1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/FixedPointBuilder.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsPowerPC.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include <cstdarg> 44 45 using namespace clang; 46 using namespace CodeGen; 47 using llvm::Value; 48 49 //===----------------------------------------------------------------------===// 50 // Scalar Expression Emitter 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 55 /// Determine whether the given binary operation may overflow. 56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 58 /// the returned overflow check is precise. The returned value is 'true' for 59 /// all other opcodes, to be conservative. 60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 61 BinaryOperator::Opcode Opcode, bool Signed, 62 llvm::APInt &Result) { 63 // Assume overflow is possible, unless we can prove otherwise. 64 bool Overflow = true; 65 const auto &LHSAP = LHS->getValue(); 66 const auto &RHSAP = RHS->getValue(); 67 if (Opcode == BO_Add) { 68 if (Signed) 69 Result = LHSAP.sadd_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.uadd_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Sub) { 73 if (Signed) 74 Result = LHSAP.ssub_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.usub_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Mul) { 78 if (Signed) 79 Result = LHSAP.smul_ov(RHSAP, Overflow); 80 else 81 Result = LHSAP.umul_ov(RHSAP, Overflow); 82 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 83 if (Signed && !RHS->isZero()) 84 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 85 else 86 return false; 87 } 88 return Overflow; 89 } 90 91 struct BinOpInfo { 92 Value *LHS; 93 Value *RHS; 94 QualType Ty; // Computation Type. 95 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 96 FPOptions FPFeatures; 97 const Expr *E; // Entire expr, for error unsupported. May not be binop. 98 99 /// Check if the binop can result in integer overflow. 100 bool mayHaveIntegerOverflow() const { 101 // Without constant input, we can't rule out overflow. 102 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 103 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 104 if (!LHSCI || !RHSCI) 105 return true; 106 107 llvm::APInt Result; 108 return ::mayHaveIntegerOverflow( 109 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 110 } 111 112 /// Check if the binop computes a division or a remainder. 113 bool isDivremOp() const { 114 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 115 Opcode == BO_RemAssign; 116 } 117 118 /// Check if the binop can result in an integer division by zero. 119 bool mayHaveIntegerDivisionByZero() const { 120 if (isDivremOp()) 121 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 122 return CI->isZero(); 123 return true; 124 } 125 126 /// Check if the binop can result in a float division by zero. 127 bool mayHaveFloatDivisionByZero() const { 128 if (isDivremOp()) 129 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 130 return CFP->isZero(); 131 return true; 132 } 133 134 /// Check if at least one operand is a fixed point type. In such cases, this 135 /// operation did not follow usual arithmetic conversion and both operands 136 /// might not be of the same type. 137 bool isFixedPointOp() const { 138 // We cannot simply check the result type since comparison operations return 139 // an int. 140 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 141 QualType LHSType = BinOp->getLHS()->getType(); 142 QualType RHSType = BinOp->getRHS()->getType(); 143 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 144 } 145 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 146 return UnOp->getSubExpr()->getType()->isFixedPointType(); 147 return false; 148 } 149 }; 150 151 static bool MustVisitNullValue(const Expr *E) { 152 // If a null pointer expression's type is the C++0x nullptr_t, then 153 // it's not necessarily a simple constant and it must be evaluated 154 // for its potential side effects. 155 return E->getType()->isNullPtrType(); 156 } 157 158 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 160 const Expr *E) { 161 const Expr *Base = E->IgnoreImpCasts(); 162 if (E == Base) 163 return llvm::None; 164 165 QualType BaseTy = Base->getType(); 166 if (!BaseTy->isPromotableIntegerType() || 167 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 168 return llvm::None; 169 170 return BaseTy; 171 } 172 173 /// Check if \p E is a widened promoted integer. 174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 175 return getUnwidenedIntegerType(Ctx, E).hasValue(); 176 } 177 178 /// Check if we can skip the overflow check for \p Op. 179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 180 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 181 "Expected a unary or binary operator"); 182 183 // If the binop has constant inputs and we can prove there is no overflow, 184 // we can elide the overflow check. 185 if (!Op.mayHaveIntegerOverflow()) 186 return true; 187 188 // If a unary op has a widened operand, the op cannot overflow. 189 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 190 return !UO->canOverflow(); 191 192 // We usually don't need overflow checks for binops with widened operands. 193 // Multiplication with promoted unsigned operands is a special case. 194 const auto *BO = cast<BinaryOperator>(Op.E); 195 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 196 if (!OptionalLHSTy) 197 return false; 198 199 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 200 if (!OptionalRHSTy) 201 return false; 202 203 QualType LHSTy = *OptionalLHSTy; 204 QualType RHSTy = *OptionalRHSTy; 205 206 // This is the simple case: binops without unsigned multiplication, and with 207 // widened operands. No overflow check is needed here. 208 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 209 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 210 return true; 211 212 // For unsigned multiplication the overflow check can be elided if either one 213 // of the unpromoted types are less than half the size of the promoted type. 214 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 215 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 216 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 217 } 218 219 class ScalarExprEmitter 220 : public StmtVisitor<ScalarExprEmitter, Value*> { 221 CodeGenFunction &CGF; 222 CGBuilderTy &Builder; 223 bool IgnoreResultAssign; 224 llvm::LLVMContext &VMContext; 225 public: 226 227 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 228 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 229 VMContext(cgf.getLLVMContext()) { 230 } 231 232 //===--------------------------------------------------------------------===// 233 // Utilities 234 //===--------------------------------------------------------------------===// 235 236 bool TestAndClearIgnoreResultAssign() { 237 bool I = IgnoreResultAssign; 238 IgnoreResultAssign = false; 239 return I; 240 } 241 242 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 243 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 244 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 245 return CGF.EmitCheckedLValue(E, TCK); 246 } 247 248 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 249 const BinOpInfo &Info); 250 251 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 252 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 253 } 254 255 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 256 const AlignValueAttr *AVAttr = nullptr; 257 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 258 const ValueDecl *VD = DRE->getDecl(); 259 260 if (VD->getType()->isReferenceType()) { 261 if (const auto *TTy = 262 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 263 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 264 } else { 265 // Assumptions for function parameters are emitted at the start of the 266 // function, so there is no need to repeat that here, 267 // unless the alignment-assumption sanitizer is enabled, 268 // then we prefer the assumption over alignment attribute 269 // on IR function param. 270 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 271 return; 272 273 AVAttr = VD->getAttr<AlignValueAttr>(); 274 } 275 } 276 277 if (!AVAttr) 278 if (const auto *TTy = 279 dyn_cast<TypedefType>(E->getType())) 280 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 281 282 if (!AVAttr) 283 return; 284 285 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 286 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 287 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 288 } 289 290 /// EmitLoadOfLValue - Given an expression with complex type that represents a 291 /// value l-value, this method emits the address of the l-value, then loads 292 /// and returns the result. 293 Value *EmitLoadOfLValue(const Expr *E) { 294 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 295 E->getExprLoc()); 296 297 EmitLValueAlignmentAssumption(E, V); 298 return V; 299 } 300 301 /// EmitConversionToBool - Convert the specified expression value to a 302 /// boolean (i1) truth value. This is equivalent to "Val != 0". 303 Value *EmitConversionToBool(Value *Src, QualType DstTy); 304 305 /// Emit a check that a conversion from a floating-point type does not 306 /// overflow. 307 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 308 Value *Src, QualType SrcType, QualType DstType, 309 llvm::Type *DstTy, SourceLocation Loc); 310 311 /// Known implicit conversion check kinds. 312 /// Keep in sync with the enum of the same name in ubsan_handlers.h 313 enum ImplicitConversionCheckKind : unsigned char { 314 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 315 ICCK_UnsignedIntegerTruncation = 1, 316 ICCK_SignedIntegerTruncation = 2, 317 ICCK_IntegerSignChange = 3, 318 ICCK_SignedIntegerTruncationOrSignChange = 4, 319 }; 320 321 /// Emit a check that an [implicit] truncation of an integer does not 322 /// discard any bits. It is not UB, so we use the value after truncation. 323 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 324 QualType DstType, SourceLocation Loc); 325 326 /// Emit a check that an [implicit] conversion of an integer does not change 327 /// the sign of the value. It is not UB, so we use the value after conversion. 328 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 329 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 330 QualType DstType, SourceLocation Loc); 331 332 /// Emit a conversion from the specified type to the specified destination 333 /// type, both of which are LLVM scalar types. 334 struct ScalarConversionOpts { 335 bool TreatBooleanAsSigned; 336 bool EmitImplicitIntegerTruncationChecks; 337 bool EmitImplicitIntegerSignChangeChecks; 338 339 ScalarConversionOpts() 340 : TreatBooleanAsSigned(false), 341 EmitImplicitIntegerTruncationChecks(false), 342 EmitImplicitIntegerSignChangeChecks(false) {} 343 344 ScalarConversionOpts(clang::SanitizerSet SanOpts) 345 : TreatBooleanAsSigned(false), 346 EmitImplicitIntegerTruncationChecks( 347 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 348 EmitImplicitIntegerSignChangeChecks( 349 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 350 }; 351 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, 352 llvm::Type *SrcTy, llvm::Type *DstTy, 353 ScalarConversionOpts Opts); 354 Value * 355 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 356 SourceLocation Loc, 357 ScalarConversionOpts Opts = ScalarConversionOpts()); 358 359 /// Convert between either a fixed point and other fixed point or fixed point 360 /// and an integer. 361 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 362 SourceLocation Loc); 363 364 /// Emit a conversion from the specified complex type to the specified 365 /// destination type, where the destination type is an LLVM scalar type. 366 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 367 QualType SrcTy, QualType DstTy, 368 SourceLocation Loc); 369 370 /// EmitNullValue - Emit a value that corresponds to null for the given type. 371 Value *EmitNullValue(QualType Ty); 372 373 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 374 Value *EmitFloatToBoolConversion(Value *V) { 375 // Compare against 0.0 for fp scalars. 376 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 377 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 378 } 379 380 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 381 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 382 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 383 384 return Builder.CreateICmpNE(V, Zero, "tobool"); 385 } 386 387 Value *EmitIntToBoolConversion(Value *V) { 388 // Because of the type rules of C, we often end up computing a 389 // logical value, then zero extending it to int, then wanting it 390 // as a logical value again. Optimize this common case. 391 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 392 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 393 Value *Result = ZI->getOperand(0); 394 // If there aren't any more uses, zap the instruction to save space. 395 // Note that there can be more uses, for example if this 396 // is the result of an assignment. 397 if (ZI->use_empty()) 398 ZI->eraseFromParent(); 399 return Result; 400 } 401 } 402 403 return Builder.CreateIsNotNull(V, "tobool"); 404 } 405 406 //===--------------------------------------------------------------------===// 407 // Visitor Methods 408 //===--------------------------------------------------------------------===// 409 410 Value *Visit(Expr *E) { 411 ApplyDebugLocation DL(CGF, E); 412 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 413 } 414 415 Value *VisitStmt(Stmt *S) { 416 S->dump(llvm::errs(), CGF.getContext()); 417 llvm_unreachable("Stmt can't have complex result type!"); 418 } 419 Value *VisitExpr(Expr *S); 420 421 Value *VisitConstantExpr(ConstantExpr *E) { 422 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 423 if (E->isGLValue()) 424 return CGF.Builder.CreateLoad(Address( 425 Result, CGF.getContext().getTypeAlignInChars(E->getType()))); 426 return Result; 427 } 428 return Visit(E->getSubExpr()); 429 } 430 Value *VisitParenExpr(ParenExpr *PE) { 431 return Visit(PE->getSubExpr()); 432 } 433 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 434 return Visit(E->getReplacement()); 435 } 436 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 437 return Visit(GE->getResultExpr()); 438 } 439 Value *VisitCoawaitExpr(CoawaitExpr *S) { 440 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 441 } 442 Value *VisitCoyieldExpr(CoyieldExpr *S) { 443 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 444 } 445 Value *VisitUnaryCoawait(const UnaryOperator *E) { 446 return Visit(E->getSubExpr()); 447 } 448 449 // Leaves. 450 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 451 return Builder.getInt(E->getValue()); 452 } 453 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 454 return Builder.getInt(E->getValue()); 455 } 456 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 457 return llvm::ConstantFP::get(VMContext, E->getValue()); 458 } 459 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 460 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 461 } 462 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 463 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 464 } 465 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 466 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 467 } 468 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 469 return EmitNullValue(E->getType()); 470 } 471 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 472 return EmitNullValue(E->getType()); 473 } 474 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 475 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 476 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 477 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 478 return Builder.CreateBitCast(V, ConvertType(E->getType())); 479 } 480 481 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 482 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 483 } 484 485 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 486 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 487 } 488 489 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E); 490 491 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 492 if (E->isGLValue()) 493 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 494 E->getExprLoc()); 495 496 // Otherwise, assume the mapping is the scalar directly. 497 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 498 } 499 500 // l-values. 501 Value *VisitDeclRefExpr(DeclRefExpr *E) { 502 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 503 return CGF.emitScalarConstant(Constant, E); 504 return EmitLoadOfLValue(E); 505 } 506 507 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 508 return CGF.EmitObjCSelectorExpr(E); 509 } 510 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 511 return CGF.EmitObjCProtocolExpr(E); 512 } 513 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 514 return EmitLoadOfLValue(E); 515 } 516 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 517 if (E->getMethodDecl() && 518 E->getMethodDecl()->getReturnType()->isReferenceType()) 519 return EmitLoadOfLValue(E); 520 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 521 } 522 523 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 524 LValue LV = CGF.EmitObjCIsaExpr(E); 525 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 526 return V; 527 } 528 529 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 530 VersionTuple Version = E->getVersion(); 531 532 // If we're checking for a platform older than our minimum deployment 533 // target, we can fold the check away. 534 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 535 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 536 537 return CGF.EmitBuiltinAvailable(Version); 538 } 539 540 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 541 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 542 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 543 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 544 Value *VisitMemberExpr(MemberExpr *E); 545 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 546 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 547 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 548 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 549 // literals aren't l-values in C++. We do so simply because that's the 550 // cleanest way to handle compound literals in C++. 551 // See the discussion here: https://reviews.llvm.org/D64464 552 return EmitLoadOfLValue(E); 553 } 554 555 Value *VisitInitListExpr(InitListExpr *E); 556 557 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 558 assert(CGF.getArrayInitIndex() && 559 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 560 return CGF.getArrayInitIndex(); 561 } 562 563 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 564 return EmitNullValue(E->getType()); 565 } 566 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 567 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 568 return VisitCastExpr(E); 569 } 570 Value *VisitCastExpr(CastExpr *E); 571 572 Value *VisitCallExpr(const CallExpr *E) { 573 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 574 return EmitLoadOfLValue(E); 575 576 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 577 578 EmitLValueAlignmentAssumption(E, V); 579 return V; 580 } 581 582 Value *VisitStmtExpr(const StmtExpr *E); 583 584 // Unary Operators. 585 Value *VisitUnaryPostDec(const UnaryOperator *E) { 586 LValue LV = EmitLValue(E->getSubExpr()); 587 return EmitScalarPrePostIncDec(E, LV, false, false); 588 } 589 Value *VisitUnaryPostInc(const UnaryOperator *E) { 590 LValue LV = EmitLValue(E->getSubExpr()); 591 return EmitScalarPrePostIncDec(E, LV, true, false); 592 } 593 Value *VisitUnaryPreDec(const UnaryOperator *E) { 594 LValue LV = EmitLValue(E->getSubExpr()); 595 return EmitScalarPrePostIncDec(E, LV, false, true); 596 } 597 Value *VisitUnaryPreInc(const UnaryOperator *E) { 598 LValue LV = EmitLValue(E->getSubExpr()); 599 return EmitScalarPrePostIncDec(E, LV, true, true); 600 } 601 602 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 603 llvm::Value *InVal, 604 bool IsInc); 605 606 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 607 bool isInc, bool isPre); 608 609 610 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 611 if (isa<MemberPointerType>(E->getType())) // never sugared 612 return CGF.CGM.getMemberPointerConstant(E); 613 614 return EmitLValue(E->getSubExpr()).getPointer(CGF); 615 } 616 Value *VisitUnaryDeref(const UnaryOperator *E) { 617 if (E->getType()->isVoidType()) 618 return Visit(E->getSubExpr()); // the actual value should be unused 619 return EmitLoadOfLValue(E); 620 } 621 Value *VisitUnaryPlus(const UnaryOperator *E) { 622 // This differs from gcc, though, most likely due to a bug in gcc. 623 TestAndClearIgnoreResultAssign(); 624 return Visit(E->getSubExpr()); 625 } 626 Value *VisitUnaryMinus (const UnaryOperator *E); 627 Value *VisitUnaryNot (const UnaryOperator *E); 628 Value *VisitUnaryLNot (const UnaryOperator *E); 629 Value *VisitUnaryReal (const UnaryOperator *E); 630 Value *VisitUnaryImag (const UnaryOperator *E); 631 Value *VisitUnaryExtension(const UnaryOperator *E) { 632 return Visit(E->getSubExpr()); 633 } 634 635 // C++ 636 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 637 return EmitLoadOfLValue(E); 638 } 639 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 640 auto &Ctx = CGF.getContext(); 641 APValue Evaluated = 642 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 643 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 644 SLE->getType()); 645 } 646 647 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 648 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 649 return Visit(DAE->getExpr()); 650 } 651 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 652 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 653 return Visit(DIE->getExpr()); 654 } 655 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 656 return CGF.LoadCXXThis(); 657 } 658 659 Value *VisitExprWithCleanups(ExprWithCleanups *E); 660 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 661 return CGF.EmitCXXNewExpr(E); 662 } 663 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 664 CGF.EmitCXXDeleteExpr(E); 665 return nullptr; 666 } 667 668 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 669 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 670 } 671 672 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 673 return Builder.getInt1(E->isSatisfied()); 674 } 675 676 Value *VisitRequiresExpr(const RequiresExpr *E) { 677 return Builder.getInt1(E->isSatisfied()); 678 } 679 680 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 681 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 682 } 683 684 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 685 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 686 } 687 688 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 689 // C++ [expr.pseudo]p1: 690 // The result shall only be used as the operand for the function call 691 // operator (), and the result of such a call has type void. The only 692 // effect is the evaluation of the postfix-expression before the dot or 693 // arrow. 694 CGF.EmitScalarExpr(E->getBase()); 695 return nullptr; 696 } 697 698 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 699 return EmitNullValue(E->getType()); 700 } 701 702 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 703 CGF.EmitCXXThrowExpr(E); 704 return nullptr; 705 } 706 707 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 708 return Builder.getInt1(E->getValue()); 709 } 710 711 // Binary Operators. 712 Value *EmitMul(const BinOpInfo &Ops) { 713 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 714 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 715 case LangOptions::SOB_Defined: 716 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 717 case LangOptions::SOB_Undefined: 718 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 719 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 720 LLVM_FALLTHROUGH; 721 case LangOptions::SOB_Trapping: 722 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 723 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 724 return EmitOverflowCheckedBinOp(Ops); 725 } 726 } 727 728 if (Ops.Ty->isConstantMatrixType()) { 729 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 730 // We need to check the types of the operands of the operator to get the 731 // correct matrix dimensions. 732 auto *BO = cast<BinaryOperator>(Ops.E); 733 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 734 BO->getLHS()->getType().getCanonicalType()); 735 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 736 BO->getRHS()->getType().getCanonicalType()); 737 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 738 if (LHSMatTy && RHSMatTy) 739 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 740 LHSMatTy->getNumColumns(), 741 RHSMatTy->getNumColumns()); 742 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 743 } 744 745 if (Ops.Ty->isUnsignedIntegerType() && 746 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 747 !CanElideOverflowCheck(CGF.getContext(), Ops)) 748 return EmitOverflowCheckedBinOp(Ops); 749 750 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 751 // Preserve the old values 752 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 753 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 754 } 755 if (Ops.isFixedPointOp()) 756 return EmitFixedPointBinOp(Ops); 757 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 758 } 759 /// Create a binary op that checks for overflow. 760 /// Currently only supports +, - and *. 761 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 762 763 // Check for undefined division and modulus behaviors. 764 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 765 llvm::Value *Zero,bool isDiv); 766 // Common helper for getting how wide LHS of shift is. 767 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 768 769 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 770 // non powers of two. 771 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 772 773 Value *EmitDiv(const BinOpInfo &Ops); 774 Value *EmitRem(const BinOpInfo &Ops); 775 Value *EmitAdd(const BinOpInfo &Ops); 776 Value *EmitSub(const BinOpInfo &Ops); 777 Value *EmitShl(const BinOpInfo &Ops); 778 Value *EmitShr(const BinOpInfo &Ops); 779 Value *EmitAnd(const BinOpInfo &Ops) { 780 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 781 } 782 Value *EmitXor(const BinOpInfo &Ops) { 783 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 784 } 785 Value *EmitOr (const BinOpInfo &Ops) { 786 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 787 } 788 789 // Helper functions for fixed point binary operations. 790 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 791 792 BinOpInfo EmitBinOps(const BinaryOperator *E); 793 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 794 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 795 Value *&Result); 796 797 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 798 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 799 800 // Binary operators and binary compound assignment operators. 801 #define HANDLEBINOP(OP) \ 802 Value *VisitBin ## OP(const BinaryOperator *E) { \ 803 return Emit ## OP(EmitBinOps(E)); \ 804 } \ 805 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 806 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 807 } 808 HANDLEBINOP(Mul) 809 HANDLEBINOP(Div) 810 HANDLEBINOP(Rem) 811 HANDLEBINOP(Add) 812 HANDLEBINOP(Sub) 813 HANDLEBINOP(Shl) 814 HANDLEBINOP(Shr) 815 HANDLEBINOP(And) 816 HANDLEBINOP(Xor) 817 HANDLEBINOP(Or) 818 #undef HANDLEBINOP 819 820 // Comparisons. 821 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 822 llvm::CmpInst::Predicate SICmpOpc, 823 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 824 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 825 Value *VisitBin##CODE(const BinaryOperator *E) { \ 826 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 827 llvm::FCmpInst::FP, SIG); } 828 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 829 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 830 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 831 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 832 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 833 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 834 #undef VISITCOMP 835 836 Value *VisitBinAssign (const BinaryOperator *E); 837 838 Value *VisitBinLAnd (const BinaryOperator *E); 839 Value *VisitBinLOr (const BinaryOperator *E); 840 Value *VisitBinComma (const BinaryOperator *E); 841 842 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 843 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 844 845 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 846 return Visit(E->getSemanticForm()); 847 } 848 849 // Other Operators. 850 Value *VisitBlockExpr(const BlockExpr *BE); 851 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 852 Value *VisitChooseExpr(ChooseExpr *CE); 853 Value *VisitVAArgExpr(VAArgExpr *VE); 854 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 855 return CGF.EmitObjCStringLiteral(E); 856 } 857 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 858 return CGF.EmitObjCBoxedExpr(E); 859 } 860 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 861 return CGF.EmitObjCArrayLiteral(E); 862 } 863 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 864 return CGF.EmitObjCDictionaryLiteral(E); 865 } 866 Value *VisitAsTypeExpr(AsTypeExpr *CE); 867 Value *VisitAtomicExpr(AtomicExpr *AE); 868 }; 869 } // end anonymous namespace. 870 871 //===----------------------------------------------------------------------===// 872 // Utilities 873 //===----------------------------------------------------------------------===// 874 875 /// EmitConversionToBool - Convert the specified expression value to a 876 /// boolean (i1) truth value. This is equivalent to "Val != 0". 877 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 878 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 879 880 if (SrcType->isRealFloatingType()) 881 return EmitFloatToBoolConversion(Src); 882 883 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 884 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 885 886 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 887 "Unknown scalar type to convert"); 888 889 if (isa<llvm::IntegerType>(Src->getType())) 890 return EmitIntToBoolConversion(Src); 891 892 assert(isa<llvm::PointerType>(Src->getType())); 893 return EmitPointerToBoolConversion(Src, SrcType); 894 } 895 896 void ScalarExprEmitter::EmitFloatConversionCheck( 897 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 898 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 899 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 900 if (!isa<llvm::IntegerType>(DstTy)) 901 return; 902 903 CodeGenFunction::SanitizerScope SanScope(&CGF); 904 using llvm::APFloat; 905 using llvm::APSInt; 906 907 llvm::Value *Check = nullptr; 908 const llvm::fltSemantics &SrcSema = 909 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 910 911 // Floating-point to integer. This has undefined behavior if the source is 912 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 913 // to an integer). 914 unsigned Width = CGF.getContext().getIntWidth(DstType); 915 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 916 917 APSInt Min = APSInt::getMinValue(Width, Unsigned); 918 APFloat MinSrc(SrcSema, APFloat::uninitialized); 919 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 920 APFloat::opOverflow) 921 // Don't need an overflow check for lower bound. Just check for 922 // -Inf/NaN. 923 MinSrc = APFloat::getInf(SrcSema, true); 924 else 925 // Find the largest value which is too small to represent (before 926 // truncation toward zero). 927 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 928 929 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 930 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 931 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 932 APFloat::opOverflow) 933 // Don't need an overflow check for upper bound. Just check for 934 // +Inf/NaN. 935 MaxSrc = APFloat::getInf(SrcSema, false); 936 else 937 // Find the smallest value which is too large to represent (before 938 // truncation toward zero). 939 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 940 941 // If we're converting from __half, convert the range to float to match 942 // the type of src. 943 if (OrigSrcType->isHalfType()) { 944 const llvm::fltSemantics &Sema = 945 CGF.getContext().getFloatTypeSemantics(SrcType); 946 bool IsInexact; 947 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 948 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 949 } 950 951 llvm::Value *GE = 952 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 953 llvm::Value *LE = 954 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 955 Check = Builder.CreateAnd(GE, LE); 956 957 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 958 CGF.EmitCheckTypeDescriptor(OrigSrcType), 959 CGF.EmitCheckTypeDescriptor(DstType)}; 960 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 961 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 962 } 963 964 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 965 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 966 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 967 std::pair<llvm::Value *, SanitizerMask>> 968 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 969 QualType DstType, CGBuilderTy &Builder) { 970 llvm::Type *SrcTy = Src->getType(); 971 llvm::Type *DstTy = Dst->getType(); 972 (void)DstTy; // Only used in assert() 973 974 // This should be truncation of integral types. 975 assert(Src != Dst); 976 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 977 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 978 "non-integer llvm type"); 979 980 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 981 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 982 983 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 984 // Else, it is a signed truncation. 985 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 986 SanitizerMask Mask; 987 if (!SrcSigned && !DstSigned) { 988 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 989 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 990 } else { 991 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 992 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 993 } 994 995 llvm::Value *Check = nullptr; 996 // 1. Extend the truncated value back to the same width as the Src. 997 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 998 // 2. Equality-compare with the original source value 999 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 1000 // If the comparison result is 'i1 false', then the truncation was lossy. 1001 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1002 } 1003 1004 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 1005 QualType SrcType, QualType DstType) { 1006 return SrcType->isIntegerType() && DstType->isIntegerType(); 1007 } 1008 1009 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1010 Value *Dst, QualType DstType, 1011 SourceLocation Loc) { 1012 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1013 return; 1014 1015 // We only care about int->int conversions here. 1016 // We ignore conversions to/from pointer and/or bool. 1017 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1018 DstType)) 1019 return; 1020 1021 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1022 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1023 // This must be truncation. Else we do not care. 1024 if (SrcBits <= DstBits) 1025 return; 1026 1027 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1028 1029 // If the integer sign change sanitizer is enabled, 1030 // and we are truncating from larger unsigned type to smaller signed type, 1031 // let that next sanitizer deal with it. 1032 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1033 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1034 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1035 (!SrcSigned && DstSigned)) 1036 return; 1037 1038 CodeGenFunction::SanitizerScope SanScope(&CGF); 1039 1040 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1041 std::pair<llvm::Value *, SanitizerMask>> 1042 Check = 1043 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1044 // If the comparison result is 'i1 false', then the truncation was lossy. 1045 1046 // Do we care about this type of truncation? 1047 if (!CGF.SanOpts.has(Check.second.second)) 1048 return; 1049 1050 llvm::Constant *StaticArgs[] = { 1051 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1052 CGF.EmitCheckTypeDescriptor(DstType), 1053 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1054 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1055 {Src, Dst}); 1056 } 1057 1058 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1059 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1060 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1061 std::pair<llvm::Value *, SanitizerMask>> 1062 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1063 QualType DstType, CGBuilderTy &Builder) { 1064 llvm::Type *SrcTy = Src->getType(); 1065 llvm::Type *DstTy = Dst->getType(); 1066 1067 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1068 "non-integer llvm type"); 1069 1070 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1071 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1072 (void)SrcSigned; // Only used in assert() 1073 (void)DstSigned; // Only used in assert() 1074 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1075 unsigned DstBits = DstTy->getScalarSizeInBits(); 1076 (void)SrcBits; // Only used in assert() 1077 (void)DstBits; // Only used in assert() 1078 1079 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1080 "either the widths should be different, or the signednesses."); 1081 1082 // NOTE: zero value is considered to be non-negative. 1083 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1084 const char *Name) -> Value * { 1085 // Is this value a signed type? 1086 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1087 llvm::Type *VTy = V->getType(); 1088 if (!VSigned) { 1089 // If the value is unsigned, then it is never negative. 1090 // FIXME: can we encounter non-scalar VTy here? 1091 return llvm::ConstantInt::getFalse(VTy->getContext()); 1092 } 1093 // Get the zero of the same type with which we will be comparing. 1094 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1095 // %V.isnegative = icmp slt %V, 0 1096 // I.e is %V *strictly* less than zero, does it have negative value? 1097 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1098 llvm::Twine(Name) + "." + V->getName() + 1099 ".negativitycheck"); 1100 }; 1101 1102 // 1. Was the old Value negative? 1103 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1104 // 2. Is the new Value negative? 1105 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1106 // 3. Now, was the 'negativity status' preserved during the conversion? 1107 // NOTE: conversion from negative to zero is considered to change the sign. 1108 // (We want to get 'false' when the conversion changed the sign) 1109 // So we should just equality-compare the negativity statuses. 1110 llvm::Value *Check = nullptr; 1111 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1112 // If the comparison result is 'false', then the conversion changed the sign. 1113 return std::make_pair( 1114 ScalarExprEmitter::ICCK_IntegerSignChange, 1115 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1116 } 1117 1118 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1119 Value *Dst, QualType DstType, 1120 SourceLocation Loc) { 1121 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1122 return; 1123 1124 llvm::Type *SrcTy = Src->getType(); 1125 llvm::Type *DstTy = Dst->getType(); 1126 1127 // We only care about int->int conversions here. 1128 // We ignore conversions to/from pointer and/or bool. 1129 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1130 DstType)) 1131 return; 1132 1133 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1134 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1135 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1136 unsigned DstBits = DstTy->getScalarSizeInBits(); 1137 1138 // Now, we do not need to emit the check in *all* of the cases. 1139 // We can avoid emitting it in some obvious cases where it would have been 1140 // dropped by the opt passes (instcombine) always anyways. 1141 // If it's a cast between effectively the same type, no check. 1142 // NOTE: this is *not* equivalent to checking the canonical types. 1143 if (SrcSigned == DstSigned && SrcBits == DstBits) 1144 return; 1145 // At least one of the values needs to have signed type. 1146 // If both are unsigned, then obviously, neither of them can be negative. 1147 if (!SrcSigned && !DstSigned) 1148 return; 1149 // If the conversion is to *larger* *signed* type, then no check is needed. 1150 // Because either sign-extension happens (so the sign will remain), 1151 // or zero-extension will happen (the sign bit will be zero.) 1152 if ((DstBits > SrcBits) && DstSigned) 1153 return; 1154 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1155 (SrcBits > DstBits) && SrcSigned) { 1156 // If the signed integer truncation sanitizer is enabled, 1157 // and this is a truncation from signed type, then no check is needed. 1158 // Because here sign change check is interchangeable with truncation check. 1159 return; 1160 } 1161 // That's it. We can't rule out any more cases with the data we have. 1162 1163 CodeGenFunction::SanitizerScope SanScope(&CGF); 1164 1165 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1166 std::pair<llvm::Value *, SanitizerMask>> 1167 Check; 1168 1169 // Each of these checks needs to return 'false' when an issue was detected. 1170 ImplicitConversionCheckKind CheckKind; 1171 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1172 // So we can 'and' all the checks together, and still get 'false', 1173 // if at least one of the checks detected an issue. 1174 1175 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1176 CheckKind = Check.first; 1177 Checks.emplace_back(Check.second); 1178 1179 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1180 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1181 // If the signed integer truncation sanitizer was enabled, 1182 // and we are truncating from larger unsigned type to smaller signed type, 1183 // let's handle the case we skipped in that check. 1184 Check = 1185 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1186 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1187 Checks.emplace_back(Check.second); 1188 // If the comparison result is 'i1 false', then the truncation was lossy. 1189 } 1190 1191 llvm::Constant *StaticArgs[] = { 1192 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1193 CGF.EmitCheckTypeDescriptor(DstType), 1194 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1195 // EmitCheck() will 'and' all the checks together. 1196 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1197 {Src, Dst}); 1198 } 1199 1200 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, 1201 QualType DstType, llvm::Type *SrcTy, 1202 llvm::Type *DstTy, 1203 ScalarConversionOpts Opts) { 1204 // The Element types determine the type of cast to perform. 1205 llvm::Type *SrcElementTy; 1206 llvm::Type *DstElementTy; 1207 QualType SrcElementType; 1208 QualType DstElementType; 1209 if (SrcType->isMatrixType() && DstType->isMatrixType()) { 1210 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1211 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1212 SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); 1213 DstElementType = DstType->castAs<MatrixType>()->getElementType(); 1214 } else { 1215 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && 1216 "cannot cast between matrix and non-matrix types"); 1217 SrcElementTy = SrcTy; 1218 DstElementTy = DstTy; 1219 SrcElementType = SrcType; 1220 DstElementType = DstType; 1221 } 1222 1223 if (isa<llvm::IntegerType>(SrcElementTy)) { 1224 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); 1225 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1226 InputSigned = true; 1227 } 1228 1229 if (isa<llvm::IntegerType>(DstElementTy)) 1230 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1231 if (InputSigned) 1232 return Builder.CreateSIToFP(Src, DstTy, "conv"); 1233 return Builder.CreateUIToFP(Src, DstTy, "conv"); 1234 } 1235 1236 if (isa<llvm::IntegerType>(DstElementTy)) { 1237 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion"); 1238 if (DstElementType->isSignedIntegerOrEnumerationType()) 1239 return Builder.CreateFPToSI(Src, DstTy, "conv"); 1240 return Builder.CreateFPToUI(Src, DstTy, "conv"); 1241 } 1242 1243 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) 1244 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1245 return Builder.CreateFPExt(Src, DstTy, "conv"); 1246 } 1247 1248 /// Emit a conversion from the specified type to the specified destination type, 1249 /// both of which are LLVM scalar types. 1250 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1251 QualType DstType, 1252 SourceLocation Loc, 1253 ScalarConversionOpts Opts) { 1254 // All conversions involving fixed point types should be handled by the 1255 // EmitFixedPoint family functions. This is done to prevent bloating up this 1256 // function more, and although fixed point numbers are represented by 1257 // integers, we do not want to follow any logic that assumes they should be 1258 // treated as integers. 1259 // TODO(leonardchan): When necessary, add another if statement checking for 1260 // conversions to fixed point types from other types. 1261 if (SrcType->isFixedPointType()) { 1262 if (DstType->isBooleanType()) 1263 // It is important that we check this before checking if the dest type is 1264 // an integer because booleans are technically integer types. 1265 // We do not need to check the padding bit on unsigned types if unsigned 1266 // padding is enabled because overflow into this bit is undefined 1267 // behavior. 1268 return Builder.CreateIsNotNull(Src, "tobool"); 1269 if (DstType->isFixedPointType() || DstType->isIntegerType() || 1270 DstType->isRealFloatingType()) 1271 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1272 1273 llvm_unreachable( 1274 "Unhandled scalar conversion from a fixed point type to another type."); 1275 } else if (DstType->isFixedPointType()) { 1276 if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) 1277 // This also includes converting booleans and enums to fixed point types. 1278 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1279 1280 llvm_unreachable( 1281 "Unhandled scalar conversion to a fixed point type from another type."); 1282 } 1283 1284 QualType NoncanonicalSrcType = SrcType; 1285 QualType NoncanonicalDstType = DstType; 1286 1287 SrcType = CGF.getContext().getCanonicalType(SrcType); 1288 DstType = CGF.getContext().getCanonicalType(DstType); 1289 if (SrcType == DstType) return Src; 1290 1291 if (DstType->isVoidType()) return nullptr; 1292 1293 llvm::Value *OrigSrc = Src; 1294 QualType OrigSrcType = SrcType; 1295 llvm::Type *SrcTy = Src->getType(); 1296 1297 // Handle conversions to bool first, they are special: comparisons against 0. 1298 if (DstType->isBooleanType()) 1299 return EmitConversionToBool(Src, SrcType); 1300 1301 llvm::Type *DstTy = ConvertType(DstType); 1302 1303 // Cast from half through float if half isn't a native type. 1304 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1305 // Cast to FP using the intrinsic if the half type itself isn't supported. 1306 if (DstTy->isFloatingPointTy()) { 1307 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1308 return Builder.CreateCall( 1309 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1310 Src); 1311 } else { 1312 // Cast to other types through float, using either the intrinsic or FPExt, 1313 // depending on whether the half type itself is supported 1314 // (as opposed to operations on half, available with NativeHalfType). 1315 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1316 Src = Builder.CreateCall( 1317 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1318 CGF.CGM.FloatTy), 1319 Src); 1320 } else { 1321 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1322 } 1323 SrcType = CGF.getContext().FloatTy; 1324 SrcTy = CGF.FloatTy; 1325 } 1326 } 1327 1328 // Ignore conversions like int -> uint. 1329 if (SrcTy == DstTy) { 1330 if (Opts.EmitImplicitIntegerSignChangeChecks) 1331 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1332 NoncanonicalDstType, Loc); 1333 1334 return Src; 1335 } 1336 1337 // Handle pointer conversions next: pointers can only be converted to/from 1338 // other pointers and integers. Check for pointer types in terms of LLVM, as 1339 // some native types (like Obj-C id) may map to a pointer type. 1340 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1341 // The source value may be an integer, or a pointer. 1342 if (isa<llvm::PointerType>(SrcTy)) 1343 return Builder.CreateBitCast(Src, DstTy, "conv"); 1344 1345 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1346 // First, convert to the correct width so that we control the kind of 1347 // extension. 1348 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1349 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1350 llvm::Value* IntResult = 1351 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1352 // Then, cast to pointer. 1353 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1354 } 1355 1356 if (isa<llvm::PointerType>(SrcTy)) { 1357 // Must be an ptr to int cast. 1358 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1359 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1360 } 1361 1362 // A scalar can be splatted to an extended vector of the same element type 1363 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1364 // Sema should add casts to make sure that the source expression's type is 1365 // the same as the vector's element type (sans qualifiers) 1366 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1367 SrcType.getTypePtr() && 1368 "Splatted expr doesn't match with vector element type?"); 1369 1370 // Splat the element across to all elements 1371 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 1372 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1373 } 1374 1375 if (SrcType->isMatrixType() && DstType->isMatrixType()) 1376 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1377 1378 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1379 // Allow bitcast from vector to integer/fp of the same size. 1380 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1381 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1382 if (SrcSize == DstSize) 1383 return Builder.CreateBitCast(Src, DstTy, "conv"); 1384 1385 // Conversions between vectors of different sizes are not allowed except 1386 // when vectors of half are involved. Operations on storage-only half 1387 // vectors require promoting half vector operands to float vectors and 1388 // truncating the result, which is either an int or float vector, to a 1389 // short or half vector. 1390 1391 // Source and destination are both expected to be vectors. 1392 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1393 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1394 (void)DstElementTy; 1395 1396 assert(((SrcElementTy->isIntegerTy() && 1397 DstElementTy->isIntegerTy()) || 1398 (SrcElementTy->isFloatingPointTy() && 1399 DstElementTy->isFloatingPointTy())) && 1400 "unexpected conversion between a floating-point vector and an " 1401 "integer vector"); 1402 1403 // Truncate an i32 vector to an i16 vector. 1404 if (SrcElementTy->isIntegerTy()) 1405 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1406 1407 // Truncate a float vector to a half vector. 1408 if (SrcSize > DstSize) 1409 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1410 1411 // Promote a half vector to a float vector. 1412 return Builder.CreateFPExt(Src, DstTy, "conv"); 1413 } 1414 1415 // Finally, we have the arithmetic types: real int/float. 1416 Value *Res = nullptr; 1417 llvm::Type *ResTy = DstTy; 1418 1419 // An overflowing conversion has undefined behavior if either the source type 1420 // or the destination type is a floating-point type. However, we consider the 1421 // range of representable values for all floating-point types to be 1422 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1423 // floating-point type. 1424 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1425 OrigSrcType->isFloatingType()) 1426 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1427 Loc); 1428 1429 // Cast to half through float if half isn't a native type. 1430 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1431 // Make sure we cast in a single step if from another FP type. 1432 if (SrcTy->isFloatingPointTy()) { 1433 // Use the intrinsic if the half type itself isn't supported 1434 // (as opposed to operations on half, available with NativeHalfType). 1435 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1436 return Builder.CreateCall( 1437 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1438 // If the half type is supported, just use an fptrunc. 1439 return Builder.CreateFPTrunc(Src, DstTy); 1440 } 1441 DstTy = CGF.FloatTy; 1442 } 1443 1444 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1445 1446 if (DstTy != ResTy) { 1447 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1448 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1449 Res = Builder.CreateCall( 1450 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1451 Res); 1452 } else { 1453 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1454 } 1455 } 1456 1457 if (Opts.EmitImplicitIntegerTruncationChecks) 1458 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1459 NoncanonicalDstType, Loc); 1460 1461 if (Opts.EmitImplicitIntegerSignChangeChecks) 1462 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1463 NoncanonicalDstType, Loc); 1464 1465 return Res; 1466 } 1467 1468 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1469 QualType DstTy, 1470 SourceLocation Loc) { 1471 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 1472 llvm::Value *Result; 1473 if (SrcTy->isRealFloatingType()) 1474 Result = FPBuilder.CreateFloatingToFixed(Src, 1475 CGF.getContext().getFixedPointSemantics(DstTy)); 1476 else if (DstTy->isRealFloatingType()) 1477 Result = FPBuilder.CreateFixedToFloating(Src, 1478 CGF.getContext().getFixedPointSemantics(SrcTy), 1479 ConvertType(DstTy)); 1480 else { 1481 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1482 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1483 1484 if (DstTy->isIntegerType()) 1485 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, 1486 DstFPSema.getWidth(), 1487 DstFPSema.isSigned()); 1488 else if (SrcTy->isIntegerType()) 1489 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), 1490 DstFPSema); 1491 else 1492 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); 1493 } 1494 return Result; 1495 } 1496 1497 /// Emit a conversion from the specified complex type to the specified 1498 /// destination type, where the destination type is an LLVM scalar type. 1499 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1500 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1501 SourceLocation Loc) { 1502 // Get the source element type. 1503 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1504 1505 // Handle conversions to bool first, they are special: comparisons against 0. 1506 if (DstTy->isBooleanType()) { 1507 // Complex != 0 -> (Real != 0) | (Imag != 0) 1508 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1509 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1510 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1511 } 1512 1513 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1514 // the imaginary part of the complex value is discarded and the value of the 1515 // real part is converted according to the conversion rules for the 1516 // corresponding real type. 1517 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1518 } 1519 1520 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1521 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1522 } 1523 1524 /// Emit a sanitization check for the given "binary" operation (which 1525 /// might actually be a unary increment which has been lowered to a binary 1526 /// operation). The check passes if all values in \p Checks (which are \c i1), 1527 /// are \c true. 1528 void ScalarExprEmitter::EmitBinOpCheck( 1529 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1530 assert(CGF.IsSanitizerScope); 1531 SanitizerHandler Check; 1532 SmallVector<llvm::Constant *, 4> StaticData; 1533 SmallVector<llvm::Value *, 2> DynamicData; 1534 1535 BinaryOperatorKind Opcode = Info.Opcode; 1536 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1537 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1538 1539 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1540 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1541 if (UO && UO->getOpcode() == UO_Minus) { 1542 Check = SanitizerHandler::NegateOverflow; 1543 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1544 DynamicData.push_back(Info.RHS); 1545 } else { 1546 if (BinaryOperator::isShiftOp(Opcode)) { 1547 // Shift LHS negative or too large, or RHS out of bounds. 1548 Check = SanitizerHandler::ShiftOutOfBounds; 1549 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1550 StaticData.push_back( 1551 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1552 StaticData.push_back( 1553 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1554 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1555 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1556 Check = SanitizerHandler::DivremOverflow; 1557 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1558 } else { 1559 // Arithmetic overflow (+, -, *). 1560 switch (Opcode) { 1561 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1562 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1563 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1564 default: llvm_unreachable("unexpected opcode for bin op check"); 1565 } 1566 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1567 } 1568 DynamicData.push_back(Info.LHS); 1569 DynamicData.push_back(Info.RHS); 1570 } 1571 1572 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1573 } 1574 1575 //===----------------------------------------------------------------------===// 1576 // Visitor Methods 1577 //===----------------------------------------------------------------------===// 1578 1579 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1580 CGF.ErrorUnsupported(E, "scalar expression"); 1581 if (E->getType()->isVoidType()) 1582 return nullptr; 1583 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1584 } 1585 1586 Value * 1587 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) { 1588 ASTContext &Context = CGF.getContext(); 1589 llvm::Optional<LangAS> GlobalAS = 1590 Context.getTargetInfo().getConstantAddressSpace(); 1591 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr( 1592 E->ComputeName(Context), "__usn_str", 1593 static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default))); 1594 1595 unsigned ExprAS = Context.getTargetAddressSpace(E->getType()); 1596 1597 if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS) 1598 return GlobalConstStr; 1599 1600 llvm::Type *EltTy = GlobalConstStr->getType()->getPointerElementType(); 1601 llvm::PointerType *NewPtrTy = llvm::PointerType::get(EltTy, ExprAS); 1602 return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast"); 1603 } 1604 1605 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1606 // Vector Mask Case 1607 if (E->getNumSubExprs() == 2) { 1608 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1609 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1610 Value *Mask; 1611 1612 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); 1613 unsigned LHSElts = LTy->getNumElements(); 1614 1615 Mask = RHS; 1616 1617 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); 1618 1619 // Mask off the high bits of each shuffle index. 1620 Value *MaskBits = 1621 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1622 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1623 1624 // newv = undef 1625 // mask = mask & maskbits 1626 // for each elt 1627 // n = extract mask i 1628 // x = extract val n 1629 // newv = insert newv, x, i 1630 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1631 MTy->getNumElements()); 1632 Value* NewV = llvm::UndefValue::get(RTy); 1633 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1634 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1635 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1636 1637 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1638 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1639 } 1640 return NewV; 1641 } 1642 1643 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1644 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1645 1646 SmallVector<int, 32> Indices; 1647 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1648 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1649 // Check for -1 and output it as undef in the IR. 1650 if (Idx.isSigned() && Idx.isAllOnes()) 1651 Indices.push_back(-1); 1652 else 1653 Indices.push_back(Idx.getZExtValue()); 1654 } 1655 1656 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1657 } 1658 1659 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1660 QualType SrcType = E->getSrcExpr()->getType(), 1661 DstType = E->getType(); 1662 1663 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1664 1665 SrcType = CGF.getContext().getCanonicalType(SrcType); 1666 DstType = CGF.getContext().getCanonicalType(DstType); 1667 if (SrcType == DstType) return Src; 1668 1669 assert(SrcType->isVectorType() && 1670 "ConvertVector source type must be a vector"); 1671 assert(DstType->isVectorType() && 1672 "ConvertVector destination type must be a vector"); 1673 1674 llvm::Type *SrcTy = Src->getType(); 1675 llvm::Type *DstTy = ConvertType(DstType); 1676 1677 // Ignore conversions like int -> uint. 1678 if (SrcTy == DstTy) 1679 return Src; 1680 1681 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1682 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1683 1684 assert(SrcTy->isVectorTy() && 1685 "ConvertVector source IR type must be a vector"); 1686 assert(DstTy->isVectorTy() && 1687 "ConvertVector destination IR type must be a vector"); 1688 1689 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1690 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1691 1692 if (DstEltType->isBooleanType()) { 1693 assert((SrcEltTy->isFloatingPointTy() || 1694 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1695 1696 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1697 if (SrcEltTy->isFloatingPointTy()) { 1698 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1699 } else { 1700 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1701 } 1702 } 1703 1704 // We have the arithmetic types: real int/float. 1705 Value *Res = nullptr; 1706 1707 if (isa<llvm::IntegerType>(SrcEltTy)) { 1708 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1709 if (isa<llvm::IntegerType>(DstEltTy)) 1710 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1711 else if (InputSigned) 1712 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1713 else 1714 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1715 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1716 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1717 if (DstEltType->isSignedIntegerOrEnumerationType()) 1718 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1719 else 1720 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1721 } else { 1722 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1723 "Unknown real conversion"); 1724 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1725 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1726 else 1727 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1728 } 1729 1730 return Res; 1731 } 1732 1733 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1734 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1735 CGF.EmitIgnoredExpr(E->getBase()); 1736 return CGF.emitScalarConstant(Constant, E); 1737 } else { 1738 Expr::EvalResult Result; 1739 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1740 llvm::APSInt Value = Result.Val.getInt(); 1741 CGF.EmitIgnoredExpr(E->getBase()); 1742 return Builder.getInt(Value); 1743 } 1744 } 1745 1746 return EmitLoadOfLValue(E); 1747 } 1748 1749 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1750 TestAndClearIgnoreResultAssign(); 1751 1752 // Emit subscript expressions in rvalue context's. For most cases, this just 1753 // loads the lvalue formed by the subscript expr. However, we have to be 1754 // careful, because the base of a vector subscript is occasionally an rvalue, 1755 // so we can't get it as an lvalue. 1756 if (!E->getBase()->getType()->isVectorType()) 1757 return EmitLoadOfLValue(E); 1758 1759 // Handle the vector case. The base must be a vector, the index must be an 1760 // integer value. 1761 Value *Base = Visit(E->getBase()); 1762 Value *Idx = Visit(E->getIdx()); 1763 QualType IdxTy = E->getIdx()->getType(); 1764 1765 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1766 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1767 1768 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1769 } 1770 1771 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1772 TestAndClearIgnoreResultAssign(); 1773 1774 // Handle the vector case. The base must be a vector, the index must be an 1775 // integer value. 1776 Value *RowIdx = Visit(E->getRowIdx()); 1777 Value *ColumnIdx = Visit(E->getColumnIdx()); 1778 1779 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>(); 1780 unsigned NumRows = MatrixTy->getNumRows(); 1781 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1782 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows); 1783 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0) 1784 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened()); 1785 1786 Value *Matrix = Visit(E->getBase()); 1787 1788 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1789 return Builder.CreateExtractElement(Matrix, Idx, "matrixext"); 1790 } 1791 1792 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1793 unsigned Off) { 1794 int MV = SVI->getMaskValue(Idx); 1795 if (MV == -1) 1796 return -1; 1797 return Off + MV; 1798 } 1799 1800 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1801 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1802 "Index operand too large for shufflevector mask!"); 1803 return C->getZExtValue(); 1804 } 1805 1806 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1807 bool Ignore = TestAndClearIgnoreResultAssign(); 1808 (void)Ignore; 1809 assert (Ignore == false && "init list ignored"); 1810 unsigned NumInitElements = E->getNumInits(); 1811 1812 if (E->hadArrayRangeDesignator()) 1813 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1814 1815 llvm::VectorType *VType = 1816 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1817 1818 if (!VType) { 1819 if (NumInitElements == 0) { 1820 // C++11 value-initialization for the scalar. 1821 return EmitNullValue(E->getType()); 1822 } 1823 // We have a scalar in braces. Just use the first element. 1824 return Visit(E->getInit(0)); 1825 } 1826 1827 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); 1828 1829 // Loop over initializers collecting the Value for each, and remembering 1830 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1831 // us to fold the shuffle for the swizzle into the shuffle for the vector 1832 // initializer, since LLVM optimizers generally do not want to touch 1833 // shuffles. 1834 unsigned CurIdx = 0; 1835 bool VIsUndefShuffle = false; 1836 llvm::Value *V = llvm::UndefValue::get(VType); 1837 for (unsigned i = 0; i != NumInitElements; ++i) { 1838 Expr *IE = E->getInit(i); 1839 Value *Init = Visit(IE); 1840 SmallVector<int, 16> Args; 1841 1842 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1843 1844 // Handle scalar elements. If the scalar initializer is actually one 1845 // element of a different vector of the same width, use shuffle instead of 1846 // extract+insert. 1847 if (!VVT) { 1848 if (isa<ExtVectorElementExpr>(IE)) { 1849 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1850 1851 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) 1852 ->getNumElements() == ResElts) { 1853 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1854 Value *LHS = nullptr, *RHS = nullptr; 1855 if (CurIdx == 0) { 1856 // insert into undef -> shuffle (src, undef) 1857 // shufflemask must use an i32 1858 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1859 Args.resize(ResElts, -1); 1860 1861 LHS = EI->getVectorOperand(); 1862 RHS = V; 1863 VIsUndefShuffle = true; 1864 } else if (VIsUndefShuffle) { 1865 // insert into undefshuffle && size match -> shuffle (v, src) 1866 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1867 for (unsigned j = 0; j != CurIdx; ++j) 1868 Args.push_back(getMaskElt(SVV, j, 0)); 1869 Args.push_back(ResElts + C->getZExtValue()); 1870 Args.resize(ResElts, -1); 1871 1872 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1873 RHS = EI->getVectorOperand(); 1874 VIsUndefShuffle = false; 1875 } 1876 if (!Args.empty()) { 1877 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1878 ++CurIdx; 1879 continue; 1880 } 1881 } 1882 } 1883 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1884 "vecinit"); 1885 VIsUndefShuffle = false; 1886 ++CurIdx; 1887 continue; 1888 } 1889 1890 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); 1891 1892 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1893 // input is the same width as the vector being constructed, generate an 1894 // optimized shuffle of the swizzle input into the result. 1895 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1896 if (isa<ExtVectorElementExpr>(IE)) { 1897 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1898 Value *SVOp = SVI->getOperand(0); 1899 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); 1900 1901 if (OpTy->getNumElements() == ResElts) { 1902 for (unsigned j = 0; j != CurIdx; ++j) { 1903 // If the current vector initializer is a shuffle with undef, merge 1904 // this shuffle directly into it. 1905 if (VIsUndefShuffle) { 1906 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1907 } else { 1908 Args.push_back(j); 1909 } 1910 } 1911 for (unsigned j = 0, je = InitElts; j != je; ++j) 1912 Args.push_back(getMaskElt(SVI, j, Offset)); 1913 Args.resize(ResElts, -1); 1914 1915 if (VIsUndefShuffle) 1916 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1917 1918 Init = SVOp; 1919 } 1920 } 1921 1922 // Extend init to result vector length, and then shuffle its contribution 1923 // to the vector initializer into V. 1924 if (Args.empty()) { 1925 for (unsigned j = 0; j != InitElts; ++j) 1926 Args.push_back(j); 1927 Args.resize(ResElts, -1); 1928 Init = Builder.CreateShuffleVector(Init, Args, "vext"); 1929 1930 Args.clear(); 1931 for (unsigned j = 0; j != CurIdx; ++j) 1932 Args.push_back(j); 1933 for (unsigned j = 0; j != InitElts; ++j) 1934 Args.push_back(j + Offset); 1935 Args.resize(ResElts, -1); 1936 } 1937 1938 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1939 // merging subsequent shuffles into this one. 1940 if (CurIdx == 0) 1941 std::swap(V, Init); 1942 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 1943 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1944 CurIdx += InitElts; 1945 } 1946 1947 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1948 // Emit remaining default initializers. 1949 llvm::Type *EltTy = VType->getElementType(); 1950 1951 // Emit remaining default initializers 1952 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1953 Value *Idx = Builder.getInt32(CurIdx); 1954 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1955 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1956 } 1957 return V; 1958 } 1959 1960 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1961 const Expr *E = CE->getSubExpr(); 1962 1963 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1964 return false; 1965 1966 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1967 // We always assume that 'this' is never null. 1968 return false; 1969 } 1970 1971 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1972 // And that glvalue casts are never null. 1973 if (ICE->isGLValue()) 1974 return false; 1975 } 1976 1977 return true; 1978 } 1979 1980 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1981 // have to handle a more broad range of conversions than explicit casts, as they 1982 // handle things like function to ptr-to-function decay etc. 1983 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1984 Expr *E = CE->getSubExpr(); 1985 QualType DestTy = CE->getType(); 1986 CastKind Kind = CE->getCastKind(); 1987 1988 // These cases are generally not written to ignore the result of 1989 // evaluating their sub-expressions, so we clear this now. 1990 bool Ignored = TestAndClearIgnoreResultAssign(); 1991 1992 // Since almost all cast kinds apply to scalars, this switch doesn't have 1993 // a default case, so the compiler will warn on a missing case. The cases 1994 // are in the same order as in the CastKind enum. 1995 switch (Kind) { 1996 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1997 case CK_BuiltinFnToFnPtr: 1998 llvm_unreachable("builtin functions are handled elsewhere"); 1999 2000 case CK_LValueBitCast: 2001 case CK_ObjCObjectLValueCast: { 2002 Address Addr = EmitLValue(E).getAddress(CGF); 2003 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2004 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 2005 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2006 } 2007 2008 case CK_LValueToRValueBitCast: { 2009 LValue SourceLVal = CGF.EmitLValue(E); 2010 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 2011 CGF.ConvertTypeForMem(DestTy)); 2012 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2013 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2014 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2015 } 2016 2017 case CK_CPointerToObjCPointerCast: 2018 case CK_BlockPointerToObjCPointerCast: 2019 case CK_AnyPointerToBlockPointerCast: 2020 case CK_BitCast: { 2021 Value *Src = Visit(const_cast<Expr*>(E)); 2022 llvm::Type *SrcTy = Src->getType(); 2023 llvm::Type *DstTy = ConvertType(DestTy); 2024 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2025 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2026 llvm_unreachable("wrong cast for pointers in different address spaces" 2027 "(must be an address space cast)!"); 2028 } 2029 2030 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2031 if (auto PT = DestTy->getAs<PointerType>()) 2032 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2033 /*MayBeNull=*/true, 2034 CodeGenFunction::CFITCK_UnrelatedCast, 2035 CE->getBeginLoc()); 2036 } 2037 2038 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2039 const QualType SrcType = E->getType(); 2040 2041 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2042 // Casting to pointer that could carry dynamic information (provided by 2043 // invariant.group) requires launder. 2044 Src = Builder.CreateLaunderInvariantGroup(Src); 2045 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2046 // Casting to pointer that does not carry dynamic information (provided 2047 // by invariant.group) requires stripping it. Note that we don't do it 2048 // if the source could not be dynamic type and destination could be 2049 // dynamic because dynamic information is already laundered. It is 2050 // because launder(strip(src)) == launder(src), so there is no need to 2051 // add extra strip before launder. 2052 Src = Builder.CreateStripInvariantGroup(Src); 2053 } 2054 } 2055 2056 // Update heapallocsite metadata when there is an explicit pointer cast. 2057 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 2058 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { 2059 QualType PointeeType = DestTy->getPointeeType(); 2060 if (!PointeeType.isNull()) 2061 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 2062 CE->getExprLoc()); 2063 } 2064 } 2065 2066 // If Src is a fixed vector and Dst is a scalable vector, and both have the 2067 // same element type, use the llvm.experimental.vector.insert intrinsic to 2068 // perform the bitcast. 2069 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 2070 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { 2071 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 2072 // vector, use a vector insert and bitcast the result. 2073 bool NeedsBitCast = false; 2074 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2075 llvm::Type *OrigType = DstTy; 2076 if (ScalableDst == PredType && 2077 FixedSrc->getElementType() == Builder.getInt8Ty()) { 2078 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2079 ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy); 2080 NeedsBitCast = true; 2081 } 2082 if (FixedSrc->getElementType() == ScalableDst->getElementType()) { 2083 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); 2084 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2085 llvm::Value *Result = Builder.CreateInsertVector( 2086 DstTy, UndefVec, Src, Zero, "castScalableSve"); 2087 if (NeedsBitCast) 2088 Result = Builder.CreateBitCast(Result, OrigType); 2089 return Result; 2090 } 2091 } 2092 } 2093 2094 // If Src is a scalable vector and Dst is a fixed vector, and both have the 2095 // same element type, use the llvm.experimental.vector.extract intrinsic to 2096 // perform the bitcast. 2097 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { 2098 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { 2099 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2100 // vector, bitcast the source and use a vector extract. 2101 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2102 if (ScalableSrc == PredType && 2103 FixedDst->getElementType() == Builder.getInt8Ty()) { 2104 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2105 ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy); 2106 Src = Builder.CreateBitCast(Src, SrcTy); 2107 } 2108 if (ScalableSrc->getElementType() == FixedDst->getElementType()) { 2109 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2110 return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve"); 2111 } 2112 } 2113 } 2114 2115 // Perform VLAT <-> VLST bitcast through memory. 2116 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics 2117 // require the element types of the vectors to be the same, we 2118 // need to keep this around for bitcasts between VLAT <-> VLST where 2119 // the element types of the vectors are not the same, until we figure 2120 // out a better way of doing these casts. 2121 if ((isa<llvm::FixedVectorType>(SrcTy) && 2122 isa<llvm::ScalableVectorType>(DstTy)) || 2123 (isa<llvm::ScalableVectorType>(SrcTy) && 2124 isa<llvm::FixedVectorType>(DstTy))) { 2125 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value"); 2126 LValue LV = CGF.MakeAddrLValue(Addr, E->getType()); 2127 CGF.EmitStoreOfScalar(Src, LV); 2128 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy), 2129 "castFixedSve"); 2130 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2131 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2132 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2133 } 2134 2135 return Builder.CreateBitCast(Src, DstTy); 2136 } 2137 case CK_AddressSpaceConversion: { 2138 Expr::EvalResult Result; 2139 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2140 Result.Val.isNullPointer()) { 2141 // If E has side effect, it is emitted even if its final result is a 2142 // null pointer. In that case, a DCE pass should be able to 2143 // eliminate the useless instructions emitted during translating E. 2144 if (Result.HasSideEffects) 2145 Visit(E); 2146 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2147 ConvertType(DestTy)), DestTy); 2148 } 2149 // Since target may map different address spaces in AST to the same address 2150 // space, an address space conversion may end up as a bitcast. 2151 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2152 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2153 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2154 } 2155 case CK_AtomicToNonAtomic: 2156 case CK_NonAtomicToAtomic: 2157 case CK_UserDefinedConversion: 2158 return Visit(const_cast<Expr*>(E)); 2159 2160 case CK_NoOp: { 2161 llvm::Value *V = Visit(const_cast<Expr *>(E)); 2162 if (V) { 2163 // CK_NoOp can model a pointer qualification conversion, which can remove 2164 // an array bound and change the IR type. 2165 // FIXME: Once pointee types are removed from IR, remove this. 2166 llvm::Type *T = ConvertType(DestTy); 2167 if (T != V->getType()) 2168 V = Builder.CreateBitCast(V, T); 2169 } 2170 return V; 2171 } 2172 2173 case CK_BaseToDerived: { 2174 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2175 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2176 2177 Address Base = CGF.EmitPointerWithAlignment(E); 2178 Address Derived = 2179 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2180 CE->path_begin(), CE->path_end(), 2181 CGF.ShouldNullCheckClassCastValue(CE)); 2182 2183 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2184 // performed and the object is not of the derived type. 2185 if (CGF.sanitizePerformTypeCheck()) 2186 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2187 Derived.getPointer(), DestTy->getPointeeType()); 2188 2189 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2190 CGF.EmitVTablePtrCheckForCast( 2191 DestTy->getPointeeType(), Derived.getPointer(), 2192 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2193 CE->getBeginLoc()); 2194 2195 return Derived.getPointer(); 2196 } 2197 case CK_UncheckedDerivedToBase: 2198 case CK_DerivedToBase: { 2199 // The EmitPointerWithAlignment path does this fine; just discard 2200 // the alignment. 2201 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2202 } 2203 2204 case CK_Dynamic: { 2205 Address V = CGF.EmitPointerWithAlignment(E); 2206 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2207 return CGF.EmitDynamicCast(V, DCE); 2208 } 2209 2210 case CK_ArrayToPointerDecay: 2211 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2212 case CK_FunctionToPointerDecay: 2213 return EmitLValue(E).getPointer(CGF); 2214 2215 case CK_NullToPointer: 2216 if (MustVisitNullValue(E)) 2217 CGF.EmitIgnoredExpr(E); 2218 2219 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2220 DestTy); 2221 2222 case CK_NullToMemberPointer: { 2223 if (MustVisitNullValue(E)) 2224 CGF.EmitIgnoredExpr(E); 2225 2226 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2227 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2228 } 2229 2230 case CK_ReinterpretMemberPointer: 2231 case CK_BaseToDerivedMemberPointer: 2232 case CK_DerivedToBaseMemberPointer: { 2233 Value *Src = Visit(E); 2234 2235 // Note that the AST doesn't distinguish between checked and 2236 // unchecked member pointer conversions, so we always have to 2237 // implement checked conversions here. This is inefficient when 2238 // actual control flow may be required in order to perform the 2239 // check, which it is for data member pointers (but not member 2240 // function pointers on Itanium and ARM). 2241 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2242 } 2243 2244 case CK_ARCProduceObject: 2245 return CGF.EmitARCRetainScalarExpr(E); 2246 case CK_ARCConsumeObject: 2247 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2248 case CK_ARCReclaimReturnedObject: 2249 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2250 case CK_ARCExtendBlockObject: 2251 return CGF.EmitARCExtendBlockObject(E); 2252 2253 case CK_CopyAndAutoreleaseBlockObject: 2254 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2255 2256 case CK_FloatingRealToComplex: 2257 case CK_FloatingComplexCast: 2258 case CK_IntegralRealToComplex: 2259 case CK_IntegralComplexCast: 2260 case CK_IntegralComplexToFloatingComplex: 2261 case CK_FloatingComplexToIntegralComplex: 2262 case CK_ConstructorConversion: 2263 case CK_ToUnion: 2264 llvm_unreachable("scalar cast to non-scalar value"); 2265 2266 case CK_LValueToRValue: 2267 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2268 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2269 return Visit(const_cast<Expr*>(E)); 2270 2271 case CK_IntegralToPointer: { 2272 Value *Src = Visit(const_cast<Expr*>(E)); 2273 2274 // First, convert to the correct width so that we control the kind of 2275 // extension. 2276 auto DestLLVMTy = ConvertType(DestTy); 2277 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2278 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2279 llvm::Value* IntResult = 2280 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2281 2282 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2283 2284 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2285 // Going from integer to pointer that could be dynamic requires reloading 2286 // dynamic information from invariant.group. 2287 if (DestTy.mayBeDynamicClass()) 2288 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2289 } 2290 return IntToPtr; 2291 } 2292 case CK_PointerToIntegral: { 2293 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2294 auto *PtrExpr = Visit(E); 2295 2296 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2297 const QualType SrcType = E->getType(); 2298 2299 // Casting to integer requires stripping dynamic information as it does 2300 // not carries it. 2301 if (SrcType.mayBeDynamicClass()) 2302 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2303 } 2304 2305 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2306 } 2307 case CK_ToVoid: { 2308 CGF.EmitIgnoredExpr(E); 2309 return nullptr; 2310 } 2311 case CK_MatrixCast: { 2312 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2313 CE->getExprLoc()); 2314 } 2315 case CK_VectorSplat: { 2316 llvm::Type *DstTy = ConvertType(DestTy); 2317 Value *Elt = Visit(const_cast<Expr*>(E)); 2318 // Splat the element across to all elements 2319 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 2320 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2321 } 2322 2323 case CK_FixedPointCast: 2324 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2325 CE->getExprLoc()); 2326 2327 case CK_FixedPointToBoolean: 2328 assert(E->getType()->isFixedPointType() && 2329 "Expected src type to be fixed point type"); 2330 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2331 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2332 CE->getExprLoc()); 2333 2334 case CK_FixedPointToIntegral: 2335 assert(E->getType()->isFixedPointType() && 2336 "Expected src type to be fixed point type"); 2337 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2338 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2339 CE->getExprLoc()); 2340 2341 case CK_IntegralToFixedPoint: 2342 assert(E->getType()->isIntegerType() && 2343 "Expected src type to be an integer"); 2344 assert(DestTy->isFixedPointType() && 2345 "Expected dest type to be fixed point type"); 2346 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2347 CE->getExprLoc()); 2348 2349 case CK_IntegralCast: { 2350 ScalarConversionOpts Opts; 2351 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2352 if (!ICE->isPartOfExplicitCast()) 2353 Opts = ScalarConversionOpts(CGF.SanOpts); 2354 } 2355 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2356 CE->getExprLoc(), Opts); 2357 } 2358 case CK_IntegralToFloating: 2359 case CK_FloatingToIntegral: 2360 case CK_FloatingCast: 2361 case CK_FixedPointToFloating: 2362 case CK_FloatingToFixedPoint: { 2363 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2364 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2365 CE->getExprLoc()); 2366 } 2367 case CK_BooleanToSignedIntegral: { 2368 ScalarConversionOpts Opts; 2369 Opts.TreatBooleanAsSigned = true; 2370 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2371 CE->getExprLoc(), Opts); 2372 } 2373 case CK_IntegralToBoolean: 2374 return EmitIntToBoolConversion(Visit(E)); 2375 case CK_PointerToBoolean: 2376 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2377 case CK_FloatingToBoolean: { 2378 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2379 return EmitFloatToBoolConversion(Visit(E)); 2380 } 2381 case CK_MemberPointerToBoolean: { 2382 llvm::Value *MemPtr = Visit(E); 2383 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2384 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2385 } 2386 2387 case CK_FloatingComplexToReal: 2388 case CK_IntegralComplexToReal: 2389 return CGF.EmitComplexExpr(E, false, true).first; 2390 2391 case CK_FloatingComplexToBoolean: 2392 case CK_IntegralComplexToBoolean: { 2393 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2394 2395 // TODO: kill this function off, inline appropriate case here 2396 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2397 CE->getExprLoc()); 2398 } 2399 2400 case CK_ZeroToOCLOpaqueType: { 2401 assert((DestTy->isEventT() || DestTy->isQueueT() || 2402 DestTy->isOCLIntelSubgroupAVCType()) && 2403 "CK_ZeroToOCLEvent cast on non-event type"); 2404 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2405 } 2406 2407 case CK_IntToOCLSampler: 2408 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2409 2410 } // end of switch 2411 2412 llvm_unreachable("unknown scalar cast"); 2413 } 2414 2415 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2416 CodeGenFunction::StmtExprEvaluation eval(CGF); 2417 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2418 !E->getType()->isVoidType()); 2419 if (!RetAlloca.isValid()) 2420 return nullptr; 2421 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2422 E->getExprLoc()); 2423 } 2424 2425 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2426 CodeGenFunction::RunCleanupsScope Scope(CGF); 2427 Value *V = Visit(E->getSubExpr()); 2428 // Defend against dominance problems caused by jumps out of expression 2429 // evaluation through the shared cleanup block. 2430 Scope.ForceCleanup({&V}); 2431 return V; 2432 } 2433 2434 //===----------------------------------------------------------------------===// 2435 // Unary Operators 2436 //===----------------------------------------------------------------------===// 2437 2438 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2439 llvm::Value *InVal, bool IsInc, 2440 FPOptions FPFeatures) { 2441 BinOpInfo BinOp; 2442 BinOp.LHS = InVal; 2443 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2444 BinOp.Ty = E->getType(); 2445 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2446 BinOp.FPFeatures = FPFeatures; 2447 BinOp.E = E; 2448 return BinOp; 2449 } 2450 2451 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2452 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2453 llvm::Value *Amount = 2454 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2455 StringRef Name = IsInc ? "inc" : "dec"; 2456 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2457 case LangOptions::SOB_Defined: 2458 return Builder.CreateAdd(InVal, Amount, Name); 2459 case LangOptions::SOB_Undefined: 2460 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2461 return Builder.CreateNSWAdd(InVal, Amount, Name); 2462 LLVM_FALLTHROUGH; 2463 case LangOptions::SOB_Trapping: 2464 if (!E->canOverflow()) 2465 return Builder.CreateNSWAdd(InVal, Amount, Name); 2466 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2467 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2468 } 2469 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2470 } 2471 2472 namespace { 2473 /// Handles check and update for lastprivate conditional variables. 2474 class OMPLastprivateConditionalUpdateRAII { 2475 private: 2476 CodeGenFunction &CGF; 2477 const UnaryOperator *E; 2478 2479 public: 2480 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2481 const UnaryOperator *E) 2482 : CGF(CGF), E(E) {} 2483 ~OMPLastprivateConditionalUpdateRAII() { 2484 if (CGF.getLangOpts().OpenMP) 2485 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2486 CGF, E->getSubExpr()); 2487 } 2488 }; 2489 } // namespace 2490 2491 llvm::Value * 2492 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2493 bool isInc, bool isPre) { 2494 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2495 QualType type = E->getSubExpr()->getType(); 2496 llvm::PHINode *atomicPHI = nullptr; 2497 llvm::Value *value; 2498 llvm::Value *input; 2499 2500 int amount = (isInc ? 1 : -1); 2501 bool isSubtraction = !isInc; 2502 2503 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2504 type = atomicTy->getValueType(); 2505 if (isInc && type->isBooleanType()) { 2506 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2507 if (isPre) { 2508 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2509 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2510 return Builder.getTrue(); 2511 } 2512 // For atomic bool increment, we just store true and return it for 2513 // preincrement, do an atomic swap with true for postincrement 2514 return Builder.CreateAtomicRMW( 2515 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2516 llvm::AtomicOrdering::SequentiallyConsistent); 2517 } 2518 // Special case for atomic increment / decrement on integers, emit 2519 // atomicrmw instructions. We skip this if we want to be doing overflow 2520 // checking, and fall into the slow path with the atomic cmpxchg loop. 2521 if (!type->isBooleanType() && type->isIntegerType() && 2522 !(type->isUnsignedIntegerType() && 2523 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2524 CGF.getLangOpts().getSignedOverflowBehavior() != 2525 LangOptions::SOB_Trapping) { 2526 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2527 llvm::AtomicRMWInst::Sub; 2528 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2529 llvm::Instruction::Sub; 2530 llvm::Value *amt = CGF.EmitToMemory( 2531 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2532 llvm::Value *old = 2533 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2534 llvm::AtomicOrdering::SequentiallyConsistent); 2535 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2536 } 2537 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2538 input = value; 2539 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2540 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2541 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2542 value = CGF.EmitToMemory(value, type); 2543 Builder.CreateBr(opBB); 2544 Builder.SetInsertPoint(opBB); 2545 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2546 atomicPHI->addIncoming(value, startBB); 2547 value = atomicPHI; 2548 } else { 2549 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2550 input = value; 2551 } 2552 2553 // Special case of integer increment that we have to check first: bool++. 2554 // Due to promotion rules, we get: 2555 // bool++ -> bool = bool + 1 2556 // -> bool = (int)bool + 1 2557 // -> bool = ((int)bool + 1 != 0) 2558 // An interesting aspect of this is that increment is always true. 2559 // Decrement does not have this property. 2560 if (isInc && type->isBooleanType()) { 2561 value = Builder.getTrue(); 2562 2563 // Most common case by far: integer increment. 2564 } else if (type->isIntegerType()) { 2565 QualType promotedType; 2566 bool canPerformLossyDemotionCheck = false; 2567 if (type->isPromotableIntegerType()) { 2568 promotedType = CGF.getContext().getPromotedIntegerType(type); 2569 assert(promotedType != type && "Shouldn't promote to the same type."); 2570 canPerformLossyDemotionCheck = true; 2571 canPerformLossyDemotionCheck &= 2572 CGF.getContext().getCanonicalType(type) != 2573 CGF.getContext().getCanonicalType(promotedType); 2574 canPerformLossyDemotionCheck &= 2575 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2576 type, promotedType); 2577 assert((!canPerformLossyDemotionCheck || 2578 type->isSignedIntegerOrEnumerationType() || 2579 promotedType->isSignedIntegerOrEnumerationType() || 2580 ConvertType(type)->getScalarSizeInBits() == 2581 ConvertType(promotedType)->getScalarSizeInBits()) && 2582 "The following check expects that if we do promotion to different " 2583 "underlying canonical type, at least one of the types (either " 2584 "base or promoted) will be signed, or the bitwidths will match."); 2585 } 2586 if (CGF.SanOpts.hasOneOf( 2587 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2588 canPerformLossyDemotionCheck) { 2589 // While `x += 1` (for `x` with width less than int) is modeled as 2590 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2591 // ease; inc/dec with width less than int can't overflow because of 2592 // promotion rules, so we omit promotion+demotion, which means that we can 2593 // not catch lossy "demotion". Because we still want to catch these cases 2594 // when the sanitizer is enabled, we perform the promotion, then perform 2595 // the increment/decrement in the wider type, and finally 2596 // perform the demotion. This will catch lossy demotions. 2597 2598 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2599 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2600 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2601 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2602 // emitted. 2603 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2604 ScalarConversionOpts(CGF.SanOpts)); 2605 2606 // Note that signed integer inc/dec with width less than int can't 2607 // overflow because of promotion rules; we're just eliding a few steps 2608 // here. 2609 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2610 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2611 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2612 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2613 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2614 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2615 } else { 2616 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2617 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2618 } 2619 2620 // Next most common: pointer increment. 2621 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2622 QualType type = ptr->getPointeeType(); 2623 2624 // VLA types don't have constant size. 2625 if (const VariableArrayType *vla 2626 = CGF.getContext().getAsVariableArrayType(type)) { 2627 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2628 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2629 if (CGF.getLangOpts().isSignedOverflowDefined()) 2630 value = Builder.CreateGEP(value->getType()->getPointerElementType(), 2631 value, numElts, "vla.inc"); 2632 else 2633 value = CGF.EmitCheckedInBoundsGEP( 2634 value, numElts, /*SignedIndices=*/false, isSubtraction, 2635 E->getExprLoc(), "vla.inc"); 2636 2637 // Arithmetic on function pointers (!) is just +-1. 2638 } else if (type->isFunctionType()) { 2639 llvm::Value *amt = Builder.getInt32(amount); 2640 2641 value = CGF.EmitCastToVoidPtr(value); 2642 if (CGF.getLangOpts().isSignedOverflowDefined()) 2643 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr"); 2644 else 2645 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2646 isSubtraction, E->getExprLoc(), 2647 "incdec.funcptr"); 2648 value = Builder.CreateBitCast(value, input->getType()); 2649 2650 // For everything else, we can just do a simple increment. 2651 } else { 2652 llvm::Value *amt = Builder.getInt32(amount); 2653 if (CGF.getLangOpts().isSignedOverflowDefined()) 2654 value = Builder.CreateGEP(value->getType()->getPointerElementType(), 2655 value, amt, "incdec.ptr"); 2656 else 2657 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2658 isSubtraction, E->getExprLoc(), 2659 "incdec.ptr"); 2660 } 2661 2662 // Vector increment/decrement. 2663 } else if (type->isVectorType()) { 2664 if (type->hasIntegerRepresentation()) { 2665 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2666 2667 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2668 } else { 2669 value = Builder.CreateFAdd( 2670 value, 2671 llvm::ConstantFP::get(value->getType(), amount), 2672 isInc ? "inc" : "dec"); 2673 } 2674 2675 // Floating point. 2676 } else if (type->isRealFloatingType()) { 2677 // Add the inc/dec to the real part. 2678 llvm::Value *amt; 2679 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 2680 2681 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2682 // Another special case: half FP increment should be done via float 2683 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2684 value = Builder.CreateCall( 2685 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2686 CGF.CGM.FloatTy), 2687 input, "incdec.conv"); 2688 } else { 2689 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2690 } 2691 } 2692 2693 if (value->getType()->isFloatTy()) 2694 amt = llvm::ConstantFP::get(VMContext, 2695 llvm::APFloat(static_cast<float>(amount))); 2696 else if (value->getType()->isDoubleTy()) 2697 amt = llvm::ConstantFP::get(VMContext, 2698 llvm::APFloat(static_cast<double>(amount))); 2699 else { 2700 // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert 2701 // from float. 2702 llvm::APFloat F(static_cast<float>(amount)); 2703 bool ignored; 2704 const llvm::fltSemantics *FS; 2705 // Don't use getFloatTypeSemantics because Half isn't 2706 // necessarily represented using the "half" LLVM type. 2707 if (value->getType()->isFP128Ty()) 2708 FS = &CGF.getTarget().getFloat128Format(); 2709 else if (value->getType()->isHalfTy()) 2710 FS = &CGF.getTarget().getHalfFormat(); 2711 else if (value->getType()->isPPC_FP128Ty()) 2712 FS = &CGF.getTarget().getIbm128Format(); 2713 else 2714 FS = &CGF.getTarget().getLongDoubleFormat(); 2715 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2716 amt = llvm::ConstantFP::get(VMContext, F); 2717 } 2718 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2719 2720 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2721 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2722 value = Builder.CreateCall( 2723 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2724 CGF.CGM.FloatTy), 2725 value, "incdec.conv"); 2726 } else { 2727 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2728 } 2729 } 2730 2731 // Fixed-point types. 2732 } else if (type->isFixedPointType()) { 2733 // Fixed-point types are tricky. In some cases, it isn't possible to 2734 // represent a 1 or a -1 in the type at all. Piggyback off of 2735 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2736 BinOpInfo Info; 2737 Info.E = E; 2738 Info.Ty = E->getType(); 2739 Info.Opcode = isInc ? BO_Add : BO_Sub; 2740 Info.LHS = value; 2741 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2742 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2743 // since -1 is guaranteed to be representable. 2744 if (type->isSignedFixedPointType()) { 2745 Info.Opcode = isInc ? BO_Sub : BO_Add; 2746 Info.RHS = Builder.CreateNeg(Info.RHS); 2747 } 2748 // Now, convert from our invented integer literal to the type of the unary 2749 // op. This will upscale and saturate if necessary. This value can become 2750 // undef in some cases. 2751 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 2752 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2753 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); 2754 value = EmitFixedPointBinOp(Info); 2755 2756 // Objective-C pointer types. 2757 } else { 2758 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2759 value = CGF.EmitCastToVoidPtr(value); 2760 2761 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2762 if (!isInc) size = -size; 2763 llvm::Value *sizeValue = 2764 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2765 2766 if (CGF.getLangOpts().isSignedOverflowDefined()) 2767 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr"); 2768 else 2769 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2770 /*SignedIndices=*/false, isSubtraction, 2771 E->getExprLoc(), "incdec.objptr"); 2772 value = Builder.CreateBitCast(value, input->getType()); 2773 } 2774 2775 if (atomicPHI) { 2776 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2777 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2778 auto Pair = CGF.EmitAtomicCompareExchange( 2779 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2780 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2781 llvm::Value *success = Pair.second; 2782 atomicPHI->addIncoming(old, curBlock); 2783 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2784 Builder.SetInsertPoint(contBB); 2785 return isPre ? value : input; 2786 } 2787 2788 // Store the updated result through the lvalue. 2789 if (LV.isBitField()) 2790 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2791 else 2792 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2793 2794 // If this is a postinc, return the value read from memory, otherwise use the 2795 // updated value. 2796 return isPre ? value : input; 2797 } 2798 2799 2800 2801 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2802 TestAndClearIgnoreResultAssign(); 2803 Value *Op = Visit(E->getSubExpr()); 2804 2805 // Generate a unary FNeg for FP ops. 2806 if (Op->getType()->isFPOrFPVectorTy()) 2807 return Builder.CreateFNeg(Op, "fneg"); 2808 2809 // Emit unary minus with EmitSub so we handle overflow cases etc. 2810 BinOpInfo BinOp; 2811 BinOp.RHS = Op; 2812 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2813 BinOp.Ty = E->getType(); 2814 BinOp.Opcode = BO_Sub; 2815 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2816 BinOp.E = E; 2817 return EmitSub(BinOp); 2818 } 2819 2820 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2821 TestAndClearIgnoreResultAssign(); 2822 Value *Op = Visit(E->getSubExpr()); 2823 return Builder.CreateNot(Op, "neg"); 2824 } 2825 2826 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2827 // Perform vector logical not on comparison with zero vector. 2828 if (E->getType()->isVectorType() && 2829 E->getType()->castAs<VectorType>()->getVectorKind() == 2830 VectorType::GenericVector) { 2831 Value *Oper = Visit(E->getSubExpr()); 2832 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2833 Value *Result; 2834 if (Oper->getType()->isFPOrFPVectorTy()) { 2835 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2836 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2837 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2838 } else 2839 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2840 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2841 } 2842 2843 // Compare operand to zero. 2844 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2845 2846 // Invert value. 2847 // TODO: Could dynamically modify easy computations here. For example, if 2848 // the operand is an icmp ne, turn into icmp eq. 2849 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2850 2851 // ZExt result to the expr type. 2852 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2853 } 2854 2855 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2856 // Try folding the offsetof to a constant. 2857 Expr::EvalResult EVResult; 2858 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2859 llvm::APSInt Value = EVResult.Val.getInt(); 2860 return Builder.getInt(Value); 2861 } 2862 2863 // Loop over the components of the offsetof to compute the value. 2864 unsigned n = E->getNumComponents(); 2865 llvm::Type* ResultType = ConvertType(E->getType()); 2866 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2867 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2868 for (unsigned i = 0; i != n; ++i) { 2869 OffsetOfNode ON = E->getComponent(i); 2870 llvm::Value *Offset = nullptr; 2871 switch (ON.getKind()) { 2872 case OffsetOfNode::Array: { 2873 // Compute the index 2874 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2875 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2876 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2877 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2878 2879 // Save the element type 2880 CurrentType = 2881 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2882 2883 // Compute the element size 2884 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2885 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2886 2887 // Multiply out to compute the result 2888 Offset = Builder.CreateMul(Idx, ElemSize); 2889 break; 2890 } 2891 2892 case OffsetOfNode::Field: { 2893 FieldDecl *MemberDecl = ON.getField(); 2894 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2895 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2896 2897 // Compute the index of the field in its parent. 2898 unsigned i = 0; 2899 // FIXME: It would be nice if we didn't have to loop here! 2900 for (RecordDecl::field_iterator Field = RD->field_begin(), 2901 FieldEnd = RD->field_end(); 2902 Field != FieldEnd; ++Field, ++i) { 2903 if (*Field == MemberDecl) 2904 break; 2905 } 2906 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2907 2908 // Compute the offset to the field 2909 int64_t OffsetInt = RL.getFieldOffset(i) / 2910 CGF.getContext().getCharWidth(); 2911 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2912 2913 // Save the element type. 2914 CurrentType = MemberDecl->getType(); 2915 break; 2916 } 2917 2918 case OffsetOfNode::Identifier: 2919 llvm_unreachable("dependent __builtin_offsetof"); 2920 2921 case OffsetOfNode::Base: { 2922 if (ON.getBase()->isVirtual()) { 2923 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2924 continue; 2925 } 2926 2927 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2928 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2929 2930 // Save the element type. 2931 CurrentType = ON.getBase()->getType(); 2932 2933 // Compute the offset to the base. 2934 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2935 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2936 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2937 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2938 break; 2939 } 2940 } 2941 Result = Builder.CreateAdd(Result, Offset); 2942 } 2943 return Result; 2944 } 2945 2946 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2947 /// argument of the sizeof expression as an integer. 2948 Value * 2949 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2950 const UnaryExprOrTypeTraitExpr *E) { 2951 QualType TypeToSize = E->getTypeOfArgument(); 2952 if (E->getKind() == UETT_SizeOf) { 2953 if (const VariableArrayType *VAT = 2954 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2955 if (E->isArgumentType()) { 2956 // sizeof(type) - make sure to emit the VLA size. 2957 CGF.EmitVariablyModifiedType(TypeToSize); 2958 } else { 2959 // C99 6.5.3.4p2: If the argument is an expression of type 2960 // VLA, it is evaluated. 2961 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2962 } 2963 2964 auto VlaSize = CGF.getVLASize(VAT); 2965 llvm::Value *size = VlaSize.NumElts; 2966 2967 // Scale the number of non-VLA elements by the non-VLA element size. 2968 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2969 if (!eltSize.isOne()) 2970 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2971 2972 return size; 2973 } 2974 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2975 auto Alignment = 2976 CGF.getContext() 2977 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2978 E->getTypeOfArgument()->getPointeeType())) 2979 .getQuantity(); 2980 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2981 } 2982 2983 // If this isn't sizeof(vla), the result must be constant; use the constant 2984 // folding logic so we don't have to duplicate it here. 2985 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2986 } 2987 2988 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2989 Expr *Op = E->getSubExpr(); 2990 if (Op->getType()->isAnyComplexType()) { 2991 // If it's an l-value, load through the appropriate subobject l-value. 2992 // Note that we have to ask E because Op might be an l-value that 2993 // this won't work for, e.g. an Obj-C property. 2994 if (E->isGLValue()) 2995 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2996 E->getExprLoc()).getScalarVal(); 2997 2998 // Otherwise, calculate and project. 2999 return CGF.EmitComplexExpr(Op, false, true).first; 3000 } 3001 3002 return Visit(Op); 3003 } 3004 3005 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 3006 Expr *Op = E->getSubExpr(); 3007 if (Op->getType()->isAnyComplexType()) { 3008 // If it's an l-value, load through the appropriate subobject l-value. 3009 // Note that we have to ask E because Op might be an l-value that 3010 // this won't work for, e.g. an Obj-C property. 3011 if (Op->isGLValue()) 3012 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 3013 E->getExprLoc()).getScalarVal(); 3014 3015 // Otherwise, calculate and project. 3016 return CGF.EmitComplexExpr(Op, true, false).second; 3017 } 3018 3019 // __imag on a scalar returns zero. Emit the subexpr to ensure side 3020 // effects are evaluated, but not the actual value. 3021 if (Op->isGLValue()) 3022 CGF.EmitLValue(Op); 3023 else 3024 CGF.EmitScalarExpr(Op, true); 3025 return llvm::Constant::getNullValue(ConvertType(E->getType())); 3026 } 3027 3028 //===----------------------------------------------------------------------===// 3029 // Binary Operators 3030 //===----------------------------------------------------------------------===// 3031 3032 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 3033 TestAndClearIgnoreResultAssign(); 3034 BinOpInfo Result; 3035 Result.LHS = Visit(E->getLHS()); 3036 Result.RHS = Visit(E->getRHS()); 3037 Result.Ty = E->getType(); 3038 Result.Opcode = E->getOpcode(); 3039 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3040 Result.E = E; 3041 return Result; 3042 } 3043 3044 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 3045 const CompoundAssignOperator *E, 3046 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 3047 Value *&Result) { 3048 QualType LHSTy = E->getLHS()->getType(); 3049 BinOpInfo OpInfo; 3050 3051 if (E->getComputationResultType()->isAnyComplexType()) 3052 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 3053 3054 // Emit the RHS first. __block variables need to have the rhs evaluated 3055 // first, plus this should improve codegen a little. 3056 OpInfo.RHS = Visit(E->getRHS()); 3057 OpInfo.Ty = E->getComputationResultType(); 3058 OpInfo.Opcode = E->getOpcode(); 3059 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3060 OpInfo.E = E; 3061 // Load/convert the LHS. 3062 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3063 3064 llvm::PHINode *atomicPHI = nullptr; 3065 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 3066 QualType type = atomicTy->getValueType(); 3067 if (!type->isBooleanType() && type->isIntegerType() && 3068 !(type->isUnsignedIntegerType() && 3069 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 3070 CGF.getLangOpts().getSignedOverflowBehavior() != 3071 LangOptions::SOB_Trapping) { 3072 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 3073 llvm::Instruction::BinaryOps Op; 3074 switch (OpInfo.Opcode) { 3075 // We don't have atomicrmw operands for *, %, /, <<, >> 3076 case BO_MulAssign: case BO_DivAssign: 3077 case BO_RemAssign: 3078 case BO_ShlAssign: 3079 case BO_ShrAssign: 3080 break; 3081 case BO_AddAssign: 3082 AtomicOp = llvm::AtomicRMWInst::Add; 3083 Op = llvm::Instruction::Add; 3084 break; 3085 case BO_SubAssign: 3086 AtomicOp = llvm::AtomicRMWInst::Sub; 3087 Op = llvm::Instruction::Sub; 3088 break; 3089 case BO_AndAssign: 3090 AtomicOp = llvm::AtomicRMWInst::And; 3091 Op = llvm::Instruction::And; 3092 break; 3093 case BO_XorAssign: 3094 AtomicOp = llvm::AtomicRMWInst::Xor; 3095 Op = llvm::Instruction::Xor; 3096 break; 3097 case BO_OrAssign: 3098 AtomicOp = llvm::AtomicRMWInst::Or; 3099 Op = llvm::Instruction::Or; 3100 break; 3101 default: 3102 llvm_unreachable("Invalid compound assignment type"); 3103 } 3104 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 3105 llvm::Value *Amt = CGF.EmitToMemory( 3106 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 3107 E->getExprLoc()), 3108 LHSTy); 3109 Value *OldVal = Builder.CreateAtomicRMW( 3110 AtomicOp, LHSLV.getPointer(CGF), Amt, 3111 llvm::AtomicOrdering::SequentiallyConsistent); 3112 3113 // Since operation is atomic, the result type is guaranteed to be the 3114 // same as the input in LLVM terms. 3115 Result = Builder.CreateBinOp(Op, OldVal, Amt); 3116 return LHSLV; 3117 } 3118 } 3119 // FIXME: For floating point types, we should be saving and restoring the 3120 // floating point environment in the loop. 3121 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 3122 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 3123 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3124 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 3125 Builder.CreateBr(opBB); 3126 Builder.SetInsertPoint(opBB); 3127 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 3128 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3129 OpInfo.LHS = atomicPHI; 3130 } 3131 else 3132 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3133 3134 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 3135 SourceLocation Loc = E->getExprLoc(); 3136 OpInfo.LHS = 3137 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3138 3139 // Expand the binary operator. 3140 Result = (this->*Func)(OpInfo); 3141 3142 // Convert the result back to the LHS type, 3143 // potentially with Implicit Conversion sanitizer check. 3144 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3145 Loc, ScalarConversionOpts(CGF.SanOpts)); 3146 3147 if (atomicPHI) { 3148 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3149 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3150 auto Pair = CGF.EmitAtomicCompareExchange( 3151 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3152 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3153 llvm::Value *success = Pair.second; 3154 atomicPHI->addIncoming(old, curBlock); 3155 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3156 Builder.SetInsertPoint(contBB); 3157 return LHSLV; 3158 } 3159 3160 // Store the result value into the LHS lvalue. Bit-fields are handled 3161 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3162 // 'An assignment expression has the value of the left operand after the 3163 // assignment...'. 3164 if (LHSLV.isBitField()) 3165 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3166 else 3167 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3168 3169 if (CGF.getLangOpts().OpenMP) 3170 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3171 E->getLHS()); 3172 return LHSLV; 3173 } 3174 3175 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3176 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3177 bool Ignore = TestAndClearIgnoreResultAssign(); 3178 Value *RHS = nullptr; 3179 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3180 3181 // If the result is clearly ignored, return now. 3182 if (Ignore) 3183 return nullptr; 3184 3185 // The result of an assignment in C is the assigned r-value. 3186 if (!CGF.getLangOpts().CPlusPlus) 3187 return RHS; 3188 3189 // If the lvalue is non-volatile, return the computed value of the assignment. 3190 if (!LHS.isVolatileQualified()) 3191 return RHS; 3192 3193 // Otherwise, reload the value. 3194 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3195 } 3196 3197 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3198 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3199 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3200 3201 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3202 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3203 SanitizerKind::IntegerDivideByZero)); 3204 } 3205 3206 const auto *BO = cast<BinaryOperator>(Ops.E); 3207 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3208 Ops.Ty->hasSignedIntegerRepresentation() && 3209 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3210 Ops.mayHaveIntegerOverflow()) { 3211 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3212 3213 llvm::Value *IntMin = 3214 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3215 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); 3216 3217 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3218 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3219 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3220 Checks.push_back( 3221 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3222 } 3223 3224 if (Checks.size() > 0) 3225 EmitBinOpCheck(Checks, Ops); 3226 } 3227 3228 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3229 { 3230 CodeGenFunction::SanitizerScope SanScope(&CGF); 3231 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3232 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3233 Ops.Ty->isIntegerType() && 3234 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3235 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3236 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3237 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3238 Ops.Ty->isRealFloatingType() && 3239 Ops.mayHaveFloatDivisionByZero()) { 3240 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3241 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3242 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3243 Ops); 3244 } 3245 } 3246 3247 if (Ops.Ty->isConstantMatrixType()) { 3248 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3249 // We need to check the types of the operands of the operator to get the 3250 // correct matrix dimensions. 3251 auto *BO = cast<BinaryOperator>(Ops.E); 3252 (void)BO; 3253 assert( 3254 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && 3255 "first operand must be a matrix"); 3256 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && 3257 "second operand must be an arithmetic type"); 3258 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3259 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS, 3260 Ops.Ty->hasUnsignedIntegerRepresentation()); 3261 } 3262 3263 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3264 llvm::Value *Val; 3265 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3266 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3267 if ((CGF.getLangOpts().OpenCL && 3268 !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || 3269 (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice && 3270 !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { 3271 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3272 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3273 // build option allows an application to specify that single precision 3274 // floating-point divide (x/y and 1/x) and sqrt used in the program 3275 // source are correctly rounded. 3276 llvm::Type *ValTy = Val->getType(); 3277 if (ValTy->isFloatTy() || 3278 (isa<llvm::VectorType>(ValTy) && 3279 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3280 CGF.SetFPAccuracy(Val, 2.5); 3281 } 3282 return Val; 3283 } 3284 else if (Ops.isFixedPointOp()) 3285 return EmitFixedPointBinOp(Ops); 3286 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3287 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3288 else 3289 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3290 } 3291 3292 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3293 // Rem in C can't be a floating point type: C99 6.5.5p2. 3294 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3295 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3296 Ops.Ty->isIntegerType() && 3297 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3298 CodeGenFunction::SanitizerScope SanScope(&CGF); 3299 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3300 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3301 } 3302 3303 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3304 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3305 else 3306 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3307 } 3308 3309 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3310 unsigned IID; 3311 unsigned OpID = 0; 3312 SanitizerHandler OverflowKind; 3313 3314 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3315 switch (Ops.Opcode) { 3316 case BO_Add: 3317 case BO_AddAssign: 3318 OpID = 1; 3319 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3320 llvm::Intrinsic::uadd_with_overflow; 3321 OverflowKind = SanitizerHandler::AddOverflow; 3322 break; 3323 case BO_Sub: 3324 case BO_SubAssign: 3325 OpID = 2; 3326 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3327 llvm::Intrinsic::usub_with_overflow; 3328 OverflowKind = SanitizerHandler::SubOverflow; 3329 break; 3330 case BO_Mul: 3331 case BO_MulAssign: 3332 OpID = 3; 3333 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3334 llvm::Intrinsic::umul_with_overflow; 3335 OverflowKind = SanitizerHandler::MulOverflow; 3336 break; 3337 default: 3338 llvm_unreachable("Unsupported operation for overflow detection"); 3339 } 3340 OpID <<= 1; 3341 if (isSigned) 3342 OpID |= 1; 3343 3344 CodeGenFunction::SanitizerScope SanScope(&CGF); 3345 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3346 3347 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3348 3349 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3350 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3351 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3352 3353 // Handle overflow with llvm.trap if no custom handler has been specified. 3354 const std::string *handlerName = 3355 &CGF.getLangOpts().OverflowHandler; 3356 if (handlerName->empty()) { 3357 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3358 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3359 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3360 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3361 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3362 : SanitizerKind::UnsignedIntegerOverflow; 3363 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3364 } else 3365 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); 3366 return result; 3367 } 3368 3369 // Branch in case of overflow. 3370 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3371 llvm::BasicBlock *continueBB = 3372 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3373 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3374 3375 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3376 3377 // If an overflow handler is set, then we want to call it and then use its 3378 // result, if it returns. 3379 Builder.SetInsertPoint(overflowBB); 3380 3381 // Get the overflow handler. 3382 llvm::Type *Int8Ty = CGF.Int8Ty; 3383 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3384 llvm::FunctionType *handlerTy = 3385 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3386 llvm::FunctionCallee handler = 3387 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3388 3389 // Sign extend the args to 64-bit, so that we can use the same handler for 3390 // all types of overflow. 3391 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3392 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3393 3394 // Call the handler with the two arguments, the operation, and the size of 3395 // the result. 3396 llvm::Value *handlerArgs[] = { 3397 lhs, 3398 rhs, 3399 Builder.getInt8(OpID), 3400 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3401 }; 3402 llvm::Value *handlerResult = 3403 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3404 3405 // Truncate the result back to the desired size. 3406 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3407 Builder.CreateBr(continueBB); 3408 3409 Builder.SetInsertPoint(continueBB); 3410 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3411 phi->addIncoming(result, initialBB); 3412 phi->addIncoming(handlerResult, overflowBB); 3413 3414 return phi; 3415 } 3416 3417 /// Emit pointer + index arithmetic. 3418 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3419 const BinOpInfo &op, 3420 bool isSubtraction) { 3421 // Must have binary (not unary) expr here. Unary pointer 3422 // increment/decrement doesn't use this path. 3423 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3424 3425 Value *pointer = op.LHS; 3426 Expr *pointerOperand = expr->getLHS(); 3427 Value *index = op.RHS; 3428 Expr *indexOperand = expr->getRHS(); 3429 3430 // In a subtraction, the LHS is always the pointer. 3431 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3432 std::swap(pointer, index); 3433 std::swap(pointerOperand, indexOperand); 3434 } 3435 3436 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3437 3438 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3439 auto &DL = CGF.CGM.getDataLayout(); 3440 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3441 3442 // Some versions of glibc and gcc use idioms (particularly in their malloc 3443 // routines) that add a pointer-sized integer (known to be a pointer value) 3444 // to a null pointer in order to cast the value back to an integer or as 3445 // part of a pointer alignment algorithm. This is undefined behavior, but 3446 // we'd like to be able to compile programs that use it. 3447 // 3448 // Normally, we'd generate a GEP with a null-pointer base here in response 3449 // to that code, but it's also UB to dereference a pointer created that 3450 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3451 // generate a direct cast of the integer value to a pointer. 3452 // 3453 // The idiom (p = nullptr + N) is not met if any of the following are true: 3454 // 3455 // The operation is subtraction. 3456 // The index is not pointer-sized. 3457 // The pointer type is not byte-sized. 3458 // 3459 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3460 op.Opcode, 3461 expr->getLHS(), 3462 expr->getRHS())) 3463 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3464 3465 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3466 // Zero-extend or sign-extend the pointer value according to 3467 // whether the index is signed or not. 3468 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3469 "idx.ext"); 3470 } 3471 3472 // If this is subtraction, negate the index. 3473 if (isSubtraction) 3474 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3475 3476 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3477 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3478 /*Accessed*/ false); 3479 3480 const PointerType *pointerType 3481 = pointerOperand->getType()->getAs<PointerType>(); 3482 if (!pointerType) { 3483 QualType objectType = pointerOperand->getType() 3484 ->castAs<ObjCObjectPointerType>() 3485 ->getPointeeType(); 3486 llvm::Value *objectSize 3487 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3488 3489 index = CGF.Builder.CreateMul(index, objectSize); 3490 3491 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3492 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3493 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3494 } 3495 3496 QualType elementType = pointerType->getPointeeType(); 3497 if (const VariableArrayType *vla 3498 = CGF.getContext().getAsVariableArrayType(elementType)) { 3499 // The element count here is the total number of non-VLA elements. 3500 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3501 3502 // Effectively, the multiply by the VLA size is part of the GEP. 3503 // GEP indexes are signed, and scaling an index isn't permitted to 3504 // signed-overflow, so we use the same semantics for our explicit 3505 // multiply. We suppress this if overflow is not undefined behavior. 3506 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3507 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3508 pointer = CGF.Builder.CreateGEP( 3509 pointer->getType()->getPointerElementType(), pointer, index, 3510 "add.ptr"); 3511 } else { 3512 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3513 pointer = 3514 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3515 op.E->getExprLoc(), "add.ptr"); 3516 } 3517 return pointer; 3518 } 3519 3520 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3521 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3522 // future proof. 3523 if (elementType->isVoidType() || elementType->isFunctionType()) { 3524 Value *result = CGF.EmitCastToVoidPtr(pointer); 3525 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3526 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3527 } 3528 3529 if (CGF.getLangOpts().isSignedOverflowDefined()) 3530 return CGF.Builder.CreateGEP( 3531 pointer->getType()->getPointerElementType(), pointer, index, "add.ptr"); 3532 3533 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3534 op.E->getExprLoc(), "add.ptr"); 3535 } 3536 3537 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3538 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3539 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3540 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3541 // efficient operations. 3542 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3543 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3544 bool negMul, bool negAdd) { 3545 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3546 3547 Value *MulOp0 = MulOp->getOperand(0); 3548 Value *MulOp1 = MulOp->getOperand(1); 3549 if (negMul) 3550 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3551 if (negAdd) 3552 Addend = Builder.CreateFNeg(Addend, "neg"); 3553 3554 Value *FMulAdd = nullptr; 3555 if (Builder.getIsFPConstrained()) { 3556 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3557 "Only constrained operation should be created when Builder is in FP " 3558 "constrained mode"); 3559 FMulAdd = Builder.CreateConstrainedFPCall( 3560 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3561 Addend->getType()), 3562 {MulOp0, MulOp1, Addend}); 3563 } else { 3564 FMulAdd = Builder.CreateCall( 3565 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3566 {MulOp0, MulOp1, Addend}); 3567 } 3568 MulOp->eraseFromParent(); 3569 3570 return FMulAdd; 3571 } 3572 3573 // Check whether it would be legal to emit an fmuladd intrinsic call to 3574 // represent op and if so, build the fmuladd. 3575 // 3576 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3577 // Does NOT check the type of the operation - it's assumed that this function 3578 // will be called from contexts where it's known that the type is contractable. 3579 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3580 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3581 bool isSub=false) { 3582 3583 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3584 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3585 "Only fadd/fsub can be the root of an fmuladd."); 3586 3587 // Check whether this op is marked as fusable. 3588 if (!op.FPFeatures.allowFPContractWithinStatement()) 3589 return nullptr; 3590 3591 // We have a potentially fusable op. Look for a mul on one of the operands. 3592 // Also, make sure that the mul result isn't used directly. In that case, 3593 // there's no point creating a muladd operation. 3594 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3595 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3596 LHSBinOp->use_empty()) 3597 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3598 } 3599 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3600 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3601 RHSBinOp->use_empty()) 3602 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3603 } 3604 3605 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3606 if (LHSBinOp->getIntrinsicID() == 3607 llvm::Intrinsic::experimental_constrained_fmul && 3608 LHSBinOp->use_empty()) 3609 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3610 } 3611 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3612 if (RHSBinOp->getIntrinsicID() == 3613 llvm::Intrinsic::experimental_constrained_fmul && 3614 RHSBinOp->use_empty()) 3615 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3616 } 3617 3618 return nullptr; 3619 } 3620 3621 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3622 if (op.LHS->getType()->isPointerTy() || 3623 op.RHS->getType()->isPointerTy()) 3624 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3625 3626 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3627 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3628 case LangOptions::SOB_Defined: 3629 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3630 case LangOptions::SOB_Undefined: 3631 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3632 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3633 LLVM_FALLTHROUGH; 3634 case LangOptions::SOB_Trapping: 3635 if (CanElideOverflowCheck(CGF.getContext(), op)) 3636 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3637 return EmitOverflowCheckedBinOp(op); 3638 } 3639 } 3640 3641 if (op.Ty->isConstantMatrixType()) { 3642 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3643 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3644 return MB.CreateAdd(op.LHS, op.RHS); 3645 } 3646 3647 if (op.Ty->isUnsignedIntegerType() && 3648 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3649 !CanElideOverflowCheck(CGF.getContext(), op)) 3650 return EmitOverflowCheckedBinOp(op); 3651 3652 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3653 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3654 // Try to form an fmuladd. 3655 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3656 return FMulAdd; 3657 3658 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3659 } 3660 3661 if (op.isFixedPointOp()) 3662 return EmitFixedPointBinOp(op); 3663 3664 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3665 } 3666 3667 /// The resulting value must be calculated with exact precision, so the operands 3668 /// may not be the same type. 3669 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3670 using llvm::APSInt; 3671 using llvm::ConstantInt; 3672 3673 // This is either a binary operation where at least one of the operands is 3674 // a fixed-point type, or a unary operation where the operand is a fixed-point 3675 // type. The result type of a binary operation is determined by 3676 // Sema::handleFixedPointConversions(). 3677 QualType ResultTy = op.Ty; 3678 QualType LHSTy, RHSTy; 3679 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3680 RHSTy = BinOp->getRHS()->getType(); 3681 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3682 // For compound assignment, the effective type of the LHS at this point 3683 // is the computation LHS type, not the actual LHS type, and the final 3684 // result type is not the type of the expression but rather the 3685 // computation result type. 3686 LHSTy = CAO->getComputationLHSType(); 3687 ResultTy = CAO->getComputationResultType(); 3688 } else 3689 LHSTy = BinOp->getLHS()->getType(); 3690 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3691 LHSTy = UnOp->getSubExpr()->getType(); 3692 RHSTy = UnOp->getSubExpr()->getType(); 3693 } 3694 ASTContext &Ctx = CGF.getContext(); 3695 Value *LHS = op.LHS; 3696 Value *RHS = op.RHS; 3697 3698 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3699 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3700 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3701 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3702 3703 // Perform the actual operation. 3704 Value *Result; 3705 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 3706 switch (op.Opcode) { 3707 case BO_AddAssign: 3708 case BO_Add: 3709 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); 3710 break; 3711 case BO_SubAssign: 3712 case BO_Sub: 3713 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); 3714 break; 3715 case BO_MulAssign: 3716 case BO_Mul: 3717 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); 3718 break; 3719 case BO_DivAssign: 3720 case BO_Div: 3721 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); 3722 break; 3723 case BO_ShlAssign: 3724 case BO_Shl: 3725 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); 3726 break; 3727 case BO_ShrAssign: 3728 case BO_Shr: 3729 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); 3730 break; 3731 case BO_LT: 3732 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3733 case BO_GT: 3734 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3735 case BO_LE: 3736 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3737 case BO_GE: 3738 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3739 case BO_EQ: 3740 // For equality operations, we assume any padding bits on unsigned types are 3741 // zero'd out. They could be overwritten through non-saturating operations 3742 // that cause overflow, but this leads to undefined behavior. 3743 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); 3744 case BO_NE: 3745 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3746 case BO_Cmp: 3747 case BO_LAnd: 3748 case BO_LOr: 3749 llvm_unreachable("Found unimplemented fixed point binary operation"); 3750 case BO_PtrMemD: 3751 case BO_PtrMemI: 3752 case BO_Rem: 3753 case BO_Xor: 3754 case BO_And: 3755 case BO_Or: 3756 case BO_Assign: 3757 case BO_RemAssign: 3758 case BO_AndAssign: 3759 case BO_XorAssign: 3760 case BO_OrAssign: 3761 case BO_Comma: 3762 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3763 } 3764 3765 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || 3766 BinaryOperator::isShiftAssignOp(op.Opcode); 3767 // Convert to the result type. 3768 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema 3769 : CommonFixedSema, 3770 ResultFixedSema); 3771 } 3772 3773 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3774 // The LHS is always a pointer if either side is. 3775 if (!op.LHS->getType()->isPointerTy()) { 3776 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3777 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3778 case LangOptions::SOB_Defined: 3779 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3780 case LangOptions::SOB_Undefined: 3781 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3782 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3783 LLVM_FALLTHROUGH; 3784 case LangOptions::SOB_Trapping: 3785 if (CanElideOverflowCheck(CGF.getContext(), op)) 3786 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3787 return EmitOverflowCheckedBinOp(op); 3788 } 3789 } 3790 3791 if (op.Ty->isConstantMatrixType()) { 3792 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3793 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3794 return MB.CreateSub(op.LHS, op.RHS); 3795 } 3796 3797 if (op.Ty->isUnsignedIntegerType() && 3798 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3799 !CanElideOverflowCheck(CGF.getContext(), op)) 3800 return EmitOverflowCheckedBinOp(op); 3801 3802 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3803 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3804 // Try to form an fmuladd. 3805 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3806 return FMulAdd; 3807 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3808 } 3809 3810 if (op.isFixedPointOp()) 3811 return EmitFixedPointBinOp(op); 3812 3813 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3814 } 3815 3816 // If the RHS is not a pointer, then we have normal pointer 3817 // arithmetic. 3818 if (!op.RHS->getType()->isPointerTy()) 3819 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3820 3821 // Otherwise, this is a pointer subtraction. 3822 3823 // Do the raw subtraction part. 3824 llvm::Value *LHS 3825 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3826 llvm::Value *RHS 3827 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3828 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3829 3830 // Okay, figure out the element size. 3831 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3832 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3833 3834 llvm::Value *divisor = nullptr; 3835 3836 // For a variable-length array, this is going to be non-constant. 3837 if (const VariableArrayType *vla 3838 = CGF.getContext().getAsVariableArrayType(elementType)) { 3839 auto VlaSize = CGF.getVLASize(vla); 3840 elementType = VlaSize.Type; 3841 divisor = VlaSize.NumElts; 3842 3843 // Scale the number of non-VLA elements by the non-VLA element size. 3844 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3845 if (!eltSize.isOne()) 3846 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3847 3848 // For everything elese, we can just compute it, safe in the 3849 // assumption that Sema won't let anything through that we can't 3850 // safely compute the size of. 3851 } else { 3852 CharUnits elementSize; 3853 // Handle GCC extension for pointer arithmetic on void* and 3854 // function pointer types. 3855 if (elementType->isVoidType() || elementType->isFunctionType()) 3856 elementSize = CharUnits::One(); 3857 else 3858 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3859 3860 // Don't even emit the divide for element size of 1. 3861 if (elementSize.isOne()) 3862 return diffInChars; 3863 3864 divisor = CGF.CGM.getSize(elementSize); 3865 } 3866 3867 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3868 // pointer difference in C is only defined in the case where both operands 3869 // are pointing to elements of an array. 3870 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3871 } 3872 3873 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3874 llvm::IntegerType *Ty; 3875 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3876 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3877 else 3878 Ty = cast<llvm::IntegerType>(LHS->getType()); 3879 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3880 } 3881 3882 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 3883 const Twine &Name) { 3884 llvm::IntegerType *Ty; 3885 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3886 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3887 else 3888 Ty = cast<llvm::IntegerType>(LHS->getType()); 3889 3890 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 3891 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 3892 3893 return Builder.CreateURem( 3894 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 3895 } 3896 3897 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3898 // TODO: This misses out on the sanitizer check below. 3899 if (Ops.isFixedPointOp()) 3900 return EmitFixedPointBinOp(Ops); 3901 3902 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3903 // RHS to the same size as the LHS. 3904 Value *RHS = Ops.RHS; 3905 if (Ops.LHS->getType() != RHS->getType()) 3906 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3907 3908 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3909 Ops.Ty->hasSignedIntegerRepresentation() && 3910 !CGF.getLangOpts().isSignedOverflowDefined() && 3911 !CGF.getLangOpts().CPlusPlus20; 3912 bool SanitizeUnsignedBase = 3913 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && 3914 Ops.Ty->hasUnsignedIntegerRepresentation(); 3915 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; 3916 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3917 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3918 if (CGF.getLangOpts().OpenCL) 3919 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 3920 else if ((SanitizeBase || SanitizeExponent) && 3921 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3922 CodeGenFunction::SanitizerScope SanScope(&CGF); 3923 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3924 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3925 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3926 3927 if (SanitizeExponent) { 3928 Checks.push_back( 3929 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3930 } 3931 3932 if (SanitizeBase) { 3933 // Check whether we are shifting any non-zero bits off the top of the 3934 // integer. We only emit this check if exponent is valid - otherwise 3935 // instructions below will have undefined behavior themselves. 3936 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3937 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3938 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3939 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3940 llvm::Value *PromotedWidthMinusOne = 3941 (RHS == Ops.RHS) ? WidthMinusOne 3942 : GetWidthMinusOneValue(Ops.LHS, RHS); 3943 CGF.EmitBlock(CheckShiftBase); 3944 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3945 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3946 /*NUW*/ true, /*NSW*/ true), 3947 "shl.check"); 3948 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { 3949 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3950 // Under C++11's rules, shifting a 1 bit into the sign bit is 3951 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3952 // define signed left shifts, so we use the C99 and C++11 rules there). 3953 // Unsigned shifts can always shift into the top bit. 3954 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3955 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3956 } 3957 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3958 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3959 CGF.EmitBlock(Cont); 3960 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3961 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3962 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3963 Checks.push_back(std::make_pair( 3964 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase 3965 : SanitizerKind::UnsignedShiftBase)); 3966 } 3967 3968 assert(!Checks.empty()); 3969 EmitBinOpCheck(Checks, Ops); 3970 } 3971 3972 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3973 } 3974 3975 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3976 // TODO: This misses out on the sanitizer check below. 3977 if (Ops.isFixedPointOp()) 3978 return EmitFixedPointBinOp(Ops); 3979 3980 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3981 // RHS to the same size as the LHS. 3982 Value *RHS = Ops.RHS; 3983 if (Ops.LHS->getType() != RHS->getType()) 3984 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3985 3986 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3987 if (CGF.getLangOpts().OpenCL) 3988 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 3989 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3990 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3991 CodeGenFunction::SanitizerScope SanScope(&CGF); 3992 llvm::Value *Valid = 3993 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3994 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3995 } 3996 3997 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3998 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3999 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 4000 } 4001 4002 enum IntrinsicType { VCMPEQ, VCMPGT }; 4003 // return corresponding comparison intrinsic for given vector type 4004 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 4005 BuiltinType::Kind ElemKind) { 4006 switch (ElemKind) { 4007 default: llvm_unreachable("unexpected element type"); 4008 case BuiltinType::Char_U: 4009 case BuiltinType::UChar: 4010 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4011 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 4012 case BuiltinType::Char_S: 4013 case BuiltinType::SChar: 4014 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4015 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 4016 case BuiltinType::UShort: 4017 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4018 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 4019 case BuiltinType::Short: 4020 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4021 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 4022 case BuiltinType::UInt: 4023 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4024 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 4025 case BuiltinType::Int: 4026 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4027 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 4028 case BuiltinType::ULong: 4029 case BuiltinType::ULongLong: 4030 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4031 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 4032 case BuiltinType::Long: 4033 case BuiltinType::LongLong: 4034 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4035 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 4036 case BuiltinType::Float: 4037 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 4038 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 4039 case BuiltinType::Double: 4040 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 4041 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 4042 case BuiltinType::UInt128: 4043 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4044 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; 4045 case BuiltinType::Int128: 4046 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4047 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; 4048 } 4049 } 4050 4051 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 4052 llvm::CmpInst::Predicate UICmpOpc, 4053 llvm::CmpInst::Predicate SICmpOpc, 4054 llvm::CmpInst::Predicate FCmpOpc, 4055 bool IsSignaling) { 4056 TestAndClearIgnoreResultAssign(); 4057 Value *Result; 4058 QualType LHSTy = E->getLHS()->getType(); 4059 QualType RHSTy = E->getRHS()->getType(); 4060 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 4061 assert(E->getOpcode() == BO_EQ || 4062 E->getOpcode() == BO_NE); 4063 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 4064 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 4065 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 4066 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 4067 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 4068 BinOpInfo BOInfo = EmitBinOps(E); 4069 Value *LHS = BOInfo.LHS; 4070 Value *RHS = BOInfo.RHS; 4071 4072 // If AltiVec, the comparison results in a numeric type, so we use 4073 // intrinsics comparing vectors and giving 0 or 1 as a result 4074 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 4075 // constants for mapping CR6 register bits to predicate result 4076 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 4077 4078 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 4079 4080 // in several cases vector arguments order will be reversed 4081 Value *FirstVecArg = LHS, 4082 *SecondVecArg = RHS; 4083 4084 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 4085 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 4086 4087 switch(E->getOpcode()) { 4088 default: llvm_unreachable("is not a comparison operation"); 4089 case BO_EQ: 4090 CR6 = CR6_LT; 4091 ID = GetIntrinsic(VCMPEQ, ElementKind); 4092 break; 4093 case BO_NE: 4094 CR6 = CR6_EQ; 4095 ID = GetIntrinsic(VCMPEQ, ElementKind); 4096 break; 4097 case BO_LT: 4098 CR6 = CR6_LT; 4099 ID = GetIntrinsic(VCMPGT, ElementKind); 4100 std::swap(FirstVecArg, SecondVecArg); 4101 break; 4102 case BO_GT: 4103 CR6 = CR6_LT; 4104 ID = GetIntrinsic(VCMPGT, ElementKind); 4105 break; 4106 case BO_LE: 4107 if (ElementKind == BuiltinType::Float) { 4108 CR6 = CR6_LT; 4109 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4110 std::swap(FirstVecArg, SecondVecArg); 4111 } 4112 else { 4113 CR6 = CR6_EQ; 4114 ID = GetIntrinsic(VCMPGT, ElementKind); 4115 } 4116 break; 4117 case BO_GE: 4118 if (ElementKind == BuiltinType::Float) { 4119 CR6 = CR6_LT; 4120 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4121 } 4122 else { 4123 CR6 = CR6_EQ; 4124 ID = GetIntrinsic(VCMPGT, ElementKind); 4125 std::swap(FirstVecArg, SecondVecArg); 4126 } 4127 break; 4128 } 4129 4130 Value *CR6Param = Builder.getInt32(CR6); 4131 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 4132 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 4133 4134 // The result type of intrinsic may not be same as E->getType(). 4135 // If E->getType() is not BoolTy, EmitScalarConversion will do the 4136 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 4137 // do nothing, if ResultTy is not i1 at the same time, it will cause 4138 // crash later. 4139 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 4140 if (ResultTy->getBitWidth() > 1 && 4141 E->getType() == CGF.getContext().BoolTy) 4142 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 4143 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4144 E->getExprLoc()); 4145 } 4146 4147 if (BOInfo.isFixedPointOp()) { 4148 Result = EmitFixedPointBinOp(BOInfo); 4149 } else if (LHS->getType()->isFPOrFPVectorTy()) { 4150 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 4151 if (!IsSignaling) 4152 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 4153 else 4154 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 4155 } else if (LHSTy->hasSignedIntegerRepresentation()) { 4156 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4157 } else { 4158 // Unsigned integers and pointers. 4159 4160 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4161 !isa<llvm::ConstantPointerNull>(LHS) && 4162 !isa<llvm::ConstantPointerNull>(RHS)) { 4163 4164 // Dynamic information is required to be stripped for comparisons, 4165 // because it could leak the dynamic information. Based on comparisons 4166 // of pointers to dynamic objects, the optimizer can replace one pointer 4167 // with another, which might be incorrect in presence of invariant 4168 // groups. Comparison with null is safe because null does not carry any 4169 // dynamic information. 4170 if (LHSTy.mayBeDynamicClass()) 4171 LHS = Builder.CreateStripInvariantGroup(LHS); 4172 if (RHSTy.mayBeDynamicClass()) 4173 RHS = Builder.CreateStripInvariantGroup(RHS); 4174 } 4175 4176 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4177 } 4178 4179 // If this is a vector comparison, sign extend the result to the appropriate 4180 // vector integer type and return it (don't convert to bool). 4181 if (LHSTy->isVectorType()) 4182 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4183 4184 } else { 4185 // Complex Comparison: can only be an equality comparison. 4186 CodeGenFunction::ComplexPairTy LHS, RHS; 4187 QualType CETy; 4188 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4189 LHS = CGF.EmitComplexExpr(E->getLHS()); 4190 CETy = CTy->getElementType(); 4191 } else { 4192 LHS.first = Visit(E->getLHS()); 4193 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4194 CETy = LHSTy; 4195 } 4196 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4197 RHS = CGF.EmitComplexExpr(E->getRHS()); 4198 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4199 CTy->getElementType()) && 4200 "The element types must always match."); 4201 (void)CTy; 4202 } else { 4203 RHS.first = Visit(E->getRHS()); 4204 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4205 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4206 "The element types must always match."); 4207 } 4208 4209 Value *ResultR, *ResultI; 4210 if (CETy->isRealFloatingType()) { 4211 // As complex comparisons can only be equality comparisons, they 4212 // are never signaling comparisons. 4213 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4214 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4215 } else { 4216 // Complex comparisons can only be equality comparisons. As such, signed 4217 // and unsigned opcodes are the same. 4218 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4219 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4220 } 4221 4222 if (E->getOpcode() == BO_EQ) { 4223 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4224 } else { 4225 assert(E->getOpcode() == BO_NE && 4226 "Complex comparison other than == or != ?"); 4227 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4228 } 4229 } 4230 4231 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4232 E->getExprLoc()); 4233 } 4234 4235 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4236 bool Ignore = TestAndClearIgnoreResultAssign(); 4237 4238 Value *RHS; 4239 LValue LHS; 4240 4241 switch (E->getLHS()->getType().getObjCLifetime()) { 4242 case Qualifiers::OCL_Strong: 4243 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4244 break; 4245 4246 case Qualifiers::OCL_Autoreleasing: 4247 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4248 break; 4249 4250 case Qualifiers::OCL_ExplicitNone: 4251 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4252 break; 4253 4254 case Qualifiers::OCL_Weak: 4255 RHS = Visit(E->getRHS()); 4256 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4257 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4258 break; 4259 4260 case Qualifiers::OCL_None: 4261 // __block variables need to have the rhs evaluated first, plus 4262 // this should improve codegen just a little. 4263 RHS = Visit(E->getRHS()); 4264 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4265 4266 // Store the value into the LHS. Bit-fields are handled specially 4267 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4268 // 'An assignment expression has the value of the left operand after 4269 // the assignment...'. 4270 if (LHS.isBitField()) { 4271 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4272 } else { 4273 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4274 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4275 } 4276 } 4277 4278 // If the result is clearly ignored, return now. 4279 if (Ignore) 4280 return nullptr; 4281 4282 // The result of an assignment in C is the assigned r-value. 4283 if (!CGF.getLangOpts().CPlusPlus) 4284 return RHS; 4285 4286 // If the lvalue is non-volatile, return the computed value of the assignment. 4287 if (!LHS.isVolatileQualified()) 4288 return RHS; 4289 4290 // Otherwise, reload the value. 4291 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4292 } 4293 4294 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4295 // Perform vector logical and on comparisons with zero vectors. 4296 if (E->getType()->isVectorType()) { 4297 CGF.incrementProfileCounter(E); 4298 4299 Value *LHS = Visit(E->getLHS()); 4300 Value *RHS = Visit(E->getRHS()); 4301 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4302 if (LHS->getType()->isFPOrFPVectorTy()) { 4303 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4304 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4305 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4306 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4307 } else { 4308 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4309 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4310 } 4311 Value *And = Builder.CreateAnd(LHS, RHS); 4312 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4313 } 4314 4315 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4316 llvm::Type *ResTy = ConvertType(E->getType()); 4317 4318 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4319 // If we have 1 && X, just emit X without inserting the control flow. 4320 bool LHSCondVal; 4321 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4322 if (LHSCondVal) { // If we have 1 && X, just emit X. 4323 CGF.incrementProfileCounter(E); 4324 4325 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4326 4327 // If we're generating for profiling or coverage, generate a branch to a 4328 // block that increments the RHS counter needed to track branch condition 4329 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4330 // "FalseBlock" after the increment is done. 4331 if (InstrumentRegions && 4332 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4333 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end"); 4334 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4335 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock); 4336 CGF.EmitBlock(RHSBlockCnt); 4337 CGF.incrementProfileCounter(E->getRHS()); 4338 CGF.EmitBranch(FBlock); 4339 CGF.EmitBlock(FBlock); 4340 } 4341 4342 // ZExt result to int or bool. 4343 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4344 } 4345 4346 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4347 if (!CGF.ContainsLabel(E->getRHS())) 4348 return llvm::Constant::getNullValue(ResTy); 4349 } 4350 4351 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4352 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4353 4354 CodeGenFunction::ConditionalEvaluation eval(CGF); 4355 4356 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4357 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4358 CGF.getProfileCount(E->getRHS())); 4359 4360 // Any edges into the ContBlock are now from an (indeterminate number of) 4361 // edges from this first condition. All of these values will be false. Start 4362 // setting up the PHI node in the Cont Block for this. 4363 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4364 "", ContBlock); 4365 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4366 PI != PE; ++PI) 4367 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4368 4369 eval.begin(CGF); 4370 CGF.EmitBlock(RHSBlock); 4371 CGF.incrementProfileCounter(E); 4372 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4373 eval.end(CGF); 4374 4375 // Reaquire the RHS block, as there may be subblocks inserted. 4376 RHSBlock = Builder.GetInsertBlock(); 4377 4378 // If we're generating for profiling or coverage, generate a branch on the 4379 // RHS to a block that increments the RHS true counter needed to track branch 4380 // condition coverage. 4381 if (InstrumentRegions && 4382 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4383 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4384 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock); 4385 CGF.EmitBlock(RHSBlockCnt); 4386 CGF.incrementProfileCounter(E->getRHS()); 4387 CGF.EmitBranch(ContBlock); 4388 PN->addIncoming(RHSCond, RHSBlockCnt); 4389 } 4390 4391 // Emit an unconditional branch from this block to ContBlock. 4392 { 4393 // There is no need to emit line number for unconditional branch. 4394 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4395 CGF.EmitBlock(ContBlock); 4396 } 4397 // Insert an entry into the phi node for the edge with the value of RHSCond. 4398 PN->addIncoming(RHSCond, RHSBlock); 4399 4400 // Artificial location to preserve the scope information 4401 { 4402 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4403 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4404 } 4405 4406 // ZExt result to int. 4407 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4408 } 4409 4410 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4411 // Perform vector logical or on comparisons with zero vectors. 4412 if (E->getType()->isVectorType()) { 4413 CGF.incrementProfileCounter(E); 4414 4415 Value *LHS = Visit(E->getLHS()); 4416 Value *RHS = Visit(E->getRHS()); 4417 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4418 if (LHS->getType()->isFPOrFPVectorTy()) { 4419 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4420 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4421 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4422 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4423 } else { 4424 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4425 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4426 } 4427 Value *Or = Builder.CreateOr(LHS, RHS); 4428 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4429 } 4430 4431 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4432 llvm::Type *ResTy = ConvertType(E->getType()); 4433 4434 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4435 // If we have 0 || X, just emit X without inserting the control flow. 4436 bool LHSCondVal; 4437 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4438 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4439 CGF.incrementProfileCounter(E); 4440 4441 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4442 4443 // If we're generating for profiling or coverage, generate a branch to a 4444 // block that increments the RHS counter need to track branch condition 4445 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4446 // "FalseBlock" after the increment is done. 4447 if (InstrumentRegions && 4448 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4449 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end"); 4450 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4451 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt); 4452 CGF.EmitBlock(RHSBlockCnt); 4453 CGF.incrementProfileCounter(E->getRHS()); 4454 CGF.EmitBranch(FBlock); 4455 CGF.EmitBlock(FBlock); 4456 } 4457 4458 // ZExt result to int or bool. 4459 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4460 } 4461 4462 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4463 if (!CGF.ContainsLabel(E->getRHS())) 4464 return llvm::ConstantInt::get(ResTy, 1); 4465 } 4466 4467 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4468 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4469 4470 CodeGenFunction::ConditionalEvaluation eval(CGF); 4471 4472 // Branch on the LHS first. If it is true, go to the success (cont) block. 4473 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4474 CGF.getCurrentProfileCount() - 4475 CGF.getProfileCount(E->getRHS())); 4476 4477 // Any edges into the ContBlock are now from an (indeterminate number of) 4478 // edges from this first condition. All of these values will be true. Start 4479 // setting up the PHI node in the Cont Block for this. 4480 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4481 "", ContBlock); 4482 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4483 PI != PE; ++PI) 4484 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4485 4486 eval.begin(CGF); 4487 4488 // Emit the RHS condition as a bool value. 4489 CGF.EmitBlock(RHSBlock); 4490 CGF.incrementProfileCounter(E); 4491 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4492 4493 eval.end(CGF); 4494 4495 // Reaquire the RHS block, as there may be subblocks inserted. 4496 RHSBlock = Builder.GetInsertBlock(); 4497 4498 // If we're generating for profiling or coverage, generate a branch on the 4499 // RHS to a block that increments the RHS true counter needed to track branch 4500 // condition coverage. 4501 if (InstrumentRegions && 4502 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4503 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4504 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt); 4505 CGF.EmitBlock(RHSBlockCnt); 4506 CGF.incrementProfileCounter(E->getRHS()); 4507 CGF.EmitBranch(ContBlock); 4508 PN->addIncoming(RHSCond, RHSBlockCnt); 4509 } 4510 4511 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4512 // into the phi node for the edge with the value of RHSCond. 4513 CGF.EmitBlock(ContBlock); 4514 PN->addIncoming(RHSCond, RHSBlock); 4515 4516 // ZExt result to int. 4517 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4518 } 4519 4520 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4521 CGF.EmitIgnoredExpr(E->getLHS()); 4522 CGF.EnsureInsertPoint(); 4523 return Visit(E->getRHS()); 4524 } 4525 4526 //===----------------------------------------------------------------------===// 4527 // Other Operators 4528 //===----------------------------------------------------------------------===// 4529 4530 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4531 /// expression is cheap enough and side-effect-free enough to evaluate 4532 /// unconditionally instead of conditionally. This is used to convert control 4533 /// flow into selects in some cases. 4534 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4535 CodeGenFunction &CGF) { 4536 // Anything that is an integer or floating point constant is fine. 4537 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4538 4539 // Even non-volatile automatic variables can't be evaluated unconditionally. 4540 // Referencing a thread_local may cause non-trivial initialization work to 4541 // occur. If we're inside a lambda and one of the variables is from the scope 4542 // outside the lambda, that function may have returned already. Reading its 4543 // locals is a bad idea. Also, these reads may introduce races there didn't 4544 // exist in the source-level program. 4545 } 4546 4547 4548 Value *ScalarExprEmitter:: 4549 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4550 TestAndClearIgnoreResultAssign(); 4551 4552 // Bind the common expression if necessary. 4553 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4554 4555 Expr *condExpr = E->getCond(); 4556 Expr *lhsExpr = E->getTrueExpr(); 4557 Expr *rhsExpr = E->getFalseExpr(); 4558 4559 // If the condition constant folds and can be elided, try to avoid emitting 4560 // the condition and the dead arm. 4561 bool CondExprBool; 4562 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4563 Expr *live = lhsExpr, *dead = rhsExpr; 4564 if (!CondExprBool) std::swap(live, dead); 4565 4566 // If the dead side doesn't have labels we need, just emit the Live part. 4567 if (!CGF.ContainsLabel(dead)) { 4568 if (CondExprBool) 4569 CGF.incrementProfileCounter(E); 4570 Value *Result = Visit(live); 4571 4572 // If the live part is a throw expression, it acts like it has a void 4573 // type, so evaluating it returns a null Value*. However, a conditional 4574 // with non-void type must return a non-null Value*. 4575 if (!Result && !E->getType()->isVoidType()) 4576 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4577 4578 return Result; 4579 } 4580 } 4581 4582 // OpenCL: If the condition is a vector, we can treat this condition like 4583 // the select function. 4584 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4585 condExpr->getType()->isExtVectorType()) { 4586 CGF.incrementProfileCounter(E); 4587 4588 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4589 llvm::Value *LHS = Visit(lhsExpr); 4590 llvm::Value *RHS = Visit(rhsExpr); 4591 4592 llvm::Type *condType = ConvertType(condExpr->getType()); 4593 auto *vecTy = cast<llvm::FixedVectorType>(condType); 4594 4595 unsigned numElem = vecTy->getNumElements(); 4596 llvm::Type *elemType = vecTy->getElementType(); 4597 4598 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4599 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4600 llvm::Value *tmp = Builder.CreateSExt( 4601 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4602 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4603 4604 // Cast float to int to perform ANDs if necessary. 4605 llvm::Value *RHSTmp = RHS; 4606 llvm::Value *LHSTmp = LHS; 4607 bool wasCast = false; 4608 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4609 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4610 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4611 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4612 wasCast = true; 4613 } 4614 4615 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4616 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4617 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4618 if (wasCast) 4619 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4620 4621 return tmp5; 4622 } 4623 4624 if (condExpr->getType()->isVectorType()) { 4625 CGF.incrementProfileCounter(E); 4626 4627 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4628 llvm::Value *LHS = Visit(lhsExpr); 4629 llvm::Value *RHS = Visit(rhsExpr); 4630 4631 llvm::Type *CondType = ConvertType(condExpr->getType()); 4632 auto *VecTy = cast<llvm::VectorType>(CondType); 4633 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4634 4635 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4636 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4637 } 4638 4639 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4640 // select instead of as control flow. We can only do this if it is cheap and 4641 // safe to evaluate the LHS and RHS unconditionally. 4642 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4643 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4644 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4645 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4646 4647 CGF.incrementProfileCounter(E, StepV); 4648 4649 llvm::Value *LHS = Visit(lhsExpr); 4650 llvm::Value *RHS = Visit(rhsExpr); 4651 if (!LHS) { 4652 // If the conditional has void type, make sure we return a null Value*. 4653 assert(!RHS && "LHS and RHS types must match"); 4654 return nullptr; 4655 } 4656 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4657 } 4658 4659 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4660 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4661 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4662 4663 CodeGenFunction::ConditionalEvaluation eval(CGF); 4664 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4665 CGF.getProfileCount(lhsExpr)); 4666 4667 CGF.EmitBlock(LHSBlock); 4668 CGF.incrementProfileCounter(E); 4669 eval.begin(CGF); 4670 Value *LHS = Visit(lhsExpr); 4671 eval.end(CGF); 4672 4673 LHSBlock = Builder.GetInsertBlock(); 4674 Builder.CreateBr(ContBlock); 4675 4676 CGF.EmitBlock(RHSBlock); 4677 eval.begin(CGF); 4678 Value *RHS = Visit(rhsExpr); 4679 eval.end(CGF); 4680 4681 RHSBlock = Builder.GetInsertBlock(); 4682 CGF.EmitBlock(ContBlock); 4683 4684 // If the LHS or RHS is a throw expression, it will be legitimately null. 4685 if (!LHS) 4686 return RHS; 4687 if (!RHS) 4688 return LHS; 4689 4690 // Create a PHI node for the real part. 4691 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4692 PN->addIncoming(LHS, LHSBlock); 4693 PN->addIncoming(RHS, RHSBlock); 4694 return PN; 4695 } 4696 4697 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4698 return Visit(E->getChosenSubExpr()); 4699 } 4700 4701 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4702 QualType Ty = VE->getType(); 4703 4704 if (Ty->isVariablyModifiedType()) 4705 CGF.EmitVariablyModifiedType(Ty); 4706 4707 Address ArgValue = Address::invalid(); 4708 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4709 4710 llvm::Type *ArgTy = ConvertType(VE->getType()); 4711 4712 // If EmitVAArg fails, emit an error. 4713 if (!ArgPtr.isValid()) { 4714 CGF.ErrorUnsupported(VE, "va_arg expression"); 4715 return llvm::UndefValue::get(ArgTy); 4716 } 4717 4718 // FIXME Volatility. 4719 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4720 4721 // If EmitVAArg promoted the type, we must truncate it. 4722 if (ArgTy != Val->getType()) { 4723 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4724 Val = Builder.CreateIntToPtr(Val, ArgTy); 4725 else 4726 Val = Builder.CreateTrunc(Val, ArgTy); 4727 } 4728 4729 return Val; 4730 } 4731 4732 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4733 return CGF.EmitBlockLiteral(block); 4734 } 4735 4736 // Convert a vec3 to vec4, or vice versa. 4737 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4738 Value *Src, unsigned NumElementsDst) { 4739 static constexpr int Mask[] = {0, 1, 2, -1}; 4740 return Builder.CreateShuffleVector(Src, 4741 llvm::makeArrayRef(Mask, NumElementsDst)); 4742 } 4743 4744 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4745 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4746 // but could be scalar or vectors of different lengths, and either can be 4747 // pointer. 4748 // There are 4 cases: 4749 // 1. non-pointer -> non-pointer : needs 1 bitcast 4750 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4751 // 3. pointer -> non-pointer 4752 // a) pointer -> intptr_t : needs 1 ptrtoint 4753 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4754 // 4. non-pointer -> pointer 4755 // a) intptr_t -> pointer : needs 1 inttoptr 4756 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4757 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4758 // allow casting directly between pointer types and non-integer non-pointer 4759 // types. 4760 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4761 const llvm::DataLayout &DL, 4762 Value *Src, llvm::Type *DstTy, 4763 StringRef Name = "") { 4764 auto SrcTy = Src->getType(); 4765 4766 // Case 1. 4767 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4768 return Builder.CreateBitCast(Src, DstTy, Name); 4769 4770 // Case 2. 4771 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4772 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4773 4774 // Case 3. 4775 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4776 // Case 3b. 4777 if (!DstTy->isIntegerTy()) 4778 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4779 // Cases 3a and 3b. 4780 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4781 } 4782 4783 // Case 4b. 4784 if (!SrcTy->isIntegerTy()) 4785 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4786 // Cases 4a and 4b. 4787 return Builder.CreateIntToPtr(Src, DstTy, Name); 4788 } 4789 4790 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4791 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4792 llvm::Type *DstTy = ConvertType(E->getType()); 4793 4794 llvm::Type *SrcTy = Src->getType(); 4795 unsigned NumElementsSrc = 4796 isa<llvm::VectorType>(SrcTy) 4797 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() 4798 : 0; 4799 unsigned NumElementsDst = 4800 isa<llvm::VectorType>(DstTy) 4801 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() 4802 : 0; 4803 4804 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4805 // vector to get a vec4, then a bitcast if the target type is different. 4806 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4807 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4808 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4809 DstTy); 4810 4811 Src->setName("astype"); 4812 return Src; 4813 } 4814 4815 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4816 // to vec4 if the original type is not vec4, then a shuffle vector to 4817 // get a vec3. 4818 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4819 auto *Vec4Ty = llvm::FixedVectorType::get( 4820 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4821 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4822 Vec4Ty); 4823 4824 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4825 Src->setName("astype"); 4826 return Src; 4827 } 4828 4829 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4830 Src, DstTy, "astype"); 4831 } 4832 4833 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4834 return CGF.EmitAtomicExpr(E).getScalarVal(); 4835 } 4836 4837 //===----------------------------------------------------------------------===// 4838 // Entry Point into this File 4839 //===----------------------------------------------------------------------===// 4840 4841 /// Emit the computation of the specified expression of scalar type, ignoring 4842 /// the result. 4843 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4844 assert(E && hasScalarEvaluationKind(E->getType()) && 4845 "Invalid scalar expression to emit"); 4846 4847 return ScalarExprEmitter(*this, IgnoreResultAssign) 4848 .Visit(const_cast<Expr *>(E)); 4849 } 4850 4851 /// Emit a conversion from the specified type to the specified destination type, 4852 /// both of which are LLVM scalar types. 4853 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4854 QualType DstTy, 4855 SourceLocation Loc) { 4856 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4857 "Invalid scalar expression to emit"); 4858 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4859 } 4860 4861 /// Emit a conversion from the specified complex type to the specified 4862 /// destination type, where the destination type is an LLVM scalar type. 4863 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4864 QualType SrcTy, 4865 QualType DstTy, 4866 SourceLocation Loc) { 4867 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4868 "Invalid complex -> scalar conversion"); 4869 return ScalarExprEmitter(*this) 4870 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4871 } 4872 4873 4874 llvm::Value *CodeGenFunction:: 4875 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4876 bool isInc, bool isPre) { 4877 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4878 } 4879 4880 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4881 // object->isa or (*object).isa 4882 // Generate code as for: *(Class*)object 4883 4884 Expr *BaseExpr = E->getBase(); 4885 Address Addr = Address::invalid(); 4886 if (BaseExpr->isPRValue()) { 4887 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4888 } else { 4889 Addr = EmitLValue(BaseExpr).getAddress(*this); 4890 } 4891 4892 // Cast the address to Class*. 4893 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4894 return MakeAddrLValue(Addr, E->getType()); 4895 } 4896 4897 4898 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4899 const CompoundAssignOperator *E) { 4900 ScalarExprEmitter Scalar(*this); 4901 Value *Result = nullptr; 4902 switch (E->getOpcode()) { 4903 #define COMPOUND_OP(Op) \ 4904 case BO_##Op##Assign: \ 4905 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4906 Result) 4907 COMPOUND_OP(Mul); 4908 COMPOUND_OP(Div); 4909 COMPOUND_OP(Rem); 4910 COMPOUND_OP(Add); 4911 COMPOUND_OP(Sub); 4912 COMPOUND_OP(Shl); 4913 COMPOUND_OP(Shr); 4914 COMPOUND_OP(And); 4915 COMPOUND_OP(Xor); 4916 COMPOUND_OP(Or); 4917 #undef COMPOUND_OP 4918 4919 case BO_PtrMemD: 4920 case BO_PtrMemI: 4921 case BO_Mul: 4922 case BO_Div: 4923 case BO_Rem: 4924 case BO_Add: 4925 case BO_Sub: 4926 case BO_Shl: 4927 case BO_Shr: 4928 case BO_LT: 4929 case BO_GT: 4930 case BO_LE: 4931 case BO_GE: 4932 case BO_EQ: 4933 case BO_NE: 4934 case BO_Cmp: 4935 case BO_And: 4936 case BO_Xor: 4937 case BO_Or: 4938 case BO_LAnd: 4939 case BO_LOr: 4940 case BO_Assign: 4941 case BO_Comma: 4942 llvm_unreachable("Not valid compound assignment operators"); 4943 } 4944 4945 llvm_unreachable("Unhandled compound assignment operator"); 4946 } 4947 4948 struct GEPOffsetAndOverflow { 4949 // The total (signed) byte offset for the GEP. 4950 llvm::Value *TotalOffset; 4951 // The offset overflow flag - true if the total offset overflows. 4952 llvm::Value *OffsetOverflows; 4953 }; 4954 4955 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4956 /// and compute the total offset it applies from it's base pointer BasePtr. 4957 /// Returns offset in bytes and a boolean flag whether an overflow happened 4958 /// during evaluation. 4959 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4960 llvm::LLVMContext &VMContext, 4961 CodeGenModule &CGM, 4962 CGBuilderTy &Builder) { 4963 const auto &DL = CGM.getDataLayout(); 4964 4965 // The total (signed) byte offset for the GEP. 4966 llvm::Value *TotalOffset = nullptr; 4967 4968 // Was the GEP already reduced to a constant? 4969 if (isa<llvm::Constant>(GEPVal)) { 4970 // Compute the offset by casting both pointers to integers and subtracting: 4971 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4972 Value *BasePtr_int = 4973 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4974 Value *GEPVal_int = 4975 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4976 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4977 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4978 } 4979 4980 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4981 assert(GEP->getPointerOperand() == BasePtr && 4982 "BasePtr must be the base of the GEP."); 4983 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4984 4985 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4986 4987 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4988 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4989 auto *SAddIntrinsic = 4990 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4991 auto *SMulIntrinsic = 4992 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4993 4994 // The offset overflow flag - true if the total offset overflows. 4995 llvm::Value *OffsetOverflows = Builder.getFalse(); 4996 4997 /// Return the result of the given binary operation. 4998 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4999 llvm::Value *RHS) -> llvm::Value * { 5000 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 5001 5002 // If the operands are constants, return a constant result. 5003 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 5004 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 5005 llvm::APInt N; 5006 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 5007 /*Signed=*/true, N); 5008 if (HasOverflow) 5009 OffsetOverflows = Builder.getTrue(); 5010 return llvm::ConstantInt::get(VMContext, N); 5011 } 5012 } 5013 5014 // Otherwise, compute the result with checked arithmetic. 5015 auto *ResultAndOverflow = Builder.CreateCall( 5016 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 5017 OffsetOverflows = Builder.CreateOr( 5018 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 5019 return Builder.CreateExtractValue(ResultAndOverflow, 0); 5020 }; 5021 5022 // Determine the total byte offset by looking at each GEP operand. 5023 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 5024 GTI != GTE; ++GTI) { 5025 llvm::Value *LocalOffset; 5026 auto *Index = GTI.getOperand(); 5027 // Compute the local offset contributed by this indexing step: 5028 if (auto *STy = GTI.getStructTypeOrNull()) { 5029 // For struct indexing, the local offset is the byte position of the 5030 // specified field. 5031 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 5032 LocalOffset = llvm::ConstantInt::get( 5033 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 5034 } else { 5035 // Otherwise this is array-like indexing. The local offset is the index 5036 // multiplied by the element size. 5037 auto *ElementSize = llvm::ConstantInt::get( 5038 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 5039 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 5040 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 5041 } 5042 5043 // If this is the first offset, set it as the total offset. Otherwise, add 5044 // the local offset into the running total. 5045 if (!TotalOffset || TotalOffset == Zero) 5046 TotalOffset = LocalOffset; 5047 else 5048 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 5049 } 5050 5051 return {TotalOffset, OffsetOverflows}; 5052 } 5053 5054 Value * 5055 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 5056 bool SignedIndices, bool IsSubtraction, 5057 SourceLocation Loc, const Twine &Name) { 5058 llvm::Type *PtrTy = Ptr->getType(); 5059 Value *GEPVal = Builder.CreateInBoundsGEP( 5060 PtrTy->getPointerElementType(), Ptr, IdxList, Name); 5061 5062 // If the pointer overflow sanitizer isn't enabled, do nothing. 5063 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 5064 return GEPVal; 5065 5066 // Perform nullptr-and-offset check unless the nullptr is defined. 5067 bool PerformNullCheck = !NullPointerIsDefined( 5068 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 5069 // Check for overflows unless the GEP got constant-folded, 5070 // and only in the default address space 5071 bool PerformOverflowCheck = 5072 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 5073 5074 if (!(PerformNullCheck || PerformOverflowCheck)) 5075 return GEPVal; 5076 5077 const auto &DL = CGM.getDataLayout(); 5078 5079 SanitizerScope SanScope(this); 5080 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 5081 5082 GEPOffsetAndOverflow EvaluatedGEP = 5083 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 5084 5085 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 5086 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 5087 "If the offset got constant-folded, we don't expect that there was an " 5088 "overflow."); 5089 5090 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 5091 5092 // Common case: if the total offset is zero, and we are using C++ semantics, 5093 // where nullptr+0 is defined, don't emit a check. 5094 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 5095 return GEPVal; 5096 5097 // Now that we've computed the total offset, add it to the base pointer (with 5098 // wrapping semantics). 5099 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 5100 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 5101 5102 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 5103 5104 if (PerformNullCheck) { 5105 // In C++, if the base pointer evaluates to a null pointer value, 5106 // the only valid pointer this inbounds GEP can produce is also 5107 // a null pointer, so the offset must also evaluate to zero. 5108 // Likewise, if we have non-zero base pointer, we can not get null pointer 5109 // as a result, so the offset can not be -intptr_t(BasePtr). 5110 // In other words, both pointers are either null, or both are non-null, 5111 // or the behaviour is undefined. 5112 // 5113 // C, however, is more strict in this regard, and gives more 5114 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 5115 // So both the input to the 'gep inbounds' AND the output must not be null. 5116 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 5117 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 5118 auto *Valid = 5119 CGM.getLangOpts().CPlusPlus 5120 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 5121 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 5122 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 5123 } 5124 5125 if (PerformOverflowCheck) { 5126 // The GEP is valid if: 5127 // 1) The total offset doesn't overflow, and 5128 // 2) The sign of the difference between the computed address and the base 5129 // pointer matches the sign of the total offset. 5130 llvm::Value *ValidGEP; 5131 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 5132 if (SignedIndices) { 5133 // GEP is computed as `unsigned base + signed offset`, therefore: 5134 // * If offset was positive, then the computed pointer can not be 5135 // [unsigned] less than the base pointer, unless it overflowed. 5136 // * If offset was negative, then the computed pointer can not be 5137 // [unsigned] greater than the bas pointere, unless it overflowed. 5138 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5139 auto *PosOrZeroOffset = 5140 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 5141 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 5142 ValidGEP = 5143 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 5144 } else if (!IsSubtraction) { 5145 // GEP is computed as `unsigned base + unsigned offset`, therefore the 5146 // computed pointer can not be [unsigned] less than base pointer, 5147 // unless there was an overflow. 5148 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 5149 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5150 } else { 5151 // GEP is computed as `unsigned base - unsigned offset`, therefore the 5152 // computed pointer can not be [unsigned] greater than base pointer, 5153 // unless there was an overflow. 5154 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 5155 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 5156 } 5157 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 5158 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 5159 } 5160 5161 assert(!Checks.empty() && "Should have produced some checks."); 5162 5163 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 5164 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 5165 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 5166 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 5167 5168 return GEPVal; 5169 } 5170