1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Module.h" 34 #include <cstdarg> 35 36 using namespace clang; 37 using namespace CodeGen; 38 using llvm::Value; 39 40 //===----------------------------------------------------------------------===// 41 // Scalar Expression Emitter 42 //===----------------------------------------------------------------------===// 43 44 namespace { 45 struct BinOpInfo { 46 Value *LHS; 47 Value *RHS; 48 QualType Ty; // Computation Type. 49 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 50 bool FPContractable; 51 const Expr *E; // Entire expr, for error unsupported. May not be binop. 52 }; 53 54 static bool MustVisitNullValue(const Expr *E) { 55 // If a null pointer expression's type is the C++0x nullptr_t, then 56 // it's not necessarily a simple constant and it must be evaluated 57 // for its potential side effects. 58 return E->getType()->isNullPtrType(); 59 } 60 61 class ScalarExprEmitter 62 : public StmtVisitor<ScalarExprEmitter, Value*> { 63 CodeGenFunction &CGF; 64 CGBuilderTy &Builder; 65 bool IgnoreResultAssign; 66 llvm::LLVMContext &VMContext; 67 public: 68 69 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 70 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 71 VMContext(cgf.getLLVMContext()) { 72 } 73 74 //===--------------------------------------------------------------------===// 75 // Utilities 76 //===--------------------------------------------------------------------===// 77 78 bool TestAndClearIgnoreResultAssign() { 79 bool I = IgnoreResultAssign; 80 IgnoreResultAssign = false; 81 return I; 82 } 83 84 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 85 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 86 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 87 return CGF.EmitCheckedLValue(E, TCK); 88 } 89 90 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 91 const BinOpInfo &Info); 92 93 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 94 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 95 } 96 97 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 98 const AlignValueAttr *AVAttr = nullptr; 99 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 100 const ValueDecl *VD = DRE->getDecl(); 101 102 if (VD->getType()->isReferenceType()) { 103 if (const auto *TTy = 104 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 105 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 106 } else { 107 // Assumptions for function parameters are emitted at the start of the 108 // function, so there is no need to repeat that here. 109 if (isa<ParmVarDecl>(VD)) 110 return; 111 112 AVAttr = VD->getAttr<AlignValueAttr>(); 113 } 114 } 115 116 if (!AVAttr) 117 if (const auto *TTy = 118 dyn_cast<TypedefType>(E->getType())) 119 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 120 121 if (!AVAttr) 122 return; 123 124 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 125 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 126 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 127 } 128 129 /// EmitLoadOfLValue - Given an expression with complex type that represents a 130 /// value l-value, this method emits the address of the l-value, then loads 131 /// and returns the result. 132 Value *EmitLoadOfLValue(const Expr *E) { 133 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 134 E->getExprLoc()); 135 136 EmitLValueAlignmentAssumption(E, V); 137 return V; 138 } 139 140 /// EmitConversionToBool - Convert the specified expression value to a 141 /// boolean (i1) truth value. This is equivalent to "Val != 0". 142 Value *EmitConversionToBool(Value *Src, QualType DstTy); 143 144 /// Emit a check that a conversion to or from a floating-point type does not 145 /// overflow. 146 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 147 Value *Src, QualType SrcType, QualType DstType, 148 llvm::Type *DstTy, SourceLocation Loc); 149 150 /// Emit a conversion from the specified type to the specified destination 151 /// type, both of which are LLVM scalar types. 152 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 153 SourceLocation Loc); 154 155 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 156 SourceLocation Loc, bool TreatBooleanAsSigned); 157 158 /// Emit a conversion from the specified complex type to the specified 159 /// destination type, where the destination type is an LLVM scalar type. 160 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 161 QualType SrcTy, QualType DstTy, 162 SourceLocation Loc); 163 164 /// EmitNullValue - Emit a value that corresponds to null for the given type. 165 Value *EmitNullValue(QualType Ty); 166 167 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 168 Value *EmitFloatToBoolConversion(Value *V) { 169 // Compare against 0.0 for fp scalars. 170 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 171 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 172 } 173 174 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 175 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 176 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 177 178 return Builder.CreateICmpNE(V, Zero, "tobool"); 179 } 180 181 Value *EmitIntToBoolConversion(Value *V) { 182 // Because of the type rules of C, we often end up computing a 183 // logical value, then zero extending it to int, then wanting it 184 // as a logical value again. Optimize this common case. 185 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 186 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 187 Value *Result = ZI->getOperand(0); 188 // If there aren't any more uses, zap the instruction to save space. 189 // Note that there can be more uses, for example if this 190 // is the result of an assignment. 191 if (ZI->use_empty()) 192 ZI->eraseFromParent(); 193 return Result; 194 } 195 } 196 197 return Builder.CreateIsNotNull(V, "tobool"); 198 } 199 200 //===--------------------------------------------------------------------===// 201 // Visitor Methods 202 //===--------------------------------------------------------------------===// 203 204 Value *Visit(Expr *E) { 205 ApplyDebugLocation DL(CGF, E); 206 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 207 } 208 209 Value *VisitStmt(Stmt *S) { 210 S->dump(CGF.getContext().getSourceManager()); 211 llvm_unreachable("Stmt can't have complex result type!"); 212 } 213 Value *VisitExpr(Expr *S); 214 215 Value *VisitParenExpr(ParenExpr *PE) { 216 return Visit(PE->getSubExpr()); 217 } 218 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 219 return Visit(E->getReplacement()); 220 } 221 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 222 return Visit(GE->getResultExpr()); 223 } 224 225 // Leaves. 226 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 227 return Builder.getInt(E->getValue()); 228 } 229 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 230 return llvm::ConstantFP::get(VMContext, E->getValue()); 231 } 232 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 233 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 234 } 235 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 236 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 237 } 238 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 239 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 240 } 241 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 242 return EmitNullValue(E->getType()); 243 } 244 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 245 return EmitNullValue(E->getType()); 246 } 247 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 248 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 249 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 250 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 251 return Builder.CreateBitCast(V, ConvertType(E->getType())); 252 } 253 254 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 255 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 256 } 257 258 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 259 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 260 } 261 262 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 263 if (E->isGLValue()) 264 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 265 266 // Otherwise, assume the mapping is the scalar directly. 267 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 268 } 269 270 // l-values. 271 Value *VisitDeclRefExpr(DeclRefExpr *E) { 272 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 273 if (result.isReference()) 274 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 275 E->getExprLoc()); 276 return result.getValue(); 277 } 278 return EmitLoadOfLValue(E); 279 } 280 281 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 282 return CGF.EmitObjCSelectorExpr(E); 283 } 284 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 285 return CGF.EmitObjCProtocolExpr(E); 286 } 287 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 288 return EmitLoadOfLValue(E); 289 } 290 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 291 if (E->getMethodDecl() && 292 E->getMethodDecl()->getReturnType()->isReferenceType()) 293 return EmitLoadOfLValue(E); 294 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 295 } 296 297 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 298 LValue LV = CGF.EmitObjCIsaExpr(E); 299 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 300 return V; 301 } 302 303 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 304 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 305 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 306 Value *VisitMemberExpr(MemberExpr *E); 307 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 308 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 309 return EmitLoadOfLValue(E); 310 } 311 312 Value *VisitInitListExpr(InitListExpr *E); 313 314 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 315 return EmitNullValue(E->getType()); 316 } 317 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 318 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 319 return VisitCastExpr(E); 320 } 321 Value *VisitCastExpr(CastExpr *E); 322 323 Value *VisitCallExpr(const CallExpr *E) { 324 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 325 return EmitLoadOfLValue(E); 326 327 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 328 329 EmitLValueAlignmentAssumption(E, V); 330 return V; 331 } 332 333 Value *VisitStmtExpr(const StmtExpr *E); 334 335 // Unary Operators. 336 Value *VisitUnaryPostDec(const UnaryOperator *E) { 337 LValue LV = EmitLValue(E->getSubExpr()); 338 return EmitScalarPrePostIncDec(E, LV, false, false); 339 } 340 Value *VisitUnaryPostInc(const UnaryOperator *E) { 341 LValue LV = EmitLValue(E->getSubExpr()); 342 return EmitScalarPrePostIncDec(E, LV, true, false); 343 } 344 Value *VisitUnaryPreDec(const UnaryOperator *E) { 345 LValue LV = EmitLValue(E->getSubExpr()); 346 return EmitScalarPrePostIncDec(E, LV, false, true); 347 } 348 Value *VisitUnaryPreInc(const UnaryOperator *E) { 349 LValue LV = EmitLValue(E->getSubExpr()); 350 return EmitScalarPrePostIncDec(E, LV, true, true); 351 } 352 353 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 354 llvm::Value *InVal, 355 bool IsInc); 356 357 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 358 bool isInc, bool isPre); 359 360 361 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 362 if (isa<MemberPointerType>(E->getType())) // never sugared 363 return CGF.CGM.getMemberPointerConstant(E); 364 365 return EmitLValue(E->getSubExpr()).getPointer(); 366 } 367 Value *VisitUnaryDeref(const UnaryOperator *E) { 368 if (E->getType()->isVoidType()) 369 return Visit(E->getSubExpr()); // the actual value should be unused 370 return EmitLoadOfLValue(E); 371 } 372 Value *VisitUnaryPlus(const UnaryOperator *E) { 373 // This differs from gcc, though, most likely due to a bug in gcc. 374 TestAndClearIgnoreResultAssign(); 375 return Visit(E->getSubExpr()); 376 } 377 Value *VisitUnaryMinus (const UnaryOperator *E); 378 Value *VisitUnaryNot (const UnaryOperator *E); 379 Value *VisitUnaryLNot (const UnaryOperator *E); 380 Value *VisitUnaryReal (const UnaryOperator *E); 381 Value *VisitUnaryImag (const UnaryOperator *E); 382 Value *VisitUnaryExtension(const UnaryOperator *E) { 383 return Visit(E->getSubExpr()); 384 } 385 386 // C++ 387 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 388 return EmitLoadOfLValue(E); 389 } 390 391 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 392 return Visit(DAE->getExpr()); 393 } 394 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 395 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 396 return Visit(DIE->getExpr()); 397 } 398 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 399 return CGF.LoadCXXThis(); 400 } 401 402 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 403 CGF.enterFullExpression(E); 404 CodeGenFunction::RunCleanupsScope Scope(CGF); 405 return Visit(E->getSubExpr()); 406 } 407 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 408 return CGF.EmitCXXNewExpr(E); 409 } 410 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 411 CGF.EmitCXXDeleteExpr(E); 412 return nullptr; 413 } 414 415 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 416 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 417 } 418 419 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 420 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 421 } 422 423 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 424 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 425 } 426 427 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 428 // C++ [expr.pseudo]p1: 429 // The result shall only be used as the operand for the function call 430 // operator (), and the result of such a call has type void. The only 431 // effect is the evaluation of the postfix-expression before the dot or 432 // arrow. 433 CGF.EmitScalarExpr(E->getBase()); 434 return nullptr; 435 } 436 437 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 438 return EmitNullValue(E->getType()); 439 } 440 441 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 442 CGF.EmitCXXThrowExpr(E); 443 return nullptr; 444 } 445 446 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 447 return Builder.getInt1(E->getValue()); 448 } 449 450 // Binary Operators. 451 Value *EmitMul(const BinOpInfo &Ops) { 452 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 453 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 454 case LangOptions::SOB_Defined: 455 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 456 case LangOptions::SOB_Undefined: 457 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 458 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 459 // Fall through. 460 case LangOptions::SOB_Trapping: 461 return EmitOverflowCheckedBinOp(Ops); 462 } 463 } 464 465 if (Ops.Ty->isUnsignedIntegerType() && 466 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 467 return EmitOverflowCheckedBinOp(Ops); 468 469 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 470 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 471 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 472 } 473 /// Create a binary op that checks for overflow. 474 /// Currently only supports +, - and *. 475 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 476 477 // Check for undefined division and modulus behaviors. 478 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 479 llvm::Value *Zero,bool isDiv); 480 // Common helper for getting how wide LHS of shift is. 481 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 482 Value *EmitDiv(const BinOpInfo &Ops); 483 Value *EmitRem(const BinOpInfo &Ops); 484 Value *EmitAdd(const BinOpInfo &Ops); 485 Value *EmitSub(const BinOpInfo &Ops); 486 Value *EmitShl(const BinOpInfo &Ops); 487 Value *EmitShr(const BinOpInfo &Ops); 488 Value *EmitAnd(const BinOpInfo &Ops) { 489 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 490 } 491 Value *EmitXor(const BinOpInfo &Ops) { 492 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 493 } 494 Value *EmitOr (const BinOpInfo &Ops) { 495 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 496 } 497 498 BinOpInfo EmitBinOps(const BinaryOperator *E); 499 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 500 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 501 Value *&Result); 502 503 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 504 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 505 506 // Binary operators and binary compound assignment operators. 507 #define HANDLEBINOP(OP) \ 508 Value *VisitBin ## OP(const BinaryOperator *E) { \ 509 return Emit ## OP(EmitBinOps(E)); \ 510 } \ 511 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 512 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 513 } 514 HANDLEBINOP(Mul) 515 HANDLEBINOP(Div) 516 HANDLEBINOP(Rem) 517 HANDLEBINOP(Add) 518 HANDLEBINOP(Sub) 519 HANDLEBINOP(Shl) 520 HANDLEBINOP(Shr) 521 HANDLEBINOP(And) 522 HANDLEBINOP(Xor) 523 HANDLEBINOP(Or) 524 #undef HANDLEBINOP 525 526 // Comparisons. 527 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 528 llvm::CmpInst::Predicate SICmpOpc, 529 llvm::CmpInst::Predicate FCmpOpc); 530 #define VISITCOMP(CODE, UI, SI, FP) \ 531 Value *VisitBin##CODE(const BinaryOperator *E) { \ 532 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 533 llvm::FCmpInst::FP); } 534 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 535 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 536 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 537 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 538 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 539 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 540 #undef VISITCOMP 541 542 Value *VisitBinAssign (const BinaryOperator *E); 543 544 Value *VisitBinLAnd (const BinaryOperator *E); 545 Value *VisitBinLOr (const BinaryOperator *E); 546 Value *VisitBinComma (const BinaryOperator *E); 547 548 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 549 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 550 551 // Other Operators. 552 Value *VisitBlockExpr(const BlockExpr *BE); 553 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 554 Value *VisitChooseExpr(ChooseExpr *CE); 555 Value *VisitVAArgExpr(VAArgExpr *VE); 556 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 557 return CGF.EmitObjCStringLiteral(E); 558 } 559 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 560 return CGF.EmitObjCBoxedExpr(E); 561 } 562 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 563 return CGF.EmitObjCArrayLiteral(E); 564 } 565 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 566 return CGF.EmitObjCDictionaryLiteral(E); 567 } 568 Value *VisitAsTypeExpr(AsTypeExpr *CE); 569 Value *VisitAtomicExpr(AtomicExpr *AE); 570 }; 571 } // end anonymous namespace. 572 573 //===----------------------------------------------------------------------===// 574 // Utilities 575 //===----------------------------------------------------------------------===// 576 577 /// EmitConversionToBool - Convert the specified expression value to a 578 /// boolean (i1) truth value. This is equivalent to "Val != 0". 579 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 580 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 581 582 if (SrcType->isRealFloatingType()) 583 return EmitFloatToBoolConversion(Src); 584 585 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 586 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 587 588 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 589 "Unknown scalar type to convert"); 590 591 if (isa<llvm::IntegerType>(Src->getType())) 592 return EmitIntToBoolConversion(Src); 593 594 assert(isa<llvm::PointerType>(Src->getType())); 595 return EmitPointerToBoolConversion(Src, SrcType); 596 } 597 598 void ScalarExprEmitter::EmitFloatConversionCheck( 599 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 600 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 601 CodeGenFunction::SanitizerScope SanScope(&CGF); 602 using llvm::APFloat; 603 using llvm::APSInt; 604 605 llvm::Type *SrcTy = Src->getType(); 606 607 llvm::Value *Check = nullptr; 608 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 609 // Integer to floating-point. This can fail for unsigned short -> __half 610 // or unsigned __int128 -> float. 611 assert(DstType->isFloatingType()); 612 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 613 614 APFloat LargestFloat = 615 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 616 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 617 618 bool IsExact; 619 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 620 &IsExact) != APFloat::opOK) 621 // The range of representable values of this floating point type includes 622 // all values of this integer type. Don't need an overflow check. 623 return; 624 625 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 626 if (SrcIsUnsigned) 627 Check = Builder.CreateICmpULE(Src, Max); 628 else { 629 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 630 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 631 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 632 Check = Builder.CreateAnd(GE, LE); 633 } 634 } else { 635 const llvm::fltSemantics &SrcSema = 636 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 637 if (isa<llvm::IntegerType>(DstTy)) { 638 // Floating-point to integer. This has undefined behavior if the source is 639 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 640 // to an integer). 641 unsigned Width = CGF.getContext().getIntWidth(DstType); 642 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 643 644 APSInt Min = APSInt::getMinValue(Width, Unsigned); 645 APFloat MinSrc(SrcSema, APFloat::uninitialized); 646 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 647 APFloat::opOverflow) 648 // Don't need an overflow check for lower bound. Just check for 649 // -Inf/NaN. 650 MinSrc = APFloat::getInf(SrcSema, true); 651 else 652 // Find the largest value which is too small to represent (before 653 // truncation toward zero). 654 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 655 656 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 657 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 658 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 659 APFloat::opOverflow) 660 // Don't need an overflow check for upper bound. Just check for 661 // +Inf/NaN. 662 MaxSrc = APFloat::getInf(SrcSema, false); 663 else 664 // Find the smallest value which is too large to represent (before 665 // truncation toward zero). 666 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 667 668 // If we're converting from __half, convert the range to float to match 669 // the type of src. 670 if (OrigSrcType->isHalfType()) { 671 const llvm::fltSemantics &Sema = 672 CGF.getContext().getFloatTypeSemantics(SrcType); 673 bool IsInexact; 674 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 675 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 676 } 677 678 llvm::Value *GE = 679 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 680 llvm::Value *LE = 681 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 682 Check = Builder.CreateAnd(GE, LE); 683 } else { 684 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 685 // 686 // Floating-point to floating-point. This has undefined behavior if the 687 // source is not in the range of representable values of the destination 688 // type. The C and C++ standards are spectacularly unclear here. We 689 // diagnose finite out-of-range conversions, but allow infinities and NaNs 690 // to convert to the corresponding value in the smaller type. 691 // 692 // C11 Annex F gives all such conversions defined behavior for IEC 60559 693 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 694 // does not. 695 696 // Converting from a lower rank to a higher rank can never have 697 // undefined behavior, since higher-rank types must have a superset 698 // of values of lower-rank types. 699 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 700 return; 701 702 assert(!OrigSrcType->isHalfType() && 703 "should not check conversion from __half, it has the lowest rank"); 704 705 const llvm::fltSemantics &DstSema = 706 CGF.getContext().getFloatTypeSemantics(DstType); 707 APFloat MinBad = APFloat::getLargest(DstSema, false); 708 APFloat MaxBad = APFloat::getInf(DstSema, false); 709 710 bool IsInexact; 711 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 712 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 713 714 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 715 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 716 llvm::Value *GE = 717 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 718 llvm::Value *LE = 719 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 720 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 721 } 722 } 723 724 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 725 CGF.EmitCheckTypeDescriptor(OrigSrcType), 726 CGF.EmitCheckTypeDescriptor(DstType)}; 727 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 728 "float_cast_overflow", StaticArgs, OrigSrc); 729 } 730 731 /// Emit a conversion from the specified type to the specified destination type, 732 /// both of which are LLVM scalar types. 733 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 734 QualType DstType, 735 SourceLocation Loc) { 736 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 737 } 738 739 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 740 QualType DstType, 741 SourceLocation Loc, 742 bool TreatBooleanAsSigned) { 743 SrcType = CGF.getContext().getCanonicalType(SrcType); 744 DstType = CGF.getContext().getCanonicalType(DstType); 745 if (SrcType == DstType) return Src; 746 747 if (DstType->isVoidType()) return nullptr; 748 749 llvm::Value *OrigSrc = Src; 750 QualType OrigSrcType = SrcType; 751 llvm::Type *SrcTy = Src->getType(); 752 753 // Handle conversions to bool first, they are special: comparisons against 0. 754 if (DstType->isBooleanType()) 755 return EmitConversionToBool(Src, SrcType); 756 757 llvm::Type *DstTy = ConvertType(DstType); 758 759 // Cast from half through float if half isn't a native type. 760 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 761 // Cast to FP using the intrinsic if the half type itself isn't supported. 762 if (DstTy->isFloatingPointTy()) { 763 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 764 return Builder.CreateCall( 765 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 766 Src); 767 } else { 768 // Cast to other types through float, using either the intrinsic or FPExt, 769 // depending on whether the half type itself is supported 770 // (as opposed to operations on half, available with NativeHalfType). 771 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 772 Src = Builder.CreateCall( 773 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 774 CGF.CGM.FloatTy), 775 Src); 776 } else { 777 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 778 } 779 SrcType = CGF.getContext().FloatTy; 780 SrcTy = CGF.FloatTy; 781 } 782 } 783 784 // Ignore conversions like int -> uint. 785 if (SrcTy == DstTy) 786 return Src; 787 788 // Handle pointer conversions next: pointers can only be converted to/from 789 // other pointers and integers. Check for pointer types in terms of LLVM, as 790 // some native types (like Obj-C id) may map to a pointer type. 791 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 792 // The source value may be an integer, or a pointer. 793 if (isa<llvm::PointerType>(SrcTy)) 794 return Builder.CreateBitCast(Src, DstTy, "conv"); 795 796 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 797 // First, convert to the correct width so that we control the kind of 798 // extension. 799 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 800 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 801 llvm::Value* IntResult = 802 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 803 // Then, cast to pointer. 804 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 805 } 806 807 if (isa<llvm::PointerType>(SrcTy)) { 808 // Must be an ptr to int cast. 809 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 810 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 811 } 812 813 // A scalar can be splatted to an extended vector of the same element type 814 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 815 // Sema should add casts to make sure that the source expression's type is 816 // the same as the vector's element type (sans qualifiers) 817 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 818 SrcType.getTypePtr() && 819 "Splatted expr doesn't match with vector element type?"); 820 821 // Splat the element across to all elements 822 unsigned NumElements = DstTy->getVectorNumElements(); 823 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 824 } 825 826 // Allow bitcast from vector to integer/fp of the same size. 827 if (isa<llvm::VectorType>(SrcTy) || 828 isa<llvm::VectorType>(DstTy)) 829 return Builder.CreateBitCast(Src, DstTy, "conv"); 830 831 // Finally, we have the arithmetic types: real int/float. 832 Value *Res = nullptr; 833 llvm::Type *ResTy = DstTy; 834 835 // An overflowing conversion has undefined behavior if either the source type 836 // or the destination type is a floating-point type. 837 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 838 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 839 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 840 Loc); 841 842 // Cast to half through float if half isn't a native type. 843 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 844 // Make sure we cast in a single step if from another FP type. 845 if (SrcTy->isFloatingPointTy()) { 846 // Use the intrinsic if the half type itself isn't supported 847 // (as opposed to operations on half, available with NativeHalfType). 848 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 849 return Builder.CreateCall( 850 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 851 // If the half type is supported, just use an fptrunc. 852 return Builder.CreateFPTrunc(Src, DstTy); 853 } 854 DstTy = CGF.FloatTy; 855 } 856 857 if (isa<llvm::IntegerType>(SrcTy)) { 858 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 859 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 860 InputSigned = true; 861 } 862 if (isa<llvm::IntegerType>(DstTy)) 863 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 864 else if (InputSigned) 865 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 866 else 867 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 868 } else if (isa<llvm::IntegerType>(DstTy)) { 869 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 870 if (DstType->isSignedIntegerOrEnumerationType()) 871 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 872 else 873 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 874 } else { 875 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 876 "Unknown real conversion"); 877 if (DstTy->getTypeID() < SrcTy->getTypeID()) 878 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 879 else 880 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 881 } 882 883 if (DstTy != ResTy) { 884 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 885 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 886 Res = Builder.CreateCall( 887 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 888 Res); 889 } else { 890 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 891 } 892 } 893 894 return Res; 895 } 896 897 /// Emit a conversion from the specified complex type to the specified 898 /// destination type, where the destination type is an LLVM scalar type. 899 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 900 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 901 SourceLocation Loc) { 902 // Get the source element type. 903 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 904 905 // Handle conversions to bool first, they are special: comparisons against 0. 906 if (DstTy->isBooleanType()) { 907 // Complex != 0 -> (Real != 0) | (Imag != 0) 908 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 909 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 910 return Builder.CreateOr(Src.first, Src.second, "tobool"); 911 } 912 913 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 914 // the imaginary part of the complex value is discarded and the value of the 915 // real part is converted according to the conversion rules for the 916 // corresponding real type. 917 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 918 } 919 920 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 921 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 922 } 923 924 /// \brief Emit a sanitization check for the given "binary" operation (which 925 /// might actually be a unary increment which has been lowered to a binary 926 /// operation). The check passes if all values in \p Checks (which are \c i1), 927 /// are \c true. 928 void ScalarExprEmitter::EmitBinOpCheck( 929 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 930 assert(CGF.IsSanitizerScope); 931 StringRef CheckName; 932 SmallVector<llvm::Constant *, 4> StaticData; 933 SmallVector<llvm::Value *, 2> DynamicData; 934 935 BinaryOperatorKind Opcode = Info.Opcode; 936 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 937 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 938 939 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 940 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 941 if (UO && UO->getOpcode() == UO_Minus) { 942 CheckName = "negate_overflow"; 943 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 944 DynamicData.push_back(Info.RHS); 945 } else { 946 if (BinaryOperator::isShiftOp(Opcode)) { 947 // Shift LHS negative or too large, or RHS out of bounds. 948 CheckName = "shift_out_of_bounds"; 949 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 950 StaticData.push_back( 951 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 952 StaticData.push_back( 953 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 954 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 955 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 956 CheckName = "divrem_overflow"; 957 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 958 } else { 959 // Arithmetic overflow (+, -, *). 960 switch (Opcode) { 961 case BO_Add: CheckName = "add_overflow"; break; 962 case BO_Sub: CheckName = "sub_overflow"; break; 963 case BO_Mul: CheckName = "mul_overflow"; break; 964 default: llvm_unreachable("unexpected opcode for bin op check"); 965 } 966 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 967 } 968 DynamicData.push_back(Info.LHS); 969 DynamicData.push_back(Info.RHS); 970 } 971 972 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 973 } 974 975 //===----------------------------------------------------------------------===// 976 // Visitor Methods 977 //===----------------------------------------------------------------------===// 978 979 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 980 CGF.ErrorUnsupported(E, "scalar expression"); 981 if (E->getType()->isVoidType()) 982 return nullptr; 983 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 984 } 985 986 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 987 // Vector Mask Case 988 if (E->getNumSubExprs() == 2) { 989 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 990 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 991 Value *Mask; 992 993 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 994 unsigned LHSElts = LTy->getNumElements(); 995 996 Mask = RHS; 997 998 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 999 1000 // Mask off the high bits of each shuffle index. 1001 Value *MaskBits = 1002 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1003 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1004 1005 // newv = undef 1006 // mask = mask & maskbits 1007 // for each elt 1008 // n = extract mask i 1009 // x = extract val n 1010 // newv = insert newv, x, i 1011 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1012 MTy->getNumElements()); 1013 Value* NewV = llvm::UndefValue::get(RTy); 1014 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1015 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1016 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1017 1018 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1019 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1020 } 1021 return NewV; 1022 } 1023 1024 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1025 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1026 1027 SmallVector<llvm::Constant*, 32> indices; 1028 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1029 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1030 // Check for -1 and output it as undef in the IR. 1031 if (Idx.isSigned() && Idx.isAllOnesValue()) 1032 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1033 else 1034 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1035 } 1036 1037 Value *SV = llvm::ConstantVector::get(indices); 1038 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1039 } 1040 1041 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1042 QualType SrcType = E->getSrcExpr()->getType(), 1043 DstType = E->getType(); 1044 1045 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1046 1047 SrcType = CGF.getContext().getCanonicalType(SrcType); 1048 DstType = CGF.getContext().getCanonicalType(DstType); 1049 if (SrcType == DstType) return Src; 1050 1051 assert(SrcType->isVectorType() && 1052 "ConvertVector source type must be a vector"); 1053 assert(DstType->isVectorType() && 1054 "ConvertVector destination type must be a vector"); 1055 1056 llvm::Type *SrcTy = Src->getType(); 1057 llvm::Type *DstTy = ConvertType(DstType); 1058 1059 // Ignore conversions like int -> uint. 1060 if (SrcTy == DstTy) 1061 return Src; 1062 1063 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1064 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1065 1066 assert(SrcTy->isVectorTy() && 1067 "ConvertVector source IR type must be a vector"); 1068 assert(DstTy->isVectorTy() && 1069 "ConvertVector destination IR type must be a vector"); 1070 1071 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1072 *DstEltTy = DstTy->getVectorElementType(); 1073 1074 if (DstEltType->isBooleanType()) { 1075 assert((SrcEltTy->isFloatingPointTy() || 1076 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1077 1078 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1079 if (SrcEltTy->isFloatingPointTy()) { 1080 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1081 } else { 1082 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1083 } 1084 } 1085 1086 // We have the arithmetic types: real int/float. 1087 Value *Res = nullptr; 1088 1089 if (isa<llvm::IntegerType>(SrcEltTy)) { 1090 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1091 if (isa<llvm::IntegerType>(DstEltTy)) 1092 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1093 else if (InputSigned) 1094 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1095 else 1096 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1097 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1098 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1099 if (DstEltType->isSignedIntegerOrEnumerationType()) 1100 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1101 else 1102 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1103 } else { 1104 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1105 "Unknown real conversion"); 1106 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1107 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1108 else 1109 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1110 } 1111 1112 return Res; 1113 } 1114 1115 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1116 llvm::APSInt Value; 1117 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1118 if (E->isArrow()) 1119 CGF.EmitScalarExpr(E->getBase()); 1120 else 1121 EmitLValue(E->getBase()); 1122 return Builder.getInt(Value); 1123 } 1124 1125 return EmitLoadOfLValue(E); 1126 } 1127 1128 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1129 TestAndClearIgnoreResultAssign(); 1130 1131 // Emit subscript expressions in rvalue context's. For most cases, this just 1132 // loads the lvalue formed by the subscript expr. However, we have to be 1133 // careful, because the base of a vector subscript is occasionally an rvalue, 1134 // so we can't get it as an lvalue. 1135 if (!E->getBase()->getType()->isVectorType()) 1136 return EmitLoadOfLValue(E); 1137 1138 // Handle the vector case. The base must be a vector, the index must be an 1139 // integer value. 1140 Value *Base = Visit(E->getBase()); 1141 Value *Idx = Visit(E->getIdx()); 1142 QualType IdxTy = E->getIdx()->getType(); 1143 1144 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1145 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1146 1147 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1148 } 1149 1150 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1151 unsigned Off, llvm::Type *I32Ty) { 1152 int MV = SVI->getMaskValue(Idx); 1153 if (MV == -1) 1154 return llvm::UndefValue::get(I32Ty); 1155 return llvm::ConstantInt::get(I32Ty, Off+MV); 1156 } 1157 1158 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1159 if (C->getBitWidth() != 32) { 1160 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1161 C->getZExtValue()) && 1162 "Index operand too large for shufflevector mask!"); 1163 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1164 } 1165 return C; 1166 } 1167 1168 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1169 bool Ignore = TestAndClearIgnoreResultAssign(); 1170 (void)Ignore; 1171 assert (Ignore == false && "init list ignored"); 1172 unsigned NumInitElements = E->getNumInits(); 1173 1174 if (E->hadArrayRangeDesignator()) 1175 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1176 1177 llvm::VectorType *VType = 1178 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1179 1180 if (!VType) { 1181 if (NumInitElements == 0) { 1182 // C++11 value-initialization for the scalar. 1183 return EmitNullValue(E->getType()); 1184 } 1185 // We have a scalar in braces. Just use the first element. 1186 return Visit(E->getInit(0)); 1187 } 1188 1189 unsigned ResElts = VType->getNumElements(); 1190 1191 // Loop over initializers collecting the Value for each, and remembering 1192 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1193 // us to fold the shuffle for the swizzle into the shuffle for the vector 1194 // initializer, since LLVM optimizers generally do not want to touch 1195 // shuffles. 1196 unsigned CurIdx = 0; 1197 bool VIsUndefShuffle = false; 1198 llvm::Value *V = llvm::UndefValue::get(VType); 1199 for (unsigned i = 0; i != NumInitElements; ++i) { 1200 Expr *IE = E->getInit(i); 1201 Value *Init = Visit(IE); 1202 SmallVector<llvm::Constant*, 16> Args; 1203 1204 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1205 1206 // Handle scalar elements. If the scalar initializer is actually one 1207 // element of a different vector of the same width, use shuffle instead of 1208 // extract+insert. 1209 if (!VVT) { 1210 if (isa<ExtVectorElementExpr>(IE)) { 1211 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1212 1213 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1214 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1215 Value *LHS = nullptr, *RHS = nullptr; 1216 if (CurIdx == 0) { 1217 // insert into undef -> shuffle (src, undef) 1218 // shufflemask must use an i32 1219 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1220 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1221 1222 LHS = EI->getVectorOperand(); 1223 RHS = V; 1224 VIsUndefShuffle = true; 1225 } else if (VIsUndefShuffle) { 1226 // insert into undefshuffle && size match -> shuffle (v, src) 1227 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1228 for (unsigned j = 0; j != CurIdx; ++j) 1229 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1230 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1231 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1232 1233 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1234 RHS = EI->getVectorOperand(); 1235 VIsUndefShuffle = false; 1236 } 1237 if (!Args.empty()) { 1238 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1239 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1240 ++CurIdx; 1241 continue; 1242 } 1243 } 1244 } 1245 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1246 "vecinit"); 1247 VIsUndefShuffle = false; 1248 ++CurIdx; 1249 continue; 1250 } 1251 1252 unsigned InitElts = VVT->getNumElements(); 1253 1254 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1255 // input is the same width as the vector being constructed, generate an 1256 // optimized shuffle of the swizzle input into the result. 1257 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1258 if (isa<ExtVectorElementExpr>(IE)) { 1259 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1260 Value *SVOp = SVI->getOperand(0); 1261 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1262 1263 if (OpTy->getNumElements() == ResElts) { 1264 for (unsigned j = 0; j != CurIdx; ++j) { 1265 // If the current vector initializer is a shuffle with undef, merge 1266 // this shuffle directly into it. 1267 if (VIsUndefShuffle) { 1268 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1269 CGF.Int32Ty)); 1270 } else { 1271 Args.push_back(Builder.getInt32(j)); 1272 } 1273 } 1274 for (unsigned j = 0, je = InitElts; j != je; ++j) 1275 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1276 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1277 1278 if (VIsUndefShuffle) 1279 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1280 1281 Init = SVOp; 1282 } 1283 } 1284 1285 // Extend init to result vector length, and then shuffle its contribution 1286 // to the vector initializer into V. 1287 if (Args.empty()) { 1288 for (unsigned j = 0; j != InitElts; ++j) 1289 Args.push_back(Builder.getInt32(j)); 1290 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1291 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1292 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1293 Mask, "vext"); 1294 1295 Args.clear(); 1296 for (unsigned j = 0; j != CurIdx; ++j) 1297 Args.push_back(Builder.getInt32(j)); 1298 for (unsigned j = 0; j != InitElts; ++j) 1299 Args.push_back(Builder.getInt32(j+Offset)); 1300 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1301 } 1302 1303 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1304 // merging subsequent shuffles into this one. 1305 if (CurIdx == 0) 1306 std::swap(V, Init); 1307 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1308 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1309 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1310 CurIdx += InitElts; 1311 } 1312 1313 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1314 // Emit remaining default initializers. 1315 llvm::Type *EltTy = VType->getElementType(); 1316 1317 // Emit remaining default initializers 1318 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1319 Value *Idx = Builder.getInt32(CurIdx); 1320 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1321 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1322 } 1323 return V; 1324 } 1325 1326 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1327 const Expr *E = CE->getSubExpr(); 1328 1329 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1330 return false; 1331 1332 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1333 // We always assume that 'this' is never null. 1334 return false; 1335 } 1336 1337 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1338 // And that glvalue casts are never null. 1339 if (ICE->getValueKind() != VK_RValue) 1340 return false; 1341 } 1342 1343 return true; 1344 } 1345 1346 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1347 // have to handle a more broad range of conversions than explicit casts, as they 1348 // handle things like function to ptr-to-function decay etc. 1349 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1350 Expr *E = CE->getSubExpr(); 1351 QualType DestTy = CE->getType(); 1352 CastKind Kind = CE->getCastKind(); 1353 1354 // These cases are generally not written to ignore the result of 1355 // evaluating their sub-expressions, so we clear this now. 1356 bool Ignored = TestAndClearIgnoreResultAssign(); 1357 1358 // Since almost all cast kinds apply to scalars, this switch doesn't have 1359 // a default case, so the compiler will warn on a missing case. The cases 1360 // are in the same order as in the CastKind enum. 1361 switch (Kind) { 1362 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1363 case CK_BuiltinFnToFnPtr: 1364 llvm_unreachable("builtin functions are handled elsewhere"); 1365 1366 case CK_LValueBitCast: 1367 case CK_ObjCObjectLValueCast: { 1368 Address Addr = EmitLValue(E).getAddress(); 1369 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1370 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1371 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1372 } 1373 1374 case CK_CPointerToObjCPointerCast: 1375 case CK_BlockPointerToObjCPointerCast: 1376 case CK_AnyPointerToBlockPointerCast: 1377 case CK_BitCast: { 1378 Value *Src = Visit(const_cast<Expr*>(E)); 1379 llvm::Type *SrcTy = Src->getType(); 1380 llvm::Type *DstTy = ConvertType(DestTy); 1381 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1382 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1383 llvm_unreachable("wrong cast for pointers in different address spaces" 1384 "(must be an address space cast)!"); 1385 } 1386 1387 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1388 if (auto PT = DestTy->getAs<PointerType>()) 1389 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1390 /*MayBeNull=*/true, 1391 CodeGenFunction::CFITCK_UnrelatedCast, 1392 CE->getLocStart()); 1393 } 1394 1395 return Builder.CreateBitCast(Src, DstTy); 1396 } 1397 case CK_AddressSpaceConversion: { 1398 Expr::EvalResult Result; 1399 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 1400 Result.Val.isNullPointer()) { 1401 // If E has side effect, it is emitted even if its final result is a 1402 // null pointer. In that case, a DCE pass should be able to 1403 // eliminate the useless instructions emitted during translating E. 1404 if (Result.HasSideEffects) 1405 Visit(E); 1406 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 1407 ConvertType(DestTy)), DestTy); 1408 } 1409 // Since target may map different address spaces in AST to the same address 1410 // space, an address space conversion may end up as a bitcast. 1411 auto *Src = Visit(E); 1412 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGF, Src, 1413 E->getType(), 1414 DestTy); 1415 } 1416 case CK_AtomicToNonAtomic: 1417 case CK_NonAtomicToAtomic: 1418 case CK_NoOp: 1419 case CK_UserDefinedConversion: 1420 return Visit(const_cast<Expr*>(E)); 1421 1422 case CK_BaseToDerived: { 1423 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1424 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1425 1426 Address Base = CGF.EmitPointerWithAlignment(E); 1427 Address Derived = 1428 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1429 CE->path_begin(), CE->path_end(), 1430 CGF.ShouldNullCheckClassCastValue(CE)); 1431 1432 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1433 // performed and the object is not of the derived type. 1434 if (CGF.sanitizePerformTypeCheck()) 1435 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1436 Derived.getPointer(), DestTy->getPointeeType()); 1437 1438 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1439 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1440 Derived.getPointer(), 1441 /*MayBeNull=*/true, 1442 CodeGenFunction::CFITCK_DerivedCast, 1443 CE->getLocStart()); 1444 1445 return Derived.getPointer(); 1446 } 1447 case CK_UncheckedDerivedToBase: 1448 case CK_DerivedToBase: { 1449 // The EmitPointerWithAlignment path does this fine; just discard 1450 // the alignment. 1451 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1452 } 1453 1454 case CK_Dynamic: { 1455 Address V = CGF.EmitPointerWithAlignment(E); 1456 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1457 return CGF.EmitDynamicCast(V, DCE); 1458 } 1459 1460 case CK_ArrayToPointerDecay: 1461 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1462 case CK_FunctionToPointerDecay: 1463 return EmitLValue(E).getPointer(); 1464 1465 case CK_NullToPointer: 1466 if (MustVisitNullValue(E)) 1467 (void) Visit(E); 1468 1469 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 1470 DestTy); 1471 1472 case CK_NullToMemberPointer: { 1473 if (MustVisitNullValue(E)) 1474 (void) Visit(E); 1475 1476 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1477 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1478 } 1479 1480 case CK_ReinterpretMemberPointer: 1481 case CK_BaseToDerivedMemberPointer: 1482 case CK_DerivedToBaseMemberPointer: { 1483 Value *Src = Visit(E); 1484 1485 // Note that the AST doesn't distinguish between checked and 1486 // unchecked member pointer conversions, so we always have to 1487 // implement checked conversions here. This is inefficient when 1488 // actual control flow may be required in order to perform the 1489 // check, which it is for data member pointers (but not member 1490 // function pointers on Itanium and ARM). 1491 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1492 } 1493 1494 case CK_ARCProduceObject: 1495 return CGF.EmitARCRetainScalarExpr(E); 1496 case CK_ARCConsumeObject: 1497 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1498 case CK_ARCReclaimReturnedObject: 1499 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1500 case CK_ARCExtendBlockObject: 1501 return CGF.EmitARCExtendBlockObject(E); 1502 1503 case CK_CopyAndAutoreleaseBlockObject: 1504 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1505 1506 case CK_FloatingRealToComplex: 1507 case CK_FloatingComplexCast: 1508 case CK_IntegralRealToComplex: 1509 case CK_IntegralComplexCast: 1510 case CK_IntegralComplexToFloatingComplex: 1511 case CK_FloatingComplexToIntegralComplex: 1512 case CK_ConstructorConversion: 1513 case CK_ToUnion: 1514 llvm_unreachable("scalar cast to non-scalar value"); 1515 1516 case CK_LValueToRValue: 1517 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1518 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1519 return Visit(const_cast<Expr*>(E)); 1520 1521 case CK_IntegralToPointer: { 1522 Value *Src = Visit(const_cast<Expr*>(E)); 1523 1524 // First, convert to the correct width so that we control the kind of 1525 // extension. 1526 auto DestLLVMTy = ConvertType(DestTy); 1527 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 1528 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1529 llvm::Value* IntResult = 1530 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1531 1532 return Builder.CreateIntToPtr(IntResult, DestLLVMTy); 1533 } 1534 case CK_PointerToIntegral: 1535 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1536 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1537 1538 case CK_ToVoid: { 1539 CGF.EmitIgnoredExpr(E); 1540 return nullptr; 1541 } 1542 case CK_VectorSplat: { 1543 llvm::Type *DstTy = ConvertType(DestTy); 1544 Value *Elt = Visit(const_cast<Expr*>(E)); 1545 // Splat the element across to all elements 1546 unsigned NumElements = DstTy->getVectorNumElements(); 1547 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1548 } 1549 1550 case CK_IntegralCast: 1551 case CK_IntegralToFloating: 1552 case CK_FloatingToIntegral: 1553 case CK_FloatingCast: 1554 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1555 CE->getExprLoc()); 1556 case CK_BooleanToSignedIntegral: 1557 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1558 CE->getExprLoc(), 1559 /*TreatBooleanAsSigned=*/true); 1560 case CK_IntegralToBoolean: 1561 return EmitIntToBoolConversion(Visit(E)); 1562 case CK_PointerToBoolean: 1563 return EmitPointerToBoolConversion(Visit(E), E->getType()); 1564 case CK_FloatingToBoolean: 1565 return EmitFloatToBoolConversion(Visit(E)); 1566 case CK_MemberPointerToBoolean: { 1567 llvm::Value *MemPtr = Visit(E); 1568 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1569 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1570 } 1571 1572 case CK_FloatingComplexToReal: 1573 case CK_IntegralComplexToReal: 1574 return CGF.EmitComplexExpr(E, false, true).first; 1575 1576 case CK_FloatingComplexToBoolean: 1577 case CK_IntegralComplexToBoolean: { 1578 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1579 1580 // TODO: kill this function off, inline appropriate case here 1581 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1582 CE->getExprLoc()); 1583 } 1584 1585 case CK_ZeroToOCLEvent: { 1586 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1587 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1588 } 1589 1590 case CK_IntToOCLSampler: 1591 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1592 1593 } // end of switch 1594 1595 llvm_unreachable("unknown scalar cast"); 1596 } 1597 1598 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1599 CodeGenFunction::StmtExprEvaluation eval(CGF); 1600 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1601 !E->getType()->isVoidType()); 1602 if (!RetAlloca.isValid()) 1603 return nullptr; 1604 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1605 E->getExprLoc()); 1606 } 1607 1608 //===----------------------------------------------------------------------===// 1609 // Unary Operators 1610 //===----------------------------------------------------------------------===// 1611 1612 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1613 llvm::Value *InVal, bool IsInc) { 1614 BinOpInfo BinOp; 1615 BinOp.LHS = InVal; 1616 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1617 BinOp.Ty = E->getType(); 1618 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1619 BinOp.FPContractable = false; 1620 BinOp.E = E; 1621 return BinOp; 1622 } 1623 1624 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1625 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1626 llvm::Value *Amount = 1627 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1628 StringRef Name = IsInc ? "inc" : "dec"; 1629 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1630 case LangOptions::SOB_Defined: 1631 return Builder.CreateAdd(InVal, Amount, Name); 1632 case LangOptions::SOB_Undefined: 1633 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1634 return Builder.CreateNSWAdd(InVal, Amount, Name); 1635 // Fall through. 1636 case LangOptions::SOB_Trapping: 1637 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1638 } 1639 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1640 } 1641 1642 llvm::Value * 1643 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1644 bool isInc, bool isPre) { 1645 1646 QualType type = E->getSubExpr()->getType(); 1647 llvm::PHINode *atomicPHI = nullptr; 1648 llvm::Value *value; 1649 llvm::Value *input; 1650 1651 int amount = (isInc ? 1 : -1); 1652 1653 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1654 type = atomicTy->getValueType(); 1655 if (isInc && type->isBooleanType()) { 1656 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1657 if (isPre) { 1658 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1659 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1660 return Builder.getTrue(); 1661 } 1662 // For atomic bool increment, we just store true and return it for 1663 // preincrement, do an atomic swap with true for postincrement 1664 return Builder.CreateAtomicRMW( 1665 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1666 llvm::AtomicOrdering::SequentiallyConsistent); 1667 } 1668 // Special case for atomic increment / decrement on integers, emit 1669 // atomicrmw instructions. We skip this if we want to be doing overflow 1670 // checking, and fall into the slow path with the atomic cmpxchg loop. 1671 if (!type->isBooleanType() && type->isIntegerType() && 1672 !(type->isUnsignedIntegerType() && 1673 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1674 CGF.getLangOpts().getSignedOverflowBehavior() != 1675 LangOptions::SOB_Trapping) { 1676 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1677 llvm::AtomicRMWInst::Sub; 1678 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1679 llvm::Instruction::Sub; 1680 llvm::Value *amt = CGF.EmitToMemory( 1681 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1682 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1683 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1684 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1685 } 1686 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1687 input = value; 1688 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1689 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1690 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1691 value = CGF.EmitToMemory(value, type); 1692 Builder.CreateBr(opBB); 1693 Builder.SetInsertPoint(opBB); 1694 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1695 atomicPHI->addIncoming(value, startBB); 1696 value = atomicPHI; 1697 } else { 1698 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1699 input = value; 1700 } 1701 1702 // Special case of integer increment that we have to check first: bool++. 1703 // Due to promotion rules, we get: 1704 // bool++ -> bool = bool + 1 1705 // -> bool = (int)bool + 1 1706 // -> bool = ((int)bool + 1 != 0) 1707 // An interesting aspect of this is that increment is always true. 1708 // Decrement does not have this property. 1709 if (isInc && type->isBooleanType()) { 1710 value = Builder.getTrue(); 1711 1712 // Most common case by far: integer increment. 1713 } else if (type->isIntegerType()) { 1714 // Note that signed integer inc/dec with width less than int can't 1715 // overflow because of promotion rules; we're just eliding a few steps here. 1716 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1717 CGF.IntTy->getIntegerBitWidth(); 1718 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1719 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1720 } else if (CanOverflow && type->isUnsignedIntegerType() && 1721 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1722 value = 1723 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1724 } else { 1725 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1726 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1727 } 1728 1729 // Next most common: pointer increment. 1730 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1731 QualType type = ptr->getPointeeType(); 1732 1733 // VLA types don't have constant size. 1734 if (const VariableArrayType *vla 1735 = CGF.getContext().getAsVariableArrayType(type)) { 1736 llvm::Value *numElts = CGF.getVLASize(vla).first; 1737 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1738 if (CGF.getLangOpts().isSignedOverflowDefined()) 1739 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1740 else 1741 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1742 1743 // Arithmetic on function pointers (!) is just +-1. 1744 } else if (type->isFunctionType()) { 1745 llvm::Value *amt = Builder.getInt32(amount); 1746 1747 value = CGF.EmitCastToVoidPtr(value); 1748 if (CGF.getLangOpts().isSignedOverflowDefined()) 1749 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1750 else 1751 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1752 value = Builder.CreateBitCast(value, input->getType()); 1753 1754 // For everything else, we can just do a simple increment. 1755 } else { 1756 llvm::Value *amt = Builder.getInt32(amount); 1757 if (CGF.getLangOpts().isSignedOverflowDefined()) 1758 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1759 else 1760 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1761 } 1762 1763 // Vector increment/decrement. 1764 } else if (type->isVectorType()) { 1765 if (type->hasIntegerRepresentation()) { 1766 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1767 1768 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1769 } else { 1770 value = Builder.CreateFAdd( 1771 value, 1772 llvm::ConstantFP::get(value->getType(), amount), 1773 isInc ? "inc" : "dec"); 1774 } 1775 1776 // Floating point. 1777 } else if (type->isRealFloatingType()) { 1778 // Add the inc/dec to the real part. 1779 llvm::Value *amt; 1780 1781 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1782 // Another special case: half FP increment should be done via float 1783 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1784 value = Builder.CreateCall( 1785 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1786 CGF.CGM.FloatTy), 1787 input, "incdec.conv"); 1788 } else { 1789 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1790 } 1791 } 1792 1793 if (value->getType()->isFloatTy()) 1794 amt = llvm::ConstantFP::get(VMContext, 1795 llvm::APFloat(static_cast<float>(amount))); 1796 else if (value->getType()->isDoubleTy()) 1797 amt = llvm::ConstantFP::get(VMContext, 1798 llvm::APFloat(static_cast<double>(amount))); 1799 else { 1800 // Remaining types are Half, LongDouble or __float128. Convert from float. 1801 llvm::APFloat F(static_cast<float>(amount)); 1802 bool ignored; 1803 const llvm::fltSemantics *FS; 1804 // Don't use getFloatTypeSemantics because Half isn't 1805 // necessarily represented using the "half" LLVM type. 1806 if (value->getType()->isFP128Ty()) 1807 FS = &CGF.getTarget().getFloat128Format(); 1808 else if (value->getType()->isHalfTy()) 1809 FS = &CGF.getTarget().getHalfFormat(); 1810 else 1811 FS = &CGF.getTarget().getLongDoubleFormat(); 1812 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 1813 amt = llvm::ConstantFP::get(VMContext, F); 1814 } 1815 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1816 1817 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1818 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1819 value = Builder.CreateCall( 1820 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1821 CGF.CGM.FloatTy), 1822 value, "incdec.conv"); 1823 } else { 1824 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1825 } 1826 } 1827 1828 // Objective-C pointer types. 1829 } else { 1830 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1831 value = CGF.EmitCastToVoidPtr(value); 1832 1833 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1834 if (!isInc) size = -size; 1835 llvm::Value *sizeValue = 1836 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1837 1838 if (CGF.getLangOpts().isSignedOverflowDefined()) 1839 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1840 else 1841 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1842 value = Builder.CreateBitCast(value, input->getType()); 1843 } 1844 1845 if (atomicPHI) { 1846 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1847 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1848 auto Pair = CGF.EmitAtomicCompareExchange( 1849 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1850 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1851 llvm::Value *success = Pair.second; 1852 atomicPHI->addIncoming(old, opBB); 1853 Builder.CreateCondBr(success, contBB, opBB); 1854 Builder.SetInsertPoint(contBB); 1855 return isPre ? value : input; 1856 } 1857 1858 // Store the updated result through the lvalue. 1859 if (LV.isBitField()) 1860 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1861 else 1862 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1863 1864 // If this is a postinc, return the value read from memory, otherwise use the 1865 // updated value. 1866 return isPre ? value : input; 1867 } 1868 1869 1870 1871 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1872 TestAndClearIgnoreResultAssign(); 1873 // Emit unary minus with EmitSub so we handle overflow cases etc. 1874 BinOpInfo BinOp; 1875 BinOp.RHS = Visit(E->getSubExpr()); 1876 1877 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1878 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1879 else 1880 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1881 BinOp.Ty = E->getType(); 1882 BinOp.Opcode = BO_Sub; 1883 BinOp.FPContractable = false; 1884 BinOp.E = E; 1885 return EmitSub(BinOp); 1886 } 1887 1888 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1889 TestAndClearIgnoreResultAssign(); 1890 Value *Op = Visit(E->getSubExpr()); 1891 return Builder.CreateNot(Op, "neg"); 1892 } 1893 1894 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1895 // Perform vector logical not on comparison with zero vector. 1896 if (E->getType()->isExtVectorType()) { 1897 Value *Oper = Visit(E->getSubExpr()); 1898 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1899 Value *Result; 1900 if (Oper->getType()->isFPOrFPVectorTy()) 1901 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1902 else 1903 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1904 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1905 } 1906 1907 // Compare operand to zero. 1908 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1909 1910 // Invert value. 1911 // TODO: Could dynamically modify easy computations here. For example, if 1912 // the operand is an icmp ne, turn into icmp eq. 1913 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1914 1915 // ZExt result to the expr type. 1916 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1917 } 1918 1919 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1920 // Try folding the offsetof to a constant. 1921 llvm::APSInt Value; 1922 if (E->EvaluateAsInt(Value, CGF.getContext())) 1923 return Builder.getInt(Value); 1924 1925 // Loop over the components of the offsetof to compute the value. 1926 unsigned n = E->getNumComponents(); 1927 llvm::Type* ResultType = ConvertType(E->getType()); 1928 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1929 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1930 for (unsigned i = 0; i != n; ++i) { 1931 OffsetOfNode ON = E->getComponent(i); 1932 llvm::Value *Offset = nullptr; 1933 switch (ON.getKind()) { 1934 case OffsetOfNode::Array: { 1935 // Compute the index 1936 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1937 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1938 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1939 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1940 1941 // Save the element type 1942 CurrentType = 1943 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1944 1945 // Compute the element size 1946 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1947 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1948 1949 // Multiply out to compute the result 1950 Offset = Builder.CreateMul(Idx, ElemSize); 1951 break; 1952 } 1953 1954 case OffsetOfNode::Field: { 1955 FieldDecl *MemberDecl = ON.getField(); 1956 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1957 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1958 1959 // Compute the index of the field in its parent. 1960 unsigned i = 0; 1961 // FIXME: It would be nice if we didn't have to loop here! 1962 for (RecordDecl::field_iterator Field = RD->field_begin(), 1963 FieldEnd = RD->field_end(); 1964 Field != FieldEnd; ++Field, ++i) { 1965 if (*Field == MemberDecl) 1966 break; 1967 } 1968 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1969 1970 // Compute the offset to the field 1971 int64_t OffsetInt = RL.getFieldOffset(i) / 1972 CGF.getContext().getCharWidth(); 1973 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1974 1975 // Save the element type. 1976 CurrentType = MemberDecl->getType(); 1977 break; 1978 } 1979 1980 case OffsetOfNode::Identifier: 1981 llvm_unreachable("dependent __builtin_offsetof"); 1982 1983 case OffsetOfNode::Base: { 1984 if (ON.getBase()->isVirtual()) { 1985 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1986 continue; 1987 } 1988 1989 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1990 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1991 1992 // Save the element type. 1993 CurrentType = ON.getBase()->getType(); 1994 1995 // Compute the offset to the base. 1996 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1997 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1998 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1999 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2000 break; 2001 } 2002 } 2003 Result = Builder.CreateAdd(Result, Offset); 2004 } 2005 return Result; 2006 } 2007 2008 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2009 /// argument of the sizeof expression as an integer. 2010 Value * 2011 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2012 const UnaryExprOrTypeTraitExpr *E) { 2013 QualType TypeToSize = E->getTypeOfArgument(); 2014 if (E->getKind() == UETT_SizeOf) { 2015 if (const VariableArrayType *VAT = 2016 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2017 if (E->isArgumentType()) { 2018 // sizeof(type) - make sure to emit the VLA size. 2019 CGF.EmitVariablyModifiedType(TypeToSize); 2020 } else { 2021 // C99 6.5.3.4p2: If the argument is an expression of type 2022 // VLA, it is evaluated. 2023 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2024 } 2025 2026 QualType eltType; 2027 llvm::Value *numElts; 2028 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2029 2030 llvm::Value *size = numElts; 2031 2032 // Scale the number of non-VLA elements by the non-VLA element size. 2033 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2034 if (!eltSize.isOne()) 2035 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2036 2037 return size; 2038 } 2039 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2040 auto Alignment = 2041 CGF.getContext() 2042 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2043 E->getTypeOfArgument()->getPointeeType())) 2044 .getQuantity(); 2045 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2046 } 2047 2048 // If this isn't sizeof(vla), the result must be constant; use the constant 2049 // folding logic so we don't have to duplicate it here. 2050 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2051 } 2052 2053 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2054 Expr *Op = E->getSubExpr(); 2055 if (Op->getType()->isAnyComplexType()) { 2056 // If it's an l-value, load through the appropriate subobject l-value. 2057 // Note that we have to ask E because Op might be an l-value that 2058 // this won't work for, e.g. an Obj-C property. 2059 if (E->isGLValue()) 2060 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2061 E->getExprLoc()).getScalarVal(); 2062 2063 // Otherwise, calculate and project. 2064 return CGF.EmitComplexExpr(Op, false, true).first; 2065 } 2066 2067 return Visit(Op); 2068 } 2069 2070 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2071 Expr *Op = E->getSubExpr(); 2072 if (Op->getType()->isAnyComplexType()) { 2073 // If it's an l-value, load through the appropriate subobject l-value. 2074 // Note that we have to ask E because Op might be an l-value that 2075 // this won't work for, e.g. an Obj-C property. 2076 if (Op->isGLValue()) 2077 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2078 E->getExprLoc()).getScalarVal(); 2079 2080 // Otherwise, calculate and project. 2081 return CGF.EmitComplexExpr(Op, true, false).second; 2082 } 2083 2084 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2085 // effects are evaluated, but not the actual value. 2086 if (Op->isGLValue()) 2087 CGF.EmitLValue(Op); 2088 else 2089 CGF.EmitScalarExpr(Op, true); 2090 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2091 } 2092 2093 //===----------------------------------------------------------------------===// 2094 // Binary Operators 2095 //===----------------------------------------------------------------------===// 2096 2097 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2098 TestAndClearIgnoreResultAssign(); 2099 BinOpInfo Result; 2100 Result.LHS = Visit(E->getLHS()); 2101 Result.RHS = Visit(E->getRHS()); 2102 Result.Ty = E->getType(); 2103 Result.Opcode = E->getOpcode(); 2104 Result.FPContractable = E->isFPContractable(); 2105 Result.E = E; 2106 return Result; 2107 } 2108 2109 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2110 const CompoundAssignOperator *E, 2111 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2112 Value *&Result) { 2113 QualType LHSTy = E->getLHS()->getType(); 2114 BinOpInfo OpInfo; 2115 2116 if (E->getComputationResultType()->isAnyComplexType()) 2117 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2118 2119 // Emit the RHS first. __block variables need to have the rhs evaluated 2120 // first, plus this should improve codegen a little. 2121 OpInfo.RHS = Visit(E->getRHS()); 2122 OpInfo.Ty = E->getComputationResultType(); 2123 OpInfo.Opcode = E->getOpcode(); 2124 OpInfo.FPContractable = E->isFPContractable(); 2125 OpInfo.E = E; 2126 // Load/convert the LHS. 2127 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2128 2129 llvm::PHINode *atomicPHI = nullptr; 2130 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2131 QualType type = atomicTy->getValueType(); 2132 if (!type->isBooleanType() && type->isIntegerType() && 2133 !(type->isUnsignedIntegerType() && 2134 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2135 CGF.getLangOpts().getSignedOverflowBehavior() != 2136 LangOptions::SOB_Trapping) { 2137 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2138 switch (OpInfo.Opcode) { 2139 // We don't have atomicrmw operands for *, %, /, <<, >> 2140 case BO_MulAssign: case BO_DivAssign: 2141 case BO_RemAssign: 2142 case BO_ShlAssign: 2143 case BO_ShrAssign: 2144 break; 2145 case BO_AddAssign: 2146 aop = llvm::AtomicRMWInst::Add; 2147 break; 2148 case BO_SubAssign: 2149 aop = llvm::AtomicRMWInst::Sub; 2150 break; 2151 case BO_AndAssign: 2152 aop = llvm::AtomicRMWInst::And; 2153 break; 2154 case BO_XorAssign: 2155 aop = llvm::AtomicRMWInst::Xor; 2156 break; 2157 case BO_OrAssign: 2158 aop = llvm::AtomicRMWInst::Or; 2159 break; 2160 default: 2161 llvm_unreachable("Invalid compound assignment type"); 2162 } 2163 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2164 llvm::Value *amt = CGF.EmitToMemory( 2165 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2166 E->getExprLoc()), 2167 LHSTy); 2168 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2169 llvm::AtomicOrdering::SequentiallyConsistent); 2170 return LHSLV; 2171 } 2172 } 2173 // FIXME: For floating point types, we should be saving and restoring the 2174 // floating point environment in the loop. 2175 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2176 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2177 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2178 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2179 Builder.CreateBr(opBB); 2180 Builder.SetInsertPoint(opBB); 2181 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2182 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2183 OpInfo.LHS = atomicPHI; 2184 } 2185 else 2186 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2187 2188 SourceLocation Loc = E->getExprLoc(); 2189 OpInfo.LHS = 2190 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2191 2192 // Expand the binary operator. 2193 Result = (this->*Func)(OpInfo); 2194 2195 // Convert the result back to the LHS type. 2196 Result = 2197 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2198 2199 if (atomicPHI) { 2200 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2201 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2202 auto Pair = CGF.EmitAtomicCompareExchange( 2203 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2204 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2205 llvm::Value *success = Pair.second; 2206 atomicPHI->addIncoming(old, opBB); 2207 Builder.CreateCondBr(success, contBB, opBB); 2208 Builder.SetInsertPoint(contBB); 2209 return LHSLV; 2210 } 2211 2212 // Store the result value into the LHS lvalue. Bit-fields are handled 2213 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2214 // 'An assignment expression has the value of the left operand after the 2215 // assignment...'. 2216 if (LHSLV.isBitField()) 2217 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2218 else 2219 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2220 2221 return LHSLV; 2222 } 2223 2224 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2225 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2226 bool Ignore = TestAndClearIgnoreResultAssign(); 2227 Value *RHS; 2228 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2229 2230 // If the result is clearly ignored, return now. 2231 if (Ignore) 2232 return nullptr; 2233 2234 // The result of an assignment in C is the assigned r-value. 2235 if (!CGF.getLangOpts().CPlusPlus) 2236 return RHS; 2237 2238 // If the lvalue is non-volatile, return the computed value of the assignment. 2239 if (!LHS.isVolatileQualified()) 2240 return RHS; 2241 2242 // Otherwise, reload the value. 2243 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2244 } 2245 2246 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2247 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2248 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2249 2250 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2251 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2252 SanitizerKind::IntegerDivideByZero)); 2253 } 2254 2255 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2256 Ops.Ty->hasSignedIntegerRepresentation()) { 2257 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2258 2259 llvm::Value *IntMin = 2260 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2261 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2262 2263 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2264 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2265 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2266 Checks.push_back( 2267 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2268 } 2269 2270 if (Checks.size() > 0) 2271 EmitBinOpCheck(Checks, Ops); 2272 } 2273 2274 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2275 { 2276 CodeGenFunction::SanitizerScope SanScope(&CGF); 2277 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2278 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2279 Ops.Ty->isIntegerType()) { 2280 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2281 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2282 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2283 Ops.Ty->isRealFloatingType()) { 2284 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2285 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2286 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2287 Ops); 2288 } 2289 } 2290 2291 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2292 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2293 if (CGF.getLangOpts().OpenCL && 2294 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2295 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2296 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2297 // build option allows an application to specify that single precision 2298 // floating-point divide (x/y and 1/x) and sqrt used in the program 2299 // source are correctly rounded. 2300 llvm::Type *ValTy = Val->getType(); 2301 if (ValTy->isFloatTy() || 2302 (isa<llvm::VectorType>(ValTy) && 2303 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2304 CGF.SetFPAccuracy(Val, 2.5); 2305 } 2306 return Val; 2307 } 2308 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2309 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2310 else 2311 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2312 } 2313 2314 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2315 // Rem in C can't be a floating point type: C99 6.5.5p2. 2316 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2317 CodeGenFunction::SanitizerScope SanScope(&CGF); 2318 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2319 2320 if (Ops.Ty->isIntegerType()) 2321 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2322 } 2323 2324 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2325 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2326 else 2327 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2328 } 2329 2330 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2331 unsigned IID; 2332 unsigned OpID = 0; 2333 2334 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2335 switch (Ops.Opcode) { 2336 case BO_Add: 2337 case BO_AddAssign: 2338 OpID = 1; 2339 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2340 llvm::Intrinsic::uadd_with_overflow; 2341 break; 2342 case BO_Sub: 2343 case BO_SubAssign: 2344 OpID = 2; 2345 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2346 llvm::Intrinsic::usub_with_overflow; 2347 break; 2348 case BO_Mul: 2349 case BO_MulAssign: 2350 OpID = 3; 2351 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2352 llvm::Intrinsic::umul_with_overflow; 2353 break; 2354 default: 2355 llvm_unreachable("Unsupported operation for overflow detection"); 2356 } 2357 OpID <<= 1; 2358 if (isSigned) 2359 OpID |= 1; 2360 2361 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2362 2363 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2364 2365 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2366 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2367 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2368 2369 // Handle overflow with llvm.trap if no custom handler has been specified. 2370 const std::string *handlerName = 2371 &CGF.getLangOpts().OverflowHandler; 2372 if (handlerName->empty()) { 2373 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2374 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2375 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2376 CodeGenFunction::SanitizerScope SanScope(&CGF); 2377 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2378 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2379 : SanitizerKind::UnsignedIntegerOverflow; 2380 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2381 } else 2382 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2383 return result; 2384 } 2385 2386 // Branch in case of overflow. 2387 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2388 llvm::BasicBlock *continueBB = 2389 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2390 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2391 2392 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2393 2394 // If an overflow handler is set, then we want to call it and then use its 2395 // result, if it returns. 2396 Builder.SetInsertPoint(overflowBB); 2397 2398 // Get the overflow handler. 2399 llvm::Type *Int8Ty = CGF.Int8Ty; 2400 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2401 llvm::FunctionType *handlerTy = 2402 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2403 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2404 2405 // Sign extend the args to 64-bit, so that we can use the same handler for 2406 // all types of overflow. 2407 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2408 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2409 2410 // Call the handler with the two arguments, the operation, and the size of 2411 // the result. 2412 llvm::Value *handlerArgs[] = { 2413 lhs, 2414 rhs, 2415 Builder.getInt8(OpID), 2416 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2417 }; 2418 llvm::Value *handlerResult = 2419 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2420 2421 // Truncate the result back to the desired size. 2422 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2423 Builder.CreateBr(continueBB); 2424 2425 Builder.SetInsertPoint(continueBB); 2426 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2427 phi->addIncoming(result, initialBB); 2428 phi->addIncoming(handlerResult, overflowBB); 2429 2430 return phi; 2431 } 2432 2433 /// Emit pointer + index arithmetic. 2434 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2435 const BinOpInfo &op, 2436 bool isSubtraction) { 2437 // Must have binary (not unary) expr here. Unary pointer 2438 // increment/decrement doesn't use this path. 2439 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2440 2441 Value *pointer = op.LHS; 2442 Expr *pointerOperand = expr->getLHS(); 2443 Value *index = op.RHS; 2444 Expr *indexOperand = expr->getRHS(); 2445 2446 // In a subtraction, the LHS is always the pointer. 2447 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2448 std::swap(pointer, index); 2449 std::swap(pointerOperand, indexOperand); 2450 } 2451 2452 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2453 auto &DL = CGF.CGM.getDataLayout(); 2454 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 2455 if (width != DL.getTypeSizeInBits(PtrTy)) { 2456 // Zero-extend or sign-extend the pointer value according to 2457 // whether the index is signed or not. 2458 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2459 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 2460 "idx.ext"); 2461 } 2462 2463 // If this is subtraction, negate the index. 2464 if (isSubtraction) 2465 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2466 2467 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2468 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2469 /*Accessed*/ false); 2470 2471 const PointerType *pointerType 2472 = pointerOperand->getType()->getAs<PointerType>(); 2473 if (!pointerType) { 2474 QualType objectType = pointerOperand->getType() 2475 ->castAs<ObjCObjectPointerType>() 2476 ->getPointeeType(); 2477 llvm::Value *objectSize 2478 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2479 2480 index = CGF.Builder.CreateMul(index, objectSize); 2481 2482 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2483 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2484 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2485 } 2486 2487 QualType elementType = pointerType->getPointeeType(); 2488 if (const VariableArrayType *vla 2489 = CGF.getContext().getAsVariableArrayType(elementType)) { 2490 // The element count here is the total number of non-VLA elements. 2491 llvm::Value *numElements = CGF.getVLASize(vla).first; 2492 2493 // Effectively, the multiply by the VLA size is part of the GEP. 2494 // GEP indexes are signed, and scaling an index isn't permitted to 2495 // signed-overflow, so we use the same semantics for our explicit 2496 // multiply. We suppress this if overflow is not undefined behavior. 2497 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2498 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2499 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2500 } else { 2501 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2502 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2503 } 2504 return pointer; 2505 } 2506 2507 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2508 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2509 // future proof. 2510 if (elementType->isVoidType() || elementType->isFunctionType()) { 2511 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2512 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2513 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2514 } 2515 2516 if (CGF.getLangOpts().isSignedOverflowDefined()) 2517 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2518 2519 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2520 } 2521 2522 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2523 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2524 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2525 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2526 // efficient operations. 2527 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2528 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2529 bool negMul, bool negAdd) { 2530 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2531 2532 Value *MulOp0 = MulOp->getOperand(0); 2533 Value *MulOp1 = MulOp->getOperand(1); 2534 if (negMul) { 2535 MulOp0 = 2536 Builder.CreateFSub( 2537 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2538 "neg"); 2539 } else if (negAdd) { 2540 Addend = 2541 Builder.CreateFSub( 2542 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2543 "neg"); 2544 } 2545 2546 Value *FMulAdd = Builder.CreateCall( 2547 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2548 {MulOp0, MulOp1, Addend}); 2549 MulOp->eraseFromParent(); 2550 2551 return FMulAdd; 2552 } 2553 2554 // Check whether it would be legal to emit an fmuladd intrinsic call to 2555 // represent op and if so, build the fmuladd. 2556 // 2557 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2558 // Does NOT check the type of the operation - it's assumed that this function 2559 // will be called from contexts where it's known that the type is contractable. 2560 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2561 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2562 bool isSub=false) { 2563 2564 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2565 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2566 "Only fadd/fsub can be the root of an fmuladd."); 2567 2568 // Check whether this op is marked as fusable. 2569 if (!op.FPContractable) 2570 return nullptr; 2571 2572 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2573 // either disabled, or handled entirely by the LLVM backend). 2574 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2575 return nullptr; 2576 2577 // We have a potentially fusable op. Look for a mul on one of the operands. 2578 // Also, make sure that the mul result isn't used directly. In that case, 2579 // there's no point creating a muladd operation. 2580 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2581 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2582 LHSBinOp->use_empty()) 2583 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2584 } 2585 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2586 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2587 RHSBinOp->use_empty()) 2588 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2589 } 2590 2591 return nullptr; 2592 } 2593 2594 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2595 if (op.LHS->getType()->isPointerTy() || 2596 op.RHS->getType()->isPointerTy()) 2597 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2598 2599 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2600 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2601 case LangOptions::SOB_Defined: 2602 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2603 case LangOptions::SOB_Undefined: 2604 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2605 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2606 // Fall through. 2607 case LangOptions::SOB_Trapping: 2608 return EmitOverflowCheckedBinOp(op); 2609 } 2610 } 2611 2612 if (op.Ty->isUnsignedIntegerType() && 2613 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2614 return EmitOverflowCheckedBinOp(op); 2615 2616 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2617 // Try to form an fmuladd. 2618 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2619 return FMulAdd; 2620 2621 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2622 } 2623 2624 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2625 } 2626 2627 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2628 // The LHS is always a pointer if either side is. 2629 if (!op.LHS->getType()->isPointerTy()) { 2630 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2631 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2632 case LangOptions::SOB_Defined: 2633 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2634 case LangOptions::SOB_Undefined: 2635 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2636 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2637 // Fall through. 2638 case LangOptions::SOB_Trapping: 2639 return EmitOverflowCheckedBinOp(op); 2640 } 2641 } 2642 2643 if (op.Ty->isUnsignedIntegerType() && 2644 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2645 return EmitOverflowCheckedBinOp(op); 2646 2647 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2648 // Try to form an fmuladd. 2649 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2650 return FMulAdd; 2651 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2652 } 2653 2654 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2655 } 2656 2657 // If the RHS is not a pointer, then we have normal pointer 2658 // arithmetic. 2659 if (!op.RHS->getType()->isPointerTy()) 2660 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2661 2662 // Otherwise, this is a pointer subtraction. 2663 2664 // Do the raw subtraction part. 2665 llvm::Value *LHS 2666 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2667 llvm::Value *RHS 2668 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2669 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2670 2671 // Okay, figure out the element size. 2672 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2673 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2674 2675 llvm::Value *divisor = nullptr; 2676 2677 // For a variable-length array, this is going to be non-constant. 2678 if (const VariableArrayType *vla 2679 = CGF.getContext().getAsVariableArrayType(elementType)) { 2680 llvm::Value *numElements; 2681 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2682 2683 divisor = numElements; 2684 2685 // Scale the number of non-VLA elements by the non-VLA element size. 2686 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2687 if (!eltSize.isOne()) 2688 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2689 2690 // For everything elese, we can just compute it, safe in the 2691 // assumption that Sema won't let anything through that we can't 2692 // safely compute the size of. 2693 } else { 2694 CharUnits elementSize; 2695 // Handle GCC extension for pointer arithmetic on void* and 2696 // function pointer types. 2697 if (elementType->isVoidType() || elementType->isFunctionType()) 2698 elementSize = CharUnits::One(); 2699 else 2700 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2701 2702 // Don't even emit the divide for element size of 1. 2703 if (elementSize.isOne()) 2704 return diffInChars; 2705 2706 divisor = CGF.CGM.getSize(elementSize); 2707 } 2708 2709 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2710 // pointer difference in C is only defined in the case where both operands 2711 // are pointing to elements of an array. 2712 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2713 } 2714 2715 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2716 llvm::IntegerType *Ty; 2717 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2718 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2719 else 2720 Ty = cast<llvm::IntegerType>(LHS->getType()); 2721 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2722 } 2723 2724 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2725 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2726 // RHS to the same size as the LHS. 2727 Value *RHS = Ops.RHS; 2728 if (Ops.LHS->getType() != RHS->getType()) 2729 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2730 2731 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2732 Ops.Ty->hasSignedIntegerRepresentation() && 2733 !CGF.getLangOpts().isSignedOverflowDefined(); 2734 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2735 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2736 if (CGF.getLangOpts().OpenCL) 2737 RHS = 2738 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2739 else if ((SanitizeBase || SanitizeExponent) && 2740 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2741 CodeGenFunction::SanitizerScope SanScope(&CGF); 2742 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2743 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2744 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2745 2746 if (SanitizeExponent) { 2747 Checks.push_back( 2748 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2749 } 2750 2751 if (SanitizeBase) { 2752 // Check whether we are shifting any non-zero bits off the top of the 2753 // integer. We only emit this check if exponent is valid - otherwise 2754 // instructions below will have undefined behavior themselves. 2755 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2756 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2757 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2758 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2759 CGF.EmitBlock(CheckShiftBase); 2760 llvm::Value *BitsShiftedOff = 2761 Builder.CreateLShr(Ops.LHS, 2762 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2763 /*NUW*/true, /*NSW*/true), 2764 "shl.check"); 2765 if (CGF.getLangOpts().CPlusPlus) { 2766 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2767 // Under C++11's rules, shifting a 1 bit into the sign bit is 2768 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2769 // define signed left shifts, so we use the C99 and C++11 rules there). 2770 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2771 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2772 } 2773 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2774 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2775 CGF.EmitBlock(Cont); 2776 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2777 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2778 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2779 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2780 } 2781 2782 assert(!Checks.empty()); 2783 EmitBinOpCheck(Checks, Ops); 2784 } 2785 2786 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2787 } 2788 2789 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2790 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2791 // RHS to the same size as the LHS. 2792 Value *RHS = Ops.RHS; 2793 if (Ops.LHS->getType() != RHS->getType()) 2794 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2795 2796 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2797 if (CGF.getLangOpts().OpenCL) 2798 RHS = 2799 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2800 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2801 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2802 CodeGenFunction::SanitizerScope SanScope(&CGF); 2803 llvm::Value *Valid = 2804 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2805 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2806 } 2807 2808 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2809 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2810 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2811 } 2812 2813 enum IntrinsicType { VCMPEQ, VCMPGT }; 2814 // return corresponding comparison intrinsic for given vector type 2815 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2816 BuiltinType::Kind ElemKind) { 2817 switch (ElemKind) { 2818 default: llvm_unreachable("unexpected element type"); 2819 case BuiltinType::Char_U: 2820 case BuiltinType::UChar: 2821 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2822 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2823 case BuiltinType::Char_S: 2824 case BuiltinType::SChar: 2825 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2826 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2827 case BuiltinType::UShort: 2828 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2829 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2830 case BuiltinType::Short: 2831 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2832 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2833 case BuiltinType::UInt: 2834 case BuiltinType::ULong: 2835 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2836 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2837 case BuiltinType::Int: 2838 case BuiltinType::Long: 2839 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2840 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2841 case BuiltinType::Float: 2842 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2843 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2844 } 2845 } 2846 2847 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 2848 llvm::CmpInst::Predicate UICmpOpc, 2849 llvm::CmpInst::Predicate SICmpOpc, 2850 llvm::CmpInst::Predicate FCmpOpc) { 2851 TestAndClearIgnoreResultAssign(); 2852 Value *Result; 2853 QualType LHSTy = E->getLHS()->getType(); 2854 QualType RHSTy = E->getRHS()->getType(); 2855 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2856 assert(E->getOpcode() == BO_EQ || 2857 E->getOpcode() == BO_NE); 2858 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2859 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2860 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2861 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2862 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2863 Value *LHS = Visit(E->getLHS()); 2864 Value *RHS = Visit(E->getRHS()); 2865 2866 // If AltiVec, the comparison results in a numeric type, so we use 2867 // intrinsics comparing vectors and giving 0 or 1 as a result 2868 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2869 // constants for mapping CR6 register bits to predicate result 2870 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2871 2872 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2873 2874 // in several cases vector arguments order will be reversed 2875 Value *FirstVecArg = LHS, 2876 *SecondVecArg = RHS; 2877 2878 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2879 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2880 BuiltinType::Kind ElementKind = BTy->getKind(); 2881 2882 switch(E->getOpcode()) { 2883 default: llvm_unreachable("is not a comparison operation"); 2884 case BO_EQ: 2885 CR6 = CR6_LT; 2886 ID = GetIntrinsic(VCMPEQ, ElementKind); 2887 break; 2888 case BO_NE: 2889 CR6 = CR6_EQ; 2890 ID = GetIntrinsic(VCMPEQ, ElementKind); 2891 break; 2892 case BO_LT: 2893 CR6 = CR6_LT; 2894 ID = GetIntrinsic(VCMPGT, ElementKind); 2895 std::swap(FirstVecArg, SecondVecArg); 2896 break; 2897 case BO_GT: 2898 CR6 = CR6_LT; 2899 ID = GetIntrinsic(VCMPGT, ElementKind); 2900 break; 2901 case BO_LE: 2902 if (ElementKind == BuiltinType::Float) { 2903 CR6 = CR6_LT; 2904 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2905 std::swap(FirstVecArg, SecondVecArg); 2906 } 2907 else { 2908 CR6 = CR6_EQ; 2909 ID = GetIntrinsic(VCMPGT, ElementKind); 2910 } 2911 break; 2912 case BO_GE: 2913 if (ElementKind == BuiltinType::Float) { 2914 CR6 = CR6_LT; 2915 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2916 } 2917 else { 2918 CR6 = CR6_EQ; 2919 ID = GetIntrinsic(VCMPGT, ElementKind); 2920 std::swap(FirstVecArg, SecondVecArg); 2921 } 2922 break; 2923 } 2924 2925 Value *CR6Param = Builder.getInt32(CR6); 2926 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2927 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2928 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2929 E->getExprLoc()); 2930 } 2931 2932 if (LHS->getType()->isFPOrFPVectorTy()) { 2933 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 2934 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2935 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 2936 } else { 2937 // Unsigned integers and pointers. 2938 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 2939 } 2940 2941 // If this is a vector comparison, sign extend the result to the appropriate 2942 // vector integer type and return it (don't convert to bool). 2943 if (LHSTy->isVectorType()) 2944 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2945 2946 } else { 2947 // Complex Comparison: can only be an equality comparison. 2948 CodeGenFunction::ComplexPairTy LHS, RHS; 2949 QualType CETy; 2950 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2951 LHS = CGF.EmitComplexExpr(E->getLHS()); 2952 CETy = CTy->getElementType(); 2953 } else { 2954 LHS.first = Visit(E->getLHS()); 2955 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2956 CETy = LHSTy; 2957 } 2958 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2959 RHS = CGF.EmitComplexExpr(E->getRHS()); 2960 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2961 CTy->getElementType()) && 2962 "The element types must always match."); 2963 (void)CTy; 2964 } else { 2965 RHS.first = Visit(E->getRHS()); 2966 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2967 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2968 "The element types must always match."); 2969 } 2970 2971 Value *ResultR, *ResultI; 2972 if (CETy->isRealFloatingType()) { 2973 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 2974 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 2975 } else { 2976 // Complex comparisons can only be equality comparisons. As such, signed 2977 // and unsigned opcodes are the same. 2978 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 2979 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 2980 } 2981 2982 if (E->getOpcode() == BO_EQ) { 2983 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2984 } else { 2985 assert(E->getOpcode() == BO_NE && 2986 "Complex comparison other than == or != ?"); 2987 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2988 } 2989 } 2990 2991 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2992 E->getExprLoc()); 2993 } 2994 2995 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2996 bool Ignore = TestAndClearIgnoreResultAssign(); 2997 2998 Value *RHS; 2999 LValue LHS; 3000 3001 switch (E->getLHS()->getType().getObjCLifetime()) { 3002 case Qualifiers::OCL_Strong: 3003 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3004 break; 3005 3006 case Qualifiers::OCL_Autoreleasing: 3007 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3008 break; 3009 3010 case Qualifiers::OCL_ExplicitNone: 3011 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3012 break; 3013 3014 case Qualifiers::OCL_Weak: 3015 RHS = Visit(E->getRHS()); 3016 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3017 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3018 break; 3019 3020 case Qualifiers::OCL_None: 3021 // __block variables need to have the rhs evaluated first, plus 3022 // this should improve codegen just a little. 3023 RHS = Visit(E->getRHS()); 3024 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3025 3026 // Store the value into the LHS. Bit-fields are handled specially 3027 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3028 // 'An assignment expression has the value of the left operand after 3029 // the assignment...'. 3030 if (LHS.isBitField()) 3031 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3032 else 3033 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3034 } 3035 3036 // If the result is clearly ignored, return now. 3037 if (Ignore) 3038 return nullptr; 3039 3040 // The result of an assignment in C is the assigned r-value. 3041 if (!CGF.getLangOpts().CPlusPlus) 3042 return RHS; 3043 3044 // If the lvalue is non-volatile, return the computed value of the assignment. 3045 if (!LHS.isVolatileQualified()) 3046 return RHS; 3047 3048 // Otherwise, reload the value. 3049 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3050 } 3051 3052 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3053 // Perform vector logical and on comparisons with zero vectors. 3054 if (E->getType()->isVectorType()) { 3055 CGF.incrementProfileCounter(E); 3056 3057 Value *LHS = Visit(E->getLHS()); 3058 Value *RHS = Visit(E->getRHS()); 3059 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3060 if (LHS->getType()->isFPOrFPVectorTy()) { 3061 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3062 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3063 } else { 3064 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3065 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3066 } 3067 Value *And = Builder.CreateAnd(LHS, RHS); 3068 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3069 } 3070 3071 llvm::Type *ResTy = ConvertType(E->getType()); 3072 3073 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3074 // If we have 1 && X, just emit X without inserting the control flow. 3075 bool LHSCondVal; 3076 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3077 if (LHSCondVal) { // If we have 1 && X, just emit X. 3078 CGF.incrementProfileCounter(E); 3079 3080 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3081 // ZExt result to int or bool. 3082 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3083 } 3084 3085 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3086 if (!CGF.ContainsLabel(E->getRHS())) 3087 return llvm::Constant::getNullValue(ResTy); 3088 } 3089 3090 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3091 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3092 3093 CodeGenFunction::ConditionalEvaluation eval(CGF); 3094 3095 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3096 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3097 CGF.getProfileCount(E->getRHS())); 3098 3099 // Any edges into the ContBlock are now from an (indeterminate number of) 3100 // edges from this first condition. All of these values will be false. Start 3101 // setting up the PHI node in the Cont Block for this. 3102 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3103 "", ContBlock); 3104 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3105 PI != PE; ++PI) 3106 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3107 3108 eval.begin(CGF); 3109 CGF.EmitBlock(RHSBlock); 3110 CGF.incrementProfileCounter(E); 3111 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3112 eval.end(CGF); 3113 3114 // Reaquire the RHS block, as there may be subblocks inserted. 3115 RHSBlock = Builder.GetInsertBlock(); 3116 3117 // Emit an unconditional branch from this block to ContBlock. 3118 { 3119 // There is no need to emit line number for unconditional branch. 3120 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3121 CGF.EmitBlock(ContBlock); 3122 } 3123 // Insert an entry into the phi node for the edge with the value of RHSCond. 3124 PN->addIncoming(RHSCond, RHSBlock); 3125 3126 // ZExt result to int. 3127 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3128 } 3129 3130 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3131 // Perform vector logical or on comparisons with zero vectors. 3132 if (E->getType()->isVectorType()) { 3133 CGF.incrementProfileCounter(E); 3134 3135 Value *LHS = Visit(E->getLHS()); 3136 Value *RHS = Visit(E->getRHS()); 3137 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3138 if (LHS->getType()->isFPOrFPVectorTy()) { 3139 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3140 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3141 } else { 3142 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3143 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3144 } 3145 Value *Or = Builder.CreateOr(LHS, RHS); 3146 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3147 } 3148 3149 llvm::Type *ResTy = ConvertType(E->getType()); 3150 3151 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3152 // If we have 0 || X, just emit X without inserting the control flow. 3153 bool LHSCondVal; 3154 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3155 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3156 CGF.incrementProfileCounter(E); 3157 3158 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3159 // ZExt result to int or bool. 3160 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3161 } 3162 3163 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3164 if (!CGF.ContainsLabel(E->getRHS())) 3165 return llvm::ConstantInt::get(ResTy, 1); 3166 } 3167 3168 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3169 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3170 3171 CodeGenFunction::ConditionalEvaluation eval(CGF); 3172 3173 // Branch on the LHS first. If it is true, go to the success (cont) block. 3174 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3175 CGF.getCurrentProfileCount() - 3176 CGF.getProfileCount(E->getRHS())); 3177 3178 // Any edges into the ContBlock are now from an (indeterminate number of) 3179 // edges from this first condition. All of these values will be true. Start 3180 // setting up the PHI node in the Cont Block for this. 3181 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3182 "", ContBlock); 3183 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3184 PI != PE; ++PI) 3185 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3186 3187 eval.begin(CGF); 3188 3189 // Emit the RHS condition as a bool value. 3190 CGF.EmitBlock(RHSBlock); 3191 CGF.incrementProfileCounter(E); 3192 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3193 3194 eval.end(CGF); 3195 3196 // Reaquire the RHS block, as there may be subblocks inserted. 3197 RHSBlock = Builder.GetInsertBlock(); 3198 3199 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3200 // into the phi node for the edge with the value of RHSCond. 3201 CGF.EmitBlock(ContBlock); 3202 PN->addIncoming(RHSCond, RHSBlock); 3203 3204 // ZExt result to int. 3205 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3206 } 3207 3208 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3209 CGF.EmitIgnoredExpr(E->getLHS()); 3210 CGF.EnsureInsertPoint(); 3211 return Visit(E->getRHS()); 3212 } 3213 3214 //===----------------------------------------------------------------------===// 3215 // Other Operators 3216 //===----------------------------------------------------------------------===// 3217 3218 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3219 /// expression is cheap enough and side-effect-free enough to evaluate 3220 /// unconditionally instead of conditionally. This is used to convert control 3221 /// flow into selects in some cases. 3222 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3223 CodeGenFunction &CGF) { 3224 // Anything that is an integer or floating point constant is fine. 3225 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3226 3227 // Even non-volatile automatic variables can't be evaluated unconditionally. 3228 // Referencing a thread_local may cause non-trivial initialization work to 3229 // occur. If we're inside a lambda and one of the variables is from the scope 3230 // outside the lambda, that function may have returned already. Reading its 3231 // locals is a bad idea. Also, these reads may introduce races there didn't 3232 // exist in the source-level program. 3233 } 3234 3235 3236 Value *ScalarExprEmitter:: 3237 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3238 TestAndClearIgnoreResultAssign(); 3239 3240 // Bind the common expression if necessary. 3241 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3242 3243 Expr *condExpr = E->getCond(); 3244 Expr *lhsExpr = E->getTrueExpr(); 3245 Expr *rhsExpr = E->getFalseExpr(); 3246 3247 // If the condition constant folds and can be elided, try to avoid emitting 3248 // the condition and the dead arm. 3249 bool CondExprBool; 3250 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3251 Expr *live = lhsExpr, *dead = rhsExpr; 3252 if (!CondExprBool) std::swap(live, dead); 3253 3254 // If the dead side doesn't have labels we need, just emit the Live part. 3255 if (!CGF.ContainsLabel(dead)) { 3256 if (CondExprBool) 3257 CGF.incrementProfileCounter(E); 3258 Value *Result = Visit(live); 3259 3260 // If the live part is a throw expression, it acts like it has a void 3261 // type, so evaluating it returns a null Value*. However, a conditional 3262 // with non-void type must return a non-null Value*. 3263 if (!Result && !E->getType()->isVoidType()) 3264 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3265 3266 return Result; 3267 } 3268 } 3269 3270 // OpenCL: If the condition is a vector, we can treat this condition like 3271 // the select function. 3272 if (CGF.getLangOpts().OpenCL 3273 && condExpr->getType()->isVectorType()) { 3274 CGF.incrementProfileCounter(E); 3275 3276 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3277 llvm::Value *LHS = Visit(lhsExpr); 3278 llvm::Value *RHS = Visit(rhsExpr); 3279 3280 llvm::Type *condType = ConvertType(condExpr->getType()); 3281 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3282 3283 unsigned numElem = vecTy->getNumElements(); 3284 llvm::Type *elemType = vecTy->getElementType(); 3285 3286 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3287 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3288 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3289 llvm::VectorType::get(elemType, 3290 numElem), 3291 "sext"); 3292 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3293 3294 // Cast float to int to perform ANDs if necessary. 3295 llvm::Value *RHSTmp = RHS; 3296 llvm::Value *LHSTmp = LHS; 3297 bool wasCast = false; 3298 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3299 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3300 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3301 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3302 wasCast = true; 3303 } 3304 3305 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3306 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3307 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3308 if (wasCast) 3309 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3310 3311 return tmp5; 3312 } 3313 3314 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3315 // select instead of as control flow. We can only do this if it is cheap and 3316 // safe to evaluate the LHS and RHS unconditionally. 3317 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3318 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3319 CGF.incrementProfileCounter(E); 3320 3321 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3322 llvm::Value *LHS = Visit(lhsExpr); 3323 llvm::Value *RHS = Visit(rhsExpr); 3324 if (!LHS) { 3325 // If the conditional has void type, make sure we return a null Value*. 3326 assert(!RHS && "LHS and RHS types must match"); 3327 return nullptr; 3328 } 3329 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3330 } 3331 3332 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3333 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3334 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3335 3336 CodeGenFunction::ConditionalEvaluation eval(CGF); 3337 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3338 CGF.getProfileCount(lhsExpr)); 3339 3340 CGF.EmitBlock(LHSBlock); 3341 CGF.incrementProfileCounter(E); 3342 eval.begin(CGF); 3343 Value *LHS = Visit(lhsExpr); 3344 eval.end(CGF); 3345 3346 LHSBlock = Builder.GetInsertBlock(); 3347 Builder.CreateBr(ContBlock); 3348 3349 CGF.EmitBlock(RHSBlock); 3350 eval.begin(CGF); 3351 Value *RHS = Visit(rhsExpr); 3352 eval.end(CGF); 3353 3354 RHSBlock = Builder.GetInsertBlock(); 3355 CGF.EmitBlock(ContBlock); 3356 3357 // If the LHS or RHS is a throw expression, it will be legitimately null. 3358 if (!LHS) 3359 return RHS; 3360 if (!RHS) 3361 return LHS; 3362 3363 // Create a PHI node for the real part. 3364 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3365 PN->addIncoming(LHS, LHSBlock); 3366 PN->addIncoming(RHS, RHSBlock); 3367 return PN; 3368 } 3369 3370 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3371 return Visit(E->getChosenSubExpr()); 3372 } 3373 3374 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3375 QualType Ty = VE->getType(); 3376 3377 if (Ty->isVariablyModifiedType()) 3378 CGF.EmitVariablyModifiedType(Ty); 3379 3380 Address ArgValue = Address::invalid(); 3381 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3382 3383 llvm::Type *ArgTy = ConvertType(VE->getType()); 3384 3385 // If EmitVAArg fails, emit an error. 3386 if (!ArgPtr.isValid()) { 3387 CGF.ErrorUnsupported(VE, "va_arg expression"); 3388 return llvm::UndefValue::get(ArgTy); 3389 } 3390 3391 // FIXME Volatility. 3392 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3393 3394 // If EmitVAArg promoted the type, we must truncate it. 3395 if (ArgTy != Val->getType()) { 3396 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3397 Val = Builder.CreateIntToPtr(Val, ArgTy); 3398 else 3399 Val = Builder.CreateTrunc(Val, ArgTy); 3400 } 3401 3402 return Val; 3403 } 3404 3405 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3406 return CGF.EmitBlockLiteral(block); 3407 } 3408 3409 // Convert a vec3 to vec4, or vice versa. 3410 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3411 Value *Src, unsigned NumElementsDst) { 3412 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3413 SmallVector<llvm::Constant*, 4> Args; 3414 Args.push_back(Builder.getInt32(0)); 3415 Args.push_back(Builder.getInt32(1)); 3416 Args.push_back(Builder.getInt32(2)); 3417 if (NumElementsDst == 4) 3418 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3419 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3420 return Builder.CreateShuffleVector(Src, UnV, Mask); 3421 } 3422 3423 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 3424 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 3425 // but could be scalar or vectors of different lengths, and either can be 3426 // pointer. 3427 // There are 4 cases: 3428 // 1. non-pointer -> non-pointer : needs 1 bitcast 3429 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 3430 // 3. pointer -> non-pointer 3431 // a) pointer -> intptr_t : needs 1 ptrtoint 3432 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 3433 // 4. non-pointer -> pointer 3434 // a) intptr_t -> pointer : needs 1 inttoptr 3435 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 3436 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 3437 // allow casting directly between pointer types and non-integer non-pointer 3438 // types. 3439 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 3440 const llvm::DataLayout &DL, 3441 Value *Src, llvm::Type *DstTy, 3442 StringRef Name = "") { 3443 auto SrcTy = Src->getType(); 3444 3445 // Case 1. 3446 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 3447 return Builder.CreateBitCast(Src, DstTy, Name); 3448 3449 // Case 2. 3450 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 3451 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 3452 3453 // Case 3. 3454 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 3455 // Case 3b. 3456 if (!DstTy->isIntegerTy()) 3457 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 3458 // Cases 3a and 3b. 3459 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 3460 } 3461 3462 // Case 4b. 3463 if (!SrcTy->isIntegerTy()) 3464 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 3465 // Cases 4a and 4b. 3466 return Builder.CreateIntToPtr(Src, DstTy, Name); 3467 } 3468 3469 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3470 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3471 llvm::Type *DstTy = ConvertType(E->getType()); 3472 3473 llvm::Type *SrcTy = Src->getType(); 3474 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3475 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3476 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3477 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3478 3479 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3480 // vector to get a vec4, then a bitcast if the target type is different. 3481 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3482 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3483 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3484 DstTy); 3485 Src->setName("astype"); 3486 return Src; 3487 } 3488 3489 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3490 // to vec4 if the original type is not vec4, then a shuffle vector to 3491 // get a vec3. 3492 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3493 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3494 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3495 Vec4Ty); 3496 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3497 Src->setName("astype"); 3498 return Src; 3499 } 3500 3501 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 3502 Src, DstTy, "astype"); 3503 } 3504 3505 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3506 return CGF.EmitAtomicExpr(E).getScalarVal(); 3507 } 3508 3509 //===----------------------------------------------------------------------===// 3510 // Entry Point into this File 3511 //===----------------------------------------------------------------------===// 3512 3513 /// Emit the computation of the specified expression of scalar type, ignoring 3514 /// the result. 3515 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3516 assert(E && hasScalarEvaluationKind(E->getType()) && 3517 "Invalid scalar expression to emit"); 3518 3519 return ScalarExprEmitter(*this, IgnoreResultAssign) 3520 .Visit(const_cast<Expr *>(E)); 3521 } 3522 3523 /// Emit a conversion from the specified type to the specified destination type, 3524 /// both of which are LLVM scalar types. 3525 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3526 QualType DstTy, 3527 SourceLocation Loc) { 3528 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3529 "Invalid scalar expression to emit"); 3530 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3531 } 3532 3533 /// Emit a conversion from the specified complex type to the specified 3534 /// destination type, where the destination type is an LLVM scalar type. 3535 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3536 QualType SrcTy, 3537 QualType DstTy, 3538 SourceLocation Loc) { 3539 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3540 "Invalid complex -> scalar conversion"); 3541 return ScalarExprEmitter(*this) 3542 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3543 } 3544 3545 3546 llvm::Value *CodeGenFunction:: 3547 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3548 bool isInc, bool isPre) { 3549 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3550 } 3551 3552 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3553 // object->isa or (*object).isa 3554 // Generate code as for: *(Class*)object 3555 3556 Expr *BaseExpr = E->getBase(); 3557 Address Addr = Address::invalid(); 3558 if (BaseExpr->isRValue()) { 3559 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3560 } else { 3561 Addr = EmitLValue(BaseExpr).getAddress(); 3562 } 3563 3564 // Cast the address to Class*. 3565 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3566 return MakeAddrLValue(Addr, E->getType()); 3567 } 3568 3569 3570 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3571 const CompoundAssignOperator *E) { 3572 ScalarExprEmitter Scalar(*this); 3573 Value *Result = nullptr; 3574 switch (E->getOpcode()) { 3575 #define COMPOUND_OP(Op) \ 3576 case BO_##Op##Assign: \ 3577 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3578 Result) 3579 COMPOUND_OP(Mul); 3580 COMPOUND_OP(Div); 3581 COMPOUND_OP(Rem); 3582 COMPOUND_OP(Add); 3583 COMPOUND_OP(Sub); 3584 COMPOUND_OP(Shl); 3585 COMPOUND_OP(Shr); 3586 COMPOUND_OP(And); 3587 COMPOUND_OP(Xor); 3588 COMPOUND_OP(Or); 3589 #undef COMPOUND_OP 3590 3591 case BO_PtrMemD: 3592 case BO_PtrMemI: 3593 case BO_Mul: 3594 case BO_Div: 3595 case BO_Rem: 3596 case BO_Add: 3597 case BO_Sub: 3598 case BO_Shl: 3599 case BO_Shr: 3600 case BO_LT: 3601 case BO_GT: 3602 case BO_LE: 3603 case BO_GE: 3604 case BO_EQ: 3605 case BO_NE: 3606 case BO_And: 3607 case BO_Xor: 3608 case BO_Or: 3609 case BO_LAnd: 3610 case BO_LOr: 3611 case BO_Assign: 3612 case BO_Comma: 3613 llvm_unreachable("Not valid compound assignment operators"); 3614 } 3615 3616 llvm_unreachable("Unhandled compound assignment operator"); 3617 } 3618