1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Module.h"
34 #include <cstdarg>
35 
36 using namespace clang;
37 using namespace CodeGen;
38 using llvm::Value;
39 
40 //===----------------------------------------------------------------------===//
41 //                         Scalar Expression Emitter
42 //===----------------------------------------------------------------------===//
43 
44 namespace {
45 struct BinOpInfo {
46   Value *LHS;
47   Value *RHS;
48   QualType Ty;  // Computation Type.
49   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
50   bool FPContractable;
51   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
52 };
53 
54 static bool MustVisitNullValue(const Expr *E) {
55   // If a null pointer expression's type is the C++0x nullptr_t, then
56   // it's not necessarily a simple constant and it must be evaluated
57   // for its potential side effects.
58   return E->getType()->isNullPtrType();
59 }
60 
61 class ScalarExprEmitter
62   : public StmtVisitor<ScalarExprEmitter, Value*> {
63   CodeGenFunction &CGF;
64   CGBuilderTy &Builder;
65   bool IgnoreResultAssign;
66   llvm::LLVMContext &VMContext;
67 public:
68 
69   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
70     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
71       VMContext(cgf.getLLVMContext()) {
72   }
73 
74   //===--------------------------------------------------------------------===//
75   //                               Utilities
76   //===--------------------------------------------------------------------===//
77 
78   bool TestAndClearIgnoreResultAssign() {
79     bool I = IgnoreResultAssign;
80     IgnoreResultAssign = false;
81     return I;
82   }
83 
84   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
85   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
86   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
87     return CGF.EmitCheckedLValue(E, TCK);
88   }
89 
90   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
91                       const BinOpInfo &Info);
92 
93   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
94     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
95   }
96 
97   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
98     const AlignValueAttr *AVAttr = nullptr;
99     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
100       const ValueDecl *VD = DRE->getDecl();
101 
102       if (VD->getType()->isReferenceType()) {
103         if (const auto *TTy =
104             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
105           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
106       } else {
107         // Assumptions for function parameters are emitted at the start of the
108         // function, so there is no need to repeat that here.
109         if (isa<ParmVarDecl>(VD))
110           return;
111 
112         AVAttr = VD->getAttr<AlignValueAttr>();
113       }
114     }
115 
116     if (!AVAttr)
117       if (const auto *TTy =
118           dyn_cast<TypedefType>(E->getType()))
119         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
120 
121     if (!AVAttr)
122       return;
123 
124     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
125     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
126     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
127   }
128 
129   /// EmitLoadOfLValue - Given an expression with complex type that represents a
130   /// value l-value, this method emits the address of the l-value, then loads
131   /// and returns the result.
132   Value *EmitLoadOfLValue(const Expr *E) {
133     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
134                                 E->getExprLoc());
135 
136     EmitLValueAlignmentAssumption(E, V);
137     return V;
138   }
139 
140   /// EmitConversionToBool - Convert the specified expression value to a
141   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
142   Value *EmitConversionToBool(Value *Src, QualType DstTy);
143 
144   /// Emit a check that a conversion to or from a floating-point type does not
145   /// overflow.
146   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
147                                 Value *Src, QualType SrcType, QualType DstType,
148                                 llvm::Type *DstTy, SourceLocation Loc);
149 
150   /// Emit a conversion from the specified type to the specified destination
151   /// type, both of which are LLVM scalar types.
152   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
153                               SourceLocation Loc);
154 
155   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
156                               SourceLocation Loc, bool TreatBooleanAsSigned);
157 
158   /// Emit a conversion from the specified complex type to the specified
159   /// destination type, where the destination type is an LLVM scalar type.
160   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
161                                        QualType SrcTy, QualType DstTy,
162                                        SourceLocation Loc);
163 
164   /// EmitNullValue - Emit a value that corresponds to null for the given type.
165   Value *EmitNullValue(QualType Ty);
166 
167   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
168   Value *EmitFloatToBoolConversion(Value *V) {
169     // Compare against 0.0 for fp scalars.
170     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
171     return Builder.CreateFCmpUNE(V, Zero, "tobool");
172   }
173 
174   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
175   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
176     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
177 
178     return Builder.CreateICmpNE(V, Zero, "tobool");
179   }
180 
181   Value *EmitIntToBoolConversion(Value *V) {
182     // Because of the type rules of C, we often end up computing a
183     // logical value, then zero extending it to int, then wanting it
184     // as a logical value again.  Optimize this common case.
185     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
186       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
187         Value *Result = ZI->getOperand(0);
188         // If there aren't any more uses, zap the instruction to save space.
189         // Note that there can be more uses, for example if this
190         // is the result of an assignment.
191         if (ZI->use_empty())
192           ZI->eraseFromParent();
193         return Result;
194       }
195     }
196 
197     return Builder.CreateIsNotNull(V, "tobool");
198   }
199 
200   //===--------------------------------------------------------------------===//
201   //                            Visitor Methods
202   //===--------------------------------------------------------------------===//
203 
204   Value *Visit(Expr *E) {
205     ApplyDebugLocation DL(CGF, E);
206     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
207   }
208 
209   Value *VisitStmt(Stmt *S) {
210     S->dump(CGF.getContext().getSourceManager());
211     llvm_unreachable("Stmt can't have complex result type!");
212   }
213   Value *VisitExpr(Expr *S);
214 
215   Value *VisitParenExpr(ParenExpr *PE) {
216     return Visit(PE->getSubExpr());
217   }
218   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
219     return Visit(E->getReplacement());
220   }
221   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
222     return Visit(GE->getResultExpr());
223   }
224 
225   // Leaves.
226   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
227     return Builder.getInt(E->getValue());
228   }
229   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
230     return llvm::ConstantFP::get(VMContext, E->getValue());
231   }
232   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
233     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
234   }
235   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
236     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
237   }
238   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
239     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
240   }
241   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
242     return EmitNullValue(E->getType());
243   }
244   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
245     return EmitNullValue(E->getType());
246   }
247   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
248   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
249   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
250     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
251     return Builder.CreateBitCast(V, ConvertType(E->getType()));
252   }
253 
254   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
255     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
256   }
257 
258   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
259     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
260   }
261 
262   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
263     if (E->isGLValue())
264       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
265 
266     // Otherwise, assume the mapping is the scalar directly.
267     return CGF.getOpaqueRValueMapping(E).getScalarVal();
268   }
269 
270   // l-values.
271   Value *VisitDeclRefExpr(DeclRefExpr *E) {
272     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
273       if (result.isReference())
274         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
275                                 E->getExprLoc());
276       return result.getValue();
277     }
278     return EmitLoadOfLValue(E);
279   }
280 
281   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
282     return CGF.EmitObjCSelectorExpr(E);
283   }
284   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
285     return CGF.EmitObjCProtocolExpr(E);
286   }
287   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
288     return EmitLoadOfLValue(E);
289   }
290   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
291     if (E->getMethodDecl() &&
292         E->getMethodDecl()->getReturnType()->isReferenceType())
293       return EmitLoadOfLValue(E);
294     return CGF.EmitObjCMessageExpr(E).getScalarVal();
295   }
296 
297   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
298     LValue LV = CGF.EmitObjCIsaExpr(E);
299     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
300     return V;
301   }
302 
303   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
304   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
305   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
306   Value *VisitMemberExpr(MemberExpr *E);
307   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
308   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
309     return EmitLoadOfLValue(E);
310   }
311 
312   Value *VisitInitListExpr(InitListExpr *E);
313 
314   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
315     return EmitNullValue(E->getType());
316   }
317   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
318     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
319     return VisitCastExpr(E);
320   }
321   Value *VisitCastExpr(CastExpr *E);
322 
323   Value *VisitCallExpr(const CallExpr *E) {
324     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
325       return EmitLoadOfLValue(E);
326 
327     Value *V = CGF.EmitCallExpr(E).getScalarVal();
328 
329     EmitLValueAlignmentAssumption(E, V);
330     return V;
331   }
332 
333   Value *VisitStmtExpr(const StmtExpr *E);
334 
335   // Unary Operators.
336   Value *VisitUnaryPostDec(const UnaryOperator *E) {
337     LValue LV = EmitLValue(E->getSubExpr());
338     return EmitScalarPrePostIncDec(E, LV, false, false);
339   }
340   Value *VisitUnaryPostInc(const UnaryOperator *E) {
341     LValue LV = EmitLValue(E->getSubExpr());
342     return EmitScalarPrePostIncDec(E, LV, true, false);
343   }
344   Value *VisitUnaryPreDec(const UnaryOperator *E) {
345     LValue LV = EmitLValue(E->getSubExpr());
346     return EmitScalarPrePostIncDec(E, LV, false, true);
347   }
348   Value *VisitUnaryPreInc(const UnaryOperator *E) {
349     LValue LV = EmitLValue(E->getSubExpr());
350     return EmitScalarPrePostIncDec(E, LV, true, true);
351   }
352 
353   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
354                                                   llvm::Value *InVal,
355                                                   bool IsInc);
356 
357   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
358                                        bool isInc, bool isPre);
359 
360 
361   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
362     if (isa<MemberPointerType>(E->getType())) // never sugared
363       return CGF.CGM.getMemberPointerConstant(E);
364 
365     return EmitLValue(E->getSubExpr()).getPointer();
366   }
367   Value *VisitUnaryDeref(const UnaryOperator *E) {
368     if (E->getType()->isVoidType())
369       return Visit(E->getSubExpr()); // the actual value should be unused
370     return EmitLoadOfLValue(E);
371   }
372   Value *VisitUnaryPlus(const UnaryOperator *E) {
373     // This differs from gcc, though, most likely due to a bug in gcc.
374     TestAndClearIgnoreResultAssign();
375     return Visit(E->getSubExpr());
376   }
377   Value *VisitUnaryMinus    (const UnaryOperator *E);
378   Value *VisitUnaryNot      (const UnaryOperator *E);
379   Value *VisitUnaryLNot     (const UnaryOperator *E);
380   Value *VisitUnaryReal     (const UnaryOperator *E);
381   Value *VisitUnaryImag     (const UnaryOperator *E);
382   Value *VisitUnaryExtension(const UnaryOperator *E) {
383     return Visit(E->getSubExpr());
384   }
385 
386   // C++
387   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
388     return EmitLoadOfLValue(E);
389   }
390 
391   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
392     return Visit(DAE->getExpr());
393   }
394   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
395     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
396     return Visit(DIE->getExpr());
397   }
398   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
399     return CGF.LoadCXXThis();
400   }
401 
402   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
403     CGF.enterFullExpression(E);
404     CodeGenFunction::RunCleanupsScope Scope(CGF);
405     return Visit(E->getSubExpr());
406   }
407   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
408     return CGF.EmitCXXNewExpr(E);
409   }
410   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
411     CGF.EmitCXXDeleteExpr(E);
412     return nullptr;
413   }
414 
415   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
416     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
417   }
418 
419   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
420     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
421   }
422 
423   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
424     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
425   }
426 
427   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
428     // C++ [expr.pseudo]p1:
429     //   The result shall only be used as the operand for the function call
430     //   operator (), and the result of such a call has type void. The only
431     //   effect is the evaluation of the postfix-expression before the dot or
432     //   arrow.
433     CGF.EmitScalarExpr(E->getBase());
434     return nullptr;
435   }
436 
437   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
438     return EmitNullValue(E->getType());
439   }
440 
441   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
442     CGF.EmitCXXThrowExpr(E);
443     return nullptr;
444   }
445 
446   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
447     return Builder.getInt1(E->getValue());
448   }
449 
450   // Binary Operators.
451   Value *EmitMul(const BinOpInfo &Ops) {
452     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
453       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
454       case LangOptions::SOB_Defined:
455         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
456       case LangOptions::SOB_Undefined:
457         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
458           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
459         // Fall through.
460       case LangOptions::SOB_Trapping:
461         return EmitOverflowCheckedBinOp(Ops);
462       }
463     }
464 
465     if (Ops.Ty->isUnsignedIntegerType() &&
466         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
467       return EmitOverflowCheckedBinOp(Ops);
468 
469     if (Ops.LHS->getType()->isFPOrFPVectorTy())
470       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
471     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
472   }
473   /// Create a binary op that checks for overflow.
474   /// Currently only supports +, - and *.
475   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
476 
477   // Check for undefined division and modulus behaviors.
478   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
479                                                   llvm::Value *Zero,bool isDiv);
480   // Common helper for getting how wide LHS of shift is.
481   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
482   Value *EmitDiv(const BinOpInfo &Ops);
483   Value *EmitRem(const BinOpInfo &Ops);
484   Value *EmitAdd(const BinOpInfo &Ops);
485   Value *EmitSub(const BinOpInfo &Ops);
486   Value *EmitShl(const BinOpInfo &Ops);
487   Value *EmitShr(const BinOpInfo &Ops);
488   Value *EmitAnd(const BinOpInfo &Ops) {
489     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
490   }
491   Value *EmitXor(const BinOpInfo &Ops) {
492     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
493   }
494   Value *EmitOr (const BinOpInfo &Ops) {
495     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
496   }
497 
498   BinOpInfo EmitBinOps(const BinaryOperator *E);
499   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
500                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
501                                   Value *&Result);
502 
503   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
504                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
505 
506   // Binary operators and binary compound assignment operators.
507 #define HANDLEBINOP(OP) \
508   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
509     return Emit ## OP(EmitBinOps(E));                                      \
510   }                                                                        \
511   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
512     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
513   }
514   HANDLEBINOP(Mul)
515   HANDLEBINOP(Div)
516   HANDLEBINOP(Rem)
517   HANDLEBINOP(Add)
518   HANDLEBINOP(Sub)
519   HANDLEBINOP(Shl)
520   HANDLEBINOP(Shr)
521   HANDLEBINOP(And)
522   HANDLEBINOP(Xor)
523   HANDLEBINOP(Or)
524 #undef HANDLEBINOP
525 
526   // Comparisons.
527   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
528                      llvm::CmpInst::Predicate SICmpOpc,
529                      llvm::CmpInst::Predicate FCmpOpc);
530 #define VISITCOMP(CODE, UI, SI, FP) \
531     Value *VisitBin##CODE(const BinaryOperator *E) { \
532       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
533                          llvm::FCmpInst::FP); }
534   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
535   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
536   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
537   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
538   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
539   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
540 #undef VISITCOMP
541 
542   Value *VisitBinAssign     (const BinaryOperator *E);
543 
544   Value *VisitBinLAnd       (const BinaryOperator *E);
545   Value *VisitBinLOr        (const BinaryOperator *E);
546   Value *VisitBinComma      (const BinaryOperator *E);
547 
548   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
549   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
550 
551   // Other Operators.
552   Value *VisitBlockExpr(const BlockExpr *BE);
553   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
554   Value *VisitChooseExpr(ChooseExpr *CE);
555   Value *VisitVAArgExpr(VAArgExpr *VE);
556   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
557     return CGF.EmitObjCStringLiteral(E);
558   }
559   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
560     return CGF.EmitObjCBoxedExpr(E);
561   }
562   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
563     return CGF.EmitObjCArrayLiteral(E);
564   }
565   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
566     return CGF.EmitObjCDictionaryLiteral(E);
567   }
568   Value *VisitAsTypeExpr(AsTypeExpr *CE);
569   Value *VisitAtomicExpr(AtomicExpr *AE);
570 };
571 }  // end anonymous namespace.
572 
573 //===----------------------------------------------------------------------===//
574 //                                Utilities
575 //===----------------------------------------------------------------------===//
576 
577 /// EmitConversionToBool - Convert the specified expression value to a
578 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
579 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
580   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
581 
582   if (SrcType->isRealFloatingType())
583     return EmitFloatToBoolConversion(Src);
584 
585   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
586     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
587 
588   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
589          "Unknown scalar type to convert");
590 
591   if (isa<llvm::IntegerType>(Src->getType()))
592     return EmitIntToBoolConversion(Src);
593 
594   assert(isa<llvm::PointerType>(Src->getType()));
595   return EmitPointerToBoolConversion(Src, SrcType);
596 }
597 
598 void ScalarExprEmitter::EmitFloatConversionCheck(
599     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
600     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
601   CodeGenFunction::SanitizerScope SanScope(&CGF);
602   using llvm::APFloat;
603   using llvm::APSInt;
604 
605   llvm::Type *SrcTy = Src->getType();
606 
607   llvm::Value *Check = nullptr;
608   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
609     // Integer to floating-point. This can fail for unsigned short -> __half
610     // or unsigned __int128 -> float.
611     assert(DstType->isFloatingType());
612     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
613 
614     APFloat LargestFloat =
615       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
616     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
617 
618     bool IsExact;
619     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
620                                       &IsExact) != APFloat::opOK)
621       // The range of representable values of this floating point type includes
622       // all values of this integer type. Don't need an overflow check.
623       return;
624 
625     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
626     if (SrcIsUnsigned)
627       Check = Builder.CreateICmpULE(Src, Max);
628     else {
629       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
630       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
631       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
632       Check = Builder.CreateAnd(GE, LE);
633     }
634   } else {
635     const llvm::fltSemantics &SrcSema =
636       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
637     if (isa<llvm::IntegerType>(DstTy)) {
638       // Floating-point to integer. This has undefined behavior if the source is
639       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
640       // to an integer).
641       unsigned Width = CGF.getContext().getIntWidth(DstType);
642       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
643 
644       APSInt Min = APSInt::getMinValue(Width, Unsigned);
645       APFloat MinSrc(SrcSema, APFloat::uninitialized);
646       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
647           APFloat::opOverflow)
648         // Don't need an overflow check for lower bound. Just check for
649         // -Inf/NaN.
650         MinSrc = APFloat::getInf(SrcSema, true);
651       else
652         // Find the largest value which is too small to represent (before
653         // truncation toward zero).
654         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
655 
656       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
657       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
658       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
659           APFloat::opOverflow)
660         // Don't need an overflow check for upper bound. Just check for
661         // +Inf/NaN.
662         MaxSrc = APFloat::getInf(SrcSema, false);
663       else
664         // Find the smallest value which is too large to represent (before
665         // truncation toward zero).
666         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
667 
668       // If we're converting from __half, convert the range to float to match
669       // the type of src.
670       if (OrigSrcType->isHalfType()) {
671         const llvm::fltSemantics &Sema =
672           CGF.getContext().getFloatTypeSemantics(SrcType);
673         bool IsInexact;
674         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
676       }
677 
678       llvm::Value *GE =
679         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
680       llvm::Value *LE =
681         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
682       Check = Builder.CreateAnd(GE, LE);
683     } else {
684       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
685       //
686       // Floating-point to floating-point. This has undefined behavior if the
687       // source is not in the range of representable values of the destination
688       // type. The C and C++ standards are spectacularly unclear here. We
689       // diagnose finite out-of-range conversions, but allow infinities and NaNs
690       // to convert to the corresponding value in the smaller type.
691       //
692       // C11 Annex F gives all such conversions defined behavior for IEC 60559
693       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
694       // does not.
695 
696       // Converting from a lower rank to a higher rank can never have
697       // undefined behavior, since higher-rank types must have a superset
698       // of values of lower-rank types.
699       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
700         return;
701 
702       assert(!OrigSrcType->isHalfType() &&
703              "should not check conversion from __half, it has the lowest rank");
704 
705       const llvm::fltSemantics &DstSema =
706         CGF.getContext().getFloatTypeSemantics(DstType);
707       APFloat MinBad = APFloat::getLargest(DstSema, false);
708       APFloat MaxBad = APFloat::getInf(DstSema, false);
709 
710       bool IsInexact;
711       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
713 
714       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
715         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
716       llvm::Value *GE =
717         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
718       llvm::Value *LE =
719         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
720       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
721     }
722   }
723 
724   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
725                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
726                                   CGF.EmitCheckTypeDescriptor(DstType)};
727   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
728                 "float_cast_overflow", StaticArgs, OrigSrc);
729 }
730 
731 /// Emit a conversion from the specified type to the specified destination type,
732 /// both of which are LLVM scalar types.
733 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
734                                                QualType DstType,
735                                                SourceLocation Loc) {
736   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
737 }
738 
739 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
740                                                QualType DstType,
741                                                SourceLocation Loc,
742                                                bool TreatBooleanAsSigned) {
743   SrcType = CGF.getContext().getCanonicalType(SrcType);
744   DstType = CGF.getContext().getCanonicalType(DstType);
745   if (SrcType == DstType) return Src;
746 
747   if (DstType->isVoidType()) return nullptr;
748 
749   llvm::Value *OrigSrc = Src;
750   QualType OrigSrcType = SrcType;
751   llvm::Type *SrcTy = Src->getType();
752 
753   // Handle conversions to bool first, they are special: comparisons against 0.
754   if (DstType->isBooleanType())
755     return EmitConversionToBool(Src, SrcType);
756 
757   llvm::Type *DstTy = ConvertType(DstType);
758 
759   // Cast from half through float if half isn't a native type.
760   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
761     // Cast to FP using the intrinsic if the half type itself isn't supported.
762     if (DstTy->isFloatingPointTy()) {
763       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
764         return Builder.CreateCall(
765             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
766             Src);
767     } else {
768       // Cast to other types through float, using either the intrinsic or FPExt,
769       // depending on whether the half type itself is supported
770       // (as opposed to operations on half, available with NativeHalfType).
771       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
772         Src = Builder.CreateCall(
773             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
774                                  CGF.CGM.FloatTy),
775             Src);
776       } else {
777         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
778       }
779       SrcType = CGF.getContext().FloatTy;
780       SrcTy = CGF.FloatTy;
781     }
782   }
783 
784   // Ignore conversions like int -> uint.
785   if (SrcTy == DstTy)
786     return Src;
787 
788   // Handle pointer conversions next: pointers can only be converted to/from
789   // other pointers and integers. Check for pointer types in terms of LLVM, as
790   // some native types (like Obj-C id) may map to a pointer type.
791   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
792     // The source value may be an integer, or a pointer.
793     if (isa<llvm::PointerType>(SrcTy))
794       return Builder.CreateBitCast(Src, DstTy, "conv");
795 
796     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
797     // First, convert to the correct width so that we control the kind of
798     // extension.
799     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
800     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
801     llvm::Value* IntResult =
802         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
803     // Then, cast to pointer.
804     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
805   }
806 
807   if (isa<llvm::PointerType>(SrcTy)) {
808     // Must be an ptr to int cast.
809     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
810     return Builder.CreatePtrToInt(Src, DstTy, "conv");
811   }
812 
813   // A scalar can be splatted to an extended vector of the same element type
814   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
815     // Sema should add casts to make sure that the source expression's type is
816     // the same as the vector's element type (sans qualifiers)
817     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
818                SrcType.getTypePtr() &&
819            "Splatted expr doesn't match with vector element type?");
820 
821     // Splat the element across to all elements
822     unsigned NumElements = DstTy->getVectorNumElements();
823     return Builder.CreateVectorSplat(NumElements, Src, "splat");
824   }
825 
826   // Allow bitcast from vector to integer/fp of the same size.
827   if (isa<llvm::VectorType>(SrcTy) ||
828       isa<llvm::VectorType>(DstTy))
829     return Builder.CreateBitCast(Src, DstTy, "conv");
830 
831   // Finally, we have the arithmetic types: real int/float.
832   Value *Res = nullptr;
833   llvm::Type *ResTy = DstTy;
834 
835   // An overflowing conversion has undefined behavior if either the source type
836   // or the destination type is a floating-point type.
837   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
838       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
839     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
840                              Loc);
841 
842   // Cast to half through float if half isn't a native type.
843   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
844     // Make sure we cast in a single step if from another FP type.
845     if (SrcTy->isFloatingPointTy()) {
846       // Use the intrinsic if the half type itself isn't supported
847       // (as opposed to operations on half, available with NativeHalfType).
848       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
849         return Builder.CreateCall(
850             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
851       // If the half type is supported, just use an fptrunc.
852       return Builder.CreateFPTrunc(Src, DstTy);
853     }
854     DstTy = CGF.FloatTy;
855   }
856 
857   if (isa<llvm::IntegerType>(SrcTy)) {
858     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
859     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
860       InputSigned = true;
861     }
862     if (isa<llvm::IntegerType>(DstTy))
863       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
864     else if (InputSigned)
865       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
866     else
867       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
868   } else if (isa<llvm::IntegerType>(DstTy)) {
869     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
870     if (DstType->isSignedIntegerOrEnumerationType())
871       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
872     else
873       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
874   } else {
875     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
876            "Unknown real conversion");
877     if (DstTy->getTypeID() < SrcTy->getTypeID())
878       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
879     else
880       Res = Builder.CreateFPExt(Src, DstTy, "conv");
881   }
882 
883   if (DstTy != ResTy) {
884     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
885       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
886       Res = Builder.CreateCall(
887         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
888         Res);
889     } else {
890       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
891     }
892   }
893 
894   return Res;
895 }
896 
897 /// Emit a conversion from the specified complex type to the specified
898 /// destination type, where the destination type is an LLVM scalar type.
899 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
900     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
901     SourceLocation Loc) {
902   // Get the source element type.
903   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
904 
905   // Handle conversions to bool first, they are special: comparisons against 0.
906   if (DstTy->isBooleanType()) {
907     //  Complex != 0  -> (Real != 0) | (Imag != 0)
908     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
909     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
910     return Builder.CreateOr(Src.first, Src.second, "tobool");
911   }
912 
913   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
914   // the imaginary part of the complex value is discarded and the value of the
915   // real part is converted according to the conversion rules for the
916   // corresponding real type.
917   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
918 }
919 
920 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
921   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
922 }
923 
924 /// \brief Emit a sanitization check for the given "binary" operation (which
925 /// might actually be a unary increment which has been lowered to a binary
926 /// operation). The check passes if all values in \p Checks (which are \c i1),
927 /// are \c true.
928 void ScalarExprEmitter::EmitBinOpCheck(
929     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
930   assert(CGF.IsSanitizerScope);
931   StringRef CheckName;
932   SmallVector<llvm::Constant *, 4> StaticData;
933   SmallVector<llvm::Value *, 2> DynamicData;
934 
935   BinaryOperatorKind Opcode = Info.Opcode;
936   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
937     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
938 
939   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
940   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
941   if (UO && UO->getOpcode() == UO_Minus) {
942     CheckName = "negate_overflow";
943     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
944     DynamicData.push_back(Info.RHS);
945   } else {
946     if (BinaryOperator::isShiftOp(Opcode)) {
947       // Shift LHS negative or too large, or RHS out of bounds.
948       CheckName = "shift_out_of_bounds";
949       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
950       StaticData.push_back(
951         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
952       StaticData.push_back(
953         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
954     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
955       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
956       CheckName = "divrem_overflow";
957       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
958     } else {
959       // Arithmetic overflow (+, -, *).
960       switch (Opcode) {
961       case BO_Add: CheckName = "add_overflow"; break;
962       case BO_Sub: CheckName = "sub_overflow"; break;
963       case BO_Mul: CheckName = "mul_overflow"; break;
964       default: llvm_unreachable("unexpected opcode for bin op check");
965       }
966       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
967     }
968     DynamicData.push_back(Info.LHS);
969     DynamicData.push_back(Info.RHS);
970   }
971 
972   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
973 }
974 
975 //===----------------------------------------------------------------------===//
976 //                            Visitor Methods
977 //===----------------------------------------------------------------------===//
978 
979 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
980   CGF.ErrorUnsupported(E, "scalar expression");
981   if (E->getType()->isVoidType())
982     return nullptr;
983   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
984 }
985 
986 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
987   // Vector Mask Case
988   if (E->getNumSubExprs() == 2) {
989     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
990     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
991     Value *Mask;
992 
993     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
994     unsigned LHSElts = LTy->getNumElements();
995 
996     Mask = RHS;
997 
998     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
999 
1000     // Mask off the high bits of each shuffle index.
1001     Value *MaskBits =
1002         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1003     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1004 
1005     // newv = undef
1006     // mask = mask & maskbits
1007     // for each elt
1008     //   n = extract mask i
1009     //   x = extract val n
1010     //   newv = insert newv, x, i
1011     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1012                                                   MTy->getNumElements());
1013     Value* NewV = llvm::UndefValue::get(RTy);
1014     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1015       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1016       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1017 
1018       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1019       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1020     }
1021     return NewV;
1022   }
1023 
1024   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1025   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1026 
1027   SmallVector<llvm::Constant*, 32> indices;
1028   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1029     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1030     // Check for -1 and output it as undef in the IR.
1031     if (Idx.isSigned() && Idx.isAllOnesValue())
1032       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1033     else
1034       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1035   }
1036 
1037   Value *SV = llvm::ConstantVector::get(indices);
1038   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1039 }
1040 
1041 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1042   QualType SrcType = E->getSrcExpr()->getType(),
1043            DstType = E->getType();
1044 
1045   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1046 
1047   SrcType = CGF.getContext().getCanonicalType(SrcType);
1048   DstType = CGF.getContext().getCanonicalType(DstType);
1049   if (SrcType == DstType) return Src;
1050 
1051   assert(SrcType->isVectorType() &&
1052          "ConvertVector source type must be a vector");
1053   assert(DstType->isVectorType() &&
1054          "ConvertVector destination type must be a vector");
1055 
1056   llvm::Type *SrcTy = Src->getType();
1057   llvm::Type *DstTy = ConvertType(DstType);
1058 
1059   // Ignore conversions like int -> uint.
1060   if (SrcTy == DstTy)
1061     return Src;
1062 
1063   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1064            DstEltType = DstType->getAs<VectorType>()->getElementType();
1065 
1066   assert(SrcTy->isVectorTy() &&
1067          "ConvertVector source IR type must be a vector");
1068   assert(DstTy->isVectorTy() &&
1069          "ConvertVector destination IR type must be a vector");
1070 
1071   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1072              *DstEltTy = DstTy->getVectorElementType();
1073 
1074   if (DstEltType->isBooleanType()) {
1075     assert((SrcEltTy->isFloatingPointTy() ||
1076             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1077 
1078     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1079     if (SrcEltTy->isFloatingPointTy()) {
1080       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1081     } else {
1082       return Builder.CreateICmpNE(Src, Zero, "tobool");
1083     }
1084   }
1085 
1086   // We have the arithmetic types: real int/float.
1087   Value *Res = nullptr;
1088 
1089   if (isa<llvm::IntegerType>(SrcEltTy)) {
1090     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1091     if (isa<llvm::IntegerType>(DstEltTy))
1092       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1093     else if (InputSigned)
1094       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1095     else
1096       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1097   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1098     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1099     if (DstEltType->isSignedIntegerOrEnumerationType())
1100       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1101     else
1102       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1103   } else {
1104     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1105            "Unknown real conversion");
1106     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1107       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1108     else
1109       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1110   }
1111 
1112   return Res;
1113 }
1114 
1115 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1116   llvm::APSInt Value;
1117   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1118     if (E->isArrow())
1119       CGF.EmitScalarExpr(E->getBase());
1120     else
1121       EmitLValue(E->getBase());
1122     return Builder.getInt(Value);
1123   }
1124 
1125   return EmitLoadOfLValue(E);
1126 }
1127 
1128 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1129   TestAndClearIgnoreResultAssign();
1130 
1131   // Emit subscript expressions in rvalue context's.  For most cases, this just
1132   // loads the lvalue formed by the subscript expr.  However, we have to be
1133   // careful, because the base of a vector subscript is occasionally an rvalue,
1134   // so we can't get it as an lvalue.
1135   if (!E->getBase()->getType()->isVectorType())
1136     return EmitLoadOfLValue(E);
1137 
1138   // Handle the vector case.  The base must be a vector, the index must be an
1139   // integer value.
1140   Value *Base = Visit(E->getBase());
1141   Value *Idx  = Visit(E->getIdx());
1142   QualType IdxTy = E->getIdx()->getType();
1143 
1144   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1145     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1146 
1147   return Builder.CreateExtractElement(Base, Idx, "vecext");
1148 }
1149 
1150 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1151                                   unsigned Off, llvm::Type *I32Ty) {
1152   int MV = SVI->getMaskValue(Idx);
1153   if (MV == -1)
1154     return llvm::UndefValue::get(I32Ty);
1155   return llvm::ConstantInt::get(I32Ty, Off+MV);
1156 }
1157 
1158 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1159   if (C->getBitWidth() != 32) {
1160       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1161                                                     C->getZExtValue()) &&
1162              "Index operand too large for shufflevector mask!");
1163       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1164   }
1165   return C;
1166 }
1167 
1168 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1169   bool Ignore = TestAndClearIgnoreResultAssign();
1170   (void)Ignore;
1171   assert (Ignore == false && "init list ignored");
1172   unsigned NumInitElements = E->getNumInits();
1173 
1174   if (E->hadArrayRangeDesignator())
1175     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1176 
1177   llvm::VectorType *VType =
1178     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1179 
1180   if (!VType) {
1181     if (NumInitElements == 0) {
1182       // C++11 value-initialization for the scalar.
1183       return EmitNullValue(E->getType());
1184     }
1185     // We have a scalar in braces. Just use the first element.
1186     return Visit(E->getInit(0));
1187   }
1188 
1189   unsigned ResElts = VType->getNumElements();
1190 
1191   // Loop over initializers collecting the Value for each, and remembering
1192   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1193   // us to fold the shuffle for the swizzle into the shuffle for the vector
1194   // initializer, since LLVM optimizers generally do not want to touch
1195   // shuffles.
1196   unsigned CurIdx = 0;
1197   bool VIsUndefShuffle = false;
1198   llvm::Value *V = llvm::UndefValue::get(VType);
1199   for (unsigned i = 0; i != NumInitElements; ++i) {
1200     Expr *IE = E->getInit(i);
1201     Value *Init = Visit(IE);
1202     SmallVector<llvm::Constant*, 16> Args;
1203 
1204     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1205 
1206     // Handle scalar elements.  If the scalar initializer is actually one
1207     // element of a different vector of the same width, use shuffle instead of
1208     // extract+insert.
1209     if (!VVT) {
1210       if (isa<ExtVectorElementExpr>(IE)) {
1211         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1212 
1213         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1214           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1215           Value *LHS = nullptr, *RHS = nullptr;
1216           if (CurIdx == 0) {
1217             // insert into undef -> shuffle (src, undef)
1218             // shufflemask must use an i32
1219             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1220             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1221 
1222             LHS = EI->getVectorOperand();
1223             RHS = V;
1224             VIsUndefShuffle = true;
1225           } else if (VIsUndefShuffle) {
1226             // insert into undefshuffle && size match -> shuffle (v, src)
1227             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1228             for (unsigned j = 0; j != CurIdx; ++j)
1229               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1230             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1231             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1232 
1233             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1234             RHS = EI->getVectorOperand();
1235             VIsUndefShuffle = false;
1236           }
1237           if (!Args.empty()) {
1238             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1239             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1240             ++CurIdx;
1241             continue;
1242           }
1243         }
1244       }
1245       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1246                                       "vecinit");
1247       VIsUndefShuffle = false;
1248       ++CurIdx;
1249       continue;
1250     }
1251 
1252     unsigned InitElts = VVT->getNumElements();
1253 
1254     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1255     // input is the same width as the vector being constructed, generate an
1256     // optimized shuffle of the swizzle input into the result.
1257     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1258     if (isa<ExtVectorElementExpr>(IE)) {
1259       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1260       Value *SVOp = SVI->getOperand(0);
1261       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1262 
1263       if (OpTy->getNumElements() == ResElts) {
1264         for (unsigned j = 0; j != CurIdx; ++j) {
1265           // If the current vector initializer is a shuffle with undef, merge
1266           // this shuffle directly into it.
1267           if (VIsUndefShuffle) {
1268             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1269                                       CGF.Int32Ty));
1270           } else {
1271             Args.push_back(Builder.getInt32(j));
1272           }
1273         }
1274         for (unsigned j = 0, je = InitElts; j != je; ++j)
1275           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1276         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1277 
1278         if (VIsUndefShuffle)
1279           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1280 
1281         Init = SVOp;
1282       }
1283     }
1284 
1285     // Extend init to result vector length, and then shuffle its contribution
1286     // to the vector initializer into V.
1287     if (Args.empty()) {
1288       for (unsigned j = 0; j != InitElts; ++j)
1289         Args.push_back(Builder.getInt32(j));
1290       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1291       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1292       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1293                                          Mask, "vext");
1294 
1295       Args.clear();
1296       for (unsigned j = 0; j != CurIdx; ++j)
1297         Args.push_back(Builder.getInt32(j));
1298       for (unsigned j = 0; j != InitElts; ++j)
1299         Args.push_back(Builder.getInt32(j+Offset));
1300       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1301     }
1302 
1303     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1304     // merging subsequent shuffles into this one.
1305     if (CurIdx == 0)
1306       std::swap(V, Init);
1307     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1308     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1309     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1310     CurIdx += InitElts;
1311   }
1312 
1313   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1314   // Emit remaining default initializers.
1315   llvm::Type *EltTy = VType->getElementType();
1316 
1317   // Emit remaining default initializers
1318   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1319     Value *Idx = Builder.getInt32(CurIdx);
1320     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1321     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1322   }
1323   return V;
1324 }
1325 
1326 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1327   const Expr *E = CE->getSubExpr();
1328 
1329   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1330     return false;
1331 
1332   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1333     // We always assume that 'this' is never null.
1334     return false;
1335   }
1336 
1337   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1338     // And that glvalue casts are never null.
1339     if (ICE->getValueKind() != VK_RValue)
1340       return false;
1341   }
1342 
1343   return true;
1344 }
1345 
1346 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1347 // have to handle a more broad range of conversions than explicit casts, as they
1348 // handle things like function to ptr-to-function decay etc.
1349 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1350   Expr *E = CE->getSubExpr();
1351   QualType DestTy = CE->getType();
1352   CastKind Kind = CE->getCastKind();
1353 
1354   // These cases are generally not written to ignore the result of
1355   // evaluating their sub-expressions, so we clear this now.
1356   bool Ignored = TestAndClearIgnoreResultAssign();
1357 
1358   // Since almost all cast kinds apply to scalars, this switch doesn't have
1359   // a default case, so the compiler will warn on a missing case.  The cases
1360   // are in the same order as in the CastKind enum.
1361   switch (Kind) {
1362   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1363   case CK_BuiltinFnToFnPtr:
1364     llvm_unreachable("builtin functions are handled elsewhere");
1365 
1366   case CK_LValueBitCast:
1367   case CK_ObjCObjectLValueCast: {
1368     Address Addr = EmitLValue(E).getAddress();
1369     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1370     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1371     return EmitLoadOfLValue(LV, CE->getExprLoc());
1372   }
1373 
1374   case CK_CPointerToObjCPointerCast:
1375   case CK_BlockPointerToObjCPointerCast:
1376   case CK_AnyPointerToBlockPointerCast:
1377   case CK_BitCast: {
1378     Value *Src = Visit(const_cast<Expr*>(E));
1379     llvm::Type *SrcTy = Src->getType();
1380     llvm::Type *DstTy = ConvertType(DestTy);
1381     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1382         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1383       llvm_unreachable("wrong cast for pointers in different address spaces"
1384                        "(must be an address space cast)!");
1385     }
1386 
1387     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1388       if (auto PT = DestTy->getAs<PointerType>())
1389         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1390                                       /*MayBeNull=*/true,
1391                                       CodeGenFunction::CFITCK_UnrelatedCast,
1392                                       CE->getLocStart());
1393     }
1394 
1395     return Builder.CreateBitCast(Src, DstTy);
1396   }
1397   case CK_AddressSpaceConversion: {
1398     Expr::EvalResult Result;
1399     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1400         Result.Val.isNullPointer()) {
1401       // If E has side effect, it is emitted even if its final result is a
1402       // null pointer. In that case, a DCE pass should be able to
1403       // eliminate the useless instructions emitted during translating E.
1404       if (Result.HasSideEffects)
1405         Visit(E);
1406       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1407           ConvertType(DestTy)), DestTy);
1408     }
1409     // Since target may map different address spaces in AST to the same address
1410     // space, an address space conversion may end up as a bitcast.
1411     auto *Src = Visit(E);
1412     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGF, Src,
1413                                                                E->getType(),
1414                                                                DestTy);
1415   }
1416   case CK_AtomicToNonAtomic:
1417   case CK_NonAtomicToAtomic:
1418   case CK_NoOp:
1419   case CK_UserDefinedConversion:
1420     return Visit(const_cast<Expr*>(E));
1421 
1422   case CK_BaseToDerived: {
1423     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1424     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1425 
1426     Address Base = CGF.EmitPointerWithAlignment(E);
1427     Address Derived =
1428       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1429                                    CE->path_begin(), CE->path_end(),
1430                                    CGF.ShouldNullCheckClassCastValue(CE));
1431 
1432     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1433     // performed and the object is not of the derived type.
1434     if (CGF.sanitizePerformTypeCheck())
1435       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1436                         Derived.getPointer(), DestTy->getPointeeType());
1437 
1438     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1439       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1440                                     Derived.getPointer(),
1441                                     /*MayBeNull=*/true,
1442                                     CodeGenFunction::CFITCK_DerivedCast,
1443                                     CE->getLocStart());
1444 
1445     return Derived.getPointer();
1446   }
1447   case CK_UncheckedDerivedToBase:
1448   case CK_DerivedToBase: {
1449     // The EmitPointerWithAlignment path does this fine; just discard
1450     // the alignment.
1451     return CGF.EmitPointerWithAlignment(CE).getPointer();
1452   }
1453 
1454   case CK_Dynamic: {
1455     Address V = CGF.EmitPointerWithAlignment(E);
1456     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1457     return CGF.EmitDynamicCast(V, DCE);
1458   }
1459 
1460   case CK_ArrayToPointerDecay:
1461     return CGF.EmitArrayToPointerDecay(E).getPointer();
1462   case CK_FunctionToPointerDecay:
1463     return EmitLValue(E).getPointer();
1464 
1465   case CK_NullToPointer:
1466     if (MustVisitNullValue(E))
1467       (void) Visit(E);
1468 
1469     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1470                               DestTy);
1471 
1472   case CK_NullToMemberPointer: {
1473     if (MustVisitNullValue(E))
1474       (void) Visit(E);
1475 
1476     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1477     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1478   }
1479 
1480   case CK_ReinterpretMemberPointer:
1481   case CK_BaseToDerivedMemberPointer:
1482   case CK_DerivedToBaseMemberPointer: {
1483     Value *Src = Visit(E);
1484 
1485     // Note that the AST doesn't distinguish between checked and
1486     // unchecked member pointer conversions, so we always have to
1487     // implement checked conversions here.  This is inefficient when
1488     // actual control flow may be required in order to perform the
1489     // check, which it is for data member pointers (but not member
1490     // function pointers on Itanium and ARM).
1491     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1492   }
1493 
1494   case CK_ARCProduceObject:
1495     return CGF.EmitARCRetainScalarExpr(E);
1496   case CK_ARCConsumeObject:
1497     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1498   case CK_ARCReclaimReturnedObject:
1499     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1500   case CK_ARCExtendBlockObject:
1501     return CGF.EmitARCExtendBlockObject(E);
1502 
1503   case CK_CopyAndAutoreleaseBlockObject:
1504     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1505 
1506   case CK_FloatingRealToComplex:
1507   case CK_FloatingComplexCast:
1508   case CK_IntegralRealToComplex:
1509   case CK_IntegralComplexCast:
1510   case CK_IntegralComplexToFloatingComplex:
1511   case CK_FloatingComplexToIntegralComplex:
1512   case CK_ConstructorConversion:
1513   case CK_ToUnion:
1514     llvm_unreachable("scalar cast to non-scalar value");
1515 
1516   case CK_LValueToRValue:
1517     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1518     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1519     return Visit(const_cast<Expr*>(E));
1520 
1521   case CK_IntegralToPointer: {
1522     Value *Src = Visit(const_cast<Expr*>(E));
1523 
1524     // First, convert to the correct width so that we control the kind of
1525     // extension.
1526     auto DestLLVMTy = ConvertType(DestTy);
1527     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1528     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1529     llvm::Value* IntResult =
1530       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1531 
1532     return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1533   }
1534   case CK_PointerToIntegral:
1535     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1536     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1537 
1538   case CK_ToVoid: {
1539     CGF.EmitIgnoredExpr(E);
1540     return nullptr;
1541   }
1542   case CK_VectorSplat: {
1543     llvm::Type *DstTy = ConvertType(DestTy);
1544     Value *Elt = Visit(const_cast<Expr*>(E));
1545     // Splat the element across to all elements
1546     unsigned NumElements = DstTy->getVectorNumElements();
1547     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1548   }
1549 
1550   case CK_IntegralCast:
1551   case CK_IntegralToFloating:
1552   case CK_FloatingToIntegral:
1553   case CK_FloatingCast:
1554     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1555                                 CE->getExprLoc());
1556   case CK_BooleanToSignedIntegral:
1557     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1558                                 CE->getExprLoc(),
1559                                 /*TreatBooleanAsSigned=*/true);
1560   case CK_IntegralToBoolean:
1561     return EmitIntToBoolConversion(Visit(E));
1562   case CK_PointerToBoolean:
1563     return EmitPointerToBoolConversion(Visit(E), E->getType());
1564   case CK_FloatingToBoolean:
1565     return EmitFloatToBoolConversion(Visit(E));
1566   case CK_MemberPointerToBoolean: {
1567     llvm::Value *MemPtr = Visit(E);
1568     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1569     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1570   }
1571 
1572   case CK_FloatingComplexToReal:
1573   case CK_IntegralComplexToReal:
1574     return CGF.EmitComplexExpr(E, false, true).first;
1575 
1576   case CK_FloatingComplexToBoolean:
1577   case CK_IntegralComplexToBoolean: {
1578     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1579 
1580     // TODO: kill this function off, inline appropriate case here
1581     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1582                                          CE->getExprLoc());
1583   }
1584 
1585   case CK_ZeroToOCLEvent: {
1586     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1587     return llvm::Constant::getNullValue(ConvertType(DestTy));
1588   }
1589 
1590   case CK_IntToOCLSampler:
1591     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1592 
1593   } // end of switch
1594 
1595   llvm_unreachable("unknown scalar cast");
1596 }
1597 
1598 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1599   CodeGenFunction::StmtExprEvaluation eval(CGF);
1600   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1601                                            !E->getType()->isVoidType());
1602   if (!RetAlloca.isValid())
1603     return nullptr;
1604   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1605                               E->getExprLoc());
1606 }
1607 
1608 //===----------------------------------------------------------------------===//
1609 //                             Unary Operators
1610 //===----------------------------------------------------------------------===//
1611 
1612 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1613                                            llvm::Value *InVal, bool IsInc) {
1614   BinOpInfo BinOp;
1615   BinOp.LHS = InVal;
1616   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1617   BinOp.Ty = E->getType();
1618   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1619   BinOp.FPContractable = false;
1620   BinOp.E = E;
1621   return BinOp;
1622 }
1623 
1624 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1625     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1626   llvm::Value *Amount =
1627       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1628   StringRef Name = IsInc ? "inc" : "dec";
1629   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1630   case LangOptions::SOB_Defined:
1631     return Builder.CreateAdd(InVal, Amount, Name);
1632   case LangOptions::SOB_Undefined:
1633     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1634       return Builder.CreateNSWAdd(InVal, Amount, Name);
1635     // Fall through.
1636   case LangOptions::SOB_Trapping:
1637     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1638   }
1639   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1640 }
1641 
1642 llvm::Value *
1643 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1644                                            bool isInc, bool isPre) {
1645 
1646   QualType type = E->getSubExpr()->getType();
1647   llvm::PHINode *atomicPHI = nullptr;
1648   llvm::Value *value;
1649   llvm::Value *input;
1650 
1651   int amount = (isInc ? 1 : -1);
1652 
1653   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1654     type = atomicTy->getValueType();
1655     if (isInc && type->isBooleanType()) {
1656       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1657       if (isPre) {
1658         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1659           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1660         return Builder.getTrue();
1661       }
1662       // For atomic bool increment, we just store true and return it for
1663       // preincrement, do an atomic swap with true for postincrement
1664       return Builder.CreateAtomicRMW(
1665           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1666           llvm::AtomicOrdering::SequentiallyConsistent);
1667     }
1668     // Special case for atomic increment / decrement on integers, emit
1669     // atomicrmw instructions.  We skip this if we want to be doing overflow
1670     // checking, and fall into the slow path with the atomic cmpxchg loop.
1671     if (!type->isBooleanType() && type->isIntegerType() &&
1672         !(type->isUnsignedIntegerType() &&
1673           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1674         CGF.getLangOpts().getSignedOverflowBehavior() !=
1675             LangOptions::SOB_Trapping) {
1676       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1677         llvm::AtomicRMWInst::Sub;
1678       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1679         llvm::Instruction::Sub;
1680       llvm::Value *amt = CGF.EmitToMemory(
1681           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1682       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1683           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1684       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1685     }
1686     value = EmitLoadOfLValue(LV, E->getExprLoc());
1687     input = value;
1688     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1689     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1690     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1691     value = CGF.EmitToMemory(value, type);
1692     Builder.CreateBr(opBB);
1693     Builder.SetInsertPoint(opBB);
1694     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1695     atomicPHI->addIncoming(value, startBB);
1696     value = atomicPHI;
1697   } else {
1698     value = EmitLoadOfLValue(LV, E->getExprLoc());
1699     input = value;
1700   }
1701 
1702   // Special case of integer increment that we have to check first: bool++.
1703   // Due to promotion rules, we get:
1704   //   bool++ -> bool = bool + 1
1705   //          -> bool = (int)bool + 1
1706   //          -> bool = ((int)bool + 1 != 0)
1707   // An interesting aspect of this is that increment is always true.
1708   // Decrement does not have this property.
1709   if (isInc && type->isBooleanType()) {
1710     value = Builder.getTrue();
1711 
1712   // Most common case by far: integer increment.
1713   } else if (type->isIntegerType()) {
1714     // Note that signed integer inc/dec with width less than int can't
1715     // overflow because of promotion rules; we're just eliding a few steps here.
1716     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1717                        CGF.IntTy->getIntegerBitWidth();
1718     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1719       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1720     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1721                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1722       value =
1723           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1724     } else {
1725       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1726       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1727     }
1728 
1729   // Next most common: pointer increment.
1730   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1731     QualType type = ptr->getPointeeType();
1732 
1733     // VLA types don't have constant size.
1734     if (const VariableArrayType *vla
1735           = CGF.getContext().getAsVariableArrayType(type)) {
1736       llvm::Value *numElts = CGF.getVLASize(vla).first;
1737       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1738       if (CGF.getLangOpts().isSignedOverflowDefined())
1739         value = Builder.CreateGEP(value, numElts, "vla.inc");
1740       else
1741         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1742 
1743     // Arithmetic on function pointers (!) is just +-1.
1744     } else if (type->isFunctionType()) {
1745       llvm::Value *amt = Builder.getInt32(amount);
1746 
1747       value = CGF.EmitCastToVoidPtr(value);
1748       if (CGF.getLangOpts().isSignedOverflowDefined())
1749         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1750       else
1751         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1752       value = Builder.CreateBitCast(value, input->getType());
1753 
1754     // For everything else, we can just do a simple increment.
1755     } else {
1756       llvm::Value *amt = Builder.getInt32(amount);
1757       if (CGF.getLangOpts().isSignedOverflowDefined())
1758         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1759       else
1760         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1761     }
1762 
1763   // Vector increment/decrement.
1764   } else if (type->isVectorType()) {
1765     if (type->hasIntegerRepresentation()) {
1766       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1767 
1768       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1769     } else {
1770       value = Builder.CreateFAdd(
1771                   value,
1772                   llvm::ConstantFP::get(value->getType(), amount),
1773                   isInc ? "inc" : "dec");
1774     }
1775 
1776   // Floating point.
1777   } else if (type->isRealFloatingType()) {
1778     // Add the inc/dec to the real part.
1779     llvm::Value *amt;
1780 
1781     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1782       // Another special case: half FP increment should be done via float
1783       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1784         value = Builder.CreateCall(
1785             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1786                                  CGF.CGM.FloatTy),
1787             input, "incdec.conv");
1788       } else {
1789         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1790       }
1791     }
1792 
1793     if (value->getType()->isFloatTy())
1794       amt = llvm::ConstantFP::get(VMContext,
1795                                   llvm::APFloat(static_cast<float>(amount)));
1796     else if (value->getType()->isDoubleTy())
1797       amt = llvm::ConstantFP::get(VMContext,
1798                                   llvm::APFloat(static_cast<double>(amount)));
1799     else {
1800       // Remaining types are Half, LongDouble or __float128. Convert from float.
1801       llvm::APFloat F(static_cast<float>(amount));
1802       bool ignored;
1803       const llvm::fltSemantics *FS;
1804       // Don't use getFloatTypeSemantics because Half isn't
1805       // necessarily represented using the "half" LLVM type.
1806       if (value->getType()->isFP128Ty())
1807         FS = &CGF.getTarget().getFloat128Format();
1808       else if (value->getType()->isHalfTy())
1809         FS = &CGF.getTarget().getHalfFormat();
1810       else
1811         FS = &CGF.getTarget().getLongDoubleFormat();
1812       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
1813       amt = llvm::ConstantFP::get(VMContext, F);
1814     }
1815     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1816 
1817     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1818       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1819         value = Builder.CreateCall(
1820             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1821                                  CGF.CGM.FloatTy),
1822             value, "incdec.conv");
1823       } else {
1824         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1825       }
1826     }
1827 
1828   // Objective-C pointer types.
1829   } else {
1830     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1831     value = CGF.EmitCastToVoidPtr(value);
1832 
1833     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1834     if (!isInc) size = -size;
1835     llvm::Value *sizeValue =
1836       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1837 
1838     if (CGF.getLangOpts().isSignedOverflowDefined())
1839       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1840     else
1841       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1842     value = Builder.CreateBitCast(value, input->getType());
1843   }
1844 
1845   if (atomicPHI) {
1846     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1847     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1848     auto Pair = CGF.EmitAtomicCompareExchange(
1849         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1850     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1851     llvm::Value *success = Pair.second;
1852     atomicPHI->addIncoming(old, opBB);
1853     Builder.CreateCondBr(success, contBB, opBB);
1854     Builder.SetInsertPoint(contBB);
1855     return isPre ? value : input;
1856   }
1857 
1858   // Store the updated result through the lvalue.
1859   if (LV.isBitField())
1860     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1861   else
1862     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1863 
1864   // If this is a postinc, return the value read from memory, otherwise use the
1865   // updated value.
1866   return isPre ? value : input;
1867 }
1868 
1869 
1870 
1871 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1872   TestAndClearIgnoreResultAssign();
1873   // Emit unary minus with EmitSub so we handle overflow cases etc.
1874   BinOpInfo BinOp;
1875   BinOp.RHS = Visit(E->getSubExpr());
1876 
1877   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1878     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1879   else
1880     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1881   BinOp.Ty = E->getType();
1882   BinOp.Opcode = BO_Sub;
1883   BinOp.FPContractable = false;
1884   BinOp.E = E;
1885   return EmitSub(BinOp);
1886 }
1887 
1888 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1889   TestAndClearIgnoreResultAssign();
1890   Value *Op = Visit(E->getSubExpr());
1891   return Builder.CreateNot(Op, "neg");
1892 }
1893 
1894 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1895   // Perform vector logical not on comparison with zero vector.
1896   if (E->getType()->isExtVectorType()) {
1897     Value *Oper = Visit(E->getSubExpr());
1898     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1899     Value *Result;
1900     if (Oper->getType()->isFPOrFPVectorTy())
1901       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1902     else
1903       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1904     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1905   }
1906 
1907   // Compare operand to zero.
1908   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1909 
1910   // Invert value.
1911   // TODO: Could dynamically modify easy computations here.  For example, if
1912   // the operand is an icmp ne, turn into icmp eq.
1913   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1914 
1915   // ZExt result to the expr type.
1916   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1917 }
1918 
1919 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1920   // Try folding the offsetof to a constant.
1921   llvm::APSInt Value;
1922   if (E->EvaluateAsInt(Value, CGF.getContext()))
1923     return Builder.getInt(Value);
1924 
1925   // Loop over the components of the offsetof to compute the value.
1926   unsigned n = E->getNumComponents();
1927   llvm::Type* ResultType = ConvertType(E->getType());
1928   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1929   QualType CurrentType = E->getTypeSourceInfo()->getType();
1930   for (unsigned i = 0; i != n; ++i) {
1931     OffsetOfNode ON = E->getComponent(i);
1932     llvm::Value *Offset = nullptr;
1933     switch (ON.getKind()) {
1934     case OffsetOfNode::Array: {
1935       // Compute the index
1936       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1937       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1938       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1939       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1940 
1941       // Save the element type
1942       CurrentType =
1943           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1944 
1945       // Compute the element size
1946       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1947           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1948 
1949       // Multiply out to compute the result
1950       Offset = Builder.CreateMul(Idx, ElemSize);
1951       break;
1952     }
1953 
1954     case OffsetOfNode::Field: {
1955       FieldDecl *MemberDecl = ON.getField();
1956       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1957       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1958 
1959       // Compute the index of the field in its parent.
1960       unsigned i = 0;
1961       // FIXME: It would be nice if we didn't have to loop here!
1962       for (RecordDecl::field_iterator Field = RD->field_begin(),
1963                                       FieldEnd = RD->field_end();
1964            Field != FieldEnd; ++Field, ++i) {
1965         if (*Field == MemberDecl)
1966           break;
1967       }
1968       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1969 
1970       // Compute the offset to the field
1971       int64_t OffsetInt = RL.getFieldOffset(i) /
1972                           CGF.getContext().getCharWidth();
1973       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1974 
1975       // Save the element type.
1976       CurrentType = MemberDecl->getType();
1977       break;
1978     }
1979 
1980     case OffsetOfNode::Identifier:
1981       llvm_unreachable("dependent __builtin_offsetof");
1982 
1983     case OffsetOfNode::Base: {
1984       if (ON.getBase()->isVirtual()) {
1985         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1986         continue;
1987       }
1988 
1989       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1990       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1991 
1992       // Save the element type.
1993       CurrentType = ON.getBase()->getType();
1994 
1995       // Compute the offset to the base.
1996       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1997       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1998       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1999       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2000       break;
2001     }
2002     }
2003     Result = Builder.CreateAdd(Result, Offset);
2004   }
2005   return Result;
2006 }
2007 
2008 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2009 /// argument of the sizeof expression as an integer.
2010 Value *
2011 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2012                               const UnaryExprOrTypeTraitExpr *E) {
2013   QualType TypeToSize = E->getTypeOfArgument();
2014   if (E->getKind() == UETT_SizeOf) {
2015     if (const VariableArrayType *VAT =
2016           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2017       if (E->isArgumentType()) {
2018         // sizeof(type) - make sure to emit the VLA size.
2019         CGF.EmitVariablyModifiedType(TypeToSize);
2020       } else {
2021         // C99 6.5.3.4p2: If the argument is an expression of type
2022         // VLA, it is evaluated.
2023         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2024       }
2025 
2026       QualType eltType;
2027       llvm::Value *numElts;
2028       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2029 
2030       llvm::Value *size = numElts;
2031 
2032       // Scale the number of non-VLA elements by the non-VLA element size.
2033       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2034       if (!eltSize.isOne())
2035         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2036 
2037       return size;
2038     }
2039   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2040     auto Alignment =
2041         CGF.getContext()
2042             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2043                 E->getTypeOfArgument()->getPointeeType()))
2044             .getQuantity();
2045     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2046   }
2047 
2048   // If this isn't sizeof(vla), the result must be constant; use the constant
2049   // folding logic so we don't have to duplicate it here.
2050   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2051 }
2052 
2053 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2054   Expr *Op = E->getSubExpr();
2055   if (Op->getType()->isAnyComplexType()) {
2056     // If it's an l-value, load through the appropriate subobject l-value.
2057     // Note that we have to ask E because Op might be an l-value that
2058     // this won't work for, e.g. an Obj-C property.
2059     if (E->isGLValue())
2060       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2061                                   E->getExprLoc()).getScalarVal();
2062 
2063     // Otherwise, calculate and project.
2064     return CGF.EmitComplexExpr(Op, false, true).first;
2065   }
2066 
2067   return Visit(Op);
2068 }
2069 
2070 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2071   Expr *Op = E->getSubExpr();
2072   if (Op->getType()->isAnyComplexType()) {
2073     // If it's an l-value, load through the appropriate subobject l-value.
2074     // Note that we have to ask E because Op might be an l-value that
2075     // this won't work for, e.g. an Obj-C property.
2076     if (Op->isGLValue())
2077       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2078                                   E->getExprLoc()).getScalarVal();
2079 
2080     // Otherwise, calculate and project.
2081     return CGF.EmitComplexExpr(Op, true, false).second;
2082   }
2083 
2084   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2085   // effects are evaluated, but not the actual value.
2086   if (Op->isGLValue())
2087     CGF.EmitLValue(Op);
2088   else
2089     CGF.EmitScalarExpr(Op, true);
2090   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2091 }
2092 
2093 //===----------------------------------------------------------------------===//
2094 //                           Binary Operators
2095 //===----------------------------------------------------------------------===//
2096 
2097 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2098   TestAndClearIgnoreResultAssign();
2099   BinOpInfo Result;
2100   Result.LHS = Visit(E->getLHS());
2101   Result.RHS = Visit(E->getRHS());
2102   Result.Ty  = E->getType();
2103   Result.Opcode = E->getOpcode();
2104   Result.FPContractable = E->isFPContractable();
2105   Result.E = E;
2106   return Result;
2107 }
2108 
2109 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2110                                               const CompoundAssignOperator *E,
2111                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2112                                                    Value *&Result) {
2113   QualType LHSTy = E->getLHS()->getType();
2114   BinOpInfo OpInfo;
2115 
2116   if (E->getComputationResultType()->isAnyComplexType())
2117     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2118 
2119   // Emit the RHS first.  __block variables need to have the rhs evaluated
2120   // first, plus this should improve codegen a little.
2121   OpInfo.RHS = Visit(E->getRHS());
2122   OpInfo.Ty = E->getComputationResultType();
2123   OpInfo.Opcode = E->getOpcode();
2124   OpInfo.FPContractable = E->isFPContractable();
2125   OpInfo.E = E;
2126   // Load/convert the LHS.
2127   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2128 
2129   llvm::PHINode *atomicPHI = nullptr;
2130   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2131     QualType type = atomicTy->getValueType();
2132     if (!type->isBooleanType() && type->isIntegerType() &&
2133         !(type->isUnsignedIntegerType() &&
2134           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2135         CGF.getLangOpts().getSignedOverflowBehavior() !=
2136             LangOptions::SOB_Trapping) {
2137       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2138       switch (OpInfo.Opcode) {
2139         // We don't have atomicrmw operands for *, %, /, <<, >>
2140         case BO_MulAssign: case BO_DivAssign:
2141         case BO_RemAssign:
2142         case BO_ShlAssign:
2143         case BO_ShrAssign:
2144           break;
2145         case BO_AddAssign:
2146           aop = llvm::AtomicRMWInst::Add;
2147           break;
2148         case BO_SubAssign:
2149           aop = llvm::AtomicRMWInst::Sub;
2150           break;
2151         case BO_AndAssign:
2152           aop = llvm::AtomicRMWInst::And;
2153           break;
2154         case BO_XorAssign:
2155           aop = llvm::AtomicRMWInst::Xor;
2156           break;
2157         case BO_OrAssign:
2158           aop = llvm::AtomicRMWInst::Or;
2159           break;
2160         default:
2161           llvm_unreachable("Invalid compound assignment type");
2162       }
2163       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2164         llvm::Value *amt = CGF.EmitToMemory(
2165             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2166                                  E->getExprLoc()),
2167             LHSTy);
2168         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2169             llvm::AtomicOrdering::SequentiallyConsistent);
2170         return LHSLV;
2171       }
2172     }
2173     // FIXME: For floating point types, we should be saving and restoring the
2174     // floating point environment in the loop.
2175     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2176     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2177     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2178     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2179     Builder.CreateBr(opBB);
2180     Builder.SetInsertPoint(opBB);
2181     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2182     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2183     OpInfo.LHS = atomicPHI;
2184   }
2185   else
2186     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2187 
2188   SourceLocation Loc = E->getExprLoc();
2189   OpInfo.LHS =
2190       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2191 
2192   // Expand the binary operator.
2193   Result = (this->*Func)(OpInfo);
2194 
2195   // Convert the result back to the LHS type.
2196   Result =
2197       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2198 
2199   if (atomicPHI) {
2200     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2201     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2202     auto Pair = CGF.EmitAtomicCompareExchange(
2203         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2204     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2205     llvm::Value *success = Pair.second;
2206     atomicPHI->addIncoming(old, opBB);
2207     Builder.CreateCondBr(success, contBB, opBB);
2208     Builder.SetInsertPoint(contBB);
2209     return LHSLV;
2210   }
2211 
2212   // Store the result value into the LHS lvalue. Bit-fields are handled
2213   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2214   // 'An assignment expression has the value of the left operand after the
2215   // assignment...'.
2216   if (LHSLV.isBitField())
2217     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2218   else
2219     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2220 
2221   return LHSLV;
2222 }
2223 
2224 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2225                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2226   bool Ignore = TestAndClearIgnoreResultAssign();
2227   Value *RHS;
2228   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2229 
2230   // If the result is clearly ignored, return now.
2231   if (Ignore)
2232     return nullptr;
2233 
2234   // The result of an assignment in C is the assigned r-value.
2235   if (!CGF.getLangOpts().CPlusPlus)
2236     return RHS;
2237 
2238   // If the lvalue is non-volatile, return the computed value of the assignment.
2239   if (!LHS.isVolatileQualified())
2240     return RHS;
2241 
2242   // Otherwise, reload the value.
2243   return EmitLoadOfLValue(LHS, E->getExprLoc());
2244 }
2245 
2246 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2247     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2248   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2249 
2250   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2251     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2252                                     SanitizerKind::IntegerDivideByZero));
2253   }
2254 
2255   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2256       Ops.Ty->hasSignedIntegerRepresentation()) {
2257     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2258 
2259     llvm::Value *IntMin =
2260       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2261     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2262 
2263     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2264     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2265     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2266     Checks.push_back(
2267         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2268   }
2269 
2270   if (Checks.size() > 0)
2271     EmitBinOpCheck(Checks, Ops);
2272 }
2273 
2274 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2275   {
2276     CodeGenFunction::SanitizerScope SanScope(&CGF);
2277     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2278          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2279         Ops.Ty->isIntegerType()) {
2280       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2281       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2282     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2283                Ops.Ty->isRealFloatingType()) {
2284       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2285       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2286       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2287                      Ops);
2288     }
2289   }
2290 
2291   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2292     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2293     if (CGF.getLangOpts().OpenCL &&
2294         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2295       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2296       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2297       // build option allows an application to specify that single precision
2298       // floating-point divide (x/y and 1/x) and sqrt used in the program
2299       // source are correctly rounded.
2300       llvm::Type *ValTy = Val->getType();
2301       if (ValTy->isFloatTy() ||
2302           (isa<llvm::VectorType>(ValTy) &&
2303            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2304         CGF.SetFPAccuracy(Val, 2.5);
2305     }
2306     return Val;
2307   }
2308   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2309     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2310   else
2311     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2312 }
2313 
2314 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2315   // Rem in C can't be a floating point type: C99 6.5.5p2.
2316   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2317     CodeGenFunction::SanitizerScope SanScope(&CGF);
2318     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2319 
2320     if (Ops.Ty->isIntegerType())
2321       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2322   }
2323 
2324   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2325     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2326   else
2327     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2328 }
2329 
2330 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2331   unsigned IID;
2332   unsigned OpID = 0;
2333 
2334   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2335   switch (Ops.Opcode) {
2336   case BO_Add:
2337   case BO_AddAssign:
2338     OpID = 1;
2339     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2340                      llvm::Intrinsic::uadd_with_overflow;
2341     break;
2342   case BO_Sub:
2343   case BO_SubAssign:
2344     OpID = 2;
2345     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2346                      llvm::Intrinsic::usub_with_overflow;
2347     break;
2348   case BO_Mul:
2349   case BO_MulAssign:
2350     OpID = 3;
2351     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2352                      llvm::Intrinsic::umul_with_overflow;
2353     break;
2354   default:
2355     llvm_unreachable("Unsupported operation for overflow detection");
2356   }
2357   OpID <<= 1;
2358   if (isSigned)
2359     OpID |= 1;
2360 
2361   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2362 
2363   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2364 
2365   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2366   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2367   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2368 
2369   // Handle overflow with llvm.trap if no custom handler has been specified.
2370   const std::string *handlerName =
2371     &CGF.getLangOpts().OverflowHandler;
2372   if (handlerName->empty()) {
2373     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2374     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2375     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2376       CodeGenFunction::SanitizerScope SanScope(&CGF);
2377       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2378       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2379                               : SanitizerKind::UnsignedIntegerOverflow;
2380       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2381     } else
2382       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2383     return result;
2384   }
2385 
2386   // Branch in case of overflow.
2387   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2388   llvm::BasicBlock *continueBB =
2389       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2390   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2391 
2392   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2393 
2394   // If an overflow handler is set, then we want to call it and then use its
2395   // result, if it returns.
2396   Builder.SetInsertPoint(overflowBB);
2397 
2398   // Get the overflow handler.
2399   llvm::Type *Int8Ty = CGF.Int8Ty;
2400   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2401   llvm::FunctionType *handlerTy =
2402       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2403   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2404 
2405   // Sign extend the args to 64-bit, so that we can use the same handler for
2406   // all types of overflow.
2407   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2408   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2409 
2410   // Call the handler with the two arguments, the operation, and the size of
2411   // the result.
2412   llvm::Value *handlerArgs[] = {
2413     lhs,
2414     rhs,
2415     Builder.getInt8(OpID),
2416     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2417   };
2418   llvm::Value *handlerResult =
2419     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2420 
2421   // Truncate the result back to the desired size.
2422   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2423   Builder.CreateBr(continueBB);
2424 
2425   Builder.SetInsertPoint(continueBB);
2426   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2427   phi->addIncoming(result, initialBB);
2428   phi->addIncoming(handlerResult, overflowBB);
2429 
2430   return phi;
2431 }
2432 
2433 /// Emit pointer + index arithmetic.
2434 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2435                                     const BinOpInfo &op,
2436                                     bool isSubtraction) {
2437   // Must have binary (not unary) expr here.  Unary pointer
2438   // increment/decrement doesn't use this path.
2439   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2440 
2441   Value *pointer = op.LHS;
2442   Expr *pointerOperand = expr->getLHS();
2443   Value *index = op.RHS;
2444   Expr *indexOperand = expr->getRHS();
2445 
2446   // In a subtraction, the LHS is always the pointer.
2447   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2448     std::swap(pointer, index);
2449     std::swap(pointerOperand, indexOperand);
2450   }
2451 
2452   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2453   auto &DL = CGF.CGM.getDataLayout();
2454   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2455   if (width != DL.getTypeSizeInBits(PtrTy)) {
2456     // Zero-extend or sign-extend the pointer value according to
2457     // whether the index is signed or not.
2458     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2459     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2460                                       "idx.ext");
2461   }
2462 
2463   // If this is subtraction, negate the index.
2464   if (isSubtraction)
2465     index = CGF.Builder.CreateNeg(index, "idx.neg");
2466 
2467   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2468     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2469                         /*Accessed*/ false);
2470 
2471   const PointerType *pointerType
2472     = pointerOperand->getType()->getAs<PointerType>();
2473   if (!pointerType) {
2474     QualType objectType = pointerOperand->getType()
2475                                         ->castAs<ObjCObjectPointerType>()
2476                                         ->getPointeeType();
2477     llvm::Value *objectSize
2478       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2479 
2480     index = CGF.Builder.CreateMul(index, objectSize);
2481 
2482     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2483     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2484     return CGF.Builder.CreateBitCast(result, pointer->getType());
2485   }
2486 
2487   QualType elementType = pointerType->getPointeeType();
2488   if (const VariableArrayType *vla
2489         = CGF.getContext().getAsVariableArrayType(elementType)) {
2490     // The element count here is the total number of non-VLA elements.
2491     llvm::Value *numElements = CGF.getVLASize(vla).first;
2492 
2493     // Effectively, the multiply by the VLA size is part of the GEP.
2494     // GEP indexes are signed, and scaling an index isn't permitted to
2495     // signed-overflow, so we use the same semantics for our explicit
2496     // multiply.  We suppress this if overflow is not undefined behavior.
2497     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2498       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2499       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2500     } else {
2501       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2502       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2503     }
2504     return pointer;
2505   }
2506 
2507   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2508   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2509   // future proof.
2510   if (elementType->isVoidType() || elementType->isFunctionType()) {
2511     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2512     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2513     return CGF.Builder.CreateBitCast(result, pointer->getType());
2514   }
2515 
2516   if (CGF.getLangOpts().isSignedOverflowDefined())
2517     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2518 
2519   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2520 }
2521 
2522 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2523 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2524 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2525 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2526 // efficient operations.
2527 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2528                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2529                            bool negMul, bool negAdd) {
2530   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2531 
2532   Value *MulOp0 = MulOp->getOperand(0);
2533   Value *MulOp1 = MulOp->getOperand(1);
2534   if (negMul) {
2535     MulOp0 =
2536       Builder.CreateFSub(
2537         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2538         "neg");
2539   } else if (negAdd) {
2540     Addend =
2541       Builder.CreateFSub(
2542         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2543         "neg");
2544   }
2545 
2546   Value *FMulAdd = Builder.CreateCall(
2547       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2548       {MulOp0, MulOp1, Addend});
2549    MulOp->eraseFromParent();
2550 
2551    return FMulAdd;
2552 }
2553 
2554 // Check whether it would be legal to emit an fmuladd intrinsic call to
2555 // represent op and if so, build the fmuladd.
2556 //
2557 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2558 // Does NOT check the type of the operation - it's assumed that this function
2559 // will be called from contexts where it's known that the type is contractable.
2560 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2561                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2562                          bool isSub=false) {
2563 
2564   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2565           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2566          "Only fadd/fsub can be the root of an fmuladd.");
2567 
2568   // Check whether this op is marked as fusable.
2569   if (!op.FPContractable)
2570     return nullptr;
2571 
2572   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2573   // either disabled, or handled entirely by the LLVM backend).
2574   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2575     return nullptr;
2576 
2577   // We have a potentially fusable op. Look for a mul on one of the operands.
2578   // Also, make sure that the mul result isn't used directly. In that case,
2579   // there's no point creating a muladd operation.
2580   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2581     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2582         LHSBinOp->use_empty())
2583       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2584   }
2585   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2586     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2587         RHSBinOp->use_empty())
2588       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2589   }
2590 
2591   return nullptr;
2592 }
2593 
2594 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2595   if (op.LHS->getType()->isPointerTy() ||
2596       op.RHS->getType()->isPointerTy())
2597     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2598 
2599   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2600     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2601     case LangOptions::SOB_Defined:
2602       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2603     case LangOptions::SOB_Undefined:
2604       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2605         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2606       // Fall through.
2607     case LangOptions::SOB_Trapping:
2608       return EmitOverflowCheckedBinOp(op);
2609     }
2610   }
2611 
2612   if (op.Ty->isUnsignedIntegerType() &&
2613       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2614     return EmitOverflowCheckedBinOp(op);
2615 
2616   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2617     // Try to form an fmuladd.
2618     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2619       return FMulAdd;
2620 
2621     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2622   }
2623 
2624   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2625 }
2626 
2627 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2628   // The LHS is always a pointer if either side is.
2629   if (!op.LHS->getType()->isPointerTy()) {
2630     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2631       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2632       case LangOptions::SOB_Defined:
2633         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2634       case LangOptions::SOB_Undefined:
2635         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2636           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2637         // Fall through.
2638       case LangOptions::SOB_Trapping:
2639         return EmitOverflowCheckedBinOp(op);
2640       }
2641     }
2642 
2643     if (op.Ty->isUnsignedIntegerType() &&
2644         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2645       return EmitOverflowCheckedBinOp(op);
2646 
2647     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2648       // Try to form an fmuladd.
2649       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2650         return FMulAdd;
2651       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2652     }
2653 
2654     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2655   }
2656 
2657   // If the RHS is not a pointer, then we have normal pointer
2658   // arithmetic.
2659   if (!op.RHS->getType()->isPointerTy())
2660     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2661 
2662   // Otherwise, this is a pointer subtraction.
2663 
2664   // Do the raw subtraction part.
2665   llvm::Value *LHS
2666     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2667   llvm::Value *RHS
2668     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2669   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2670 
2671   // Okay, figure out the element size.
2672   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2673   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2674 
2675   llvm::Value *divisor = nullptr;
2676 
2677   // For a variable-length array, this is going to be non-constant.
2678   if (const VariableArrayType *vla
2679         = CGF.getContext().getAsVariableArrayType(elementType)) {
2680     llvm::Value *numElements;
2681     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2682 
2683     divisor = numElements;
2684 
2685     // Scale the number of non-VLA elements by the non-VLA element size.
2686     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2687     if (!eltSize.isOne())
2688       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2689 
2690   // For everything elese, we can just compute it, safe in the
2691   // assumption that Sema won't let anything through that we can't
2692   // safely compute the size of.
2693   } else {
2694     CharUnits elementSize;
2695     // Handle GCC extension for pointer arithmetic on void* and
2696     // function pointer types.
2697     if (elementType->isVoidType() || elementType->isFunctionType())
2698       elementSize = CharUnits::One();
2699     else
2700       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2701 
2702     // Don't even emit the divide for element size of 1.
2703     if (elementSize.isOne())
2704       return diffInChars;
2705 
2706     divisor = CGF.CGM.getSize(elementSize);
2707   }
2708 
2709   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2710   // pointer difference in C is only defined in the case where both operands
2711   // are pointing to elements of an array.
2712   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2713 }
2714 
2715 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2716   llvm::IntegerType *Ty;
2717   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2718     Ty = cast<llvm::IntegerType>(VT->getElementType());
2719   else
2720     Ty = cast<llvm::IntegerType>(LHS->getType());
2721   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2722 }
2723 
2724 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2725   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2726   // RHS to the same size as the LHS.
2727   Value *RHS = Ops.RHS;
2728   if (Ops.LHS->getType() != RHS->getType())
2729     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2730 
2731   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2732                       Ops.Ty->hasSignedIntegerRepresentation() &&
2733                       !CGF.getLangOpts().isSignedOverflowDefined();
2734   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2735   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2736   if (CGF.getLangOpts().OpenCL)
2737     RHS =
2738         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2739   else if ((SanitizeBase || SanitizeExponent) &&
2740            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2741     CodeGenFunction::SanitizerScope SanScope(&CGF);
2742     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2743     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2744     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2745 
2746     if (SanitizeExponent) {
2747       Checks.push_back(
2748           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2749     }
2750 
2751     if (SanitizeBase) {
2752       // Check whether we are shifting any non-zero bits off the top of the
2753       // integer. We only emit this check if exponent is valid - otherwise
2754       // instructions below will have undefined behavior themselves.
2755       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2756       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2757       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2758       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2759       CGF.EmitBlock(CheckShiftBase);
2760       llvm::Value *BitsShiftedOff =
2761         Builder.CreateLShr(Ops.LHS,
2762                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2763                                              /*NUW*/true, /*NSW*/true),
2764                            "shl.check");
2765       if (CGF.getLangOpts().CPlusPlus) {
2766         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2767         // Under C++11's rules, shifting a 1 bit into the sign bit is
2768         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2769         // define signed left shifts, so we use the C99 and C++11 rules there).
2770         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2771         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2772       }
2773       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2774       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2775       CGF.EmitBlock(Cont);
2776       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2777       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2778       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2779       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2780     }
2781 
2782     assert(!Checks.empty());
2783     EmitBinOpCheck(Checks, Ops);
2784   }
2785 
2786   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2787 }
2788 
2789 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2790   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2791   // RHS to the same size as the LHS.
2792   Value *RHS = Ops.RHS;
2793   if (Ops.LHS->getType() != RHS->getType())
2794     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2795 
2796   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2797   if (CGF.getLangOpts().OpenCL)
2798     RHS =
2799         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2800   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2801            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2802     CodeGenFunction::SanitizerScope SanScope(&CGF);
2803     llvm::Value *Valid =
2804         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2805     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2806   }
2807 
2808   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2809     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2810   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2811 }
2812 
2813 enum IntrinsicType { VCMPEQ, VCMPGT };
2814 // return corresponding comparison intrinsic for given vector type
2815 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2816                                         BuiltinType::Kind ElemKind) {
2817   switch (ElemKind) {
2818   default: llvm_unreachable("unexpected element type");
2819   case BuiltinType::Char_U:
2820   case BuiltinType::UChar:
2821     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2822                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2823   case BuiltinType::Char_S:
2824   case BuiltinType::SChar:
2825     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2826                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2827   case BuiltinType::UShort:
2828     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2829                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2830   case BuiltinType::Short:
2831     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2832                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2833   case BuiltinType::UInt:
2834   case BuiltinType::ULong:
2835     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2836                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2837   case BuiltinType::Int:
2838   case BuiltinType::Long:
2839     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2840                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2841   case BuiltinType::Float:
2842     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2843                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2844   }
2845 }
2846 
2847 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2848                                       llvm::CmpInst::Predicate UICmpOpc,
2849                                       llvm::CmpInst::Predicate SICmpOpc,
2850                                       llvm::CmpInst::Predicate FCmpOpc) {
2851   TestAndClearIgnoreResultAssign();
2852   Value *Result;
2853   QualType LHSTy = E->getLHS()->getType();
2854   QualType RHSTy = E->getRHS()->getType();
2855   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2856     assert(E->getOpcode() == BO_EQ ||
2857            E->getOpcode() == BO_NE);
2858     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2859     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2860     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2861                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2862   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2863     Value *LHS = Visit(E->getLHS());
2864     Value *RHS = Visit(E->getRHS());
2865 
2866     // If AltiVec, the comparison results in a numeric type, so we use
2867     // intrinsics comparing vectors and giving 0 or 1 as a result
2868     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2869       // constants for mapping CR6 register bits to predicate result
2870       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2871 
2872       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2873 
2874       // in several cases vector arguments order will be reversed
2875       Value *FirstVecArg = LHS,
2876             *SecondVecArg = RHS;
2877 
2878       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2879       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2880       BuiltinType::Kind ElementKind = BTy->getKind();
2881 
2882       switch(E->getOpcode()) {
2883       default: llvm_unreachable("is not a comparison operation");
2884       case BO_EQ:
2885         CR6 = CR6_LT;
2886         ID = GetIntrinsic(VCMPEQ, ElementKind);
2887         break;
2888       case BO_NE:
2889         CR6 = CR6_EQ;
2890         ID = GetIntrinsic(VCMPEQ, ElementKind);
2891         break;
2892       case BO_LT:
2893         CR6 = CR6_LT;
2894         ID = GetIntrinsic(VCMPGT, ElementKind);
2895         std::swap(FirstVecArg, SecondVecArg);
2896         break;
2897       case BO_GT:
2898         CR6 = CR6_LT;
2899         ID = GetIntrinsic(VCMPGT, ElementKind);
2900         break;
2901       case BO_LE:
2902         if (ElementKind == BuiltinType::Float) {
2903           CR6 = CR6_LT;
2904           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2905           std::swap(FirstVecArg, SecondVecArg);
2906         }
2907         else {
2908           CR6 = CR6_EQ;
2909           ID = GetIntrinsic(VCMPGT, ElementKind);
2910         }
2911         break;
2912       case BO_GE:
2913         if (ElementKind == BuiltinType::Float) {
2914           CR6 = CR6_LT;
2915           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2916         }
2917         else {
2918           CR6 = CR6_EQ;
2919           ID = GetIntrinsic(VCMPGT, ElementKind);
2920           std::swap(FirstVecArg, SecondVecArg);
2921         }
2922         break;
2923       }
2924 
2925       Value *CR6Param = Builder.getInt32(CR6);
2926       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2927       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2928       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2929                                   E->getExprLoc());
2930     }
2931 
2932     if (LHS->getType()->isFPOrFPVectorTy()) {
2933       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2934     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2935       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2936     } else {
2937       // Unsigned integers and pointers.
2938       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2939     }
2940 
2941     // If this is a vector comparison, sign extend the result to the appropriate
2942     // vector integer type and return it (don't convert to bool).
2943     if (LHSTy->isVectorType())
2944       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2945 
2946   } else {
2947     // Complex Comparison: can only be an equality comparison.
2948     CodeGenFunction::ComplexPairTy LHS, RHS;
2949     QualType CETy;
2950     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2951       LHS = CGF.EmitComplexExpr(E->getLHS());
2952       CETy = CTy->getElementType();
2953     } else {
2954       LHS.first = Visit(E->getLHS());
2955       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2956       CETy = LHSTy;
2957     }
2958     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2959       RHS = CGF.EmitComplexExpr(E->getRHS());
2960       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2961                                                      CTy->getElementType()) &&
2962              "The element types must always match.");
2963       (void)CTy;
2964     } else {
2965       RHS.first = Visit(E->getRHS());
2966       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2967       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2968              "The element types must always match.");
2969     }
2970 
2971     Value *ResultR, *ResultI;
2972     if (CETy->isRealFloatingType()) {
2973       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2974       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2975     } else {
2976       // Complex comparisons can only be equality comparisons.  As such, signed
2977       // and unsigned opcodes are the same.
2978       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2979       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2980     }
2981 
2982     if (E->getOpcode() == BO_EQ) {
2983       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2984     } else {
2985       assert(E->getOpcode() == BO_NE &&
2986              "Complex comparison other than == or != ?");
2987       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2988     }
2989   }
2990 
2991   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2992                               E->getExprLoc());
2993 }
2994 
2995 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2996   bool Ignore = TestAndClearIgnoreResultAssign();
2997 
2998   Value *RHS;
2999   LValue LHS;
3000 
3001   switch (E->getLHS()->getType().getObjCLifetime()) {
3002   case Qualifiers::OCL_Strong:
3003     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3004     break;
3005 
3006   case Qualifiers::OCL_Autoreleasing:
3007     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3008     break;
3009 
3010   case Qualifiers::OCL_ExplicitNone:
3011     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3012     break;
3013 
3014   case Qualifiers::OCL_Weak:
3015     RHS = Visit(E->getRHS());
3016     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3017     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3018     break;
3019 
3020   case Qualifiers::OCL_None:
3021     // __block variables need to have the rhs evaluated first, plus
3022     // this should improve codegen just a little.
3023     RHS = Visit(E->getRHS());
3024     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3025 
3026     // Store the value into the LHS.  Bit-fields are handled specially
3027     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3028     // 'An assignment expression has the value of the left operand after
3029     // the assignment...'.
3030     if (LHS.isBitField())
3031       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3032     else
3033       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3034   }
3035 
3036   // If the result is clearly ignored, return now.
3037   if (Ignore)
3038     return nullptr;
3039 
3040   // The result of an assignment in C is the assigned r-value.
3041   if (!CGF.getLangOpts().CPlusPlus)
3042     return RHS;
3043 
3044   // If the lvalue is non-volatile, return the computed value of the assignment.
3045   if (!LHS.isVolatileQualified())
3046     return RHS;
3047 
3048   // Otherwise, reload the value.
3049   return EmitLoadOfLValue(LHS, E->getExprLoc());
3050 }
3051 
3052 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3053   // Perform vector logical and on comparisons with zero vectors.
3054   if (E->getType()->isVectorType()) {
3055     CGF.incrementProfileCounter(E);
3056 
3057     Value *LHS = Visit(E->getLHS());
3058     Value *RHS = Visit(E->getRHS());
3059     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3060     if (LHS->getType()->isFPOrFPVectorTy()) {
3061       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3062       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3063     } else {
3064       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3065       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3066     }
3067     Value *And = Builder.CreateAnd(LHS, RHS);
3068     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3069   }
3070 
3071   llvm::Type *ResTy = ConvertType(E->getType());
3072 
3073   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3074   // If we have 1 && X, just emit X without inserting the control flow.
3075   bool LHSCondVal;
3076   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3077     if (LHSCondVal) { // If we have 1 && X, just emit X.
3078       CGF.incrementProfileCounter(E);
3079 
3080       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3081       // ZExt result to int or bool.
3082       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3083     }
3084 
3085     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3086     if (!CGF.ContainsLabel(E->getRHS()))
3087       return llvm::Constant::getNullValue(ResTy);
3088   }
3089 
3090   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3091   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3092 
3093   CodeGenFunction::ConditionalEvaluation eval(CGF);
3094 
3095   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3096   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3097                            CGF.getProfileCount(E->getRHS()));
3098 
3099   // Any edges into the ContBlock are now from an (indeterminate number of)
3100   // edges from this first condition.  All of these values will be false.  Start
3101   // setting up the PHI node in the Cont Block for this.
3102   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3103                                             "", ContBlock);
3104   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3105        PI != PE; ++PI)
3106     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3107 
3108   eval.begin(CGF);
3109   CGF.EmitBlock(RHSBlock);
3110   CGF.incrementProfileCounter(E);
3111   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3112   eval.end(CGF);
3113 
3114   // Reaquire the RHS block, as there may be subblocks inserted.
3115   RHSBlock = Builder.GetInsertBlock();
3116 
3117   // Emit an unconditional branch from this block to ContBlock.
3118   {
3119     // There is no need to emit line number for unconditional branch.
3120     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3121     CGF.EmitBlock(ContBlock);
3122   }
3123   // Insert an entry into the phi node for the edge with the value of RHSCond.
3124   PN->addIncoming(RHSCond, RHSBlock);
3125 
3126   // ZExt result to int.
3127   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3128 }
3129 
3130 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3131   // Perform vector logical or on comparisons with zero vectors.
3132   if (E->getType()->isVectorType()) {
3133     CGF.incrementProfileCounter(E);
3134 
3135     Value *LHS = Visit(E->getLHS());
3136     Value *RHS = Visit(E->getRHS());
3137     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3138     if (LHS->getType()->isFPOrFPVectorTy()) {
3139       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3140       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3141     } else {
3142       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3143       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3144     }
3145     Value *Or = Builder.CreateOr(LHS, RHS);
3146     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3147   }
3148 
3149   llvm::Type *ResTy = ConvertType(E->getType());
3150 
3151   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3152   // If we have 0 || X, just emit X without inserting the control flow.
3153   bool LHSCondVal;
3154   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3155     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3156       CGF.incrementProfileCounter(E);
3157 
3158       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3159       // ZExt result to int or bool.
3160       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3161     }
3162 
3163     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3164     if (!CGF.ContainsLabel(E->getRHS()))
3165       return llvm::ConstantInt::get(ResTy, 1);
3166   }
3167 
3168   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3169   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3170 
3171   CodeGenFunction::ConditionalEvaluation eval(CGF);
3172 
3173   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3174   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3175                            CGF.getCurrentProfileCount() -
3176                                CGF.getProfileCount(E->getRHS()));
3177 
3178   // Any edges into the ContBlock are now from an (indeterminate number of)
3179   // edges from this first condition.  All of these values will be true.  Start
3180   // setting up the PHI node in the Cont Block for this.
3181   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3182                                             "", ContBlock);
3183   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3184        PI != PE; ++PI)
3185     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3186 
3187   eval.begin(CGF);
3188 
3189   // Emit the RHS condition as a bool value.
3190   CGF.EmitBlock(RHSBlock);
3191   CGF.incrementProfileCounter(E);
3192   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3193 
3194   eval.end(CGF);
3195 
3196   // Reaquire the RHS block, as there may be subblocks inserted.
3197   RHSBlock = Builder.GetInsertBlock();
3198 
3199   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3200   // into the phi node for the edge with the value of RHSCond.
3201   CGF.EmitBlock(ContBlock);
3202   PN->addIncoming(RHSCond, RHSBlock);
3203 
3204   // ZExt result to int.
3205   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3206 }
3207 
3208 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3209   CGF.EmitIgnoredExpr(E->getLHS());
3210   CGF.EnsureInsertPoint();
3211   return Visit(E->getRHS());
3212 }
3213 
3214 //===----------------------------------------------------------------------===//
3215 //                             Other Operators
3216 //===----------------------------------------------------------------------===//
3217 
3218 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3219 /// expression is cheap enough and side-effect-free enough to evaluate
3220 /// unconditionally instead of conditionally.  This is used to convert control
3221 /// flow into selects in some cases.
3222 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3223                                                    CodeGenFunction &CGF) {
3224   // Anything that is an integer or floating point constant is fine.
3225   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3226 
3227   // Even non-volatile automatic variables can't be evaluated unconditionally.
3228   // Referencing a thread_local may cause non-trivial initialization work to
3229   // occur. If we're inside a lambda and one of the variables is from the scope
3230   // outside the lambda, that function may have returned already. Reading its
3231   // locals is a bad idea. Also, these reads may introduce races there didn't
3232   // exist in the source-level program.
3233 }
3234 
3235 
3236 Value *ScalarExprEmitter::
3237 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3238   TestAndClearIgnoreResultAssign();
3239 
3240   // Bind the common expression if necessary.
3241   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3242 
3243   Expr *condExpr = E->getCond();
3244   Expr *lhsExpr = E->getTrueExpr();
3245   Expr *rhsExpr = E->getFalseExpr();
3246 
3247   // If the condition constant folds and can be elided, try to avoid emitting
3248   // the condition and the dead arm.
3249   bool CondExprBool;
3250   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3251     Expr *live = lhsExpr, *dead = rhsExpr;
3252     if (!CondExprBool) std::swap(live, dead);
3253 
3254     // If the dead side doesn't have labels we need, just emit the Live part.
3255     if (!CGF.ContainsLabel(dead)) {
3256       if (CondExprBool)
3257         CGF.incrementProfileCounter(E);
3258       Value *Result = Visit(live);
3259 
3260       // If the live part is a throw expression, it acts like it has a void
3261       // type, so evaluating it returns a null Value*.  However, a conditional
3262       // with non-void type must return a non-null Value*.
3263       if (!Result && !E->getType()->isVoidType())
3264         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3265 
3266       return Result;
3267     }
3268   }
3269 
3270   // OpenCL: If the condition is a vector, we can treat this condition like
3271   // the select function.
3272   if (CGF.getLangOpts().OpenCL
3273       && condExpr->getType()->isVectorType()) {
3274     CGF.incrementProfileCounter(E);
3275 
3276     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3277     llvm::Value *LHS = Visit(lhsExpr);
3278     llvm::Value *RHS = Visit(rhsExpr);
3279 
3280     llvm::Type *condType = ConvertType(condExpr->getType());
3281     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3282 
3283     unsigned numElem = vecTy->getNumElements();
3284     llvm::Type *elemType = vecTy->getElementType();
3285 
3286     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3287     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3288     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3289                                           llvm::VectorType::get(elemType,
3290                                                                 numElem),
3291                                           "sext");
3292     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3293 
3294     // Cast float to int to perform ANDs if necessary.
3295     llvm::Value *RHSTmp = RHS;
3296     llvm::Value *LHSTmp = LHS;
3297     bool wasCast = false;
3298     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3299     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3300       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3301       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3302       wasCast = true;
3303     }
3304 
3305     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3306     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3307     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3308     if (wasCast)
3309       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3310 
3311     return tmp5;
3312   }
3313 
3314   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3315   // select instead of as control flow.  We can only do this if it is cheap and
3316   // safe to evaluate the LHS and RHS unconditionally.
3317   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3318       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3319     CGF.incrementProfileCounter(E);
3320 
3321     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3322     llvm::Value *LHS = Visit(lhsExpr);
3323     llvm::Value *RHS = Visit(rhsExpr);
3324     if (!LHS) {
3325       // If the conditional has void type, make sure we return a null Value*.
3326       assert(!RHS && "LHS and RHS types must match");
3327       return nullptr;
3328     }
3329     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3330   }
3331 
3332   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3333   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3334   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3335 
3336   CodeGenFunction::ConditionalEvaluation eval(CGF);
3337   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3338                            CGF.getProfileCount(lhsExpr));
3339 
3340   CGF.EmitBlock(LHSBlock);
3341   CGF.incrementProfileCounter(E);
3342   eval.begin(CGF);
3343   Value *LHS = Visit(lhsExpr);
3344   eval.end(CGF);
3345 
3346   LHSBlock = Builder.GetInsertBlock();
3347   Builder.CreateBr(ContBlock);
3348 
3349   CGF.EmitBlock(RHSBlock);
3350   eval.begin(CGF);
3351   Value *RHS = Visit(rhsExpr);
3352   eval.end(CGF);
3353 
3354   RHSBlock = Builder.GetInsertBlock();
3355   CGF.EmitBlock(ContBlock);
3356 
3357   // If the LHS or RHS is a throw expression, it will be legitimately null.
3358   if (!LHS)
3359     return RHS;
3360   if (!RHS)
3361     return LHS;
3362 
3363   // Create a PHI node for the real part.
3364   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3365   PN->addIncoming(LHS, LHSBlock);
3366   PN->addIncoming(RHS, RHSBlock);
3367   return PN;
3368 }
3369 
3370 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3371   return Visit(E->getChosenSubExpr());
3372 }
3373 
3374 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3375   QualType Ty = VE->getType();
3376 
3377   if (Ty->isVariablyModifiedType())
3378     CGF.EmitVariablyModifiedType(Ty);
3379 
3380   Address ArgValue = Address::invalid();
3381   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3382 
3383   llvm::Type *ArgTy = ConvertType(VE->getType());
3384 
3385   // If EmitVAArg fails, emit an error.
3386   if (!ArgPtr.isValid()) {
3387     CGF.ErrorUnsupported(VE, "va_arg expression");
3388     return llvm::UndefValue::get(ArgTy);
3389   }
3390 
3391   // FIXME Volatility.
3392   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3393 
3394   // If EmitVAArg promoted the type, we must truncate it.
3395   if (ArgTy != Val->getType()) {
3396     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3397       Val = Builder.CreateIntToPtr(Val, ArgTy);
3398     else
3399       Val = Builder.CreateTrunc(Val, ArgTy);
3400   }
3401 
3402   return Val;
3403 }
3404 
3405 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3406   return CGF.EmitBlockLiteral(block);
3407 }
3408 
3409 // Convert a vec3 to vec4, or vice versa.
3410 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3411                                  Value *Src, unsigned NumElementsDst) {
3412   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3413   SmallVector<llvm::Constant*, 4> Args;
3414   Args.push_back(Builder.getInt32(0));
3415   Args.push_back(Builder.getInt32(1));
3416   Args.push_back(Builder.getInt32(2));
3417   if (NumElementsDst == 4)
3418     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3419   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3420   return Builder.CreateShuffleVector(Src, UnV, Mask);
3421 }
3422 
3423 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3424 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3425 // but could be scalar or vectors of different lengths, and either can be
3426 // pointer.
3427 // There are 4 cases:
3428 // 1. non-pointer -> non-pointer  : needs 1 bitcast
3429 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
3430 // 3. pointer -> non-pointer
3431 //   a) pointer -> intptr_t       : needs 1 ptrtoint
3432 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
3433 // 4. non-pointer -> pointer
3434 //   a) intptr_t -> pointer       : needs 1 inttoptr
3435 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
3436 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3437 // allow casting directly between pointer types and non-integer non-pointer
3438 // types.
3439 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3440                                            const llvm::DataLayout &DL,
3441                                            Value *Src, llvm::Type *DstTy,
3442                                            StringRef Name = "") {
3443   auto SrcTy = Src->getType();
3444 
3445   // Case 1.
3446   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3447     return Builder.CreateBitCast(Src, DstTy, Name);
3448 
3449   // Case 2.
3450   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3451     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3452 
3453   // Case 3.
3454   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3455     // Case 3b.
3456     if (!DstTy->isIntegerTy())
3457       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3458     // Cases 3a and 3b.
3459     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3460   }
3461 
3462   // Case 4b.
3463   if (!SrcTy->isIntegerTy())
3464     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3465   // Cases 4a and 4b.
3466   return Builder.CreateIntToPtr(Src, DstTy, Name);
3467 }
3468 
3469 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3470   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3471   llvm::Type *DstTy = ConvertType(E->getType());
3472 
3473   llvm::Type *SrcTy = Src->getType();
3474   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3475     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3476   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3477     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3478 
3479   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3480   // vector to get a vec4, then a bitcast if the target type is different.
3481   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3482     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3483     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3484                                        DstTy);
3485     Src->setName("astype");
3486     return Src;
3487   }
3488 
3489   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3490   // to vec4 if the original type is not vec4, then a shuffle vector to
3491   // get a vec3.
3492   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3493     auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3494     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3495                                        Vec4Ty);
3496     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3497     Src->setName("astype");
3498     return Src;
3499   }
3500 
3501   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3502                                             Src, DstTy, "astype");
3503 }
3504 
3505 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3506   return CGF.EmitAtomicExpr(E).getScalarVal();
3507 }
3508 
3509 //===----------------------------------------------------------------------===//
3510 //                         Entry Point into this File
3511 //===----------------------------------------------------------------------===//
3512 
3513 /// Emit the computation of the specified expression of scalar type, ignoring
3514 /// the result.
3515 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3516   assert(E && hasScalarEvaluationKind(E->getType()) &&
3517          "Invalid scalar expression to emit");
3518 
3519   return ScalarExprEmitter(*this, IgnoreResultAssign)
3520       .Visit(const_cast<Expr *>(E));
3521 }
3522 
3523 /// Emit a conversion from the specified type to the specified destination type,
3524 /// both of which are LLVM scalar types.
3525 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3526                                              QualType DstTy,
3527                                              SourceLocation Loc) {
3528   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3529          "Invalid scalar expression to emit");
3530   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3531 }
3532 
3533 /// Emit a conversion from the specified complex type to the specified
3534 /// destination type, where the destination type is an LLVM scalar type.
3535 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3536                                                       QualType SrcTy,
3537                                                       QualType DstTy,
3538                                                       SourceLocation Loc) {
3539   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3540          "Invalid complex -> scalar conversion");
3541   return ScalarExprEmitter(*this)
3542       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3543 }
3544 
3545 
3546 llvm::Value *CodeGenFunction::
3547 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3548                         bool isInc, bool isPre) {
3549   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3550 }
3551 
3552 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3553   // object->isa or (*object).isa
3554   // Generate code as for: *(Class*)object
3555 
3556   Expr *BaseExpr = E->getBase();
3557   Address Addr = Address::invalid();
3558   if (BaseExpr->isRValue()) {
3559     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3560   } else {
3561     Addr = EmitLValue(BaseExpr).getAddress();
3562   }
3563 
3564   // Cast the address to Class*.
3565   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3566   return MakeAddrLValue(Addr, E->getType());
3567 }
3568 
3569 
3570 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3571                                             const CompoundAssignOperator *E) {
3572   ScalarExprEmitter Scalar(*this);
3573   Value *Result = nullptr;
3574   switch (E->getOpcode()) {
3575 #define COMPOUND_OP(Op)                                                       \
3576     case BO_##Op##Assign:                                                     \
3577       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3578                                              Result)
3579   COMPOUND_OP(Mul);
3580   COMPOUND_OP(Div);
3581   COMPOUND_OP(Rem);
3582   COMPOUND_OP(Add);
3583   COMPOUND_OP(Sub);
3584   COMPOUND_OP(Shl);
3585   COMPOUND_OP(Shr);
3586   COMPOUND_OP(And);
3587   COMPOUND_OP(Xor);
3588   COMPOUND_OP(Or);
3589 #undef COMPOUND_OP
3590 
3591   case BO_PtrMemD:
3592   case BO_PtrMemI:
3593   case BO_Mul:
3594   case BO_Div:
3595   case BO_Rem:
3596   case BO_Add:
3597   case BO_Sub:
3598   case BO_Shl:
3599   case BO_Shr:
3600   case BO_LT:
3601   case BO_GT:
3602   case BO_LE:
3603   case BO_GE:
3604   case BO_EQ:
3605   case BO_NE:
3606   case BO_And:
3607   case BO_Xor:
3608   case BO_Or:
3609   case BO_LAnd:
3610   case BO_LOr:
3611   case BO_Assign:
3612   case BO_Comma:
3613     llvm_unreachable("Not valid compound assignment operators");
3614   }
3615 
3616   llvm_unreachable("Unhandled compound assignment operator");
3617 }
3618