411 
2412   llvm_unreachable("unknown scalar cast");
2413 }
2414 
2415 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2416   CodeGenFunction::StmtExprEvaluation eval(CGF);
2417   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2418                                            !E->getType()->isVoidType());
2419   if (!RetAlloca.isValid())
2420     return nullptr;
2421   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2422                               E->getExprLoc());
2423 }
2424 
2425 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2426   CodeGenFunction::RunCleanupsScope Scope(CGF);
2427   Value *V = Visit(E->getSubExpr());
2428   // Defend against dominance problems caused by jumps out of expression
2429   // evaluation through the shared cleanup block.
2430   Scope.ForceCleanup({&V});
2431   return V;
2432 }
2433 
2434 //===----------------------------------------------------------------------===//
2435 //                             Unary Operators
2436 //===----------------------------------------------------------------------===//
2437 
2438 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2439                                            llvm::Value *InVal, bool IsInc,
2440                                            FPOptions FPFeatures) {
2441   BinOpInfo BinOp;
2442   BinOp.LHS = InVal;
2443   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2444   BinOp.Ty = E->getType();
2445   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2446   BinOp.FPFeatures = FPFeatures;
2447   BinOp.E = E;
2448   return BinOp;
2449 }
2450 
2451 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2452     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2453   llvm::Value *Amount =
2454       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2455   StringRef Name = IsInc ? "inc" : "dec";
2456   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2457   case LangOptions::SOB_Defined:
2458     return Builder.CreateAdd(InVal, Amount, Name);
2459   case LangOptions::SOB_Undefined:
2460     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2461       return Builder.CreateNSWAdd(InVal, Amount, Name);
2462     LLVM_FALLTHROUGH;
2463   case LangOptions::SOB_Trapping:
2464     if (!E->canOverflow())
2465       return Builder.CreateNSWAdd(InVal, Amount, Name);
2466     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2467         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2468   }
2469   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2470 }
2471 
2472 namespace {
2473 /// Handles check and update for lastprivate conditional variables.
2474 class OMPLastprivateConditionalUpdateRAII {
2475 private:
2476   CodeGenFunction &CGF;
2477   const UnaryOperator *E;
2478 
2479 public:
2480   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2481                                       const UnaryOperator *E)
2482       : CGF(CGF), E(E) {}
2483   ~OMPLastprivateConditionalUpdateRAII() {
2484     if (CGF.getLangOpts().OpenMP)
2485       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2486           CGF, E->getSubExpr());
2487   }
2488 };
2489 } // namespace
2490 
2491 llvm::Value *
2492 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2493                                            bool isInc, bool isPre) {
2494   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2495   QualType type = E->getSubExpr()->getType();
2496   llvm::PHINode *atomicPHI = nullptr;
2497   llvm::Value *value;
2498   llvm::Value *input;
2499 
2500   int amount = (isInc ? 1 : -1);
2501   bool isSubtraction = !isInc;
2502 
2503   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2504     type = atomicTy->getValueType();
2505     if (isInc && type->isBooleanType()) {
2506       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2507       if (isPre) {
2508         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2509             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2510         return Builder.getTrue();
2511       }
2512       // For atomic bool increment, we just store true and return it for
2513       // preincrement, do an atomic swap with true for postincrement
2514       return Builder.CreateAtomicRMW(
2515           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2516           llvm::AtomicOrdering::SequentiallyConsistent);
2517     }
2518     // Special case for atomic increment / decrement on integers, emit
2519     // atomicrmw instructions.  We skip this if we want to be doing overflow
2520     // checking, and fall into the slow path with the atomic cmpxchg loop.
2521     if (!type->isBooleanType() && type->isIntegerType() &&
2522         !(type->isUnsignedIntegerType() &&
2523           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2524         CGF.getLangOpts().getSignedOverflowBehavior() !=
2525             LangOptions::SOB_Trapping) {
2526       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2527         llvm::AtomicRMWInst::Sub;
2528       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2529         llvm::Instruction::Sub;
2530       llvm::Value *amt = CGF.EmitToMemory(
2531           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2532       llvm::Value *old =
2533           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2534                                   llvm::AtomicOrdering::SequentiallyConsistent);
2535       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2536     }
2537     value = EmitLoadOfLValue(LV, E->getExprLoc());
2538     input = value;
2539     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2540     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2541     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2542     value = CGF.EmitToMemory(value, type);
2543     Builder.CreateBr(opBB);
2544     Builder.SetInsertPoint(opBB);
2545     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2546     atomicPHI->addIncoming(value, startBB);
2547     value = atomicPHI;
2548   } else {
2549     value = EmitLoadOfLValue(LV, E->getExprLoc());
2550     input = value;
2551   }
2552 
2553   // Special case of integer increment that we have to check first: bool++.
2554   // Due to promotion rules, we get:
2555   //   bool++ -> bool = bool + 1
2556   //          -> bool = (int)bool + 1
2557   //          -> bool = ((int)bool + 1 != 0)
2558   // An interesting aspect of this is that increment is always true.
2559   // Decrement does not have this property.
2560   if (isInc && type->isBooleanType()) {
2561     value = Builder.getTrue();
2562 
2563   // Most common case by far: integer increment.
2564   } else if (type->isIntegerType()) {
2565     QualType promotedType;
2566     bool canPerformLossyDemotionCheck = false;
2567     if (type->isPromotableIntegerType()) {
2568       promotedType = CGF.getContext().getPromotedIntegerType(type);
2569       assert(promotedType != type && "Shouldn't promote to the same type.");
2570       canPerformLossyDemotionCheck = true;
2571       canPerformLossyDemotionCheck &=
2572           CGF.getContext().getCanonicalType(type) !=
2573           CGF.getContext().getCanonicalType(promotedType);
2574       canPerformLossyDemotionCheck &=
2575           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2576               type, promotedType);
2577       assert((!canPerformLossyDemotionCheck ||
2578               type->isSignedIntegerOrEnumerationType() ||
2579               promotedType->isSignedIntegerOrEnumerationType() ||
2580               ConvertType(type)->getScalarSizeInBits() ==
2581                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2582              "The following check expects that if we do promotion to different "
2583              "underlying canonical type, at least one of the types (either "
2584              "base or promoted) will be signed, or the bitwidths will match.");
2585     }
2586     if (CGF.SanOpts.hasOneOf(
2587             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2588         canPerformLossyDemotionCheck) {
2589       // While `x += 1` (for `x` with width less than int) is modeled as
2590       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2591       // ease; inc/dec with width less than int can't overflow because of
2592       // promotion rules, so we omit promotion+demotion, which means that we can
2593       // not catch lossy "demotion". Because we still want to catch these cases
2594       // when the sanitizer is enabled, we perform the promotion, then perform
2595       // the increment/decrement in the wider type, and finally
2596       // perform the demotion. This will catch lossy demotions.
2597 
2598       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2599       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2600       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2601       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2602       // emitted.
2603       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2604                                    ScalarConversionOpts(CGF.SanOpts));
2605 
2606       // Note that signed integer inc/dec with width less than int can't
2607       // overflow because of promotion rules; we're just eliding a few steps
2608       // here.
2609     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2610       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2611     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2612                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2613       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2614           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2615     } else {
2616       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2617       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2618     }
2619 
2620   // Next most common: pointer increment.
2621   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2622     QualType type = ptr->getPointeeType();
2623 
2624     // VLA types don't have constant size.
2625     if (const VariableArrayType *vla
2626           = CGF.getContext().getAsVariableArrayType(type)) {
2627       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2628       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2629       if (CGF.getLangOpts().isSignedOverflowDefined())
2630         value = Builder.CreateGEP(value->getType()->getPointerElementType(),
2631                                   value, numElts, "vla.inc");
2632       else
2633         value = CGF.EmitCheckedInBoundsGEP(
2634             value, numElts, /*SignedIndices=*/false, isSubtraction,
2635             E->getExprLoc(), "vla.inc");
2636 
2637     // Arithmetic on function pointers (!) is just +-1.
2638     } else if (type->isFunctionType()) {
2639       llvm::Value *amt = Builder.getInt32(amount);
2640 
2641       value = CGF.EmitCastToVoidPtr(value);
2642       if (CGF.getLangOpts().isSignedOverflowDefined())
2643         value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2644       else
2645         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2646                                            isSubtraction, E->getExprLoc(),
2647                                            "incdec.funcptr");
2648       value = Builder.CreateBitCast(value, input->getType());
2649 
2650     // For everything else, we can just do a simple increment.
2651     } else {
2652       llvm::Value *amt = Builder.getInt32(amount);
2653       if (CGF.getLangOpts().isSignedOverflowDefined())
2654         value = Builder.CreateGEP(value->getType()->getPointerElementType(),
2655                                   value, amt, "incdec.ptr");
2656       else
2657         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2658                                            isSubtraction, E->getExprLoc(),
2659                                            "incdec.ptr");
2660     }
2661 
2662   // Vector increment/decrement.
2663   } else if (type->isVectorType()) {
2664     if (type->hasIntegerRepresentation()) {
2665       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2666 
2667       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2668     } else {
2669       value = Builder.CreateFAdd(
2670                   value,
2671                   llvm::ConstantFP::get(value->getType(), amount),
2672                   isInc ? "inc" : "dec");
2673     }
2674 
2675   // Floating point.
2676   } else if (type->isRealFloatingType()) {
2677     // Add the inc/dec to the real part.
2678     llvm::Value *amt;
2679     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2680 
2681     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2682       // Another special case: half FP increment should be done via float
2683       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2684         value = Builder.CreateCall(
2685             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2686                                  CGF.CGM.FloatTy),
2687             input, "incdec.conv");
2688       } else {
2689         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2690       }
2691     }
2692 
2693     if (value->getType()->isFloatTy())
2694       amt = llvm::ConstantFP::get(VMContext,
2695                                   llvm::APFloat(static_cast<float>(amount)));
2696     else if (value->getType()->isDoubleTy())
2697       amt = llvm::ConstantFP::get(VMContext,
2698                                   llvm::APFloat(static_cast<double>(amount)));
2699     else {
2700       // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2701       // from float.
2702       llvm::APFloat F(static_cast<float>(amount));
2703       bool ignored;
2704       const llvm::fltSemantics *FS;
2705       // Don't use getFloatTypeSemantics because Half isn't
2706       // necessarily represented using the "half" LLVM type.
2707       if (value->getType()->isFP128Ty())
2708         FS = &CGF.getTarget().getFloat128Format();
2709       else if (value->getType()->isHalfTy())
2710         FS = &CGF.getTarget().getHalfFormat();
2711       else if (value->getType()->isPPC_FP128Ty())
2712         FS = &CGF.getTarget().getIbm128Format();
2713       else
2714         FS = &CGF.getTarget().getLongDoubleFormat();
2715       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2716       amt = llvm::ConstantFP::get(VMContext, F);
2717     }
2718     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2719 
2720     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2721       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2722         value = Builder.CreateCall(
2723             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2724                                  CGF.CGM.FloatTy),
2725             value, "incdec.conv");
2726       } else {
2727         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2728       }
2729     }
2730 
2731   // Fixed-point types.
2732   } else if (type->isFixedPointType()) {
2733     // Fixed-point types are tricky. In some cases, it isn't possible to
2734     // represent a 1 or a -1 in the type at all. Piggyback off of
2735     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2736     BinOpInfo Info;
2737     Info.E = E;
2738     Info.Ty = E->getType();
2739     Info.Opcode = isInc ? BO_Add : BO_Sub;
2740     Info.LHS = value;
2741     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2742     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2743     // since -1 is guaranteed to be representable.
2744     if (type->isSignedFixedPointType()) {
2745       Info.Opcode = isInc ? BO_Sub : BO_Add;
2746       Info.RHS = Builder.CreateNeg(Info.RHS);
2747     }
2748     // Now, convert from our invented integer literal to the type of the unary
2749     // op. This will upscale and saturate if necessary. This value can become
2750     // undef in some cases.
2751     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2752     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2753     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2754     value = EmitFixedPointBinOp(Info);
2755 
2756   // Objective-C pointer types.
2757   } else {
2758     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2759     value = CGF.EmitCastToVoidPtr(value);
2760 
2761     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2762     if (!isInc) size = -size;
2763     llvm::Value *sizeValue =
2764       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2765 
2766     if (CGF.getLangOpts().isSignedOverflowDefined())
2767       value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2768     else
2769       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2770                                          /*SignedIndices=*/false, isSubtraction,
2771                                          E->getExprLoc(), "incdec.objptr");
2772     value = Builder.CreateBitCast(value, input->getType());
2773   }
2774 
2775   if (atomicPHI) {
2776     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2777     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2778     auto Pair = CGF.EmitAtomicCompareExchange(
2779         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2780     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2781     llvm::Value *success = Pair.second;
2782     atomicPHI->addIncoming(old, curBlock);
2783     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2784     Builder.SetInsertPoint(contBB);
2785     return isPre ? value : input;
2786   }
2787 
2788   // Store the updated result through the lvalue.
2789   if (LV.isBitField())
2790     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2791   else
2792     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2793 
2794   // If this is a postinc, return the value read from memory, otherwise use the
2795   // updated value.
2796   return isPre ? value : input;
2797 }
2798 
2799 
2800 
2801 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2802   TestAndClearIgnoreResultAssign();
2803   Value *Op = Visit(E->getSubExpr());
2804 
2805   // Generate a unary FNeg for FP ops.
2806   if (Op->getType()->isFPOrFPVectorTy())
2807     return Builder.CreateFNeg(Op, "fneg");
2808 
2809   // Emit unary minus with EmitSub so we handle overflow cases etc.
2810   BinOpInfo BinOp;
2811   BinOp.RHS = Op;
2812   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2813   BinOp.Ty = E->getType();
2814   BinOp.Opcode = BO_Sub;
2815   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2816   BinOp.E = E;
2817   return EmitSub(BinOp);
2818 }
2819 
2820 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2821   TestAndClearIgnoreResultAssign();
2822   Value *Op = Visit(E->getSubExpr());
2823   return Builder.CreateNot(Op, "neg");
2824 }
2825 
2826 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2827   // Perform vector logical not on comparison with zero vector.
2828   if (E->getType()->isVectorType() &&
2829       E->getType()->castAs<VectorType>()->getVectorKind() ==
2830           VectorType::GenericVector) {
2831     Value *Oper = Visit(E->getSubExpr());
2832     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2833     Value *Result;
2834     if (Oper->getType()->isFPOrFPVectorTy()) {
2835       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2836           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2837       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2838     } else
2839       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2840     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2841   }
2842 
2843   // Compare operand to zero.
2844   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2845 
2846   // Invert value.
2847   // TODO: Could dynamically modify easy computations here.  For example, if
2848   // the operand is an icmp ne, turn into icmp eq.
2849   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2850 
2851   // ZExt result to the expr type.
2852   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2853 }
2854 
2855 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2856   // Try folding the offsetof to a constant.
2857   Expr::EvalResult EVResult;
2858   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2859     llvm::APSInt Value = EVResult.Val.getInt();
2860     return Builder.getInt(Value);
2861   }
2862 
2863   // Loop over the components of the offsetof to compute the value.
2864   unsigned n = E->getNumComponents();
2865   llvm::Type* ResultType = ConvertType(E->getType());
2866   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2867   QualType CurrentType = E->getTypeSourceInfo()->getType();
2868   for (unsigned i = 0; i != n; ++i) {
2869     OffsetOfNode ON = E->getComponent(i);
2870     llvm::Value *Offset = nullptr;
2871     switch (ON.getKind()) {
2872     case OffsetOfNode::Array: {
2873       // Compute the index
2874       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2875       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2876       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2877       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2878 
2879       // Save the element type
2880       CurrentType =
2881           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2882 
2883       // Compute the element size
2884       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2885           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2886 
2887       // Multiply out to compute the result
2888       Offset = Builder.CreateMul(Idx, ElemSize);
2889       break;
2890     }
2891 
2892     case OffsetOfNode::Field: {
2893       FieldDecl *MemberDecl = ON.getField();
2894       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2895       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2896 
2897       // Compute the index of the field in its parent.
2898       unsigned i = 0;
2899       // FIXME: It would be nice if we didn't have to loop here!
2900       for (RecordDecl::field_iterator Field = RD->field_begin(),
2901                                       FieldEnd = RD->field_end();
2902            Field != FieldEnd; ++Field, ++i) {
2903         if (*Field == MemberDecl)
2904           break;
2905       }
2906       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2907 
2908       // Compute the offset to the field
2909       int64_t OffsetInt = RL.getFieldOffset(i) /
2910                           CGF.getContext().getCharWidth();
2911       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2912 
2913       // Save the element type.
2914       CurrentType = MemberDecl->getType();
2915       break;
2916     }
2917 
2918     case OffsetOfNode::Identifier:
2919       llvm_unreachable("dependent __builtin_offsetof");
2920 
2921     case OffsetOfNode::Base: {
2922       if (ON.getBase()->isVirtual()) {
2923         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2924         continue;
2925       }
2926 
2927       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2928       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2929 
2930       // Save the element type.
2931       CurrentType = ON.getBase()->getType();
2932 
2933       // Compute the offset to the base.
2934       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2935       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2936       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2937       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2938       break;
2939     }
2940     }
2941     Result = Builder.CreateAdd(Result, Offset);
2942   }
2943   return Result;
2944 }
2945 
2946 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2947 /// argument of the sizeof expression as an integer.
2948 Value *
2949 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2950                               const UnaryExprOrTypeTraitExpr *E) {
2951   QualType TypeToSize = E->getTypeOfArgument();
2952   if (E->getKind() == UETT_SizeOf) {
2953     if (const VariableArrayType *VAT =
2954           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2955       if (E->isArgumentType()) {
2956         // sizeof(type) - make sure to emit the VLA size.
2957         CGF.EmitVariablyModifiedType(TypeToSize);
2958       } else {
2959         // C99 6.5.3.4p2: If the argument is an expression of type
2960         // VLA, it is evaluated.
2961         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2962       }
2963 
2964       auto VlaSize = CGF.getVLASize(VAT);
2965       llvm::Value *size = VlaSize.NumElts;
2966 
2967       // Scale the number of non-VLA elements by the non-VLA element size.
2968       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2969       if (!eltSize.isOne())
2970         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2971 
2972       return size;
2973     }
2974   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2975     auto Alignment =
2976         CGF.getContext()
2977             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2978                 E->getTypeOfArgument()->getPointeeType()))
2979             .getQuantity();
2980     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2981   }
2982 
2983   // If this isn't sizeof(vla), the result must be constant; use the constant
2984   // folding logic so we don't have to duplicate it here.
2985   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2986 }
2987 
2988 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2989   Expr *Op = E->getSubExpr();
2990   if (Op->getType()->isAnyComplexType()) {
2991     // If it's an l-value, load through the appropriate subobject l-value.
2992     // Note that we have to ask E because Op might be an l-value that
2993     // this won't work for, e.g. an Obj-C property.
2994     if (E->isGLValue())
2995       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2996                                   E->getExprLoc()).getScalarVal();
2997 
2998     // Otherwise, calculate and project.
2999     return CGF.EmitComplexExpr(Op, false, true).first;
3000   }
3001 
3002   return Visit(Op);
3003 }
3004 
3005 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
3006   Expr *Op = E->getSubExpr();
3007   if (Op->getType()->isAnyComplexType()) {
3008     // If it's an l-value, load through the appropriate subobject l-value.
3009     // Note that we have to ask E because Op might be an l-value that
3010     // this won't work for, e.g. an Obj-C property.
3011     if (Op->isGLValue())
3012       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3013                                   E->getExprLoc()).getScalarVal();
3014 
3015     // Otherwise, calculate and project.
3016     return CGF.EmitComplexExpr(Op, true, false).second;
3017   }
3018 
3019   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
3020   // effects are evaluated, but not the actual value.
3021   if (Op->isGLValue())
3022     CGF.EmitLValue(Op);
3023   else
3024     CGF.EmitScalarExpr(Op, true);
3025   return llvm::Constant::getNullValue(ConvertType(E->getType()));
3026 }
3027 
3028 //===----------------------------------------------------------------------===//
3029 //                           Binary Operators
3030 //===----------------------------------------------------------------------===//
3031 
3032 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
3033   TestAndClearIgnoreResultAssign();
3034   BinOpInfo Result;
3035   Result.LHS = Visit(E->getLHS());
3036   Result.RHS = Visit(E->getRHS());
3037   Result.Ty  = E->getType();
3038   Result.Opcode = E->getOpcode();
3039   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3040   Result.E = E;
3041   return Result;
3042 }
3043 
3044 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3045                                               const CompoundAssignOperator *E,
3046                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3047                                                    Value *&Result) {
3048   QualType LHSTy = E->getLHS()->getType();
3049   BinOpInfo OpInfo;
3050 
3051   if (E->getComputationResultType()->isAnyComplexType())
3052     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3053 
3054   // Emit the RHS first.  __block variables need to have the rhs evaluated
3055   // first, plus this should improve codegen a little.
3056   OpInfo.RHS = Visit(E->getRHS());
3057   OpInfo.Ty = E->getComputationResultType();
3058   OpInfo.Opcode = E->getOpcode();
3059   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3060   OpInfo.E = E;
3061   // Load/convert the LHS.
3062   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3063 
3064   llvm::PHINode *atomicPHI = nullptr;
3065   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3066     QualType type = atomicTy->getValueType();
3067     if (!type->isBooleanType() && type->isIntegerType() &&
3068         !(type->isUnsignedIntegerType() &&
3069           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3070         CGF.getLangOpts().getSignedOverflowBehavior() !=
3071             LangOptions::SOB_Trapping) {
3072       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3073       llvm::Instruction::BinaryOps Op;
3074       switch (OpInfo.Opcode) {
3075         // We don't have atomicrmw operands for *, %, /, <<, >>
3076         case BO_MulAssign: case BO_DivAssign:
3077         case BO_RemAssign:
3078         case BO_ShlAssign:
3079         case BO_ShrAssign:
3080           break;
3081         case BO_AddAssign:
3082           AtomicOp = llvm::AtomicRMWInst::Add;
3083           Op = llvm::Instruction::Add;
3084           break;
3085         case BO_SubAssign:
3086           AtomicOp = llvm::AtomicRMWInst::Sub;
3087           Op = llvm::Instruction::Sub;
3088           break;
3089         case BO_AndAssign:
3090           AtomicOp = llvm::AtomicRMWInst::And;
3091           Op = llvm::Instruction::And;
3092           break;
3093         case BO_XorAssign:
3094           AtomicOp = llvm::AtomicRMWInst::Xor;
3095           Op = llvm::Instruction::Xor;
3096           break;
3097         case BO_OrAssign:
3098           AtomicOp = llvm::AtomicRMWInst::Or;
3099           Op = llvm::Instruction::Or;
3100           break;
3101         default:
3102           llvm_unreachable("Invalid compound assignment type");
3103       }
3104       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3105         llvm::Value *Amt = CGF.EmitToMemory(
3106             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3107                                  E->getExprLoc()),
3108             LHSTy);
3109         Value *OldVal = Builder.CreateAtomicRMW(
3110             AtomicOp, LHSLV.getPointer(CGF), Amt,
3111             llvm::AtomicOrdering::SequentiallyConsistent);
3112 
3113         // Since operation is atomic, the result type is guaranteed to be the
3114         // same as the input in LLVM terms.
3115         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3116         return LHSLV;
3117       }
3118     }
3119     // FIXME: For floating point types, we should be saving and restoring the
3120     // floating point environment in the loop.
3121     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3122     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3123     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3124     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3125     Builder.CreateBr(opBB);
3126     Builder.SetInsertPoint(opBB);
3127     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3128     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3129     OpInfo.LHS = atomicPHI;
3130   }
3131   else
3132     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3133 
3134   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3135   SourceLocation Loc = E->getExprLoc();
3136   OpInfo.LHS =
3137       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3138 
3139   // Expand the binary operator.
3140   Result = (this->*Func)(OpInfo);
3141 
3142   // Convert the result back to the LHS type,
3143   // potentially with Implicit Conversion sanitizer check.
3144   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3145                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3146 
3147   if (atomicPHI) {
3148     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3149     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3150     auto Pair = CGF.EmitAtomicCompareExchange(
3151         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3152     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3153     llvm::Value *success = Pair.second;
3154     atomicPHI->addIncoming(old, curBlock);
3155     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3156     Builder.SetInsertPoint(contBB);
3157     return LHSLV;
3158   }
3159 
3160   // Store the result value into the LHS lvalue. Bit-fields are handled
3161   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3162   // 'An assignment expression has the value of the left operand after the
3163   // assignment...'.
3164   if (LHSLV.isBitField())
3165     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3166   else
3167     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3168 
3169   if (CGF.getLangOpts().OpenMP)
3170     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3171                                                                   E->getLHS());
3172   return LHSLV;
3173 }
3174 
3175 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3176                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3177   bool Ignore = TestAndClearIgnoreResultAssign();
3178   Value *RHS = nullptr;
3179   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3180 
3181   // If the result is clearly ignored, return now.
3182   if (Ignore)
3183     return nullptr;
3184 
3185   // The result of an assignment in C is the assigned r-value.
3186   if (!CGF.getLangOpts().CPlusPlus)
3187     return RHS;
3188 
3189   // If the lvalue is non-volatile, return the computed value of the assignment.
3190   if (!LHS.isVolatileQualified())
3191     return RHS;
3192 
3193   // Otherwise, reload the value.
3194   return EmitLoadOfLValue(LHS, E->getExprLoc());
3195 }
3196 
3197 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3198     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3199   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3200 
3201   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3202     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3203                                     SanitizerKind::IntegerDivideByZero));
3204   }
3205 
3206   const auto *BO = cast<BinaryOperator>(Ops.E);
3207   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3208       Ops.Ty->hasSignedIntegerRepresentation() &&
3209       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3210       Ops.mayHaveIntegerOverflow()) {
3211     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3212 
3213     llvm::Value *IntMin =
3214       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3215     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3216 
3217     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3218     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3219     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3220     Checks.push_back(
3221         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3222   }
3223 
3224   if (Checks.size() > 0)
3225     EmitBinOpCheck(Checks, Ops);
3226 }
3227 
3228 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3229   {
3230     CodeGenFunction::SanitizerScope SanScope(&CGF);
3231     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3232          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3233         Ops.Ty->isIntegerType() &&
3234         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3235       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3236       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3237     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3238                Ops.Ty->isRealFloatingType() &&
3239                Ops.mayHaveFloatDivisionByZero()) {
3240       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3241       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3242       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3243                      Ops);
3244     }
3245   }
3246 
3247   if (Ops.Ty->isConstantMatrixType()) {
3248     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3249     // We need to check the types of the operands of the operator to get the
3250     // correct matrix dimensions.
3251     auto *BO = cast<BinaryOperator>(Ops.E);
3252     (void)BO;
3253     assert(
3254         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3255         "first operand must be a matrix");
3256     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3257            "second operand must be an arithmetic type");
3258     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3259     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3260                               Ops.Ty->hasUnsignedIntegerRepresentation());
3261   }
3262 
3263   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3264     llvm::Value *Val;
3265     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3266     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3267     if ((CGF.getLangOpts().OpenCL &&
3268          !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3269         (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3270          !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3271       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3272       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3273       // build option allows an application to specify that single precision
3274       // floating-point divide (x/y and 1/x) and sqrt used in the program
3275       // source are correctly rounded.
3276       llvm::Type *ValTy = Val->getType();
3277       if (ValTy->isFloatTy() ||
3278           (isa<llvm::VectorType>(ValTy) &&
3279            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3280         CGF.SetFPAccuracy(Val, 2.5);
3281     }
3282     return Val;
3283   }
3284   else if (Ops.isFixedPointOp())
3285     return EmitFixedPointBinOp(Ops);
3286   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3287     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3288   else
3289     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3290 }
3291 
3292 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3293   // Rem in C can't be a floating point type: C99 6.5.5p2.
3294   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3295        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3296       Ops.Ty->isIntegerType() &&
3297       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3298     CodeGenFunction::SanitizerScope SanScope(&CGF);
3299     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3300     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3301   }
3302 
3303   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3304     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3305   else
3306     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3307 }
3308 
3309 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3310   unsigned IID;
3311   unsigned OpID = 0;
3312   SanitizerHandler OverflowKind;
3313 
3314   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3315   switch (Ops.Opcode) {
3316   case BO_Add:
3317   case BO_AddAssign:
3318     OpID = 1;
3319     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3320                      llvm::Intrinsic::uadd_with_overflow;
3321     OverflowKind = SanitizerHandler::AddOverflow;
3322     break;
3323   case BO_Sub:
3324   case BO_SubAssign:
3325     OpID = 2;
3326     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3327                      llvm::Intrinsic::usub_with_overflow;
3328     OverflowKind = SanitizerHandler::SubOverflow;
3329     break;
3330   case BO_Mul:
3331   case BO_MulAssign:
3332     OpID = 3;
3333     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3334                      llvm::Intrinsic::umul_with_overflow;
3335     OverflowKind = SanitizerHandler::MulOverflow;
3336     break;
3337   default:
3338     llvm_unreachable("Unsupported operation for overflow detection");
3339   }
3340   OpID <<= 1;
3341   if (isSigned)
3342     OpID |= 1;
3343 
3344   CodeGenFunction::SanitizerScope SanScope(&CGF);
3345   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3346 
3347   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3348 
3349   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3350   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3351   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3352 
3353   // Handle overflow with llvm.trap if no custom handler has been specified.
3354   const std::string *handlerName =
3355     &CGF.getLangOpts().OverflowHandler;
3356   if (handlerName->empty()) {
3357     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3358     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3359     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3360       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3361       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3362                               : SanitizerKind::UnsignedIntegerOverflow;
3363       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3364     } else
3365       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3366     return result;
3367   }
3368 
3369   // Branch in case of overflow.
3370   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3371   llvm::BasicBlock *continueBB =
3372       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3373   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3374 
3375   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3376 
3377   // If an overflow handler is set, then we want to call it and then use its
3378   // result, if it returns.
3379   Builder.SetInsertPoint(overflowBB);
3380 
3381   // Get the overflow handler.
3382   llvm::Type *Int8Ty = CGF.Int8Ty;
3383   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3384   llvm::FunctionType *handlerTy =
3385       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3386   llvm::FunctionCallee handler =
3387       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3388 
3389   // Sign extend the args to 64-bit, so that we can use the same handler for
3390   // all types of overflow.
3391   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3392   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3393 
3394   // Call the handler with the two arguments, the operation, and the size of
3395   // the result.
3396   llvm::Value *handlerArgs[] = {
3397     lhs,
3398     rhs,
3399     Builder.getInt8(OpID),
3400     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3401   };
3402   llvm::Value *handlerResult =
3403     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3404 
3405   // Truncate the result back to the desired size.
3406   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3407   Builder.CreateBr(continueBB);
3408 
3409   Builder.SetInsertPoint(continueBB);
3410   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3411   phi->addIncoming(result, initialBB);
3412   phi->addIncoming(handlerResult, overflowBB);
3413 
3414   return phi;
3415 }
3416 
3417 /// Emit pointer + index arithmetic.
3418 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3419                                     const BinOpInfo &op,
3420                                     bool isSubtraction) {
3421   // Must have binary (not unary) expr here.  Unary pointer
3422   // increment/decrement doesn't use this path.
3423   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3424 
3425   Value *pointer = op.LHS;
3426   Expr *pointerOperand = expr->getLHS();
3427   Value *index = op.RHS;
3428   Expr *indexOperand = expr->getRHS();
3429 
3430   // In a subtraction, the LHS is always the pointer.
3431   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3432     std::swap(pointer, index);
3433     std::swap(pointerOperand, indexOperand);
3434   }
3435 
3436   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3437 
3438   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3439   auto &DL = CGF.CGM.getDataLayout();
3440   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3441 
3442   // Some versions of glibc and gcc use idioms (particularly in their malloc
3443   // routines) that add a pointer-sized integer (known to be a pointer value)
3444   // to a null pointer in order to cast the value back to an integer or as
3445   // part of a pointer alignment algorithm.  This is undefined behavior, but
3446   // we'd like to be able to compile programs that use it.
3447   //
3448   // Normally, we'd generate a GEP with a null-pointer base here in response
3449   // to that code, but it's also UB to dereference a pointer created that
3450   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3451   // generate a direct cast of the integer value to a pointer.
3452   //
3453   // The idiom (p = nullptr + N) is not met if any of the following are true:
3454   //
3455   //   The operation is subtraction.
3456   //   The index is not pointer-sized.
3457   //   The pointer type is not byte-sized.
3458   //
3459   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3460                                                        op.Opcode,
3461                                                        expr->getLHS(),
3462                                                        expr->getRHS()))
3463     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3464 
3465   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3466     // Zero-extend or sign-extend the pointer value according to
3467     // whether the index is signed or not.
3468     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3469                                       "idx.ext");
3470   }
3471 
3472   // If this is subtraction, negate the index.
3473   if (isSubtraction)
3474     index = CGF.Builder.CreateNeg(index, "idx.neg");
3475 
3476   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3477     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3478                         /*Accessed*/ false);
3479 
3480   const PointerType *pointerType
3481     = pointerOperand->getType()->getAs<PointerType>();
3482   if (!pointerType) {
3483     QualType objectType = pointerOperand->getType()
3484                                         ->castAs<ObjCObjectPointerType>()
3485                                         ->getPointeeType();
3486     llvm::Value *objectSize
3487       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3488 
3489     index = CGF.Builder.CreateMul(index, objectSize);
3490 
3491     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3492     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3493     return CGF.Builder.CreateBitCast(result, pointer->getType());
3494   }
3495 
3496   QualType elementType = pointerType->getPointeeType();
3497   if (const VariableArrayType *vla
3498         = CGF.getContext().getAsVariableArrayType(elementType)) {
3499     // The element count here is the total number of non-VLA elements.
3500     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3501 
3502     // Effectively, the multiply by the VLA size is part of the GEP.
3503     // GEP indexes are signed, and scaling an index isn't permitted to
3504     // signed-overflow, so we use the same semantics for our explicit
3505     // multiply.  We suppress this if overflow is not undefined behavior.
3506     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3507       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3508       pointer = CGF.Builder.CreateGEP(
3509           pointer->getType()->getPointerElementType(), pointer, index,
3510           "add.ptr");
3511     } else {
3512       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3513       pointer =
3514           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3515                                      op.E->getExprLoc(), "add.ptr");
3516     }
3517     return pointer;
3518   }
3519 
3520   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3521   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3522   // future proof.
3523   if (elementType->isVoidType() || elementType->isFunctionType()) {
3524     Value *result = CGF.EmitCastToVoidPtr(pointer);
3525     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3526     return CGF.Builder.CreateBitCast(result, pointer->getType());
3527   }
3528 
3529   if (CGF.getLangOpts().isSignedOverflowDefined())
3530     return CGF.Builder.CreateGEP(
3531         pointer->getType()->getPointerElementType(), pointer, index, "add.ptr");
3532 
3533   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3534                                     op.E->getExprLoc(), "add.ptr");
3535 }
3536 
3537 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3538 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3539 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3540 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3541 // efficient operations.
3542 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3543                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3544                            bool negMul, bool negAdd) {
3545   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3546 
3547   Value *MulOp0 = MulOp->getOperand(0);
3548   Value *MulOp1 = MulOp->getOperand(1);
3549   if (negMul)
3550     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3551   if (negAdd)
3552     Addend = Builder.CreateFNeg(Addend, "neg");
3553 
3554   Value *FMulAdd = nullptr;
3555   if (Builder.getIsFPConstrained()) {
3556     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3557            "Only constrained operation should be created when Builder is in FP "
3558            "constrained mode");
3559     FMulAdd = Builder.CreateConstrainedFPCall(
3560         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3561                              Addend->getType()),
3562         {MulOp0, MulOp1, Addend});
3563   } else {
3564     FMulAdd = Builder.CreateCall(
3565         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3566         {MulOp0, MulOp1, Addend});
3567   }
3568   MulOp->eraseFromParent();
3569 
3570   return FMulAdd;
3571 }
3572 
3573 // Check whether it would be legal to emit an fmuladd intrinsic call to
3574 // represent op and if so, build the fmuladd.
3575 //
3576 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3577 // Does NOT check the type of the operation - it's assumed that this function
3578 // will be called from contexts where it's known that the type is contractable.
3579 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3580                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3581                          bool isSub=false) {
3582 
3583   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3584           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3585          "Only fadd/fsub can be the root of an fmuladd.");
3586 
3587   // Check whether this op is marked as fusable.
3588   if (!op.FPFeatures.allowFPContractWithinStatement())
3589     return nullptr;
3590 
3591   // We have a potentially fusable op. Look for a mul on one of the operands.
3592   // Also, make sure that the mul result isn't used directly. In that case,
3593   // there's no point creating a muladd operation.
3594   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3595     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3596         LHSBinOp->use_empty())
3597       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3598   }
3599   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3600     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3601         RHSBinOp->use_empty())
3602       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3603   }
3604 
3605   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3606     if (LHSBinOp->getIntrinsicID() ==
3607             llvm::Intrinsic::experimental_constrained_fmul &&
3608         LHSBinOp->use_empty())
3609       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3610   }
3611   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3612     if (RHSBinOp->getIntrinsicID() ==
3613             llvm::Intrinsic::experimental_constrained_fmul &&
3614         RHSBinOp->use_empty())
3615       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3616   }
3617 
3618   return nullptr;
3619 }
3620 
3621 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3622   if (op.LHS->getType()->isPointerTy() ||
3623       op.RHS->getType()->isPointerTy())
3624     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3625 
3626   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3627     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3628     case LangOptions::SOB_Defined:
3629       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3630     case LangOptions::SOB_Undefined:
3631       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3632         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3633       LLVM_FALLTHROUGH;
3634     case LangOptions::SOB_Trapping:
3635       if (CanElideOverflowCheck(CGF.getContext(), op))
3636         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3637       return EmitOverflowCheckedBinOp(op);
3638     }
3639   }
3640 
3641   if (op.Ty->isConstantMatrixType()) {
3642     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3643     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3644     return MB.CreateAdd(op.LHS, op.RHS);
3645   }
3646 
3647   if (op.Ty->isUnsignedIntegerType() &&
3648       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3649       !CanElideOverflowCheck(CGF.getContext(), op))
3650     return EmitOverflowCheckedBinOp(op);
3651 
3652   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3653     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3654     // Try to form an fmuladd.
3655     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3656       return FMulAdd;
3657 
3658     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3659   }
3660 
3661   if (op.isFixedPointOp())
3662     return EmitFixedPointBinOp(op);
3663 
3664   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3665 }
3666 
3667 /// The resulting value must be calculated with exact precision, so the operands
3668 /// may not be the same type.
3669 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3670   using llvm::APSInt;
3671   using llvm::ConstantInt;
3672 
3673   // This is either a binary operation where at least one of the operands is
3674   // a fixed-point type, or a unary operation where the operand is a fixed-point
3675   // type. The result type of a binary operation is determined by
3676   // Sema::handleFixedPointConversions().
3677   QualType ResultTy = op.Ty;
3678   QualType LHSTy, RHSTy;
3679   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3680     RHSTy = BinOp->getRHS()->getType();
3681     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3682       // For compound assignment, the effective type of the LHS at this point
3683       // is the computation LHS type, not the actual LHS type, and the final
3684       // result type is not the type of the expression but rather the
3685       // computation result type.
3686       LHSTy = CAO->getComputationLHSType();
3687       ResultTy = CAO->getComputationResultType();
3688     } else
3689       LHSTy = BinOp->getLHS()->getType();
3690   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3691     LHSTy = UnOp->getSubExpr()->getType();
3692     RHSTy = UnOp->getSubExpr()->getType();
3693   }
3694   ASTContext &Ctx = CGF.getContext();
3695   Value *LHS = op.LHS;
3696   Value *RHS = op.RHS;
3697 
3698   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3699   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3700   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3701   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3702 
3703   // Perform the actual operation.
3704   Value *Result;
3705   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3706   switch (op.Opcode) {
3707   case BO_AddAssign:
3708   case BO_Add:
3709     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3710     break;
3711   case BO_SubAssign:
3712   case BO_Sub:
3713     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3714     break;
3715   case BO_MulAssign:
3716   case BO_Mul:
3717     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3718     break;
3719   case BO_DivAssign:
3720   case BO_Div:
3721     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3722     break;
3723   case BO_ShlAssign:
3724   case BO_Shl:
3725     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3726     break;
3727   case BO_ShrAssign:
3728   case BO_Shr:
3729     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3730     break;
3731   case BO_LT:
3732     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3733   case BO_GT:
3734     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3735   case BO_LE:
3736     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3737   case BO_GE:
3738     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3739   case BO_EQ:
3740     // For equality operations, we assume any padding bits on unsigned types are
3741     // zero'd out. They could be overwritten through non-saturating operations
3742     // that cause overflow, but this leads to undefined behavior.
3743     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3744   case BO_NE:
3745     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3746   case BO_Cmp:
3747   case BO_LAnd:
3748   case BO_LOr:
3749     llvm_unreachable("Found unimplemented fixed point binary operation");
3750   case BO_PtrMemD:
3751   case BO_PtrMemI:
3752   case BO_Rem:
3753   case BO_Xor:
3754   case BO_And:
3755   case BO_Or:
3756   case BO_Assign:
3757   case BO_RemAssign:
3758   case BO_AndAssign:
3759   case BO_XorAssign:
3760   case BO_OrAssign:
3761   case BO_Comma:
3762     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3763   }
3764 
3765   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3766                  BinaryOperator::isShiftAssignOp(op.Opcode);
3767   // Convert to the result type.
3768   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3769                                                       : CommonFixedSema,
3770                                       ResultFixedSema);
3771 }
3772 
3773 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3774   // The LHS is always a pointer if either side is.
3775   if (!op.LHS->getType()->isPointerTy()) {
3776     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3777       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3778       case LangOptions::SOB_Defined:
3779         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3780       case LangOptions::SOB_Undefined:
3781         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3782           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3783         LLVM_FALLTHROUGH;
3784       case LangOptions::SOB_Trapping:
3785         if (CanElideOverflowCheck(CGF.getContext(), op))
3786           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3787         return EmitOverflowCheckedBinOp(op);
3788       }
3789     }
3790 
3791     if (op.Ty->isConstantMatrixType()) {
3792       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3793       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3794       return MB.CreateSub(op.LHS, op.RHS);
3795     }
3796 
3797     if (op.Ty->isUnsignedIntegerType() &&
3798         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3799         !CanElideOverflowCheck(CGF.getContext(), op))
3800       return EmitOverflowCheckedBinOp(op);
3801 
3802     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3803       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3804       // Try to form an fmuladd.
3805       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3806         return FMulAdd;
3807       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3808     }
3809 
3810     if (op.isFixedPointOp())
3811       return EmitFixedPointBinOp(op);
3812 
3813     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3814   }
3815 
3816   // If the RHS is not a pointer, then we have normal pointer
3817   // arithmetic.
3818   if (!op.RHS->getType()->isPointerTy())
3819     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3820 
3821   // Otherwise, this is a pointer subtraction.
3822 
3823   // Do the raw subtraction part.
3824   llvm::Value *LHS
3825     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3826   llvm::Value *RHS
3827     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3828   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3829 
3830   // Okay, figure out the element size.
3831   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3832   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3833 
3834   llvm::Value *divisor = nullptr;
3835 
3836   // For a variable-length array, this is going to be non-constant.
3837   if (const VariableArrayType *vla
3838         = CGF.getContext().getAsVariableArrayType(elementType)) {
3839     auto VlaSize = CGF.getVLASize(vla);
3840     elementType = VlaSize.Type;
3841     divisor = VlaSize.NumElts;
3842 
3843     // Scale the number of non-VLA elements by the non-VLA element size.
3844     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3845     if (!eltSize.isOne())
3846       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3847 
3848   // For everything elese, we can just compute it, safe in the
3849   // assumption that Sema won't let anything through that we can't
3850   // safely compute the size of.
3851   } else {
3852     CharUnits elementSize;
3853     // Handle GCC extension for pointer arithmetic on void* and
3854     // function pointer types.
3855     if (elementType->isVoidType() || elementType->isFunctionType())
3856       elementSize = CharUnits::One();
3857     else
3858       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3859 
3860     // Don't even emit the divide for element size of 1.
3861     if (elementSize.isOne())
3862       return diffInChars;
3863 
3864     divisor = CGF.CGM.getSize(elementSize);
3865   }
3866 
3867   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3868   // pointer difference in C is only defined in the case where both operands
3869   // are pointing to elements of an array.
3870   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3871 }
3872 
3873 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3874   llvm::IntegerType *Ty;
3875   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3876     Ty = cast<llvm::IntegerType>(VT->getElementType());
3877   else
3878     Ty = cast<llvm::IntegerType>(LHS->getType());
3879   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3880 }
3881 
3882 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3883                                               const Twine &Name) {
3884   llvm::IntegerType *Ty;
3885   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3886     Ty = cast<llvm::IntegerType>(VT->getElementType());
3887   else
3888     Ty = cast<llvm::IntegerType>(LHS->getType());
3889 
3890   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3891         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3892 
3893   return Builder.CreateURem(
3894       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3895 }
3896 
3897 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3898   // TODO: This misses out on the sanitizer check below.
3899   if (Ops.isFixedPointOp())
3900     return EmitFixedPointBinOp(Ops);
3901 
3902   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3903   // RHS to the same size as the LHS.
3904   Value *RHS = Ops.RHS;
3905   if (Ops.LHS->getType() != RHS->getType())
3906     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3907 
3908   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3909                             Ops.Ty->hasSignedIntegerRepresentation() &&
3910                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3911                             !CGF.getLangOpts().CPlusPlus20;
3912   bool SanitizeUnsignedBase =
3913       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3914       Ops.Ty->hasUnsignedIntegerRepresentation();
3915   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3916   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3917   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3918   if (CGF.getLangOpts().OpenCL)
3919     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3920   else if ((SanitizeBase || SanitizeExponent) &&
3921            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3922     CodeGenFunction::SanitizerScope SanScope(&CGF);
3923     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3924     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3925     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3926 
3927     if (SanitizeExponent) {
3928       Checks.push_back(
3929           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3930     }
3931 
3932     if (SanitizeBase) {
3933       // Check whether we are shifting any non-zero bits off the top of the
3934       // integer. We only emit this check if exponent is valid - otherwise
3935       // instructions below will have undefined behavior themselves.
3936       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3937       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3938       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3939       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3940       llvm::Value *PromotedWidthMinusOne =
3941           (RHS == Ops.RHS) ? WidthMinusOne
3942                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3943       CGF.EmitBlock(CheckShiftBase);
3944       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3945           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3946                                      /*NUW*/ true, /*NSW*/ true),
3947           "shl.check");
3948       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3949         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3950         // Under C++11's rules, shifting a 1 bit into the sign bit is
3951         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3952         // define signed left shifts, so we use the C99 and C++11 rules there).
3953         // Unsigned shifts can always shift into the top bit.
3954         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3955         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3956       }
3957       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3958       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3959       CGF.EmitBlock(Cont);
3960       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3961       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3962       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3963       Checks.push_back(std::make_pair(
3964           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3965                                         : SanitizerKind::UnsignedShiftBase));
3966     }
3967 
3968     assert(!Checks.empty());
3969     EmitBinOpCheck(Checks, Ops);
3970   }
3971 
3972   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3973 }
3974 
3975 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3976   // TODO: This misses out on the sanitizer check below.
3977   if (Ops.isFixedPointOp())
3978     return EmitFixedPointBinOp(Ops);
3979 
3980   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3981   // RHS to the same size as the LHS.
3982   Value *RHS = Ops.RHS;
3983   if (Ops.LHS->getType() != RHS->getType())
3984     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3985 
3986   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3987   if (CGF.getLangOpts().OpenCL)
3988     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3989   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3990            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3991     CodeGenFunction::SanitizerScope SanScope(&CGF);
3992     llvm::Value *Valid =
3993         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3994     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3995   }
3996 
3997   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3998     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3999   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4000 }
4001 
4002 enum IntrinsicType { VCMPEQ, VCMPGT };
4003 // return corresponding comparison intrinsic for given vector type
4004 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4005                                         BuiltinType::Kind ElemKind) {
4006   switch (ElemKind) {
4007   default: llvm_unreachable("unexpected element type");
4008   case BuiltinType::Char_U:
4009   case BuiltinType::UChar:
4010     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4011                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4012   case BuiltinType::Char_S:
4013   case BuiltinType::SChar:
4014     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4015                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4016   case BuiltinType::UShort:
4017     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4018                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4019   case BuiltinType::Short:
4020     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4021                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4022   case BuiltinType::UInt:
4023     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4024                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4025   case BuiltinType::Int:
4026     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4027                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4028   case BuiltinType::ULong:
4029   case BuiltinType::ULongLong:
4030     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4031                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4032   case BuiltinType::Long:
4033   case BuiltinType::LongLong:
4034     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4035                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4036   case BuiltinType::Float:
4037     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4038                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4039   case BuiltinType::Double:
4040     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4041                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4042   case BuiltinType::UInt128:
4043     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4044                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4045   case BuiltinType::Int128:
4046     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4047                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4048   }
4049 }
4050 
4051 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4052                                       llvm::CmpInst::Predicate UICmpOpc,
4053                                       llvm::CmpInst::Predicate SICmpOpc,
4054                                       llvm::CmpInst::Predicate FCmpOpc,
4055                                       bool IsSignaling) {
4056   TestAndClearIgnoreResultAssign();
4057   Value *Result;
4058   QualType LHSTy = E->getLHS()->getType();
4059   QualType RHSTy = E->getRHS()->getType();
4060   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4061     assert(E->getOpcode() == BO_EQ ||
4062            E->getOpcode() == BO_NE);
4063     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4064     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4065     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4066                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4067   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4068     BinOpInfo BOInfo = EmitBinOps(E);
4069     Value *LHS = BOInfo.LHS;
4070     Value *RHS = BOInfo.RHS;
4071 
4072     // If AltiVec, the comparison results in a numeric type, so we use
4073     // intrinsics comparing vectors and giving 0 or 1 as a result
4074     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4075       // constants for mapping CR6 register bits to predicate result
4076       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4077 
4078       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4079 
4080       // in several cases vector arguments order will be reversed
4081       Value *FirstVecArg = LHS,
4082             *SecondVecArg = RHS;
4083 
4084       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4085       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4086 
4087       switch(E->getOpcode()) {
4088       default: llvm_unreachable("is not a comparison operation");
4089       case BO_EQ:
4090         CR6 = CR6_LT;
4091         ID = GetIntrinsic(VCMPEQ, ElementKind);
4092         break;
4093       case BO_NE:
4094         CR6 = CR6_EQ;
4095         ID = GetIntrinsic(VCMPEQ, ElementKind);
4096         break;
4097       case BO_LT:
4098         CR6 = CR6_LT;
4099         ID = GetIntrinsic(VCMPGT, ElementKind);
4100         std::swap(FirstVecArg, SecondVecArg);
4101         break;
4102       case BO_GT:
4103         CR6 = CR6_LT;
4104         ID = GetIntrinsic(VCMPGT, ElementKind);
4105         break;
4106       case BO_LE:
4107         if (ElementKind == BuiltinType::Float) {
4108           CR6 = CR6_LT;
4109           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4110           std::swap(FirstVecArg, SecondVecArg);
4111         }
4112         else {
4113           CR6 = CR6_EQ;
4114           ID = GetIntrinsic(VCMPGT, ElementKind);
4115         }
4116         break;
4117       case BO_GE:
4118         if (ElementKind == BuiltinType::Float) {
4119           CR6 = CR6_LT;
4120           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4121         }
4122         else {
4123           CR6 = CR6_EQ;
4124           ID = GetIntrinsic(VCMPGT, ElementKind);
4125           std::swap(FirstVecArg, SecondVecArg);
4126         }
4127         break;
4128       }
4129 
4130       Value *CR6Param = Builder.getInt32(CR6);
4131       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4132       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4133 
4134       // The result type of intrinsic may not be same as E->getType().
4135       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4136       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4137       // do nothing, if ResultTy is not i1 at the same time, it will cause
4138       // crash later.
4139       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4140       if (ResultTy->getBitWidth() > 1 &&
4141           E->getType() == CGF.getContext().BoolTy)
4142         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4143       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4144                                   E->getExprLoc());
4145     }
4146 
4147     if (BOInfo.isFixedPointOp()) {
4148       Result = EmitFixedPointBinOp(BOInfo);
4149     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4150       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4151       if (!IsSignaling)
4152         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4153       else
4154         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4155     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4156       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4157     } else {
4158       // Unsigned integers and pointers.
4159 
4160       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4161           !isa<llvm::ConstantPointerNull>(LHS) &&
4162           !isa<llvm::ConstantPointerNull>(RHS)) {
4163 
4164         // Dynamic information is required to be stripped for comparisons,
4165         // because it could leak the dynamic information.  Based on comparisons
4166         // of pointers to dynamic objects, the optimizer can replace one pointer
4167         // with another, which might be incorrect in presence of invariant
4168         // groups. Comparison with null is safe because null does not carry any
4169         // dynamic information.
4170         if (LHSTy.mayBeDynamicClass())
4171           LHS = Builder.CreateStripInvariantGroup(LHS);
4172         if (RHSTy.mayBeDynamicClass())
4173           RHS = Builder.CreateStripInvariantGroup(RHS);
4174       }
4175 
4176       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4177     }
4178 
4179     // If this is a vector comparison, sign extend the result to the appropriate
4180     // vector integer type and return it (don't convert to bool).
4181     if (LHSTy->isVectorType())
4182       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4183 
4184   } else {
4185     // Complex Comparison: can only be an equality comparison.
4186     CodeGenFunction::ComplexPairTy LHS, RHS;
4187     QualType CETy;
4188     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4189       LHS = CGF.EmitComplexExpr(E->getLHS());
4190       CETy = CTy->getElementType();
4191     } else {
4192       LHS.first = Visit(E->getLHS());
4193       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4194       CETy = LHSTy;
4195     }
4196     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4197       RHS = CGF.EmitComplexExpr(E->getRHS());
4198       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4199                                                      CTy->getElementType()) &&
4200              "The element types must always match.");
4201       (void)CTy;
4202     } else {
4203       RHS.first = Visit(E->getRHS());
4204       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4205       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4206              "The element types must always match.");
4207     }
4208 
4209     Value *ResultR, *ResultI;
4210     if (CETy->isRealFloatingType()) {
4211       // As complex comparisons can only be equality comparisons, they
4212       // are never signaling comparisons.
4213       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4214       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4215     } else {
4216       // Complex comparisons can only be equality comparisons.  As such, signed
4217       // and unsigned opcodes are the same.
4218       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4219       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4220     }
4221 
4222     if (E->getOpcode() == BO_EQ) {
4223       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4224     } else {
4225       assert(E->getOpcode() == BO_NE &&
4226              "Complex comparison other than == or != ?");
4227       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4228     }
4229   }
4230 
4231   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4232                               E->getExprLoc());
4233 }
4234 
4235 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4236   bool Ignore = TestAndClearIgnoreResultAssign();
4237 
4238   Value *RHS;
4239   LValue LHS;
4240 
4241   switch (E->getLHS()->getType().getObjCLifetime()) {
4242   case Qualifiers::OCL_Strong:
4243     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4244     break;
4245 
4246   case Qualifiers::OCL_Autoreleasing:
4247     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4248     break;
4249 
4250   case Qualifiers::OCL_ExplicitNone:
4251     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4252     break;
4253 
4254   case Qualifiers::OCL_Weak:
4255     RHS = Visit(E->getRHS());
4256     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4257     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4258     break;
4259 
4260   case Qualifiers::OCL_None:
4261     // __block variables need to have the rhs evaluated first, plus
4262     // this should improve codegen just a little.
4263     RHS = Visit(E->getRHS());
4264     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4265 
4266     // Store the value into the LHS.  Bit-fields are handled specially
4267     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4268     // 'An assignment expression has the value of the left operand after
4269     // the assignment...'.
4270     if (LHS.isBitField()) {
4271       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4272     } else {
4273       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4274       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4275     }
4276   }
4277 
4278   // If the result is clearly ignored, return now.
4279   if (Ignore)
4280     return nullptr;
4281 
4282   // The result of an assignment in C is the assigned r-value.
4283   if (!CGF.getLangOpts().CPlusPlus)
4284     return RHS;
4285 
4286   // If the lvalue is non-volatile, return the computed value of the assignment.
4287   if (!LHS.isVolatileQualified())
4288     return RHS;
4289 
4290   // Otherwise, reload the value.
4291   return EmitLoadOfLValue(LHS, E->getExprLoc());
4292 }
4293 
4294 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4295   // Perform vector logical and on comparisons with zero vectors.
4296   if (E->getType()->isVectorType()) {
4297     CGF.incrementProfileCounter(E);
4298 
4299     Value *LHS = Visit(E->getLHS());
4300     Value *RHS = Visit(E->getRHS());
4301     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4302     if (LHS->getType()->isFPOrFPVectorTy()) {
4303       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4304           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4305       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4306       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4307     } else {
4308       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4309       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4310     }
4311     Value *And = Builder.CreateAnd(LHS, RHS);
4312     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4313   }
4314 
4315   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4316   llvm::Type *ResTy = ConvertType(E->getType());
4317 
4318   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4319   // If we have 1 && X, just emit X without inserting the control flow.
4320   bool LHSCondVal;
4321   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4322     if (LHSCondVal) { // If we have 1 && X, just emit X.
4323       CGF.incrementProfileCounter(E);
4324 
4325       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4326 
4327       // If we're generating for profiling or coverage, generate a branch to a
4328       // block that increments the RHS counter needed to track branch condition
4329       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4330       // "FalseBlock" after the increment is done.
4331       if (InstrumentRegions &&
4332           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4333         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4334         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4335         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4336         CGF.EmitBlock(RHSBlockCnt);
4337         CGF.incrementProfileCounter(E->getRHS());
4338         CGF.EmitBranch(FBlock);
4339         CGF.EmitBlock(FBlock);
4340       }
4341 
4342       // ZExt result to int or bool.
4343       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4344     }
4345 
4346     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4347     if (!CGF.ContainsLabel(E->getRHS()))
4348       return llvm::Constant::getNullValue(ResTy);
4349   }
4350 
4351   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4352   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4353 
4354   CodeGenFunction::ConditionalEvaluation eval(CGF);
4355 
4356   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4357   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4358                            CGF.getProfileCount(E->getRHS()));
4359 
4360   // Any edges into the ContBlock are now from an (indeterminate number of)
4361   // edges from this first condition.  All of these values will be false.  Start
4362   // setting up the PHI node in the Cont Block for this.
4363   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4364                                             "", ContBlock);
4365   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4366        PI != PE; ++PI)
4367     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4368 
4369   eval.begin(CGF);
4370   CGF.EmitBlock(RHSBlock);
4371   CGF.incrementProfileCounter(E);
4372   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4373   eval.end(CGF);
4374 
4375   // Reaquire the RHS block, as there may be subblocks inserted.
4376   RHSBlock = Builder.GetInsertBlock();
4377 
4378   // If we're generating for profiling or coverage, generate a branch on the
4379   // RHS to a block that increments the RHS true counter needed to track branch
4380   // condition coverage.
4381   if (InstrumentRegions &&
4382       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4383     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4384     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4385     CGF.EmitBlock(RHSBlockCnt);
4386     CGF.incrementProfileCounter(E->getRHS());
4387     CGF.EmitBranch(ContBlock);
4388     PN->addIncoming(RHSCond, RHSBlockCnt);
4389   }
4390 
4391   // Emit an unconditional branch from this block to ContBlock.
4392   {
4393     // There is no need to emit line number for unconditional branch.
4394     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4395     CGF.EmitBlock(ContBlock);
4396   }
4397   // Insert an entry into the phi node for the edge with the value of RHSCond.
4398   PN->addIncoming(RHSCond, RHSBlock);
4399 
4400   // Artificial location to preserve the scope information
4401   {
4402     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4403     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4404   }
4405 
4406   // ZExt result to int.
4407   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4408 }
4409 
4410 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4411   // Perform vector logical or on comparisons with zero vectors.
4412   if (E->getType()->isVectorType()) {
4413     CGF.incrementProfileCounter(E);
4414 
4415     Value *LHS = Visit(E->getLHS());
4416     Value *RHS = Visit(E->getRHS());
4417     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4418     if (LHS->getType()->isFPOrFPVectorTy()) {
4419       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4420           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4421       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4422       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4423     } else {
4424       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4425       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4426     }
4427     Value *Or = Builder.CreateOr(LHS, RHS);
4428     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4429   }
4430 
4431   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4432   llvm::Type *ResTy = ConvertType(E->getType());
4433 
4434   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4435   // If we have 0 || X, just emit X without inserting the control flow.
4436   bool LHSCondVal;
4437   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4438     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4439       CGF.incrementProfileCounter(E);
4440 
4441       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4442 
4443       // If we're generating for profiling or coverage, generate a branch to a
4444       // block that increments the RHS counter need to track branch condition
4445       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4446       // "FalseBlock" after the increment is done.
4447       if (InstrumentRegions &&
4448           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4449         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4450         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4451         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4452         CGF.EmitBlock(RHSBlockCnt);
4453         CGF.incrementProfileCounter(E->getRHS());
4454         CGF.EmitBranch(FBlock);
4455         CGF.EmitBlock(FBlock);
4456       }
4457 
4458       // ZExt result to int or bool.
4459       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4460     }
4461 
4462     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4463     if (!CGF.ContainsLabel(E->getRHS()))
4464       return llvm::ConstantInt::get(ResTy, 1);
4465   }
4466 
4467   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4468   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4469 
4470   CodeGenFunction::ConditionalEvaluation eval(CGF);
4471 
4472   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4473   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4474                            CGF.getCurrentProfileCount() -
4475                                CGF.getProfileCount(E->getRHS()));
4476 
4477   // Any edges into the ContBlock are now from an (indeterminate number of)
4478   // edges from this first condition.  All of these values will be true.  Start
4479   // setting up the PHI node in the Cont Block for this.
4480   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4481                                             "", ContBlock);
4482   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4483        PI != PE; ++PI)
4484     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4485 
4486   eval.begin(CGF);
4487 
4488   // Emit the RHS condition as a bool value.
4489   CGF.EmitBlock(RHSBlock);
4490   CGF.incrementProfileCounter(E);
4491   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4492 
4493   eval.end(CGF);
4494 
4495   // Reaquire the RHS block, as there may be subblocks inserted.
4496   RHSBlock = Builder.GetInsertBlock();
4497 
4498   // If we're generating for profiling or coverage, generate a branch on the
4499   // RHS to a block that increments the RHS true counter needed to track branch
4500   // condition coverage.
4501   if (InstrumentRegions &&
4502       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4503     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4504     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4505     CGF.EmitBlock(RHSBlockCnt);
4506     CGF.incrementProfileCounter(E->getRHS());
4507     CGF.EmitBranch(ContBlock);
4508     PN->addIncoming(RHSCond, RHSBlockCnt);
4509   }
4510 
4511   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4512   // into the phi node for the edge with the value of RHSCond.
4513   CGF.EmitBlock(ContBlock);
4514   PN->addIncoming(RHSCond, RHSBlock);
4515 
4516   // ZExt result to int.
4517   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4518 }
4519 
4520 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4521   CGF.EmitIgnoredExpr(E->getLHS());
4522   CGF.EnsureInsertPoint();
4523   return Visit(E->getRHS());
4524 }
4525 
4526 //===----------------------------------------------------------------------===//
4527 //                             Other Operators
4528 //===----------------------------------------------------------------------===//
4529 
4530 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4531 /// expression is cheap enough and side-effect-free enough to evaluate
4532 /// unconditionally instead of conditionally.  This is used to convert control
4533 /// flow into selects in some cases.
4534 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4535                                                    CodeGenFunction &CGF) {
4536   // Anything that is an integer or floating point constant is fine.
4537   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4538 
4539   // Even non-volatile automatic variables can't be evaluated unconditionally.
4540   // Referencing a thread_local may cause non-trivial initialization work to
4541   // occur. If we're inside a lambda and one of the variables is from the scope
4542   // outside the lambda, that function may have returned already. Reading its
4543   // locals is a bad idea. Also, these reads may introduce races there didn't
4544   // exist in the source-level program.
4545 }
4546 
4547 
4548 Value *ScalarExprEmitter::
4549 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4550   TestAndClearIgnoreResultAssign();
4551 
4552   // Bind the common expression if necessary.
4553   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4554 
4555   Expr *condExpr = E->getCond();
4556   Expr *lhsExpr = E->getTrueExpr();
4557   Expr *rhsExpr = E->getFalseExpr();
4558 
4559   // If the condition constant folds and can be elided, try to avoid emitting
4560   // the condition and the dead arm.
4561   bool CondExprBool;
4562   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4563     Expr *live = lhsExpr, *dead = rhsExpr;
4564     if (!CondExprBool) std::swap(live, dead);
4565 
4566     // If the dead side doesn't have labels we need, just emit the Live part.
4567     if (!CGF.ContainsLabel(dead)) {
4568       if (CondExprBool)
4569         CGF.incrementProfileCounter(E);
4570       Value *Result = Visit(live);
4571 
4572       // If the live part is a throw expression, it acts like it has a void
4573       // type, so evaluating it returns a null Value*.  However, a conditional
4574       // with non-void type must return a non-null Value*.
4575       if (!Result && !E->getType()->isVoidType())
4576         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4577 
4578       return Result;
4579     }
4580   }
4581 
4582   // OpenCL: If the condition is a vector, we can treat this condition like
4583   // the select function.
4584   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4585       condExpr->getType()->isExtVectorType()) {
4586     CGF.incrementProfileCounter(E);
4587 
4588     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4589     llvm::Value *LHS = Visit(lhsExpr);
4590     llvm::Value *RHS = Visit(rhsExpr);
4591 
4592     llvm::Type *condType = ConvertType(condExpr->getType());
4593     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4594 
4595     unsigned numElem = vecTy->getNumElements();
4596     llvm::Type *elemType = vecTy->getElementType();
4597 
4598     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4599     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4600     llvm::Value *tmp = Builder.CreateSExt(
4601         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4602     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4603 
4604     // Cast float to int to perform ANDs if necessary.
4605     llvm::Value *RHSTmp = RHS;
4606     llvm::Value *LHSTmp = LHS;
4607     bool wasCast = false;
4608     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4609     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4610       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4611       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4612       wasCast = true;
4613     }
4614 
4615     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4616     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4617     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4618     if (wasCast)
4619       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4620 
4621     return tmp5;
4622   }
4623 
4624   if (condExpr->getType()->isVectorType()) {
4625     CGF.incrementProfileCounter(E);
4626 
4627     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4628     llvm::Value *LHS = Visit(lhsExpr);
4629     llvm::Value *RHS = Visit(rhsExpr);
4630 
4631     llvm::Type *CondType = ConvertType(condExpr->getType());
4632     auto *VecTy = cast<llvm::VectorType>(CondType);
4633     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4634 
4635     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4636     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4637   }
4638 
4639   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4640   // select instead of as control flow.  We can only do this if it is cheap and
4641   // safe to evaluate the LHS and RHS unconditionally.
4642   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4643       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4644     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4645     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4646 
4647     CGF.incrementProfileCounter(E, StepV);
4648 
4649     llvm::Value *LHS = Visit(lhsExpr);
4650     llvm::Value *RHS = Visit(rhsExpr);
4651     if (!LHS) {
4652       // If the conditional has void type, make sure we return a null Value*.
4653       assert(!RHS && "LHS and RHS types must match");
4654       return nullptr;
4655     }
4656     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4657   }
4658 
4659   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4660   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4661   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4662 
4663   CodeGenFunction::ConditionalEvaluation eval(CGF);
4664   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4665                            CGF.getProfileCount(lhsExpr));
4666 
4667   CGF.EmitBlock(LHSBlock);
4668   CGF.incrementProfileCounter(E);
4669   eval.begin(CGF);
4670   Value *LHS = Visit(lhsExpr);
4671   eval.end(CGF);
4672 
4673   LHSBlock = Builder.GetInsertBlock();
4674   Builder.CreateBr(ContBlock);
4675 
4676   CGF.EmitBlock(RHSBlock);
4677   eval.begin(CGF);
4678   Value *RHS = Visit(rhsExpr);
4679   eval.end(CGF);
4680 
4681   RHSBlock = Builder.GetInsertBlock();
4682   CGF.EmitBlock(ContBlock);
4683 
4684   // If the LHS or RHS is a throw expression, it will be legitimately null.
4685   if (!LHS)
4686     return RHS;
4687   if (!RHS)
4688     return LHS;
4689 
4690   // Create a PHI node for the real part.
4691   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4692   PN->addIncoming(LHS, LHSBlock);
4693   PN->addIncoming(RHS, RHSBlock);
4694   return PN;
4695 }
4696 
4697 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4698   return Visit(E->getChosenSubExpr());
4699 }
4700 
4701 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4702   QualType Ty = VE->getType();
4703 
4704   if (Ty->isVariablyModifiedType())
4705     CGF.EmitVariablyModifiedType(Ty);
4706 
4707   Address ArgValue = Address::invalid();
4708   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4709 
4710   llvm::Type *ArgTy = ConvertType(VE->getType());
4711 
4712   // If EmitVAArg fails, emit an error.
4713   if (!ArgPtr.isValid()) {
4714     CGF.ErrorUnsupported(VE, "va_arg expression");
4715     return llvm::UndefValue::get(ArgTy);
4716   }
4717 
4718   // FIXME Volatility.
4719   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4720 
4721   // If EmitVAArg promoted the type, we must truncate it.
4722   if (ArgTy != Val->getType()) {
4723     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4724       Val = Builder.CreateIntToPtr(Val, ArgTy);
4725     else
4726       Val = Builder.CreateTrunc(Val, ArgTy);
4727   }
4728 
4729   return Val;
4730 }
4731 
4732 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4733   return CGF.EmitBlockLiteral(block);
4734 }
4735 
4736 // Convert a vec3 to vec4, or vice versa.
4737 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4738                                  Value *Src, unsigned NumElementsDst) {
4739   static constexpr int Mask[] = {0, 1, 2, -1};
4740   return Builder.CreateShuffleVector(Src,
4741                                      llvm::makeArrayRef(Mask, NumElementsDst));
4742 }
4743 
4744 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4745 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4746 // but could be scalar or vectors of different lengths, and either can be
4747 // pointer.
4748 // There are 4 cases:
4749 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4750 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4751 // 3. pointer -> non-pointer
4752 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4753 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4754 // 4. non-pointer -> pointer
4755 //   a) intptr_t -> pointer       : needs 1 inttoptr
4756 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4757 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4758 // allow casting directly between pointer types and non-integer non-pointer
4759 // types.
4760 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4761                                            const llvm::DataLayout &DL,
4762                                            Value *Src, llvm::Type *DstTy,
4763                                            StringRef Name = "") {
4764   auto SrcTy = Src->getType();
4765 
4766   // Case 1.
4767   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4768     return Builder.CreateBitCast(Src, DstTy, Name);
4769 
4770   // Case 2.
4771   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4772     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4773 
4774   // Case 3.
4775   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4776     // Case 3b.
4777     if (!DstTy->isIntegerTy())
4778       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4779     // Cases 3a and 3b.
4780     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4781   }
4782 
4783   // Case 4b.
4784   if (!SrcTy->isIntegerTy())
4785     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4786   // Cases 4a and 4b.
4787   return Builder.CreateIntToPtr(Src, DstTy, Name);
4788 }
4789 
4790 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4791   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4792   llvm::Type *DstTy = ConvertType(E->getType());
4793 
4794   llvm::Type *SrcTy = Src->getType();
4795   unsigned NumElementsSrc =
4796       isa<llvm::VectorType>(SrcTy)
4797           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4798           : 0;
4799   unsigned NumElementsDst =
4800       isa<llvm::VectorType>(DstTy)
4801           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4802           : 0;
4803 
4804   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4805   // vector to get a vec4, then a bitcast if the target type is different.
4806   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4807     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4808     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4809                                        DstTy);
4810 
4811     Src->setName("astype");
4812     return Src;
4813   }
4814 
4815   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4816   // to vec4 if the original type is not vec4, then a shuffle vector to
4817   // get a vec3.
4818   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4819     auto *Vec4Ty = llvm::FixedVectorType::get(
4820         cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4821     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4822                                        Vec4Ty);
4823 
4824     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4825     Src->setName("astype");
4826     return Src;
4827   }
4828 
4829   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4830                                       Src, DstTy, "astype");
4831 }
4832 
4833 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4834   return CGF.EmitAtomicExpr(E).getScalarVal();
4835 }
4836 
4837 //===----------------------------------------------------------------------===//
4838 //                         Entry Point into this File
4839 //===----------------------------------------------------------------------===//
4840 
4841 /// Emit the computation of the specified expression of scalar type, ignoring
4842 /// the result.
4843 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4844   assert(E && hasScalarEvaluationKind(E->getType()) &&
4845          "Invalid scalar expression to emit");
4846 
4847   return ScalarExprEmitter(*this, IgnoreResultAssign)
4848       .Visit(const_cast<Expr *>(E));
4849 }
4850 
4851 /// Emit a conversion from the specified type to the specified destination type,
4852 /// both of which are LLVM scalar types.
4853 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4854                                              QualType DstTy,
4855                                              SourceLocation Loc) {
4856   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4857          "Invalid scalar expression to emit");
4858   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4859 }
4860 
4861 /// Emit a conversion from the specified complex type to the specified
4862 /// destination type, where the destination type is an LLVM scalar type.
4863 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4864                                                       QualType SrcTy,
4865                                                       QualType DstTy,
4866                                                       SourceLocation Loc) {
4867   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4868          "Invalid complex -> scalar conversion");
4869   return ScalarExprEmitter(*this)
4870       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4871 }
4872 
4873 
4874 llvm::Value *CodeGenFunction::
4875 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4876                         bool isInc, bool isPre) {
4877   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4878 }
4879 
4880 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4881   // object->isa or (*object).isa
4882   // Generate code as for: *(Class*)object
4883 
4884   Expr *BaseExpr = E->getBase();
4885   Address Addr = Address::invalid();
4886   if (BaseExpr->isPRValue()) {
4887     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4888   } else {
4889     Addr = EmitLValue(BaseExpr).getAddress(*this);
4890   }
4891 
4892   // Cast the address to Class*.
4893   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4894   return MakeAddrLValue(Addr, E->getType());
4895 }
4896 
4897 
4898 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4899                                             const CompoundAssignOperator *E) {
4900   ScalarExprEmitter Scalar(*this);
4901   Value *Result = nullptr;
4902   switch (E->getOpcode()) {
4903 #define COMPOUND_OP(Op)                                                       \
4904     case BO_##Op##Assign:                                                     \
4905       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4906                                              Result)
4907   COMPOUND_OP(Mul);
4908   COMPOUND_OP(Div);
4909   COMPOUND_OP(Rem);
4910   COMPOUND_OP(Add);
4911   COMPOUND_OP(Sub);
4912   COMPOUND_OP(Shl);
4913   COMPOUND_OP(Shr);
4914   COMPOUND_OP(And);
4915   COMPOUND_OP(Xor);
4916   COMPOUND_OP(Or);
4917 #undef COMPOUND_OP
4918 
4919   case BO_PtrMemD:
4920   case BO_PtrMemI:
4921   case BO_Mul:
4922   case BO_Div:
4923   case BO_Rem:
4924   case BO_Add:
4925   case BO_Sub:
4926   case BO_Shl:
4927   case BO_Shr:
4928   case BO_LT:
4929   case BO_GT:
4930   case BO_LE:
4931   case BO_GE:
4932   case BO_EQ:
4933   case BO_NE:
4934   case BO_Cmp:
4935   case BO_And:
4936   case BO_Xor:
4937   case BO_Or:
4938   case BO_LAnd:
4939   case BO_LOr:
4940   case BO_Assign:
4941   case BO_Comma:
4942     llvm_unreachable("Not valid compound assignment operators");
4943   }
4944 
4945   llvm_unreachable("Unhandled compound assignment operator");
4946 }
4947 
4948 struct GEPOffsetAndOverflow {
4949   // The total (signed) byte offset for the GEP.
4950   llvm::Value *TotalOffset;
4951   // The offset overflow flag - true if the total offset overflows.
4952   llvm::Value *OffsetOverflows;
4953 };
4954 
4955 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4956 /// and compute the total offset it applies from it's base pointer BasePtr.
4957 /// Returns offset in bytes and a boolean flag whether an overflow happened
4958 /// during evaluation.
4959 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4960                                                  llvm::LLVMContext &VMContext,
4961                                                  CodeGenModule &CGM,
4962                                                  CGBuilderTy &Builder) {
4963   const auto &DL = CGM.getDataLayout();
4964 
4965   // The total (signed) byte offset for the GEP.
4966   llvm::Value *TotalOffset = nullptr;
4967 
4968   // Was the GEP already reduced to a constant?
4969   if (isa<llvm::Constant>(GEPVal)) {
4970     // Compute the offset by casting both pointers to integers and subtracting:
4971     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4972     Value *BasePtr_int =
4973         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4974     Value *GEPVal_int =
4975         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4976     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4977     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4978   }
4979 
4980   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4981   assert(GEP->getPointerOperand() == BasePtr &&
4982          "BasePtr must be the base of the GEP.");
4983   assert(GEP->isInBounds() && "Expected inbounds GEP");
4984 
4985   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4986 
4987   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4988   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4989   auto *SAddIntrinsic =
4990       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4991   auto *SMulIntrinsic =
4992       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4993 
4994   // The offset overflow flag - true if the total offset overflows.
4995   llvm::Value *OffsetOverflows = Builder.getFalse();
4996 
4997   /// Return the result of the given binary operation.
4998   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4999                   llvm::Value *RHS) -> llvm::Value * {
5000     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5001 
5002     // If the operands are constants, return a constant result.
5003     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5004       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5005         llvm::APInt N;
5006         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5007                                                   /*Signed=*/true, N);
5008         if (HasOverflow)
5009           OffsetOverflows = Builder.getTrue();
5010         return llvm::ConstantInt::get(VMContext, N);
5011       }
5012     }
5013 
5014     // Otherwise, compute the result with checked arithmetic.
5015     auto *ResultAndOverflow = Builder.CreateCall(
5016         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5017     OffsetOverflows = Builder.CreateOr(
5018         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5019     return Builder.CreateExtractValue(ResultAndOverflow, 0);
5020   };
5021 
5022   // Determine the total byte offset by looking at each GEP operand.
5023   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5024        GTI != GTE; ++GTI) {
5025     llvm::Value *LocalOffset;
5026     auto *Index = GTI.getOperand();
5027     // Compute the local offset contributed by this indexing step:
5028     if (auto *STy = GTI.getStructTypeOrNull()) {
5029       // For struct indexing, the local offset is the byte position of the
5030       // specified field.
5031       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5032       LocalOffset = llvm::ConstantInt::get(
5033           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5034     } else {
5035       // Otherwise this is array-like indexing. The local offset is the index
5036       // multiplied by the element size.
5037       auto *ElementSize = llvm::ConstantInt::get(
5038           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5039       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5040       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5041     }
5042 
5043     // If this is the first offset, set it as the total offset. Otherwise, add
5044     // the local offset into the running total.
5045     if (!TotalOffset || TotalOffset == Zero)
5046       TotalOffset = LocalOffset;
5047     else
5048       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5049   }
5050 
5051   return {TotalOffset, OffsetOverflows};
5052 }
5053 
5054 Value *
5055 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
5056                                         bool SignedIndices, bool IsSubtraction,
5057                                         SourceLocation Loc, const Twine &Name) {
5058   llvm::Type *PtrTy = Ptr->getType();
5059   Value *GEPVal = Builder.CreateInBoundsGEP(
5060       PtrTy->getPointerElementType(), Ptr, IdxList, Name);
5061 
5062   // If the pointer overflow sanitizer isn't enabled, do nothing.
5063   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5064     return GEPVal;
5065 
5066   // Perform nullptr-and-offset check unless the nullptr is defined.
5067   bool PerformNullCheck = !NullPointerIsDefined(
5068       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5069   // Check for overflows unless the GEP got constant-folded,
5070   // and only in the default address space
5071   bool PerformOverflowCheck =
5072       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5073 
5074   if (!(PerformNullCheck || PerformOverflowCheck))
5075     return GEPVal;
5076 
5077   const auto &DL = CGM.getDataLayout();
5078 
5079   SanitizerScope SanScope(this);
5080   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5081 
5082   GEPOffsetAndOverflow EvaluatedGEP =
5083       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5084 
5085   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5086           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5087          "If the offset got constant-folded, we don't expect that there was an "
5088          "overflow.");
5089 
5090   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5091 
5092   // Common case: if the total offset is zero, and we are using C++ semantics,
5093   // where nullptr+0 is defined, don't emit a check.
5094   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5095     return GEPVal;
5096 
5097   // Now that we've computed the total offset, add it to the base pointer (with
5098   // wrapping semantics).
5099   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5100   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5101 
5102   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5103 
5104   if (PerformNullCheck) {
5105     // In C++, if the base pointer evaluates to a null pointer value,
5106     // the only valid  pointer this inbounds GEP can produce is also
5107     // a null pointer, so the offset must also evaluate to zero.
5108     // Likewise, if we have non-zero base pointer, we can not get null pointer
5109     // as a result, so the offset can not be -intptr_t(BasePtr).
5110     // In other words, both pointers are either null, or both are non-null,
5111     // or the behaviour is undefined.
5112     //
5113     // C, however, is more strict in this regard, and gives more
5114     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5115     // So both the input to the 'gep inbounds' AND the output must not be null.
5116     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5117     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5118     auto *Valid =
5119         CGM.getLangOpts().CPlusPlus
5120             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5121             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5122     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5123   }
5124 
5125   if (PerformOverflowCheck) {
5126     // The GEP is valid if:
5127     // 1) The total offset doesn't overflow, and
5128     // 2) The sign of the difference between the computed address and the base
5129     // pointer matches the sign of the total offset.
5130     llvm::Value *ValidGEP;
5131     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5132     if (SignedIndices) {
5133       // GEP is computed as `unsigned base + signed offset`, therefore:
5134       // * If offset was positive, then the computed pointer can not be
5135       //   [unsigned] less than the base pointer, unless it overflowed.
5136       // * If offset was negative, then the computed pointer can not be
5137       //   [unsigned] greater than the bas pointere, unless it overflowed.
5138       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5139       auto *PosOrZeroOffset =
5140           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5141       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5142       ValidGEP =
5143           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5144     } else if (!IsSubtraction) {
5145       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5146       // computed pointer can not be [unsigned] less than base pointer,
5147       // unless there was an overflow.
5148       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5149       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5150     } else {
5151       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5152       // computed pointer can not be [unsigned] greater than base pointer,
5153       // unless there was an overflow.
5154       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5155       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5156     }
5157     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5158     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5159   }
5160 
5161   assert(!Checks.empty() && "Should have produced some checks.");
5162 
5163   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5164   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5165   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5166   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5167 
5168   return GEPVal;
5169 }
5170