1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Constants.h"
26 #include "llvm/DataLayout.h"
27 #include "llvm/Function.h"
28 #include "llvm/GlobalVariable.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/Module.h"
31 #include "llvm/Support/CFG.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   bool FPContractable;
49   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50 };
51 
52 static bool MustVisitNullValue(const Expr *E) {
53   // If a null pointer expression's type is the C++0x nullptr_t, then
54   // it's not necessarily a simple constant and it must be evaluated
55   // for its potential side effects.
56   return E->getType()->isNullPtrType();
57 }
58 
59 class ScalarExprEmitter
60   : public StmtVisitor<ScalarExprEmitter, Value*> {
61   CodeGenFunction &CGF;
62   CGBuilderTy &Builder;
63   bool IgnoreResultAssign;
64   llvm::LLVMContext &VMContext;
65 public:
66 
67   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69       VMContext(cgf.getLLVMContext()) {
70   }
71 
72   //===--------------------------------------------------------------------===//
73   //                               Utilities
74   //===--------------------------------------------------------------------===//
75 
76   bool TestAndClearIgnoreResultAssign() {
77     bool I = IgnoreResultAssign;
78     IgnoreResultAssign = false;
79     return I;
80   }
81 
82   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
83   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
84   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85     return CGF.EmitCheckedLValue(E, TCK);
86   }
87 
88   void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89 
90   Value *EmitLoadOfLValue(LValue LV) {
91     return CGF.EmitLoadOfLValue(LV).getScalarVal();
92   }
93 
94   /// EmitLoadOfLValue - Given an expression with complex type that represents a
95   /// value l-value, this method emits the address of the l-value, then loads
96   /// and returns the result.
97   Value *EmitLoadOfLValue(const Expr *E) {
98     return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load));
99   }
100 
101   /// EmitConversionToBool - Convert the specified expression value to a
102   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
103   Value *EmitConversionToBool(Value *Src, QualType DstTy);
104 
105   /// \brief Emit a check that a conversion to or from a floating-point type
106   /// does not overflow.
107   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
108                                 Value *Src, QualType SrcType,
109                                 QualType DstType, llvm::Type *DstTy);
110 
111   /// EmitScalarConversion - Emit a conversion from the specified type to the
112   /// specified destination type, both of which are LLVM scalar types.
113   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
114 
115   /// EmitComplexToScalarConversion - Emit a conversion from the specified
116   /// complex type to the specified destination type, where the destination type
117   /// is an LLVM scalar type.
118   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
119                                        QualType SrcTy, QualType DstTy);
120 
121   /// EmitNullValue - Emit a value that corresponds to null for the given type.
122   Value *EmitNullValue(QualType Ty);
123 
124   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
125   Value *EmitFloatToBoolConversion(Value *V) {
126     // Compare against 0.0 for fp scalars.
127     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
128     return Builder.CreateFCmpUNE(V, Zero, "tobool");
129   }
130 
131   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
132   Value *EmitPointerToBoolConversion(Value *V) {
133     Value *Zero = llvm::ConstantPointerNull::get(
134                                       cast<llvm::PointerType>(V->getType()));
135     return Builder.CreateICmpNE(V, Zero, "tobool");
136   }
137 
138   Value *EmitIntToBoolConversion(Value *V) {
139     // Because of the type rules of C, we often end up computing a
140     // logical value, then zero extending it to int, then wanting it
141     // as a logical value again.  Optimize this common case.
142     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
143       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
144         Value *Result = ZI->getOperand(0);
145         // If there aren't any more uses, zap the instruction to save space.
146         // Note that there can be more uses, for example if this
147         // is the result of an assignment.
148         if (ZI->use_empty())
149           ZI->eraseFromParent();
150         return Result;
151       }
152     }
153 
154     return Builder.CreateIsNotNull(V, "tobool");
155   }
156 
157   //===--------------------------------------------------------------------===//
158   //                            Visitor Methods
159   //===--------------------------------------------------------------------===//
160 
161   Value *Visit(Expr *E) {
162     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
163   }
164 
165   Value *VisitStmt(Stmt *S) {
166     S->dump(CGF.getContext().getSourceManager());
167     llvm_unreachable("Stmt can't have complex result type!");
168   }
169   Value *VisitExpr(Expr *S);
170 
171   Value *VisitParenExpr(ParenExpr *PE) {
172     return Visit(PE->getSubExpr());
173   }
174   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
175     return Visit(E->getReplacement());
176   }
177   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
178     return Visit(GE->getResultExpr());
179   }
180 
181   // Leaves.
182   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
183     return Builder.getInt(E->getValue());
184   }
185   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
186     return llvm::ConstantFP::get(VMContext, E->getValue());
187   }
188   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
189     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
190   }
191   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
192     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
193   }
194   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
195     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
196   }
197   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
198     return EmitNullValue(E->getType());
199   }
200   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
201     return EmitNullValue(E->getType());
202   }
203   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
204   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
205   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
206     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
207     return Builder.CreateBitCast(V, ConvertType(E->getType()));
208   }
209 
210   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
211     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
212   }
213 
214   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
215     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
216   }
217 
218   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
219     if (E->isGLValue())
220       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
221 
222     // Otherwise, assume the mapping is the scalar directly.
223     return CGF.getOpaqueRValueMapping(E).getScalarVal();
224   }
225 
226   // l-values.
227   Value *VisitDeclRefExpr(DeclRefExpr *E) {
228     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
229       if (result.isReference())
230         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
231       return result.getValue();
232     }
233     return EmitLoadOfLValue(E);
234   }
235 
236   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
237     return CGF.EmitObjCSelectorExpr(E);
238   }
239   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
240     return CGF.EmitObjCProtocolExpr(E);
241   }
242   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
243     return EmitLoadOfLValue(E);
244   }
245   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
246     if (E->getMethodDecl() &&
247         E->getMethodDecl()->getResultType()->isReferenceType())
248       return EmitLoadOfLValue(E);
249     return CGF.EmitObjCMessageExpr(E).getScalarVal();
250   }
251 
252   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
253     LValue LV = CGF.EmitObjCIsaExpr(E);
254     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
255     return V;
256   }
257 
258   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
259   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
260   Value *VisitMemberExpr(MemberExpr *E);
261   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
262   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
263     return EmitLoadOfLValue(E);
264   }
265 
266   Value *VisitInitListExpr(InitListExpr *E);
267 
268   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
269     return CGF.CGM.EmitNullConstant(E->getType());
270   }
271   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
272     if (E->getType()->isVariablyModifiedType())
273       CGF.EmitVariablyModifiedType(E->getType());
274     return VisitCastExpr(E);
275   }
276   Value *VisitCastExpr(CastExpr *E);
277 
278   Value *VisitCallExpr(const CallExpr *E) {
279     if (E->getCallReturnType()->isReferenceType())
280       return EmitLoadOfLValue(E);
281 
282     return CGF.EmitCallExpr(E).getScalarVal();
283   }
284 
285   Value *VisitStmtExpr(const StmtExpr *E);
286 
287   // Unary Operators.
288   Value *VisitUnaryPostDec(const UnaryOperator *E) {
289     LValue LV = EmitLValue(E->getSubExpr());
290     return EmitScalarPrePostIncDec(E, LV, false, false);
291   }
292   Value *VisitUnaryPostInc(const UnaryOperator *E) {
293     LValue LV = EmitLValue(E->getSubExpr());
294     return EmitScalarPrePostIncDec(E, LV, true, false);
295   }
296   Value *VisitUnaryPreDec(const UnaryOperator *E) {
297     LValue LV = EmitLValue(E->getSubExpr());
298     return EmitScalarPrePostIncDec(E, LV, false, true);
299   }
300   Value *VisitUnaryPreInc(const UnaryOperator *E) {
301     LValue LV = EmitLValue(E->getSubExpr());
302     return EmitScalarPrePostIncDec(E, LV, true, true);
303   }
304 
305   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
306                                                llvm::Value *InVal,
307                                                llvm::Value *NextVal,
308                                                bool IsInc);
309 
310   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
311                                        bool isInc, bool isPre);
312 
313 
314   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
315     if (isa<MemberPointerType>(E->getType())) // never sugared
316       return CGF.CGM.getMemberPointerConstant(E);
317 
318     return EmitLValue(E->getSubExpr()).getAddress();
319   }
320   Value *VisitUnaryDeref(const UnaryOperator *E) {
321     if (E->getType()->isVoidType())
322       return Visit(E->getSubExpr()); // the actual value should be unused
323     return EmitLoadOfLValue(E);
324   }
325   Value *VisitUnaryPlus(const UnaryOperator *E) {
326     // This differs from gcc, though, most likely due to a bug in gcc.
327     TestAndClearIgnoreResultAssign();
328     return Visit(E->getSubExpr());
329   }
330   Value *VisitUnaryMinus    (const UnaryOperator *E);
331   Value *VisitUnaryNot      (const UnaryOperator *E);
332   Value *VisitUnaryLNot     (const UnaryOperator *E);
333   Value *VisitUnaryReal     (const UnaryOperator *E);
334   Value *VisitUnaryImag     (const UnaryOperator *E);
335   Value *VisitUnaryExtension(const UnaryOperator *E) {
336     return Visit(E->getSubExpr());
337   }
338 
339   // C++
340   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
341     return EmitLoadOfLValue(E);
342   }
343 
344   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
345     return Visit(DAE->getExpr());
346   }
347   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
348     return CGF.LoadCXXThis();
349   }
350 
351   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
352     CGF.enterFullExpression(E);
353     CodeGenFunction::RunCleanupsScope Scope(CGF);
354     return Visit(E->getSubExpr());
355   }
356   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
357     return CGF.EmitCXXNewExpr(E);
358   }
359   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
360     CGF.EmitCXXDeleteExpr(E);
361     return 0;
362   }
363   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
364     return Builder.getInt1(E->getValue());
365   }
366 
367   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
368     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
369   }
370 
371   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
372     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
373   }
374 
375   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
376     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
377   }
378 
379   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
380     // C++ [expr.pseudo]p1:
381     //   The result shall only be used as the operand for the function call
382     //   operator (), and the result of such a call has type void. The only
383     //   effect is the evaluation of the postfix-expression before the dot or
384     //   arrow.
385     CGF.EmitScalarExpr(E->getBase());
386     return 0;
387   }
388 
389   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
390     return EmitNullValue(E->getType());
391   }
392 
393   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
394     CGF.EmitCXXThrowExpr(E);
395     return 0;
396   }
397 
398   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
399     return Builder.getInt1(E->getValue());
400   }
401 
402   // Binary Operators.
403   Value *EmitMul(const BinOpInfo &Ops) {
404     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
405       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
406       case LangOptions::SOB_Defined:
407         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
408       case LangOptions::SOB_Undefined:
409         if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
410           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
411         // Fall through.
412       case LangOptions::SOB_Trapping:
413         return EmitOverflowCheckedBinOp(Ops);
414       }
415     }
416 
417     if (Ops.Ty->isUnsignedIntegerType() &&
418         CGF.getLangOpts().SanitizeUnsignedIntegerOverflow)
419       return EmitOverflowCheckedBinOp(Ops);
420 
421     if (Ops.LHS->getType()->isFPOrFPVectorTy())
422       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
423     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
424   }
425   /// Create a binary op that checks for overflow.
426   /// Currently only supports +, - and *.
427   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
428 
429   // Check for undefined division and modulus behaviors.
430   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
431                                                   llvm::Value *Zero,bool isDiv);
432   Value *EmitDiv(const BinOpInfo &Ops);
433   Value *EmitRem(const BinOpInfo &Ops);
434   Value *EmitAdd(const BinOpInfo &Ops);
435   Value *EmitSub(const BinOpInfo &Ops);
436   Value *EmitShl(const BinOpInfo &Ops);
437   Value *EmitShr(const BinOpInfo &Ops);
438   Value *EmitAnd(const BinOpInfo &Ops) {
439     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
440   }
441   Value *EmitXor(const BinOpInfo &Ops) {
442     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
443   }
444   Value *EmitOr (const BinOpInfo &Ops) {
445     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
446   }
447 
448   BinOpInfo EmitBinOps(const BinaryOperator *E);
449   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
450                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
451                                   Value *&Result);
452 
453   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
454                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
455 
456   // Binary operators and binary compound assignment operators.
457 #define HANDLEBINOP(OP) \
458   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
459     return Emit ## OP(EmitBinOps(E));                                      \
460   }                                                                        \
461   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
462     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
463   }
464   HANDLEBINOP(Mul)
465   HANDLEBINOP(Div)
466   HANDLEBINOP(Rem)
467   HANDLEBINOP(Add)
468   HANDLEBINOP(Sub)
469   HANDLEBINOP(Shl)
470   HANDLEBINOP(Shr)
471   HANDLEBINOP(And)
472   HANDLEBINOP(Xor)
473   HANDLEBINOP(Or)
474 #undef HANDLEBINOP
475 
476   // Comparisons.
477   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
478                      unsigned SICmpOpc, unsigned FCmpOpc);
479 #define VISITCOMP(CODE, UI, SI, FP) \
480     Value *VisitBin##CODE(const BinaryOperator *E) { \
481       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
482                          llvm::FCmpInst::FP); }
483   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
484   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
485   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
486   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
487   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
488   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
489 #undef VISITCOMP
490 
491   Value *VisitBinAssign     (const BinaryOperator *E);
492 
493   Value *VisitBinLAnd       (const BinaryOperator *E);
494   Value *VisitBinLOr        (const BinaryOperator *E);
495   Value *VisitBinComma      (const BinaryOperator *E);
496 
497   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
498   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
499 
500   // Other Operators.
501   Value *VisitBlockExpr(const BlockExpr *BE);
502   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
503   Value *VisitChooseExpr(ChooseExpr *CE);
504   Value *VisitVAArgExpr(VAArgExpr *VE);
505   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
506     return CGF.EmitObjCStringLiteral(E);
507   }
508   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
509     return CGF.EmitObjCBoxedExpr(E);
510   }
511   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
512     return CGF.EmitObjCArrayLiteral(E);
513   }
514   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
515     return CGF.EmitObjCDictionaryLiteral(E);
516   }
517   Value *VisitAsTypeExpr(AsTypeExpr *CE);
518   Value *VisitAtomicExpr(AtomicExpr *AE);
519 };
520 }  // end anonymous namespace.
521 
522 //===----------------------------------------------------------------------===//
523 //                                Utilities
524 //===----------------------------------------------------------------------===//
525 
526 /// EmitConversionToBool - Convert the specified expression value to a
527 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
528 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
529   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
530 
531   if (SrcType->isRealFloatingType())
532     return EmitFloatToBoolConversion(Src);
533 
534   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
535     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
536 
537   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
538          "Unknown scalar type to convert");
539 
540   if (isa<llvm::IntegerType>(Src->getType()))
541     return EmitIntToBoolConversion(Src);
542 
543   assert(isa<llvm::PointerType>(Src->getType()));
544   return EmitPointerToBoolConversion(Src);
545 }
546 
547 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
548                                                  QualType OrigSrcType,
549                                                  Value *Src, QualType SrcType,
550                                                  QualType DstType,
551                                                  llvm::Type *DstTy) {
552   using llvm::APFloat;
553   using llvm::APSInt;
554 
555   llvm::Type *SrcTy = Src->getType();
556 
557   llvm::Value *Check = 0;
558   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
559     // Integer to floating-point. This can fail for unsigned short -> __half
560     // or unsigned __int128 -> float.
561     assert(DstType->isFloatingType());
562     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
563 
564     APFloat LargestFloat =
565       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
566     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
567 
568     bool IsExact;
569     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
570                                       &IsExact) != APFloat::opOK)
571       // The range of representable values of this floating point type includes
572       // all values of this integer type. Don't need an overflow check.
573       return;
574 
575     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
576     if (SrcIsUnsigned)
577       Check = Builder.CreateICmpULE(Src, Max);
578     else {
579       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
580       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
581       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
582       Check = Builder.CreateAnd(GE, LE);
583     }
584   } else {
585     // Floating-point to integer or floating-point to floating-point. This has
586     // undefined behavior if the source is +-Inf, NaN, or doesn't fit into the
587     // destination type.
588     const llvm::fltSemantics &SrcSema =
589       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
590     APFloat MaxSrc(SrcSema, APFloat::uninitialized);
591     APFloat MinSrc(SrcSema, APFloat::uninitialized);
592 
593     if (isa<llvm::IntegerType>(DstTy)) {
594       unsigned Width = CGF.getContext().getIntWidth(DstType);
595       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
596 
597       APSInt Min = APSInt::getMinValue(Width, Unsigned);
598       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
599           APFloat::opOverflow)
600         // Don't need an overflow check for lower bound. Just check for
601         // -Inf/NaN.
602         MinSrc = APFloat::getLargest(SrcSema, true);
603 
604       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
605       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
606           APFloat::opOverflow)
607         // Don't need an overflow check for upper bound. Just check for
608         // +Inf/NaN.
609         MaxSrc = APFloat::getLargest(SrcSema, false);
610     } else {
611       const llvm::fltSemantics &DstSema =
612         CGF.getContext().getFloatTypeSemantics(DstType);
613       bool IsInexact;
614 
615       MinSrc = APFloat::getLargest(DstSema, true);
616       if (MinSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) &
617           APFloat::opOverflow)
618         MinSrc = APFloat::getLargest(SrcSema, true);
619 
620       MaxSrc = APFloat::getLargest(DstSema, false);
621       if (MaxSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) &
622           APFloat::opOverflow)
623         MaxSrc = APFloat::getLargest(SrcSema, false);
624     }
625 
626     // If we're converting from __half, convert the range to float to match
627     // the type of src.
628     if (OrigSrcType->isHalfType()) {
629       const llvm::fltSemantics &Sema =
630         CGF.getContext().getFloatTypeSemantics(SrcType);
631       bool IsInexact;
632       MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
633       MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
634     }
635 
636     llvm::Value *GE =
637       Builder.CreateFCmpOGE(Src, llvm::ConstantFP::get(VMContext, MinSrc));
638     llvm::Value *LE =
639       Builder.CreateFCmpOLE(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
640     Check = Builder.CreateAnd(GE, LE);
641   }
642 
643   // FIXME: Provide a SourceLocation.
644   llvm::Constant *StaticArgs[] = {
645     CGF.EmitCheckTypeDescriptor(OrigSrcType),
646     CGF.EmitCheckTypeDescriptor(DstType)
647   };
648   CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc,
649                 CodeGenFunction::CRK_Recoverable);
650 }
651 
652 /// EmitScalarConversion - Emit a conversion from the specified type to the
653 /// specified destination type, both of which are LLVM scalar types.
654 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
655                                                QualType DstType) {
656   SrcType = CGF.getContext().getCanonicalType(SrcType);
657   DstType = CGF.getContext().getCanonicalType(DstType);
658   if (SrcType == DstType) return Src;
659 
660   if (DstType->isVoidType()) return 0;
661 
662   llvm::Value *OrigSrc = Src;
663   QualType OrigSrcType = SrcType;
664   llvm::Type *SrcTy = Src->getType();
665 
666   // Floating casts might be a bit special: if we're doing casts to / from half
667   // FP, we should go via special intrinsics.
668   if (SrcType->isHalfType()) {
669     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
670     SrcType = CGF.getContext().FloatTy;
671     SrcTy = CGF.FloatTy;
672   }
673 
674   // Handle conversions to bool first, they are special: comparisons against 0.
675   if (DstType->isBooleanType())
676     return EmitConversionToBool(Src, SrcType);
677 
678   llvm::Type *DstTy = ConvertType(DstType);
679 
680   // Ignore conversions like int -> uint.
681   if (SrcTy == DstTy)
682     return Src;
683 
684   // Handle pointer conversions next: pointers can only be converted to/from
685   // other pointers and integers. Check for pointer types in terms of LLVM, as
686   // some native types (like Obj-C id) may map to a pointer type.
687   if (isa<llvm::PointerType>(DstTy)) {
688     // The source value may be an integer, or a pointer.
689     if (isa<llvm::PointerType>(SrcTy))
690       return Builder.CreateBitCast(Src, DstTy, "conv");
691 
692     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
693     // First, convert to the correct width so that we control the kind of
694     // extension.
695     llvm::Type *MiddleTy = CGF.IntPtrTy;
696     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
697     llvm::Value* IntResult =
698         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
699     // Then, cast to pointer.
700     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
701   }
702 
703   if (isa<llvm::PointerType>(SrcTy)) {
704     // Must be an ptr to int cast.
705     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
706     return Builder.CreatePtrToInt(Src, DstTy, "conv");
707   }
708 
709   // A scalar can be splatted to an extended vector of the same element type
710   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
711     // Cast the scalar to element type
712     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
713     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
714 
715     // Insert the element in element zero of an undef vector
716     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
717     llvm::Value *Idx = Builder.getInt32(0);
718     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
719 
720     // Splat the element across to all elements
721     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
722     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
723                                                           Builder.getInt32(0));
724     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
725     return Yay;
726   }
727 
728   // Allow bitcast from vector to integer/fp of the same size.
729   if (isa<llvm::VectorType>(SrcTy) ||
730       isa<llvm::VectorType>(DstTy))
731     return Builder.CreateBitCast(Src, DstTy, "conv");
732 
733   // Finally, we have the arithmetic types: real int/float.
734   Value *Res = NULL;
735   llvm::Type *ResTy = DstTy;
736 
737   // An overflowing conversion has undefined behavior if either the source type
738   // or the destination type is a floating-point type.
739   if (CGF.getLangOpts().SanitizeFloatCastOverflow &&
740       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
741     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy);
742 
743   // Cast to half via float
744   if (DstType->isHalfType())
745     DstTy = CGF.FloatTy;
746 
747   if (isa<llvm::IntegerType>(SrcTy)) {
748     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
749     if (isa<llvm::IntegerType>(DstTy))
750       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
751     else if (InputSigned)
752       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
753     else
754       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
755   } else if (isa<llvm::IntegerType>(DstTy)) {
756     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
757     if (DstType->isSignedIntegerOrEnumerationType())
758       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
759     else
760       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
761   } else {
762     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
763            "Unknown real conversion");
764     if (DstTy->getTypeID() < SrcTy->getTypeID())
765       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
766     else
767       Res = Builder.CreateFPExt(Src, DstTy, "conv");
768   }
769 
770   if (DstTy != ResTy) {
771     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
772     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
773   }
774 
775   return Res;
776 }
777 
778 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
779 /// type to the specified destination type, where the destination type is an
780 /// LLVM scalar type.
781 Value *ScalarExprEmitter::
782 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
783                               QualType SrcTy, QualType DstTy) {
784   // Get the source element type.
785   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
786 
787   // Handle conversions to bool first, they are special: comparisons against 0.
788   if (DstTy->isBooleanType()) {
789     //  Complex != 0  -> (Real != 0) | (Imag != 0)
790     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
791     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
792     return Builder.CreateOr(Src.first, Src.second, "tobool");
793   }
794 
795   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
796   // the imaginary part of the complex value is discarded and the value of the
797   // real part is converted according to the conversion rules for the
798   // corresponding real type.
799   return EmitScalarConversion(Src.first, SrcTy, DstTy);
800 }
801 
802 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
803   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
804     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
805 
806   return llvm::Constant::getNullValue(ConvertType(Ty));
807 }
808 
809 /// \brief Emit a sanitization check for the given "binary" operation (which
810 /// might actually be a unary increment which has been lowered to a binary
811 /// operation). The check passes if \p Check, which is an \c i1, is \c true.
812 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
813   StringRef CheckName;
814   llvm::SmallVector<llvm::Constant *, 4> StaticData;
815   llvm::SmallVector<llvm::Value *, 2> DynamicData;
816 
817   BinaryOperatorKind Opcode = Info.Opcode;
818   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
819     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
820 
821   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
822   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
823   if (UO && UO->getOpcode() == UO_Minus) {
824     CheckName = "negate_overflow";
825     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
826     DynamicData.push_back(Info.RHS);
827   } else {
828     if (BinaryOperator::isShiftOp(Opcode)) {
829       // Shift LHS negative or too large, or RHS out of bounds.
830       CheckName = "shift_out_of_bounds";
831       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
832       StaticData.push_back(
833         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
834       StaticData.push_back(
835         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
836     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
837       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
838       CheckName = "divrem_overflow";
839       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.E->getType()));
840     } else {
841       // Signed arithmetic overflow (+, -, *).
842       switch (Opcode) {
843       case BO_Add: CheckName = "add_overflow"; break;
844       case BO_Sub: CheckName = "sub_overflow"; break;
845       case BO_Mul: CheckName = "mul_overflow"; break;
846       default: llvm_unreachable("unexpected opcode for bin op check");
847       }
848       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.E->getType()));
849     }
850     DynamicData.push_back(Info.LHS);
851     DynamicData.push_back(Info.RHS);
852   }
853 
854   CGF.EmitCheck(Check, CheckName, StaticData, DynamicData,
855                 CodeGenFunction::CRK_Recoverable);
856 }
857 
858 //===----------------------------------------------------------------------===//
859 //                            Visitor Methods
860 //===----------------------------------------------------------------------===//
861 
862 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
863   CGF.ErrorUnsupported(E, "scalar expression");
864   if (E->getType()->isVoidType())
865     return 0;
866   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
867 }
868 
869 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
870   // Vector Mask Case
871   if (E->getNumSubExprs() == 2 ||
872       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
873     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
874     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
875     Value *Mask;
876 
877     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
878     unsigned LHSElts = LTy->getNumElements();
879 
880     if (E->getNumSubExprs() == 3) {
881       Mask = CGF.EmitScalarExpr(E->getExpr(2));
882 
883       // Shuffle LHS & RHS into one input vector.
884       SmallVector<llvm::Constant*, 32> concat;
885       for (unsigned i = 0; i != LHSElts; ++i) {
886         concat.push_back(Builder.getInt32(2*i));
887         concat.push_back(Builder.getInt32(2*i+1));
888       }
889 
890       Value* CV = llvm::ConstantVector::get(concat);
891       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
892       LHSElts *= 2;
893     } else {
894       Mask = RHS;
895     }
896 
897     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
898     llvm::Constant* EltMask;
899 
900     // Treat vec3 like vec4.
901     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
902       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
903                                        (1 << llvm::Log2_32(LHSElts+2))-1);
904     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
905       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
906                                        (1 << llvm::Log2_32(LHSElts+1))-1);
907     else
908       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
909                                        (1 << llvm::Log2_32(LHSElts))-1);
910 
911     // Mask off the high bits of each shuffle index.
912     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
913                                                      EltMask);
914     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
915 
916     // newv = undef
917     // mask = mask & maskbits
918     // for each elt
919     //   n = extract mask i
920     //   x = extract val n
921     //   newv = insert newv, x, i
922     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
923                                                         MTy->getNumElements());
924     Value* NewV = llvm::UndefValue::get(RTy);
925     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
926       Value *IIndx = Builder.getInt32(i);
927       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
928       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
929 
930       // Handle vec3 special since the index will be off by one for the RHS.
931       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
932         Value *cmpIndx, *newIndx;
933         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
934                                         "cmp_shuf_idx");
935         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
936         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
937       }
938       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
939       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
940     }
941     return NewV;
942   }
943 
944   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
945   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
946 
947   // Handle vec3 special since the index will be off by one for the RHS.
948   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
949   SmallVector<llvm::Constant*, 32> indices;
950   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
951     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
952     if (VTy->getNumElements() == 3 && Idx > 3)
953       Idx -= 1;
954     indices.push_back(Builder.getInt32(Idx));
955   }
956 
957   Value *SV = llvm::ConstantVector::get(indices);
958   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
959 }
960 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
961   llvm::APSInt Value;
962   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
963     if (E->isArrow())
964       CGF.EmitScalarExpr(E->getBase());
965     else
966       EmitLValue(E->getBase());
967     return Builder.getInt(Value);
968   }
969 
970   // Emit debug info for aggregate now, if it was delayed to reduce
971   // debug info size.
972   CGDebugInfo *DI = CGF.getDebugInfo();
973   if (DI &&
974       CGF.CGM.getCodeGenOpts().getDebugInfo()
975         == CodeGenOptions::LimitedDebugInfo) {
976     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
977     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
978       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
979         DI->getOrCreateRecordType(PTy->getPointeeType(),
980                                   M->getParent()->getLocation());
981   }
982   return EmitLoadOfLValue(E);
983 }
984 
985 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
986   TestAndClearIgnoreResultAssign();
987 
988   // Emit subscript expressions in rvalue context's.  For most cases, this just
989   // loads the lvalue formed by the subscript expr.  However, we have to be
990   // careful, because the base of a vector subscript is occasionally an rvalue,
991   // so we can't get it as an lvalue.
992   if (!E->getBase()->getType()->isVectorType())
993     return EmitLoadOfLValue(E);
994 
995   // Handle the vector case.  The base must be a vector, the index must be an
996   // integer value.
997   Value *Base = Visit(E->getBase());
998   Value *Idx  = Visit(E->getIdx());
999   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
1000   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
1001   return Builder.CreateExtractElement(Base, Idx, "vecext");
1002 }
1003 
1004 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1005                                   unsigned Off, llvm::Type *I32Ty) {
1006   int MV = SVI->getMaskValue(Idx);
1007   if (MV == -1)
1008     return llvm::UndefValue::get(I32Ty);
1009   return llvm::ConstantInt::get(I32Ty, Off+MV);
1010 }
1011 
1012 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1013   bool Ignore = TestAndClearIgnoreResultAssign();
1014   (void)Ignore;
1015   assert (Ignore == false && "init list ignored");
1016   unsigned NumInitElements = E->getNumInits();
1017 
1018   if (E->hadArrayRangeDesignator())
1019     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1020 
1021   llvm::VectorType *VType =
1022     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1023 
1024   if (!VType) {
1025     if (NumInitElements == 0) {
1026       // C++11 value-initialization for the scalar.
1027       return EmitNullValue(E->getType());
1028     }
1029     // We have a scalar in braces. Just use the first element.
1030     return Visit(E->getInit(0));
1031   }
1032 
1033   unsigned ResElts = VType->getNumElements();
1034 
1035   // Loop over initializers collecting the Value for each, and remembering
1036   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1037   // us to fold the shuffle for the swizzle into the shuffle for the vector
1038   // initializer, since LLVM optimizers generally do not want to touch
1039   // shuffles.
1040   unsigned CurIdx = 0;
1041   bool VIsUndefShuffle = false;
1042   llvm::Value *V = llvm::UndefValue::get(VType);
1043   for (unsigned i = 0; i != NumInitElements; ++i) {
1044     Expr *IE = E->getInit(i);
1045     Value *Init = Visit(IE);
1046     SmallVector<llvm::Constant*, 16> Args;
1047 
1048     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1049 
1050     // Handle scalar elements.  If the scalar initializer is actually one
1051     // element of a different vector of the same width, use shuffle instead of
1052     // extract+insert.
1053     if (!VVT) {
1054       if (isa<ExtVectorElementExpr>(IE)) {
1055         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1056 
1057         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1058           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1059           Value *LHS = 0, *RHS = 0;
1060           if (CurIdx == 0) {
1061             // insert into undef -> shuffle (src, undef)
1062             Args.push_back(C);
1063             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1064 
1065             LHS = EI->getVectorOperand();
1066             RHS = V;
1067             VIsUndefShuffle = true;
1068           } else if (VIsUndefShuffle) {
1069             // insert into undefshuffle && size match -> shuffle (v, src)
1070             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1071             for (unsigned j = 0; j != CurIdx; ++j)
1072               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1073             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1074             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1075 
1076             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1077             RHS = EI->getVectorOperand();
1078             VIsUndefShuffle = false;
1079           }
1080           if (!Args.empty()) {
1081             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1082             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1083             ++CurIdx;
1084             continue;
1085           }
1086         }
1087       }
1088       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1089                                       "vecinit");
1090       VIsUndefShuffle = false;
1091       ++CurIdx;
1092       continue;
1093     }
1094 
1095     unsigned InitElts = VVT->getNumElements();
1096 
1097     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1098     // input is the same width as the vector being constructed, generate an
1099     // optimized shuffle of the swizzle input into the result.
1100     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1101     if (isa<ExtVectorElementExpr>(IE)) {
1102       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1103       Value *SVOp = SVI->getOperand(0);
1104       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1105 
1106       if (OpTy->getNumElements() == ResElts) {
1107         for (unsigned j = 0; j != CurIdx; ++j) {
1108           // If the current vector initializer is a shuffle with undef, merge
1109           // this shuffle directly into it.
1110           if (VIsUndefShuffle) {
1111             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1112                                       CGF.Int32Ty));
1113           } else {
1114             Args.push_back(Builder.getInt32(j));
1115           }
1116         }
1117         for (unsigned j = 0, je = InitElts; j != je; ++j)
1118           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1119         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1120 
1121         if (VIsUndefShuffle)
1122           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1123 
1124         Init = SVOp;
1125       }
1126     }
1127 
1128     // Extend init to result vector length, and then shuffle its contribution
1129     // to the vector initializer into V.
1130     if (Args.empty()) {
1131       for (unsigned j = 0; j != InitElts; ++j)
1132         Args.push_back(Builder.getInt32(j));
1133       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1134       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1135       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1136                                          Mask, "vext");
1137 
1138       Args.clear();
1139       for (unsigned j = 0; j != CurIdx; ++j)
1140         Args.push_back(Builder.getInt32(j));
1141       for (unsigned j = 0; j != InitElts; ++j)
1142         Args.push_back(Builder.getInt32(j+Offset));
1143       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1144     }
1145 
1146     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1147     // merging subsequent shuffles into this one.
1148     if (CurIdx == 0)
1149       std::swap(V, Init);
1150     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1151     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1152     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1153     CurIdx += InitElts;
1154   }
1155 
1156   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1157   // Emit remaining default initializers.
1158   llvm::Type *EltTy = VType->getElementType();
1159 
1160   // Emit remaining default initializers
1161   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1162     Value *Idx = Builder.getInt32(CurIdx);
1163     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1164     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1165   }
1166   return V;
1167 }
1168 
1169 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1170   const Expr *E = CE->getSubExpr();
1171 
1172   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1173     return false;
1174 
1175   if (isa<CXXThisExpr>(E)) {
1176     // We always assume that 'this' is never null.
1177     return false;
1178   }
1179 
1180   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1181     // And that glvalue casts are never null.
1182     if (ICE->getValueKind() != VK_RValue)
1183       return false;
1184   }
1185 
1186   return true;
1187 }
1188 
1189 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1190 // have to handle a more broad range of conversions than explicit casts, as they
1191 // handle things like function to ptr-to-function decay etc.
1192 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1193   Expr *E = CE->getSubExpr();
1194   QualType DestTy = CE->getType();
1195   CastKind Kind = CE->getCastKind();
1196 
1197   if (!DestTy->isVoidType())
1198     TestAndClearIgnoreResultAssign();
1199 
1200   // Since almost all cast kinds apply to scalars, this switch doesn't have
1201   // a default case, so the compiler will warn on a missing case.  The cases
1202   // are in the same order as in the CastKind enum.
1203   switch (Kind) {
1204   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1205   case CK_BuiltinFnToFnPtr:
1206     llvm_unreachable("builtin functions are handled elsewhere");
1207 
1208   case CK_LValueBitCast:
1209   case CK_ObjCObjectLValueCast: {
1210     Value *V = EmitLValue(E).getAddress();
1211     V = Builder.CreateBitCast(V,
1212                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1213     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1214   }
1215 
1216   case CK_CPointerToObjCPointerCast:
1217   case CK_BlockPointerToObjCPointerCast:
1218   case CK_AnyPointerToBlockPointerCast:
1219   case CK_BitCast: {
1220     Value *Src = Visit(const_cast<Expr*>(E));
1221     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1222   }
1223   case CK_AtomicToNonAtomic:
1224   case CK_NonAtomicToAtomic:
1225   case CK_NoOp:
1226   case CK_UserDefinedConversion:
1227     return Visit(const_cast<Expr*>(E));
1228 
1229   case CK_BaseToDerived: {
1230     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1231     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1232 
1233     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1234                                         CE->path_begin(), CE->path_end(),
1235                                         ShouldNullCheckClassCastValue(CE));
1236   }
1237   case CK_UncheckedDerivedToBase:
1238   case CK_DerivedToBase: {
1239     const CXXRecordDecl *DerivedClassDecl =
1240       E->getType()->getPointeeCXXRecordDecl();
1241     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1242 
1243     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1244                                      CE->path_begin(), CE->path_end(),
1245                                      ShouldNullCheckClassCastValue(CE));
1246   }
1247   case CK_Dynamic: {
1248     Value *V = Visit(const_cast<Expr*>(E));
1249     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1250     return CGF.EmitDynamicCast(V, DCE);
1251   }
1252 
1253   case CK_ArrayToPointerDecay: {
1254     assert(E->getType()->isArrayType() &&
1255            "Array to pointer decay must have array source type!");
1256 
1257     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1258 
1259     // Note that VLA pointers are always decayed, so we don't need to do
1260     // anything here.
1261     if (!E->getType()->isVariableArrayType()) {
1262       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1263       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1264                                  ->getElementType()) &&
1265              "Expected pointer to array");
1266       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1267     }
1268 
1269     // Make sure the array decay ends up being the right type.  This matters if
1270     // the array type was of an incomplete type.
1271     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1272   }
1273   case CK_FunctionToPointerDecay:
1274     return EmitLValue(E).getAddress();
1275 
1276   case CK_NullToPointer:
1277     if (MustVisitNullValue(E))
1278       (void) Visit(E);
1279 
1280     return llvm::ConstantPointerNull::get(
1281                                cast<llvm::PointerType>(ConvertType(DestTy)));
1282 
1283   case CK_NullToMemberPointer: {
1284     if (MustVisitNullValue(E))
1285       (void) Visit(E);
1286 
1287     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1288     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1289   }
1290 
1291   case CK_ReinterpretMemberPointer:
1292   case CK_BaseToDerivedMemberPointer:
1293   case CK_DerivedToBaseMemberPointer: {
1294     Value *Src = Visit(E);
1295 
1296     // Note that the AST doesn't distinguish between checked and
1297     // unchecked member pointer conversions, so we always have to
1298     // implement checked conversions here.  This is inefficient when
1299     // actual control flow may be required in order to perform the
1300     // check, which it is for data member pointers (but not member
1301     // function pointers on Itanium and ARM).
1302     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1303   }
1304 
1305   case CK_ARCProduceObject:
1306     return CGF.EmitARCRetainScalarExpr(E);
1307   case CK_ARCConsumeObject:
1308     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1309   case CK_ARCReclaimReturnedObject: {
1310     llvm::Value *value = Visit(E);
1311     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1312     return CGF.EmitObjCConsumeObject(E->getType(), value);
1313   }
1314   case CK_ARCExtendBlockObject:
1315     return CGF.EmitARCExtendBlockObject(E);
1316 
1317   case CK_CopyAndAutoreleaseBlockObject:
1318     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1319 
1320   case CK_FloatingRealToComplex:
1321   case CK_FloatingComplexCast:
1322   case CK_IntegralRealToComplex:
1323   case CK_IntegralComplexCast:
1324   case CK_IntegralComplexToFloatingComplex:
1325   case CK_FloatingComplexToIntegralComplex:
1326   case CK_ConstructorConversion:
1327   case CK_ToUnion:
1328     llvm_unreachable("scalar cast to non-scalar value");
1329 
1330   case CK_LValueToRValue:
1331     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1332     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1333     return Visit(const_cast<Expr*>(E));
1334 
1335   case CK_IntegralToPointer: {
1336     Value *Src = Visit(const_cast<Expr*>(E));
1337 
1338     // First, convert to the correct width so that we control the kind of
1339     // extension.
1340     llvm::Type *MiddleTy = CGF.IntPtrTy;
1341     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1342     llvm::Value* IntResult =
1343       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1344 
1345     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1346   }
1347   case CK_PointerToIntegral:
1348     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1349     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1350 
1351   case CK_ToVoid: {
1352     CGF.EmitIgnoredExpr(E);
1353     return 0;
1354   }
1355   case CK_VectorSplat: {
1356     llvm::Type *DstTy = ConvertType(DestTy);
1357     Value *Elt = Visit(const_cast<Expr*>(E));
1358     Elt = EmitScalarConversion(Elt, E->getType(),
1359                                DestTy->getAs<VectorType>()->getElementType());
1360 
1361     // Insert the element in element zero of an undef vector
1362     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1363     llvm::Value *Idx = Builder.getInt32(0);
1364     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1365 
1366     // Splat the element across to all elements
1367     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1368     llvm::Constant *Zero = Builder.getInt32(0);
1369     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
1370     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1371     return Yay;
1372   }
1373 
1374   case CK_IntegralCast:
1375   case CK_IntegralToFloating:
1376   case CK_FloatingToIntegral:
1377   case CK_FloatingCast:
1378     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1379   case CK_IntegralToBoolean:
1380     return EmitIntToBoolConversion(Visit(E));
1381   case CK_PointerToBoolean:
1382     return EmitPointerToBoolConversion(Visit(E));
1383   case CK_FloatingToBoolean:
1384     return EmitFloatToBoolConversion(Visit(E));
1385   case CK_MemberPointerToBoolean: {
1386     llvm::Value *MemPtr = Visit(E);
1387     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1388     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1389   }
1390 
1391   case CK_FloatingComplexToReal:
1392   case CK_IntegralComplexToReal:
1393     return CGF.EmitComplexExpr(E, false, true).first;
1394 
1395   case CK_FloatingComplexToBoolean:
1396   case CK_IntegralComplexToBoolean: {
1397     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1398 
1399     // TODO: kill this function off, inline appropriate case here
1400     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1401   }
1402 
1403   }
1404 
1405   llvm_unreachable("unknown scalar cast");
1406 }
1407 
1408 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1409   CodeGenFunction::StmtExprEvaluation eval(CGF);
1410   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1411     .getScalarVal();
1412 }
1413 
1414 //===----------------------------------------------------------------------===//
1415 //                             Unary Operators
1416 //===----------------------------------------------------------------------===//
1417 
1418 llvm::Value *ScalarExprEmitter::
1419 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1420                                 llvm::Value *InVal,
1421                                 llvm::Value *NextVal, bool IsInc) {
1422   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1423   case LangOptions::SOB_Defined:
1424     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1425   case LangOptions::SOB_Undefined:
1426     if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
1427       return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1428     // Fall through.
1429   case LangOptions::SOB_Trapping:
1430     BinOpInfo BinOp;
1431     BinOp.LHS = InVal;
1432     BinOp.RHS = NextVal;
1433     BinOp.Ty = E->getType();
1434     BinOp.Opcode = BO_Add;
1435     BinOp.FPContractable = false;
1436     BinOp.E = E;
1437     return EmitOverflowCheckedBinOp(BinOp);
1438   }
1439   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1440 }
1441 
1442 llvm::Value *
1443 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1444                                            bool isInc, bool isPre) {
1445 
1446   QualType type = E->getSubExpr()->getType();
1447   llvm::Value *value = EmitLoadOfLValue(LV);
1448   llvm::Value *input = value;
1449   llvm::PHINode *atomicPHI = 0;
1450 
1451   int amount = (isInc ? 1 : -1);
1452 
1453   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1454     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1455     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1456     Builder.CreateBr(opBB);
1457     Builder.SetInsertPoint(opBB);
1458     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1459     atomicPHI->addIncoming(value, startBB);
1460     type = atomicTy->getValueType();
1461     value = atomicPHI;
1462   }
1463 
1464   // Special case of integer increment that we have to check first: bool++.
1465   // Due to promotion rules, we get:
1466   //   bool++ -> bool = bool + 1
1467   //          -> bool = (int)bool + 1
1468   //          -> bool = ((int)bool + 1 != 0)
1469   // An interesting aspect of this is that increment is always true.
1470   // Decrement does not have this property.
1471   if (isInc && type->isBooleanType()) {
1472     value = Builder.getTrue();
1473 
1474   // Most common case by far: integer increment.
1475   } else if (type->isIntegerType()) {
1476 
1477     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1478 
1479     // Note that signed integer inc/dec with width less than int can't
1480     // overflow because of promotion rules; we're just eliding a few steps here.
1481     if (value->getType()->getPrimitiveSizeInBits() >=
1482             CGF.IntTy->getBitWidth() &&
1483         type->isSignedIntegerOrEnumerationType()) {
1484       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1485     } else if (value->getType()->getPrimitiveSizeInBits() >=
1486                CGF.IntTy->getBitWidth() &&
1487                type->isUnsignedIntegerType() &&
1488                CGF.getLangOpts().SanitizeUnsignedIntegerOverflow) {
1489       BinOpInfo BinOp;
1490       BinOp.LHS = value;
1491       BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1492       BinOp.Ty = E->getType();
1493       BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1494       BinOp.FPContractable = false;
1495       BinOp.E = E;
1496       value = EmitOverflowCheckedBinOp(BinOp);
1497     } else
1498       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1499 
1500   // Next most common: pointer increment.
1501   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1502     QualType type = ptr->getPointeeType();
1503 
1504     // VLA types don't have constant size.
1505     if (const VariableArrayType *vla
1506           = CGF.getContext().getAsVariableArrayType(type)) {
1507       llvm::Value *numElts = CGF.getVLASize(vla).first;
1508       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1509       if (CGF.getLangOpts().isSignedOverflowDefined())
1510         value = Builder.CreateGEP(value, numElts, "vla.inc");
1511       else
1512         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1513 
1514     // Arithmetic on function pointers (!) is just +-1.
1515     } else if (type->isFunctionType()) {
1516       llvm::Value *amt = Builder.getInt32(amount);
1517 
1518       value = CGF.EmitCastToVoidPtr(value);
1519       if (CGF.getLangOpts().isSignedOverflowDefined())
1520         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1521       else
1522         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1523       value = Builder.CreateBitCast(value, input->getType());
1524 
1525     // For everything else, we can just do a simple increment.
1526     } else {
1527       llvm::Value *amt = Builder.getInt32(amount);
1528       if (CGF.getLangOpts().isSignedOverflowDefined())
1529         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1530       else
1531         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1532     }
1533 
1534   // Vector increment/decrement.
1535   } else if (type->isVectorType()) {
1536     if (type->hasIntegerRepresentation()) {
1537       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1538 
1539       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1540     } else {
1541       value = Builder.CreateFAdd(
1542                   value,
1543                   llvm::ConstantFP::get(value->getType(), amount),
1544                   isInc ? "inc" : "dec");
1545     }
1546 
1547   // Floating point.
1548   } else if (type->isRealFloatingType()) {
1549     // Add the inc/dec to the real part.
1550     llvm::Value *amt;
1551 
1552     if (type->isHalfType()) {
1553       // Another special case: half FP increment should be done via float
1554       value =
1555     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1556                        input);
1557     }
1558 
1559     if (value->getType()->isFloatTy())
1560       amt = llvm::ConstantFP::get(VMContext,
1561                                   llvm::APFloat(static_cast<float>(amount)));
1562     else if (value->getType()->isDoubleTy())
1563       amt = llvm::ConstantFP::get(VMContext,
1564                                   llvm::APFloat(static_cast<double>(amount)));
1565     else {
1566       llvm::APFloat F(static_cast<float>(amount));
1567       bool ignored;
1568       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1569                 &ignored);
1570       amt = llvm::ConstantFP::get(VMContext, F);
1571     }
1572     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1573 
1574     if (type->isHalfType())
1575       value =
1576        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1577                           value);
1578 
1579   // Objective-C pointer types.
1580   } else {
1581     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1582     value = CGF.EmitCastToVoidPtr(value);
1583 
1584     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1585     if (!isInc) size = -size;
1586     llvm::Value *sizeValue =
1587       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1588 
1589     if (CGF.getLangOpts().isSignedOverflowDefined())
1590       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1591     else
1592       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1593     value = Builder.CreateBitCast(value, input->getType());
1594   }
1595 
1596   if (atomicPHI) {
1597     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1598     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1599     llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1600         value, llvm::SequentiallyConsistent);
1601     atomicPHI->addIncoming(old, opBB);
1602     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1603     Builder.CreateCondBr(success, contBB, opBB);
1604     Builder.SetInsertPoint(contBB);
1605     return isPre ? value : input;
1606   }
1607 
1608   // Store the updated result through the lvalue.
1609   if (LV.isBitField())
1610     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1611   else
1612     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1613 
1614   // If this is a postinc, return the value read from memory, otherwise use the
1615   // updated value.
1616   return isPre ? value : input;
1617 }
1618 
1619 
1620 
1621 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1622   TestAndClearIgnoreResultAssign();
1623   // Emit unary minus with EmitSub so we handle overflow cases etc.
1624   BinOpInfo BinOp;
1625   BinOp.RHS = Visit(E->getSubExpr());
1626 
1627   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1628     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1629   else
1630     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1631   BinOp.Ty = E->getType();
1632   BinOp.Opcode = BO_Sub;
1633   BinOp.FPContractable = false;
1634   BinOp.E = E;
1635   return EmitSub(BinOp);
1636 }
1637 
1638 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1639   TestAndClearIgnoreResultAssign();
1640   Value *Op = Visit(E->getSubExpr());
1641   return Builder.CreateNot(Op, "neg");
1642 }
1643 
1644 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1645 
1646   // Perform vector logical not on comparison with zero vector.
1647   if (E->getType()->isExtVectorType()) {
1648     Value *Oper = Visit(E->getSubExpr());
1649     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1650     Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1651     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1652   }
1653 
1654   // Compare operand to zero.
1655   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1656 
1657   // Invert value.
1658   // TODO: Could dynamically modify easy computations here.  For example, if
1659   // the operand is an icmp ne, turn into icmp eq.
1660   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1661 
1662   // ZExt result to the expr type.
1663   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1664 }
1665 
1666 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1667   // Try folding the offsetof to a constant.
1668   llvm::APSInt Value;
1669   if (E->EvaluateAsInt(Value, CGF.getContext()))
1670     return Builder.getInt(Value);
1671 
1672   // Loop over the components of the offsetof to compute the value.
1673   unsigned n = E->getNumComponents();
1674   llvm::Type* ResultType = ConvertType(E->getType());
1675   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1676   QualType CurrentType = E->getTypeSourceInfo()->getType();
1677   for (unsigned i = 0; i != n; ++i) {
1678     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1679     llvm::Value *Offset = 0;
1680     switch (ON.getKind()) {
1681     case OffsetOfExpr::OffsetOfNode::Array: {
1682       // Compute the index
1683       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1684       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1685       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1686       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1687 
1688       // Save the element type
1689       CurrentType =
1690           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1691 
1692       // Compute the element size
1693       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1694           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1695 
1696       // Multiply out to compute the result
1697       Offset = Builder.CreateMul(Idx, ElemSize);
1698       break;
1699     }
1700 
1701     case OffsetOfExpr::OffsetOfNode::Field: {
1702       FieldDecl *MemberDecl = ON.getField();
1703       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1704       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1705 
1706       // Compute the index of the field in its parent.
1707       unsigned i = 0;
1708       // FIXME: It would be nice if we didn't have to loop here!
1709       for (RecordDecl::field_iterator Field = RD->field_begin(),
1710                                       FieldEnd = RD->field_end();
1711            Field != FieldEnd; ++Field, ++i) {
1712         if (*Field == MemberDecl)
1713           break;
1714       }
1715       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1716 
1717       // Compute the offset to the field
1718       int64_t OffsetInt = RL.getFieldOffset(i) /
1719                           CGF.getContext().getCharWidth();
1720       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1721 
1722       // Save the element type.
1723       CurrentType = MemberDecl->getType();
1724       break;
1725     }
1726 
1727     case OffsetOfExpr::OffsetOfNode::Identifier:
1728       llvm_unreachable("dependent __builtin_offsetof");
1729 
1730     case OffsetOfExpr::OffsetOfNode::Base: {
1731       if (ON.getBase()->isVirtual()) {
1732         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1733         continue;
1734       }
1735 
1736       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1737       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1738 
1739       // Save the element type.
1740       CurrentType = ON.getBase()->getType();
1741 
1742       // Compute the offset to the base.
1743       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1744       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1745       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1746       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1747       break;
1748     }
1749     }
1750     Result = Builder.CreateAdd(Result, Offset);
1751   }
1752   return Result;
1753 }
1754 
1755 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1756 /// argument of the sizeof expression as an integer.
1757 Value *
1758 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1759                               const UnaryExprOrTypeTraitExpr *E) {
1760   QualType TypeToSize = E->getTypeOfArgument();
1761   if (E->getKind() == UETT_SizeOf) {
1762     if (const VariableArrayType *VAT =
1763           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1764       if (E->isArgumentType()) {
1765         // sizeof(type) - make sure to emit the VLA size.
1766         CGF.EmitVariablyModifiedType(TypeToSize);
1767       } else {
1768         // C99 6.5.3.4p2: If the argument is an expression of type
1769         // VLA, it is evaluated.
1770         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1771       }
1772 
1773       QualType eltType;
1774       llvm::Value *numElts;
1775       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1776 
1777       llvm::Value *size = numElts;
1778 
1779       // Scale the number of non-VLA elements by the non-VLA element size.
1780       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1781       if (!eltSize.isOne())
1782         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1783 
1784       return size;
1785     }
1786   }
1787 
1788   // If this isn't sizeof(vla), the result must be constant; use the constant
1789   // folding logic so we don't have to duplicate it here.
1790   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1791 }
1792 
1793 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1794   Expr *Op = E->getSubExpr();
1795   if (Op->getType()->isAnyComplexType()) {
1796     // If it's an l-value, load through the appropriate subobject l-value.
1797     // Note that we have to ask E because Op might be an l-value that
1798     // this won't work for, e.g. an Obj-C property.
1799     if (E->isGLValue())
1800       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1801 
1802     // Otherwise, calculate and project.
1803     return CGF.EmitComplexExpr(Op, false, true).first;
1804   }
1805 
1806   return Visit(Op);
1807 }
1808 
1809 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1810   Expr *Op = E->getSubExpr();
1811   if (Op->getType()->isAnyComplexType()) {
1812     // If it's an l-value, load through the appropriate subobject l-value.
1813     // Note that we have to ask E because Op might be an l-value that
1814     // this won't work for, e.g. an Obj-C property.
1815     if (Op->isGLValue())
1816       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1817 
1818     // Otherwise, calculate and project.
1819     return CGF.EmitComplexExpr(Op, true, false).second;
1820   }
1821 
1822   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1823   // effects are evaluated, but not the actual value.
1824   if (Op->isGLValue())
1825     CGF.EmitLValue(Op);
1826   else
1827     CGF.EmitScalarExpr(Op, true);
1828   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1829 }
1830 
1831 //===----------------------------------------------------------------------===//
1832 //                           Binary Operators
1833 //===----------------------------------------------------------------------===//
1834 
1835 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1836   TestAndClearIgnoreResultAssign();
1837   BinOpInfo Result;
1838   Result.LHS = Visit(E->getLHS());
1839   Result.RHS = Visit(E->getRHS());
1840   Result.Ty  = E->getType();
1841   Result.Opcode = E->getOpcode();
1842   Result.FPContractable = E->isFPContractable();
1843   Result.E = E;
1844   return Result;
1845 }
1846 
1847 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1848                                               const CompoundAssignOperator *E,
1849                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1850                                                    Value *&Result) {
1851   QualType LHSTy = E->getLHS()->getType();
1852   BinOpInfo OpInfo;
1853 
1854   if (E->getComputationResultType()->isAnyComplexType()) {
1855     // This needs to go through the complex expression emitter, but it's a tad
1856     // complicated to do that... I'm leaving it out for now.  (Note that we do
1857     // actually need the imaginary part of the RHS for multiplication and
1858     // division.)
1859     CGF.ErrorUnsupported(E, "complex compound assignment");
1860     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1861     return LValue();
1862   }
1863 
1864   // Emit the RHS first.  __block variables need to have the rhs evaluated
1865   // first, plus this should improve codegen a little.
1866   OpInfo.RHS = Visit(E->getRHS());
1867   OpInfo.Ty = E->getComputationResultType();
1868   OpInfo.Opcode = E->getOpcode();
1869   OpInfo.FPContractable = false;
1870   OpInfo.E = E;
1871   // Load/convert the LHS.
1872   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1873   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1874 
1875   llvm::PHINode *atomicPHI = 0;
1876   if (LHSTy->isAtomicType()) {
1877     // FIXME: For floating point types, we should be saving and restoring the
1878     // floating point environment in the loop.
1879     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1880     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1881     Builder.CreateBr(opBB);
1882     Builder.SetInsertPoint(opBB);
1883     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1884     atomicPHI->addIncoming(OpInfo.LHS, startBB);
1885     OpInfo.LHS = atomicPHI;
1886   }
1887 
1888   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1889                                     E->getComputationLHSType());
1890 
1891   // Expand the binary operator.
1892   Result = (this->*Func)(OpInfo);
1893 
1894   // Convert the result back to the LHS type.
1895   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1896 
1897   if (atomicPHI) {
1898     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1899     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1900     llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1901         Result, llvm::SequentiallyConsistent);
1902     atomicPHI->addIncoming(old, opBB);
1903     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1904     Builder.CreateCondBr(success, contBB, opBB);
1905     Builder.SetInsertPoint(contBB);
1906     return LHSLV;
1907   }
1908 
1909   // Store the result value into the LHS lvalue. Bit-fields are handled
1910   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1911   // 'An assignment expression has the value of the left operand after the
1912   // assignment...'.
1913   if (LHSLV.isBitField())
1914     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1915   else
1916     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1917 
1918   return LHSLV;
1919 }
1920 
1921 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1922                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1923   bool Ignore = TestAndClearIgnoreResultAssign();
1924   Value *RHS;
1925   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1926 
1927   // If the result is clearly ignored, return now.
1928   if (Ignore)
1929     return 0;
1930 
1931   // The result of an assignment in C is the assigned r-value.
1932   if (!CGF.getLangOpts().CPlusPlus)
1933     return RHS;
1934 
1935   // If the lvalue is non-volatile, return the computed value of the assignment.
1936   if (!LHS.isVolatileQualified())
1937     return RHS;
1938 
1939   // Otherwise, reload the value.
1940   return EmitLoadOfLValue(LHS);
1941 }
1942 
1943 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1944     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
1945   llvm::Value *Cond = 0;
1946 
1947   if (CGF.getLangOpts().SanitizeIntegerDivideByZero)
1948     Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
1949 
1950   if (CGF.getLangOpts().SanitizeSignedIntegerOverflow &&
1951       Ops.Ty->hasSignedIntegerRepresentation()) {
1952     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1953 
1954     llvm::Value *IntMin =
1955       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1956     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1957 
1958     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
1959     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
1960     llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
1961     Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
1962   }
1963 
1964   if (Cond)
1965     EmitBinOpCheck(Cond, Ops);
1966 }
1967 
1968 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1969   if ((CGF.getLangOpts().SanitizeIntegerDivideByZero ||
1970       CGF.getLangOpts().SanitizeSignedIntegerOverflow) &&
1971       Ops.Ty->isIntegerType()) {
1972     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1973     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1974   } else if (CGF.getLangOpts().SanitizeFloatDivideByZero &&
1975              Ops.Ty->isRealFloatingType()) {
1976     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1977     EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
1978   }
1979 
1980   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1981     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1982     if (CGF.getLangOpts().OpenCL) {
1983       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1984       llvm::Type *ValTy = Val->getType();
1985       if (ValTy->isFloatTy() ||
1986           (isa<llvm::VectorType>(ValTy) &&
1987            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1988         CGF.SetFPAccuracy(Val, 2.5);
1989     }
1990     return Val;
1991   }
1992   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1993     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1994   else
1995     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1996 }
1997 
1998 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1999   // Rem in C can't be a floating point type: C99 6.5.5p2.
2000   if (CGF.getLangOpts().SanitizeIntegerDivideByZero) {
2001     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2002 
2003     if (Ops.Ty->isIntegerType())
2004       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2005   }
2006 
2007   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2008     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2009   else
2010     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2011 }
2012 
2013 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2014   unsigned IID;
2015   unsigned OpID = 0;
2016 
2017   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2018   switch (Ops.Opcode) {
2019   case BO_Add:
2020   case BO_AddAssign:
2021     OpID = 1;
2022     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2023                      llvm::Intrinsic::uadd_with_overflow;
2024     break;
2025   case BO_Sub:
2026   case BO_SubAssign:
2027     OpID = 2;
2028     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2029                      llvm::Intrinsic::usub_with_overflow;
2030     break;
2031   case BO_Mul:
2032   case BO_MulAssign:
2033     OpID = 3;
2034     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2035                      llvm::Intrinsic::umul_with_overflow;
2036     break;
2037   default:
2038     llvm_unreachable("Unsupported operation for overflow detection");
2039   }
2040   OpID <<= 1;
2041   if (isSigned)
2042     OpID |= 1;
2043 
2044   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2045 
2046   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2047 
2048   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2049   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2050   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2051 
2052   // Handle overflow with llvm.trap if no custom handler has been specified.
2053   const std::string *handlerName =
2054     &CGF.getLangOpts().OverflowHandler;
2055   if (handlerName->empty()) {
2056     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2057     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2058     if (!isSigned || CGF.getLangOpts().SanitizeSignedIntegerOverflow)
2059       EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2060     else
2061       CGF.EmitTrapvCheck(Builder.CreateNot(overflow));
2062     return result;
2063   }
2064 
2065   // Branch in case of overflow.
2066   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2067   llvm::Function::iterator insertPt = initialBB;
2068   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2069                                                       llvm::next(insertPt));
2070   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2071 
2072   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2073 
2074   // If an overflow handler is set, then we want to call it and then use its
2075   // result, if it returns.
2076   Builder.SetInsertPoint(overflowBB);
2077 
2078   // Get the overflow handler.
2079   llvm::Type *Int8Ty = CGF.Int8Ty;
2080   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2081   llvm::FunctionType *handlerTy =
2082       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2083   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2084 
2085   // Sign extend the args to 64-bit, so that we can use the same handler for
2086   // all types of overflow.
2087   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2088   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2089 
2090   // Call the handler with the two arguments, the operation, and the size of
2091   // the result.
2092   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
2093       Builder.getInt8(OpID),
2094       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
2095 
2096   // Truncate the result back to the desired size.
2097   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2098   Builder.CreateBr(continueBB);
2099 
2100   Builder.SetInsertPoint(continueBB);
2101   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2102   phi->addIncoming(result, initialBB);
2103   phi->addIncoming(handlerResult, overflowBB);
2104 
2105   return phi;
2106 }
2107 
2108 /// Emit pointer + index arithmetic.
2109 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2110                                     const BinOpInfo &op,
2111                                     bool isSubtraction) {
2112   // Must have binary (not unary) expr here.  Unary pointer
2113   // increment/decrement doesn't use this path.
2114   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2115 
2116   Value *pointer = op.LHS;
2117   Expr *pointerOperand = expr->getLHS();
2118   Value *index = op.RHS;
2119   Expr *indexOperand = expr->getRHS();
2120 
2121   // In a subtraction, the LHS is always the pointer.
2122   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2123     std::swap(pointer, index);
2124     std::swap(pointerOperand, indexOperand);
2125   }
2126 
2127   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2128   if (width != CGF.PointerWidthInBits) {
2129     // Zero-extend or sign-extend the pointer value according to
2130     // whether the index is signed or not.
2131     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2132     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2133                                       "idx.ext");
2134   }
2135 
2136   // If this is subtraction, negate the index.
2137   if (isSubtraction)
2138     index = CGF.Builder.CreateNeg(index, "idx.neg");
2139 
2140   const PointerType *pointerType
2141     = pointerOperand->getType()->getAs<PointerType>();
2142   if (!pointerType) {
2143     QualType objectType = pointerOperand->getType()
2144                                         ->castAs<ObjCObjectPointerType>()
2145                                         ->getPointeeType();
2146     llvm::Value *objectSize
2147       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2148 
2149     index = CGF.Builder.CreateMul(index, objectSize);
2150 
2151     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2152     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2153     return CGF.Builder.CreateBitCast(result, pointer->getType());
2154   }
2155 
2156   QualType elementType = pointerType->getPointeeType();
2157   if (const VariableArrayType *vla
2158         = CGF.getContext().getAsVariableArrayType(elementType)) {
2159     // The element count here is the total number of non-VLA elements.
2160     llvm::Value *numElements = CGF.getVLASize(vla).first;
2161 
2162     // Effectively, the multiply by the VLA size is part of the GEP.
2163     // GEP indexes are signed, and scaling an index isn't permitted to
2164     // signed-overflow, so we use the same semantics for our explicit
2165     // multiply.  We suppress this if overflow is not undefined behavior.
2166     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2167       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2168       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2169     } else {
2170       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2171       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2172     }
2173     return pointer;
2174   }
2175 
2176   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2177   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2178   // future proof.
2179   if (elementType->isVoidType() || elementType->isFunctionType()) {
2180     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2181     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2182     return CGF.Builder.CreateBitCast(result, pointer->getType());
2183   }
2184 
2185   if (CGF.getLangOpts().isSignedOverflowDefined())
2186     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2187 
2188   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2189 }
2190 
2191 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2192 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2193 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2194 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2195 // efficient operations.
2196 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2197                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2198                            bool negMul, bool negAdd) {
2199   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2200 
2201   Value *MulOp0 = MulOp->getOperand(0);
2202   Value *MulOp1 = MulOp->getOperand(1);
2203   if (negMul) {
2204     MulOp0 =
2205       Builder.CreateFSub(
2206         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2207         "neg");
2208   } else if (negAdd) {
2209     Addend =
2210       Builder.CreateFSub(
2211         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2212         "neg");
2213   }
2214 
2215   Value *FMulAdd =
2216     Builder.CreateCall3(
2217       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2218                            MulOp0, MulOp1, Addend);
2219    MulOp->eraseFromParent();
2220 
2221    return FMulAdd;
2222 }
2223 
2224 // Check whether it would be legal to emit an fmuladd intrinsic call to
2225 // represent op and if so, build the fmuladd.
2226 //
2227 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2228 // Does NOT check the type of the operation - it's assumed that this function
2229 // will be called from contexts where it's known that the type is contractable.
2230 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2231                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2232                          bool isSub=false) {
2233 
2234   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2235           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2236          "Only fadd/fsub can be the root of an fmuladd.");
2237 
2238   // Check whether this op is marked as fusable.
2239   if (!op.FPContractable)
2240     return 0;
2241 
2242   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2243   // either disabled, or handled entirely by the LLVM backend).
2244   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2245     return 0;
2246 
2247   // We have a potentially fusable op. Look for a mul on one of the operands.
2248   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2249     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2250       assert(LHSBinOp->getNumUses() == 0 &&
2251              "Operations with multiple uses shouldn't be contracted.");
2252       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2253     }
2254   } else if (llvm::BinaryOperator* RHSBinOp =
2255                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2256     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2257       assert(RHSBinOp->getNumUses() == 0 &&
2258              "Operations with multiple uses shouldn't be contracted.");
2259       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2260     }
2261   }
2262 
2263   return 0;
2264 }
2265 
2266 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2267   if (op.LHS->getType()->isPointerTy() ||
2268       op.RHS->getType()->isPointerTy())
2269     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2270 
2271   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2272     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2273     case LangOptions::SOB_Defined:
2274       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2275     case LangOptions::SOB_Undefined:
2276       if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
2277         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2278       // Fall through.
2279     case LangOptions::SOB_Trapping:
2280       return EmitOverflowCheckedBinOp(op);
2281     }
2282   }
2283 
2284   if (op.Ty->isUnsignedIntegerType() &&
2285       CGF.getLangOpts().SanitizeUnsignedIntegerOverflow)
2286     return EmitOverflowCheckedBinOp(op);
2287 
2288   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2289     // Try to form an fmuladd.
2290     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2291       return FMulAdd;
2292 
2293     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2294   }
2295 
2296   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2297 }
2298 
2299 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2300   // The LHS is always a pointer if either side is.
2301   if (!op.LHS->getType()->isPointerTy()) {
2302     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2303       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2304       case LangOptions::SOB_Defined:
2305         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2306       case LangOptions::SOB_Undefined:
2307         if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
2308           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2309         // Fall through.
2310       case LangOptions::SOB_Trapping:
2311         return EmitOverflowCheckedBinOp(op);
2312       }
2313     }
2314 
2315     if (op.Ty->isUnsignedIntegerType() &&
2316         CGF.getLangOpts().SanitizeUnsignedIntegerOverflow)
2317       return EmitOverflowCheckedBinOp(op);
2318 
2319     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2320       // Try to form an fmuladd.
2321       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2322         return FMulAdd;
2323       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2324     }
2325 
2326     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2327   }
2328 
2329   // If the RHS is not a pointer, then we have normal pointer
2330   // arithmetic.
2331   if (!op.RHS->getType()->isPointerTy())
2332     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2333 
2334   // Otherwise, this is a pointer subtraction.
2335 
2336   // Do the raw subtraction part.
2337   llvm::Value *LHS
2338     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2339   llvm::Value *RHS
2340     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2341   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2342 
2343   // Okay, figure out the element size.
2344   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2345   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2346 
2347   llvm::Value *divisor = 0;
2348 
2349   // For a variable-length array, this is going to be non-constant.
2350   if (const VariableArrayType *vla
2351         = CGF.getContext().getAsVariableArrayType(elementType)) {
2352     llvm::Value *numElements;
2353     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2354 
2355     divisor = numElements;
2356 
2357     // Scale the number of non-VLA elements by the non-VLA element size.
2358     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2359     if (!eltSize.isOne())
2360       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2361 
2362   // For everything elese, we can just compute it, safe in the
2363   // assumption that Sema won't let anything through that we can't
2364   // safely compute the size of.
2365   } else {
2366     CharUnits elementSize;
2367     // Handle GCC extension for pointer arithmetic on void* and
2368     // function pointer types.
2369     if (elementType->isVoidType() || elementType->isFunctionType())
2370       elementSize = CharUnits::One();
2371     else
2372       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2373 
2374     // Don't even emit the divide for element size of 1.
2375     if (elementSize.isOne())
2376       return diffInChars;
2377 
2378     divisor = CGF.CGM.getSize(elementSize);
2379   }
2380 
2381   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2382   // pointer difference in C is only defined in the case where both operands
2383   // are pointing to elements of an array.
2384   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2385 }
2386 
2387 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2388   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2389   // RHS to the same size as the LHS.
2390   Value *RHS = Ops.RHS;
2391   if (Ops.LHS->getType() != RHS->getType())
2392     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2393 
2394   if (CGF.getLangOpts().SanitizeShift &&
2395       isa<llvm::IntegerType>(Ops.LHS->getType())) {
2396     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2397     llvm::Value *WidthMinusOne =
2398       llvm::ConstantInt::get(RHS->getType(), Width - 1);
2399     // FIXME: Emit the branching explicitly rather than emitting the check
2400     // twice.
2401     EmitBinOpCheck(Builder.CreateICmpULE(RHS, WidthMinusOne), Ops);
2402 
2403     if (Ops.Ty->hasSignedIntegerRepresentation()) {
2404       // Check whether we are shifting any non-zero bits off the top of the
2405       // integer.
2406       llvm::Value *BitsShiftedOff =
2407         Builder.CreateLShr(Ops.LHS,
2408                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2409                                              /*NUW*/true, /*NSW*/true),
2410                            "shl.check");
2411       if (CGF.getLangOpts().CPlusPlus) {
2412         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2413         // Under C++11's rules, shifting a 1 bit into the sign bit is
2414         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2415         // define signed left shifts, so we use the C99 and C++11 rules there).
2416         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2417         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2418       }
2419       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2420       EmitBinOpCheck(Builder.CreateICmpEQ(BitsShiftedOff, Zero), Ops);
2421     }
2422   }
2423 
2424   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2425 }
2426 
2427 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2428   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2429   // RHS to the same size as the LHS.
2430   Value *RHS = Ops.RHS;
2431   if (Ops.LHS->getType() != RHS->getType())
2432     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2433 
2434   if (CGF.getLangOpts().SanitizeShift &&
2435       isa<llvm::IntegerType>(Ops.LHS->getType())) {
2436     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2437     llvm::Value *WidthVal = llvm::ConstantInt::get(RHS->getType(), Width);
2438     EmitBinOpCheck(Builder.CreateICmpULT(RHS, WidthVal), Ops);
2439   }
2440 
2441   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2442     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2443   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2444 }
2445 
2446 enum IntrinsicType { VCMPEQ, VCMPGT };
2447 // return corresponding comparison intrinsic for given vector type
2448 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2449                                         BuiltinType::Kind ElemKind) {
2450   switch (ElemKind) {
2451   default: llvm_unreachable("unexpected element type");
2452   case BuiltinType::Char_U:
2453   case BuiltinType::UChar:
2454     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2455                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2456   case BuiltinType::Char_S:
2457   case BuiltinType::SChar:
2458     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2459                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2460   case BuiltinType::UShort:
2461     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2462                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2463   case BuiltinType::Short:
2464     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2465                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2466   case BuiltinType::UInt:
2467   case BuiltinType::ULong:
2468     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2469                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2470   case BuiltinType::Int:
2471   case BuiltinType::Long:
2472     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2473                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2474   case BuiltinType::Float:
2475     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2476                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2477   }
2478 }
2479 
2480 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2481                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2482   TestAndClearIgnoreResultAssign();
2483   Value *Result;
2484   QualType LHSTy = E->getLHS()->getType();
2485   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2486     assert(E->getOpcode() == BO_EQ ||
2487            E->getOpcode() == BO_NE);
2488     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2489     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2490     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2491                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2492   } else if (!LHSTy->isAnyComplexType()) {
2493     Value *LHS = Visit(E->getLHS());
2494     Value *RHS = Visit(E->getRHS());
2495 
2496     // If AltiVec, the comparison results in a numeric type, so we use
2497     // intrinsics comparing vectors and giving 0 or 1 as a result
2498     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2499       // constants for mapping CR6 register bits to predicate result
2500       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2501 
2502       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2503 
2504       // in several cases vector arguments order will be reversed
2505       Value *FirstVecArg = LHS,
2506             *SecondVecArg = RHS;
2507 
2508       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2509       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2510       BuiltinType::Kind ElementKind = BTy->getKind();
2511 
2512       switch(E->getOpcode()) {
2513       default: llvm_unreachable("is not a comparison operation");
2514       case BO_EQ:
2515         CR6 = CR6_LT;
2516         ID = GetIntrinsic(VCMPEQ, ElementKind);
2517         break;
2518       case BO_NE:
2519         CR6 = CR6_EQ;
2520         ID = GetIntrinsic(VCMPEQ, ElementKind);
2521         break;
2522       case BO_LT:
2523         CR6 = CR6_LT;
2524         ID = GetIntrinsic(VCMPGT, ElementKind);
2525         std::swap(FirstVecArg, SecondVecArg);
2526         break;
2527       case BO_GT:
2528         CR6 = CR6_LT;
2529         ID = GetIntrinsic(VCMPGT, ElementKind);
2530         break;
2531       case BO_LE:
2532         if (ElementKind == BuiltinType::Float) {
2533           CR6 = CR6_LT;
2534           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2535           std::swap(FirstVecArg, SecondVecArg);
2536         }
2537         else {
2538           CR6 = CR6_EQ;
2539           ID = GetIntrinsic(VCMPGT, ElementKind);
2540         }
2541         break;
2542       case BO_GE:
2543         if (ElementKind == BuiltinType::Float) {
2544           CR6 = CR6_LT;
2545           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2546         }
2547         else {
2548           CR6 = CR6_EQ;
2549           ID = GetIntrinsic(VCMPGT, ElementKind);
2550           std::swap(FirstVecArg, SecondVecArg);
2551         }
2552         break;
2553       }
2554 
2555       Value *CR6Param = Builder.getInt32(CR6);
2556       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2557       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2558       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2559     }
2560 
2561     if (LHS->getType()->isFPOrFPVectorTy()) {
2562       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2563                                   LHS, RHS, "cmp");
2564     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2565       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2566                                   LHS, RHS, "cmp");
2567     } else {
2568       // Unsigned integers and pointers.
2569       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2570                                   LHS, RHS, "cmp");
2571     }
2572 
2573     // If this is a vector comparison, sign extend the result to the appropriate
2574     // vector integer type and return it (don't convert to bool).
2575     if (LHSTy->isVectorType())
2576       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2577 
2578   } else {
2579     // Complex Comparison: can only be an equality comparison.
2580     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2581     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2582 
2583     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2584 
2585     Value *ResultR, *ResultI;
2586     if (CETy->isRealFloatingType()) {
2587       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2588                                    LHS.first, RHS.first, "cmp.r");
2589       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2590                                    LHS.second, RHS.second, "cmp.i");
2591     } else {
2592       // Complex comparisons can only be equality comparisons.  As such, signed
2593       // and unsigned opcodes are the same.
2594       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2595                                    LHS.first, RHS.first, "cmp.r");
2596       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2597                                    LHS.second, RHS.second, "cmp.i");
2598     }
2599 
2600     if (E->getOpcode() == BO_EQ) {
2601       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2602     } else {
2603       assert(E->getOpcode() == BO_NE &&
2604              "Complex comparison other than == or != ?");
2605       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2606     }
2607   }
2608 
2609   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2610 }
2611 
2612 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2613   bool Ignore = TestAndClearIgnoreResultAssign();
2614 
2615   Value *RHS;
2616   LValue LHS;
2617 
2618   switch (E->getLHS()->getType().getObjCLifetime()) {
2619   case Qualifiers::OCL_Strong:
2620     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2621     break;
2622 
2623   case Qualifiers::OCL_Autoreleasing:
2624     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2625     break;
2626 
2627   case Qualifiers::OCL_Weak:
2628     RHS = Visit(E->getRHS());
2629     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2630     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2631     break;
2632 
2633   // No reason to do any of these differently.
2634   case Qualifiers::OCL_None:
2635   case Qualifiers::OCL_ExplicitNone:
2636     // __block variables need to have the rhs evaluated first, plus
2637     // this should improve codegen just a little.
2638     RHS = Visit(E->getRHS());
2639     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2640 
2641     // Store the value into the LHS.  Bit-fields are handled specially
2642     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2643     // 'An assignment expression has the value of the left operand after
2644     // the assignment...'.
2645     if (LHS.isBitField())
2646       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2647     else
2648       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2649   }
2650 
2651   // If the result is clearly ignored, return now.
2652   if (Ignore)
2653     return 0;
2654 
2655   // The result of an assignment in C is the assigned r-value.
2656   if (!CGF.getLangOpts().CPlusPlus)
2657     return RHS;
2658 
2659   // If the lvalue is non-volatile, return the computed value of the assignment.
2660   if (!LHS.isVolatileQualified())
2661     return RHS;
2662 
2663   // Otherwise, reload the value.
2664   return EmitLoadOfLValue(LHS);
2665 }
2666 
2667 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2668 
2669   // Perform vector logical and on comparisons with zero vectors.
2670   if (E->getType()->isVectorType()) {
2671     Value *LHS = Visit(E->getLHS());
2672     Value *RHS = Visit(E->getRHS());
2673     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2674     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2675     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2676     Value *And = Builder.CreateAnd(LHS, RHS);
2677     return Builder.CreateSExt(And, Zero->getType(), "sext");
2678   }
2679 
2680   llvm::Type *ResTy = ConvertType(E->getType());
2681 
2682   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2683   // If we have 1 && X, just emit X without inserting the control flow.
2684   bool LHSCondVal;
2685   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2686     if (LHSCondVal) { // If we have 1 && X, just emit X.
2687       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2688       // ZExt result to int or bool.
2689       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2690     }
2691 
2692     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2693     if (!CGF.ContainsLabel(E->getRHS()))
2694       return llvm::Constant::getNullValue(ResTy);
2695   }
2696 
2697   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2698   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2699 
2700   CodeGenFunction::ConditionalEvaluation eval(CGF);
2701 
2702   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2703   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2704 
2705   // Any edges into the ContBlock are now from an (indeterminate number of)
2706   // edges from this first condition.  All of these values will be false.  Start
2707   // setting up the PHI node in the Cont Block for this.
2708   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2709                                             "", ContBlock);
2710   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2711        PI != PE; ++PI)
2712     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2713 
2714   eval.begin(CGF);
2715   CGF.EmitBlock(RHSBlock);
2716   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2717   eval.end(CGF);
2718 
2719   // Reaquire the RHS block, as there may be subblocks inserted.
2720   RHSBlock = Builder.GetInsertBlock();
2721 
2722   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2723   // into the phi node for the edge with the value of RHSCond.
2724   if (CGF.getDebugInfo())
2725     // There is no need to emit line number for unconditional branch.
2726     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2727   CGF.EmitBlock(ContBlock);
2728   PN->addIncoming(RHSCond, RHSBlock);
2729 
2730   // ZExt result to int.
2731   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2732 }
2733 
2734 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2735 
2736   // Perform vector logical or on comparisons with zero vectors.
2737   if (E->getType()->isVectorType()) {
2738     Value *LHS = Visit(E->getLHS());
2739     Value *RHS = Visit(E->getRHS());
2740     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2741     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2742     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2743     Value *Or = Builder.CreateOr(LHS, RHS);
2744     return Builder.CreateSExt(Or, Zero->getType(), "sext");
2745   }
2746 
2747   llvm::Type *ResTy = ConvertType(E->getType());
2748 
2749   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2750   // If we have 0 || X, just emit X without inserting the control flow.
2751   bool LHSCondVal;
2752   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2753     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2754       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2755       // ZExt result to int or bool.
2756       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2757     }
2758 
2759     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2760     if (!CGF.ContainsLabel(E->getRHS()))
2761       return llvm::ConstantInt::get(ResTy, 1);
2762   }
2763 
2764   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2765   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2766 
2767   CodeGenFunction::ConditionalEvaluation eval(CGF);
2768 
2769   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2770   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2771 
2772   // Any edges into the ContBlock are now from an (indeterminate number of)
2773   // edges from this first condition.  All of these values will be true.  Start
2774   // setting up the PHI node in the Cont Block for this.
2775   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2776                                             "", ContBlock);
2777   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2778        PI != PE; ++PI)
2779     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2780 
2781   eval.begin(CGF);
2782 
2783   // Emit the RHS condition as a bool value.
2784   CGF.EmitBlock(RHSBlock);
2785   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2786 
2787   eval.end(CGF);
2788 
2789   // Reaquire the RHS block, as there may be subblocks inserted.
2790   RHSBlock = Builder.GetInsertBlock();
2791 
2792   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2793   // into the phi node for the edge with the value of RHSCond.
2794   CGF.EmitBlock(ContBlock);
2795   PN->addIncoming(RHSCond, RHSBlock);
2796 
2797   // ZExt result to int.
2798   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2799 }
2800 
2801 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2802   CGF.EmitIgnoredExpr(E->getLHS());
2803   CGF.EnsureInsertPoint();
2804   return Visit(E->getRHS());
2805 }
2806 
2807 //===----------------------------------------------------------------------===//
2808 //                             Other Operators
2809 //===----------------------------------------------------------------------===//
2810 
2811 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2812 /// expression is cheap enough and side-effect-free enough to evaluate
2813 /// unconditionally instead of conditionally.  This is used to convert control
2814 /// flow into selects in some cases.
2815 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2816                                                    CodeGenFunction &CGF) {
2817   E = E->IgnoreParens();
2818 
2819   // Anything that is an integer or floating point constant is fine.
2820   if (E->isConstantInitializer(CGF.getContext(), false))
2821     return true;
2822 
2823   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2824   // X and Y are local variables.
2825   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2826     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2827       if (VD->hasLocalStorage() && !(CGF.getContext()
2828                                      .getCanonicalType(VD->getType())
2829                                      .isVolatileQualified()))
2830         return true;
2831 
2832   return false;
2833 }
2834 
2835 
2836 Value *ScalarExprEmitter::
2837 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2838   TestAndClearIgnoreResultAssign();
2839 
2840   // Bind the common expression if necessary.
2841   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2842 
2843   Expr *condExpr = E->getCond();
2844   Expr *lhsExpr = E->getTrueExpr();
2845   Expr *rhsExpr = E->getFalseExpr();
2846 
2847   // If the condition constant folds and can be elided, try to avoid emitting
2848   // the condition and the dead arm.
2849   bool CondExprBool;
2850   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2851     Expr *live = lhsExpr, *dead = rhsExpr;
2852     if (!CondExprBool) std::swap(live, dead);
2853 
2854     // If the dead side doesn't have labels we need, just emit the Live part.
2855     if (!CGF.ContainsLabel(dead)) {
2856       Value *Result = Visit(live);
2857 
2858       // If the live part is a throw expression, it acts like it has a void
2859       // type, so evaluating it returns a null Value*.  However, a conditional
2860       // with non-void type must return a non-null Value*.
2861       if (!Result && !E->getType()->isVoidType())
2862         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2863 
2864       return Result;
2865     }
2866   }
2867 
2868   // OpenCL: If the condition is a vector, we can treat this condition like
2869   // the select function.
2870   if (CGF.getLangOpts().OpenCL
2871       && condExpr->getType()->isVectorType()) {
2872     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2873     llvm::Value *LHS = Visit(lhsExpr);
2874     llvm::Value *RHS = Visit(rhsExpr);
2875 
2876     llvm::Type *condType = ConvertType(condExpr->getType());
2877     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2878 
2879     unsigned numElem = vecTy->getNumElements();
2880     llvm::Type *elemType = vecTy->getElementType();
2881 
2882     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
2883     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2884     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2885                                           llvm::VectorType::get(elemType,
2886                                                                 numElem),
2887                                           "sext");
2888     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2889 
2890     // Cast float to int to perform ANDs if necessary.
2891     llvm::Value *RHSTmp = RHS;
2892     llvm::Value *LHSTmp = LHS;
2893     bool wasCast = false;
2894     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2895     if (rhsVTy->getElementType()->isFloatingPointTy()) {
2896       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2897       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2898       wasCast = true;
2899     }
2900 
2901     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2902     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2903     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2904     if (wasCast)
2905       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2906 
2907     return tmp5;
2908   }
2909 
2910   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2911   // select instead of as control flow.  We can only do this if it is cheap and
2912   // safe to evaluate the LHS and RHS unconditionally.
2913   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2914       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2915     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2916     llvm::Value *LHS = Visit(lhsExpr);
2917     llvm::Value *RHS = Visit(rhsExpr);
2918     if (!LHS) {
2919       // If the conditional has void type, make sure we return a null Value*.
2920       assert(!RHS && "LHS and RHS types must match");
2921       return 0;
2922     }
2923     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2924   }
2925 
2926   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2927   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2928   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2929 
2930   CodeGenFunction::ConditionalEvaluation eval(CGF);
2931   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2932 
2933   CGF.EmitBlock(LHSBlock);
2934   eval.begin(CGF);
2935   Value *LHS = Visit(lhsExpr);
2936   eval.end(CGF);
2937 
2938   LHSBlock = Builder.GetInsertBlock();
2939   Builder.CreateBr(ContBlock);
2940 
2941   CGF.EmitBlock(RHSBlock);
2942   eval.begin(CGF);
2943   Value *RHS = Visit(rhsExpr);
2944   eval.end(CGF);
2945 
2946   RHSBlock = Builder.GetInsertBlock();
2947   CGF.EmitBlock(ContBlock);
2948 
2949   // If the LHS or RHS is a throw expression, it will be legitimately null.
2950   if (!LHS)
2951     return RHS;
2952   if (!RHS)
2953     return LHS;
2954 
2955   // Create a PHI node for the real part.
2956   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2957   PN->addIncoming(LHS, LHSBlock);
2958   PN->addIncoming(RHS, RHSBlock);
2959   return PN;
2960 }
2961 
2962 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2963   return Visit(E->getChosenSubExpr(CGF.getContext()));
2964 }
2965 
2966 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2967   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2968   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2969 
2970   // If EmitVAArg fails, we fall back to the LLVM instruction.
2971   if (!ArgPtr)
2972     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2973 
2974   // FIXME Volatility.
2975   return Builder.CreateLoad(ArgPtr);
2976 }
2977 
2978 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2979   return CGF.EmitBlockLiteral(block);
2980 }
2981 
2982 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2983   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2984   llvm::Type *DstTy = ConvertType(E->getType());
2985 
2986   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2987   // a shuffle vector instead of a bitcast.
2988   llvm::Type *SrcTy = Src->getType();
2989   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2990     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2991     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2992     if ((numElementsDst == 3 && numElementsSrc == 4)
2993         || (numElementsDst == 4 && numElementsSrc == 3)) {
2994 
2995 
2996       // In the case of going from int4->float3, a bitcast is needed before
2997       // doing a shuffle.
2998       llvm::Type *srcElemTy =
2999       cast<llvm::VectorType>(SrcTy)->getElementType();
3000       llvm::Type *dstElemTy =
3001       cast<llvm::VectorType>(DstTy)->getElementType();
3002 
3003       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3004           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3005         // Create a float type of the same size as the source or destination.
3006         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3007                                                                  numElementsSrc);
3008 
3009         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3010       }
3011 
3012       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3013 
3014       SmallVector<llvm::Constant*, 3> Args;
3015       Args.push_back(Builder.getInt32(0));
3016       Args.push_back(Builder.getInt32(1));
3017       Args.push_back(Builder.getInt32(2));
3018 
3019       if (numElementsDst == 4)
3020         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3021 
3022       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3023 
3024       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3025     }
3026   }
3027 
3028   return Builder.CreateBitCast(Src, DstTy, "astype");
3029 }
3030 
3031 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3032   return CGF.EmitAtomicExpr(E).getScalarVal();
3033 }
3034 
3035 //===----------------------------------------------------------------------===//
3036 //                         Entry Point into this File
3037 //===----------------------------------------------------------------------===//
3038 
3039 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3040 /// type, ignoring the result.
3041 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3042   assert(E && !hasAggregateLLVMType(E->getType()) &&
3043          "Invalid scalar expression to emit");
3044 
3045   if (isa<CXXDefaultArgExpr>(E))
3046     disableDebugInfo();
3047   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3048     .Visit(const_cast<Expr*>(E));
3049   if (isa<CXXDefaultArgExpr>(E))
3050     enableDebugInfo();
3051   return V;
3052 }
3053 
3054 /// EmitScalarConversion - Emit a conversion from the specified type to the
3055 /// specified destination type, both of which are LLVM scalar types.
3056 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3057                                              QualType DstTy) {
3058   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
3059          "Invalid scalar expression to emit");
3060   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3061 }
3062 
3063 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3064 /// type to the specified destination type, where the destination type is an
3065 /// LLVM scalar type.
3066 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3067                                                       QualType SrcTy,
3068                                                       QualType DstTy) {
3069   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
3070          "Invalid complex -> scalar conversion");
3071   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3072                                                                 DstTy);
3073 }
3074 
3075 
3076 llvm::Value *CodeGenFunction::
3077 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3078                         bool isInc, bool isPre) {
3079   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3080 }
3081 
3082 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3083   llvm::Value *V;
3084   // object->isa or (*object).isa
3085   // Generate code as for: *(Class*)object
3086   // build Class* type
3087   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3088 
3089   Expr *BaseExpr = E->getBase();
3090   if (BaseExpr->isRValue()) {
3091     V = CreateMemTemp(E->getType(), "resval");
3092     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3093     Builder.CreateStore(Src, V);
3094     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3095       MakeNaturalAlignAddrLValue(V, E->getType()));
3096   } else {
3097     if (E->isArrow())
3098       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3099     else
3100       V = EmitLValue(BaseExpr).getAddress();
3101   }
3102 
3103   // build Class* type
3104   ClassPtrTy = ClassPtrTy->getPointerTo();
3105   V = Builder.CreateBitCast(V, ClassPtrTy);
3106   return MakeNaturalAlignAddrLValue(V, E->getType());
3107 }
3108 
3109 
3110 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3111                                             const CompoundAssignOperator *E) {
3112   ScalarExprEmitter Scalar(*this);
3113   Value *Result = 0;
3114   switch (E->getOpcode()) {
3115 #define COMPOUND_OP(Op)                                                       \
3116     case BO_##Op##Assign:                                                     \
3117       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3118                                              Result)
3119   COMPOUND_OP(Mul);
3120   COMPOUND_OP(Div);
3121   COMPOUND_OP(Rem);
3122   COMPOUND_OP(Add);
3123   COMPOUND_OP(Sub);
3124   COMPOUND_OP(Shl);
3125   COMPOUND_OP(Shr);
3126   COMPOUND_OP(And);
3127   COMPOUND_OP(Xor);
3128   COMPOUND_OP(Or);
3129 #undef COMPOUND_OP
3130 
3131   case BO_PtrMemD:
3132   case BO_PtrMemI:
3133   case BO_Mul:
3134   case BO_Div:
3135   case BO_Rem:
3136   case BO_Add:
3137   case BO_Sub:
3138   case BO_Shl:
3139   case BO_Shr:
3140   case BO_LT:
3141   case BO_GT:
3142   case BO_LE:
3143   case BO_GE:
3144   case BO_EQ:
3145   case BO_NE:
3146   case BO_And:
3147   case BO_Xor:
3148   case BO_Or:
3149   case BO_LAnd:
3150   case BO_LOr:
3151   case BO_Assign:
3152   case BO_Comma:
3153     llvm_unreachable("Not valid compound assignment operators");
3154   }
3155 
3156   llvm_unreachable("Unhandled compound assignment operator");
3157 }
3158