1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/DataLayout.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   bool FPContractable;
49   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50 };
51 
52 static bool MustVisitNullValue(const Expr *E) {
53   // If a null pointer expression's type is the C++0x nullptr_t, then
54   // it's not necessarily a simple constant and it must be evaluated
55   // for its potential side effects.
56   return E->getType()->isNullPtrType();
57 }
58 
59 class ScalarExprEmitter
60   : public StmtVisitor<ScalarExprEmitter, Value*> {
61   CodeGenFunction &CGF;
62   CGBuilderTy &Builder;
63   bool IgnoreResultAssign;
64   llvm::LLVMContext &VMContext;
65 public:
66 
67   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69       VMContext(cgf.getLLVMContext()) {
70   }
71 
72   //===--------------------------------------------------------------------===//
73   //                               Utilities
74   //===--------------------------------------------------------------------===//
75 
76   bool TestAndClearIgnoreResultAssign() {
77     bool I = IgnoreResultAssign;
78     IgnoreResultAssign = false;
79     return I;
80   }
81 
82   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
83   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
84   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85     return CGF.EmitCheckedLValue(E, TCK);
86   }
87 
88   void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89 
90   Value *EmitLoadOfLValue(LValue LV) {
91     return CGF.EmitLoadOfLValue(LV).getScalarVal();
92   }
93 
94   /// EmitLoadOfLValue - Given an expression with complex type that represents a
95   /// value l-value, this method emits the address of the l-value, then loads
96   /// and returns the result.
97   Value *EmitLoadOfLValue(const Expr *E) {
98     return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load));
99   }
100 
101   /// EmitConversionToBool - Convert the specified expression value to a
102   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
103   Value *EmitConversionToBool(Value *Src, QualType DstTy);
104 
105   /// \brief Emit a check that a conversion to or from a floating-point type
106   /// does not overflow.
107   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
108                                 Value *Src, QualType SrcType,
109                                 QualType DstType, llvm::Type *DstTy);
110 
111   /// EmitScalarConversion - Emit a conversion from the specified type to the
112   /// specified destination type, both of which are LLVM scalar types.
113   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
114 
115   /// EmitComplexToScalarConversion - Emit a conversion from the specified
116   /// complex type to the specified destination type, where the destination type
117   /// is an LLVM scalar type.
118   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
119                                        QualType SrcTy, QualType DstTy);
120 
121   /// EmitNullValue - Emit a value that corresponds to null for the given type.
122   Value *EmitNullValue(QualType Ty);
123 
124   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
125   Value *EmitFloatToBoolConversion(Value *V) {
126     // Compare against 0.0 for fp scalars.
127     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
128     return Builder.CreateFCmpUNE(V, Zero, "tobool");
129   }
130 
131   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
132   Value *EmitPointerToBoolConversion(Value *V) {
133     Value *Zero = llvm::ConstantPointerNull::get(
134                                       cast<llvm::PointerType>(V->getType()));
135     return Builder.CreateICmpNE(V, Zero, "tobool");
136   }
137 
138   Value *EmitIntToBoolConversion(Value *V) {
139     // Because of the type rules of C, we often end up computing a
140     // logical value, then zero extending it to int, then wanting it
141     // as a logical value again.  Optimize this common case.
142     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
143       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
144         Value *Result = ZI->getOperand(0);
145         // If there aren't any more uses, zap the instruction to save space.
146         // Note that there can be more uses, for example if this
147         // is the result of an assignment.
148         if (ZI->use_empty())
149           ZI->eraseFromParent();
150         return Result;
151       }
152     }
153 
154     return Builder.CreateIsNotNull(V, "tobool");
155   }
156 
157   //===--------------------------------------------------------------------===//
158   //                            Visitor Methods
159   //===--------------------------------------------------------------------===//
160 
161   Value *Visit(Expr *E) {
162     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
163   }
164 
165   Value *VisitStmt(Stmt *S) {
166     S->dump(CGF.getContext().getSourceManager());
167     llvm_unreachable("Stmt can't have complex result type!");
168   }
169   Value *VisitExpr(Expr *S);
170 
171   Value *VisitParenExpr(ParenExpr *PE) {
172     return Visit(PE->getSubExpr());
173   }
174   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
175     return Visit(E->getReplacement());
176   }
177   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
178     return Visit(GE->getResultExpr());
179   }
180 
181   // Leaves.
182   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
183     return Builder.getInt(E->getValue());
184   }
185   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
186     return llvm::ConstantFP::get(VMContext, E->getValue());
187   }
188   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
189     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
190   }
191   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
192     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
193   }
194   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
195     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
196   }
197   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
198     return EmitNullValue(E->getType());
199   }
200   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
201     return EmitNullValue(E->getType());
202   }
203   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
204   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
205   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
206     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
207     return Builder.CreateBitCast(V, ConvertType(E->getType()));
208   }
209 
210   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
211     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
212   }
213 
214   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
215     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
216   }
217 
218   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
219     if (E->isGLValue())
220       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
221 
222     // Otherwise, assume the mapping is the scalar directly.
223     return CGF.getOpaqueRValueMapping(E).getScalarVal();
224   }
225 
226   // l-values.
227   Value *VisitDeclRefExpr(DeclRefExpr *E) {
228     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
229       if (result.isReference())
230         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
231       return result.getValue();
232     }
233     return EmitLoadOfLValue(E);
234   }
235 
236   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
237     return CGF.EmitObjCSelectorExpr(E);
238   }
239   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
240     return CGF.EmitObjCProtocolExpr(E);
241   }
242   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
243     return EmitLoadOfLValue(E);
244   }
245   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
246     if (E->getMethodDecl() &&
247         E->getMethodDecl()->getResultType()->isReferenceType())
248       return EmitLoadOfLValue(E);
249     return CGF.EmitObjCMessageExpr(E).getScalarVal();
250   }
251 
252   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
253     LValue LV = CGF.EmitObjCIsaExpr(E);
254     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
255     return V;
256   }
257 
258   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
259   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
260   Value *VisitMemberExpr(MemberExpr *E);
261   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
262   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
263     return EmitLoadOfLValue(E);
264   }
265 
266   Value *VisitInitListExpr(InitListExpr *E);
267 
268   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
269     return CGF.CGM.EmitNullConstant(E->getType());
270   }
271   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
272     if (E->getType()->isVariablyModifiedType())
273       CGF.EmitVariablyModifiedType(E->getType());
274     return VisitCastExpr(E);
275   }
276   Value *VisitCastExpr(CastExpr *E);
277 
278   Value *VisitCallExpr(const CallExpr *E) {
279     if (E->getCallReturnType()->isReferenceType())
280       return EmitLoadOfLValue(E);
281 
282     return CGF.EmitCallExpr(E).getScalarVal();
283   }
284 
285   Value *VisitStmtExpr(const StmtExpr *E);
286 
287   // Unary Operators.
288   Value *VisitUnaryPostDec(const UnaryOperator *E) {
289     LValue LV = EmitLValue(E->getSubExpr());
290     return EmitScalarPrePostIncDec(E, LV, false, false);
291   }
292   Value *VisitUnaryPostInc(const UnaryOperator *E) {
293     LValue LV = EmitLValue(E->getSubExpr());
294     return EmitScalarPrePostIncDec(E, LV, true, false);
295   }
296   Value *VisitUnaryPreDec(const UnaryOperator *E) {
297     LValue LV = EmitLValue(E->getSubExpr());
298     return EmitScalarPrePostIncDec(E, LV, false, true);
299   }
300   Value *VisitUnaryPreInc(const UnaryOperator *E) {
301     LValue LV = EmitLValue(E->getSubExpr());
302     return EmitScalarPrePostIncDec(E, LV, true, true);
303   }
304 
305   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
306                                                llvm::Value *InVal,
307                                                llvm::Value *NextVal,
308                                                bool IsInc);
309 
310   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
311                                        bool isInc, bool isPre);
312 
313 
314   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
315     if (isa<MemberPointerType>(E->getType())) // never sugared
316       return CGF.CGM.getMemberPointerConstant(E);
317 
318     return EmitLValue(E->getSubExpr()).getAddress();
319   }
320   Value *VisitUnaryDeref(const UnaryOperator *E) {
321     if (E->getType()->isVoidType())
322       return Visit(E->getSubExpr()); // the actual value should be unused
323     return EmitLoadOfLValue(E);
324   }
325   Value *VisitUnaryPlus(const UnaryOperator *E) {
326     // This differs from gcc, though, most likely due to a bug in gcc.
327     TestAndClearIgnoreResultAssign();
328     return Visit(E->getSubExpr());
329   }
330   Value *VisitUnaryMinus    (const UnaryOperator *E);
331   Value *VisitUnaryNot      (const UnaryOperator *E);
332   Value *VisitUnaryLNot     (const UnaryOperator *E);
333   Value *VisitUnaryReal     (const UnaryOperator *E);
334   Value *VisitUnaryImag     (const UnaryOperator *E);
335   Value *VisitUnaryExtension(const UnaryOperator *E) {
336     return Visit(E->getSubExpr());
337   }
338 
339   // C++
340   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
341     return EmitLoadOfLValue(E);
342   }
343 
344   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
345     return Visit(DAE->getExpr());
346   }
347   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
348     return CGF.LoadCXXThis();
349   }
350 
351   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
352     CGF.enterFullExpression(E);
353     CodeGenFunction::RunCleanupsScope Scope(CGF);
354     return Visit(E->getSubExpr());
355   }
356   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
357     return CGF.EmitCXXNewExpr(E);
358   }
359   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
360     CGF.EmitCXXDeleteExpr(E);
361     return 0;
362   }
363   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
364     return Builder.getInt1(E->getValue());
365   }
366 
367   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
368     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
369   }
370 
371   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
372     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
373   }
374 
375   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
376     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
377   }
378 
379   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
380     // C++ [expr.pseudo]p1:
381     //   The result shall only be used as the operand for the function call
382     //   operator (), and the result of such a call has type void. The only
383     //   effect is the evaluation of the postfix-expression before the dot or
384     //   arrow.
385     CGF.EmitScalarExpr(E->getBase());
386     return 0;
387   }
388 
389   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
390     return EmitNullValue(E->getType());
391   }
392 
393   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
394     CGF.EmitCXXThrowExpr(E);
395     return 0;
396   }
397 
398   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
399     return Builder.getInt1(E->getValue());
400   }
401 
402   // Binary Operators.
403   Value *EmitMul(const BinOpInfo &Ops) {
404     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
405       switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
406       case LangOptions::SOB_Defined:
407         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
408       case LangOptions::SOB_Undefined:
409         if (!CGF.CatchUndefined)
410           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
411         // Fall through.
412       case LangOptions::SOB_Trapping:
413         return EmitOverflowCheckedBinOp(Ops);
414       }
415     }
416 
417     if (Ops.LHS->getType()->isFPOrFPVectorTy())
418       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
419     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
420   }
421   bool isTrapvOverflowBehavior() {
422     return CGF.getContext().getLangOpts().getSignedOverflowBehavior()
423                == LangOptions::SOB_Trapping || CGF.CatchUndefined;
424   }
425   /// Create a binary op that checks for overflow.
426   /// Currently only supports +, - and *.
427   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
428 
429   // Check for undefined division and modulus behaviors.
430   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
431                                                   llvm::Value *Zero,bool isDiv);
432   Value *EmitDiv(const BinOpInfo &Ops);
433   Value *EmitRem(const BinOpInfo &Ops);
434   Value *EmitAdd(const BinOpInfo &Ops);
435   Value *EmitSub(const BinOpInfo &Ops);
436   Value *EmitShl(const BinOpInfo &Ops);
437   Value *EmitShr(const BinOpInfo &Ops);
438   Value *EmitAnd(const BinOpInfo &Ops) {
439     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
440   }
441   Value *EmitXor(const BinOpInfo &Ops) {
442     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
443   }
444   Value *EmitOr (const BinOpInfo &Ops) {
445     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
446   }
447 
448   BinOpInfo EmitBinOps(const BinaryOperator *E);
449   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
450                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
451                                   Value *&Result);
452 
453   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
454                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
455 
456   // Binary operators and binary compound assignment operators.
457 #define HANDLEBINOP(OP) \
458   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
459     return Emit ## OP(EmitBinOps(E));                                      \
460   }                                                                        \
461   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
462     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
463   }
464   HANDLEBINOP(Mul)
465   HANDLEBINOP(Div)
466   HANDLEBINOP(Rem)
467   HANDLEBINOP(Add)
468   HANDLEBINOP(Sub)
469   HANDLEBINOP(Shl)
470   HANDLEBINOP(Shr)
471   HANDLEBINOP(And)
472   HANDLEBINOP(Xor)
473   HANDLEBINOP(Or)
474 #undef HANDLEBINOP
475 
476   // Comparisons.
477   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
478                      unsigned SICmpOpc, unsigned FCmpOpc);
479 #define VISITCOMP(CODE, UI, SI, FP) \
480     Value *VisitBin##CODE(const BinaryOperator *E) { \
481       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
482                          llvm::FCmpInst::FP); }
483   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
484   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
485   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
486   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
487   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
488   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
489 #undef VISITCOMP
490 
491   Value *VisitBinAssign     (const BinaryOperator *E);
492 
493   Value *VisitBinLAnd       (const BinaryOperator *E);
494   Value *VisitBinLOr        (const BinaryOperator *E);
495   Value *VisitBinComma      (const BinaryOperator *E);
496 
497   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
498   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
499 
500   // Other Operators.
501   Value *VisitBlockExpr(const BlockExpr *BE);
502   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
503   Value *VisitChooseExpr(ChooseExpr *CE);
504   Value *VisitVAArgExpr(VAArgExpr *VE);
505   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
506     return CGF.EmitObjCStringLiteral(E);
507   }
508   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
509     return CGF.EmitObjCBoxedExpr(E);
510   }
511   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
512     return CGF.EmitObjCArrayLiteral(E);
513   }
514   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
515     return CGF.EmitObjCDictionaryLiteral(E);
516   }
517   Value *VisitAsTypeExpr(AsTypeExpr *CE);
518   Value *VisitAtomicExpr(AtomicExpr *AE);
519 };
520 }  // end anonymous namespace.
521 
522 //===----------------------------------------------------------------------===//
523 //                                Utilities
524 //===----------------------------------------------------------------------===//
525 
526 /// EmitConversionToBool - Convert the specified expression value to a
527 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
528 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
529   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
530 
531   if (SrcType->isRealFloatingType())
532     return EmitFloatToBoolConversion(Src);
533 
534   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
535     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
536 
537   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
538          "Unknown scalar type to convert");
539 
540   if (isa<llvm::IntegerType>(Src->getType()))
541     return EmitIntToBoolConversion(Src);
542 
543   assert(isa<llvm::PointerType>(Src->getType()));
544   return EmitPointerToBoolConversion(Src);
545 }
546 
547 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
548                                                  QualType OrigSrcType,
549                                                  Value *Src, QualType SrcType,
550                                                  QualType DstType,
551                                                  llvm::Type *DstTy) {
552   using llvm::APFloat;
553   using llvm::APSInt;
554 
555   llvm::Type *SrcTy = Src->getType();
556 
557   llvm::Value *Check = 0;
558   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
559     // Integer to floating-point. This can fail for unsigned short -> __half
560     // or unsigned __int128 -> float.
561     assert(DstType->isFloatingType());
562     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
563 
564     APFloat LargestFloat =
565       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
566     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
567 
568     bool IsExact;
569     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
570                                       &IsExact) != APFloat::opOK)
571       // The range of representable values of this floating point type includes
572       // all values of this integer type. Don't need an overflow check.
573       return;
574 
575     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
576     if (SrcIsUnsigned)
577       Check = Builder.CreateICmpULE(Src, Max);
578     else {
579       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
580       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
581       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
582       Check = Builder.CreateAnd(GE, LE);
583     }
584   } else {
585     // Floating-point to integer or floating-point to floating-point. This has
586     // undefined behavior if the source is +-Inf, NaN, or doesn't fit into the
587     // destination type.
588     const llvm::fltSemantics &SrcSema =
589       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
590     APFloat MaxSrc(SrcSema, APFloat::uninitialized);
591     APFloat MinSrc(SrcSema, APFloat::uninitialized);
592 
593     if (isa<llvm::IntegerType>(DstTy)) {
594       unsigned Width = CGF.getContext().getIntWidth(DstType);
595       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
596 
597       APSInt Min = APSInt::getMinValue(Width, Unsigned);
598       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
599           APFloat::opOverflow)
600         // Don't need an overflow check for lower bound. Just check for
601         // -Inf/NaN.
602         MinSrc = APFloat::getLargest(SrcSema, true);
603 
604       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
605       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
606           APFloat::opOverflow)
607         // Don't need an overflow check for upper bound. Just check for
608         // +Inf/NaN.
609         MaxSrc = APFloat::getLargest(SrcSema, false);
610     } else {
611       const llvm::fltSemantics &DstSema =
612         CGF.getContext().getFloatTypeSemantics(DstType);
613       bool IsInexact;
614 
615       MinSrc = APFloat::getLargest(DstSema, true);
616       if (MinSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) &
617           APFloat::opOverflow)
618         MinSrc = APFloat::getLargest(SrcSema, true);
619 
620       MaxSrc = APFloat::getLargest(DstSema, false);
621       if (MaxSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) &
622           APFloat::opOverflow)
623         MaxSrc = APFloat::getLargest(SrcSema, false);
624     }
625 
626     // If we're converting from __half, convert the range to float to match
627     // the type of src.
628     if (OrigSrcType->isHalfType()) {
629       const llvm::fltSemantics &Sema =
630         CGF.getContext().getFloatTypeSemantics(SrcType);
631       bool IsInexact;
632       MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
633       MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
634     }
635 
636     llvm::Value *GE =
637       Builder.CreateFCmpOGE(Src, llvm::ConstantFP::get(VMContext, MinSrc));
638     llvm::Value *LE =
639       Builder.CreateFCmpOLE(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
640     Check = Builder.CreateAnd(GE, LE);
641   }
642 
643   // FIXME: Provide a SourceLocation.
644   llvm::Constant *StaticArgs[] = {
645     CGF.EmitCheckTypeDescriptor(OrigSrcType),
646     CGF.EmitCheckTypeDescriptor(DstType)
647   };
648   CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc);
649 }
650 
651 /// EmitScalarConversion - Emit a conversion from the specified type to the
652 /// specified destination type, both of which are LLVM scalar types.
653 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
654                                                QualType DstType) {
655   SrcType = CGF.getContext().getCanonicalType(SrcType);
656   DstType = CGF.getContext().getCanonicalType(DstType);
657   if (SrcType == DstType) return Src;
658 
659   if (DstType->isVoidType()) return 0;
660 
661   llvm::Value *OrigSrc = Src;
662   QualType OrigSrcType = SrcType;
663   llvm::Type *SrcTy = Src->getType();
664 
665   // Floating casts might be a bit special: if we're doing casts to / from half
666   // FP, we should go via special intrinsics.
667   if (SrcType->isHalfType()) {
668     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
669     SrcType = CGF.getContext().FloatTy;
670     SrcTy = CGF.FloatTy;
671   }
672 
673   // Handle conversions to bool first, they are special: comparisons against 0.
674   if (DstType->isBooleanType())
675     return EmitConversionToBool(Src, SrcType);
676 
677   llvm::Type *DstTy = ConvertType(DstType);
678 
679   // Ignore conversions like int -> uint.
680   if (SrcTy == DstTy)
681     return Src;
682 
683   // Handle pointer conversions next: pointers can only be converted to/from
684   // other pointers and integers. Check for pointer types in terms of LLVM, as
685   // some native types (like Obj-C id) may map to a pointer type.
686   if (isa<llvm::PointerType>(DstTy)) {
687     // The source value may be an integer, or a pointer.
688     if (isa<llvm::PointerType>(SrcTy))
689       return Builder.CreateBitCast(Src, DstTy, "conv");
690 
691     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
692     // First, convert to the correct width so that we control the kind of
693     // extension.
694     llvm::Type *MiddleTy = CGF.IntPtrTy;
695     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
696     llvm::Value* IntResult =
697         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
698     // Then, cast to pointer.
699     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
700   }
701 
702   if (isa<llvm::PointerType>(SrcTy)) {
703     // Must be an ptr to int cast.
704     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
705     return Builder.CreatePtrToInt(Src, DstTy, "conv");
706   }
707 
708   // A scalar can be splatted to an extended vector of the same element type
709   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
710     // Cast the scalar to element type
711     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
712     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
713 
714     // Insert the element in element zero of an undef vector
715     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
716     llvm::Value *Idx = Builder.getInt32(0);
717     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
718 
719     // Splat the element across to all elements
720     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
721     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
722                                                           Builder.getInt32(0));
723     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
724     return Yay;
725   }
726 
727   // Allow bitcast from vector to integer/fp of the same size.
728   if (isa<llvm::VectorType>(SrcTy) ||
729       isa<llvm::VectorType>(DstTy))
730     return Builder.CreateBitCast(Src, DstTy, "conv");
731 
732   // Finally, we have the arithmetic types: real int/float.
733   Value *Res = NULL;
734   llvm::Type *ResTy = DstTy;
735 
736   // An overflowing conversion has undefined behavior if either the source type
737   // or the destination type is a floating-point type.
738   if (CGF.CatchUndefined &&
739       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
740     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy);
741 
742   // Cast to half via float
743   if (DstType->isHalfType())
744     DstTy = CGF.FloatTy;
745 
746   if (isa<llvm::IntegerType>(SrcTy)) {
747     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
748     if (isa<llvm::IntegerType>(DstTy))
749       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
750     else if (InputSigned)
751       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
752     else
753       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
754   } else if (isa<llvm::IntegerType>(DstTy)) {
755     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
756     if (DstType->isSignedIntegerOrEnumerationType())
757       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
758     else
759       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
760   } else {
761     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
762            "Unknown real conversion");
763     if (DstTy->getTypeID() < SrcTy->getTypeID())
764       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
765     else
766       Res = Builder.CreateFPExt(Src, DstTy, "conv");
767   }
768 
769   if (DstTy != ResTy) {
770     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
771     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
772   }
773 
774   return Res;
775 }
776 
777 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
778 /// type to the specified destination type, where the destination type is an
779 /// LLVM scalar type.
780 Value *ScalarExprEmitter::
781 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
782                               QualType SrcTy, QualType DstTy) {
783   // Get the source element type.
784   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
785 
786   // Handle conversions to bool first, they are special: comparisons against 0.
787   if (DstTy->isBooleanType()) {
788     //  Complex != 0  -> (Real != 0) | (Imag != 0)
789     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
790     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
791     return Builder.CreateOr(Src.first, Src.second, "tobool");
792   }
793 
794   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
795   // the imaginary part of the complex value is discarded and the value of the
796   // real part is converted according to the conversion rules for the
797   // corresponding real type.
798   return EmitScalarConversion(Src.first, SrcTy, DstTy);
799 }
800 
801 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
802   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
803     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
804 
805   return llvm::Constant::getNullValue(ConvertType(Ty));
806 }
807 
808 /// \brief Emit a sanitization check for the given "binary" operation (which
809 /// might actually be a unary increment which has been lowered to a binary
810 /// operation). The check passes if \p Check, which is an \c i1, is \c true.
811 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
812   StringRef CheckName;
813   llvm::SmallVector<llvm::Constant *, 4> StaticData;
814   llvm::SmallVector<llvm::Value *, 2> DynamicData;
815 
816   BinaryOperatorKind Opcode = Info.Opcode;
817   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
818     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
819 
820   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
821   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
822   if (UO && UO->getOpcode() == UO_Minus) {
823     CheckName = "negate_overflow";
824     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
825     DynamicData.push_back(Info.RHS);
826   } else {
827     if (BinaryOperator::isShiftOp(Opcode)) {
828       // Shift LHS negative or too large, or RHS out of bounds.
829       CheckName = "shift_out_of_bounds";
830       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
831       StaticData.push_back(
832         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
833       StaticData.push_back(
834         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
835     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
836       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
837       CheckName = "divrem_overflow";
838       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.E->getType()));
839     } else {
840       // Signed arithmetic overflow (+, -, *).
841       switch (Opcode) {
842       case BO_Add: CheckName = "add_overflow"; break;
843       case BO_Sub: CheckName = "sub_overflow"; break;
844       case BO_Mul: CheckName = "mul_overflow"; break;
845       default: llvm_unreachable("unexpected opcode for bin op check");
846       }
847       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.E->getType()));
848     }
849     DynamicData.push_back(Info.LHS);
850     DynamicData.push_back(Info.RHS);
851   }
852 
853   CGF.EmitCheck(Check, CheckName, StaticData, DynamicData);
854 }
855 
856 //===----------------------------------------------------------------------===//
857 //                            Visitor Methods
858 //===----------------------------------------------------------------------===//
859 
860 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
861   CGF.ErrorUnsupported(E, "scalar expression");
862   if (E->getType()->isVoidType())
863     return 0;
864   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
865 }
866 
867 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
868   // Vector Mask Case
869   if (E->getNumSubExprs() == 2 ||
870       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
871     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
872     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
873     Value *Mask;
874 
875     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
876     unsigned LHSElts = LTy->getNumElements();
877 
878     if (E->getNumSubExprs() == 3) {
879       Mask = CGF.EmitScalarExpr(E->getExpr(2));
880 
881       // Shuffle LHS & RHS into one input vector.
882       SmallVector<llvm::Constant*, 32> concat;
883       for (unsigned i = 0; i != LHSElts; ++i) {
884         concat.push_back(Builder.getInt32(2*i));
885         concat.push_back(Builder.getInt32(2*i+1));
886       }
887 
888       Value* CV = llvm::ConstantVector::get(concat);
889       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
890       LHSElts *= 2;
891     } else {
892       Mask = RHS;
893     }
894 
895     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
896     llvm::Constant* EltMask;
897 
898     // Treat vec3 like vec4.
899     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
900       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
901                                        (1 << llvm::Log2_32(LHSElts+2))-1);
902     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
903       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
904                                        (1 << llvm::Log2_32(LHSElts+1))-1);
905     else
906       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
907                                        (1 << llvm::Log2_32(LHSElts))-1);
908 
909     // Mask off the high bits of each shuffle index.
910     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
911                                                      EltMask);
912     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
913 
914     // newv = undef
915     // mask = mask & maskbits
916     // for each elt
917     //   n = extract mask i
918     //   x = extract val n
919     //   newv = insert newv, x, i
920     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
921                                                         MTy->getNumElements());
922     Value* NewV = llvm::UndefValue::get(RTy);
923     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
924       Value *IIndx = Builder.getInt32(i);
925       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
926       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
927 
928       // Handle vec3 special since the index will be off by one for the RHS.
929       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
930         Value *cmpIndx, *newIndx;
931         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
932                                         "cmp_shuf_idx");
933         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
934         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
935       }
936       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
937       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
938     }
939     return NewV;
940   }
941 
942   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
943   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
944 
945   // Handle vec3 special since the index will be off by one for the RHS.
946   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
947   SmallVector<llvm::Constant*, 32> indices;
948   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
949     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
950     if (VTy->getNumElements() == 3 && Idx > 3)
951       Idx -= 1;
952     indices.push_back(Builder.getInt32(Idx));
953   }
954 
955   Value *SV = llvm::ConstantVector::get(indices);
956   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
957 }
958 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
959   llvm::APSInt Value;
960   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
961     if (E->isArrow())
962       CGF.EmitScalarExpr(E->getBase());
963     else
964       EmitLValue(E->getBase());
965     return Builder.getInt(Value);
966   }
967 
968   // Emit debug info for aggregate now, if it was delayed to reduce
969   // debug info size.
970   CGDebugInfo *DI = CGF.getDebugInfo();
971   if (DI &&
972       CGF.CGM.getCodeGenOpts().DebugInfo == CodeGenOptions::LimitedDebugInfo) {
973     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
974     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
975       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
976         DI->getOrCreateRecordType(PTy->getPointeeType(),
977                                   M->getParent()->getLocation());
978   }
979   return EmitLoadOfLValue(E);
980 }
981 
982 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
983   TestAndClearIgnoreResultAssign();
984 
985   // Emit subscript expressions in rvalue context's.  For most cases, this just
986   // loads the lvalue formed by the subscript expr.  However, we have to be
987   // careful, because the base of a vector subscript is occasionally an rvalue,
988   // so we can't get it as an lvalue.
989   if (!E->getBase()->getType()->isVectorType())
990     return EmitLoadOfLValue(E);
991 
992   // Handle the vector case.  The base must be a vector, the index must be an
993   // integer value.
994   Value *Base = Visit(E->getBase());
995   Value *Idx  = Visit(E->getIdx());
996   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
997   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
998   return Builder.CreateExtractElement(Base, Idx, "vecext");
999 }
1000 
1001 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1002                                   unsigned Off, llvm::Type *I32Ty) {
1003   int MV = SVI->getMaskValue(Idx);
1004   if (MV == -1)
1005     return llvm::UndefValue::get(I32Ty);
1006   return llvm::ConstantInt::get(I32Ty, Off+MV);
1007 }
1008 
1009 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1010   bool Ignore = TestAndClearIgnoreResultAssign();
1011   (void)Ignore;
1012   assert (Ignore == false && "init list ignored");
1013   unsigned NumInitElements = E->getNumInits();
1014 
1015   if (E->hadArrayRangeDesignator())
1016     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1017 
1018   llvm::VectorType *VType =
1019     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1020 
1021   if (!VType) {
1022     if (NumInitElements == 0) {
1023       // C++11 value-initialization for the scalar.
1024       return EmitNullValue(E->getType());
1025     }
1026     // We have a scalar in braces. Just use the first element.
1027     return Visit(E->getInit(0));
1028   }
1029 
1030   unsigned ResElts = VType->getNumElements();
1031 
1032   // Loop over initializers collecting the Value for each, and remembering
1033   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1034   // us to fold the shuffle for the swizzle into the shuffle for the vector
1035   // initializer, since LLVM optimizers generally do not want to touch
1036   // shuffles.
1037   unsigned CurIdx = 0;
1038   bool VIsUndefShuffle = false;
1039   llvm::Value *V = llvm::UndefValue::get(VType);
1040   for (unsigned i = 0; i != NumInitElements; ++i) {
1041     Expr *IE = E->getInit(i);
1042     Value *Init = Visit(IE);
1043     SmallVector<llvm::Constant*, 16> Args;
1044 
1045     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1046 
1047     // Handle scalar elements.  If the scalar initializer is actually one
1048     // element of a different vector of the same width, use shuffle instead of
1049     // extract+insert.
1050     if (!VVT) {
1051       if (isa<ExtVectorElementExpr>(IE)) {
1052         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1053 
1054         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1055           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1056           Value *LHS = 0, *RHS = 0;
1057           if (CurIdx == 0) {
1058             // insert into undef -> shuffle (src, undef)
1059             Args.push_back(C);
1060             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1061 
1062             LHS = EI->getVectorOperand();
1063             RHS = V;
1064             VIsUndefShuffle = true;
1065           } else if (VIsUndefShuffle) {
1066             // insert into undefshuffle && size match -> shuffle (v, src)
1067             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1068             for (unsigned j = 0; j != CurIdx; ++j)
1069               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1070             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1071             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1072 
1073             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1074             RHS = EI->getVectorOperand();
1075             VIsUndefShuffle = false;
1076           }
1077           if (!Args.empty()) {
1078             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1079             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1080             ++CurIdx;
1081             continue;
1082           }
1083         }
1084       }
1085       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1086                                       "vecinit");
1087       VIsUndefShuffle = false;
1088       ++CurIdx;
1089       continue;
1090     }
1091 
1092     unsigned InitElts = VVT->getNumElements();
1093 
1094     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1095     // input is the same width as the vector being constructed, generate an
1096     // optimized shuffle of the swizzle input into the result.
1097     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1098     if (isa<ExtVectorElementExpr>(IE)) {
1099       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1100       Value *SVOp = SVI->getOperand(0);
1101       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1102 
1103       if (OpTy->getNumElements() == ResElts) {
1104         for (unsigned j = 0; j != CurIdx; ++j) {
1105           // If the current vector initializer is a shuffle with undef, merge
1106           // this shuffle directly into it.
1107           if (VIsUndefShuffle) {
1108             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1109                                       CGF.Int32Ty));
1110           } else {
1111             Args.push_back(Builder.getInt32(j));
1112           }
1113         }
1114         for (unsigned j = 0, je = InitElts; j != je; ++j)
1115           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1116         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1117 
1118         if (VIsUndefShuffle)
1119           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1120 
1121         Init = SVOp;
1122       }
1123     }
1124 
1125     // Extend init to result vector length, and then shuffle its contribution
1126     // to the vector initializer into V.
1127     if (Args.empty()) {
1128       for (unsigned j = 0; j != InitElts; ++j)
1129         Args.push_back(Builder.getInt32(j));
1130       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1131       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1132       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1133                                          Mask, "vext");
1134 
1135       Args.clear();
1136       for (unsigned j = 0; j != CurIdx; ++j)
1137         Args.push_back(Builder.getInt32(j));
1138       for (unsigned j = 0; j != InitElts; ++j)
1139         Args.push_back(Builder.getInt32(j+Offset));
1140       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1141     }
1142 
1143     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1144     // merging subsequent shuffles into this one.
1145     if (CurIdx == 0)
1146       std::swap(V, Init);
1147     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1148     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1149     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1150     CurIdx += InitElts;
1151   }
1152 
1153   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1154   // Emit remaining default initializers.
1155   llvm::Type *EltTy = VType->getElementType();
1156 
1157   // Emit remaining default initializers
1158   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1159     Value *Idx = Builder.getInt32(CurIdx);
1160     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1161     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1162   }
1163   return V;
1164 }
1165 
1166 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1167   const Expr *E = CE->getSubExpr();
1168 
1169   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1170     return false;
1171 
1172   if (isa<CXXThisExpr>(E)) {
1173     // We always assume that 'this' is never null.
1174     return false;
1175   }
1176 
1177   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1178     // And that glvalue casts are never null.
1179     if (ICE->getValueKind() != VK_RValue)
1180       return false;
1181   }
1182 
1183   return true;
1184 }
1185 
1186 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1187 // have to handle a more broad range of conversions than explicit casts, as they
1188 // handle things like function to ptr-to-function decay etc.
1189 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1190   Expr *E = CE->getSubExpr();
1191   QualType DestTy = CE->getType();
1192   CastKind Kind = CE->getCastKind();
1193 
1194   if (!DestTy->isVoidType())
1195     TestAndClearIgnoreResultAssign();
1196 
1197   // Since almost all cast kinds apply to scalars, this switch doesn't have
1198   // a default case, so the compiler will warn on a missing case.  The cases
1199   // are in the same order as in the CastKind enum.
1200   switch (Kind) {
1201   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1202   case CK_BuiltinFnToFnPtr:
1203     llvm_unreachable("builtin functions are handled elsewhere");
1204 
1205   case CK_LValueBitCast:
1206   case CK_ObjCObjectLValueCast: {
1207     Value *V = EmitLValue(E).getAddress();
1208     V = Builder.CreateBitCast(V,
1209                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1210     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1211   }
1212 
1213   case CK_CPointerToObjCPointerCast:
1214   case CK_BlockPointerToObjCPointerCast:
1215   case CK_AnyPointerToBlockPointerCast:
1216   case CK_BitCast: {
1217     Value *Src = Visit(const_cast<Expr*>(E));
1218     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1219   }
1220   case CK_AtomicToNonAtomic:
1221   case CK_NonAtomicToAtomic:
1222   case CK_NoOp:
1223   case CK_UserDefinedConversion:
1224     return Visit(const_cast<Expr*>(E));
1225 
1226   case CK_BaseToDerived: {
1227     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1228     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1229 
1230     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1231                                         CE->path_begin(), CE->path_end(),
1232                                         ShouldNullCheckClassCastValue(CE));
1233   }
1234   case CK_UncheckedDerivedToBase:
1235   case CK_DerivedToBase: {
1236     const CXXRecordDecl *DerivedClassDecl =
1237       E->getType()->getPointeeCXXRecordDecl();
1238     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1239 
1240     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1241                                      CE->path_begin(), CE->path_end(),
1242                                      ShouldNullCheckClassCastValue(CE));
1243   }
1244   case CK_Dynamic: {
1245     Value *V = Visit(const_cast<Expr*>(E));
1246     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1247     return CGF.EmitDynamicCast(V, DCE);
1248   }
1249 
1250   case CK_ArrayToPointerDecay: {
1251     assert(E->getType()->isArrayType() &&
1252            "Array to pointer decay must have array source type!");
1253 
1254     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1255 
1256     // Note that VLA pointers are always decayed, so we don't need to do
1257     // anything here.
1258     if (!E->getType()->isVariableArrayType()) {
1259       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1260       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1261                                  ->getElementType()) &&
1262              "Expected pointer to array");
1263       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1264     }
1265 
1266     // Make sure the array decay ends up being the right type.  This matters if
1267     // the array type was of an incomplete type.
1268     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1269   }
1270   case CK_FunctionToPointerDecay:
1271     return EmitLValue(E).getAddress();
1272 
1273   case CK_NullToPointer:
1274     if (MustVisitNullValue(E))
1275       (void) Visit(E);
1276 
1277     return llvm::ConstantPointerNull::get(
1278                                cast<llvm::PointerType>(ConvertType(DestTy)));
1279 
1280   case CK_NullToMemberPointer: {
1281     if (MustVisitNullValue(E))
1282       (void) Visit(E);
1283 
1284     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1285     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1286   }
1287 
1288   case CK_ReinterpretMemberPointer:
1289   case CK_BaseToDerivedMemberPointer:
1290   case CK_DerivedToBaseMemberPointer: {
1291     Value *Src = Visit(E);
1292 
1293     // Note that the AST doesn't distinguish between checked and
1294     // unchecked member pointer conversions, so we always have to
1295     // implement checked conversions here.  This is inefficient when
1296     // actual control flow may be required in order to perform the
1297     // check, which it is for data member pointers (but not member
1298     // function pointers on Itanium and ARM).
1299     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1300   }
1301 
1302   case CK_ARCProduceObject:
1303     return CGF.EmitARCRetainScalarExpr(E);
1304   case CK_ARCConsumeObject:
1305     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1306   case CK_ARCReclaimReturnedObject: {
1307     llvm::Value *value = Visit(E);
1308     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1309     return CGF.EmitObjCConsumeObject(E->getType(), value);
1310   }
1311   case CK_ARCExtendBlockObject:
1312     return CGF.EmitARCExtendBlockObject(E);
1313 
1314   case CK_CopyAndAutoreleaseBlockObject:
1315     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1316 
1317   case CK_FloatingRealToComplex:
1318   case CK_FloatingComplexCast:
1319   case CK_IntegralRealToComplex:
1320   case CK_IntegralComplexCast:
1321   case CK_IntegralComplexToFloatingComplex:
1322   case CK_FloatingComplexToIntegralComplex:
1323   case CK_ConstructorConversion:
1324   case CK_ToUnion:
1325     llvm_unreachable("scalar cast to non-scalar value");
1326 
1327   case CK_LValueToRValue:
1328     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1329     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1330     return Visit(const_cast<Expr*>(E));
1331 
1332   case CK_IntegralToPointer: {
1333     Value *Src = Visit(const_cast<Expr*>(E));
1334 
1335     // First, convert to the correct width so that we control the kind of
1336     // extension.
1337     llvm::Type *MiddleTy = CGF.IntPtrTy;
1338     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1339     llvm::Value* IntResult =
1340       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1341 
1342     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1343   }
1344   case CK_PointerToIntegral:
1345     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1346     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1347 
1348   case CK_ToVoid: {
1349     CGF.EmitIgnoredExpr(E);
1350     return 0;
1351   }
1352   case CK_VectorSplat: {
1353     llvm::Type *DstTy = ConvertType(DestTy);
1354     Value *Elt = Visit(const_cast<Expr*>(E));
1355     Elt = EmitScalarConversion(Elt, E->getType(),
1356                                DestTy->getAs<VectorType>()->getElementType());
1357 
1358     // Insert the element in element zero of an undef vector
1359     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1360     llvm::Value *Idx = Builder.getInt32(0);
1361     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1362 
1363     // Splat the element across to all elements
1364     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1365     llvm::Constant *Zero = Builder.getInt32(0);
1366     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
1367     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1368     return Yay;
1369   }
1370 
1371   case CK_IntegralCast:
1372   case CK_IntegralToFloating:
1373   case CK_FloatingToIntegral:
1374   case CK_FloatingCast:
1375     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1376   case CK_IntegralToBoolean:
1377     return EmitIntToBoolConversion(Visit(E));
1378   case CK_PointerToBoolean:
1379     return EmitPointerToBoolConversion(Visit(E));
1380   case CK_FloatingToBoolean:
1381     return EmitFloatToBoolConversion(Visit(E));
1382   case CK_MemberPointerToBoolean: {
1383     llvm::Value *MemPtr = Visit(E);
1384     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1385     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1386   }
1387 
1388   case CK_FloatingComplexToReal:
1389   case CK_IntegralComplexToReal:
1390     return CGF.EmitComplexExpr(E, false, true).first;
1391 
1392   case CK_FloatingComplexToBoolean:
1393   case CK_IntegralComplexToBoolean: {
1394     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1395 
1396     // TODO: kill this function off, inline appropriate case here
1397     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1398   }
1399 
1400   }
1401 
1402   llvm_unreachable("unknown scalar cast");
1403 }
1404 
1405 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1406   CodeGenFunction::StmtExprEvaluation eval(CGF);
1407   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1408     .getScalarVal();
1409 }
1410 
1411 //===----------------------------------------------------------------------===//
1412 //                             Unary Operators
1413 //===----------------------------------------------------------------------===//
1414 
1415 llvm::Value *ScalarExprEmitter::
1416 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1417                                 llvm::Value *InVal,
1418                                 llvm::Value *NextVal, bool IsInc) {
1419   switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
1420   case LangOptions::SOB_Defined:
1421     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1422   case LangOptions::SOB_Undefined:
1423     if (!CGF.CatchUndefined)
1424       return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1425     // Fall through.
1426   case LangOptions::SOB_Trapping:
1427     BinOpInfo BinOp;
1428     BinOp.LHS = InVal;
1429     BinOp.RHS = NextVal;
1430     BinOp.Ty = E->getType();
1431     BinOp.Opcode = BO_Add;
1432     BinOp.FPContractable = false;
1433     BinOp.E = E;
1434     return EmitOverflowCheckedBinOp(BinOp);
1435   }
1436   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1437 }
1438 
1439 llvm::Value *
1440 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1441                                            bool isInc, bool isPre) {
1442 
1443   QualType type = E->getSubExpr()->getType();
1444   llvm::Value *value = EmitLoadOfLValue(LV);
1445   llvm::Value *input = value;
1446   llvm::PHINode *atomicPHI = 0;
1447 
1448   int amount = (isInc ? 1 : -1);
1449 
1450   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1451     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1452     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1453     Builder.CreateBr(opBB);
1454     Builder.SetInsertPoint(opBB);
1455     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1456     atomicPHI->addIncoming(value, startBB);
1457     type = atomicTy->getValueType();
1458     value = atomicPHI;
1459   }
1460 
1461   // Special case of integer increment that we have to check first: bool++.
1462   // Due to promotion rules, we get:
1463   //   bool++ -> bool = bool + 1
1464   //          -> bool = (int)bool + 1
1465   //          -> bool = ((int)bool + 1 != 0)
1466   // An interesting aspect of this is that increment is always true.
1467   // Decrement does not have this property.
1468   if (isInc && type->isBooleanType()) {
1469     value = Builder.getTrue();
1470 
1471   // Most common case by far: integer increment.
1472   } else if (type->isIntegerType()) {
1473 
1474     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1475 
1476     // Note that signed integer inc/dec with width less than int can't
1477     // overflow because of promotion rules; we're just eliding a few steps here.
1478     if (type->isSignedIntegerOrEnumerationType() &&
1479         value->getType()->getPrimitiveSizeInBits() >=
1480             CGF.IntTy->getBitWidth())
1481       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1482     else
1483       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1484 
1485   // Next most common: pointer increment.
1486   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1487     QualType type = ptr->getPointeeType();
1488 
1489     // VLA types don't have constant size.
1490     if (const VariableArrayType *vla
1491           = CGF.getContext().getAsVariableArrayType(type)) {
1492       llvm::Value *numElts = CGF.getVLASize(vla).first;
1493       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1494       if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1495         value = Builder.CreateGEP(value, numElts, "vla.inc");
1496       else
1497         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1498 
1499     // Arithmetic on function pointers (!) is just +-1.
1500     } else if (type->isFunctionType()) {
1501       llvm::Value *amt = Builder.getInt32(amount);
1502 
1503       value = CGF.EmitCastToVoidPtr(value);
1504       if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1505         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1506       else
1507         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1508       value = Builder.CreateBitCast(value, input->getType());
1509 
1510     // For everything else, we can just do a simple increment.
1511     } else {
1512       llvm::Value *amt = Builder.getInt32(amount);
1513       if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1514         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1515       else
1516         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1517     }
1518 
1519   // Vector increment/decrement.
1520   } else if (type->isVectorType()) {
1521     if (type->hasIntegerRepresentation()) {
1522       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1523 
1524       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1525     } else {
1526       value = Builder.CreateFAdd(
1527                   value,
1528                   llvm::ConstantFP::get(value->getType(), amount),
1529                   isInc ? "inc" : "dec");
1530     }
1531 
1532   // Floating point.
1533   } else if (type->isRealFloatingType()) {
1534     // Add the inc/dec to the real part.
1535     llvm::Value *amt;
1536 
1537     if (type->isHalfType()) {
1538       // Another special case: half FP increment should be done via float
1539       value =
1540     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1541                        input);
1542     }
1543 
1544     if (value->getType()->isFloatTy())
1545       amt = llvm::ConstantFP::get(VMContext,
1546                                   llvm::APFloat(static_cast<float>(amount)));
1547     else if (value->getType()->isDoubleTy())
1548       amt = llvm::ConstantFP::get(VMContext,
1549                                   llvm::APFloat(static_cast<double>(amount)));
1550     else {
1551       llvm::APFloat F(static_cast<float>(amount));
1552       bool ignored;
1553       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1554                 &ignored);
1555       amt = llvm::ConstantFP::get(VMContext, F);
1556     }
1557     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1558 
1559     if (type->isHalfType())
1560       value =
1561        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1562                           value);
1563 
1564   // Objective-C pointer types.
1565   } else {
1566     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1567     value = CGF.EmitCastToVoidPtr(value);
1568 
1569     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1570     if (!isInc) size = -size;
1571     llvm::Value *sizeValue =
1572       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1573 
1574     if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1575       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1576     else
1577       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1578     value = Builder.CreateBitCast(value, input->getType());
1579   }
1580 
1581   if (atomicPHI) {
1582     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1583     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1584     llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1585         value, llvm::SequentiallyConsistent);
1586     atomicPHI->addIncoming(old, opBB);
1587     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1588     Builder.CreateCondBr(success, contBB, opBB);
1589     Builder.SetInsertPoint(contBB);
1590     return isPre ? value : input;
1591   }
1592 
1593   // Store the updated result through the lvalue.
1594   if (LV.isBitField())
1595     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1596   else
1597     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1598 
1599   // If this is a postinc, return the value read from memory, otherwise use the
1600   // updated value.
1601   return isPre ? value : input;
1602 }
1603 
1604 
1605 
1606 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1607   TestAndClearIgnoreResultAssign();
1608   // Emit unary minus with EmitSub so we handle overflow cases etc.
1609   BinOpInfo BinOp;
1610   BinOp.RHS = Visit(E->getSubExpr());
1611 
1612   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1613     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1614   else
1615     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1616   BinOp.Ty = E->getType();
1617   BinOp.Opcode = BO_Sub;
1618   BinOp.FPContractable = false;
1619   BinOp.E = E;
1620   return EmitSub(BinOp);
1621 }
1622 
1623 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1624   TestAndClearIgnoreResultAssign();
1625   Value *Op = Visit(E->getSubExpr());
1626   return Builder.CreateNot(Op, "neg");
1627 }
1628 
1629 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1630 
1631   // Perform vector logical not on comparison with zero vector.
1632   if (E->getType()->isExtVectorType()) {
1633     Value *Oper = Visit(E->getSubExpr());
1634     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1635     Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1636     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1637   }
1638 
1639   // Compare operand to zero.
1640   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1641 
1642   // Invert value.
1643   // TODO: Could dynamically modify easy computations here.  For example, if
1644   // the operand is an icmp ne, turn into icmp eq.
1645   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1646 
1647   // ZExt result to the expr type.
1648   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1649 }
1650 
1651 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1652   // Try folding the offsetof to a constant.
1653   llvm::APSInt Value;
1654   if (E->EvaluateAsInt(Value, CGF.getContext()))
1655     return Builder.getInt(Value);
1656 
1657   // Loop over the components of the offsetof to compute the value.
1658   unsigned n = E->getNumComponents();
1659   llvm::Type* ResultType = ConvertType(E->getType());
1660   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1661   QualType CurrentType = E->getTypeSourceInfo()->getType();
1662   for (unsigned i = 0; i != n; ++i) {
1663     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1664     llvm::Value *Offset = 0;
1665     switch (ON.getKind()) {
1666     case OffsetOfExpr::OffsetOfNode::Array: {
1667       // Compute the index
1668       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1669       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1670       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1671       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1672 
1673       // Save the element type
1674       CurrentType =
1675           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1676 
1677       // Compute the element size
1678       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1679           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1680 
1681       // Multiply out to compute the result
1682       Offset = Builder.CreateMul(Idx, ElemSize);
1683       break;
1684     }
1685 
1686     case OffsetOfExpr::OffsetOfNode::Field: {
1687       FieldDecl *MemberDecl = ON.getField();
1688       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1689       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1690 
1691       // Compute the index of the field in its parent.
1692       unsigned i = 0;
1693       // FIXME: It would be nice if we didn't have to loop here!
1694       for (RecordDecl::field_iterator Field = RD->field_begin(),
1695                                       FieldEnd = RD->field_end();
1696            Field != FieldEnd; ++Field, ++i) {
1697         if (*Field == MemberDecl)
1698           break;
1699       }
1700       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1701 
1702       // Compute the offset to the field
1703       int64_t OffsetInt = RL.getFieldOffset(i) /
1704                           CGF.getContext().getCharWidth();
1705       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1706 
1707       // Save the element type.
1708       CurrentType = MemberDecl->getType();
1709       break;
1710     }
1711 
1712     case OffsetOfExpr::OffsetOfNode::Identifier:
1713       llvm_unreachable("dependent __builtin_offsetof");
1714 
1715     case OffsetOfExpr::OffsetOfNode::Base: {
1716       if (ON.getBase()->isVirtual()) {
1717         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1718         continue;
1719       }
1720 
1721       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1722       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1723 
1724       // Save the element type.
1725       CurrentType = ON.getBase()->getType();
1726 
1727       // Compute the offset to the base.
1728       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1729       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1730       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1731       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1732       break;
1733     }
1734     }
1735     Result = Builder.CreateAdd(Result, Offset);
1736   }
1737   return Result;
1738 }
1739 
1740 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1741 /// argument of the sizeof expression as an integer.
1742 Value *
1743 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1744                               const UnaryExprOrTypeTraitExpr *E) {
1745   QualType TypeToSize = E->getTypeOfArgument();
1746   if (E->getKind() == UETT_SizeOf) {
1747     if (const VariableArrayType *VAT =
1748           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1749       if (E->isArgumentType()) {
1750         // sizeof(type) - make sure to emit the VLA size.
1751         CGF.EmitVariablyModifiedType(TypeToSize);
1752       } else {
1753         // C99 6.5.3.4p2: If the argument is an expression of type
1754         // VLA, it is evaluated.
1755         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1756       }
1757 
1758       QualType eltType;
1759       llvm::Value *numElts;
1760       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1761 
1762       llvm::Value *size = numElts;
1763 
1764       // Scale the number of non-VLA elements by the non-VLA element size.
1765       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1766       if (!eltSize.isOne())
1767         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1768 
1769       return size;
1770     }
1771   }
1772 
1773   // If this isn't sizeof(vla), the result must be constant; use the constant
1774   // folding logic so we don't have to duplicate it here.
1775   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1776 }
1777 
1778 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1779   Expr *Op = E->getSubExpr();
1780   if (Op->getType()->isAnyComplexType()) {
1781     // If it's an l-value, load through the appropriate subobject l-value.
1782     // Note that we have to ask E because Op might be an l-value that
1783     // this won't work for, e.g. an Obj-C property.
1784     if (E->isGLValue())
1785       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1786 
1787     // Otherwise, calculate and project.
1788     return CGF.EmitComplexExpr(Op, false, true).first;
1789   }
1790 
1791   return Visit(Op);
1792 }
1793 
1794 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1795   Expr *Op = E->getSubExpr();
1796   if (Op->getType()->isAnyComplexType()) {
1797     // If it's an l-value, load through the appropriate subobject l-value.
1798     // Note that we have to ask E because Op might be an l-value that
1799     // this won't work for, e.g. an Obj-C property.
1800     if (Op->isGLValue())
1801       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1802 
1803     // Otherwise, calculate and project.
1804     return CGF.EmitComplexExpr(Op, true, false).second;
1805   }
1806 
1807   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1808   // effects are evaluated, but not the actual value.
1809   if (Op->isGLValue())
1810     CGF.EmitLValue(Op);
1811   else
1812     CGF.EmitScalarExpr(Op, true);
1813   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1814 }
1815 
1816 //===----------------------------------------------------------------------===//
1817 //                           Binary Operators
1818 //===----------------------------------------------------------------------===//
1819 
1820 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1821   TestAndClearIgnoreResultAssign();
1822   BinOpInfo Result;
1823   Result.LHS = Visit(E->getLHS());
1824   Result.RHS = Visit(E->getRHS());
1825   Result.Ty  = E->getType();
1826   Result.Opcode = E->getOpcode();
1827   Result.FPContractable = E->isFPContractable();
1828   Result.E = E;
1829   return Result;
1830 }
1831 
1832 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1833                                               const CompoundAssignOperator *E,
1834                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1835                                                    Value *&Result) {
1836   QualType LHSTy = E->getLHS()->getType();
1837   BinOpInfo OpInfo;
1838 
1839   if (E->getComputationResultType()->isAnyComplexType()) {
1840     // This needs to go through the complex expression emitter, but it's a tad
1841     // complicated to do that... I'm leaving it out for now.  (Note that we do
1842     // actually need the imaginary part of the RHS for multiplication and
1843     // division.)
1844     CGF.ErrorUnsupported(E, "complex compound assignment");
1845     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1846     return LValue();
1847   }
1848 
1849   // Emit the RHS first.  __block variables need to have the rhs evaluated
1850   // first, plus this should improve codegen a little.
1851   OpInfo.RHS = Visit(E->getRHS());
1852   OpInfo.Ty = E->getComputationResultType();
1853   OpInfo.Opcode = E->getOpcode();
1854   OpInfo.FPContractable = false;
1855   OpInfo.E = E;
1856   // Load/convert the LHS.
1857   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1858   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1859 
1860   llvm::PHINode *atomicPHI = 0;
1861   if (LHSTy->isAtomicType()) {
1862     // FIXME: For floating point types, we should be saving and restoring the
1863     // floating point environment in the loop.
1864     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1865     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1866     Builder.CreateBr(opBB);
1867     Builder.SetInsertPoint(opBB);
1868     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1869     atomicPHI->addIncoming(OpInfo.LHS, startBB);
1870     OpInfo.LHS = atomicPHI;
1871   }
1872 
1873   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1874                                     E->getComputationLHSType());
1875 
1876   // Expand the binary operator.
1877   Result = (this->*Func)(OpInfo);
1878 
1879   // Convert the result back to the LHS type.
1880   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1881 
1882   if (atomicPHI) {
1883     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1884     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1885     llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1886         Result, llvm::SequentiallyConsistent);
1887     atomicPHI->addIncoming(old, opBB);
1888     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1889     Builder.CreateCondBr(success, contBB, opBB);
1890     Builder.SetInsertPoint(contBB);
1891     return LHSLV;
1892   }
1893 
1894   // Store the result value into the LHS lvalue. Bit-fields are handled
1895   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1896   // 'An assignment expression has the value of the left operand after the
1897   // assignment...'.
1898   if (LHSLV.isBitField())
1899     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1900   else
1901     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1902 
1903   return LHSLV;
1904 }
1905 
1906 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1907                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1908   bool Ignore = TestAndClearIgnoreResultAssign();
1909   Value *RHS;
1910   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1911 
1912   // If the result is clearly ignored, return now.
1913   if (Ignore)
1914     return 0;
1915 
1916   // The result of an assignment in C is the assigned r-value.
1917   if (!CGF.getContext().getLangOpts().CPlusPlus)
1918     return RHS;
1919 
1920   // If the lvalue is non-volatile, return the computed value of the assignment.
1921   if (!LHS.isVolatileQualified())
1922     return RHS;
1923 
1924   // Otherwise, reload the value.
1925   return EmitLoadOfLValue(LHS);
1926 }
1927 
1928 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1929     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
1930   llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1931 
1932   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1933     llvm::Value *IntMin =
1934       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1935     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1936 
1937     llvm::Value *Cond1 = Builder.CreateICmpNE(Ops.RHS, Zero);
1938     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
1939     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
1940     llvm::Value *Cond2 = Builder.CreateOr(LHSCmp, RHSCmp, "or");
1941     EmitBinOpCheck(Builder.CreateAnd(Cond1, Cond2, "and"), Ops);
1942   } else {
1943     EmitBinOpCheck(Builder.CreateICmpNE(Ops.RHS, Zero), Ops);
1944   }
1945 }
1946 
1947 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1948   if (isTrapvOverflowBehavior()) {
1949     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1950 
1951     if (Ops.Ty->isIntegerType())
1952       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1953     else if (Ops.Ty->isRealFloatingType())
1954       EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
1955   }
1956   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1957     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1958     if (CGF.getContext().getLangOpts().OpenCL) {
1959       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1960       llvm::Type *ValTy = Val->getType();
1961       if (ValTy->isFloatTy() ||
1962           (isa<llvm::VectorType>(ValTy) &&
1963            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1964         CGF.SetFPAccuracy(Val, 2.5);
1965     }
1966     return Val;
1967   }
1968   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1969     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1970   else
1971     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1972 }
1973 
1974 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1975   // Rem in C can't be a floating point type: C99 6.5.5p2.
1976   if (isTrapvOverflowBehavior()) {
1977     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1978 
1979     if (Ops.Ty->isIntegerType())
1980       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1981   }
1982 
1983   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1984     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1985   else
1986     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1987 }
1988 
1989 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1990   unsigned IID;
1991   unsigned OpID = 0;
1992 
1993   switch (Ops.Opcode) {
1994   case BO_Add:
1995   case BO_AddAssign:
1996     OpID = 1;
1997     IID = llvm::Intrinsic::sadd_with_overflow;
1998     break;
1999   case BO_Sub:
2000   case BO_SubAssign:
2001     OpID = 2;
2002     IID = llvm::Intrinsic::ssub_with_overflow;
2003     break;
2004   case BO_Mul:
2005   case BO_MulAssign:
2006     OpID = 3;
2007     IID = llvm::Intrinsic::smul_with_overflow;
2008     break;
2009   default:
2010     llvm_unreachable("Unsupported operation for overflow detection");
2011   }
2012   OpID <<= 1;
2013   OpID |= 1;
2014 
2015   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2016 
2017   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2018 
2019   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2020   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2021   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2022 
2023   // Handle overflow with llvm.trap if no custom handler has been specified.
2024   const std::string *handlerName =
2025     &CGF.getContext().getLangOpts().OverflowHandler;
2026   if (handlerName->empty()) {
2027     EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2028     return result;
2029   }
2030 
2031   // Branch in case of overflow.
2032   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2033   llvm::Function::iterator insertPt = initialBB;
2034   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2035                                                       llvm::next(insertPt));
2036   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2037 
2038   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2039 
2040   // If an overflow handler is set, then we want to call it and then use its
2041   // result, if it returns.
2042   Builder.SetInsertPoint(overflowBB);
2043 
2044   // Get the overflow handler.
2045   llvm::Type *Int8Ty = CGF.Int8Ty;
2046   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2047   llvm::FunctionType *handlerTy =
2048       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2049   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2050 
2051   // Sign extend the args to 64-bit, so that we can use the same handler for
2052   // all types of overflow.
2053   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2054   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2055 
2056   // Call the handler with the two arguments, the operation, and the size of
2057   // the result.
2058   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
2059       Builder.getInt8(OpID),
2060       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
2061 
2062   // Truncate the result back to the desired size.
2063   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2064   Builder.CreateBr(continueBB);
2065 
2066   Builder.SetInsertPoint(continueBB);
2067   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2068   phi->addIncoming(result, initialBB);
2069   phi->addIncoming(handlerResult, overflowBB);
2070 
2071   return phi;
2072 }
2073 
2074 /// Emit pointer + index arithmetic.
2075 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2076                                     const BinOpInfo &op,
2077                                     bool isSubtraction) {
2078   // Must have binary (not unary) expr here.  Unary pointer
2079   // increment/decrement doesn't use this path.
2080   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2081 
2082   Value *pointer = op.LHS;
2083   Expr *pointerOperand = expr->getLHS();
2084   Value *index = op.RHS;
2085   Expr *indexOperand = expr->getRHS();
2086 
2087   // In a subtraction, the LHS is always the pointer.
2088   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2089     std::swap(pointer, index);
2090     std::swap(pointerOperand, indexOperand);
2091   }
2092 
2093   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2094   if (width != CGF.PointerWidthInBits) {
2095     // Zero-extend or sign-extend the pointer value according to
2096     // whether the index is signed or not.
2097     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2098     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2099                                       "idx.ext");
2100   }
2101 
2102   // If this is subtraction, negate the index.
2103   if (isSubtraction)
2104     index = CGF.Builder.CreateNeg(index, "idx.neg");
2105 
2106   const PointerType *pointerType
2107     = pointerOperand->getType()->getAs<PointerType>();
2108   if (!pointerType) {
2109     QualType objectType = pointerOperand->getType()
2110                                         ->castAs<ObjCObjectPointerType>()
2111                                         ->getPointeeType();
2112     llvm::Value *objectSize
2113       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2114 
2115     index = CGF.Builder.CreateMul(index, objectSize);
2116 
2117     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2118     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2119     return CGF.Builder.CreateBitCast(result, pointer->getType());
2120   }
2121 
2122   QualType elementType = pointerType->getPointeeType();
2123   if (const VariableArrayType *vla
2124         = CGF.getContext().getAsVariableArrayType(elementType)) {
2125     // The element count here is the total number of non-VLA elements.
2126     llvm::Value *numElements = CGF.getVLASize(vla).first;
2127 
2128     // Effectively, the multiply by the VLA size is part of the GEP.
2129     // GEP indexes are signed, and scaling an index isn't permitted to
2130     // signed-overflow, so we use the same semantics for our explicit
2131     // multiply.  We suppress this if overflow is not undefined behavior.
2132     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2133       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2134       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2135     } else {
2136       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2137       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2138     }
2139     return pointer;
2140   }
2141 
2142   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2143   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2144   // future proof.
2145   if (elementType->isVoidType() || elementType->isFunctionType()) {
2146     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2147     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2148     return CGF.Builder.CreateBitCast(result, pointer->getType());
2149   }
2150 
2151   if (CGF.getLangOpts().isSignedOverflowDefined())
2152     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2153 
2154   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2155 }
2156 
2157 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2158 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2159 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2160 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2161 // efficient operations.
2162 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2163                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2164                            bool negMul, bool negAdd) {
2165   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2166 
2167   Value *MulOp0 = MulOp->getOperand(0);
2168   Value *MulOp1 = MulOp->getOperand(1);
2169   if (negMul) {
2170     MulOp0 =
2171       Builder.CreateFSub(
2172         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2173         "neg");
2174   } else if (negAdd) {
2175     Addend =
2176       Builder.CreateFSub(
2177         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2178         "neg");
2179   }
2180 
2181   Value *FMulAdd =
2182     Builder.CreateCall3(
2183       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2184                            MulOp0, MulOp1, Addend);
2185    MulOp->eraseFromParent();
2186 
2187    return FMulAdd;
2188 }
2189 
2190 // Check whether it would be legal to emit an fmuladd intrinsic call to
2191 // represent op and if so, build the fmuladd.
2192 //
2193 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2194 // Does NOT check the type of the operation - it's assumed that this function
2195 // will be called from contexts where it's known that the type is contractable.
2196 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2197                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2198                          bool isSub=false) {
2199 
2200   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2201           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2202          "Only fadd/fsub can be the root of an fmuladd.");
2203 
2204   // Check whether this op is marked as fusable.
2205   if (!op.FPContractable)
2206     return 0;
2207 
2208   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2209   // either disabled, or handled entirely by the LLVM backend).
2210   if (CGF.getContext().getLangOpts().getFPContractMode() != LangOptions::FPC_On)
2211     return 0;
2212 
2213   // We have a potentially fusable op. Look for a mul on one of the operands.
2214   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2215     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2216       assert(LHSBinOp->getNumUses() == 0 &&
2217              "Operations with multiple uses shouldn't be contracted.");
2218       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2219     }
2220   } else if (llvm::BinaryOperator* RHSBinOp =
2221                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2222     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2223       assert(RHSBinOp->getNumUses() == 0 &&
2224              "Operations with multiple uses shouldn't be contracted.");
2225       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2226     }
2227   }
2228 
2229   return 0;
2230 }
2231 
2232 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2233   if (op.LHS->getType()->isPointerTy() ||
2234       op.RHS->getType()->isPointerTy())
2235     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2236 
2237   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2238     switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
2239     case LangOptions::SOB_Defined:
2240       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2241     case LangOptions::SOB_Undefined:
2242       if (!CGF.CatchUndefined)
2243         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2244       // Fall through.
2245     case LangOptions::SOB_Trapping:
2246       return EmitOverflowCheckedBinOp(op);
2247     }
2248   }
2249 
2250   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2251     // Try to form an fmuladd.
2252     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2253       return FMulAdd;
2254 
2255     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2256   }
2257 
2258   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2259 }
2260 
2261 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2262   // The LHS is always a pointer if either side is.
2263   if (!op.LHS->getType()->isPointerTy()) {
2264     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2265       switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
2266       case LangOptions::SOB_Defined:
2267         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2268       case LangOptions::SOB_Undefined:
2269         if (!CGF.CatchUndefined)
2270           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2271         // Fall through.
2272       case LangOptions::SOB_Trapping:
2273         return EmitOverflowCheckedBinOp(op);
2274       }
2275     }
2276 
2277     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2278       // Try to form an fmuladd.
2279       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2280         return FMulAdd;
2281       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2282     }
2283 
2284     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2285   }
2286 
2287   // If the RHS is not a pointer, then we have normal pointer
2288   // arithmetic.
2289   if (!op.RHS->getType()->isPointerTy())
2290     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2291 
2292   // Otherwise, this is a pointer subtraction.
2293 
2294   // Do the raw subtraction part.
2295   llvm::Value *LHS
2296     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2297   llvm::Value *RHS
2298     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2299   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2300 
2301   // Okay, figure out the element size.
2302   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2303   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2304 
2305   llvm::Value *divisor = 0;
2306 
2307   // For a variable-length array, this is going to be non-constant.
2308   if (const VariableArrayType *vla
2309         = CGF.getContext().getAsVariableArrayType(elementType)) {
2310     llvm::Value *numElements;
2311     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2312 
2313     divisor = numElements;
2314 
2315     // Scale the number of non-VLA elements by the non-VLA element size.
2316     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2317     if (!eltSize.isOne())
2318       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2319 
2320   // For everything elese, we can just compute it, safe in the
2321   // assumption that Sema won't let anything through that we can't
2322   // safely compute the size of.
2323   } else {
2324     CharUnits elementSize;
2325     // Handle GCC extension for pointer arithmetic on void* and
2326     // function pointer types.
2327     if (elementType->isVoidType() || elementType->isFunctionType())
2328       elementSize = CharUnits::One();
2329     else
2330       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2331 
2332     // Don't even emit the divide for element size of 1.
2333     if (elementSize.isOne())
2334       return diffInChars;
2335 
2336     divisor = CGF.CGM.getSize(elementSize);
2337   }
2338 
2339   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2340   // pointer difference in C is only defined in the case where both operands
2341   // are pointing to elements of an array.
2342   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2343 }
2344 
2345 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2346   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2347   // RHS to the same size as the LHS.
2348   Value *RHS = Ops.RHS;
2349   if (Ops.LHS->getType() != RHS->getType())
2350     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2351 
2352   if (CGF.CatchUndefined && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2353     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2354     llvm::Value *WidthMinusOne =
2355       llvm::ConstantInt::get(RHS->getType(), Width - 1);
2356     // FIXME: Emit the branching explicitly rather than emitting the check
2357     // twice.
2358     EmitBinOpCheck(Builder.CreateICmpULE(RHS, WidthMinusOne), Ops);
2359 
2360     if (Ops.Ty->hasSignedIntegerRepresentation()) {
2361       // Check whether we are shifting any non-zero bits off the top of the
2362       // integer.
2363       llvm::Value *BitsShiftedOff =
2364         Builder.CreateLShr(Ops.LHS,
2365                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2366                                              /*NUW*/true, /*NSW*/true),
2367                            "shl.check");
2368       if (CGF.getLangOpts().CPlusPlus) {
2369         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2370         // Under C++11's rules, shifting a 1 bit into the sign bit is
2371         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2372         // define signed left shifts, so we use the C99 and C++11 rules there).
2373         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2374         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2375       }
2376       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2377       EmitBinOpCheck(Builder.CreateICmpEQ(BitsShiftedOff, Zero), Ops);
2378     }
2379   }
2380 
2381   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2382 }
2383 
2384 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2385   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2386   // RHS to the same size as the LHS.
2387   Value *RHS = Ops.RHS;
2388   if (Ops.LHS->getType() != RHS->getType())
2389     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2390 
2391   if (CGF.CatchUndefined && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2392     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2393     llvm::Value *WidthVal = llvm::ConstantInt::get(RHS->getType(), Width);
2394     EmitBinOpCheck(Builder.CreateICmpULT(RHS, WidthVal), Ops);
2395   }
2396 
2397   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2398     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2399   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2400 }
2401 
2402 enum IntrinsicType { VCMPEQ, VCMPGT };
2403 // return corresponding comparison intrinsic for given vector type
2404 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2405                                         BuiltinType::Kind ElemKind) {
2406   switch (ElemKind) {
2407   default: llvm_unreachable("unexpected element type");
2408   case BuiltinType::Char_U:
2409   case BuiltinType::UChar:
2410     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2411                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2412   case BuiltinType::Char_S:
2413   case BuiltinType::SChar:
2414     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2415                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2416   case BuiltinType::UShort:
2417     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2418                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2419   case BuiltinType::Short:
2420     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2421                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2422   case BuiltinType::UInt:
2423   case BuiltinType::ULong:
2424     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2425                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2426   case BuiltinType::Int:
2427   case BuiltinType::Long:
2428     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2429                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2430   case BuiltinType::Float:
2431     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2432                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2433   }
2434 }
2435 
2436 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2437                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2438   TestAndClearIgnoreResultAssign();
2439   Value *Result;
2440   QualType LHSTy = E->getLHS()->getType();
2441   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2442     assert(E->getOpcode() == BO_EQ ||
2443            E->getOpcode() == BO_NE);
2444     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2445     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2446     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2447                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2448   } else if (!LHSTy->isAnyComplexType()) {
2449     Value *LHS = Visit(E->getLHS());
2450     Value *RHS = Visit(E->getRHS());
2451 
2452     // If AltiVec, the comparison results in a numeric type, so we use
2453     // intrinsics comparing vectors and giving 0 or 1 as a result
2454     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2455       // constants for mapping CR6 register bits to predicate result
2456       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2457 
2458       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2459 
2460       // in several cases vector arguments order will be reversed
2461       Value *FirstVecArg = LHS,
2462             *SecondVecArg = RHS;
2463 
2464       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2465       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2466       BuiltinType::Kind ElementKind = BTy->getKind();
2467 
2468       switch(E->getOpcode()) {
2469       default: llvm_unreachable("is not a comparison operation");
2470       case BO_EQ:
2471         CR6 = CR6_LT;
2472         ID = GetIntrinsic(VCMPEQ, ElementKind);
2473         break;
2474       case BO_NE:
2475         CR6 = CR6_EQ;
2476         ID = GetIntrinsic(VCMPEQ, ElementKind);
2477         break;
2478       case BO_LT:
2479         CR6 = CR6_LT;
2480         ID = GetIntrinsic(VCMPGT, ElementKind);
2481         std::swap(FirstVecArg, SecondVecArg);
2482         break;
2483       case BO_GT:
2484         CR6 = CR6_LT;
2485         ID = GetIntrinsic(VCMPGT, ElementKind);
2486         break;
2487       case BO_LE:
2488         if (ElementKind == BuiltinType::Float) {
2489           CR6 = CR6_LT;
2490           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2491           std::swap(FirstVecArg, SecondVecArg);
2492         }
2493         else {
2494           CR6 = CR6_EQ;
2495           ID = GetIntrinsic(VCMPGT, ElementKind);
2496         }
2497         break;
2498       case BO_GE:
2499         if (ElementKind == BuiltinType::Float) {
2500           CR6 = CR6_LT;
2501           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2502         }
2503         else {
2504           CR6 = CR6_EQ;
2505           ID = GetIntrinsic(VCMPGT, ElementKind);
2506           std::swap(FirstVecArg, SecondVecArg);
2507         }
2508         break;
2509       }
2510 
2511       Value *CR6Param = Builder.getInt32(CR6);
2512       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2513       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2514       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2515     }
2516 
2517     if (LHS->getType()->isFPOrFPVectorTy()) {
2518       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2519                                   LHS, RHS, "cmp");
2520     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2521       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2522                                   LHS, RHS, "cmp");
2523     } else {
2524       // Unsigned integers and pointers.
2525       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2526                                   LHS, RHS, "cmp");
2527     }
2528 
2529     // If this is a vector comparison, sign extend the result to the appropriate
2530     // vector integer type and return it (don't convert to bool).
2531     if (LHSTy->isVectorType())
2532       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2533 
2534   } else {
2535     // Complex Comparison: can only be an equality comparison.
2536     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2537     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2538 
2539     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2540 
2541     Value *ResultR, *ResultI;
2542     if (CETy->isRealFloatingType()) {
2543       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2544                                    LHS.first, RHS.first, "cmp.r");
2545       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2546                                    LHS.second, RHS.second, "cmp.i");
2547     } else {
2548       // Complex comparisons can only be equality comparisons.  As such, signed
2549       // and unsigned opcodes are the same.
2550       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2551                                    LHS.first, RHS.first, "cmp.r");
2552       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2553                                    LHS.second, RHS.second, "cmp.i");
2554     }
2555 
2556     if (E->getOpcode() == BO_EQ) {
2557       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2558     } else {
2559       assert(E->getOpcode() == BO_NE &&
2560              "Complex comparison other than == or != ?");
2561       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2562     }
2563   }
2564 
2565   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2566 }
2567 
2568 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2569   bool Ignore = TestAndClearIgnoreResultAssign();
2570 
2571   Value *RHS;
2572   LValue LHS;
2573 
2574   switch (E->getLHS()->getType().getObjCLifetime()) {
2575   case Qualifiers::OCL_Strong:
2576     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2577     break;
2578 
2579   case Qualifiers::OCL_Autoreleasing:
2580     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2581     break;
2582 
2583   case Qualifiers::OCL_Weak:
2584     RHS = Visit(E->getRHS());
2585     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2586     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2587     break;
2588 
2589   // No reason to do any of these differently.
2590   case Qualifiers::OCL_None:
2591   case Qualifiers::OCL_ExplicitNone:
2592     // __block variables need to have the rhs evaluated first, plus
2593     // this should improve codegen just a little.
2594     RHS = Visit(E->getRHS());
2595     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2596 
2597     // Store the value into the LHS.  Bit-fields are handled specially
2598     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2599     // 'An assignment expression has the value of the left operand after
2600     // the assignment...'.
2601     if (LHS.isBitField())
2602       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2603     else
2604       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2605   }
2606 
2607   // If the result is clearly ignored, return now.
2608   if (Ignore)
2609     return 0;
2610 
2611   // The result of an assignment in C is the assigned r-value.
2612   if (!CGF.getContext().getLangOpts().CPlusPlus)
2613     return RHS;
2614 
2615   // If the lvalue is non-volatile, return the computed value of the assignment.
2616   if (!LHS.isVolatileQualified())
2617     return RHS;
2618 
2619   // Otherwise, reload the value.
2620   return EmitLoadOfLValue(LHS);
2621 }
2622 
2623 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2624 
2625   // Perform vector logical and on comparisons with zero vectors.
2626   if (E->getType()->isVectorType()) {
2627     Value *LHS = Visit(E->getLHS());
2628     Value *RHS = Visit(E->getRHS());
2629     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2630     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2631     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2632     Value *And = Builder.CreateAnd(LHS, RHS);
2633     return Builder.CreateSExt(And, Zero->getType(), "sext");
2634   }
2635 
2636   llvm::Type *ResTy = ConvertType(E->getType());
2637 
2638   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2639   // If we have 1 && X, just emit X without inserting the control flow.
2640   bool LHSCondVal;
2641   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2642     if (LHSCondVal) { // If we have 1 && X, just emit X.
2643       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2644       // ZExt result to int or bool.
2645       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2646     }
2647 
2648     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2649     if (!CGF.ContainsLabel(E->getRHS()))
2650       return llvm::Constant::getNullValue(ResTy);
2651   }
2652 
2653   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2654   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2655 
2656   CodeGenFunction::ConditionalEvaluation eval(CGF);
2657 
2658   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2659   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2660 
2661   // Any edges into the ContBlock are now from an (indeterminate number of)
2662   // edges from this first condition.  All of these values will be false.  Start
2663   // setting up the PHI node in the Cont Block for this.
2664   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2665                                             "", ContBlock);
2666   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2667        PI != PE; ++PI)
2668     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2669 
2670   eval.begin(CGF);
2671   CGF.EmitBlock(RHSBlock);
2672   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2673   eval.end(CGF);
2674 
2675   // Reaquire the RHS block, as there may be subblocks inserted.
2676   RHSBlock = Builder.GetInsertBlock();
2677 
2678   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2679   // into the phi node for the edge with the value of RHSCond.
2680   if (CGF.getDebugInfo())
2681     // There is no need to emit line number for unconditional branch.
2682     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2683   CGF.EmitBlock(ContBlock);
2684   PN->addIncoming(RHSCond, RHSBlock);
2685 
2686   // ZExt result to int.
2687   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2688 }
2689 
2690 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2691 
2692   // Perform vector logical or on comparisons with zero vectors.
2693   if (E->getType()->isVectorType()) {
2694     Value *LHS = Visit(E->getLHS());
2695     Value *RHS = Visit(E->getRHS());
2696     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2697     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2698     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2699     Value *Or = Builder.CreateOr(LHS, RHS);
2700     return Builder.CreateSExt(Or, Zero->getType(), "sext");
2701   }
2702 
2703   llvm::Type *ResTy = ConvertType(E->getType());
2704 
2705   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2706   // If we have 0 || X, just emit X without inserting the control flow.
2707   bool LHSCondVal;
2708   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2709     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2710       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2711       // ZExt result to int or bool.
2712       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2713     }
2714 
2715     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2716     if (!CGF.ContainsLabel(E->getRHS()))
2717       return llvm::ConstantInt::get(ResTy, 1);
2718   }
2719 
2720   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2721   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2722 
2723   CodeGenFunction::ConditionalEvaluation eval(CGF);
2724 
2725   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2726   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2727 
2728   // Any edges into the ContBlock are now from an (indeterminate number of)
2729   // edges from this first condition.  All of these values will be true.  Start
2730   // setting up the PHI node in the Cont Block for this.
2731   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2732                                             "", ContBlock);
2733   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2734        PI != PE; ++PI)
2735     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2736 
2737   eval.begin(CGF);
2738 
2739   // Emit the RHS condition as a bool value.
2740   CGF.EmitBlock(RHSBlock);
2741   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2742 
2743   eval.end(CGF);
2744 
2745   // Reaquire the RHS block, as there may be subblocks inserted.
2746   RHSBlock = Builder.GetInsertBlock();
2747 
2748   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2749   // into the phi node for the edge with the value of RHSCond.
2750   CGF.EmitBlock(ContBlock);
2751   PN->addIncoming(RHSCond, RHSBlock);
2752 
2753   // ZExt result to int.
2754   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2755 }
2756 
2757 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2758   CGF.EmitIgnoredExpr(E->getLHS());
2759   CGF.EnsureInsertPoint();
2760   return Visit(E->getRHS());
2761 }
2762 
2763 //===----------------------------------------------------------------------===//
2764 //                             Other Operators
2765 //===----------------------------------------------------------------------===//
2766 
2767 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2768 /// expression is cheap enough and side-effect-free enough to evaluate
2769 /// unconditionally instead of conditionally.  This is used to convert control
2770 /// flow into selects in some cases.
2771 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2772                                                    CodeGenFunction &CGF) {
2773   E = E->IgnoreParens();
2774 
2775   // Anything that is an integer or floating point constant is fine.
2776   if (E->isConstantInitializer(CGF.getContext(), false))
2777     return true;
2778 
2779   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2780   // X and Y are local variables.
2781   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2782     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2783       if (VD->hasLocalStorage() && !(CGF.getContext()
2784                                      .getCanonicalType(VD->getType())
2785                                      .isVolatileQualified()))
2786         return true;
2787 
2788   return false;
2789 }
2790 
2791 
2792 Value *ScalarExprEmitter::
2793 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2794   TestAndClearIgnoreResultAssign();
2795 
2796   // Bind the common expression if necessary.
2797   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2798 
2799   Expr *condExpr = E->getCond();
2800   Expr *lhsExpr = E->getTrueExpr();
2801   Expr *rhsExpr = E->getFalseExpr();
2802 
2803   // If the condition constant folds and can be elided, try to avoid emitting
2804   // the condition and the dead arm.
2805   bool CondExprBool;
2806   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2807     Expr *live = lhsExpr, *dead = rhsExpr;
2808     if (!CondExprBool) std::swap(live, dead);
2809 
2810     // If the dead side doesn't have labels we need, just emit the Live part.
2811     if (!CGF.ContainsLabel(dead)) {
2812       Value *Result = Visit(live);
2813 
2814       // If the live part is a throw expression, it acts like it has a void
2815       // type, so evaluating it returns a null Value*.  However, a conditional
2816       // with non-void type must return a non-null Value*.
2817       if (!Result && !E->getType()->isVoidType())
2818         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2819 
2820       return Result;
2821     }
2822   }
2823 
2824   // OpenCL: If the condition is a vector, we can treat this condition like
2825   // the select function.
2826   if (CGF.getContext().getLangOpts().OpenCL
2827       && condExpr->getType()->isVectorType()) {
2828     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2829     llvm::Value *LHS = Visit(lhsExpr);
2830     llvm::Value *RHS = Visit(rhsExpr);
2831 
2832     llvm::Type *condType = ConvertType(condExpr->getType());
2833     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2834 
2835     unsigned numElem = vecTy->getNumElements();
2836     llvm::Type *elemType = vecTy->getElementType();
2837 
2838     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
2839     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2840     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2841                                           llvm::VectorType::get(elemType,
2842                                                                 numElem),
2843                                           "sext");
2844     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2845 
2846     // Cast float to int to perform ANDs if necessary.
2847     llvm::Value *RHSTmp = RHS;
2848     llvm::Value *LHSTmp = LHS;
2849     bool wasCast = false;
2850     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2851     if (rhsVTy->getElementType()->isFloatingPointTy()) {
2852       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2853       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2854       wasCast = true;
2855     }
2856 
2857     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2858     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2859     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2860     if (wasCast)
2861       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2862 
2863     return tmp5;
2864   }
2865 
2866   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2867   // select instead of as control flow.  We can only do this if it is cheap and
2868   // safe to evaluate the LHS and RHS unconditionally.
2869   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2870       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2871     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2872     llvm::Value *LHS = Visit(lhsExpr);
2873     llvm::Value *RHS = Visit(rhsExpr);
2874     if (!LHS) {
2875       // If the conditional has void type, make sure we return a null Value*.
2876       assert(!RHS && "LHS and RHS types must match");
2877       return 0;
2878     }
2879     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2880   }
2881 
2882   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2883   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2884   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2885 
2886   CodeGenFunction::ConditionalEvaluation eval(CGF);
2887   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2888 
2889   CGF.EmitBlock(LHSBlock);
2890   eval.begin(CGF);
2891   Value *LHS = Visit(lhsExpr);
2892   eval.end(CGF);
2893 
2894   LHSBlock = Builder.GetInsertBlock();
2895   Builder.CreateBr(ContBlock);
2896 
2897   CGF.EmitBlock(RHSBlock);
2898   eval.begin(CGF);
2899   Value *RHS = Visit(rhsExpr);
2900   eval.end(CGF);
2901 
2902   RHSBlock = Builder.GetInsertBlock();
2903   CGF.EmitBlock(ContBlock);
2904 
2905   // If the LHS or RHS is a throw expression, it will be legitimately null.
2906   if (!LHS)
2907     return RHS;
2908   if (!RHS)
2909     return LHS;
2910 
2911   // Create a PHI node for the real part.
2912   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2913   PN->addIncoming(LHS, LHSBlock);
2914   PN->addIncoming(RHS, RHSBlock);
2915   return PN;
2916 }
2917 
2918 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2919   return Visit(E->getChosenSubExpr(CGF.getContext()));
2920 }
2921 
2922 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2923   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2924   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2925 
2926   // If EmitVAArg fails, we fall back to the LLVM instruction.
2927   if (!ArgPtr)
2928     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2929 
2930   // FIXME Volatility.
2931   return Builder.CreateLoad(ArgPtr);
2932 }
2933 
2934 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2935   return CGF.EmitBlockLiteral(block);
2936 }
2937 
2938 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2939   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2940   llvm::Type *DstTy = ConvertType(E->getType());
2941 
2942   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2943   // a shuffle vector instead of a bitcast.
2944   llvm::Type *SrcTy = Src->getType();
2945   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2946     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2947     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2948     if ((numElementsDst == 3 && numElementsSrc == 4)
2949         || (numElementsDst == 4 && numElementsSrc == 3)) {
2950 
2951 
2952       // In the case of going from int4->float3, a bitcast is needed before
2953       // doing a shuffle.
2954       llvm::Type *srcElemTy =
2955       cast<llvm::VectorType>(SrcTy)->getElementType();
2956       llvm::Type *dstElemTy =
2957       cast<llvm::VectorType>(DstTy)->getElementType();
2958 
2959       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2960           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2961         // Create a float type of the same size as the source or destination.
2962         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2963                                                                  numElementsSrc);
2964 
2965         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2966       }
2967 
2968       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2969 
2970       SmallVector<llvm::Constant*, 3> Args;
2971       Args.push_back(Builder.getInt32(0));
2972       Args.push_back(Builder.getInt32(1));
2973       Args.push_back(Builder.getInt32(2));
2974 
2975       if (numElementsDst == 4)
2976         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
2977 
2978       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2979 
2980       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2981     }
2982   }
2983 
2984   return Builder.CreateBitCast(Src, DstTy, "astype");
2985 }
2986 
2987 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2988   return CGF.EmitAtomicExpr(E).getScalarVal();
2989 }
2990 
2991 //===----------------------------------------------------------------------===//
2992 //                         Entry Point into this File
2993 //===----------------------------------------------------------------------===//
2994 
2995 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2996 /// type, ignoring the result.
2997 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2998   assert(E && !hasAggregateLLVMType(E->getType()) &&
2999          "Invalid scalar expression to emit");
3000 
3001   if (isa<CXXDefaultArgExpr>(E))
3002     disableDebugInfo();
3003   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3004     .Visit(const_cast<Expr*>(E));
3005   if (isa<CXXDefaultArgExpr>(E))
3006     enableDebugInfo();
3007   return V;
3008 }
3009 
3010 /// EmitScalarConversion - Emit a conversion from the specified type to the
3011 /// specified destination type, both of which are LLVM scalar types.
3012 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3013                                              QualType DstTy) {
3014   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
3015          "Invalid scalar expression to emit");
3016   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3017 }
3018 
3019 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3020 /// type to the specified destination type, where the destination type is an
3021 /// LLVM scalar type.
3022 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3023                                                       QualType SrcTy,
3024                                                       QualType DstTy) {
3025   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
3026          "Invalid complex -> scalar conversion");
3027   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3028                                                                 DstTy);
3029 }
3030 
3031 
3032 llvm::Value *CodeGenFunction::
3033 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3034                         bool isInc, bool isPre) {
3035   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3036 }
3037 
3038 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3039   llvm::Value *V;
3040   // object->isa or (*object).isa
3041   // Generate code as for: *(Class*)object
3042   // build Class* type
3043   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3044 
3045   Expr *BaseExpr = E->getBase();
3046   if (BaseExpr->isRValue()) {
3047     V = CreateMemTemp(E->getType(), "resval");
3048     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3049     Builder.CreateStore(Src, V);
3050     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3051       MakeNaturalAlignAddrLValue(V, E->getType()));
3052   } else {
3053     if (E->isArrow())
3054       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3055     else
3056       V = EmitLValue(BaseExpr).getAddress();
3057   }
3058 
3059   // build Class* type
3060   ClassPtrTy = ClassPtrTy->getPointerTo();
3061   V = Builder.CreateBitCast(V, ClassPtrTy);
3062   return MakeNaturalAlignAddrLValue(V, E->getType());
3063 }
3064 
3065 
3066 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3067                                             const CompoundAssignOperator *E) {
3068   ScalarExprEmitter Scalar(*this);
3069   Value *Result = 0;
3070   switch (E->getOpcode()) {
3071 #define COMPOUND_OP(Op)                                                       \
3072     case BO_##Op##Assign:                                                     \
3073       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3074                                              Result)
3075   COMPOUND_OP(Mul);
3076   COMPOUND_OP(Div);
3077   COMPOUND_OP(Rem);
3078   COMPOUND_OP(Add);
3079   COMPOUND_OP(Sub);
3080   COMPOUND_OP(Shl);
3081   COMPOUND_OP(Shr);
3082   COMPOUND_OP(And);
3083   COMPOUND_OP(Xor);
3084   COMPOUND_OP(Or);
3085 #undef COMPOUND_OP
3086 
3087   case BO_PtrMemD:
3088   case BO_PtrMemI:
3089   case BO_Mul:
3090   case BO_Div:
3091   case BO_Rem:
3092   case BO_Add:
3093   case BO_Sub:
3094   case BO_Shl:
3095   case BO_Shr:
3096   case BO_LT:
3097   case BO_GT:
3098   case BO_LE:
3099   case BO_GE:
3100   case BO_EQ:
3101   case BO_NE:
3102   case BO_And:
3103   case BO_Xor:
3104   case BO_Or:
3105   case BO_LAnd:
3106   case BO_LOr:
3107   case BO_Assign:
3108   case BO_Comma:
3109     llvm_unreachable("Not valid compound assignment operators");
3110   }
3111 
3112   llvm_unreachable("Unhandled compound assignment operator");
3113 }
3114