1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
81   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
85   Value *EmitLoadOfLValue(LValue LV) {
86     return CGF.EmitLoadOfLValue(LV).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E));
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     return Builder.CreateIsNotNull(V, "tobool");
144   }
145 
146   //===--------------------------------------------------------------------===//
147   //                            Visitor Methods
148   //===--------------------------------------------------------------------===//
149 
150   Value *Visit(Expr *E) {
151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152   }
153 
154   Value *VisitStmt(Stmt *S) {
155     S->dump(CGF.getContext().getSourceManager());
156     llvm_unreachable("Stmt can't have complex result type!");
157   }
158   Value *VisitExpr(Expr *S);
159 
160   Value *VisitParenExpr(ParenExpr *PE) {
161     return Visit(PE->getSubExpr());
162   }
163   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164     return Visit(E->getReplacement());
165   }
166   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167     return Visit(GE->getResultExpr());
168   }
169 
170   // Leaves.
171   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172     return Builder.getInt(E->getValue());
173   }
174   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175     return llvm::ConstantFP::get(VMContext, E->getValue());
176   }
177   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179   }
180   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
181     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182   }
183   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
184     return EmitNullValue(E->getType());
185   }
186   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
187     return EmitNullValue(E->getType());
188   }
189   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
190   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
191   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
192     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
193     return Builder.CreateBitCast(V, ConvertType(E->getType()));
194   }
195 
196   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
197     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
198   }
199 
200   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
201     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
202   }
203 
204   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
205     if (E->isGLValue())
206       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
207 
208     // Otherwise, assume the mapping is the scalar directly.
209     return CGF.getOpaqueRValueMapping(E).getScalarVal();
210   }
211 
212   // l-values.
213   Value *VisitDeclRefExpr(DeclRefExpr *E) {
214     Expr::EvalResult Result;
215     if (!E->EvaluateAsRValue(Result, CGF.getContext()))
216       return EmitLoadOfLValue(E);
217 
218     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
219 
220     llvm::Constant *C;
221     if (Result.Val.isInt())
222       C = Builder.getInt(Result.Val.getInt());
223     else if (Result.Val.isFloat())
224       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
225     else
226       return EmitLoadOfLValue(E);
227 
228     // Make sure we emit a debug reference to the global variable.
229     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
230       if (!CGF.getContext().DeclMustBeEmitted(VD))
231         CGF.EmitDeclRefExprDbgValue(E, C);
232     } else if (isa<EnumConstantDecl>(E->getDecl())) {
233       CGF.EmitDeclRefExprDbgValue(E, C);
234     }
235 
236     return C;
237   }
238   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
239     return CGF.EmitObjCSelectorExpr(E);
240   }
241   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
242     return CGF.EmitObjCProtocolExpr(E);
243   }
244   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
245     return EmitLoadOfLValue(E);
246   }
247   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
248     if (E->getMethodDecl() &&
249         E->getMethodDecl()->getResultType()->isReferenceType())
250       return EmitLoadOfLValue(E);
251     return CGF.EmitObjCMessageExpr(E).getScalarVal();
252   }
253 
254   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
255     LValue LV = CGF.EmitObjCIsaExpr(E);
256     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
257     return V;
258   }
259 
260   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
261   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
262   Value *VisitMemberExpr(MemberExpr *E);
263   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
264   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
265     return EmitLoadOfLValue(E);
266   }
267 
268   Value *VisitInitListExpr(InitListExpr *E);
269 
270   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
271     return CGF.CGM.EmitNullConstant(E->getType());
272   }
273   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
274     if (E->getType()->isVariablyModifiedType())
275       CGF.EmitVariablyModifiedType(E->getType());
276     return VisitCastExpr(E);
277   }
278   Value *VisitCastExpr(CastExpr *E);
279 
280   Value *VisitCallExpr(const CallExpr *E) {
281     if (E->getCallReturnType()->isReferenceType())
282       return EmitLoadOfLValue(E);
283 
284     return CGF.EmitCallExpr(E).getScalarVal();
285   }
286 
287   Value *VisitStmtExpr(const StmtExpr *E);
288 
289   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
290 
291   // Unary Operators.
292   Value *VisitUnaryPostDec(const UnaryOperator *E) {
293     LValue LV = EmitLValue(E->getSubExpr());
294     return EmitScalarPrePostIncDec(E, LV, false, false);
295   }
296   Value *VisitUnaryPostInc(const UnaryOperator *E) {
297     LValue LV = EmitLValue(E->getSubExpr());
298     return EmitScalarPrePostIncDec(E, LV, true, false);
299   }
300   Value *VisitUnaryPreDec(const UnaryOperator *E) {
301     LValue LV = EmitLValue(E->getSubExpr());
302     return EmitScalarPrePostIncDec(E, LV, false, true);
303   }
304   Value *VisitUnaryPreInc(const UnaryOperator *E) {
305     LValue LV = EmitLValue(E->getSubExpr());
306     return EmitScalarPrePostIncDec(E, LV, true, true);
307   }
308 
309   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
310                                                llvm::Value *InVal,
311                                                llvm::Value *NextVal,
312                                                bool IsInc);
313 
314   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
315                                        bool isInc, bool isPre);
316 
317 
318   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
319     if (isa<MemberPointerType>(E->getType())) // never sugared
320       return CGF.CGM.getMemberPointerConstant(E);
321 
322     return EmitLValue(E->getSubExpr()).getAddress();
323   }
324   Value *VisitUnaryDeref(const UnaryOperator *E) {
325     if (E->getType()->isVoidType())
326       return Visit(E->getSubExpr()); // the actual value should be unused
327     return EmitLoadOfLValue(E);
328   }
329   Value *VisitUnaryPlus(const UnaryOperator *E) {
330     // This differs from gcc, though, most likely due to a bug in gcc.
331     TestAndClearIgnoreResultAssign();
332     return Visit(E->getSubExpr());
333   }
334   Value *VisitUnaryMinus    (const UnaryOperator *E);
335   Value *VisitUnaryNot      (const UnaryOperator *E);
336   Value *VisitUnaryLNot     (const UnaryOperator *E);
337   Value *VisitUnaryReal     (const UnaryOperator *E);
338   Value *VisitUnaryImag     (const UnaryOperator *E);
339   Value *VisitUnaryExtension(const UnaryOperator *E) {
340     return Visit(E->getSubExpr());
341   }
342 
343   // C++
344   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
345     return EmitLoadOfLValue(E);
346   }
347 
348   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
349     return Visit(DAE->getExpr());
350   }
351   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
352     return CGF.LoadCXXThis();
353   }
354 
355   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
356     CGF.enterFullExpression(E);
357     CodeGenFunction::RunCleanupsScope Scope(CGF);
358     return Visit(E->getSubExpr());
359   }
360   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
361     return CGF.EmitCXXNewExpr(E);
362   }
363   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
364     CGF.EmitCXXDeleteExpr(E);
365     return 0;
366   }
367   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
368     return Builder.getInt1(E->getValue());
369   }
370 
371   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
372     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
373   }
374 
375   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
376     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
377   }
378 
379   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
380     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381   }
382 
383   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
384     // C++ [expr.pseudo]p1:
385     //   The result shall only be used as the operand for the function call
386     //   operator (), and the result of such a call has type void. The only
387     //   effect is the evaluation of the postfix-expression before the dot or
388     //   arrow.
389     CGF.EmitScalarExpr(E->getBase());
390     return 0;
391   }
392 
393   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
394     return EmitNullValue(E->getType());
395   }
396 
397   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
398     CGF.EmitCXXThrowExpr(E);
399     return 0;
400   }
401 
402   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
403     return Builder.getInt1(E->getValue());
404   }
405 
406   // Binary Operators.
407   Value *EmitMul(const BinOpInfo &Ops) {
408     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
409       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
410       case LangOptions::SOB_Undefined:
411         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
412       case LangOptions::SOB_Defined:
413         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
414       case LangOptions::SOB_Trapping:
415         return EmitOverflowCheckedBinOp(Ops);
416       }
417     }
418 
419     if (Ops.LHS->getType()->isFPOrFPVectorTy())
420       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
421     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
422   }
423   bool isTrapvOverflowBehavior() {
424     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
425                == LangOptions::SOB_Trapping;
426   }
427   /// Create a binary op that checks for overflow.
428   /// Currently only supports +, - and *.
429   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
430   // Emit the overflow BB when -ftrapv option is activated.
431   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
432     Builder.SetInsertPoint(overflowBB);
433     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
434     Builder.CreateCall(Trap);
435     Builder.CreateUnreachable();
436   }
437   // Check for undefined division and modulus behaviors.
438   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
439                                                   llvm::Value *Zero,bool isDiv);
440   Value *EmitDiv(const BinOpInfo &Ops);
441   Value *EmitRem(const BinOpInfo &Ops);
442   Value *EmitAdd(const BinOpInfo &Ops);
443   Value *EmitSub(const BinOpInfo &Ops);
444   Value *EmitShl(const BinOpInfo &Ops);
445   Value *EmitShr(const BinOpInfo &Ops);
446   Value *EmitAnd(const BinOpInfo &Ops) {
447     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
448   }
449   Value *EmitXor(const BinOpInfo &Ops) {
450     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
451   }
452   Value *EmitOr (const BinOpInfo &Ops) {
453     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
454   }
455 
456   BinOpInfo EmitBinOps(const BinaryOperator *E);
457   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
458                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
459                                   Value *&Result);
460 
461   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
462                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
463 
464   // Binary operators and binary compound assignment operators.
465 #define HANDLEBINOP(OP) \
466   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
467     return Emit ## OP(EmitBinOps(E));                                      \
468   }                                                                        \
469   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
470     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
471   }
472   HANDLEBINOP(Mul)
473   HANDLEBINOP(Div)
474   HANDLEBINOP(Rem)
475   HANDLEBINOP(Add)
476   HANDLEBINOP(Sub)
477   HANDLEBINOP(Shl)
478   HANDLEBINOP(Shr)
479   HANDLEBINOP(And)
480   HANDLEBINOP(Xor)
481   HANDLEBINOP(Or)
482 #undef HANDLEBINOP
483 
484   // Comparisons.
485   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
486                      unsigned SICmpOpc, unsigned FCmpOpc);
487 #define VISITCOMP(CODE, UI, SI, FP) \
488     Value *VisitBin##CODE(const BinaryOperator *E) { \
489       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
490                          llvm::FCmpInst::FP); }
491   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
492   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
493   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
494   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
495   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
496   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
497 #undef VISITCOMP
498 
499   Value *VisitBinAssign     (const BinaryOperator *E);
500 
501   Value *VisitBinLAnd       (const BinaryOperator *E);
502   Value *VisitBinLOr        (const BinaryOperator *E);
503   Value *VisitBinComma      (const BinaryOperator *E);
504 
505   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
506   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
507 
508   // Other Operators.
509   Value *VisitBlockExpr(const BlockExpr *BE);
510   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
511   Value *VisitChooseExpr(ChooseExpr *CE);
512   Value *VisitVAArgExpr(VAArgExpr *VE);
513   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
514     return CGF.EmitObjCStringLiteral(E);
515   }
516   Value *VisitAsTypeExpr(AsTypeExpr *CE);
517   Value *VisitAtomicExpr(AtomicExpr *AE);
518 };
519 }  // end anonymous namespace.
520 
521 //===----------------------------------------------------------------------===//
522 //                                Utilities
523 //===----------------------------------------------------------------------===//
524 
525 /// EmitConversionToBool - Convert the specified expression value to a
526 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
527 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
528   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
529 
530   if (SrcType->isRealFloatingType())
531     return EmitFloatToBoolConversion(Src);
532 
533   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
534     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
535 
536   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
537          "Unknown scalar type to convert");
538 
539   if (isa<llvm::IntegerType>(Src->getType()))
540     return EmitIntToBoolConversion(Src);
541 
542   assert(isa<llvm::PointerType>(Src->getType()));
543   return EmitPointerToBoolConversion(Src);
544 }
545 
546 /// EmitScalarConversion - Emit a conversion from the specified type to the
547 /// specified destination type, both of which are LLVM scalar types.
548 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
549                                                QualType DstType) {
550   SrcType = CGF.getContext().getCanonicalType(SrcType);
551   DstType = CGF.getContext().getCanonicalType(DstType);
552   if (SrcType == DstType) return Src;
553 
554   if (DstType->isVoidType()) return 0;
555 
556   llvm::Type *SrcTy = Src->getType();
557 
558   // Floating casts might be a bit special: if we're doing casts to / from half
559   // FP, we should go via special intrinsics.
560   if (SrcType->isHalfType()) {
561     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
562     SrcType = CGF.getContext().FloatTy;
563     SrcTy = CGF.FloatTy;
564   }
565 
566   // Handle conversions to bool first, they are special: comparisons against 0.
567   if (DstType->isBooleanType())
568     return EmitConversionToBool(Src, SrcType);
569 
570   llvm::Type *DstTy = ConvertType(DstType);
571 
572   // Ignore conversions like int -> uint.
573   if (SrcTy == DstTy)
574     return Src;
575 
576   // Handle pointer conversions next: pointers can only be converted to/from
577   // other pointers and integers. Check for pointer types in terms of LLVM, as
578   // some native types (like Obj-C id) may map to a pointer type.
579   if (isa<llvm::PointerType>(DstTy)) {
580     // The source value may be an integer, or a pointer.
581     if (isa<llvm::PointerType>(SrcTy))
582       return Builder.CreateBitCast(Src, DstTy, "conv");
583 
584     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
585     // First, convert to the correct width so that we control the kind of
586     // extension.
587     llvm::Type *MiddleTy = CGF.IntPtrTy;
588     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
589     llvm::Value* IntResult =
590         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
591     // Then, cast to pointer.
592     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
593   }
594 
595   if (isa<llvm::PointerType>(SrcTy)) {
596     // Must be an ptr to int cast.
597     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
598     return Builder.CreatePtrToInt(Src, DstTy, "conv");
599   }
600 
601   // A scalar can be splatted to an extended vector of the same element type
602   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
603     // Cast the scalar to element type
604     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
605     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
606 
607     // Insert the element in element zero of an undef vector
608     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
609     llvm::Value *Idx = Builder.getInt32(0);
610     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
611 
612     // Splat the element across to all elements
613     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
614     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
615                                                           Builder.getInt32(0));
616     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
617     return Yay;
618   }
619 
620   // Allow bitcast from vector to integer/fp of the same size.
621   if (isa<llvm::VectorType>(SrcTy) ||
622       isa<llvm::VectorType>(DstTy))
623     return Builder.CreateBitCast(Src, DstTy, "conv");
624 
625   // Finally, we have the arithmetic types: real int/float.
626   Value *Res = NULL;
627   llvm::Type *ResTy = DstTy;
628 
629   // Cast to half via float
630   if (DstType->isHalfType())
631     DstTy = CGF.FloatTy;
632 
633   if (isa<llvm::IntegerType>(SrcTy)) {
634     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
635     if (isa<llvm::IntegerType>(DstTy))
636       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
637     else if (InputSigned)
638       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
639     else
640       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
641   } else if (isa<llvm::IntegerType>(DstTy)) {
642     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
643     if (DstType->isSignedIntegerOrEnumerationType())
644       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
645     else
646       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
647   } else {
648     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
649            "Unknown real conversion");
650     if (DstTy->getTypeID() < SrcTy->getTypeID())
651       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
652     else
653       Res = Builder.CreateFPExt(Src, DstTy, "conv");
654   }
655 
656   if (DstTy != ResTy) {
657     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
658     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
659   }
660 
661   return Res;
662 }
663 
664 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
665 /// type to the specified destination type, where the destination type is an
666 /// LLVM scalar type.
667 Value *ScalarExprEmitter::
668 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
669                               QualType SrcTy, QualType DstTy) {
670   // Get the source element type.
671   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
672 
673   // Handle conversions to bool first, they are special: comparisons against 0.
674   if (DstTy->isBooleanType()) {
675     //  Complex != 0  -> (Real != 0) | (Imag != 0)
676     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
677     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
678     return Builder.CreateOr(Src.first, Src.second, "tobool");
679   }
680 
681   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
682   // the imaginary part of the complex value is discarded and the value of the
683   // real part is converted according to the conversion rules for the
684   // corresponding real type.
685   return EmitScalarConversion(Src.first, SrcTy, DstTy);
686 }
687 
688 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
689   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
690     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
691 
692   return llvm::Constant::getNullValue(ConvertType(Ty));
693 }
694 
695 //===----------------------------------------------------------------------===//
696 //                            Visitor Methods
697 //===----------------------------------------------------------------------===//
698 
699 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
700   CGF.ErrorUnsupported(E, "scalar expression");
701   if (E->getType()->isVoidType())
702     return 0;
703   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
704 }
705 
706 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
707   // Vector Mask Case
708   if (E->getNumSubExprs() == 2 ||
709       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
710     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
711     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
712     Value *Mask;
713 
714     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
715     unsigned LHSElts = LTy->getNumElements();
716 
717     if (E->getNumSubExprs() == 3) {
718       Mask = CGF.EmitScalarExpr(E->getExpr(2));
719 
720       // Shuffle LHS & RHS into one input vector.
721       SmallVector<llvm::Constant*, 32> concat;
722       for (unsigned i = 0; i != LHSElts; ++i) {
723         concat.push_back(Builder.getInt32(2*i));
724         concat.push_back(Builder.getInt32(2*i+1));
725       }
726 
727       Value* CV = llvm::ConstantVector::get(concat);
728       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
729       LHSElts *= 2;
730     } else {
731       Mask = RHS;
732     }
733 
734     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
735     llvm::Constant* EltMask;
736 
737     // Treat vec3 like vec4.
738     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
739       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
740                                        (1 << llvm::Log2_32(LHSElts+2))-1);
741     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
742       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
743                                        (1 << llvm::Log2_32(LHSElts+1))-1);
744     else
745       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
746                                        (1 << llvm::Log2_32(LHSElts))-1);
747 
748     // Mask off the high bits of each shuffle index.
749     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
750                                                      EltMask);
751     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
752 
753     // newv = undef
754     // mask = mask & maskbits
755     // for each elt
756     //   n = extract mask i
757     //   x = extract val n
758     //   newv = insert newv, x, i
759     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
760                                                         MTy->getNumElements());
761     Value* NewV = llvm::UndefValue::get(RTy);
762     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
763       Value *Indx = Builder.getInt32(i);
764       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
765       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
766 
767       // Handle vec3 special since the index will be off by one for the RHS.
768       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
769         Value *cmpIndx, *newIndx;
770         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
771                                         "cmp_shuf_idx");
772         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
773         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
774       }
775       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
776       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
777     }
778     return NewV;
779   }
780 
781   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
782   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
783 
784   // Handle vec3 special since the index will be off by one for the RHS.
785   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
786   SmallVector<llvm::Constant*, 32> indices;
787   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
788     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
789     if (VTy->getNumElements() == 3 && Idx > 3)
790       Idx -= 1;
791     indices.push_back(Builder.getInt32(Idx));
792   }
793 
794   Value *SV = llvm::ConstantVector::get(indices);
795   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
796 }
797 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
798   llvm::APSInt Value;
799   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
800     if (E->isArrow())
801       CGF.EmitScalarExpr(E->getBase());
802     else
803       EmitLValue(E->getBase());
804     return Builder.getInt(Value);
805   }
806 
807   // Emit debug info for aggregate now, if it was delayed to reduce
808   // debug info size.
809   CGDebugInfo *DI = CGF.getDebugInfo();
810   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
811     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
812     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
813       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
814         DI->getOrCreateRecordType(PTy->getPointeeType(),
815                                   M->getParent()->getLocation());
816   }
817   return EmitLoadOfLValue(E);
818 }
819 
820 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
821   TestAndClearIgnoreResultAssign();
822 
823   // Emit subscript expressions in rvalue context's.  For most cases, this just
824   // loads the lvalue formed by the subscript expr.  However, we have to be
825   // careful, because the base of a vector subscript is occasionally an rvalue,
826   // so we can't get it as an lvalue.
827   if (!E->getBase()->getType()->isVectorType())
828     return EmitLoadOfLValue(E);
829 
830   // Handle the vector case.  The base must be a vector, the index must be an
831   // integer value.
832   Value *Base = Visit(E->getBase());
833   Value *Idx  = Visit(E->getIdx());
834   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
835   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
836   return Builder.CreateExtractElement(Base, Idx, "vecext");
837 }
838 
839 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
840                                   unsigned Off, llvm::Type *I32Ty) {
841   int MV = SVI->getMaskValue(Idx);
842   if (MV == -1)
843     return llvm::UndefValue::get(I32Ty);
844   return llvm::ConstantInt::get(I32Ty, Off+MV);
845 }
846 
847 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
848   bool Ignore = TestAndClearIgnoreResultAssign();
849   (void)Ignore;
850   assert (Ignore == false && "init list ignored");
851   unsigned NumInitElements = E->getNumInits();
852 
853   if (E->hadArrayRangeDesignator())
854     CGF.ErrorUnsupported(E, "GNU array range designator extension");
855 
856   llvm::VectorType *VType =
857     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
858 
859   if (!VType) {
860     if (NumInitElements == 0) {
861       // C++11 value-initialization for the scalar.
862       return EmitNullValue(E->getType());
863     }
864     // We have a scalar in braces. Just use the first element.
865     return Visit(E->getInit(0));
866   }
867 
868   unsigned ResElts = VType->getNumElements();
869 
870   // Loop over initializers collecting the Value for each, and remembering
871   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
872   // us to fold the shuffle for the swizzle into the shuffle for the vector
873   // initializer, since LLVM optimizers generally do not want to touch
874   // shuffles.
875   unsigned CurIdx = 0;
876   bool VIsUndefShuffle = false;
877   llvm::Value *V = llvm::UndefValue::get(VType);
878   for (unsigned i = 0; i != NumInitElements; ++i) {
879     Expr *IE = E->getInit(i);
880     Value *Init = Visit(IE);
881     SmallVector<llvm::Constant*, 16> Args;
882 
883     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
884 
885     // Handle scalar elements.  If the scalar initializer is actually one
886     // element of a different vector of the same width, use shuffle instead of
887     // extract+insert.
888     if (!VVT) {
889       if (isa<ExtVectorElementExpr>(IE)) {
890         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
891 
892         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
893           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
894           Value *LHS = 0, *RHS = 0;
895           if (CurIdx == 0) {
896             // insert into undef -> shuffle (src, undef)
897             Args.push_back(C);
898             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
899 
900             LHS = EI->getVectorOperand();
901             RHS = V;
902             VIsUndefShuffle = true;
903           } else if (VIsUndefShuffle) {
904             // insert into undefshuffle && size match -> shuffle (v, src)
905             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
906             for (unsigned j = 0; j != CurIdx; ++j)
907               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
908             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
909             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
910 
911             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
912             RHS = EI->getVectorOperand();
913             VIsUndefShuffle = false;
914           }
915           if (!Args.empty()) {
916             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
917             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
918             ++CurIdx;
919             continue;
920           }
921         }
922       }
923       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
924                                       "vecinit");
925       VIsUndefShuffle = false;
926       ++CurIdx;
927       continue;
928     }
929 
930     unsigned InitElts = VVT->getNumElements();
931 
932     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
933     // input is the same width as the vector being constructed, generate an
934     // optimized shuffle of the swizzle input into the result.
935     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
936     if (isa<ExtVectorElementExpr>(IE)) {
937       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
938       Value *SVOp = SVI->getOperand(0);
939       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
940 
941       if (OpTy->getNumElements() == ResElts) {
942         for (unsigned j = 0; j != CurIdx; ++j) {
943           // If the current vector initializer is a shuffle with undef, merge
944           // this shuffle directly into it.
945           if (VIsUndefShuffle) {
946             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
947                                       CGF.Int32Ty));
948           } else {
949             Args.push_back(Builder.getInt32(j));
950           }
951         }
952         for (unsigned j = 0, je = InitElts; j != je; ++j)
953           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
954         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
955 
956         if (VIsUndefShuffle)
957           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
958 
959         Init = SVOp;
960       }
961     }
962 
963     // Extend init to result vector length, and then shuffle its contribution
964     // to the vector initializer into V.
965     if (Args.empty()) {
966       for (unsigned j = 0; j != InitElts; ++j)
967         Args.push_back(Builder.getInt32(j));
968       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
969       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
970       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
971                                          Mask, "vext");
972 
973       Args.clear();
974       for (unsigned j = 0; j != CurIdx; ++j)
975         Args.push_back(Builder.getInt32(j));
976       for (unsigned j = 0; j != InitElts; ++j)
977         Args.push_back(Builder.getInt32(j+Offset));
978       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
979     }
980 
981     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
982     // merging subsequent shuffles into this one.
983     if (CurIdx == 0)
984       std::swap(V, Init);
985     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
986     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
987     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
988     CurIdx += InitElts;
989   }
990 
991   // FIXME: evaluate codegen vs. shuffling against constant null vector.
992   // Emit remaining default initializers.
993   llvm::Type *EltTy = VType->getElementType();
994 
995   // Emit remaining default initializers
996   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
997     Value *Idx = Builder.getInt32(CurIdx);
998     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
999     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1000   }
1001   return V;
1002 }
1003 
1004 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1005   const Expr *E = CE->getSubExpr();
1006 
1007   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1008     return false;
1009 
1010   if (isa<CXXThisExpr>(E)) {
1011     // We always assume that 'this' is never null.
1012     return false;
1013   }
1014 
1015   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1016     // And that glvalue casts are never null.
1017     if (ICE->getValueKind() != VK_RValue)
1018       return false;
1019   }
1020 
1021   return true;
1022 }
1023 
1024 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1025 // have to handle a more broad range of conversions than explicit casts, as they
1026 // handle things like function to ptr-to-function decay etc.
1027 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1028   Expr *E = CE->getSubExpr();
1029   QualType DestTy = CE->getType();
1030   CastKind Kind = CE->getCastKind();
1031 
1032   if (!DestTy->isVoidType())
1033     TestAndClearIgnoreResultAssign();
1034 
1035   // Since almost all cast kinds apply to scalars, this switch doesn't have
1036   // a default case, so the compiler will warn on a missing case.  The cases
1037   // are in the same order as in the CastKind enum.
1038   switch (Kind) {
1039   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1040 
1041   case CK_LValueBitCast:
1042   case CK_ObjCObjectLValueCast: {
1043     Value *V = EmitLValue(E).getAddress();
1044     V = Builder.CreateBitCast(V,
1045                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1046     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1047   }
1048 
1049   case CK_CPointerToObjCPointerCast:
1050   case CK_BlockPointerToObjCPointerCast:
1051   case CK_AnyPointerToBlockPointerCast:
1052   case CK_BitCast: {
1053     Value *Src = Visit(const_cast<Expr*>(E));
1054     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1055   }
1056   case CK_AtomicToNonAtomic:
1057   case CK_NonAtomicToAtomic:
1058   case CK_NoOp:
1059   case CK_UserDefinedConversion:
1060     return Visit(const_cast<Expr*>(E));
1061 
1062   case CK_BaseToDerived: {
1063     const CXXRecordDecl *DerivedClassDecl =
1064       DestTy->getCXXRecordDeclForPointerType();
1065 
1066     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1067                                         CE->path_begin(), CE->path_end(),
1068                                         ShouldNullCheckClassCastValue(CE));
1069   }
1070   case CK_UncheckedDerivedToBase:
1071   case CK_DerivedToBase: {
1072     const RecordType *DerivedClassTy =
1073       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1074     CXXRecordDecl *DerivedClassDecl =
1075       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1076 
1077     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1078                                      CE->path_begin(), CE->path_end(),
1079                                      ShouldNullCheckClassCastValue(CE));
1080   }
1081   case CK_Dynamic: {
1082     Value *V = Visit(const_cast<Expr*>(E));
1083     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1084     return CGF.EmitDynamicCast(V, DCE);
1085   }
1086 
1087   case CK_ArrayToPointerDecay: {
1088     assert(E->getType()->isArrayType() &&
1089            "Array to pointer decay must have array source type!");
1090 
1091     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1092 
1093     // Note that VLA pointers are always decayed, so we don't need to do
1094     // anything here.
1095     if (!E->getType()->isVariableArrayType()) {
1096       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1097       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1098                                  ->getElementType()) &&
1099              "Expected pointer to array");
1100       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1101     }
1102 
1103     // Make sure the array decay ends up being the right type.  This matters if
1104     // the array type was of an incomplete type.
1105     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1106   }
1107   case CK_FunctionToPointerDecay:
1108     return EmitLValue(E).getAddress();
1109 
1110   case CK_NullToPointer:
1111     if (MustVisitNullValue(E))
1112       (void) Visit(E);
1113 
1114     return llvm::ConstantPointerNull::get(
1115                                cast<llvm::PointerType>(ConvertType(DestTy)));
1116 
1117   case CK_NullToMemberPointer: {
1118     if (MustVisitNullValue(E))
1119       (void) Visit(E);
1120 
1121     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1122     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1123   }
1124 
1125   case CK_ReinterpretMemberPointer:
1126   case CK_BaseToDerivedMemberPointer:
1127   case CK_DerivedToBaseMemberPointer: {
1128     Value *Src = Visit(E);
1129 
1130     // Note that the AST doesn't distinguish between checked and
1131     // unchecked member pointer conversions, so we always have to
1132     // implement checked conversions here.  This is inefficient when
1133     // actual control flow may be required in order to perform the
1134     // check, which it is for data member pointers (but not member
1135     // function pointers on Itanium and ARM).
1136     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1137   }
1138 
1139   case CK_ARCProduceObject:
1140     return CGF.EmitARCRetainScalarExpr(E);
1141   case CK_ARCConsumeObject:
1142     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1143   case CK_ARCReclaimReturnedObject: {
1144     llvm::Value *value = Visit(E);
1145     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1146     return CGF.EmitObjCConsumeObject(E->getType(), value);
1147   }
1148   case CK_ARCExtendBlockObject:
1149     return CGF.EmitARCExtendBlockObject(E);
1150 
1151   case CK_CopyAndAutoreleaseBlockObject:
1152     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1153 
1154   case CK_FloatingRealToComplex:
1155   case CK_FloatingComplexCast:
1156   case CK_IntegralRealToComplex:
1157   case CK_IntegralComplexCast:
1158   case CK_IntegralComplexToFloatingComplex:
1159   case CK_FloatingComplexToIntegralComplex:
1160   case CK_ConstructorConversion:
1161   case CK_ToUnion:
1162     llvm_unreachable("scalar cast to non-scalar value");
1163 
1164   case CK_LValueToRValue:
1165     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1166     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1167     return Visit(const_cast<Expr*>(E));
1168 
1169   case CK_IntegralToPointer: {
1170     Value *Src = Visit(const_cast<Expr*>(E));
1171 
1172     // First, convert to the correct width so that we control the kind of
1173     // extension.
1174     llvm::Type *MiddleTy = CGF.IntPtrTy;
1175     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1176     llvm::Value* IntResult =
1177       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1178 
1179     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1180   }
1181   case CK_PointerToIntegral:
1182     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1183     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1184 
1185   case CK_ToVoid: {
1186     CGF.EmitIgnoredExpr(E);
1187     return 0;
1188   }
1189   case CK_VectorSplat: {
1190     llvm::Type *DstTy = ConvertType(DestTy);
1191     Value *Elt = Visit(const_cast<Expr*>(E));
1192     Elt = EmitScalarConversion(Elt, E->getType(),
1193                                DestTy->getAs<VectorType>()->getElementType());
1194 
1195     // Insert the element in element zero of an undef vector
1196     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1197     llvm::Value *Idx = Builder.getInt32(0);
1198     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1199 
1200     // Splat the element across to all elements
1201     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1202     llvm::Constant *Zero = Builder.getInt32(0);
1203     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
1204     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1205     return Yay;
1206   }
1207 
1208   case CK_IntegralCast:
1209   case CK_IntegralToFloating:
1210   case CK_FloatingToIntegral:
1211   case CK_FloatingCast:
1212     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1213   case CK_IntegralToBoolean:
1214     return EmitIntToBoolConversion(Visit(E));
1215   case CK_PointerToBoolean:
1216     return EmitPointerToBoolConversion(Visit(E));
1217   case CK_FloatingToBoolean:
1218     return EmitFloatToBoolConversion(Visit(E));
1219   case CK_MemberPointerToBoolean: {
1220     llvm::Value *MemPtr = Visit(E);
1221     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1222     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1223   }
1224 
1225   case CK_FloatingComplexToReal:
1226   case CK_IntegralComplexToReal:
1227     return CGF.EmitComplexExpr(E, false, true).first;
1228 
1229   case CK_FloatingComplexToBoolean:
1230   case CK_IntegralComplexToBoolean: {
1231     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1232 
1233     // TODO: kill this function off, inline appropriate case here
1234     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1235   }
1236 
1237   }
1238 
1239   llvm_unreachable("unknown scalar cast");
1240 }
1241 
1242 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1243   CodeGenFunction::StmtExprEvaluation eval(CGF);
1244   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1245     .getScalarVal();
1246 }
1247 
1248 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1249   LValue LV = CGF.EmitBlockDeclRefLValue(E);
1250   return CGF.EmitLoadOfLValue(LV).getScalarVal();
1251 }
1252 
1253 //===----------------------------------------------------------------------===//
1254 //                             Unary Operators
1255 //===----------------------------------------------------------------------===//
1256 
1257 llvm::Value *ScalarExprEmitter::
1258 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1259                                 llvm::Value *InVal,
1260                                 llvm::Value *NextVal, bool IsInc) {
1261   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1262   case LangOptions::SOB_Undefined:
1263     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1264   case LangOptions::SOB_Defined:
1265     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1266   case LangOptions::SOB_Trapping:
1267     BinOpInfo BinOp;
1268     BinOp.LHS = InVal;
1269     BinOp.RHS = NextVal;
1270     BinOp.Ty = E->getType();
1271     BinOp.Opcode = BO_Add;
1272     BinOp.E = E;
1273     return EmitOverflowCheckedBinOp(BinOp);
1274   }
1275   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1276 }
1277 
1278 llvm::Value *
1279 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1280                                            bool isInc, bool isPre) {
1281 
1282   QualType type = E->getSubExpr()->getType();
1283   llvm::Value *value = EmitLoadOfLValue(LV);
1284   llvm::Value *input = value;
1285   llvm::PHINode *atomicPHI = 0;
1286 
1287   int amount = (isInc ? 1 : -1);
1288 
1289   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1290     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1291     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1292     Builder.CreateBr(opBB);
1293     Builder.SetInsertPoint(opBB);
1294     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1295     atomicPHI->addIncoming(value, startBB);
1296     type = atomicTy->getValueType();
1297     value = atomicPHI;
1298   }
1299 
1300   // Special case of integer increment that we have to check first: bool++.
1301   // Due to promotion rules, we get:
1302   //   bool++ -> bool = bool + 1
1303   //          -> bool = (int)bool + 1
1304   //          -> bool = ((int)bool + 1 != 0)
1305   // An interesting aspect of this is that increment is always true.
1306   // Decrement does not have this property.
1307   if (isInc && type->isBooleanType()) {
1308     value = Builder.getTrue();
1309 
1310   // Most common case by far: integer increment.
1311   } else if (type->isIntegerType()) {
1312 
1313     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1314 
1315     // Note that signed integer inc/dec with width less than int can't
1316     // overflow because of promotion rules; we're just eliding a few steps here.
1317     if (type->isSignedIntegerOrEnumerationType() &&
1318         value->getType()->getPrimitiveSizeInBits() >=
1319             CGF.IntTy->getBitWidth())
1320       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1321     else
1322       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1323 
1324   // Next most common: pointer increment.
1325   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1326     QualType type = ptr->getPointeeType();
1327 
1328     // VLA types don't have constant size.
1329     if (const VariableArrayType *vla
1330           = CGF.getContext().getAsVariableArrayType(type)) {
1331       llvm::Value *numElts = CGF.getVLASize(vla).first;
1332       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1333       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1334         value = Builder.CreateGEP(value, numElts, "vla.inc");
1335       else
1336         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1337 
1338     // Arithmetic on function pointers (!) is just +-1.
1339     } else if (type->isFunctionType()) {
1340       llvm::Value *amt = Builder.getInt32(amount);
1341 
1342       value = CGF.EmitCastToVoidPtr(value);
1343       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1344         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1345       else
1346         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1347       value = Builder.CreateBitCast(value, input->getType());
1348 
1349     // For everything else, we can just do a simple increment.
1350     } else {
1351       llvm::Value *amt = Builder.getInt32(amount);
1352       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1353         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1354       else
1355         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1356     }
1357 
1358   // Vector increment/decrement.
1359   } else if (type->isVectorType()) {
1360     if (type->hasIntegerRepresentation()) {
1361       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1362 
1363       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1364     } else {
1365       value = Builder.CreateFAdd(
1366                   value,
1367                   llvm::ConstantFP::get(value->getType(), amount),
1368                   isInc ? "inc" : "dec");
1369     }
1370 
1371   // Floating point.
1372   } else if (type->isRealFloatingType()) {
1373     // Add the inc/dec to the real part.
1374     llvm::Value *amt;
1375 
1376     if (type->isHalfType()) {
1377       // Another special case: half FP increment should be done via float
1378       value =
1379     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1380                        input);
1381     }
1382 
1383     if (value->getType()->isFloatTy())
1384       amt = llvm::ConstantFP::get(VMContext,
1385                                   llvm::APFloat(static_cast<float>(amount)));
1386     else if (value->getType()->isDoubleTy())
1387       amt = llvm::ConstantFP::get(VMContext,
1388                                   llvm::APFloat(static_cast<double>(amount)));
1389     else {
1390       llvm::APFloat F(static_cast<float>(amount));
1391       bool ignored;
1392       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1393                 &ignored);
1394       amt = llvm::ConstantFP::get(VMContext, F);
1395     }
1396     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1397 
1398     if (type->isHalfType())
1399       value =
1400        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1401                           value);
1402 
1403   // Objective-C pointer types.
1404   } else {
1405     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1406     value = CGF.EmitCastToVoidPtr(value);
1407 
1408     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1409     if (!isInc) size = -size;
1410     llvm::Value *sizeValue =
1411       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1412 
1413     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1414       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1415     else
1416       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1417     value = Builder.CreateBitCast(value, input->getType());
1418   }
1419 
1420   if (atomicPHI) {
1421     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1422     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1423     llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1424         value, llvm::SequentiallyConsistent);
1425     atomicPHI->addIncoming(old, opBB);
1426     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1427     Builder.CreateCondBr(success, contBB, opBB);
1428     Builder.SetInsertPoint(contBB);
1429     return isPre ? value : input;
1430   }
1431 
1432   // Store the updated result through the lvalue.
1433   if (LV.isBitField())
1434     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1435   else
1436     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1437 
1438   // If this is a postinc, return the value read from memory, otherwise use the
1439   // updated value.
1440   return isPre ? value : input;
1441 }
1442 
1443 
1444 
1445 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1446   TestAndClearIgnoreResultAssign();
1447   // Emit unary minus with EmitSub so we handle overflow cases etc.
1448   BinOpInfo BinOp;
1449   BinOp.RHS = Visit(E->getSubExpr());
1450 
1451   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1452     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1453   else
1454     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1455   BinOp.Ty = E->getType();
1456   BinOp.Opcode = BO_Sub;
1457   BinOp.E = E;
1458   return EmitSub(BinOp);
1459 }
1460 
1461 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1462   TestAndClearIgnoreResultAssign();
1463   Value *Op = Visit(E->getSubExpr());
1464   return Builder.CreateNot(Op, "neg");
1465 }
1466 
1467 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1468 
1469   // Perform vector logical not on comparison with zero vector.
1470   if (E->getType()->isExtVectorType()) {
1471     Value *Oper = Visit(E->getSubExpr());
1472     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1473     Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1474     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1475   }
1476 
1477   // Compare operand to zero.
1478   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1479 
1480   // Invert value.
1481   // TODO: Could dynamically modify easy computations here.  For example, if
1482   // the operand is an icmp ne, turn into icmp eq.
1483   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1484 
1485   // ZExt result to the expr type.
1486   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1487 }
1488 
1489 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1490   // Try folding the offsetof to a constant.
1491   llvm::APSInt Value;
1492   if (E->EvaluateAsInt(Value, CGF.getContext()))
1493     return Builder.getInt(Value);
1494 
1495   // Loop over the components of the offsetof to compute the value.
1496   unsigned n = E->getNumComponents();
1497   llvm::Type* ResultType = ConvertType(E->getType());
1498   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1499   QualType CurrentType = E->getTypeSourceInfo()->getType();
1500   for (unsigned i = 0; i != n; ++i) {
1501     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1502     llvm::Value *Offset = 0;
1503     switch (ON.getKind()) {
1504     case OffsetOfExpr::OffsetOfNode::Array: {
1505       // Compute the index
1506       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1507       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1508       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1509       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1510 
1511       // Save the element type
1512       CurrentType =
1513           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1514 
1515       // Compute the element size
1516       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1517           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1518 
1519       // Multiply out to compute the result
1520       Offset = Builder.CreateMul(Idx, ElemSize);
1521       break;
1522     }
1523 
1524     case OffsetOfExpr::OffsetOfNode::Field: {
1525       FieldDecl *MemberDecl = ON.getField();
1526       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1527       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1528 
1529       // Compute the index of the field in its parent.
1530       unsigned i = 0;
1531       // FIXME: It would be nice if we didn't have to loop here!
1532       for (RecordDecl::field_iterator Field = RD->field_begin(),
1533                                       FieldEnd = RD->field_end();
1534            Field != FieldEnd; (void)++Field, ++i) {
1535         if (*Field == MemberDecl)
1536           break;
1537       }
1538       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1539 
1540       // Compute the offset to the field
1541       int64_t OffsetInt = RL.getFieldOffset(i) /
1542                           CGF.getContext().getCharWidth();
1543       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1544 
1545       // Save the element type.
1546       CurrentType = MemberDecl->getType();
1547       break;
1548     }
1549 
1550     case OffsetOfExpr::OffsetOfNode::Identifier:
1551       llvm_unreachable("dependent __builtin_offsetof");
1552 
1553     case OffsetOfExpr::OffsetOfNode::Base: {
1554       if (ON.getBase()->isVirtual()) {
1555         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1556         continue;
1557       }
1558 
1559       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1560       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1561 
1562       // Save the element type.
1563       CurrentType = ON.getBase()->getType();
1564 
1565       // Compute the offset to the base.
1566       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1567       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1568       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1569                           CGF.getContext().getCharWidth();
1570       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1571       break;
1572     }
1573     }
1574     Result = Builder.CreateAdd(Result, Offset);
1575   }
1576   return Result;
1577 }
1578 
1579 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1580 /// argument of the sizeof expression as an integer.
1581 Value *
1582 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1583                               const UnaryExprOrTypeTraitExpr *E) {
1584   QualType TypeToSize = E->getTypeOfArgument();
1585   if (E->getKind() == UETT_SizeOf) {
1586     if (const VariableArrayType *VAT =
1587           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1588       if (E->isArgumentType()) {
1589         // sizeof(type) - make sure to emit the VLA size.
1590         CGF.EmitVariablyModifiedType(TypeToSize);
1591       } else {
1592         // C99 6.5.3.4p2: If the argument is an expression of type
1593         // VLA, it is evaluated.
1594         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1595       }
1596 
1597       QualType eltType;
1598       llvm::Value *numElts;
1599       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1600 
1601       llvm::Value *size = numElts;
1602 
1603       // Scale the number of non-VLA elements by the non-VLA element size.
1604       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1605       if (!eltSize.isOne())
1606         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1607 
1608       return size;
1609     }
1610   }
1611 
1612   // If this isn't sizeof(vla), the result must be constant; use the constant
1613   // folding logic so we don't have to duplicate it here.
1614   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1615 }
1616 
1617 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1618   Expr *Op = E->getSubExpr();
1619   if (Op->getType()->isAnyComplexType()) {
1620     // If it's an l-value, load through the appropriate subobject l-value.
1621     // Note that we have to ask E because Op might be an l-value that
1622     // this won't work for, e.g. an Obj-C property.
1623     if (E->isGLValue())
1624       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1625 
1626     // Otherwise, calculate and project.
1627     return CGF.EmitComplexExpr(Op, false, true).first;
1628   }
1629 
1630   return Visit(Op);
1631 }
1632 
1633 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1634   Expr *Op = E->getSubExpr();
1635   if (Op->getType()->isAnyComplexType()) {
1636     // If it's an l-value, load through the appropriate subobject l-value.
1637     // Note that we have to ask E because Op might be an l-value that
1638     // this won't work for, e.g. an Obj-C property.
1639     if (Op->isGLValue())
1640       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1641 
1642     // Otherwise, calculate and project.
1643     return CGF.EmitComplexExpr(Op, true, false).second;
1644   }
1645 
1646   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1647   // effects are evaluated, but not the actual value.
1648   if (Op->isGLValue())
1649     CGF.EmitLValue(Op);
1650   else
1651     CGF.EmitScalarExpr(Op, true);
1652   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1653 }
1654 
1655 //===----------------------------------------------------------------------===//
1656 //                           Binary Operators
1657 //===----------------------------------------------------------------------===//
1658 
1659 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1660   TestAndClearIgnoreResultAssign();
1661   BinOpInfo Result;
1662   Result.LHS = Visit(E->getLHS());
1663   Result.RHS = Visit(E->getRHS());
1664   Result.Ty  = E->getType();
1665   Result.Opcode = E->getOpcode();
1666   Result.E = E;
1667   return Result;
1668 }
1669 
1670 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1671                                               const CompoundAssignOperator *E,
1672                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1673                                                    Value *&Result) {
1674   QualType LHSTy = E->getLHS()->getType();
1675   BinOpInfo OpInfo;
1676 
1677   if (E->getComputationResultType()->isAnyComplexType()) {
1678     // This needs to go through the complex expression emitter, but it's a tad
1679     // complicated to do that... I'm leaving it out for now.  (Note that we do
1680     // actually need the imaginary part of the RHS for multiplication and
1681     // division.)
1682     CGF.ErrorUnsupported(E, "complex compound assignment");
1683     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1684     return LValue();
1685   }
1686 
1687   // Emit the RHS first.  __block variables need to have the rhs evaluated
1688   // first, plus this should improve codegen a little.
1689   OpInfo.RHS = Visit(E->getRHS());
1690   OpInfo.Ty = E->getComputationResultType();
1691   OpInfo.Opcode = E->getOpcode();
1692   OpInfo.E = E;
1693   // Load/convert the LHS.
1694   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1695   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1696   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1697                                     E->getComputationLHSType());
1698 
1699   llvm::PHINode *atomicPHI = 0;
1700   if (const AtomicType *atomicTy = OpInfo.Ty->getAs<AtomicType>()) {
1701     // FIXME: For floating point types, we should be saving and restoring the
1702     // floating point environment in the loop.
1703     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1704     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1705     Builder.CreateBr(opBB);
1706     Builder.SetInsertPoint(opBB);
1707     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1708     atomicPHI->addIncoming(OpInfo.LHS, startBB);
1709     OpInfo.Ty = atomicTy->getValueType();
1710     OpInfo.LHS = atomicPHI;
1711   }
1712 
1713   // Expand the binary operator.
1714   Result = (this->*Func)(OpInfo);
1715 
1716   // Convert the result back to the LHS type.
1717   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1718 
1719   if (atomicPHI) {
1720     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1721     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1722     llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1723         Result, llvm::SequentiallyConsistent);
1724     atomicPHI->addIncoming(old, opBB);
1725     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1726     Builder.CreateCondBr(success, contBB, opBB);
1727     Builder.SetInsertPoint(contBB);
1728     return LHSLV;
1729   }
1730 
1731   // Store the result value into the LHS lvalue. Bit-fields are handled
1732   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1733   // 'An assignment expression has the value of the left operand after the
1734   // assignment...'.
1735   if (LHSLV.isBitField())
1736     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1737   else
1738     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1739 
1740   return LHSLV;
1741 }
1742 
1743 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1744                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1745   bool Ignore = TestAndClearIgnoreResultAssign();
1746   Value *RHS;
1747   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1748 
1749   // If the result is clearly ignored, return now.
1750   if (Ignore)
1751     return 0;
1752 
1753   // The result of an assignment in C is the assigned r-value.
1754   if (!CGF.getContext().getLangOptions().CPlusPlus)
1755     return RHS;
1756 
1757   // If the lvalue is non-volatile, return the computed value of the assignment.
1758   if (!LHS.isVolatileQualified())
1759     return RHS;
1760 
1761   // Otherwise, reload the value.
1762   return EmitLoadOfLValue(LHS);
1763 }
1764 
1765 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1766      					    const BinOpInfo &Ops,
1767 				     	    llvm::Value *Zero, bool isDiv) {
1768   llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1769   llvm::BasicBlock *contBB =
1770     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1771                          llvm::next(insertPt));
1772   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1773 
1774   llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1775 
1776   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1777     llvm::Value *IntMin =
1778       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1779     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1780 
1781     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1782     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1783     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1784     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1785     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1786                          overflowBB, contBB);
1787   } else {
1788     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1789                              overflowBB, contBB);
1790   }
1791   EmitOverflowBB(overflowBB);
1792   Builder.SetInsertPoint(contBB);
1793 }
1794 
1795 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1796   if (isTrapvOverflowBehavior()) {
1797     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1798 
1799     if (Ops.Ty->isIntegerType())
1800       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1801     else if (Ops.Ty->isRealFloatingType()) {
1802       llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1803       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1804                                                        llvm::next(insertPt));
1805       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1806                                                           CGF.CurFn);
1807       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1808                                overflowBB, DivCont);
1809       EmitOverflowBB(overflowBB);
1810       Builder.SetInsertPoint(DivCont);
1811     }
1812   }
1813   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1814     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1815     if (CGF.getContext().getLangOptions().OpenCL) {
1816       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1817       llvm::Type *ValTy = Val->getType();
1818       if (ValTy->isFloatTy() ||
1819           (isa<llvm::VectorType>(ValTy) &&
1820            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1821         CGF.SetFPAccuracy(Val, 5, 2);
1822     }
1823     return Val;
1824   }
1825   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1826     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1827   else
1828     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1829 }
1830 
1831 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1832   // Rem in C can't be a floating point type: C99 6.5.5p2.
1833   if (isTrapvOverflowBehavior()) {
1834     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1835 
1836     if (Ops.Ty->isIntegerType())
1837       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1838   }
1839 
1840   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1841     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1842   else
1843     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1844 }
1845 
1846 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1847   unsigned IID;
1848   unsigned OpID = 0;
1849 
1850   switch (Ops.Opcode) {
1851   case BO_Add:
1852   case BO_AddAssign:
1853     OpID = 1;
1854     IID = llvm::Intrinsic::sadd_with_overflow;
1855     break;
1856   case BO_Sub:
1857   case BO_SubAssign:
1858     OpID = 2;
1859     IID = llvm::Intrinsic::ssub_with_overflow;
1860     break;
1861   case BO_Mul:
1862   case BO_MulAssign:
1863     OpID = 3;
1864     IID = llvm::Intrinsic::smul_with_overflow;
1865     break;
1866   default:
1867     llvm_unreachable("Unsupported operation for overflow detection");
1868   }
1869   OpID <<= 1;
1870   OpID |= 1;
1871 
1872   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1873 
1874   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1875 
1876   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1877   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1878   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1879 
1880   // Branch in case of overflow.
1881   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1882   llvm::Function::iterator insertPt = initialBB;
1883   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1884                                                       llvm::next(insertPt));
1885   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1886 
1887   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1888 
1889   // Handle overflow with llvm.trap.
1890   const std::string *handlerName =
1891     &CGF.getContext().getLangOptions().OverflowHandler;
1892   if (handlerName->empty()) {
1893     EmitOverflowBB(overflowBB);
1894     Builder.SetInsertPoint(continueBB);
1895     return result;
1896   }
1897 
1898   // If an overflow handler is set, then we want to call it and then use its
1899   // result, if it returns.
1900   Builder.SetInsertPoint(overflowBB);
1901 
1902   // Get the overflow handler.
1903   llvm::Type *Int8Ty = CGF.Int8Ty;
1904   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1905   llvm::FunctionType *handlerTy =
1906       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1907   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1908 
1909   // Sign extend the args to 64-bit, so that we can use the same handler for
1910   // all types of overflow.
1911   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1912   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1913 
1914   // Call the handler with the two arguments, the operation, and the size of
1915   // the result.
1916   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1917       Builder.getInt8(OpID),
1918       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1919 
1920   // Truncate the result back to the desired size.
1921   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1922   Builder.CreateBr(continueBB);
1923 
1924   Builder.SetInsertPoint(continueBB);
1925   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1926   phi->addIncoming(result, initialBB);
1927   phi->addIncoming(handlerResult, overflowBB);
1928 
1929   return phi;
1930 }
1931 
1932 /// Emit pointer + index arithmetic.
1933 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1934                                     const BinOpInfo &op,
1935                                     bool isSubtraction) {
1936   // Must have binary (not unary) expr here.  Unary pointer
1937   // increment/decrement doesn't use this path.
1938   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1939 
1940   Value *pointer = op.LHS;
1941   Expr *pointerOperand = expr->getLHS();
1942   Value *index = op.RHS;
1943   Expr *indexOperand = expr->getRHS();
1944 
1945   // In a subtraction, the LHS is always the pointer.
1946   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1947     std::swap(pointer, index);
1948     std::swap(pointerOperand, indexOperand);
1949   }
1950 
1951   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1952   if (width != CGF.PointerWidthInBits) {
1953     // Zero-extend or sign-extend the pointer value according to
1954     // whether the index is signed or not.
1955     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1956     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1957                                       "idx.ext");
1958   }
1959 
1960   // If this is subtraction, negate the index.
1961   if (isSubtraction)
1962     index = CGF.Builder.CreateNeg(index, "idx.neg");
1963 
1964   const PointerType *pointerType
1965     = pointerOperand->getType()->getAs<PointerType>();
1966   if (!pointerType) {
1967     QualType objectType = pointerOperand->getType()
1968                                         ->castAs<ObjCObjectPointerType>()
1969                                         ->getPointeeType();
1970     llvm::Value *objectSize
1971       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1972 
1973     index = CGF.Builder.CreateMul(index, objectSize);
1974 
1975     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1976     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1977     return CGF.Builder.CreateBitCast(result, pointer->getType());
1978   }
1979 
1980   QualType elementType = pointerType->getPointeeType();
1981   if (const VariableArrayType *vla
1982         = CGF.getContext().getAsVariableArrayType(elementType)) {
1983     // The element count here is the total number of non-VLA elements.
1984     llvm::Value *numElements = CGF.getVLASize(vla).first;
1985 
1986     // Effectively, the multiply by the VLA size is part of the GEP.
1987     // GEP indexes are signed, and scaling an index isn't permitted to
1988     // signed-overflow, so we use the same semantics for our explicit
1989     // multiply.  We suppress this if overflow is not undefined behavior.
1990     if (CGF.getLangOptions().isSignedOverflowDefined()) {
1991       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1992       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1993     } else {
1994       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1995       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1996     }
1997     return pointer;
1998   }
1999 
2000   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2001   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2002   // future proof.
2003   if (elementType->isVoidType() || elementType->isFunctionType()) {
2004     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2005     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2006     return CGF.Builder.CreateBitCast(result, pointer->getType());
2007   }
2008 
2009   if (CGF.getLangOptions().isSignedOverflowDefined())
2010     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2011 
2012   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2013 }
2014 
2015 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2016   if (op.LHS->getType()->isPointerTy() ||
2017       op.RHS->getType()->isPointerTy())
2018     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2019 
2020   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2021     switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2022     case LangOptions::SOB_Undefined:
2023       return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2024     case LangOptions::SOB_Defined:
2025       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2026     case LangOptions::SOB_Trapping:
2027       return EmitOverflowCheckedBinOp(op);
2028     }
2029   }
2030 
2031   if (op.LHS->getType()->isFPOrFPVectorTy())
2032     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2033 
2034   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2035 }
2036 
2037 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2038   // The LHS is always a pointer if either side is.
2039   if (!op.LHS->getType()->isPointerTy()) {
2040     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2041       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2042       case LangOptions::SOB_Undefined:
2043         return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2044       case LangOptions::SOB_Defined:
2045         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2046       case LangOptions::SOB_Trapping:
2047         return EmitOverflowCheckedBinOp(op);
2048       }
2049     }
2050 
2051     if (op.LHS->getType()->isFPOrFPVectorTy())
2052       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2053 
2054     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2055   }
2056 
2057   // If the RHS is not a pointer, then we have normal pointer
2058   // arithmetic.
2059   if (!op.RHS->getType()->isPointerTy())
2060     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2061 
2062   // Otherwise, this is a pointer subtraction.
2063 
2064   // Do the raw subtraction part.
2065   llvm::Value *LHS
2066     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2067   llvm::Value *RHS
2068     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2069   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2070 
2071   // Okay, figure out the element size.
2072   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2073   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2074 
2075   llvm::Value *divisor = 0;
2076 
2077   // For a variable-length array, this is going to be non-constant.
2078   if (const VariableArrayType *vla
2079         = CGF.getContext().getAsVariableArrayType(elementType)) {
2080     llvm::Value *numElements;
2081     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2082 
2083     divisor = numElements;
2084 
2085     // Scale the number of non-VLA elements by the non-VLA element size.
2086     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2087     if (!eltSize.isOne())
2088       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2089 
2090   // For everything elese, we can just compute it, safe in the
2091   // assumption that Sema won't let anything through that we can't
2092   // safely compute the size of.
2093   } else {
2094     CharUnits elementSize;
2095     // Handle GCC extension for pointer arithmetic on void* and
2096     // function pointer types.
2097     if (elementType->isVoidType() || elementType->isFunctionType())
2098       elementSize = CharUnits::One();
2099     else
2100       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2101 
2102     // Don't even emit the divide for element size of 1.
2103     if (elementSize.isOne())
2104       return diffInChars;
2105 
2106     divisor = CGF.CGM.getSize(elementSize);
2107   }
2108 
2109   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2110   // pointer difference in C is only defined in the case where both operands
2111   // are pointing to elements of an array.
2112   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2113 }
2114 
2115 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2116   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2117   // RHS to the same size as the LHS.
2118   Value *RHS = Ops.RHS;
2119   if (Ops.LHS->getType() != RHS->getType())
2120     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2121 
2122   if (CGF.CatchUndefined
2123       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2124     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2125     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2126     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2127                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2128                              Cont, CGF.getTrapBB());
2129     CGF.EmitBlock(Cont);
2130   }
2131 
2132   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2133 }
2134 
2135 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2136   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2137   // RHS to the same size as the LHS.
2138   Value *RHS = Ops.RHS;
2139   if (Ops.LHS->getType() != RHS->getType())
2140     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2141 
2142   if (CGF.CatchUndefined
2143       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2144     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2145     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2146     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2147                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2148                              Cont, CGF.getTrapBB());
2149     CGF.EmitBlock(Cont);
2150   }
2151 
2152   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2153     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2154   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2155 }
2156 
2157 enum IntrinsicType { VCMPEQ, VCMPGT };
2158 // return corresponding comparison intrinsic for given vector type
2159 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2160                                         BuiltinType::Kind ElemKind) {
2161   switch (ElemKind) {
2162   default: llvm_unreachable("unexpected element type");
2163   case BuiltinType::Char_U:
2164   case BuiltinType::UChar:
2165     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2166                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2167   case BuiltinType::Char_S:
2168   case BuiltinType::SChar:
2169     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2170                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2171   case BuiltinType::UShort:
2172     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2173                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2174   case BuiltinType::Short:
2175     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2176                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2177   case BuiltinType::UInt:
2178   case BuiltinType::ULong:
2179     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2180                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2181   case BuiltinType::Int:
2182   case BuiltinType::Long:
2183     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2184                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2185   case BuiltinType::Float:
2186     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2187                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2188   }
2189 }
2190 
2191 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2192                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2193   TestAndClearIgnoreResultAssign();
2194   Value *Result;
2195   QualType LHSTy = E->getLHS()->getType();
2196   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2197     assert(E->getOpcode() == BO_EQ ||
2198            E->getOpcode() == BO_NE);
2199     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2200     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2201     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2202                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2203   } else if (!LHSTy->isAnyComplexType()) {
2204     Value *LHS = Visit(E->getLHS());
2205     Value *RHS = Visit(E->getRHS());
2206 
2207     // If AltiVec, the comparison results in a numeric type, so we use
2208     // intrinsics comparing vectors and giving 0 or 1 as a result
2209     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2210       // constants for mapping CR6 register bits to predicate result
2211       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2212 
2213       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2214 
2215       // in several cases vector arguments order will be reversed
2216       Value *FirstVecArg = LHS,
2217             *SecondVecArg = RHS;
2218 
2219       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2220       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2221       BuiltinType::Kind ElementKind = BTy->getKind();
2222 
2223       switch(E->getOpcode()) {
2224       default: llvm_unreachable("is not a comparison operation");
2225       case BO_EQ:
2226         CR6 = CR6_LT;
2227         ID = GetIntrinsic(VCMPEQ, ElementKind);
2228         break;
2229       case BO_NE:
2230         CR6 = CR6_EQ;
2231         ID = GetIntrinsic(VCMPEQ, ElementKind);
2232         break;
2233       case BO_LT:
2234         CR6 = CR6_LT;
2235         ID = GetIntrinsic(VCMPGT, ElementKind);
2236         std::swap(FirstVecArg, SecondVecArg);
2237         break;
2238       case BO_GT:
2239         CR6 = CR6_LT;
2240         ID = GetIntrinsic(VCMPGT, ElementKind);
2241         break;
2242       case BO_LE:
2243         if (ElementKind == BuiltinType::Float) {
2244           CR6 = CR6_LT;
2245           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2246           std::swap(FirstVecArg, SecondVecArg);
2247         }
2248         else {
2249           CR6 = CR6_EQ;
2250           ID = GetIntrinsic(VCMPGT, ElementKind);
2251         }
2252         break;
2253       case BO_GE:
2254         if (ElementKind == BuiltinType::Float) {
2255           CR6 = CR6_LT;
2256           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2257         }
2258         else {
2259           CR6 = CR6_EQ;
2260           ID = GetIntrinsic(VCMPGT, ElementKind);
2261           std::swap(FirstVecArg, SecondVecArg);
2262         }
2263         break;
2264       }
2265 
2266       Value *CR6Param = Builder.getInt32(CR6);
2267       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2268       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2269       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2270     }
2271 
2272     if (LHS->getType()->isFPOrFPVectorTy()) {
2273       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2274                                   LHS, RHS, "cmp");
2275     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2276       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2277                                   LHS, RHS, "cmp");
2278     } else {
2279       // Unsigned integers and pointers.
2280       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2281                                   LHS, RHS, "cmp");
2282     }
2283 
2284     // If this is a vector comparison, sign extend the result to the appropriate
2285     // vector integer type and return it (don't convert to bool).
2286     if (LHSTy->isVectorType())
2287       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2288 
2289   } else {
2290     // Complex Comparison: can only be an equality comparison.
2291     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2292     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2293 
2294     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2295 
2296     Value *ResultR, *ResultI;
2297     if (CETy->isRealFloatingType()) {
2298       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2299                                    LHS.first, RHS.first, "cmp.r");
2300       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2301                                    LHS.second, RHS.second, "cmp.i");
2302     } else {
2303       // Complex comparisons can only be equality comparisons.  As such, signed
2304       // and unsigned opcodes are the same.
2305       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2306                                    LHS.first, RHS.first, "cmp.r");
2307       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2308                                    LHS.second, RHS.second, "cmp.i");
2309     }
2310 
2311     if (E->getOpcode() == BO_EQ) {
2312       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2313     } else {
2314       assert(E->getOpcode() == BO_NE &&
2315              "Complex comparison other than == or != ?");
2316       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2317     }
2318   }
2319 
2320   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2321 }
2322 
2323 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2324   bool Ignore = TestAndClearIgnoreResultAssign();
2325 
2326   Value *RHS;
2327   LValue LHS;
2328 
2329   switch (E->getLHS()->getType().getObjCLifetime()) {
2330   case Qualifiers::OCL_Strong:
2331     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2332     break;
2333 
2334   case Qualifiers::OCL_Autoreleasing:
2335     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2336     break;
2337 
2338   case Qualifiers::OCL_Weak:
2339     RHS = Visit(E->getRHS());
2340     LHS = EmitCheckedLValue(E->getLHS());
2341     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2342     break;
2343 
2344   // No reason to do any of these differently.
2345   case Qualifiers::OCL_None:
2346   case Qualifiers::OCL_ExplicitNone:
2347     // __block variables need to have the rhs evaluated first, plus
2348     // this should improve codegen just a little.
2349     RHS = Visit(E->getRHS());
2350     LHS = EmitCheckedLValue(E->getLHS());
2351 
2352     // Store the value into the LHS.  Bit-fields are handled specially
2353     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2354     // 'An assignment expression has the value of the left operand after
2355     // the assignment...'.
2356     if (LHS.isBitField())
2357       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2358     else
2359       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2360   }
2361 
2362   // If the result is clearly ignored, return now.
2363   if (Ignore)
2364     return 0;
2365 
2366   // The result of an assignment in C is the assigned r-value.
2367   if (!CGF.getContext().getLangOptions().CPlusPlus)
2368     return RHS;
2369 
2370   // If the lvalue is non-volatile, return the computed value of the assignment.
2371   if (!LHS.isVolatileQualified())
2372     return RHS;
2373 
2374   // Otherwise, reload the value.
2375   return EmitLoadOfLValue(LHS);
2376 }
2377 
2378 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2379 
2380   // Perform vector logical and on comparisons with zero vectors.
2381   if (E->getType()->isVectorType()) {
2382     Value *LHS = Visit(E->getLHS());
2383     Value *RHS = Visit(E->getRHS());
2384     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2385     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2386     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2387     Value *And = Builder.CreateAnd(LHS, RHS);
2388     return Builder.CreateSExt(And, Zero->getType(), "sext");
2389   }
2390 
2391   llvm::Type *ResTy = ConvertType(E->getType());
2392 
2393   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2394   // If we have 1 && X, just emit X without inserting the control flow.
2395   bool LHSCondVal;
2396   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2397     if (LHSCondVal) { // If we have 1 && X, just emit X.
2398       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2399       // ZExt result to int or bool.
2400       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2401     }
2402 
2403     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2404     if (!CGF.ContainsLabel(E->getRHS()))
2405       return llvm::Constant::getNullValue(ResTy);
2406   }
2407 
2408   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2409   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2410 
2411   CodeGenFunction::ConditionalEvaluation eval(CGF);
2412 
2413   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2414   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2415 
2416   // Any edges into the ContBlock are now from an (indeterminate number of)
2417   // edges from this first condition.  All of these values will be false.  Start
2418   // setting up the PHI node in the Cont Block for this.
2419   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2420                                             "", ContBlock);
2421   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2422        PI != PE; ++PI)
2423     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2424 
2425   eval.begin(CGF);
2426   CGF.EmitBlock(RHSBlock);
2427   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2428   eval.end(CGF);
2429 
2430   // Reaquire the RHS block, as there may be subblocks inserted.
2431   RHSBlock = Builder.GetInsertBlock();
2432 
2433   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2434   // into the phi node for the edge with the value of RHSCond.
2435   if (CGF.getDebugInfo())
2436     // There is no need to emit line number for unconditional branch.
2437     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2438   CGF.EmitBlock(ContBlock);
2439   PN->addIncoming(RHSCond, RHSBlock);
2440 
2441   // ZExt result to int.
2442   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2443 }
2444 
2445 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2446 
2447   // Perform vector logical or on comparisons with zero vectors.
2448   if (E->getType()->isVectorType()) {
2449     Value *LHS = Visit(E->getLHS());
2450     Value *RHS = Visit(E->getRHS());
2451     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2452     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2453     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2454     Value *Or = Builder.CreateOr(LHS, RHS);
2455     return Builder.CreateSExt(Or, Zero->getType(), "sext");
2456   }
2457 
2458   llvm::Type *ResTy = ConvertType(E->getType());
2459 
2460   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2461   // If we have 0 || X, just emit X without inserting the control flow.
2462   bool LHSCondVal;
2463   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2464     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2465       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2466       // ZExt result to int or bool.
2467       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2468     }
2469 
2470     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2471     if (!CGF.ContainsLabel(E->getRHS()))
2472       return llvm::ConstantInt::get(ResTy, 1);
2473   }
2474 
2475   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2476   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2477 
2478   CodeGenFunction::ConditionalEvaluation eval(CGF);
2479 
2480   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2481   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2482 
2483   // Any edges into the ContBlock are now from an (indeterminate number of)
2484   // edges from this first condition.  All of these values will be true.  Start
2485   // setting up the PHI node in the Cont Block for this.
2486   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2487                                             "", ContBlock);
2488   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2489        PI != PE; ++PI)
2490     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2491 
2492   eval.begin(CGF);
2493 
2494   // Emit the RHS condition as a bool value.
2495   CGF.EmitBlock(RHSBlock);
2496   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2497 
2498   eval.end(CGF);
2499 
2500   // Reaquire the RHS block, as there may be subblocks inserted.
2501   RHSBlock = Builder.GetInsertBlock();
2502 
2503   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2504   // into the phi node for the edge with the value of RHSCond.
2505   CGF.EmitBlock(ContBlock);
2506   PN->addIncoming(RHSCond, RHSBlock);
2507 
2508   // ZExt result to int.
2509   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2510 }
2511 
2512 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2513   CGF.EmitIgnoredExpr(E->getLHS());
2514   CGF.EnsureInsertPoint();
2515   return Visit(E->getRHS());
2516 }
2517 
2518 //===----------------------------------------------------------------------===//
2519 //                             Other Operators
2520 //===----------------------------------------------------------------------===//
2521 
2522 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2523 /// expression is cheap enough and side-effect-free enough to evaluate
2524 /// unconditionally instead of conditionally.  This is used to convert control
2525 /// flow into selects in some cases.
2526 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2527                                                    CodeGenFunction &CGF) {
2528   E = E->IgnoreParens();
2529 
2530   // Anything that is an integer or floating point constant is fine.
2531   if (E->isConstantInitializer(CGF.getContext(), false))
2532     return true;
2533 
2534   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2535   // X and Y are local variables.
2536   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2537     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2538       if (VD->hasLocalStorage() && !(CGF.getContext()
2539                                      .getCanonicalType(VD->getType())
2540                                      .isVolatileQualified()))
2541         return true;
2542 
2543   return false;
2544 }
2545 
2546 
2547 Value *ScalarExprEmitter::
2548 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2549   TestAndClearIgnoreResultAssign();
2550 
2551   // Bind the common expression if necessary.
2552   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2553 
2554   Expr *condExpr = E->getCond();
2555   Expr *lhsExpr = E->getTrueExpr();
2556   Expr *rhsExpr = E->getFalseExpr();
2557 
2558   // If the condition constant folds and can be elided, try to avoid emitting
2559   // the condition and the dead arm.
2560   bool CondExprBool;
2561   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2562     Expr *live = lhsExpr, *dead = rhsExpr;
2563     if (!CondExprBool) std::swap(live, dead);
2564 
2565     // If the dead side doesn't have labels we need, just emit the Live part.
2566     if (!CGF.ContainsLabel(dead)) {
2567       Value *Result = Visit(live);
2568 
2569       // If the live part is a throw expression, it acts like it has a void
2570       // type, so evaluating it returns a null Value*.  However, a conditional
2571       // with non-void type must return a non-null Value*.
2572       if (!Result && !E->getType()->isVoidType())
2573         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2574 
2575       return Result;
2576     }
2577   }
2578 
2579   // OpenCL: If the condition is a vector, we can treat this condition like
2580   // the select function.
2581   if (CGF.getContext().getLangOptions().OpenCL
2582       && condExpr->getType()->isVectorType()) {
2583     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2584     llvm::Value *LHS = Visit(lhsExpr);
2585     llvm::Value *RHS = Visit(rhsExpr);
2586 
2587     llvm::Type *condType = ConvertType(condExpr->getType());
2588     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2589 
2590     unsigned numElem = vecTy->getNumElements();
2591     llvm::Type *elemType = vecTy->getElementType();
2592 
2593     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
2594     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2595     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2596                                           llvm::VectorType::get(elemType,
2597                                                                 numElem),
2598                                           "sext");
2599     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2600 
2601     // Cast float to int to perform ANDs if necessary.
2602     llvm::Value *RHSTmp = RHS;
2603     llvm::Value *LHSTmp = LHS;
2604     bool wasCast = false;
2605     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2606     if (rhsVTy->getElementType()->isFloatTy()) {
2607       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2608       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2609       wasCast = true;
2610     }
2611 
2612     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2613     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2614     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2615     if (wasCast)
2616       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2617 
2618     return tmp5;
2619   }
2620 
2621   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2622   // select instead of as control flow.  We can only do this if it is cheap and
2623   // safe to evaluate the LHS and RHS unconditionally.
2624   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2625       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2626     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2627     llvm::Value *LHS = Visit(lhsExpr);
2628     llvm::Value *RHS = Visit(rhsExpr);
2629     if (!LHS) {
2630       // If the conditional has void type, make sure we return a null Value*.
2631       assert(!RHS && "LHS and RHS types must match");
2632       return 0;
2633     }
2634     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2635   }
2636 
2637   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2638   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2639   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2640 
2641   CodeGenFunction::ConditionalEvaluation eval(CGF);
2642   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2643 
2644   CGF.EmitBlock(LHSBlock);
2645   eval.begin(CGF);
2646   Value *LHS = Visit(lhsExpr);
2647   eval.end(CGF);
2648 
2649   LHSBlock = Builder.GetInsertBlock();
2650   Builder.CreateBr(ContBlock);
2651 
2652   CGF.EmitBlock(RHSBlock);
2653   eval.begin(CGF);
2654   Value *RHS = Visit(rhsExpr);
2655   eval.end(CGF);
2656 
2657   RHSBlock = Builder.GetInsertBlock();
2658   CGF.EmitBlock(ContBlock);
2659 
2660   // If the LHS or RHS is a throw expression, it will be legitimately null.
2661   if (!LHS)
2662     return RHS;
2663   if (!RHS)
2664     return LHS;
2665 
2666   // Create a PHI node for the real part.
2667   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2668   PN->addIncoming(LHS, LHSBlock);
2669   PN->addIncoming(RHS, RHSBlock);
2670   return PN;
2671 }
2672 
2673 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2674   return Visit(E->getChosenSubExpr(CGF.getContext()));
2675 }
2676 
2677 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2678   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2679   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2680 
2681   // If EmitVAArg fails, we fall back to the LLVM instruction.
2682   if (!ArgPtr)
2683     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2684 
2685   // FIXME Volatility.
2686   return Builder.CreateLoad(ArgPtr);
2687 }
2688 
2689 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2690   return CGF.EmitBlockLiteral(block);
2691 }
2692 
2693 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2694   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2695   llvm::Type *DstTy = ConvertType(E->getType());
2696 
2697   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2698   // a shuffle vector instead of a bitcast.
2699   llvm::Type *SrcTy = Src->getType();
2700   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2701     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2702     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2703     if ((numElementsDst == 3 && numElementsSrc == 4)
2704         || (numElementsDst == 4 && numElementsSrc == 3)) {
2705 
2706 
2707       // In the case of going from int4->float3, a bitcast is needed before
2708       // doing a shuffle.
2709       llvm::Type *srcElemTy =
2710       cast<llvm::VectorType>(SrcTy)->getElementType();
2711       llvm::Type *dstElemTy =
2712       cast<llvm::VectorType>(DstTy)->getElementType();
2713 
2714       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2715           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2716         // Create a float type of the same size as the source or destination.
2717         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2718                                                                  numElementsSrc);
2719 
2720         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2721       }
2722 
2723       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2724 
2725       SmallVector<llvm::Constant*, 3> Args;
2726       Args.push_back(Builder.getInt32(0));
2727       Args.push_back(Builder.getInt32(1));
2728       Args.push_back(Builder.getInt32(2));
2729 
2730       if (numElementsDst == 4)
2731         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
2732 
2733       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2734 
2735       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2736     }
2737   }
2738 
2739   return Builder.CreateBitCast(Src, DstTy, "astype");
2740 }
2741 
2742 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2743   return CGF.EmitAtomicExpr(E).getScalarVal();
2744 }
2745 
2746 //===----------------------------------------------------------------------===//
2747 //                         Entry Point into this File
2748 //===----------------------------------------------------------------------===//
2749 
2750 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2751 /// type, ignoring the result.
2752 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2753   assert(E && !hasAggregateLLVMType(E->getType()) &&
2754          "Invalid scalar expression to emit");
2755 
2756   if (isa<CXXDefaultArgExpr>(E))
2757     disableDebugInfo();
2758   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2759     .Visit(const_cast<Expr*>(E));
2760   if (isa<CXXDefaultArgExpr>(E))
2761     enableDebugInfo();
2762   return V;
2763 }
2764 
2765 /// EmitScalarConversion - Emit a conversion from the specified type to the
2766 /// specified destination type, both of which are LLVM scalar types.
2767 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2768                                              QualType DstTy) {
2769   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2770          "Invalid scalar expression to emit");
2771   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2772 }
2773 
2774 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2775 /// type to the specified destination type, where the destination type is an
2776 /// LLVM scalar type.
2777 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2778                                                       QualType SrcTy,
2779                                                       QualType DstTy) {
2780   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2781          "Invalid complex -> scalar conversion");
2782   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2783                                                                 DstTy);
2784 }
2785 
2786 
2787 llvm::Value *CodeGenFunction::
2788 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2789                         bool isInc, bool isPre) {
2790   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2791 }
2792 
2793 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2794   llvm::Value *V;
2795   // object->isa or (*object).isa
2796   // Generate code as for: *(Class*)object
2797   // build Class* type
2798   llvm::Type *ClassPtrTy = ConvertType(E->getType());
2799 
2800   Expr *BaseExpr = E->getBase();
2801   if (BaseExpr->isRValue()) {
2802     V = CreateMemTemp(E->getType(), "resval");
2803     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2804     Builder.CreateStore(Src, V);
2805     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2806       MakeNaturalAlignAddrLValue(V, E->getType()));
2807   } else {
2808     if (E->isArrow())
2809       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2810     else
2811       V = EmitLValue(BaseExpr).getAddress();
2812   }
2813 
2814   // build Class* type
2815   ClassPtrTy = ClassPtrTy->getPointerTo();
2816   V = Builder.CreateBitCast(V, ClassPtrTy);
2817   return MakeNaturalAlignAddrLValue(V, E->getType());
2818 }
2819 
2820 
2821 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2822                                             const CompoundAssignOperator *E) {
2823   ScalarExprEmitter Scalar(*this);
2824   Value *Result = 0;
2825   switch (E->getOpcode()) {
2826 #define COMPOUND_OP(Op)                                                       \
2827     case BO_##Op##Assign:                                                     \
2828       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2829                                              Result)
2830   COMPOUND_OP(Mul);
2831   COMPOUND_OP(Div);
2832   COMPOUND_OP(Rem);
2833   COMPOUND_OP(Add);
2834   COMPOUND_OP(Sub);
2835   COMPOUND_OP(Shl);
2836   COMPOUND_OP(Shr);
2837   COMPOUND_OP(And);
2838   COMPOUND_OP(Xor);
2839   COMPOUND_OP(Or);
2840 #undef COMPOUND_OP
2841 
2842   case BO_PtrMemD:
2843   case BO_PtrMemI:
2844   case BO_Mul:
2845   case BO_Div:
2846   case BO_Rem:
2847   case BO_Add:
2848   case BO_Sub:
2849   case BO_Shl:
2850   case BO_Shr:
2851   case BO_LT:
2852   case BO_GT:
2853   case BO_LE:
2854   case BO_GE:
2855   case BO_EQ:
2856   case BO_NE:
2857   case BO_And:
2858   case BO_Xor:
2859   case BO_Or:
2860   case BO_LAnd:
2861   case BO_LOr:
2862   case BO_Assign:
2863   case BO_Comma:
2864     llvm_unreachable("Not valid compound assignment operators");
2865   }
2866 
2867   llvm_unreachable("Unhandled compound assignment operator");
2868 }
2869