1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/FixedPointBuilder.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsPowerPC.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include <cstdarg> 44 45 using namespace clang; 46 using namespace CodeGen; 47 using llvm::Value; 48 49 //===----------------------------------------------------------------------===// 50 // Scalar Expression Emitter 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 55 /// Determine whether the given binary operation may overflow. 56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 58 /// the returned overflow check is precise. The returned value is 'true' for 59 /// all other opcodes, to be conservative. 60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 61 BinaryOperator::Opcode Opcode, bool Signed, 62 llvm::APInt &Result) { 63 // Assume overflow is possible, unless we can prove otherwise. 64 bool Overflow = true; 65 const auto &LHSAP = LHS->getValue(); 66 const auto &RHSAP = RHS->getValue(); 67 if (Opcode == BO_Add) { 68 Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow) 69 : LHSAP.uadd_ov(RHSAP, Overflow); 70 } else if (Opcode == BO_Sub) { 71 Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow) 72 : LHSAP.usub_ov(RHSAP, Overflow); 73 } else if (Opcode == BO_Mul) { 74 Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow) 75 : LHSAP.umul_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 77 if (Signed && !RHS->isZero()) 78 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 79 else 80 return false; 81 } 82 return Overflow; 83 } 84 85 struct BinOpInfo { 86 Value *LHS; 87 Value *RHS; 88 QualType Ty; // Computation Type. 89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 90 FPOptions FPFeatures; 91 const Expr *E; // Entire expr, for error unsupported. May not be binop. 92 93 /// Check if the binop can result in integer overflow. 94 bool mayHaveIntegerOverflow() const { 95 // Without constant input, we can't rule out overflow. 96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 98 if (!LHSCI || !RHSCI) 99 return true; 100 101 llvm::APInt Result; 102 return ::mayHaveIntegerOverflow( 103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 104 } 105 106 /// Check if the binop computes a division or a remainder. 107 bool isDivremOp() const { 108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 109 Opcode == BO_RemAssign; 110 } 111 112 /// Check if the binop can result in an integer division by zero. 113 bool mayHaveIntegerDivisionByZero() const { 114 if (isDivremOp()) 115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 116 return CI->isZero(); 117 return true; 118 } 119 120 /// Check if the binop can result in a float division by zero. 121 bool mayHaveFloatDivisionByZero() const { 122 if (isDivremOp()) 123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 124 return CFP->isZero(); 125 return true; 126 } 127 128 /// Check if at least one operand is a fixed point type. In such cases, this 129 /// operation did not follow usual arithmetic conversion and both operands 130 /// might not be of the same type. 131 bool isFixedPointOp() const { 132 // We cannot simply check the result type since comparison operations return 133 // an int. 134 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 135 QualType LHSType = BinOp->getLHS()->getType(); 136 QualType RHSType = BinOp->getRHS()->getType(); 137 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 138 } 139 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 140 return UnOp->getSubExpr()->getType()->isFixedPointType(); 141 return false; 142 } 143 }; 144 145 static bool MustVisitNullValue(const Expr *E) { 146 // If a null pointer expression's type is the C++0x nullptr_t, then 147 // it's not necessarily a simple constant and it must be evaluated 148 // for its potential side effects. 149 return E->getType()->isNullPtrType(); 150 } 151 152 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 154 const Expr *E) { 155 const Expr *Base = E->IgnoreImpCasts(); 156 if (E == Base) 157 return llvm::None; 158 159 QualType BaseTy = Base->getType(); 160 if (!BaseTy->isPromotableIntegerType() || 161 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 162 return llvm::None; 163 164 return BaseTy; 165 } 166 167 /// Check if \p E is a widened promoted integer. 168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 169 return getUnwidenedIntegerType(Ctx, E).hasValue(); 170 } 171 172 /// Check if we can skip the overflow check for \p Op. 173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 174 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 175 "Expected a unary or binary operator"); 176 177 // If the binop has constant inputs and we can prove there is no overflow, 178 // we can elide the overflow check. 179 if (!Op.mayHaveIntegerOverflow()) 180 return true; 181 182 // If a unary op has a widened operand, the op cannot overflow. 183 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 184 return !UO->canOverflow(); 185 186 // We usually don't need overflow checks for binops with widened operands. 187 // Multiplication with promoted unsigned operands is a special case. 188 const auto *BO = cast<BinaryOperator>(Op.E); 189 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 190 if (!OptionalLHSTy) 191 return false; 192 193 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 194 if (!OptionalRHSTy) 195 return false; 196 197 QualType LHSTy = *OptionalLHSTy; 198 QualType RHSTy = *OptionalRHSTy; 199 200 // This is the simple case: binops without unsigned multiplication, and with 201 // widened operands. No overflow check is needed here. 202 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 203 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 204 return true; 205 206 // For unsigned multiplication the overflow check can be elided if either one 207 // of the unpromoted types are less than half the size of the promoted type. 208 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 209 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 210 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 211 } 212 213 class ScalarExprEmitter 214 : public StmtVisitor<ScalarExprEmitter, Value*> { 215 CodeGenFunction &CGF; 216 CGBuilderTy &Builder; 217 bool IgnoreResultAssign; 218 llvm::LLVMContext &VMContext; 219 public: 220 221 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 222 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 223 VMContext(cgf.getLLVMContext()) { 224 } 225 226 //===--------------------------------------------------------------------===// 227 // Utilities 228 //===--------------------------------------------------------------------===// 229 230 bool TestAndClearIgnoreResultAssign() { 231 bool I = IgnoreResultAssign; 232 IgnoreResultAssign = false; 233 return I; 234 } 235 236 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 237 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 238 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 239 return CGF.EmitCheckedLValue(E, TCK); 240 } 241 242 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 243 const BinOpInfo &Info); 244 245 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 246 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 247 } 248 249 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 250 const AlignValueAttr *AVAttr = nullptr; 251 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 252 const ValueDecl *VD = DRE->getDecl(); 253 254 if (VD->getType()->isReferenceType()) { 255 if (const auto *TTy = 256 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 257 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 258 } else { 259 // Assumptions for function parameters are emitted at the start of the 260 // function, so there is no need to repeat that here, 261 // unless the alignment-assumption sanitizer is enabled, 262 // then we prefer the assumption over alignment attribute 263 // on IR function param. 264 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 265 return; 266 267 AVAttr = VD->getAttr<AlignValueAttr>(); 268 } 269 } 270 271 if (!AVAttr) 272 if (const auto *TTy = 273 dyn_cast<TypedefType>(E->getType())) 274 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 275 276 if (!AVAttr) 277 return; 278 279 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 280 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 281 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 282 } 283 284 /// EmitLoadOfLValue - Given an expression with complex type that represents a 285 /// value l-value, this method emits the address of the l-value, then loads 286 /// and returns the result. 287 Value *EmitLoadOfLValue(const Expr *E) { 288 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 289 E->getExprLoc()); 290 291 EmitLValueAlignmentAssumption(E, V); 292 return V; 293 } 294 295 /// EmitConversionToBool - Convert the specified expression value to a 296 /// boolean (i1) truth value. This is equivalent to "Val != 0". 297 Value *EmitConversionToBool(Value *Src, QualType DstTy); 298 299 /// Emit a check that a conversion from a floating-point type does not 300 /// overflow. 301 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 302 Value *Src, QualType SrcType, QualType DstType, 303 llvm::Type *DstTy, SourceLocation Loc); 304 305 /// Known implicit conversion check kinds. 306 /// Keep in sync with the enum of the same name in ubsan_handlers.h 307 enum ImplicitConversionCheckKind : unsigned char { 308 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 309 ICCK_UnsignedIntegerTruncation = 1, 310 ICCK_SignedIntegerTruncation = 2, 311 ICCK_IntegerSignChange = 3, 312 ICCK_SignedIntegerTruncationOrSignChange = 4, 313 }; 314 315 /// Emit a check that an [implicit] truncation of an integer does not 316 /// discard any bits. It is not UB, so we use the value after truncation. 317 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 318 QualType DstType, SourceLocation Loc); 319 320 /// Emit a check that an [implicit] conversion of an integer does not change 321 /// the sign of the value. It is not UB, so we use the value after conversion. 322 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 323 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 324 QualType DstType, SourceLocation Loc); 325 326 /// Emit a conversion from the specified type to the specified destination 327 /// type, both of which are LLVM scalar types. 328 struct ScalarConversionOpts { 329 bool TreatBooleanAsSigned; 330 bool EmitImplicitIntegerTruncationChecks; 331 bool EmitImplicitIntegerSignChangeChecks; 332 333 ScalarConversionOpts() 334 : TreatBooleanAsSigned(false), 335 EmitImplicitIntegerTruncationChecks(false), 336 EmitImplicitIntegerSignChangeChecks(false) {} 337 338 ScalarConversionOpts(clang::SanitizerSet SanOpts) 339 : TreatBooleanAsSigned(false), 340 EmitImplicitIntegerTruncationChecks( 341 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 342 EmitImplicitIntegerSignChangeChecks( 343 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 344 }; 345 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, 346 llvm::Type *SrcTy, llvm::Type *DstTy, 347 ScalarConversionOpts Opts); 348 Value * 349 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 350 SourceLocation Loc, 351 ScalarConversionOpts Opts = ScalarConversionOpts()); 352 353 /// Convert between either a fixed point and other fixed point or fixed point 354 /// and an integer. 355 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 356 SourceLocation Loc); 357 358 /// Emit a conversion from the specified complex type to the specified 359 /// destination type, where the destination type is an LLVM scalar type. 360 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 361 QualType SrcTy, QualType DstTy, 362 SourceLocation Loc); 363 364 /// EmitNullValue - Emit a value that corresponds to null for the given type. 365 Value *EmitNullValue(QualType Ty); 366 367 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 368 Value *EmitFloatToBoolConversion(Value *V) { 369 // Compare against 0.0 for fp scalars. 370 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 371 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 372 } 373 374 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 375 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 376 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 377 378 return Builder.CreateICmpNE(V, Zero, "tobool"); 379 } 380 381 Value *EmitIntToBoolConversion(Value *V) { 382 // Because of the type rules of C, we often end up computing a 383 // logical value, then zero extending it to int, then wanting it 384 // as a logical value again. Optimize this common case. 385 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 386 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 387 Value *Result = ZI->getOperand(0); 388 // If there aren't any more uses, zap the instruction to save space. 389 // Note that there can be more uses, for example if this 390 // is the result of an assignment. 391 if (ZI->use_empty()) 392 ZI->eraseFromParent(); 393 return Result; 394 } 395 } 396 397 return Builder.CreateIsNotNull(V, "tobool"); 398 } 399 400 //===--------------------------------------------------------------------===// 401 // Visitor Methods 402 //===--------------------------------------------------------------------===// 403 404 Value *Visit(Expr *E) { 405 ApplyDebugLocation DL(CGF, E); 406 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 407 } 408 409 Value *VisitStmt(Stmt *S) { 410 S->dump(llvm::errs(), CGF.getContext()); 411 llvm_unreachable("Stmt can't have complex result type!"); 412 } 413 Value *VisitExpr(Expr *S); 414 415 Value *VisitConstantExpr(ConstantExpr *E) { 416 // A constant expression of type 'void' generates no code and produces no 417 // value. 418 if (E->getType()->isVoidType()) 419 return nullptr; 420 421 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 422 if (E->isGLValue()) 423 return CGF.Builder.CreateLoad(Address( 424 Result, CGF.getContext().getTypeAlignInChars(E->getType()))); 425 return Result; 426 } 427 return Visit(E->getSubExpr()); 428 } 429 Value *VisitParenExpr(ParenExpr *PE) { 430 return Visit(PE->getSubExpr()); 431 } 432 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 433 return Visit(E->getReplacement()); 434 } 435 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 436 return Visit(GE->getResultExpr()); 437 } 438 Value *VisitCoawaitExpr(CoawaitExpr *S) { 439 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 440 } 441 Value *VisitCoyieldExpr(CoyieldExpr *S) { 442 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 443 } 444 Value *VisitUnaryCoawait(const UnaryOperator *E) { 445 return Visit(E->getSubExpr()); 446 } 447 448 // Leaves. 449 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 450 return Builder.getInt(E->getValue()); 451 } 452 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 453 return Builder.getInt(E->getValue()); 454 } 455 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 456 return llvm::ConstantFP::get(VMContext, E->getValue()); 457 } 458 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 459 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 460 } 461 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 462 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 463 } 464 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 466 } 467 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 468 return EmitNullValue(E->getType()); 469 } 470 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 471 return EmitNullValue(E->getType()); 472 } 473 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 474 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 475 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 476 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 477 return Builder.CreateBitCast(V, ConvertType(E->getType())); 478 } 479 480 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 481 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 482 } 483 484 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 485 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 486 } 487 488 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E); 489 490 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 491 if (E->isGLValue()) 492 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 493 E->getExprLoc()); 494 495 // Otherwise, assume the mapping is the scalar directly. 496 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 497 } 498 499 // l-values. 500 Value *VisitDeclRefExpr(DeclRefExpr *E) { 501 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 502 return CGF.emitScalarConstant(Constant, E); 503 return EmitLoadOfLValue(E); 504 } 505 506 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 507 return CGF.EmitObjCSelectorExpr(E); 508 } 509 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 510 return CGF.EmitObjCProtocolExpr(E); 511 } 512 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 513 return EmitLoadOfLValue(E); 514 } 515 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 516 if (E->getMethodDecl() && 517 E->getMethodDecl()->getReturnType()->isReferenceType()) 518 return EmitLoadOfLValue(E); 519 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 520 } 521 522 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 523 LValue LV = CGF.EmitObjCIsaExpr(E); 524 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 525 return V; 526 } 527 528 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 529 VersionTuple Version = E->getVersion(); 530 531 // If we're checking for a platform older than our minimum deployment 532 // target, we can fold the check away. 533 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 534 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 535 536 return CGF.EmitBuiltinAvailable(Version); 537 } 538 539 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 540 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 541 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 542 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 543 Value *VisitMemberExpr(MemberExpr *E); 544 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 545 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 546 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 547 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 548 // literals aren't l-values in C++. We do so simply because that's the 549 // cleanest way to handle compound literals in C++. 550 // See the discussion here: https://reviews.llvm.org/D64464 551 return EmitLoadOfLValue(E); 552 } 553 554 Value *VisitInitListExpr(InitListExpr *E); 555 556 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 557 assert(CGF.getArrayInitIndex() && 558 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 559 return CGF.getArrayInitIndex(); 560 } 561 562 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 563 return EmitNullValue(E->getType()); 564 } 565 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 566 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 567 return VisitCastExpr(E); 568 } 569 Value *VisitCastExpr(CastExpr *E); 570 571 Value *VisitCallExpr(const CallExpr *E) { 572 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 573 return EmitLoadOfLValue(E); 574 575 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 576 577 EmitLValueAlignmentAssumption(E, V); 578 return V; 579 } 580 581 Value *VisitStmtExpr(const StmtExpr *E); 582 583 // Unary Operators. 584 Value *VisitUnaryPostDec(const UnaryOperator *E) { 585 LValue LV = EmitLValue(E->getSubExpr()); 586 return EmitScalarPrePostIncDec(E, LV, false, false); 587 } 588 Value *VisitUnaryPostInc(const UnaryOperator *E) { 589 LValue LV = EmitLValue(E->getSubExpr()); 590 return EmitScalarPrePostIncDec(E, LV, true, false); 591 } 592 Value *VisitUnaryPreDec(const UnaryOperator *E) { 593 LValue LV = EmitLValue(E->getSubExpr()); 594 return EmitScalarPrePostIncDec(E, LV, false, true); 595 } 596 Value *VisitUnaryPreInc(const UnaryOperator *E) { 597 LValue LV = EmitLValue(E->getSubExpr()); 598 return EmitScalarPrePostIncDec(E, LV, true, true); 599 } 600 601 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 602 llvm::Value *InVal, 603 bool IsInc); 604 605 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 606 bool isInc, bool isPre); 607 608 609 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 610 if (isa<MemberPointerType>(E->getType())) // never sugared 611 return CGF.CGM.getMemberPointerConstant(E); 612 613 return EmitLValue(E->getSubExpr()).getPointer(CGF); 614 } 615 Value *VisitUnaryDeref(const UnaryOperator *E) { 616 if (E->getType()->isVoidType()) 617 return Visit(E->getSubExpr()); // the actual value should be unused 618 return EmitLoadOfLValue(E); 619 } 620 Value *VisitUnaryPlus(const UnaryOperator *E) { 621 // This differs from gcc, though, most likely due to a bug in gcc. 622 TestAndClearIgnoreResultAssign(); 623 return Visit(E->getSubExpr()); 624 } 625 Value *VisitUnaryMinus (const UnaryOperator *E); 626 Value *VisitUnaryNot (const UnaryOperator *E); 627 Value *VisitUnaryLNot (const UnaryOperator *E); 628 Value *VisitUnaryReal (const UnaryOperator *E); 629 Value *VisitUnaryImag (const UnaryOperator *E); 630 Value *VisitUnaryExtension(const UnaryOperator *E) { 631 return Visit(E->getSubExpr()); 632 } 633 634 // C++ 635 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 636 return EmitLoadOfLValue(E); 637 } 638 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 639 auto &Ctx = CGF.getContext(); 640 APValue Evaluated = 641 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 642 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 643 SLE->getType()); 644 } 645 646 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 647 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 648 return Visit(DAE->getExpr()); 649 } 650 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 651 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 652 return Visit(DIE->getExpr()); 653 } 654 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 655 return CGF.LoadCXXThis(); 656 } 657 658 Value *VisitExprWithCleanups(ExprWithCleanups *E); 659 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 660 return CGF.EmitCXXNewExpr(E); 661 } 662 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 663 CGF.EmitCXXDeleteExpr(E); 664 return nullptr; 665 } 666 667 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 668 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 669 } 670 671 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 672 return Builder.getInt1(E->isSatisfied()); 673 } 674 675 Value *VisitRequiresExpr(const RequiresExpr *E) { 676 return Builder.getInt1(E->isSatisfied()); 677 } 678 679 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 680 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 681 } 682 683 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 684 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 685 } 686 687 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 688 // C++ [expr.pseudo]p1: 689 // The result shall only be used as the operand for the function call 690 // operator (), and the result of such a call has type void. The only 691 // effect is the evaluation of the postfix-expression before the dot or 692 // arrow. 693 CGF.EmitScalarExpr(E->getBase()); 694 return nullptr; 695 } 696 697 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 698 return EmitNullValue(E->getType()); 699 } 700 701 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 702 CGF.EmitCXXThrowExpr(E); 703 return nullptr; 704 } 705 706 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 707 return Builder.getInt1(E->getValue()); 708 } 709 710 // Binary Operators. 711 Value *EmitMul(const BinOpInfo &Ops) { 712 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 713 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 714 case LangOptions::SOB_Defined: 715 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 716 case LangOptions::SOB_Undefined: 717 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 718 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 719 LLVM_FALLTHROUGH; 720 case LangOptions::SOB_Trapping: 721 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 722 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 723 return EmitOverflowCheckedBinOp(Ops); 724 } 725 } 726 727 if (Ops.Ty->isConstantMatrixType()) { 728 llvm::MatrixBuilder MB(Builder); 729 // We need to check the types of the operands of the operator to get the 730 // correct matrix dimensions. 731 auto *BO = cast<BinaryOperator>(Ops.E); 732 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 733 BO->getLHS()->getType().getCanonicalType()); 734 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 735 BO->getRHS()->getType().getCanonicalType()); 736 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 737 if (LHSMatTy && RHSMatTy) 738 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 739 LHSMatTy->getNumColumns(), 740 RHSMatTy->getNumColumns()); 741 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 742 } 743 744 if (Ops.Ty->isUnsignedIntegerType() && 745 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 746 !CanElideOverflowCheck(CGF.getContext(), Ops)) 747 return EmitOverflowCheckedBinOp(Ops); 748 749 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 750 // Preserve the old values 751 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 752 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 753 } 754 if (Ops.isFixedPointOp()) 755 return EmitFixedPointBinOp(Ops); 756 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 757 } 758 /// Create a binary op that checks for overflow. 759 /// Currently only supports +, - and *. 760 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 761 762 // Check for undefined division and modulus behaviors. 763 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 764 llvm::Value *Zero,bool isDiv); 765 // Common helper for getting how wide LHS of shift is. 766 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 767 768 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 769 // non powers of two. 770 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 771 772 Value *EmitDiv(const BinOpInfo &Ops); 773 Value *EmitRem(const BinOpInfo &Ops); 774 Value *EmitAdd(const BinOpInfo &Ops); 775 Value *EmitSub(const BinOpInfo &Ops); 776 Value *EmitShl(const BinOpInfo &Ops); 777 Value *EmitShr(const BinOpInfo &Ops); 778 Value *EmitAnd(const BinOpInfo &Ops) { 779 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 780 } 781 Value *EmitXor(const BinOpInfo &Ops) { 782 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 783 } 784 Value *EmitOr (const BinOpInfo &Ops) { 785 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 786 } 787 788 // Helper functions for fixed point binary operations. 789 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 790 791 BinOpInfo EmitBinOps(const BinaryOperator *E); 792 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 793 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 794 Value *&Result); 795 796 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 797 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 798 799 // Binary operators and binary compound assignment operators. 800 #define HANDLEBINOP(OP) \ 801 Value *VisitBin ## OP(const BinaryOperator *E) { \ 802 return Emit ## OP(EmitBinOps(E)); \ 803 } \ 804 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 805 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 806 } 807 HANDLEBINOP(Mul) 808 HANDLEBINOP(Div) 809 HANDLEBINOP(Rem) 810 HANDLEBINOP(Add) 811 HANDLEBINOP(Sub) 812 HANDLEBINOP(Shl) 813 HANDLEBINOP(Shr) 814 HANDLEBINOP(And) 815 HANDLEBINOP(Xor) 816 HANDLEBINOP(Or) 817 #undef HANDLEBINOP 818 819 // Comparisons. 820 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 821 llvm::CmpInst::Predicate SICmpOpc, 822 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 823 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 824 Value *VisitBin##CODE(const BinaryOperator *E) { \ 825 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 826 llvm::FCmpInst::FP, SIG); } 827 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 828 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 829 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 830 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 831 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 832 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 833 #undef VISITCOMP 834 835 Value *VisitBinAssign (const BinaryOperator *E); 836 837 Value *VisitBinLAnd (const BinaryOperator *E); 838 Value *VisitBinLOr (const BinaryOperator *E); 839 Value *VisitBinComma (const BinaryOperator *E); 840 841 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 842 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 843 844 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 845 return Visit(E->getSemanticForm()); 846 } 847 848 // Other Operators. 849 Value *VisitBlockExpr(const BlockExpr *BE); 850 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 851 Value *VisitChooseExpr(ChooseExpr *CE); 852 Value *VisitVAArgExpr(VAArgExpr *VE); 853 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 854 return CGF.EmitObjCStringLiteral(E); 855 } 856 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 857 return CGF.EmitObjCBoxedExpr(E); 858 } 859 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 860 return CGF.EmitObjCArrayLiteral(E); 861 } 862 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 863 return CGF.EmitObjCDictionaryLiteral(E); 864 } 865 Value *VisitAsTypeExpr(AsTypeExpr *CE); 866 Value *VisitAtomicExpr(AtomicExpr *AE); 867 }; 868 } // end anonymous namespace. 869 870 //===----------------------------------------------------------------------===// 871 // Utilities 872 //===----------------------------------------------------------------------===// 873 874 /// EmitConversionToBool - Convert the specified expression value to a 875 /// boolean (i1) truth value. This is equivalent to "Val != 0". 876 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 877 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 878 879 if (SrcType->isRealFloatingType()) 880 return EmitFloatToBoolConversion(Src); 881 882 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 883 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 884 885 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 886 "Unknown scalar type to convert"); 887 888 if (isa<llvm::IntegerType>(Src->getType())) 889 return EmitIntToBoolConversion(Src); 890 891 assert(isa<llvm::PointerType>(Src->getType())); 892 return EmitPointerToBoolConversion(Src, SrcType); 893 } 894 895 void ScalarExprEmitter::EmitFloatConversionCheck( 896 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 897 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 898 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 899 if (!isa<llvm::IntegerType>(DstTy)) 900 return; 901 902 CodeGenFunction::SanitizerScope SanScope(&CGF); 903 using llvm::APFloat; 904 using llvm::APSInt; 905 906 llvm::Value *Check = nullptr; 907 const llvm::fltSemantics &SrcSema = 908 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 909 910 // Floating-point to integer. This has undefined behavior if the source is 911 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 912 // to an integer). 913 unsigned Width = CGF.getContext().getIntWidth(DstType); 914 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 915 916 APSInt Min = APSInt::getMinValue(Width, Unsigned); 917 APFloat MinSrc(SrcSema, APFloat::uninitialized); 918 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 919 APFloat::opOverflow) 920 // Don't need an overflow check for lower bound. Just check for 921 // -Inf/NaN. 922 MinSrc = APFloat::getInf(SrcSema, true); 923 else 924 // Find the largest value which is too small to represent (before 925 // truncation toward zero). 926 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 927 928 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 929 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 930 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 931 APFloat::opOverflow) 932 // Don't need an overflow check for upper bound. Just check for 933 // +Inf/NaN. 934 MaxSrc = APFloat::getInf(SrcSema, false); 935 else 936 // Find the smallest value which is too large to represent (before 937 // truncation toward zero). 938 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 939 940 // If we're converting from __half, convert the range to float to match 941 // the type of src. 942 if (OrigSrcType->isHalfType()) { 943 const llvm::fltSemantics &Sema = 944 CGF.getContext().getFloatTypeSemantics(SrcType); 945 bool IsInexact; 946 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 947 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 948 } 949 950 llvm::Value *GE = 951 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 952 llvm::Value *LE = 953 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 954 Check = Builder.CreateAnd(GE, LE); 955 956 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 957 CGF.EmitCheckTypeDescriptor(OrigSrcType), 958 CGF.EmitCheckTypeDescriptor(DstType)}; 959 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 960 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 961 } 962 963 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 964 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 965 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 966 std::pair<llvm::Value *, SanitizerMask>> 967 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 968 QualType DstType, CGBuilderTy &Builder) { 969 llvm::Type *SrcTy = Src->getType(); 970 llvm::Type *DstTy = Dst->getType(); 971 (void)DstTy; // Only used in assert() 972 973 // This should be truncation of integral types. 974 assert(Src != Dst); 975 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 976 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 977 "non-integer llvm type"); 978 979 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 980 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 981 982 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 983 // Else, it is a signed truncation. 984 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 985 SanitizerMask Mask; 986 if (!SrcSigned && !DstSigned) { 987 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 988 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 989 } else { 990 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 991 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 992 } 993 994 llvm::Value *Check = nullptr; 995 // 1. Extend the truncated value back to the same width as the Src. 996 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 997 // 2. Equality-compare with the original source value 998 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 999 // If the comparison result is 'i1 false', then the truncation was lossy. 1000 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1001 } 1002 1003 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 1004 QualType SrcType, QualType DstType) { 1005 return SrcType->isIntegerType() && DstType->isIntegerType(); 1006 } 1007 1008 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1009 Value *Dst, QualType DstType, 1010 SourceLocation Loc) { 1011 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1012 return; 1013 1014 // We only care about int->int conversions here. 1015 // We ignore conversions to/from pointer and/or bool. 1016 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1017 DstType)) 1018 return; 1019 1020 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1021 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1022 // This must be truncation. Else we do not care. 1023 if (SrcBits <= DstBits) 1024 return; 1025 1026 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1027 1028 // If the integer sign change sanitizer is enabled, 1029 // and we are truncating from larger unsigned type to smaller signed type, 1030 // let that next sanitizer deal with it. 1031 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1032 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1033 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1034 (!SrcSigned && DstSigned)) 1035 return; 1036 1037 CodeGenFunction::SanitizerScope SanScope(&CGF); 1038 1039 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1040 std::pair<llvm::Value *, SanitizerMask>> 1041 Check = 1042 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1043 // If the comparison result is 'i1 false', then the truncation was lossy. 1044 1045 // Do we care about this type of truncation? 1046 if (!CGF.SanOpts.has(Check.second.second)) 1047 return; 1048 1049 llvm::Constant *StaticArgs[] = { 1050 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1051 CGF.EmitCheckTypeDescriptor(DstType), 1052 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1053 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1054 {Src, Dst}); 1055 } 1056 1057 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1058 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1059 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1060 std::pair<llvm::Value *, SanitizerMask>> 1061 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1062 QualType DstType, CGBuilderTy &Builder) { 1063 llvm::Type *SrcTy = Src->getType(); 1064 llvm::Type *DstTy = Dst->getType(); 1065 1066 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1067 "non-integer llvm type"); 1068 1069 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1070 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1071 (void)SrcSigned; // Only used in assert() 1072 (void)DstSigned; // Only used in assert() 1073 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1074 unsigned DstBits = DstTy->getScalarSizeInBits(); 1075 (void)SrcBits; // Only used in assert() 1076 (void)DstBits; // Only used in assert() 1077 1078 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1079 "either the widths should be different, or the signednesses."); 1080 1081 // NOTE: zero value is considered to be non-negative. 1082 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1083 const char *Name) -> Value * { 1084 // Is this value a signed type? 1085 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1086 llvm::Type *VTy = V->getType(); 1087 if (!VSigned) { 1088 // If the value is unsigned, then it is never negative. 1089 // FIXME: can we encounter non-scalar VTy here? 1090 return llvm::ConstantInt::getFalse(VTy->getContext()); 1091 } 1092 // Get the zero of the same type with which we will be comparing. 1093 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1094 // %V.isnegative = icmp slt %V, 0 1095 // I.e is %V *strictly* less than zero, does it have negative value? 1096 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1097 llvm::Twine(Name) + "." + V->getName() + 1098 ".negativitycheck"); 1099 }; 1100 1101 // 1. Was the old Value negative? 1102 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1103 // 2. Is the new Value negative? 1104 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1105 // 3. Now, was the 'negativity status' preserved during the conversion? 1106 // NOTE: conversion from negative to zero is considered to change the sign. 1107 // (We want to get 'false' when the conversion changed the sign) 1108 // So we should just equality-compare the negativity statuses. 1109 llvm::Value *Check = nullptr; 1110 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1111 // If the comparison result is 'false', then the conversion changed the sign. 1112 return std::make_pair( 1113 ScalarExprEmitter::ICCK_IntegerSignChange, 1114 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1115 } 1116 1117 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1118 Value *Dst, QualType DstType, 1119 SourceLocation Loc) { 1120 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1121 return; 1122 1123 llvm::Type *SrcTy = Src->getType(); 1124 llvm::Type *DstTy = Dst->getType(); 1125 1126 // We only care about int->int conversions here. 1127 // We ignore conversions to/from pointer and/or bool. 1128 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1129 DstType)) 1130 return; 1131 1132 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1133 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1134 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1135 unsigned DstBits = DstTy->getScalarSizeInBits(); 1136 1137 // Now, we do not need to emit the check in *all* of the cases. 1138 // We can avoid emitting it in some obvious cases where it would have been 1139 // dropped by the opt passes (instcombine) always anyways. 1140 // If it's a cast between effectively the same type, no check. 1141 // NOTE: this is *not* equivalent to checking the canonical types. 1142 if (SrcSigned == DstSigned && SrcBits == DstBits) 1143 return; 1144 // At least one of the values needs to have signed type. 1145 // If both are unsigned, then obviously, neither of them can be negative. 1146 if (!SrcSigned && !DstSigned) 1147 return; 1148 // If the conversion is to *larger* *signed* type, then no check is needed. 1149 // Because either sign-extension happens (so the sign will remain), 1150 // or zero-extension will happen (the sign bit will be zero.) 1151 if ((DstBits > SrcBits) && DstSigned) 1152 return; 1153 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1154 (SrcBits > DstBits) && SrcSigned) { 1155 // If the signed integer truncation sanitizer is enabled, 1156 // and this is a truncation from signed type, then no check is needed. 1157 // Because here sign change check is interchangeable with truncation check. 1158 return; 1159 } 1160 // That's it. We can't rule out any more cases with the data we have. 1161 1162 CodeGenFunction::SanitizerScope SanScope(&CGF); 1163 1164 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1165 std::pair<llvm::Value *, SanitizerMask>> 1166 Check; 1167 1168 // Each of these checks needs to return 'false' when an issue was detected. 1169 ImplicitConversionCheckKind CheckKind; 1170 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1171 // So we can 'and' all the checks together, and still get 'false', 1172 // if at least one of the checks detected an issue. 1173 1174 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1175 CheckKind = Check.first; 1176 Checks.emplace_back(Check.second); 1177 1178 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1179 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1180 // If the signed integer truncation sanitizer was enabled, 1181 // and we are truncating from larger unsigned type to smaller signed type, 1182 // let's handle the case we skipped in that check. 1183 Check = 1184 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1185 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1186 Checks.emplace_back(Check.second); 1187 // If the comparison result is 'i1 false', then the truncation was lossy. 1188 } 1189 1190 llvm::Constant *StaticArgs[] = { 1191 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1192 CGF.EmitCheckTypeDescriptor(DstType), 1193 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1194 // EmitCheck() will 'and' all the checks together. 1195 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1196 {Src, Dst}); 1197 } 1198 1199 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, 1200 QualType DstType, llvm::Type *SrcTy, 1201 llvm::Type *DstTy, 1202 ScalarConversionOpts Opts) { 1203 // The Element types determine the type of cast to perform. 1204 llvm::Type *SrcElementTy; 1205 llvm::Type *DstElementTy; 1206 QualType SrcElementType; 1207 QualType DstElementType; 1208 if (SrcType->isMatrixType() && DstType->isMatrixType()) { 1209 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1210 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1211 SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); 1212 DstElementType = DstType->castAs<MatrixType>()->getElementType(); 1213 } else { 1214 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && 1215 "cannot cast between matrix and non-matrix types"); 1216 SrcElementTy = SrcTy; 1217 DstElementTy = DstTy; 1218 SrcElementType = SrcType; 1219 DstElementType = DstType; 1220 } 1221 1222 if (isa<llvm::IntegerType>(SrcElementTy)) { 1223 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); 1224 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1225 InputSigned = true; 1226 } 1227 1228 if (isa<llvm::IntegerType>(DstElementTy)) 1229 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1230 if (InputSigned) 1231 return Builder.CreateSIToFP(Src, DstTy, "conv"); 1232 return Builder.CreateUIToFP(Src, DstTy, "conv"); 1233 } 1234 1235 if (isa<llvm::IntegerType>(DstElementTy)) { 1236 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion"); 1237 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType(); 1238 1239 // If we can't recognize overflow as undefined behavior, assume that 1240 // overflow saturates. This protects against normal optimizations if we are 1241 // compiling with non-standard FP semantics. 1242 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) { 1243 llvm::Intrinsic::ID IID = 1244 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat; 1245 return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src); 1246 } 1247 1248 if (IsSigned) 1249 return Builder.CreateFPToSI(Src, DstTy, "conv"); 1250 return Builder.CreateFPToUI(Src, DstTy, "conv"); 1251 } 1252 1253 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) 1254 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1255 return Builder.CreateFPExt(Src, DstTy, "conv"); 1256 } 1257 1258 /// Emit a conversion from the specified type to the specified destination type, 1259 /// both of which are LLVM scalar types. 1260 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1261 QualType DstType, 1262 SourceLocation Loc, 1263 ScalarConversionOpts Opts) { 1264 // All conversions involving fixed point types should be handled by the 1265 // EmitFixedPoint family functions. This is done to prevent bloating up this 1266 // function more, and although fixed point numbers are represented by 1267 // integers, we do not want to follow any logic that assumes they should be 1268 // treated as integers. 1269 // TODO(leonardchan): When necessary, add another if statement checking for 1270 // conversions to fixed point types from other types. 1271 if (SrcType->isFixedPointType()) { 1272 if (DstType->isBooleanType()) 1273 // It is important that we check this before checking if the dest type is 1274 // an integer because booleans are technically integer types. 1275 // We do not need to check the padding bit on unsigned types if unsigned 1276 // padding is enabled because overflow into this bit is undefined 1277 // behavior. 1278 return Builder.CreateIsNotNull(Src, "tobool"); 1279 if (DstType->isFixedPointType() || DstType->isIntegerType() || 1280 DstType->isRealFloatingType()) 1281 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1282 1283 llvm_unreachable( 1284 "Unhandled scalar conversion from a fixed point type to another type."); 1285 } else if (DstType->isFixedPointType()) { 1286 if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) 1287 // This also includes converting booleans and enums to fixed point types. 1288 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1289 1290 llvm_unreachable( 1291 "Unhandled scalar conversion to a fixed point type from another type."); 1292 } 1293 1294 QualType NoncanonicalSrcType = SrcType; 1295 QualType NoncanonicalDstType = DstType; 1296 1297 SrcType = CGF.getContext().getCanonicalType(SrcType); 1298 DstType = CGF.getContext().getCanonicalType(DstType); 1299 if (SrcType == DstType) return Src; 1300 1301 if (DstType->isVoidType()) return nullptr; 1302 1303 llvm::Value *OrigSrc = Src; 1304 QualType OrigSrcType = SrcType; 1305 llvm::Type *SrcTy = Src->getType(); 1306 1307 // Handle conversions to bool first, they are special: comparisons against 0. 1308 if (DstType->isBooleanType()) 1309 return EmitConversionToBool(Src, SrcType); 1310 1311 llvm::Type *DstTy = ConvertType(DstType); 1312 1313 // Cast from half through float if half isn't a native type. 1314 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1315 // Cast to FP using the intrinsic if the half type itself isn't supported. 1316 if (DstTy->isFloatingPointTy()) { 1317 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1318 return Builder.CreateCall( 1319 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1320 Src); 1321 } else { 1322 // Cast to other types through float, using either the intrinsic or FPExt, 1323 // depending on whether the half type itself is supported 1324 // (as opposed to operations on half, available with NativeHalfType). 1325 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1326 Src = Builder.CreateCall( 1327 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1328 CGF.CGM.FloatTy), 1329 Src); 1330 } else { 1331 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1332 } 1333 SrcType = CGF.getContext().FloatTy; 1334 SrcTy = CGF.FloatTy; 1335 } 1336 } 1337 1338 // Ignore conversions like int -> uint. 1339 if (SrcTy == DstTy) { 1340 if (Opts.EmitImplicitIntegerSignChangeChecks) 1341 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1342 NoncanonicalDstType, Loc); 1343 1344 return Src; 1345 } 1346 1347 // Handle pointer conversions next: pointers can only be converted to/from 1348 // other pointers and integers. Check for pointer types in terms of LLVM, as 1349 // some native types (like Obj-C id) may map to a pointer type. 1350 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1351 // The source value may be an integer, or a pointer. 1352 if (isa<llvm::PointerType>(SrcTy)) 1353 return Builder.CreateBitCast(Src, DstTy, "conv"); 1354 1355 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1356 // First, convert to the correct width so that we control the kind of 1357 // extension. 1358 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1359 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1360 llvm::Value* IntResult = 1361 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1362 // Then, cast to pointer. 1363 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1364 } 1365 1366 if (isa<llvm::PointerType>(SrcTy)) { 1367 // Must be an ptr to int cast. 1368 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1369 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1370 } 1371 1372 // A scalar can be splatted to an extended vector of the same element type 1373 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1374 // Sema should add casts to make sure that the source expression's type is 1375 // the same as the vector's element type (sans qualifiers) 1376 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1377 SrcType.getTypePtr() && 1378 "Splatted expr doesn't match with vector element type?"); 1379 1380 // Splat the element across to all elements 1381 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 1382 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1383 } 1384 1385 if (SrcType->isMatrixType() && DstType->isMatrixType()) 1386 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1387 1388 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1389 // Allow bitcast from vector to integer/fp of the same size. 1390 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1391 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1392 if (SrcSize == DstSize) 1393 return Builder.CreateBitCast(Src, DstTy, "conv"); 1394 1395 // Conversions between vectors of different sizes are not allowed except 1396 // when vectors of half are involved. Operations on storage-only half 1397 // vectors require promoting half vector operands to float vectors and 1398 // truncating the result, which is either an int or float vector, to a 1399 // short or half vector. 1400 1401 // Source and destination are both expected to be vectors. 1402 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1403 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1404 (void)DstElementTy; 1405 1406 assert(((SrcElementTy->isIntegerTy() && 1407 DstElementTy->isIntegerTy()) || 1408 (SrcElementTy->isFloatingPointTy() && 1409 DstElementTy->isFloatingPointTy())) && 1410 "unexpected conversion between a floating-point vector and an " 1411 "integer vector"); 1412 1413 // Truncate an i32 vector to an i16 vector. 1414 if (SrcElementTy->isIntegerTy()) 1415 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1416 1417 // Truncate a float vector to a half vector. 1418 if (SrcSize > DstSize) 1419 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1420 1421 // Promote a half vector to a float vector. 1422 return Builder.CreateFPExt(Src, DstTy, "conv"); 1423 } 1424 1425 // Finally, we have the arithmetic types: real int/float. 1426 Value *Res = nullptr; 1427 llvm::Type *ResTy = DstTy; 1428 1429 // An overflowing conversion has undefined behavior if either the source type 1430 // or the destination type is a floating-point type. However, we consider the 1431 // range of representable values for all floating-point types to be 1432 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1433 // floating-point type. 1434 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1435 OrigSrcType->isFloatingType()) 1436 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1437 Loc); 1438 1439 // Cast to half through float if half isn't a native type. 1440 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1441 // Make sure we cast in a single step if from another FP type. 1442 if (SrcTy->isFloatingPointTy()) { 1443 // Use the intrinsic if the half type itself isn't supported 1444 // (as opposed to operations on half, available with NativeHalfType). 1445 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1446 return Builder.CreateCall( 1447 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1448 // If the half type is supported, just use an fptrunc. 1449 return Builder.CreateFPTrunc(Src, DstTy); 1450 } 1451 DstTy = CGF.FloatTy; 1452 } 1453 1454 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1455 1456 if (DstTy != ResTy) { 1457 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1458 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1459 Res = Builder.CreateCall( 1460 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1461 Res); 1462 } else { 1463 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1464 } 1465 } 1466 1467 if (Opts.EmitImplicitIntegerTruncationChecks) 1468 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1469 NoncanonicalDstType, Loc); 1470 1471 if (Opts.EmitImplicitIntegerSignChangeChecks) 1472 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1473 NoncanonicalDstType, Loc); 1474 1475 return Res; 1476 } 1477 1478 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1479 QualType DstTy, 1480 SourceLocation Loc) { 1481 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 1482 llvm::Value *Result; 1483 if (SrcTy->isRealFloatingType()) 1484 Result = FPBuilder.CreateFloatingToFixed(Src, 1485 CGF.getContext().getFixedPointSemantics(DstTy)); 1486 else if (DstTy->isRealFloatingType()) 1487 Result = FPBuilder.CreateFixedToFloating(Src, 1488 CGF.getContext().getFixedPointSemantics(SrcTy), 1489 ConvertType(DstTy)); 1490 else { 1491 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1492 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1493 1494 if (DstTy->isIntegerType()) 1495 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, 1496 DstFPSema.getWidth(), 1497 DstFPSema.isSigned()); 1498 else if (SrcTy->isIntegerType()) 1499 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), 1500 DstFPSema); 1501 else 1502 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); 1503 } 1504 return Result; 1505 } 1506 1507 /// Emit a conversion from the specified complex type to the specified 1508 /// destination type, where the destination type is an LLVM scalar type. 1509 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1510 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1511 SourceLocation Loc) { 1512 // Get the source element type. 1513 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1514 1515 // Handle conversions to bool first, they are special: comparisons against 0. 1516 if (DstTy->isBooleanType()) { 1517 // Complex != 0 -> (Real != 0) | (Imag != 0) 1518 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1519 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1520 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1521 } 1522 1523 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1524 // the imaginary part of the complex value is discarded and the value of the 1525 // real part is converted according to the conversion rules for the 1526 // corresponding real type. 1527 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1528 } 1529 1530 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1531 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1532 } 1533 1534 /// Emit a sanitization check for the given "binary" operation (which 1535 /// might actually be a unary increment which has been lowered to a binary 1536 /// operation). The check passes if all values in \p Checks (which are \c i1), 1537 /// are \c true. 1538 void ScalarExprEmitter::EmitBinOpCheck( 1539 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1540 assert(CGF.IsSanitizerScope); 1541 SanitizerHandler Check; 1542 SmallVector<llvm::Constant *, 4> StaticData; 1543 SmallVector<llvm::Value *, 2> DynamicData; 1544 1545 BinaryOperatorKind Opcode = Info.Opcode; 1546 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1547 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1548 1549 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1550 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1551 if (UO && UO->getOpcode() == UO_Minus) { 1552 Check = SanitizerHandler::NegateOverflow; 1553 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1554 DynamicData.push_back(Info.RHS); 1555 } else { 1556 if (BinaryOperator::isShiftOp(Opcode)) { 1557 // Shift LHS negative or too large, or RHS out of bounds. 1558 Check = SanitizerHandler::ShiftOutOfBounds; 1559 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1560 StaticData.push_back( 1561 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1562 StaticData.push_back( 1563 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1564 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1565 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1566 Check = SanitizerHandler::DivremOverflow; 1567 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1568 } else { 1569 // Arithmetic overflow (+, -, *). 1570 switch (Opcode) { 1571 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1572 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1573 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1574 default: llvm_unreachable("unexpected opcode for bin op check"); 1575 } 1576 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1577 } 1578 DynamicData.push_back(Info.LHS); 1579 DynamicData.push_back(Info.RHS); 1580 } 1581 1582 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1583 } 1584 1585 //===----------------------------------------------------------------------===// 1586 // Visitor Methods 1587 //===----------------------------------------------------------------------===// 1588 1589 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1590 CGF.ErrorUnsupported(E, "scalar expression"); 1591 if (E->getType()->isVoidType()) 1592 return nullptr; 1593 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1594 } 1595 1596 Value * 1597 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) { 1598 ASTContext &Context = CGF.getContext(); 1599 llvm::Optional<LangAS> GlobalAS = 1600 Context.getTargetInfo().getConstantAddressSpace(); 1601 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr( 1602 E->ComputeName(Context), "__usn_str", 1603 static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default))); 1604 1605 unsigned ExprAS = Context.getTargetAddressSpace(E->getType()); 1606 1607 if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS) 1608 return GlobalConstStr; 1609 1610 llvm::PointerType *PtrTy = cast<llvm::PointerType>(GlobalConstStr->getType()); 1611 llvm::PointerType *NewPtrTy = 1612 llvm::PointerType::getWithSamePointeeType(PtrTy, ExprAS); 1613 return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast"); 1614 } 1615 1616 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1617 // Vector Mask Case 1618 if (E->getNumSubExprs() == 2) { 1619 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1620 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1621 Value *Mask; 1622 1623 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); 1624 unsigned LHSElts = LTy->getNumElements(); 1625 1626 Mask = RHS; 1627 1628 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); 1629 1630 // Mask off the high bits of each shuffle index. 1631 Value *MaskBits = 1632 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1633 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1634 1635 // newv = undef 1636 // mask = mask & maskbits 1637 // for each elt 1638 // n = extract mask i 1639 // x = extract val n 1640 // newv = insert newv, x, i 1641 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1642 MTy->getNumElements()); 1643 Value* NewV = llvm::UndefValue::get(RTy); 1644 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1645 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1646 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1647 1648 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1649 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1650 } 1651 return NewV; 1652 } 1653 1654 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1655 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1656 1657 SmallVector<int, 32> Indices; 1658 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1659 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1660 // Check for -1 and output it as undef in the IR. 1661 if (Idx.isSigned() && Idx.isAllOnes()) 1662 Indices.push_back(-1); 1663 else 1664 Indices.push_back(Idx.getZExtValue()); 1665 } 1666 1667 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1668 } 1669 1670 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1671 QualType SrcType = E->getSrcExpr()->getType(), 1672 DstType = E->getType(); 1673 1674 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1675 1676 SrcType = CGF.getContext().getCanonicalType(SrcType); 1677 DstType = CGF.getContext().getCanonicalType(DstType); 1678 if (SrcType == DstType) return Src; 1679 1680 assert(SrcType->isVectorType() && 1681 "ConvertVector source type must be a vector"); 1682 assert(DstType->isVectorType() && 1683 "ConvertVector destination type must be a vector"); 1684 1685 llvm::Type *SrcTy = Src->getType(); 1686 llvm::Type *DstTy = ConvertType(DstType); 1687 1688 // Ignore conversions like int -> uint. 1689 if (SrcTy == DstTy) 1690 return Src; 1691 1692 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1693 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1694 1695 assert(SrcTy->isVectorTy() && 1696 "ConvertVector source IR type must be a vector"); 1697 assert(DstTy->isVectorTy() && 1698 "ConvertVector destination IR type must be a vector"); 1699 1700 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1701 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1702 1703 if (DstEltType->isBooleanType()) { 1704 assert((SrcEltTy->isFloatingPointTy() || 1705 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1706 1707 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1708 if (SrcEltTy->isFloatingPointTy()) { 1709 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1710 } else { 1711 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1712 } 1713 } 1714 1715 // We have the arithmetic types: real int/float. 1716 Value *Res = nullptr; 1717 1718 if (isa<llvm::IntegerType>(SrcEltTy)) { 1719 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1720 if (isa<llvm::IntegerType>(DstEltTy)) 1721 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1722 else if (InputSigned) 1723 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1724 else 1725 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1726 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1727 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1728 if (DstEltType->isSignedIntegerOrEnumerationType()) 1729 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1730 else 1731 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1732 } else { 1733 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1734 "Unknown real conversion"); 1735 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1736 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1737 else 1738 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1739 } 1740 1741 return Res; 1742 } 1743 1744 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1745 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1746 CGF.EmitIgnoredExpr(E->getBase()); 1747 return CGF.emitScalarConstant(Constant, E); 1748 } else { 1749 Expr::EvalResult Result; 1750 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1751 llvm::APSInt Value = Result.Val.getInt(); 1752 CGF.EmitIgnoredExpr(E->getBase()); 1753 return Builder.getInt(Value); 1754 } 1755 } 1756 1757 return EmitLoadOfLValue(E); 1758 } 1759 1760 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1761 TestAndClearIgnoreResultAssign(); 1762 1763 // Emit subscript expressions in rvalue context's. For most cases, this just 1764 // loads the lvalue formed by the subscript expr. However, we have to be 1765 // careful, because the base of a vector subscript is occasionally an rvalue, 1766 // so we can't get it as an lvalue. 1767 if (!E->getBase()->getType()->isVectorType()) 1768 return EmitLoadOfLValue(E); 1769 1770 // Handle the vector case. The base must be a vector, the index must be an 1771 // integer value. 1772 Value *Base = Visit(E->getBase()); 1773 Value *Idx = Visit(E->getIdx()); 1774 QualType IdxTy = E->getIdx()->getType(); 1775 1776 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1777 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1778 1779 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1780 } 1781 1782 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1783 TestAndClearIgnoreResultAssign(); 1784 1785 // Handle the vector case. The base must be a vector, the index must be an 1786 // integer value. 1787 Value *RowIdx = Visit(E->getRowIdx()); 1788 Value *ColumnIdx = Visit(E->getColumnIdx()); 1789 1790 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>(); 1791 unsigned NumRows = MatrixTy->getNumRows(); 1792 llvm::MatrixBuilder MB(Builder); 1793 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows); 1794 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0) 1795 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened()); 1796 1797 Value *Matrix = Visit(E->getBase()); 1798 1799 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1800 return Builder.CreateExtractElement(Matrix, Idx, "matrixext"); 1801 } 1802 1803 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1804 unsigned Off) { 1805 int MV = SVI->getMaskValue(Idx); 1806 if (MV == -1) 1807 return -1; 1808 return Off + MV; 1809 } 1810 1811 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1812 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1813 "Index operand too large for shufflevector mask!"); 1814 return C->getZExtValue(); 1815 } 1816 1817 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1818 bool Ignore = TestAndClearIgnoreResultAssign(); 1819 (void)Ignore; 1820 assert (Ignore == false && "init list ignored"); 1821 unsigned NumInitElements = E->getNumInits(); 1822 1823 if (E->hadArrayRangeDesignator()) 1824 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1825 1826 llvm::VectorType *VType = 1827 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1828 1829 if (!VType) { 1830 if (NumInitElements == 0) { 1831 // C++11 value-initialization for the scalar. 1832 return EmitNullValue(E->getType()); 1833 } 1834 // We have a scalar in braces. Just use the first element. 1835 return Visit(E->getInit(0)); 1836 } 1837 1838 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); 1839 1840 // Loop over initializers collecting the Value for each, and remembering 1841 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1842 // us to fold the shuffle for the swizzle into the shuffle for the vector 1843 // initializer, since LLVM optimizers generally do not want to touch 1844 // shuffles. 1845 unsigned CurIdx = 0; 1846 bool VIsUndefShuffle = false; 1847 llvm::Value *V = llvm::UndefValue::get(VType); 1848 for (unsigned i = 0; i != NumInitElements; ++i) { 1849 Expr *IE = E->getInit(i); 1850 Value *Init = Visit(IE); 1851 SmallVector<int, 16> Args; 1852 1853 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1854 1855 // Handle scalar elements. If the scalar initializer is actually one 1856 // element of a different vector of the same width, use shuffle instead of 1857 // extract+insert. 1858 if (!VVT) { 1859 if (isa<ExtVectorElementExpr>(IE)) { 1860 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1861 1862 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) 1863 ->getNumElements() == ResElts) { 1864 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1865 Value *LHS = nullptr, *RHS = nullptr; 1866 if (CurIdx == 0) { 1867 // insert into undef -> shuffle (src, undef) 1868 // shufflemask must use an i32 1869 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1870 Args.resize(ResElts, -1); 1871 1872 LHS = EI->getVectorOperand(); 1873 RHS = V; 1874 VIsUndefShuffle = true; 1875 } else if (VIsUndefShuffle) { 1876 // insert into undefshuffle && size match -> shuffle (v, src) 1877 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1878 for (unsigned j = 0; j != CurIdx; ++j) 1879 Args.push_back(getMaskElt(SVV, j, 0)); 1880 Args.push_back(ResElts + C->getZExtValue()); 1881 Args.resize(ResElts, -1); 1882 1883 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1884 RHS = EI->getVectorOperand(); 1885 VIsUndefShuffle = false; 1886 } 1887 if (!Args.empty()) { 1888 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1889 ++CurIdx; 1890 continue; 1891 } 1892 } 1893 } 1894 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1895 "vecinit"); 1896 VIsUndefShuffle = false; 1897 ++CurIdx; 1898 continue; 1899 } 1900 1901 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); 1902 1903 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1904 // input is the same width as the vector being constructed, generate an 1905 // optimized shuffle of the swizzle input into the result. 1906 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1907 if (isa<ExtVectorElementExpr>(IE)) { 1908 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1909 Value *SVOp = SVI->getOperand(0); 1910 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); 1911 1912 if (OpTy->getNumElements() == ResElts) { 1913 for (unsigned j = 0; j != CurIdx; ++j) { 1914 // If the current vector initializer is a shuffle with undef, merge 1915 // this shuffle directly into it. 1916 if (VIsUndefShuffle) { 1917 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1918 } else { 1919 Args.push_back(j); 1920 } 1921 } 1922 for (unsigned j = 0, je = InitElts; j != je; ++j) 1923 Args.push_back(getMaskElt(SVI, j, Offset)); 1924 Args.resize(ResElts, -1); 1925 1926 if (VIsUndefShuffle) 1927 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1928 1929 Init = SVOp; 1930 } 1931 } 1932 1933 // Extend init to result vector length, and then shuffle its contribution 1934 // to the vector initializer into V. 1935 if (Args.empty()) { 1936 for (unsigned j = 0; j != InitElts; ++j) 1937 Args.push_back(j); 1938 Args.resize(ResElts, -1); 1939 Init = Builder.CreateShuffleVector(Init, Args, "vext"); 1940 1941 Args.clear(); 1942 for (unsigned j = 0; j != CurIdx; ++j) 1943 Args.push_back(j); 1944 for (unsigned j = 0; j != InitElts; ++j) 1945 Args.push_back(j + Offset); 1946 Args.resize(ResElts, -1); 1947 } 1948 1949 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1950 // merging subsequent shuffles into this one. 1951 if (CurIdx == 0) 1952 std::swap(V, Init); 1953 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 1954 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1955 CurIdx += InitElts; 1956 } 1957 1958 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1959 // Emit remaining default initializers. 1960 llvm::Type *EltTy = VType->getElementType(); 1961 1962 // Emit remaining default initializers 1963 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1964 Value *Idx = Builder.getInt32(CurIdx); 1965 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1966 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1967 } 1968 return V; 1969 } 1970 1971 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1972 const Expr *E = CE->getSubExpr(); 1973 1974 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1975 return false; 1976 1977 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1978 // We always assume that 'this' is never null. 1979 return false; 1980 } 1981 1982 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1983 // And that glvalue casts are never null. 1984 if (ICE->isGLValue()) 1985 return false; 1986 } 1987 1988 return true; 1989 } 1990 1991 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1992 // have to handle a more broad range of conversions than explicit casts, as they 1993 // handle things like function to ptr-to-function decay etc. 1994 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1995 Expr *E = CE->getSubExpr(); 1996 QualType DestTy = CE->getType(); 1997 CastKind Kind = CE->getCastKind(); 1998 1999 // These cases are generally not written to ignore the result of 2000 // evaluating their sub-expressions, so we clear this now. 2001 bool Ignored = TestAndClearIgnoreResultAssign(); 2002 2003 // Since almost all cast kinds apply to scalars, this switch doesn't have 2004 // a default case, so the compiler will warn on a missing case. The cases 2005 // are in the same order as in the CastKind enum. 2006 switch (Kind) { 2007 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 2008 case CK_BuiltinFnToFnPtr: 2009 llvm_unreachable("builtin functions are handled elsewhere"); 2010 2011 case CK_LValueBitCast: 2012 case CK_ObjCObjectLValueCast: { 2013 Address Addr = EmitLValue(E).getAddress(CGF); 2014 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2015 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 2016 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2017 } 2018 2019 case CK_LValueToRValueBitCast: { 2020 LValue SourceLVal = CGF.EmitLValue(E); 2021 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 2022 CGF.ConvertTypeForMem(DestTy)); 2023 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2024 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2025 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2026 } 2027 2028 case CK_CPointerToObjCPointerCast: 2029 case CK_BlockPointerToObjCPointerCast: 2030 case CK_AnyPointerToBlockPointerCast: 2031 case CK_BitCast: { 2032 Value *Src = Visit(const_cast<Expr*>(E)); 2033 llvm::Type *SrcTy = Src->getType(); 2034 llvm::Type *DstTy = ConvertType(DestTy); 2035 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2036 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2037 llvm_unreachable("wrong cast for pointers in different address spaces" 2038 "(must be an address space cast)!"); 2039 } 2040 2041 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2042 if (auto PT = DestTy->getAs<PointerType>()) 2043 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2044 /*MayBeNull=*/true, 2045 CodeGenFunction::CFITCK_UnrelatedCast, 2046 CE->getBeginLoc()); 2047 } 2048 2049 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2050 const QualType SrcType = E->getType(); 2051 2052 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2053 // Casting to pointer that could carry dynamic information (provided by 2054 // invariant.group) requires launder. 2055 Src = Builder.CreateLaunderInvariantGroup(Src); 2056 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2057 // Casting to pointer that does not carry dynamic information (provided 2058 // by invariant.group) requires stripping it. Note that we don't do it 2059 // if the source could not be dynamic type and destination could be 2060 // dynamic because dynamic information is already laundered. It is 2061 // because launder(strip(src)) == launder(src), so there is no need to 2062 // add extra strip before launder. 2063 Src = Builder.CreateStripInvariantGroup(Src); 2064 } 2065 } 2066 2067 // Update heapallocsite metadata when there is an explicit pointer cast. 2068 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 2069 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { 2070 QualType PointeeType = DestTy->getPointeeType(); 2071 if (!PointeeType.isNull()) 2072 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 2073 CE->getExprLoc()); 2074 } 2075 } 2076 2077 // If Src is a fixed vector and Dst is a scalable vector, and both have the 2078 // same element type, use the llvm.experimental.vector.insert intrinsic to 2079 // perform the bitcast. 2080 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 2081 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { 2082 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 2083 // vector, use a vector insert and bitcast the result. 2084 bool NeedsBitCast = false; 2085 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2086 llvm::Type *OrigType = DstTy; 2087 if (ScalableDst == PredType && 2088 FixedSrc->getElementType() == Builder.getInt8Ty()) { 2089 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2090 ScalableDst = cast<llvm::ScalableVectorType>(DstTy); 2091 NeedsBitCast = true; 2092 } 2093 if (FixedSrc->getElementType() == ScalableDst->getElementType()) { 2094 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); 2095 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2096 llvm::Value *Result = Builder.CreateInsertVector( 2097 DstTy, UndefVec, Src, Zero, "castScalableSve"); 2098 if (NeedsBitCast) 2099 Result = Builder.CreateBitCast(Result, OrigType); 2100 return Result; 2101 } 2102 } 2103 } 2104 2105 // If Src is a scalable vector and Dst is a fixed vector, and both have the 2106 // same element type, use the llvm.experimental.vector.extract intrinsic to 2107 // perform the bitcast. 2108 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { 2109 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { 2110 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2111 // vector, bitcast the source and use a vector extract. 2112 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2113 if (ScalableSrc == PredType && 2114 FixedDst->getElementType() == Builder.getInt8Ty()) { 2115 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2116 ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy); 2117 Src = Builder.CreateBitCast(Src, SrcTy); 2118 } 2119 if (ScalableSrc->getElementType() == FixedDst->getElementType()) { 2120 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2121 return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve"); 2122 } 2123 } 2124 } 2125 2126 // Perform VLAT <-> VLST bitcast through memory. 2127 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics 2128 // require the element types of the vectors to be the same, we 2129 // need to keep this around for bitcasts between VLAT <-> VLST where 2130 // the element types of the vectors are not the same, until we figure 2131 // out a better way of doing these casts. 2132 if ((isa<llvm::FixedVectorType>(SrcTy) && 2133 isa<llvm::ScalableVectorType>(DstTy)) || 2134 (isa<llvm::ScalableVectorType>(SrcTy) && 2135 isa<llvm::FixedVectorType>(DstTy))) { 2136 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value"); 2137 LValue LV = CGF.MakeAddrLValue(Addr, E->getType()); 2138 CGF.EmitStoreOfScalar(Src, LV); 2139 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy), 2140 "castFixedSve"); 2141 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2142 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2143 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2144 } 2145 2146 return Builder.CreateBitCast(Src, DstTy); 2147 } 2148 case CK_AddressSpaceConversion: { 2149 Expr::EvalResult Result; 2150 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2151 Result.Val.isNullPointer()) { 2152 // If E has side effect, it is emitted even if its final result is a 2153 // null pointer. In that case, a DCE pass should be able to 2154 // eliminate the useless instructions emitted during translating E. 2155 if (Result.HasSideEffects) 2156 Visit(E); 2157 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2158 ConvertType(DestTy)), DestTy); 2159 } 2160 // Since target may map different address spaces in AST to the same address 2161 // space, an address space conversion may end up as a bitcast. 2162 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2163 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2164 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2165 } 2166 case CK_AtomicToNonAtomic: 2167 case CK_NonAtomicToAtomic: 2168 case CK_UserDefinedConversion: 2169 return Visit(const_cast<Expr*>(E)); 2170 2171 case CK_NoOp: { 2172 llvm::Value *V = Visit(const_cast<Expr *>(E)); 2173 if (V) { 2174 // CK_NoOp can model a pointer qualification conversion, which can remove 2175 // an array bound and change the IR type. 2176 // FIXME: Once pointee types are removed from IR, remove this. 2177 llvm::Type *T = ConvertType(DestTy); 2178 if (T != V->getType()) 2179 V = Builder.CreateBitCast(V, T); 2180 } 2181 return V; 2182 } 2183 2184 case CK_BaseToDerived: { 2185 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2186 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2187 2188 Address Base = CGF.EmitPointerWithAlignment(E); 2189 Address Derived = 2190 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2191 CE->path_begin(), CE->path_end(), 2192 CGF.ShouldNullCheckClassCastValue(CE)); 2193 2194 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2195 // performed and the object is not of the derived type. 2196 if (CGF.sanitizePerformTypeCheck()) 2197 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2198 Derived.getPointer(), DestTy->getPointeeType()); 2199 2200 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2201 CGF.EmitVTablePtrCheckForCast( 2202 DestTy->getPointeeType(), Derived.getPointer(), 2203 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2204 CE->getBeginLoc()); 2205 2206 return Derived.getPointer(); 2207 } 2208 case CK_UncheckedDerivedToBase: 2209 case CK_DerivedToBase: { 2210 // The EmitPointerWithAlignment path does this fine; just discard 2211 // the alignment. 2212 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2213 } 2214 2215 case CK_Dynamic: { 2216 Address V = CGF.EmitPointerWithAlignment(E); 2217 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2218 return CGF.EmitDynamicCast(V, DCE); 2219 } 2220 2221 case CK_ArrayToPointerDecay: 2222 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2223 case CK_FunctionToPointerDecay: 2224 return EmitLValue(E).getPointer(CGF); 2225 2226 case CK_NullToPointer: 2227 if (MustVisitNullValue(E)) 2228 CGF.EmitIgnoredExpr(E); 2229 2230 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2231 DestTy); 2232 2233 case CK_NullToMemberPointer: { 2234 if (MustVisitNullValue(E)) 2235 CGF.EmitIgnoredExpr(E); 2236 2237 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2238 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2239 } 2240 2241 case CK_ReinterpretMemberPointer: 2242 case CK_BaseToDerivedMemberPointer: 2243 case CK_DerivedToBaseMemberPointer: { 2244 Value *Src = Visit(E); 2245 2246 // Note that the AST doesn't distinguish between checked and 2247 // unchecked member pointer conversions, so we always have to 2248 // implement checked conversions here. This is inefficient when 2249 // actual control flow may be required in order to perform the 2250 // check, which it is for data member pointers (but not member 2251 // function pointers on Itanium and ARM). 2252 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2253 } 2254 2255 case CK_ARCProduceObject: 2256 return CGF.EmitARCRetainScalarExpr(E); 2257 case CK_ARCConsumeObject: 2258 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2259 case CK_ARCReclaimReturnedObject: 2260 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2261 case CK_ARCExtendBlockObject: 2262 return CGF.EmitARCExtendBlockObject(E); 2263 2264 case CK_CopyAndAutoreleaseBlockObject: 2265 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2266 2267 case CK_FloatingRealToComplex: 2268 case CK_FloatingComplexCast: 2269 case CK_IntegralRealToComplex: 2270 case CK_IntegralComplexCast: 2271 case CK_IntegralComplexToFloatingComplex: 2272 case CK_FloatingComplexToIntegralComplex: 2273 case CK_ConstructorConversion: 2274 case CK_ToUnion: 2275 llvm_unreachable("scalar cast to non-scalar value"); 2276 2277 case CK_LValueToRValue: 2278 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2279 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2280 return Visit(const_cast<Expr*>(E)); 2281 2282 case CK_IntegralToPointer: { 2283 Value *Src = Visit(const_cast<Expr*>(E)); 2284 2285 // First, convert to the correct width so that we control the kind of 2286 // extension. 2287 auto DestLLVMTy = ConvertType(DestTy); 2288 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2289 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2290 llvm::Value* IntResult = 2291 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2292 2293 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2294 2295 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2296 // Going from integer to pointer that could be dynamic requires reloading 2297 // dynamic information from invariant.group. 2298 if (DestTy.mayBeDynamicClass()) 2299 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2300 } 2301 return IntToPtr; 2302 } 2303 case CK_PointerToIntegral: { 2304 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2305 auto *PtrExpr = Visit(E); 2306 2307 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2308 const QualType SrcType = E->getType(); 2309 2310 // Casting to integer requires stripping dynamic information as it does 2311 // not carries it. 2312 if (SrcType.mayBeDynamicClass()) 2313 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2314 } 2315 2316 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2317 } 2318 case CK_ToVoid: { 2319 CGF.EmitIgnoredExpr(E); 2320 return nullptr; 2321 } 2322 case CK_MatrixCast: { 2323 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2324 CE->getExprLoc()); 2325 } 2326 case CK_VectorSplat: { 2327 llvm::Type *DstTy = ConvertType(DestTy); 2328 Value *Elt = Visit(const_cast<Expr*>(E)); 2329 // Splat the element across to all elements 2330 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 2331 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2332 } 2333 2334 case CK_FixedPointCast: 2335 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2336 CE->getExprLoc()); 2337 2338 case CK_FixedPointToBoolean: 2339 assert(E->getType()->isFixedPointType() && 2340 "Expected src type to be fixed point type"); 2341 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2342 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2343 CE->getExprLoc()); 2344 2345 case CK_FixedPointToIntegral: 2346 assert(E->getType()->isFixedPointType() && 2347 "Expected src type to be fixed point type"); 2348 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2349 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2350 CE->getExprLoc()); 2351 2352 case CK_IntegralToFixedPoint: 2353 assert(E->getType()->isIntegerType() && 2354 "Expected src type to be an integer"); 2355 assert(DestTy->isFixedPointType() && 2356 "Expected dest type to be fixed point type"); 2357 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2358 CE->getExprLoc()); 2359 2360 case CK_IntegralCast: { 2361 ScalarConversionOpts Opts; 2362 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2363 if (!ICE->isPartOfExplicitCast()) 2364 Opts = ScalarConversionOpts(CGF.SanOpts); 2365 } 2366 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2367 CE->getExprLoc(), Opts); 2368 } 2369 case CK_IntegralToFloating: 2370 case CK_FloatingToIntegral: 2371 case CK_FloatingCast: 2372 case CK_FixedPointToFloating: 2373 case CK_FloatingToFixedPoint: { 2374 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2375 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2376 CE->getExprLoc()); 2377 } 2378 case CK_BooleanToSignedIntegral: { 2379 ScalarConversionOpts Opts; 2380 Opts.TreatBooleanAsSigned = true; 2381 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2382 CE->getExprLoc(), Opts); 2383 } 2384 case CK_IntegralToBoolean: 2385 return EmitIntToBoolConversion(Visit(E)); 2386 case CK_PointerToBoolean: 2387 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2388 case CK_FloatingToBoolean: { 2389 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2390 return EmitFloatToBoolConversion(Visit(E)); 2391 } 2392 case CK_MemberPointerToBoolean: { 2393 llvm::Value *MemPtr = Visit(E); 2394 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2395 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2396 } 2397 2398 case CK_FloatingComplexToReal: 2399 case CK_IntegralComplexToReal: 2400 return CGF.EmitComplexExpr(E, false, true).first; 2401 2402 case CK_FloatingComplexToBoolean: 2403 case CK_IntegralComplexToBoolean: { 2404 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2405 2406 // TODO: kill this function off, inline appropriate case here 2407 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2408 CE->getExprLoc()); 2409 } 2410 2411 case CK_ZeroToOCLOpaqueType: { 2412 assert((DestTy->isEventT() || DestTy->isQueueT() || 2413 DestTy->isOCLIntelSubgroupAVCType()) && 2414 "CK_ZeroToOCLEvent cast on non-event type"); 2415 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2416 } 2417 2418 case CK_IntToOCLSampler: 2419 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2420 2421 } // end of switch 2422 2423 llvm_unreachable("unknown scalar cast"); 2424 } 2425 2426 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2427 CodeGenFunction::StmtExprEvaluation eval(CGF); 2428 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2429 !E->getType()->isVoidType()); 2430 if (!RetAlloca.isValid()) 2431 return nullptr; 2432 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2433 E->getExprLoc()); 2434 } 2435 2436 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2437 CodeGenFunction::RunCleanupsScope Scope(CGF); 2438 Value *V = Visit(E->getSubExpr()); 2439 // Defend against dominance problems caused by jumps out of expression 2440 // evaluation through the shared cleanup block. 2441 Scope.ForceCleanup({&V}); 2442 return V; 2443 } 2444 2445 //===----------------------------------------------------------------------===// 2446 // Unary Operators 2447 //===----------------------------------------------------------------------===// 2448 2449 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2450 llvm::Value *InVal, bool IsInc, 2451 FPOptions FPFeatures) { 2452 BinOpInfo BinOp; 2453 BinOp.LHS = InVal; 2454 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2455 BinOp.Ty = E->getType(); 2456 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2457 BinOp.FPFeatures = FPFeatures; 2458 BinOp.E = E; 2459 return BinOp; 2460 } 2461 2462 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2463 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2464 llvm::Value *Amount = 2465 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2466 StringRef Name = IsInc ? "inc" : "dec"; 2467 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2468 case LangOptions::SOB_Defined: 2469 return Builder.CreateAdd(InVal, Amount, Name); 2470 case LangOptions::SOB_Undefined: 2471 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2472 return Builder.CreateNSWAdd(InVal, Amount, Name); 2473 LLVM_FALLTHROUGH; 2474 case LangOptions::SOB_Trapping: 2475 if (!E->canOverflow()) 2476 return Builder.CreateNSWAdd(InVal, Amount, Name); 2477 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2478 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2479 } 2480 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2481 } 2482 2483 namespace { 2484 /// Handles check and update for lastprivate conditional variables. 2485 class OMPLastprivateConditionalUpdateRAII { 2486 private: 2487 CodeGenFunction &CGF; 2488 const UnaryOperator *E; 2489 2490 public: 2491 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2492 const UnaryOperator *E) 2493 : CGF(CGF), E(E) {} 2494 ~OMPLastprivateConditionalUpdateRAII() { 2495 if (CGF.getLangOpts().OpenMP) 2496 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2497 CGF, E->getSubExpr()); 2498 } 2499 }; 2500 } // namespace 2501 2502 llvm::Value * 2503 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2504 bool isInc, bool isPre) { 2505 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2506 QualType type = E->getSubExpr()->getType(); 2507 llvm::PHINode *atomicPHI = nullptr; 2508 llvm::Value *value; 2509 llvm::Value *input; 2510 2511 int amount = (isInc ? 1 : -1); 2512 bool isSubtraction = !isInc; 2513 2514 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2515 type = atomicTy->getValueType(); 2516 if (isInc && type->isBooleanType()) { 2517 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2518 if (isPre) { 2519 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2520 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2521 return Builder.getTrue(); 2522 } 2523 // For atomic bool increment, we just store true and return it for 2524 // preincrement, do an atomic swap with true for postincrement 2525 return Builder.CreateAtomicRMW( 2526 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2527 llvm::AtomicOrdering::SequentiallyConsistent); 2528 } 2529 // Special case for atomic increment / decrement on integers, emit 2530 // atomicrmw instructions. We skip this if we want to be doing overflow 2531 // checking, and fall into the slow path with the atomic cmpxchg loop. 2532 if (!type->isBooleanType() && type->isIntegerType() && 2533 !(type->isUnsignedIntegerType() && 2534 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2535 CGF.getLangOpts().getSignedOverflowBehavior() != 2536 LangOptions::SOB_Trapping) { 2537 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2538 llvm::AtomicRMWInst::Sub; 2539 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2540 llvm::Instruction::Sub; 2541 llvm::Value *amt = CGF.EmitToMemory( 2542 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2543 llvm::Value *old = 2544 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2545 llvm::AtomicOrdering::SequentiallyConsistent); 2546 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2547 } 2548 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2549 input = value; 2550 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2551 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2552 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2553 value = CGF.EmitToMemory(value, type); 2554 Builder.CreateBr(opBB); 2555 Builder.SetInsertPoint(opBB); 2556 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2557 atomicPHI->addIncoming(value, startBB); 2558 value = atomicPHI; 2559 } else { 2560 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2561 input = value; 2562 } 2563 2564 // Special case of integer increment that we have to check first: bool++. 2565 // Due to promotion rules, we get: 2566 // bool++ -> bool = bool + 1 2567 // -> bool = (int)bool + 1 2568 // -> bool = ((int)bool + 1 != 0) 2569 // An interesting aspect of this is that increment is always true. 2570 // Decrement does not have this property. 2571 if (isInc && type->isBooleanType()) { 2572 value = Builder.getTrue(); 2573 2574 // Most common case by far: integer increment. 2575 } else if (type->isIntegerType()) { 2576 QualType promotedType; 2577 bool canPerformLossyDemotionCheck = false; 2578 if (type->isPromotableIntegerType()) { 2579 promotedType = CGF.getContext().getPromotedIntegerType(type); 2580 assert(promotedType != type && "Shouldn't promote to the same type."); 2581 canPerformLossyDemotionCheck = true; 2582 canPerformLossyDemotionCheck &= 2583 CGF.getContext().getCanonicalType(type) != 2584 CGF.getContext().getCanonicalType(promotedType); 2585 canPerformLossyDemotionCheck &= 2586 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2587 type, promotedType); 2588 assert((!canPerformLossyDemotionCheck || 2589 type->isSignedIntegerOrEnumerationType() || 2590 promotedType->isSignedIntegerOrEnumerationType() || 2591 ConvertType(type)->getScalarSizeInBits() == 2592 ConvertType(promotedType)->getScalarSizeInBits()) && 2593 "The following check expects that if we do promotion to different " 2594 "underlying canonical type, at least one of the types (either " 2595 "base or promoted) will be signed, or the bitwidths will match."); 2596 } 2597 if (CGF.SanOpts.hasOneOf( 2598 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2599 canPerformLossyDemotionCheck) { 2600 // While `x += 1` (for `x` with width less than int) is modeled as 2601 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2602 // ease; inc/dec with width less than int can't overflow because of 2603 // promotion rules, so we omit promotion+demotion, which means that we can 2604 // not catch lossy "demotion". Because we still want to catch these cases 2605 // when the sanitizer is enabled, we perform the promotion, then perform 2606 // the increment/decrement in the wider type, and finally 2607 // perform the demotion. This will catch lossy demotions. 2608 2609 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2610 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2611 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2612 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2613 // emitted. 2614 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2615 ScalarConversionOpts(CGF.SanOpts)); 2616 2617 // Note that signed integer inc/dec with width less than int can't 2618 // overflow because of promotion rules; we're just eliding a few steps 2619 // here. 2620 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2621 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2622 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2623 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2624 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2625 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2626 } else { 2627 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2628 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2629 } 2630 2631 // Next most common: pointer increment. 2632 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2633 QualType type = ptr->getPointeeType(); 2634 2635 // VLA types don't have constant size. 2636 if (const VariableArrayType *vla 2637 = CGF.getContext().getAsVariableArrayType(type)) { 2638 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2639 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2640 llvm::Type *elemTy = value->getType()->getPointerElementType(); 2641 if (CGF.getLangOpts().isSignedOverflowDefined()) 2642 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc"); 2643 else 2644 value = CGF.EmitCheckedInBoundsGEP( 2645 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction, 2646 E->getExprLoc(), "vla.inc"); 2647 2648 // Arithmetic on function pointers (!) is just +-1. 2649 } else if (type->isFunctionType()) { 2650 llvm::Value *amt = Builder.getInt32(amount); 2651 2652 value = CGF.EmitCastToVoidPtr(value); 2653 if (CGF.getLangOpts().isSignedOverflowDefined()) 2654 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr"); 2655 else 2656 value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt, 2657 /*SignedIndices=*/false, 2658 isSubtraction, E->getExprLoc(), 2659 "incdec.funcptr"); 2660 value = Builder.CreateBitCast(value, input->getType()); 2661 2662 // For everything else, we can just do a simple increment. 2663 } else { 2664 llvm::Value *amt = Builder.getInt32(amount); 2665 llvm::Type *elemTy = CGF.ConvertTypeForMem(type); 2666 if (CGF.getLangOpts().isSignedOverflowDefined()) 2667 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr"); 2668 else 2669 value = CGF.EmitCheckedInBoundsGEP( 2670 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction, 2671 E->getExprLoc(), "incdec.ptr"); 2672 } 2673 2674 // Vector increment/decrement. 2675 } else if (type->isVectorType()) { 2676 if (type->hasIntegerRepresentation()) { 2677 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2678 2679 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2680 } else { 2681 value = Builder.CreateFAdd( 2682 value, 2683 llvm::ConstantFP::get(value->getType(), amount), 2684 isInc ? "inc" : "dec"); 2685 } 2686 2687 // Floating point. 2688 } else if (type->isRealFloatingType()) { 2689 // Add the inc/dec to the real part. 2690 llvm::Value *amt; 2691 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 2692 2693 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2694 // Another special case: half FP increment should be done via float 2695 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2696 value = Builder.CreateCall( 2697 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2698 CGF.CGM.FloatTy), 2699 input, "incdec.conv"); 2700 } else { 2701 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2702 } 2703 } 2704 2705 if (value->getType()->isFloatTy()) 2706 amt = llvm::ConstantFP::get(VMContext, 2707 llvm::APFloat(static_cast<float>(amount))); 2708 else if (value->getType()->isDoubleTy()) 2709 amt = llvm::ConstantFP::get(VMContext, 2710 llvm::APFloat(static_cast<double>(amount))); 2711 else { 2712 // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert 2713 // from float. 2714 llvm::APFloat F(static_cast<float>(amount)); 2715 bool ignored; 2716 const llvm::fltSemantics *FS; 2717 // Don't use getFloatTypeSemantics because Half isn't 2718 // necessarily represented using the "half" LLVM type. 2719 if (value->getType()->isFP128Ty()) 2720 FS = &CGF.getTarget().getFloat128Format(); 2721 else if (value->getType()->isHalfTy()) 2722 FS = &CGF.getTarget().getHalfFormat(); 2723 else if (value->getType()->isPPC_FP128Ty()) 2724 FS = &CGF.getTarget().getIbm128Format(); 2725 else 2726 FS = &CGF.getTarget().getLongDoubleFormat(); 2727 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2728 amt = llvm::ConstantFP::get(VMContext, F); 2729 } 2730 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2731 2732 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2733 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2734 value = Builder.CreateCall( 2735 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2736 CGF.CGM.FloatTy), 2737 value, "incdec.conv"); 2738 } else { 2739 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2740 } 2741 } 2742 2743 // Fixed-point types. 2744 } else if (type->isFixedPointType()) { 2745 // Fixed-point types are tricky. In some cases, it isn't possible to 2746 // represent a 1 or a -1 in the type at all. Piggyback off of 2747 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2748 BinOpInfo Info; 2749 Info.E = E; 2750 Info.Ty = E->getType(); 2751 Info.Opcode = isInc ? BO_Add : BO_Sub; 2752 Info.LHS = value; 2753 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2754 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2755 // since -1 is guaranteed to be representable. 2756 if (type->isSignedFixedPointType()) { 2757 Info.Opcode = isInc ? BO_Sub : BO_Add; 2758 Info.RHS = Builder.CreateNeg(Info.RHS); 2759 } 2760 // Now, convert from our invented integer literal to the type of the unary 2761 // op. This will upscale and saturate if necessary. This value can become 2762 // undef in some cases. 2763 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 2764 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2765 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); 2766 value = EmitFixedPointBinOp(Info); 2767 2768 // Objective-C pointer types. 2769 } else { 2770 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2771 value = CGF.EmitCastToVoidPtr(value); 2772 2773 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2774 if (!isInc) size = -size; 2775 llvm::Value *sizeValue = 2776 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2777 2778 if (CGF.getLangOpts().isSignedOverflowDefined()) 2779 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr"); 2780 else 2781 value = CGF.EmitCheckedInBoundsGEP( 2782 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction, 2783 E->getExprLoc(), "incdec.objptr"); 2784 value = Builder.CreateBitCast(value, input->getType()); 2785 } 2786 2787 if (atomicPHI) { 2788 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2789 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2790 auto Pair = CGF.EmitAtomicCompareExchange( 2791 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2792 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2793 llvm::Value *success = Pair.second; 2794 atomicPHI->addIncoming(old, curBlock); 2795 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2796 Builder.SetInsertPoint(contBB); 2797 return isPre ? value : input; 2798 } 2799 2800 // Store the updated result through the lvalue. 2801 if (LV.isBitField()) 2802 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2803 else 2804 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2805 2806 // If this is a postinc, return the value read from memory, otherwise use the 2807 // updated value. 2808 return isPre ? value : input; 2809 } 2810 2811 2812 2813 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2814 TestAndClearIgnoreResultAssign(); 2815 Value *Op = Visit(E->getSubExpr()); 2816 2817 // Generate a unary FNeg for FP ops. 2818 if (Op->getType()->isFPOrFPVectorTy()) 2819 return Builder.CreateFNeg(Op, "fneg"); 2820 2821 // Emit unary minus with EmitSub so we handle overflow cases etc. 2822 BinOpInfo BinOp; 2823 BinOp.RHS = Op; 2824 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2825 BinOp.Ty = E->getType(); 2826 BinOp.Opcode = BO_Sub; 2827 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2828 BinOp.E = E; 2829 return EmitSub(BinOp); 2830 } 2831 2832 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2833 TestAndClearIgnoreResultAssign(); 2834 Value *Op = Visit(E->getSubExpr()); 2835 return Builder.CreateNot(Op, "neg"); 2836 } 2837 2838 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2839 // Perform vector logical not on comparison with zero vector. 2840 if (E->getType()->isVectorType() && 2841 E->getType()->castAs<VectorType>()->getVectorKind() == 2842 VectorType::GenericVector) { 2843 Value *Oper = Visit(E->getSubExpr()); 2844 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2845 Value *Result; 2846 if (Oper->getType()->isFPOrFPVectorTy()) { 2847 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2848 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2849 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2850 } else 2851 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2852 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2853 } 2854 2855 // Compare operand to zero. 2856 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2857 2858 // Invert value. 2859 // TODO: Could dynamically modify easy computations here. For example, if 2860 // the operand is an icmp ne, turn into icmp eq. 2861 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2862 2863 // ZExt result to the expr type. 2864 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2865 } 2866 2867 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2868 // Try folding the offsetof to a constant. 2869 Expr::EvalResult EVResult; 2870 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2871 llvm::APSInt Value = EVResult.Val.getInt(); 2872 return Builder.getInt(Value); 2873 } 2874 2875 // Loop over the components of the offsetof to compute the value. 2876 unsigned n = E->getNumComponents(); 2877 llvm::Type* ResultType = ConvertType(E->getType()); 2878 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2879 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2880 for (unsigned i = 0; i != n; ++i) { 2881 OffsetOfNode ON = E->getComponent(i); 2882 llvm::Value *Offset = nullptr; 2883 switch (ON.getKind()) { 2884 case OffsetOfNode::Array: { 2885 // Compute the index 2886 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2887 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2888 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2889 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2890 2891 // Save the element type 2892 CurrentType = 2893 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2894 2895 // Compute the element size 2896 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2897 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2898 2899 // Multiply out to compute the result 2900 Offset = Builder.CreateMul(Idx, ElemSize); 2901 break; 2902 } 2903 2904 case OffsetOfNode::Field: { 2905 FieldDecl *MemberDecl = ON.getField(); 2906 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2907 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2908 2909 // Compute the index of the field in its parent. 2910 unsigned i = 0; 2911 // FIXME: It would be nice if we didn't have to loop here! 2912 for (RecordDecl::field_iterator Field = RD->field_begin(), 2913 FieldEnd = RD->field_end(); 2914 Field != FieldEnd; ++Field, ++i) { 2915 if (*Field == MemberDecl) 2916 break; 2917 } 2918 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2919 2920 // Compute the offset to the field 2921 int64_t OffsetInt = RL.getFieldOffset(i) / 2922 CGF.getContext().getCharWidth(); 2923 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2924 2925 // Save the element type. 2926 CurrentType = MemberDecl->getType(); 2927 break; 2928 } 2929 2930 case OffsetOfNode::Identifier: 2931 llvm_unreachable("dependent __builtin_offsetof"); 2932 2933 case OffsetOfNode::Base: { 2934 if (ON.getBase()->isVirtual()) { 2935 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2936 continue; 2937 } 2938 2939 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2940 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2941 2942 // Save the element type. 2943 CurrentType = ON.getBase()->getType(); 2944 2945 // Compute the offset to the base. 2946 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2947 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2948 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2949 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2950 break; 2951 } 2952 } 2953 Result = Builder.CreateAdd(Result, Offset); 2954 } 2955 return Result; 2956 } 2957 2958 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2959 /// argument of the sizeof expression as an integer. 2960 Value * 2961 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2962 const UnaryExprOrTypeTraitExpr *E) { 2963 QualType TypeToSize = E->getTypeOfArgument(); 2964 if (E->getKind() == UETT_SizeOf) { 2965 if (const VariableArrayType *VAT = 2966 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2967 if (E->isArgumentType()) { 2968 // sizeof(type) - make sure to emit the VLA size. 2969 CGF.EmitVariablyModifiedType(TypeToSize); 2970 } else { 2971 // C99 6.5.3.4p2: If the argument is an expression of type 2972 // VLA, it is evaluated. 2973 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2974 } 2975 2976 auto VlaSize = CGF.getVLASize(VAT); 2977 llvm::Value *size = VlaSize.NumElts; 2978 2979 // Scale the number of non-VLA elements by the non-VLA element size. 2980 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2981 if (!eltSize.isOne()) 2982 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2983 2984 return size; 2985 } 2986 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2987 auto Alignment = 2988 CGF.getContext() 2989 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2990 E->getTypeOfArgument()->getPointeeType())) 2991 .getQuantity(); 2992 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2993 } 2994 2995 // If this isn't sizeof(vla), the result must be constant; use the constant 2996 // folding logic so we don't have to duplicate it here. 2997 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2998 } 2999 3000 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 3001 Expr *Op = E->getSubExpr(); 3002 if (Op->getType()->isAnyComplexType()) { 3003 // If it's an l-value, load through the appropriate subobject l-value. 3004 // Note that we have to ask E because Op might be an l-value that 3005 // this won't work for, e.g. an Obj-C property. 3006 if (E->isGLValue()) 3007 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 3008 E->getExprLoc()).getScalarVal(); 3009 3010 // Otherwise, calculate and project. 3011 return CGF.EmitComplexExpr(Op, false, true).first; 3012 } 3013 3014 return Visit(Op); 3015 } 3016 3017 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 3018 Expr *Op = E->getSubExpr(); 3019 if (Op->getType()->isAnyComplexType()) { 3020 // If it's an l-value, load through the appropriate subobject l-value. 3021 // Note that we have to ask E because Op might be an l-value that 3022 // this won't work for, e.g. an Obj-C property. 3023 if (Op->isGLValue()) 3024 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 3025 E->getExprLoc()).getScalarVal(); 3026 3027 // Otherwise, calculate and project. 3028 return CGF.EmitComplexExpr(Op, true, false).second; 3029 } 3030 3031 // __imag on a scalar returns zero. Emit the subexpr to ensure side 3032 // effects are evaluated, but not the actual value. 3033 if (Op->isGLValue()) 3034 CGF.EmitLValue(Op); 3035 else 3036 CGF.EmitScalarExpr(Op, true); 3037 return llvm::Constant::getNullValue(ConvertType(E->getType())); 3038 } 3039 3040 //===----------------------------------------------------------------------===// 3041 // Binary Operators 3042 //===----------------------------------------------------------------------===// 3043 3044 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 3045 TestAndClearIgnoreResultAssign(); 3046 BinOpInfo Result; 3047 Result.LHS = Visit(E->getLHS()); 3048 Result.RHS = Visit(E->getRHS()); 3049 Result.Ty = E->getType(); 3050 Result.Opcode = E->getOpcode(); 3051 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3052 Result.E = E; 3053 return Result; 3054 } 3055 3056 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 3057 const CompoundAssignOperator *E, 3058 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 3059 Value *&Result) { 3060 QualType LHSTy = E->getLHS()->getType(); 3061 BinOpInfo OpInfo; 3062 3063 if (E->getComputationResultType()->isAnyComplexType()) 3064 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 3065 3066 // Emit the RHS first. __block variables need to have the rhs evaluated 3067 // first, plus this should improve codegen a little. 3068 OpInfo.RHS = Visit(E->getRHS()); 3069 OpInfo.Ty = E->getComputationResultType(); 3070 OpInfo.Opcode = E->getOpcode(); 3071 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3072 OpInfo.E = E; 3073 // Load/convert the LHS. 3074 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3075 3076 llvm::PHINode *atomicPHI = nullptr; 3077 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 3078 QualType type = atomicTy->getValueType(); 3079 if (!type->isBooleanType() && type->isIntegerType() && 3080 !(type->isUnsignedIntegerType() && 3081 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 3082 CGF.getLangOpts().getSignedOverflowBehavior() != 3083 LangOptions::SOB_Trapping) { 3084 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 3085 llvm::Instruction::BinaryOps Op; 3086 switch (OpInfo.Opcode) { 3087 // We don't have atomicrmw operands for *, %, /, <<, >> 3088 case BO_MulAssign: case BO_DivAssign: 3089 case BO_RemAssign: 3090 case BO_ShlAssign: 3091 case BO_ShrAssign: 3092 break; 3093 case BO_AddAssign: 3094 AtomicOp = llvm::AtomicRMWInst::Add; 3095 Op = llvm::Instruction::Add; 3096 break; 3097 case BO_SubAssign: 3098 AtomicOp = llvm::AtomicRMWInst::Sub; 3099 Op = llvm::Instruction::Sub; 3100 break; 3101 case BO_AndAssign: 3102 AtomicOp = llvm::AtomicRMWInst::And; 3103 Op = llvm::Instruction::And; 3104 break; 3105 case BO_XorAssign: 3106 AtomicOp = llvm::AtomicRMWInst::Xor; 3107 Op = llvm::Instruction::Xor; 3108 break; 3109 case BO_OrAssign: 3110 AtomicOp = llvm::AtomicRMWInst::Or; 3111 Op = llvm::Instruction::Or; 3112 break; 3113 default: 3114 llvm_unreachable("Invalid compound assignment type"); 3115 } 3116 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 3117 llvm::Value *Amt = CGF.EmitToMemory( 3118 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 3119 E->getExprLoc()), 3120 LHSTy); 3121 Value *OldVal = Builder.CreateAtomicRMW( 3122 AtomicOp, LHSLV.getPointer(CGF), Amt, 3123 llvm::AtomicOrdering::SequentiallyConsistent); 3124 3125 // Since operation is atomic, the result type is guaranteed to be the 3126 // same as the input in LLVM terms. 3127 Result = Builder.CreateBinOp(Op, OldVal, Amt); 3128 return LHSLV; 3129 } 3130 } 3131 // FIXME: For floating point types, we should be saving and restoring the 3132 // floating point environment in the loop. 3133 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 3134 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 3135 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3136 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 3137 Builder.CreateBr(opBB); 3138 Builder.SetInsertPoint(opBB); 3139 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 3140 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3141 OpInfo.LHS = atomicPHI; 3142 } 3143 else 3144 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3145 3146 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 3147 SourceLocation Loc = E->getExprLoc(); 3148 OpInfo.LHS = 3149 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3150 3151 // Expand the binary operator. 3152 Result = (this->*Func)(OpInfo); 3153 3154 // Convert the result back to the LHS type, 3155 // potentially with Implicit Conversion sanitizer check. 3156 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3157 Loc, ScalarConversionOpts(CGF.SanOpts)); 3158 3159 if (atomicPHI) { 3160 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3161 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3162 auto Pair = CGF.EmitAtomicCompareExchange( 3163 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3164 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3165 llvm::Value *success = Pair.second; 3166 atomicPHI->addIncoming(old, curBlock); 3167 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3168 Builder.SetInsertPoint(contBB); 3169 return LHSLV; 3170 } 3171 3172 // Store the result value into the LHS lvalue. Bit-fields are handled 3173 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3174 // 'An assignment expression has the value of the left operand after the 3175 // assignment...'. 3176 if (LHSLV.isBitField()) 3177 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3178 else 3179 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3180 3181 if (CGF.getLangOpts().OpenMP) 3182 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3183 E->getLHS()); 3184 return LHSLV; 3185 } 3186 3187 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3188 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3189 bool Ignore = TestAndClearIgnoreResultAssign(); 3190 Value *RHS = nullptr; 3191 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3192 3193 // If the result is clearly ignored, return now. 3194 if (Ignore) 3195 return nullptr; 3196 3197 // The result of an assignment in C is the assigned r-value. 3198 if (!CGF.getLangOpts().CPlusPlus) 3199 return RHS; 3200 3201 // If the lvalue is non-volatile, return the computed value of the assignment. 3202 if (!LHS.isVolatileQualified()) 3203 return RHS; 3204 3205 // Otherwise, reload the value. 3206 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3207 } 3208 3209 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3210 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3211 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3212 3213 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3214 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3215 SanitizerKind::IntegerDivideByZero)); 3216 } 3217 3218 const auto *BO = cast<BinaryOperator>(Ops.E); 3219 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3220 Ops.Ty->hasSignedIntegerRepresentation() && 3221 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3222 Ops.mayHaveIntegerOverflow()) { 3223 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3224 3225 llvm::Value *IntMin = 3226 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3227 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); 3228 3229 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3230 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3231 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3232 Checks.push_back( 3233 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3234 } 3235 3236 if (Checks.size() > 0) 3237 EmitBinOpCheck(Checks, Ops); 3238 } 3239 3240 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3241 { 3242 CodeGenFunction::SanitizerScope SanScope(&CGF); 3243 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3244 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3245 Ops.Ty->isIntegerType() && 3246 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3247 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3248 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3249 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3250 Ops.Ty->isRealFloatingType() && 3251 Ops.mayHaveFloatDivisionByZero()) { 3252 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3253 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3254 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3255 Ops); 3256 } 3257 } 3258 3259 if (Ops.Ty->isConstantMatrixType()) { 3260 llvm::MatrixBuilder MB(Builder); 3261 // We need to check the types of the operands of the operator to get the 3262 // correct matrix dimensions. 3263 auto *BO = cast<BinaryOperator>(Ops.E); 3264 (void)BO; 3265 assert( 3266 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && 3267 "first operand must be a matrix"); 3268 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && 3269 "second operand must be an arithmetic type"); 3270 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3271 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS, 3272 Ops.Ty->hasUnsignedIntegerRepresentation()); 3273 } 3274 3275 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3276 llvm::Value *Val; 3277 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3278 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3279 if ((CGF.getLangOpts().OpenCL && 3280 !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || 3281 (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice && 3282 !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { 3283 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3284 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3285 // build option allows an application to specify that single precision 3286 // floating-point divide (x/y and 1/x) and sqrt used in the program 3287 // source are correctly rounded. 3288 llvm::Type *ValTy = Val->getType(); 3289 if (ValTy->isFloatTy() || 3290 (isa<llvm::VectorType>(ValTy) && 3291 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3292 CGF.SetFPAccuracy(Val, 2.5); 3293 } 3294 return Val; 3295 } 3296 else if (Ops.isFixedPointOp()) 3297 return EmitFixedPointBinOp(Ops); 3298 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3299 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3300 else 3301 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3302 } 3303 3304 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3305 // Rem in C can't be a floating point type: C99 6.5.5p2. 3306 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3307 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3308 Ops.Ty->isIntegerType() && 3309 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3310 CodeGenFunction::SanitizerScope SanScope(&CGF); 3311 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3312 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3313 } 3314 3315 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3316 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3317 else 3318 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3319 } 3320 3321 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3322 unsigned IID; 3323 unsigned OpID = 0; 3324 SanitizerHandler OverflowKind; 3325 3326 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3327 switch (Ops.Opcode) { 3328 case BO_Add: 3329 case BO_AddAssign: 3330 OpID = 1; 3331 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3332 llvm::Intrinsic::uadd_with_overflow; 3333 OverflowKind = SanitizerHandler::AddOverflow; 3334 break; 3335 case BO_Sub: 3336 case BO_SubAssign: 3337 OpID = 2; 3338 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3339 llvm::Intrinsic::usub_with_overflow; 3340 OverflowKind = SanitizerHandler::SubOverflow; 3341 break; 3342 case BO_Mul: 3343 case BO_MulAssign: 3344 OpID = 3; 3345 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3346 llvm::Intrinsic::umul_with_overflow; 3347 OverflowKind = SanitizerHandler::MulOverflow; 3348 break; 3349 default: 3350 llvm_unreachable("Unsupported operation for overflow detection"); 3351 } 3352 OpID <<= 1; 3353 if (isSigned) 3354 OpID |= 1; 3355 3356 CodeGenFunction::SanitizerScope SanScope(&CGF); 3357 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3358 3359 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3360 3361 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3362 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3363 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3364 3365 // Handle overflow with llvm.trap if no custom handler has been specified. 3366 const std::string *handlerName = 3367 &CGF.getLangOpts().OverflowHandler; 3368 if (handlerName->empty()) { 3369 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3370 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3371 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3372 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3373 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3374 : SanitizerKind::UnsignedIntegerOverflow; 3375 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3376 } else 3377 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); 3378 return result; 3379 } 3380 3381 // Branch in case of overflow. 3382 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3383 llvm::BasicBlock *continueBB = 3384 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3385 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3386 3387 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3388 3389 // If an overflow handler is set, then we want to call it and then use its 3390 // result, if it returns. 3391 Builder.SetInsertPoint(overflowBB); 3392 3393 // Get the overflow handler. 3394 llvm::Type *Int8Ty = CGF.Int8Ty; 3395 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3396 llvm::FunctionType *handlerTy = 3397 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3398 llvm::FunctionCallee handler = 3399 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3400 3401 // Sign extend the args to 64-bit, so that we can use the same handler for 3402 // all types of overflow. 3403 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3404 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3405 3406 // Call the handler with the two arguments, the operation, and the size of 3407 // the result. 3408 llvm::Value *handlerArgs[] = { 3409 lhs, 3410 rhs, 3411 Builder.getInt8(OpID), 3412 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3413 }; 3414 llvm::Value *handlerResult = 3415 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3416 3417 // Truncate the result back to the desired size. 3418 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3419 Builder.CreateBr(continueBB); 3420 3421 Builder.SetInsertPoint(continueBB); 3422 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3423 phi->addIncoming(result, initialBB); 3424 phi->addIncoming(handlerResult, overflowBB); 3425 3426 return phi; 3427 } 3428 3429 /// Emit pointer + index arithmetic. 3430 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3431 const BinOpInfo &op, 3432 bool isSubtraction) { 3433 // Must have binary (not unary) expr here. Unary pointer 3434 // increment/decrement doesn't use this path. 3435 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3436 3437 Value *pointer = op.LHS; 3438 Expr *pointerOperand = expr->getLHS(); 3439 Value *index = op.RHS; 3440 Expr *indexOperand = expr->getRHS(); 3441 3442 // In a subtraction, the LHS is always the pointer. 3443 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3444 std::swap(pointer, index); 3445 std::swap(pointerOperand, indexOperand); 3446 } 3447 3448 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3449 3450 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3451 auto &DL = CGF.CGM.getDataLayout(); 3452 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3453 3454 // Some versions of glibc and gcc use idioms (particularly in their malloc 3455 // routines) that add a pointer-sized integer (known to be a pointer value) 3456 // to a null pointer in order to cast the value back to an integer or as 3457 // part of a pointer alignment algorithm. This is undefined behavior, but 3458 // we'd like to be able to compile programs that use it. 3459 // 3460 // Normally, we'd generate a GEP with a null-pointer base here in response 3461 // to that code, but it's also UB to dereference a pointer created that 3462 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3463 // generate a direct cast of the integer value to a pointer. 3464 // 3465 // The idiom (p = nullptr + N) is not met if any of the following are true: 3466 // 3467 // The operation is subtraction. 3468 // The index is not pointer-sized. 3469 // The pointer type is not byte-sized. 3470 // 3471 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3472 op.Opcode, 3473 expr->getLHS(), 3474 expr->getRHS())) 3475 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3476 3477 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3478 // Zero-extend or sign-extend the pointer value according to 3479 // whether the index is signed or not. 3480 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3481 "idx.ext"); 3482 } 3483 3484 // If this is subtraction, negate the index. 3485 if (isSubtraction) 3486 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3487 3488 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3489 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3490 /*Accessed*/ false); 3491 3492 const PointerType *pointerType 3493 = pointerOperand->getType()->getAs<PointerType>(); 3494 if (!pointerType) { 3495 QualType objectType = pointerOperand->getType() 3496 ->castAs<ObjCObjectPointerType>() 3497 ->getPointeeType(); 3498 llvm::Value *objectSize 3499 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3500 3501 index = CGF.Builder.CreateMul(index, objectSize); 3502 3503 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3504 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3505 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3506 } 3507 3508 QualType elementType = pointerType->getPointeeType(); 3509 if (const VariableArrayType *vla 3510 = CGF.getContext().getAsVariableArrayType(elementType)) { 3511 // The element count here is the total number of non-VLA elements. 3512 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3513 3514 // Effectively, the multiply by the VLA size is part of the GEP. 3515 // GEP indexes are signed, and scaling an index isn't permitted to 3516 // signed-overflow, so we use the same semantics for our explicit 3517 // multiply. We suppress this if overflow is not undefined behavior. 3518 llvm::Type *elemTy = pointer->getType()->getPointerElementType(); 3519 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3520 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3521 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); 3522 } else { 3523 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3524 pointer = CGF.EmitCheckedInBoundsGEP( 3525 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), 3526 "add.ptr"); 3527 } 3528 return pointer; 3529 } 3530 3531 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3532 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3533 // future proof. 3534 if (elementType->isVoidType() || elementType->isFunctionType()) { 3535 Value *result = CGF.EmitCastToVoidPtr(pointer); 3536 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3537 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3538 } 3539 3540 llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType); 3541 if (CGF.getLangOpts().isSignedOverflowDefined()) 3542 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); 3543 3544 return CGF.EmitCheckedInBoundsGEP( 3545 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), 3546 "add.ptr"); 3547 } 3548 3549 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3550 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3551 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3552 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3553 // efficient operations. 3554 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3555 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3556 bool negMul, bool negAdd) { 3557 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3558 3559 Value *MulOp0 = MulOp->getOperand(0); 3560 Value *MulOp1 = MulOp->getOperand(1); 3561 if (negMul) 3562 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3563 if (negAdd) 3564 Addend = Builder.CreateFNeg(Addend, "neg"); 3565 3566 Value *FMulAdd = nullptr; 3567 if (Builder.getIsFPConstrained()) { 3568 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3569 "Only constrained operation should be created when Builder is in FP " 3570 "constrained mode"); 3571 FMulAdd = Builder.CreateConstrainedFPCall( 3572 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3573 Addend->getType()), 3574 {MulOp0, MulOp1, Addend}); 3575 } else { 3576 FMulAdd = Builder.CreateCall( 3577 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3578 {MulOp0, MulOp1, Addend}); 3579 } 3580 MulOp->eraseFromParent(); 3581 3582 return FMulAdd; 3583 } 3584 3585 // Check whether it would be legal to emit an fmuladd intrinsic call to 3586 // represent op and if so, build the fmuladd. 3587 // 3588 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3589 // Does NOT check the type of the operation - it's assumed that this function 3590 // will be called from contexts where it's known that the type is contractable. 3591 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3592 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3593 bool isSub=false) { 3594 3595 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3596 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3597 "Only fadd/fsub can be the root of an fmuladd."); 3598 3599 // Check whether this op is marked as fusable. 3600 if (!op.FPFeatures.allowFPContractWithinStatement()) 3601 return nullptr; 3602 3603 // We have a potentially fusable op. Look for a mul on one of the operands. 3604 // Also, make sure that the mul result isn't used directly. In that case, 3605 // there's no point creating a muladd operation. 3606 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3607 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3608 LHSBinOp->use_empty()) 3609 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3610 } 3611 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3612 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3613 RHSBinOp->use_empty()) 3614 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3615 } 3616 3617 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3618 if (LHSBinOp->getIntrinsicID() == 3619 llvm::Intrinsic::experimental_constrained_fmul && 3620 LHSBinOp->use_empty()) 3621 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3622 } 3623 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3624 if (RHSBinOp->getIntrinsicID() == 3625 llvm::Intrinsic::experimental_constrained_fmul && 3626 RHSBinOp->use_empty()) 3627 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3628 } 3629 3630 return nullptr; 3631 } 3632 3633 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3634 if (op.LHS->getType()->isPointerTy() || 3635 op.RHS->getType()->isPointerTy()) 3636 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3637 3638 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3639 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3640 case LangOptions::SOB_Defined: 3641 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3642 case LangOptions::SOB_Undefined: 3643 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3644 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3645 LLVM_FALLTHROUGH; 3646 case LangOptions::SOB_Trapping: 3647 if (CanElideOverflowCheck(CGF.getContext(), op)) 3648 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3649 return EmitOverflowCheckedBinOp(op); 3650 } 3651 } 3652 3653 if (op.Ty->isConstantMatrixType()) { 3654 llvm::MatrixBuilder MB(Builder); 3655 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3656 return MB.CreateAdd(op.LHS, op.RHS); 3657 } 3658 3659 if (op.Ty->isUnsignedIntegerType() && 3660 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3661 !CanElideOverflowCheck(CGF.getContext(), op)) 3662 return EmitOverflowCheckedBinOp(op); 3663 3664 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3665 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3666 // Try to form an fmuladd. 3667 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3668 return FMulAdd; 3669 3670 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3671 } 3672 3673 if (op.isFixedPointOp()) 3674 return EmitFixedPointBinOp(op); 3675 3676 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3677 } 3678 3679 /// The resulting value must be calculated with exact precision, so the operands 3680 /// may not be the same type. 3681 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3682 using llvm::APSInt; 3683 using llvm::ConstantInt; 3684 3685 // This is either a binary operation where at least one of the operands is 3686 // a fixed-point type, or a unary operation where the operand is a fixed-point 3687 // type. The result type of a binary operation is determined by 3688 // Sema::handleFixedPointConversions(). 3689 QualType ResultTy = op.Ty; 3690 QualType LHSTy, RHSTy; 3691 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3692 RHSTy = BinOp->getRHS()->getType(); 3693 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3694 // For compound assignment, the effective type of the LHS at this point 3695 // is the computation LHS type, not the actual LHS type, and the final 3696 // result type is not the type of the expression but rather the 3697 // computation result type. 3698 LHSTy = CAO->getComputationLHSType(); 3699 ResultTy = CAO->getComputationResultType(); 3700 } else 3701 LHSTy = BinOp->getLHS()->getType(); 3702 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3703 LHSTy = UnOp->getSubExpr()->getType(); 3704 RHSTy = UnOp->getSubExpr()->getType(); 3705 } 3706 ASTContext &Ctx = CGF.getContext(); 3707 Value *LHS = op.LHS; 3708 Value *RHS = op.RHS; 3709 3710 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3711 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3712 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3713 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3714 3715 // Perform the actual operation. 3716 Value *Result; 3717 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 3718 switch (op.Opcode) { 3719 case BO_AddAssign: 3720 case BO_Add: 3721 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); 3722 break; 3723 case BO_SubAssign: 3724 case BO_Sub: 3725 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); 3726 break; 3727 case BO_MulAssign: 3728 case BO_Mul: 3729 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); 3730 break; 3731 case BO_DivAssign: 3732 case BO_Div: 3733 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); 3734 break; 3735 case BO_ShlAssign: 3736 case BO_Shl: 3737 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); 3738 break; 3739 case BO_ShrAssign: 3740 case BO_Shr: 3741 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); 3742 break; 3743 case BO_LT: 3744 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3745 case BO_GT: 3746 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3747 case BO_LE: 3748 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3749 case BO_GE: 3750 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3751 case BO_EQ: 3752 // For equality operations, we assume any padding bits on unsigned types are 3753 // zero'd out. They could be overwritten through non-saturating operations 3754 // that cause overflow, but this leads to undefined behavior. 3755 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); 3756 case BO_NE: 3757 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3758 case BO_Cmp: 3759 case BO_LAnd: 3760 case BO_LOr: 3761 llvm_unreachable("Found unimplemented fixed point binary operation"); 3762 case BO_PtrMemD: 3763 case BO_PtrMemI: 3764 case BO_Rem: 3765 case BO_Xor: 3766 case BO_And: 3767 case BO_Or: 3768 case BO_Assign: 3769 case BO_RemAssign: 3770 case BO_AndAssign: 3771 case BO_XorAssign: 3772 case BO_OrAssign: 3773 case BO_Comma: 3774 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3775 } 3776 3777 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || 3778 BinaryOperator::isShiftAssignOp(op.Opcode); 3779 // Convert to the result type. 3780 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema 3781 : CommonFixedSema, 3782 ResultFixedSema); 3783 } 3784 3785 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3786 // The LHS is always a pointer if either side is. 3787 if (!op.LHS->getType()->isPointerTy()) { 3788 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3789 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3790 case LangOptions::SOB_Defined: 3791 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3792 case LangOptions::SOB_Undefined: 3793 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3794 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3795 LLVM_FALLTHROUGH; 3796 case LangOptions::SOB_Trapping: 3797 if (CanElideOverflowCheck(CGF.getContext(), op)) 3798 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3799 return EmitOverflowCheckedBinOp(op); 3800 } 3801 } 3802 3803 if (op.Ty->isConstantMatrixType()) { 3804 llvm::MatrixBuilder MB(Builder); 3805 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3806 return MB.CreateSub(op.LHS, op.RHS); 3807 } 3808 3809 if (op.Ty->isUnsignedIntegerType() && 3810 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3811 !CanElideOverflowCheck(CGF.getContext(), op)) 3812 return EmitOverflowCheckedBinOp(op); 3813 3814 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3815 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3816 // Try to form an fmuladd. 3817 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3818 return FMulAdd; 3819 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3820 } 3821 3822 if (op.isFixedPointOp()) 3823 return EmitFixedPointBinOp(op); 3824 3825 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3826 } 3827 3828 // If the RHS is not a pointer, then we have normal pointer 3829 // arithmetic. 3830 if (!op.RHS->getType()->isPointerTy()) 3831 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3832 3833 // Otherwise, this is a pointer subtraction. 3834 3835 // Do the raw subtraction part. 3836 llvm::Value *LHS 3837 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3838 llvm::Value *RHS 3839 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3840 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3841 3842 // Okay, figure out the element size. 3843 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3844 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3845 3846 llvm::Value *divisor = nullptr; 3847 3848 // For a variable-length array, this is going to be non-constant. 3849 if (const VariableArrayType *vla 3850 = CGF.getContext().getAsVariableArrayType(elementType)) { 3851 auto VlaSize = CGF.getVLASize(vla); 3852 elementType = VlaSize.Type; 3853 divisor = VlaSize.NumElts; 3854 3855 // Scale the number of non-VLA elements by the non-VLA element size. 3856 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3857 if (!eltSize.isOne()) 3858 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3859 3860 // For everything elese, we can just compute it, safe in the 3861 // assumption that Sema won't let anything through that we can't 3862 // safely compute the size of. 3863 } else { 3864 CharUnits elementSize; 3865 // Handle GCC extension for pointer arithmetic on void* and 3866 // function pointer types. 3867 if (elementType->isVoidType() || elementType->isFunctionType()) 3868 elementSize = CharUnits::One(); 3869 else 3870 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3871 3872 // Don't even emit the divide for element size of 1. 3873 if (elementSize.isOne()) 3874 return diffInChars; 3875 3876 divisor = CGF.CGM.getSize(elementSize); 3877 } 3878 3879 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3880 // pointer difference in C is only defined in the case where both operands 3881 // are pointing to elements of an array. 3882 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3883 } 3884 3885 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3886 llvm::IntegerType *Ty; 3887 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3888 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3889 else 3890 Ty = cast<llvm::IntegerType>(LHS->getType()); 3891 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3892 } 3893 3894 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 3895 const Twine &Name) { 3896 llvm::IntegerType *Ty; 3897 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3898 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3899 else 3900 Ty = cast<llvm::IntegerType>(LHS->getType()); 3901 3902 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 3903 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 3904 3905 return Builder.CreateURem( 3906 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 3907 } 3908 3909 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3910 // TODO: This misses out on the sanitizer check below. 3911 if (Ops.isFixedPointOp()) 3912 return EmitFixedPointBinOp(Ops); 3913 3914 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3915 // RHS to the same size as the LHS. 3916 Value *RHS = Ops.RHS; 3917 if (Ops.LHS->getType() != RHS->getType()) 3918 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3919 3920 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3921 Ops.Ty->hasSignedIntegerRepresentation() && 3922 !CGF.getLangOpts().isSignedOverflowDefined() && 3923 !CGF.getLangOpts().CPlusPlus20; 3924 bool SanitizeUnsignedBase = 3925 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && 3926 Ops.Ty->hasUnsignedIntegerRepresentation(); 3927 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; 3928 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3929 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3930 if (CGF.getLangOpts().OpenCL) 3931 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 3932 else if ((SanitizeBase || SanitizeExponent) && 3933 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3934 CodeGenFunction::SanitizerScope SanScope(&CGF); 3935 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3936 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3937 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3938 3939 if (SanitizeExponent) { 3940 Checks.push_back( 3941 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3942 } 3943 3944 if (SanitizeBase) { 3945 // Check whether we are shifting any non-zero bits off the top of the 3946 // integer. We only emit this check if exponent is valid - otherwise 3947 // instructions below will have undefined behavior themselves. 3948 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3949 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3950 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3951 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3952 llvm::Value *PromotedWidthMinusOne = 3953 (RHS == Ops.RHS) ? WidthMinusOne 3954 : GetWidthMinusOneValue(Ops.LHS, RHS); 3955 CGF.EmitBlock(CheckShiftBase); 3956 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3957 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3958 /*NUW*/ true, /*NSW*/ true), 3959 "shl.check"); 3960 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { 3961 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3962 // Under C++11's rules, shifting a 1 bit into the sign bit is 3963 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3964 // define signed left shifts, so we use the C99 and C++11 rules there). 3965 // Unsigned shifts can always shift into the top bit. 3966 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3967 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3968 } 3969 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3970 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3971 CGF.EmitBlock(Cont); 3972 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3973 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3974 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3975 Checks.push_back(std::make_pair( 3976 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase 3977 : SanitizerKind::UnsignedShiftBase)); 3978 } 3979 3980 assert(!Checks.empty()); 3981 EmitBinOpCheck(Checks, Ops); 3982 } 3983 3984 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3985 } 3986 3987 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3988 // TODO: This misses out on the sanitizer check below. 3989 if (Ops.isFixedPointOp()) 3990 return EmitFixedPointBinOp(Ops); 3991 3992 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3993 // RHS to the same size as the LHS. 3994 Value *RHS = Ops.RHS; 3995 if (Ops.LHS->getType() != RHS->getType()) 3996 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3997 3998 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3999 if (CGF.getLangOpts().OpenCL) 4000 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 4001 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 4002 isa<llvm::IntegerType>(Ops.LHS->getType())) { 4003 CodeGenFunction::SanitizerScope SanScope(&CGF); 4004 llvm::Value *Valid = 4005 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 4006 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 4007 } 4008 4009 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 4010 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 4011 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 4012 } 4013 4014 enum IntrinsicType { VCMPEQ, VCMPGT }; 4015 // return corresponding comparison intrinsic for given vector type 4016 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 4017 BuiltinType::Kind ElemKind) { 4018 switch (ElemKind) { 4019 default: llvm_unreachable("unexpected element type"); 4020 case BuiltinType::Char_U: 4021 case BuiltinType::UChar: 4022 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4023 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 4024 case BuiltinType::Char_S: 4025 case BuiltinType::SChar: 4026 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4027 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 4028 case BuiltinType::UShort: 4029 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4030 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 4031 case BuiltinType::Short: 4032 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4033 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 4034 case BuiltinType::UInt: 4035 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4036 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 4037 case BuiltinType::Int: 4038 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4039 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 4040 case BuiltinType::ULong: 4041 case BuiltinType::ULongLong: 4042 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4043 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 4044 case BuiltinType::Long: 4045 case BuiltinType::LongLong: 4046 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4047 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 4048 case BuiltinType::Float: 4049 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 4050 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 4051 case BuiltinType::Double: 4052 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 4053 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 4054 case BuiltinType::UInt128: 4055 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4056 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; 4057 case BuiltinType::Int128: 4058 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4059 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; 4060 } 4061 } 4062 4063 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 4064 llvm::CmpInst::Predicate UICmpOpc, 4065 llvm::CmpInst::Predicate SICmpOpc, 4066 llvm::CmpInst::Predicate FCmpOpc, 4067 bool IsSignaling) { 4068 TestAndClearIgnoreResultAssign(); 4069 Value *Result; 4070 QualType LHSTy = E->getLHS()->getType(); 4071 QualType RHSTy = E->getRHS()->getType(); 4072 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 4073 assert(E->getOpcode() == BO_EQ || 4074 E->getOpcode() == BO_NE); 4075 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 4076 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 4077 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 4078 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 4079 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 4080 BinOpInfo BOInfo = EmitBinOps(E); 4081 Value *LHS = BOInfo.LHS; 4082 Value *RHS = BOInfo.RHS; 4083 4084 // If AltiVec, the comparison results in a numeric type, so we use 4085 // intrinsics comparing vectors and giving 0 or 1 as a result 4086 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 4087 // constants for mapping CR6 register bits to predicate result 4088 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 4089 4090 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 4091 4092 // in several cases vector arguments order will be reversed 4093 Value *FirstVecArg = LHS, 4094 *SecondVecArg = RHS; 4095 4096 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 4097 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 4098 4099 switch(E->getOpcode()) { 4100 default: llvm_unreachable("is not a comparison operation"); 4101 case BO_EQ: 4102 CR6 = CR6_LT; 4103 ID = GetIntrinsic(VCMPEQ, ElementKind); 4104 break; 4105 case BO_NE: 4106 CR6 = CR6_EQ; 4107 ID = GetIntrinsic(VCMPEQ, ElementKind); 4108 break; 4109 case BO_LT: 4110 CR6 = CR6_LT; 4111 ID = GetIntrinsic(VCMPGT, ElementKind); 4112 std::swap(FirstVecArg, SecondVecArg); 4113 break; 4114 case BO_GT: 4115 CR6 = CR6_LT; 4116 ID = GetIntrinsic(VCMPGT, ElementKind); 4117 break; 4118 case BO_LE: 4119 if (ElementKind == BuiltinType::Float) { 4120 CR6 = CR6_LT; 4121 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4122 std::swap(FirstVecArg, SecondVecArg); 4123 } 4124 else { 4125 CR6 = CR6_EQ; 4126 ID = GetIntrinsic(VCMPGT, ElementKind); 4127 } 4128 break; 4129 case BO_GE: 4130 if (ElementKind == BuiltinType::Float) { 4131 CR6 = CR6_LT; 4132 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4133 } 4134 else { 4135 CR6 = CR6_EQ; 4136 ID = GetIntrinsic(VCMPGT, ElementKind); 4137 std::swap(FirstVecArg, SecondVecArg); 4138 } 4139 break; 4140 } 4141 4142 Value *CR6Param = Builder.getInt32(CR6); 4143 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 4144 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 4145 4146 // The result type of intrinsic may not be same as E->getType(). 4147 // If E->getType() is not BoolTy, EmitScalarConversion will do the 4148 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 4149 // do nothing, if ResultTy is not i1 at the same time, it will cause 4150 // crash later. 4151 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 4152 if (ResultTy->getBitWidth() > 1 && 4153 E->getType() == CGF.getContext().BoolTy) 4154 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 4155 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4156 E->getExprLoc()); 4157 } 4158 4159 if (BOInfo.isFixedPointOp()) { 4160 Result = EmitFixedPointBinOp(BOInfo); 4161 } else if (LHS->getType()->isFPOrFPVectorTy()) { 4162 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 4163 if (!IsSignaling) 4164 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 4165 else 4166 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 4167 } else if (LHSTy->hasSignedIntegerRepresentation()) { 4168 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4169 } else { 4170 // Unsigned integers and pointers. 4171 4172 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4173 !isa<llvm::ConstantPointerNull>(LHS) && 4174 !isa<llvm::ConstantPointerNull>(RHS)) { 4175 4176 // Dynamic information is required to be stripped for comparisons, 4177 // because it could leak the dynamic information. Based on comparisons 4178 // of pointers to dynamic objects, the optimizer can replace one pointer 4179 // with another, which might be incorrect in presence of invariant 4180 // groups. Comparison with null is safe because null does not carry any 4181 // dynamic information. 4182 if (LHSTy.mayBeDynamicClass()) 4183 LHS = Builder.CreateStripInvariantGroup(LHS); 4184 if (RHSTy.mayBeDynamicClass()) 4185 RHS = Builder.CreateStripInvariantGroup(RHS); 4186 } 4187 4188 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4189 } 4190 4191 // If this is a vector comparison, sign extend the result to the appropriate 4192 // vector integer type and return it (don't convert to bool). 4193 if (LHSTy->isVectorType()) 4194 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4195 4196 } else { 4197 // Complex Comparison: can only be an equality comparison. 4198 CodeGenFunction::ComplexPairTy LHS, RHS; 4199 QualType CETy; 4200 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4201 LHS = CGF.EmitComplexExpr(E->getLHS()); 4202 CETy = CTy->getElementType(); 4203 } else { 4204 LHS.first = Visit(E->getLHS()); 4205 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4206 CETy = LHSTy; 4207 } 4208 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4209 RHS = CGF.EmitComplexExpr(E->getRHS()); 4210 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4211 CTy->getElementType()) && 4212 "The element types must always match."); 4213 (void)CTy; 4214 } else { 4215 RHS.first = Visit(E->getRHS()); 4216 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4217 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4218 "The element types must always match."); 4219 } 4220 4221 Value *ResultR, *ResultI; 4222 if (CETy->isRealFloatingType()) { 4223 // As complex comparisons can only be equality comparisons, they 4224 // are never signaling comparisons. 4225 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4226 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4227 } else { 4228 // Complex comparisons can only be equality comparisons. As such, signed 4229 // and unsigned opcodes are the same. 4230 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4231 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4232 } 4233 4234 if (E->getOpcode() == BO_EQ) { 4235 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4236 } else { 4237 assert(E->getOpcode() == BO_NE && 4238 "Complex comparison other than == or != ?"); 4239 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4240 } 4241 } 4242 4243 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4244 E->getExprLoc()); 4245 } 4246 4247 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4248 bool Ignore = TestAndClearIgnoreResultAssign(); 4249 4250 Value *RHS; 4251 LValue LHS; 4252 4253 switch (E->getLHS()->getType().getObjCLifetime()) { 4254 case Qualifiers::OCL_Strong: 4255 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4256 break; 4257 4258 case Qualifiers::OCL_Autoreleasing: 4259 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4260 break; 4261 4262 case Qualifiers::OCL_ExplicitNone: 4263 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4264 break; 4265 4266 case Qualifiers::OCL_Weak: 4267 RHS = Visit(E->getRHS()); 4268 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4269 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4270 break; 4271 4272 case Qualifiers::OCL_None: 4273 // __block variables need to have the rhs evaluated first, plus 4274 // this should improve codegen just a little. 4275 RHS = Visit(E->getRHS()); 4276 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4277 4278 // Store the value into the LHS. Bit-fields are handled specially 4279 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4280 // 'An assignment expression has the value of the left operand after 4281 // the assignment...'. 4282 if (LHS.isBitField()) { 4283 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4284 } else { 4285 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4286 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4287 } 4288 } 4289 4290 // If the result is clearly ignored, return now. 4291 if (Ignore) 4292 return nullptr; 4293 4294 // The result of an assignment in C is the assigned r-value. 4295 if (!CGF.getLangOpts().CPlusPlus) 4296 return RHS; 4297 4298 // If the lvalue is non-volatile, return the computed value of the assignment. 4299 if (!LHS.isVolatileQualified()) 4300 return RHS; 4301 4302 // Otherwise, reload the value. 4303 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4304 } 4305 4306 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4307 // Perform vector logical and on comparisons with zero vectors. 4308 if (E->getType()->isVectorType()) { 4309 CGF.incrementProfileCounter(E); 4310 4311 Value *LHS = Visit(E->getLHS()); 4312 Value *RHS = Visit(E->getRHS()); 4313 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4314 if (LHS->getType()->isFPOrFPVectorTy()) { 4315 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4316 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4317 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4318 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4319 } else { 4320 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4321 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4322 } 4323 Value *And = Builder.CreateAnd(LHS, RHS); 4324 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4325 } 4326 4327 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4328 llvm::Type *ResTy = ConvertType(E->getType()); 4329 4330 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4331 // If we have 1 && X, just emit X without inserting the control flow. 4332 bool LHSCondVal; 4333 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4334 if (LHSCondVal) { // If we have 1 && X, just emit X. 4335 CGF.incrementProfileCounter(E); 4336 4337 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4338 4339 // If we're generating for profiling or coverage, generate a branch to a 4340 // block that increments the RHS counter needed to track branch condition 4341 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4342 // "FalseBlock" after the increment is done. 4343 if (InstrumentRegions && 4344 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4345 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end"); 4346 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4347 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock); 4348 CGF.EmitBlock(RHSBlockCnt); 4349 CGF.incrementProfileCounter(E->getRHS()); 4350 CGF.EmitBranch(FBlock); 4351 CGF.EmitBlock(FBlock); 4352 } 4353 4354 // ZExt result to int or bool. 4355 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4356 } 4357 4358 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4359 if (!CGF.ContainsLabel(E->getRHS())) 4360 return llvm::Constant::getNullValue(ResTy); 4361 } 4362 4363 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4364 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4365 4366 CodeGenFunction::ConditionalEvaluation eval(CGF); 4367 4368 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4369 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4370 CGF.getProfileCount(E->getRHS())); 4371 4372 // Any edges into the ContBlock are now from an (indeterminate number of) 4373 // edges from this first condition. All of these values will be false. Start 4374 // setting up the PHI node in the Cont Block for this. 4375 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4376 "", ContBlock); 4377 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4378 PI != PE; ++PI) 4379 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4380 4381 eval.begin(CGF); 4382 CGF.EmitBlock(RHSBlock); 4383 CGF.incrementProfileCounter(E); 4384 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4385 eval.end(CGF); 4386 4387 // Reaquire the RHS block, as there may be subblocks inserted. 4388 RHSBlock = Builder.GetInsertBlock(); 4389 4390 // If we're generating for profiling or coverage, generate a branch on the 4391 // RHS to a block that increments the RHS true counter needed to track branch 4392 // condition coverage. 4393 if (InstrumentRegions && 4394 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4395 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4396 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock); 4397 CGF.EmitBlock(RHSBlockCnt); 4398 CGF.incrementProfileCounter(E->getRHS()); 4399 CGF.EmitBranch(ContBlock); 4400 PN->addIncoming(RHSCond, RHSBlockCnt); 4401 } 4402 4403 // Emit an unconditional branch from this block to ContBlock. 4404 { 4405 // There is no need to emit line number for unconditional branch. 4406 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4407 CGF.EmitBlock(ContBlock); 4408 } 4409 // Insert an entry into the phi node for the edge with the value of RHSCond. 4410 PN->addIncoming(RHSCond, RHSBlock); 4411 4412 // Artificial location to preserve the scope information 4413 { 4414 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4415 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4416 } 4417 4418 // ZExt result to int. 4419 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4420 } 4421 4422 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4423 // Perform vector logical or on comparisons with zero vectors. 4424 if (E->getType()->isVectorType()) { 4425 CGF.incrementProfileCounter(E); 4426 4427 Value *LHS = Visit(E->getLHS()); 4428 Value *RHS = Visit(E->getRHS()); 4429 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4430 if (LHS->getType()->isFPOrFPVectorTy()) { 4431 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4432 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4433 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4434 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4435 } else { 4436 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4437 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4438 } 4439 Value *Or = Builder.CreateOr(LHS, RHS); 4440 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4441 } 4442 4443 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4444 llvm::Type *ResTy = ConvertType(E->getType()); 4445 4446 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4447 // If we have 0 || X, just emit X without inserting the control flow. 4448 bool LHSCondVal; 4449 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4450 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4451 CGF.incrementProfileCounter(E); 4452 4453 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4454 4455 // If we're generating for profiling or coverage, generate a branch to a 4456 // block that increments the RHS counter need to track branch condition 4457 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4458 // "FalseBlock" after the increment is done. 4459 if (InstrumentRegions && 4460 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4461 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end"); 4462 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4463 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt); 4464 CGF.EmitBlock(RHSBlockCnt); 4465 CGF.incrementProfileCounter(E->getRHS()); 4466 CGF.EmitBranch(FBlock); 4467 CGF.EmitBlock(FBlock); 4468 } 4469 4470 // ZExt result to int or bool. 4471 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4472 } 4473 4474 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4475 if (!CGF.ContainsLabel(E->getRHS())) 4476 return llvm::ConstantInt::get(ResTy, 1); 4477 } 4478 4479 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4480 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4481 4482 CodeGenFunction::ConditionalEvaluation eval(CGF); 4483 4484 // Branch on the LHS first. If it is true, go to the success (cont) block. 4485 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4486 CGF.getCurrentProfileCount() - 4487 CGF.getProfileCount(E->getRHS())); 4488 4489 // Any edges into the ContBlock are now from an (indeterminate number of) 4490 // edges from this first condition. All of these values will be true. Start 4491 // setting up the PHI node in the Cont Block for this. 4492 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4493 "", ContBlock); 4494 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4495 PI != PE; ++PI) 4496 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4497 4498 eval.begin(CGF); 4499 4500 // Emit the RHS condition as a bool value. 4501 CGF.EmitBlock(RHSBlock); 4502 CGF.incrementProfileCounter(E); 4503 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4504 4505 eval.end(CGF); 4506 4507 // Reaquire the RHS block, as there may be subblocks inserted. 4508 RHSBlock = Builder.GetInsertBlock(); 4509 4510 // If we're generating for profiling or coverage, generate a branch on the 4511 // RHS to a block that increments the RHS true counter needed to track branch 4512 // condition coverage. 4513 if (InstrumentRegions && 4514 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4515 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4516 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt); 4517 CGF.EmitBlock(RHSBlockCnt); 4518 CGF.incrementProfileCounter(E->getRHS()); 4519 CGF.EmitBranch(ContBlock); 4520 PN->addIncoming(RHSCond, RHSBlockCnt); 4521 } 4522 4523 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4524 // into the phi node for the edge with the value of RHSCond. 4525 CGF.EmitBlock(ContBlock); 4526 PN->addIncoming(RHSCond, RHSBlock); 4527 4528 // ZExt result to int. 4529 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4530 } 4531 4532 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4533 CGF.EmitIgnoredExpr(E->getLHS()); 4534 CGF.EnsureInsertPoint(); 4535 return Visit(E->getRHS()); 4536 } 4537 4538 //===----------------------------------------------------------------------===// 4539 // Other Operators 4540 //===----------------------------------------------------------------------===// 4541 4542 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4543 /// expression is cheap enough and side-effect-free enough to evaluate 4544 /// unconditionally instead of conditionally. This is used to convert control 4545 /// flow into selects in some cases. 4546 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4547 CodeGenFunction &CGF) { 4548 // Anything that is an integer or floating point constant is fine. 4549 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4550 4551 // Even non-volatile automatic variables can't be evaluated unconditionally. 4552 // Referencing a thread_local may cause non-trivial initialization work to 4553 // occur. If we're inside a lambda and one of the variables is from the scope 4554 // outside the lambda, that function may have returned already. Reading its 4555 // locals is a bad idea. Also, these reads may introduce races there didn't 4556 // exist in the source-level program. 4557 } 4558 4559 4560 Value *ScalarExprEmitter:: 4561 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4562 TestAndClearIgnoreResultAssign(); 4563 4564 // Bind the common expression if necessary. 4565 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4566 4567 Expr *condExpr = E->getCond(); 4568 Expr *lhsExpr = E->getTrueExpr(); 4569 Expr *rhsExpr = E->getFalseExpr(); 4570 4571 // If the condition constant folds and can be elided, try to avoid emitting 4572 // the condition and the dead arm. 4573 bool CondExprBool; 4574 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4575 Expr *live = lhsExpr, *dead = rhsExpr; 4576 if (!CondExprBool) std::swap(live, dead); 4577 4578 // If the dead side doesn't have labels we need, just emit the Live part. 4579 if (!CGF.ContainsLabel(dead)) { 4580 if (CondExprBool) 4581 CGF.incrementProfileCounter(E); 4582 Value *Result = Visit(live); 4583 4584 // If the live part is a throw expression, it acts like it has a void 4585 // type, so evaluating it returns a null Value*. However, a conditional 4586 // with non-void type must return a non-null Value*. 4587 if (!Result && !E->getType()->isVoidType()) 4588 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4589 4590 return Result; 4591 } 4592 } 4593 4594 // OpenCL: If the condition is a vector, we can treat this condition like 4595 // the select function. 4596 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4597 condExpr->getType()->isExtVectorType()) { 4598 CGF.incrementProfileCounter(E); 4599 4600 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4601 llvm::Value *LHS = Visit(lhsExpr); 4602 llvm::Value *RHS = Visit(rhsExpr); 4603 4604 llvm::Type *condType = ConvertType(condExpr->getType()); 4605 auto *vecTy = cast<llvm::FixedVectorType>(condType); 4606 4607 unsigned numElem = vecTy->getNumElements(); 4608 llvm::Type *elemType = vecTy->getElementType(); 4609 4610 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4611 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4612 llvm::Value *tmp = Builder.CreateSExt( 4613 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4614 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4615 4616 // Cast float to int to perform ANDs if necessary. 4617 llvm::Value *RHSTmp = RHS; 4618 llvm::Value *LHSTmp = LHS; 4619 bool wasCast = false; 4620 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4621 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4622 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4623 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4624 wasCast = true; 4625 } 4626 4627 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4628 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4629 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4630 if (wasCast) 4631 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4632 4633 return tmp5; 4634 } 4635 4636 if (condExpr->getType()->isVectorType()) { 4637 CGF.incrementProfileCounter(E); 4638 4639 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4640 llvm::Value *LHS = Visit(lhsExpr); 4641 llvm::Value *RHS = Visit(rhsExpr); 4642 4643 llvm::Type *CondType = ConvertType(condExpr->getType()); 4644 auto *VecTy = cast<llvm::VectorType>(CondType); 4645 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4646 4647 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4648 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4649 } 4650 4651 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4652 // select instead of as control flow. We can only do this if it is cheap and 4653 // safe to evaluate the LHS and RHS unconditionally. 4654 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4655 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4656 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4657 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4658 4659 CGF.incrementProfileCounter(E, StepV); 4660 4661 llvm::Value *LHS = Visit(lhsExpr); 4662 llvm::Value *RHS = Visit(rhsExpr); 4663 if (!LHS) { 4664 // If the conditional has void type, make sure we return a null Value*. 4665 assert(!RHS && "LHS and RHS types must match"); 4666 return nullptr; 4667 } 4668 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4669 } 4670 4671 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4672 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4673 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4674 4675 CodeGenFunction::ConditionalEvaluation eval(CGF); 4676 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4677 CGF.getProfileCount(lhsExpr)); 4678 4679 CGF.EmitBlock(LHSBlock); 4680 CGF.incrementProfileCounter(E); 4681 eval.begin(CGF); 4682 Value *LHS = Visit(lhsExpr); 4683 eval.end(CGF); 4684 4685 LHSBlock = Builder.GetInsertBlock(); 4686 Builder.CreateBr(ContBlock); 4687 4688 CGF.EmitBlock(RHSBlock); 4689 eval.begin(CGF); 4690 Value *RHS = Visit(rhsExpr); 4691 eval.end(CGF); 4692 4693 RHSBlock = Builder.GetInsertBlock(); 4694 CGF.EmitBlock(ContBlock); 4695 4696 // If the LHS or RHS is a throw expression, it will be legitimately null. 4697 if (!LHS) 4698 return RHS; 4699 if (!RHS) 4700 return LHS; 4701 4702 // Create a PHI node for the real part. 4703 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4704 PN->addIncoming(LHS, LHSBlock); 4705 PN->addIncoming(RHS, RHSBlock); 4706 return PN; 4707 } 4708 4709 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4710 return Visit(E->getChosenSubExpr()); 4711 } 4712 4713 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4714 QualType Ty = VE->getType(); 4715 4716 if (Ty->isVariablyModifiedType()) 4717 CGF.EmitVariablyModifiedType(Ty); 4718 4719 Address ArgValue = Address::invalid(); 4720 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4721 4722 llvm::Type *ArgTy = ConvertType(VE->getType()); 4723 4724 // If EmitVAArg fails, emit an error. 4725 if (!ArgPtr.isValid()) { 4726 CGF.ErrorUnsupported(VE, "va_arg expression"); 4727 return llvm::UndefValue::get(ArgTy); 4728 } 4729 4730 // FIXME Volatility. 4731 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4732 4733 // If EmitVAArg promoted the type, we must truncate it. 4734 if (ArgTy != Val->getType()) { 4735 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4736 Val = Builder.CreateIntToPtr(Val, ArgTy); 4737 else 4738 Val = Builder.CreateTrunc(Val, ArgTy); 4739 } 4740 4741 return Val; 4742 } 4743 4744 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4745 return CGF.EmitBlockLiteral(block); 4746 } 4747 4748 // Convert a vec3 to vec4, or vice versa. 4749 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4750 Value *Src, unsigned NumElementsDst) { 4751 static constexpr int Mask[] = {0, 1, 2, -1}; 4752 return Builder.CreateShuffleVector(Src, 4753 llvm::makeArrayRef(Mask, NumElementsDst)); 4754 } 4755 4756 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4757 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4758 // but could be scalar or vectors of different lengths, and either can be 4759 // pointer. 4760 // There are 4 cases: 4761 // 1. non-pointer -> non-pointer : needs 1 bitcast 4762 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4763 // 3. pointer -> non-pointer 4764 // a) pointer -> intptr_t : needs 1 ptrtoint 4765 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4766 // 4. non-pointer -> pointer 4767 // a) intptr_t -> pointer : needs 1 inttoptr 4768 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4769 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4770 // allow casting directly between pointer types and non-integer non-pointer 4771 // types. 4772 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4773 const llvm::DataLayout &DL, 4774 Value *Src, llvm::Type *DstTy, 4775 StringRef Name = "") { 4776 auto SrcTy = Src->getType(); 4777 4778 // Case 1. 4779 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4780 return Builder.CreateBitCast(Src, DstTy, Name); 4781 4782 // Case 2. 4783 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4784 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4785 4786 // Case 3. 4787 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4788 // Case 3b. 4789 if (!DstTy->isIntegerTy()) 4790 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4791 // Cases 3a and 3b. 4792 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4793 } 4794 4795 // Case 4b. 4796 if (!SrcTy->isIntegerTy()) 4797 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4798 // Cases 4a and 4b. 4799 return Builder.CreateIntToPtr(Src, DstTy, Name); 4800 } 4801 4802 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4803 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4804 llvm::Type *DstTy = ConvertType(E->getType()); 4805 4806 llvm::Type *SrcTy = Src->getType(); 4807 unsigned NumElementsSrc = 4808 isa<llvm::VectorType>(SrcTy) 4809 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() 4810 : 0; 4811 unsigned NumElementsDst = 4812 isa<llvm::VectorType>(DstTy) 4813 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() 4814 : 0; 4815 4816 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4817 // vector to get a vec4, then a bitcast if the target type is different. 4818 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4819 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4820 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4821 DstTy); 4822 4823 Src->setName("astype"); 4824 return Src; 4825 } 4826 4827 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4828 // to vec4 if the original type is not vec4, then a shuffle vector to 4829 // get a vec3. 4830 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4831 auto *Vec4Ty = llvm::FixedVectorType::get( 4832 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4833 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4834 Vec4Ty); 4835 4836 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4837 Src->setName("astype"); 4838 return Src; 4839 } 4840 4841 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4842 Src, DstTy, "astype"); 4843 } 4844 4845 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4846 return CGF.EmitAtomicExpr(E).getScalarVal(); 4847 } 4848 4849 //===----------------------------------------------------------------------===// 4850 // Entry Point into this File 4851 //===----------------------------------------------------------------------===// 4852 4853 /// Emit the computation of the specified expression of scalar type, ignoring 4854 /// the result. 4855 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4856 assert(E && hasScalarEvaluationKind(E->getType()) && 4857 "Invalid scalar expression to emit"); 4858 4859 return ScalarExprEmitter(*this, IgnoreResultAssign) 4860 .Visit(const_cast<Expr *>(E)); 4861 } 4862 4863 /// Emit a conversion from the specified type to the specified destination type, 4864 /// both of which are LLVM scalar types. 4865 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4866 QualType DstTy, 4867 SourceLocation Loc) { 4868 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4869 "Invalid scalar expression to emit"); 4870 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4871 } 4872 4873 /// Emit a conversion from the specified complex type to the specified 4874 /// destination type, where the destination type is an LLVM scalar type. 4875 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4876 QualType SrcTy, 4877 QualType DstTy, 4878 SourceLocation Loc) { 4879 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4880 "Invalid complex -> scalar conversion"); 4881 return ScalarExprEmitter(*this) 4882 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4883 } 4884 4885 4886 llvm::Value *CodeGenFunction:: 4887 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4888 bool isInc, bool isPre) { 4889 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4890 } 4891 4892 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4893 // object->isa or (*object).isa 4894 // Generate code as for: *(Class*)object 4895 4896 Expr *BaseExpr = E->getBase(); 4897 Address Addr = Address::invalid(); 4898 if (BaseExpr->isPRValue()) { 4899 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4900 } else { 4901 Addr = EmitLValue(BaseExpr).getAddress(*this); 4902 } 4903 4904 // Cast the address to Class*. 4905 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4906 return MakeAddrLValue(Addr, E->getType()); 4907 } 4908 4909 4910 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4911 const CompoundAssignOperator *E) { 4912 ScalarExprEmitter Scalar(*this); 4913 Value *Result = nullptr; 4914 switch (E->getOpcode()) { 4915 #define COMPOUND_OP(Op) \ 4916 case BO_##Op##Assign: \ 4917 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4918 Result) 4919 COMPOUND_OP(Mul); 4920 COMPOUND_OP(Div); 4921 COMPOUND_OP(Rem); 4922 COMPOUND_OP(Add); 4923 COMPOUND_OP(Sub); 4924 COMPOUND_OP(Shl); 4925 COMPOUND_OP(Shr); 4926 COMPOUND_OP(And); 4927 COMPOUND_OP(Xor); 4928 COMPOUND_OP(Or); 4929 #undef COMPOUND_OP 4930 4931 case BO_PtrMemD: 4932 case BO_PtrMemI: 4933 case BO_Mul: 4934 case BO_Div: 4935 case BO_Rem: 4936 case BO_Add: 4937 case BO_Sub: 4938 case BO_Shl: 4939 case BO_Shr: 4940 case BO_LT: 4941 case BO_GT: 4942 case BO_LE: 4943 case BO_GE: 4944 case BO_EQ: 4945 case BO_NE: 4946 case BO_Cmp: 4947 case BO_And: 4948 case BO_Xor: 4949 case BO_Or: 4950 case BO_LAnd: 4951 case BO_LOr: 4952 case BO_Assign: 4953 case BO_Comma: 4954 llvm_unreachable("Not valid compound assignment operators"); 4955 } 4956 4957 llvm_unreachable("Unhandled compound assignment operator"); 4958 } 4959 4960 struct GEPOffsetAndOverflow { 4961 // The total (signed) byte offset for the GEP. 4962 llvm::Value *TotalOffset; 4963 // The offset overflow flag - true if the total offset overflows. 4964 llvm::Value *OffsetOverflows; 4965 }; 4966 4967 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4968 /// and compute the total offset it applies from it's base pointer BasePtr. 4969 /// Returns offset in bytes and a boolean flag whether an overflow happened 4970 /// during evaluation. 4971 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4972 llvm::LLVMContext &VMContext, 4973 CodeGenModule &CGM, 4974 CGBuilderTy &Builder) { 4975 const auto &DL = CGM.getDataLayout(); 4976 4977 // The total (signed) byte offset for the GEP. 4978 llvm::Value *TotalOffset = nullptr; 4979 4980 // Was the GEP already reduced to a constant? 4981 if (isa<llvm::Constant>(GEPVal)) { 4982 // Compute the offset by casting both pointers to integers and subtracting: 4983 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4984 Value *BasePtr_int = 4985 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4986 Value *GEPVal_int = 4987 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4988 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4989 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4990 } 4991 4992 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4993 assert(GEP->getPointerOperand() == BasePtr && 4994 "BasePtr must be the base of the GEP."); 4995 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4996 4997 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4998 4999 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 5000 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 5001 auto *SAddIntrinsic = 5002 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 5003 auto *SMulIntrinsic = 5004 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 5005 5006 // The offset overflow flag - true if the total offset overflows. 5007 llvm::Value *OffsetOverflows = Builder.getFalse(); 5008 5009 /// Return the result of the given binary operation. 5010 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 5011 llvm::Value *RHS) -> llvm::Value * { 5012 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 5013 5014 // If the operands are constants, return a constant result. 5015 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 5016 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 5017 llvm::APInt N; 5018 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 5019 /*Signed=*/true, N); 5020 if (HasOverflow) 5021 OffsetOverflows = Builder.getTrue(); 5022 return llvm::ConstantInt::get(VMContext, N); 5023 } 5024 } 5025 5026 // Otherwise, compute the result with checked arithmetic. 5027 auto *ResultAndOverflow = Builder.CreateCall( 5028 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 5029 OffsetOverflows = Builder.CreateOr( 5030 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 5031 return Builder.CreateExtractValue(ResultAndOverflow, 0); 5032 }; 5033 5034 // Determine the total byte offset by looking at each GEP operand. 5035 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 5036 GTI != GTE; ++GTI) { 5037 llvm::Value *LocalOffset; 5038 auto *Index = GTI.getOperand(); 5039 // Compute the local offset contributed by this indexing step: 5040 if (auto *STy = GTI.getStructTypeOrNull()) { 5041 // For struct indexing, the local offset is the byte position of the 5042 // specified field. 5043 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 5044 LocalOffset = llvm::ConstantInt::get( 5045 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 5046 } else { 5047 // Otherwise this is array-like indexing. The local offset is the index 5048 // multiplied by the element size. 5049 auto *ElementSize = llvm::ConstantInt::get( 5050 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 5051 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 5052 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 5053 } 5054 5055 // If this is the first offset, set it as the total offset. Otherwise, add 5056 // the local offset into the running total. 5057 if (!TotalOffset || TotalOffset == Zero) 5058 TotalOffset = LocalOffset; 5059 else 5060 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 5061 } 5062 5063 return {TotalOffset, OffsetOverflows}; 5064 } 5065 5066 Value * 5067 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr, 5068 ArrayRef<Value *> IdxList, 5069 bool SignedIndices, bool IsSubtraction, 5070 SourceLocation Loc, const Twine &Name) { 5071 llvm::Type *PtrTy = Ptr->getType(); 5072 Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name); 5073 5074 // If the pointer overflow sanitizer isn't enabled, do nothing. 5075 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 5076 return GEPVal; 5077 5078 // Perform nullptr-and-offset check unless the nullptr is defined. 5079 bool PerformNullCheck = !NullPointerIsDefined( 5080 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 5081 // Check for overflows unless the GEP got constant-folded, 5082 // and only in the default address space 5083 bool PerformOverflowCheck = 5084 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 5085 5086 if (!(PerformNullCheck || PerformOverflowCheck)) 5087 return GEPVal; 5088 5089 const auto &DL = CGM.getDataLayout(); 5090 5091 SanitizerScope SanScope(this); 5092 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 5093 5094 GEPOffsetAndOverflow EvaluatedGEP = 5095 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 5096 5097 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 5098 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 5099 "If the offset got constant-folded, we don't expect that there was an " 5100 "overflow."); 5101 5102 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 5103 5104 // Common case: if the total offset is zero, and we are using C++ semantics, 5105 // where nullptr+0 is defined, don't emit a check. 5106 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 5107 return GEPVal; 5108 5109 // Now that we've computed the total offset, add it to the base pointer (with 5110 // wrapping semantics). 5111 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 5112 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 5113 5114 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 5115 5116 if (PerformNullCheck) { 5117 // In C++, if the base pointer evaluates to a null pointer value, 5118 // the only valid pointer this inbounds GEP can produce is also 5119 // a null pointer, so the offset must also evaluate to zero. 5120 // Likewise, if we have non-zero base pointer, we can not get null pointer 5121 // as a result, so the offset can not be -intptr_t(BasePtr). 5122 // In other words, both pointers are either null, or both are non-null, 5123 // or the behaviour is undefined. 5124 // 5125 // C, however, is more strict in this regard, and gives more 5126 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 5127 // So both the input to the 'gep inbounds' AND the output must not be null. 5128 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 5129 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 5130 auto *Valid = 5131 CGM.getLangOpts().CPlusPlus 5132 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 5133 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 5134 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 5135 } 5136 5137 if (PerformOverflowCheck) { 5138 // The GEP is valid if: 5139 // 1) The total offset doesn't overflow, and 5140 // 2) The sign of the difference between the computed address and the base 5141 // pointer matches the sign of the total offset. 5142 llvm::Value *ValidGEP; 5143 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 5144 if (SignedIndices) { 5145 // GEP is computed as `unsigned base + signed offset`, therefore: 5146 // * If offset was positive, then the computed pointer can not be 5147 // [unsigned] less than the base pointer, unless it overflowed. 5148 // * If offset was negative, then the computed pointer can not be 5149 // [unsigned] greater than the bas pointere, unless it overflowed. 5150 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5151 auto *PosOrZeroOffset = 5152 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 5153 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 5154 ValidGEP = 5155 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 5156 } else if (!IsSubtraction) { 5157 // GEP is computed as `unsigned base + unsigned offset`, therefore the 5158 // computed pointer can not be [unsigned] less than base pointer, 5159 // unless there was an overflow. 5160 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 5161 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5162 } else { 5163 // GEP is computed as `unsigned base - unsigned offset`, therefore the 5164 // computed pointer can not be [unsigned] greater than base pointer, 5165 // unless there was an overflow. 5166 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 5167 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 5168 } 5169 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 5170 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 5171 } 5172 5173 assert(!Checks.empty() && "Should have produced some checks."); 5174 5175 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 5176 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 5177 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 5178 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 5179 5180 return GEPVal; 5181 } 5182