1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 //                         Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45   Value *LHS;
46   Value *RHS;
47   QualType Ty;  // Computation Type.
48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49   bool FPContractable;
50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54   // If a null pointer expression's type is the C++0x nullptr_t, then
55   // it's not necessarily a simple constant and it must be evaluated
56   // for its potential side effects.
57   return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61   : public StmtVisitor<ScalarExprEmitter, Value*> {
62   CodeGenFunction &CGF;
63   CGBuilderTy &Builder;
64   bool IgnoreResultAssign;
65   llvm::LLVMContext &VMContext;
66 public:
67 
68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70       VMContext(cgf.getLLVMContext()) {
71   }
72 
73   //===--------------------------------------------------------------------===//
74   //                               Utilities
75   //===--------------------------------------------------------------------===//
76 
77   bool TestAndClearIgnoreResultAssign() {
78     bool I = IgnoreResultAssign;
79     IgnoreResultAssign = false;
80     return I;
81   }
82 
83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86     return CGF.EmitCheckedLValue(E, TCK);
87   }
88 
89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                       const BinOpInfo &Info);
91 
92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94   }
95 
96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97     const AlignValueAttr *AVAttr = nullptr;
98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99       const ValueDecl *VD = DRE->getDecl();
100 
101       if (VD->getType()->isReferenceType()) {
102         if (const auto *TTy =
103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105       } else {
106         // Assumptions for function parameters are emitted at the start of the
107         // function, so there is no need to repeat that here.
108         if (isa<ParmVarDecl>(VD))
109           return;
110 
111         AVAttr = VD->getAttr<AlignValueAttr>();
112       }
113     }
114 
115     if (!AVAttr)
116       if (const auto *TTy =
117           dyn_cast<TypedefType>(E->getType()))
118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120     if (!AVAttr)
121       return;
122 
123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126   }
127 
128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129   /// value l-value, this method emits the address of the l-value, then loads
130   /// and returns the result.
131   Value *EmitLoadOfLValue(const Expr *E) {
132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                 E->getExprLoc());
134 
135     EmitLValueAlignmentAssumption(E, V);
136     return V;
137   }
138 
139   /// EmitConversionToBool - Convert the specified expression value to a
140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143   /// Emit a check that a conversion to or from a floating-point type does not
144   /// overflow.
145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                 Value *Src, QualType SrcType, QualType DstType,
147                                 llvm::Type *DstTy, SourceLocation Loc);
148 
149   /// Emit a conversion from the specified type to the specified destination
150   /// type, both of which are LLVM scalar types.
151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152                               SourceLocation Loc);
153 
154   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155                               SourceLocation Loc, bool TreatBooleanAsSigned);
156 
157   /// Emit a conversion from the specified complex type to the specified
158   /// destination type, where the destination type is an LLVM scalar type.
159   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160                                        QualType SrcTy, QualType DstTy,
161                                        SourceLocation Loc);
162 
163   /// EmitNullValue - Emit a value that corresponds to null for the given type.
164   Value *EmitNullValue(QualType Ty);
165 
166   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
167   Value *EmitFloatToBoolConversion(Value *V) {
168     // Compare against 0.0 for fp scalars.
169     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170     return Builder.CreateFCmpUNE(V, Zero, "tobool");
171   }
172 
173   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
174   Value *EmitPointerToBoolConversion(Value *V) {
175     Value *Zero = llvm::ConstantPointerNull::get(
176                                       cast<llvm::PointerType>(V->getType()));
177     return Builder.CreateICmpNE(V, Zero, "tobool");
178   }
179 
180   Value *EmitIntToBoolConversion(Value *V) {
181     // Because of the type rules of C, we often end up computing a
182     // logical value, then zero extending it to int, then wanting it
183     // as a logical value again.  Optimize this common case.
184     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186         Value *Result = ZI->getOperand(0);
187         // If there aren't any more uses, zap the instruction to save space.
188         // Note that there can be more uses, for example if this
189         // is the result of an assignment.
190         if (ZI->use_empty())
191           ZI->eraseFromParent();
192         return Result;
193       }
194     }
195 
196     return Builder.CreateIsNotNull(V, "tobool");
197   }
198 
199   //===--------------------------------------------------------------------===//
200   //                            Visitor Methods
201   //===--------------------------------------------------------------------===//
202 
203   Value *Visit(Expr *E) {
204     ApplyDebugLocation DL(CGF, E);
205     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
206   }
207 
208   Value *VisitStmt(Stmt *S) {
209     S->dump(CGF.getContext().getSourceManager());
210     llvm_unreachable("Stmt can't have complex result type!");
211   }
212   Value *VisitExpr(Expr *S);
213 
214   Value *VisitParenExpr(ParenExpr *PE) {
215     return Visit(PE->getSubExpr());
216   }
217   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218     return Visit(E->getReplacement());
219   }
220   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221     return Visit(GE->getResultExpr());
222   }
223 
224   // Leaves.
225   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226     return Builder.getInt(E->getValue());
227   }
228   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229     return llvm::ConstantFP::get(VMContext, E->getValue());
230   }
231   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233   }
234   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236   }
237   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239   }
240   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241     return EmitNullValue(E->getType());
242   }
243   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244     return EmitNullValue(E->getType());
245   }
246   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
248   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250     return Builder.CreateBitCast(V, ConvertType(E->getType()));
251   }
252 
253   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255   }
256 
257   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259   }
260 
261   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262     if (E->isGLValue())
263       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264 
265     // Otherwise, assume the mapping is the scalar directly.
266     return CGF.getOpaqueRValueMapping(E).getScalarVal();
267   }
268 
269   // l-values.
270   Value *VisitDeclRefExpr(DeclRefExpr *E) {
271     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272       if (result.isReference())
273         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274                                 E->getExprLoc());
275       return result.getValue();
276     }
277     return EmitLoadOfLValue(E);
278   }
279 
280   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281     return CGF.EmitObjCSelectorExpr(E);
282   }
283   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284     return CGF.EmitObjCProtocolExpr(E);
285   }
286   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287     return EmitLoadOfLValue(E);
288   }
289   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290     if (E->getMethodDecl() &&
291         E->getMethodDecl()->getReturnType()->isReferenceType())
292       return EmitLoadOfLValue(E);
293     return CGF.EmitObjCMessageExpr(E).getScalarVal();
294   }
295 
296   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297     LValue LV = CGF.EmitObjCIsaExpr(E);
298     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299     return V;
300   }
301 
302   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305   Value *VisitMemberExpr(MemberExpr *E);
306   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
307   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308     return EmitLoadOfLValue(E);
309   }
310 
311   Value *VisitInitListExpr(InitListExpr *E);
312 
313   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314     return EmitNullValue(E->getType());
315   }
316   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
318     return VisitCastExpr(E);
319   }
320   Value *VisitCastExpr(CastExpr *E);
321 
322   Value *VisitCallExpr(const CallExpr *E) {
323     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324       return EmitLoadOfLValue(E);
325 
326     Value *V = CGF.EmitCallExpr(E).getScalarVal();
327 
328     EmitLValueAlignmentAssumption(E, V);
329     return V;
330   }
331 
332   Value *VisitStmtExpr(const StmtExpr *E);
333 
334   // Unary Operators.
335   Value *VisitUnaryPostDec(const UnaryOperator *E) {
336     LValue LV = EmitLValue(E->getSubExpr());
337     return EmitScalarPrePostIncDec(E, LV, false, false);
338   }
339   Value *VisitUnaryPostInc(const UnaryOperator *E) {
340     LValue LV = EmitLValue(E->getSubExpr());
341     return EmitScalarPrePostIncDec(E, LV, true, false);
342   }
343   Value *VisitUnaryPreDec(const UnaryOperator *E) {
344     LValue LV = EmitLValue(E->getSubExpr());
345     return EmitScalarPrePostIncDec(E, LV, false, true);
346   }
347   Value *VisitUnaryPreInc(const UnaryOperator *E) {
348     LValue LV = EmitLValue(E->getSubExpr());
349     return EmitScalarPrePostIncDec(E, LV, true, true);
350   }
351 
352   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353                                                   llvm::Value *InVal,
354                                                   bool IsInc);
355 
356   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357                                        bool isInc, bool isPre);
358 
359 
360   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361     if (isa<MemberPointerType>(E->getType())) // never sugared
362       return CGF.CGM.getMemberPointerConstant(E);
363 
364     return EmitLValue(E->getSubExpr()).getPointer();
365   }
366   Value *VisitUnaryDeref(const UnaryOperator *E) {
367     if (E->getType()->isVoidType())
368       return Visit(E->getSubExpr()); // the actual value should be unused
369     return EmitLoadOfLValue(E);
370   }
371   Value *VisitUnaryPlus(const UnaryOperator *E) {
372     // This differs from gcc, though, most likely due to a bug in gcc.
373     TestAndClearIgnoreResultAssign();
374     return Visit(E->getSubExpr());
375   }
376   Value *VisitUnaryMinus    (const UnaryOperator *E);
377   Value *VisitUnaryNot      (const UnaryOperator *E);
378   Value *VisitUnaryLNot     (const UnaryOperator *E);
379   Value *VisitUnaryReal     (const UnaryOperator *E);
380   Value *VisitUnaryImag     (const UnaryOperator *E);
381   Value *VisitUnaryExtension(const UnaryOperator *E) {
382     return Visit(E->getSubExpr());
383   }
384 
385   // C++
386   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387     return EmitLoadOfLValue(E);
388   }
389 
390   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391     return Visit(DAE->getExpr());
392   }
393   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
394     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
395     return Visit(DIE->getExpr());
396   }
397   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398     return CGF.LoadCXXThis();
399   }
400 
401   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402     CGF.enterFullExpression(E);
403     CodeGenFunction::RunCleanupsScope Scope(CGF);
404     return Visit(E->getSubExpr());
405   }
406   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407     return CGF.EmitCXXNewExpr(E);
408   }
409   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410     CGF.EmitCXXDeleteExpr(E);
411     return nullptr;
412   }
413 
414   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416   }
417 
418   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420   }
421 
422   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424   }
425 
426   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427     // C++ [expr.pseudo]p1:
428     //   The result shall only be used as the operand for the function call
429     //   operator (), and the result of such a call has type void. The only
430     //   effect is the evaluation of the postfix-expression before the dot or
431     //   arrow.
432     CGF.EmitScalarExpr(E->getBase());
433     return nullptr;
434   }
435 
436   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437     return EmitNullValue(E->getType());
438   }
439 
440   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441     CGF.EmitCXXThrowExpr(E);
442     return nullptr;
443   }
444 
445   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446     return Builder.getInt1(E->getValue());
447   }
448 
449   // Binary Operators.
450   Value *EmitMul(const BinOpInfo &Ops) {
451     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
453       case LangOptions::SOB_Defined:
454         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
455       case LangOptions::SOB_Undefined:
456         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458         // Fall through.
459       case LangOptions::SOB_Trapping:
460         return EmitOverflowCheckedBinOp(Ops);
461       }
462     }
463 
464     if (Ops.Ty->isUnsignedIntegerType() &&
465         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466       return EmitOverflowCheckedBinOp(Ops);
467 
468     if (Ops.LHS->getType()->isFPOrFPVectorTy())
469       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471   }
472   /// Create a binary op that checks for overflow.
473   /// Currently only supports +, - and *.
474   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475 
476   // Check for undefined division and modulus behaviors.
477   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478                                                   llvm::Value *Zero,bool isDiv);
479   // Common helper for getting how wide LHS of shift is.
480   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481   Value *EmitDiv(const BinOpInfo &Ops);
482   Value *EmitRem(const BinOpInfo &Ops);
483   Value *EmitAdd(const BinOpInfo &Ops);
484   Value *EmitSub(const BinOpInfo &Ops);
485   Value *EmitShl(const BinOpInfo &Ops);
486   Value *EmitShr(const BinOpInfo &Ops);
487   Value *EmitAnd(const BinOpInfo &Ops) {
488     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489   }
490   Value *EmitXor(const BinOpInfo &Ops) {
491     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492   }
493   Value *EmitOr (const BinOpInfo &Ops) {
494     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495   }
496 
497   BinOpInfo EmitBinOps(const BinaryOperator *E);
498   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500                                   Value *&Result);
501 
502   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504 
505   // Binary operators and binary compound assignment operators.
506 #define HANDLEBINOP(OP) \
507   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
508     return Emit ## OP(EmitBinOps(E));                                      \
509   }                                                                        \
510   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
511     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
512   }
513   HANDLEBINOP(Mul)
514   HANDLEBINOP(Div)
515   HANDLEBINOP(Rem)
516   HANDLEBINOP(Add)
517   HANDLEBINOP(Sub)
518   HANDLEBINOP(Shl)
519   HANDLEBINOP(Shr)
520   HANDLEBINOP(And)
521   HANDLEBINOP(Xor)
522   HANDLEBINOP(Or)
523 #undef HANDLEBINOP
524 
525   // Comparisons.
526   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
527                      unsigned SICmpOpc, unsigned FCmpOpc);
528 #define VISITCOMP(CODE, UI, SI, FP) \
529     Value *VisitBin##CODE(const BinaryOperator *E) { \
530       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
531                          llvm::FCmpInst::FP); }
532   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
533   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
534   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
535   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
536   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
537   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
538 #undef VISITCOMP
539 
540   Value *VisitBinAssign     (const BinaryOperator *E);
541 
542   Value *VisitBinLAnd       (const BinaryOperator *E);
543   Value *VisitBinLOr        (const BinaryOperator *E);
544   Value *VisitBinComma      (const BinaryOperator *E);
545 
546   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
547   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
548 
549   // Other Operators.
550   Value *VisitBlockExpr(const BlockExpr *BE);
551   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
552   Value *VisitChooseExpr(ChooseExpr *CE);
553   Value *VisitVAArgExpr(VAArgExpr *VE);
554   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
555     return CGF.EmitObjCStringLiteral(E);
556   }
557   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
558     return CGF.EmitObjCBoxedExpr(E);
559   }
560   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
561     return CGF.EmitObjCArrayLiteral(E);
562   }
563   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
564     return CGF.EmitObjCDictionaryLiteral(E);
565   }
566   Value *VisitAsTypeExpr(AsTypeExpr *CE);
567   Value *VisitAtomicExpr(AtomicExpr *AE);
568 };
569 }  // end anonymous namespace.
570 
571 //===----------------------------------------------------------------------===//
572 //                                Utilities
573 //===----------------------------------------------------------------------===//
574 
575 /// EmitConversionToBool - Convert the specified expression value to a
576 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
577 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
578   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
579 
580   if (SrcType->isRealFloatingType())
581     return EmitFloatToBoolConversion(Src);
582 
583   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
584     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
585 
586   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
587          "Unknown scalar type to convert");
588 
589   if (isa<llvm::IntegerType>(Src->getType()))
590     return EmitIntToBoolConversion(Src);
591 
592   assert(isa<llvm::PointerType>(Src->getType()));
593   return EmitPointerToBoolConversion(Src);
594 }
595 
596 void ScalarExprEmitter::EmitFloatConversionCheck(
597     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
598     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
599   CodeGenFunction::SanitizerScope SanScope(&CGF);
600   using llvm::APFloat;
601   using llvm::APSInt;
602 
603   llvm::Type *SrcTy = Src->getType();
604 
605   llvm::Value *Check = nullptr;
606   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
607     // Integer to floating-point. This can fail for unsigned short -> __half
608     // or unsigned __int128 -> float.
609     assert(DstType->isFloatingType());
610     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
611 
612     APFloat LargestFloat =
613       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
614     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
615 
616     bool IsExact;
617     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
618                                       &IsExact) != APFloat::opOK)
619       // The range of representable values of this floating point type includes
620       // all values of this integer type. Don't need an overflow check.
621       return;
622 
623     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
624     if (SrcIsUnsigned)
625       Check = Builder.CreateICmpULE(Src, Max);
626     else {
627       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
628       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
629       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
630       Check = Builder.CreateAnd(GE, LE);
631     }
632   } else {
633     const llvm::fltSemantics &SrcSema =
634       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
635     if (isa<llvm::IntegerType>(DstTy)) {
636       // Floating-point to integer. This has undefined behavior if the source is
637       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
638       // to an integer).
639       unsigned Width = CGF.getContext().getIntWidth(DstType);
640       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
641 
642       APSInt Min = APSInt::getMinValue(Width, Unsigned);
643       APFloat MinSrc(SrcSema, APFloat::uninitialized);
644       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
645           APFloat::opOverflow)
646         // Don't need an overflow check for lower bound. Just check for
647         // -Inf/NaN.
648         MinSrc = APFloat::getInf(SrcSema, true);
649       else
650         // Find the largest value which is too small to represent (before
651         // truncation toward zero).
652         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
653 
654       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
655       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
656       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
657           APFloat::opOverflow)
658         // Don't need an overflow check for upper bound. Just check for
659         // +Inf/NaN.
660         MaxSrc = APFloat::getInf(SrcSema, false);
661       else
662         // Find the smallest value which is too large to represent (before
663         // truncation toward zero).
664         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
665 
666       // If we're converting from __half, convert the range to float to match
667       // the type of src.
668       if (OrigSrcType->isHalfType()) {
669         const llvm::fltSemantics &Sema =
670           CGF.getContext().getFloatTypeSemantics(SrcType);
671         bool IsInexact;
672         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
673         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
674       }
675 
676       llvm::Value *GE =
677         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
678       llvm::Value *LE =
679         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
680       Check = Builder.CreateAnd(GE, LE);
681     } else {
682       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
683       //
684       // Floating-point to floating-point. This has undefined behavior if the
685       // source is not in the range of representable values of the destination
686       // type. The C and C++ standards are spectacularly unclear here. We
687       // diagnose finite out-of-range conversions, but allow infinities and NaNs
688       // to convert to the corresponding value in the smaller type.
689       //
690       // C11 Annex F gives all such conversions defined behavior for IEC 60559
691       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
692       // does not.
693 
694       // Converting from a lower rank to a higher rank can never have
695       // undefined behavior, since higher-rank types must have a superset
696       // of values of lower-rank types.
697       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
698         return;
699 
700       assert(!OrigSrcType->isHalfType() &&
701              "should not check conversion from __half, it has the lowest rank");
702 
703       const llvm::fltSemantics &DstSema =
704         CGF.getContext().getFloatTypeSemantics(DstType);
705       APFloat MinBad = APFloat::getLargest(DstSema, false);
706       APFloat MaxBad = APFloat::getInf(DstSema, false);
707 
708       bool IsInexact;
709       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
710       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
711 
712       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
713         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
714       llvm::Value *GE =
715         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
716       llvm::Value *LE =
717         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
718       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
719     }
720   }
721 
722   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
723                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
724                                   CGF.EmitCheckTypeDescriptor(DstType)};
725   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
726                 "float_cast_overflow", StaticArgs, OrigSrc);
727 }
728 
729 /// Emit a conversion from the specified type to the specified destination type,
730 /// both of which are LLVM scalar types.
731 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
732                                                QualType DstType,
733                                                SourceLocation Loc) {
734   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
735 }
736 
737 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
738                                                QualType DstType,
739                                                SourceLocation Loc,
740                                                bool TreatBooleanAsSigned) {
741   SrcType = CGF.getContext().getCanonicalType(SrcType);
742   DstType = CGF.getContext().getCanonicalType(DstType);
743   if (SrcType == DstType) return Src;
744 
745   if (DstType->isVoidType()) return nullptr;
746 
747   llvm::Value *OrigSrc = Src;
748   QualType OrigSrcType = SrcType;
749   llvm::Type *SrcTy = Src->getType();
750 
751   // Handle conversions to bool first, they are special: comparisons against 0.
752   if (DstType->isBooleanType())
753     return EmitConversionToBool(Src, SrcType);
754 
755   llvm::Type *DstTy = ConvertType(DstType);
756 
757   // Cast from half through float if half isn't a native type.
758   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
759     // Cast to FP using the intrinsic if the half type itself isn't supported.
760     if (DstTy->isFloatingPointTy()) {
761       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
762         return Builder.CreateCall(
763             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
764             Src);
765     } else {
766       // Cast to other types through float, using either the intrinsic or FPExt,
767       // depending on whether the half type itself is supported
768       // (as opposed to operations on half, available with NativeHalfType).
769       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
770         Src = Builder.CreateCall(
771             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
772                                  CGF.CGM.FloatTy),
773             Src);
774       } else {
775         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
776       }
777       SrcType = CGF.getContext().FloatTy;
778       SrcTy = CGF.FloatTy;
779     }
780   }
781 
782   // Ignore conversions like int -> uint.
783   if (SrcTy == DstTy)
784     return Src;
785 
786   // Handle pointer conversions next: pointers can only be converted to/from
787   // other pointers and integers. Check for pointer types in terms of LLVM, as
788   // some native types (like Obj-C id) may map to a pointer type.
789   if (isa<llvm::PointerType>(DstTy)) {
790     // The source value may be an integer, or a pointer.
791     if (isa<llvm::PointerType>(SrcTy))
792       return Builder.CreateBitCast(Src, DstTy, "conv");
793 
794     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
795     // First, convert to the correct width so that we control the kind of
796     // extension.
797     llvm::Type *MiddleTy = CGF.IntPtrTy;
798     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
799     llvm::Value* IntResult =
800         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
801     // Then, cast to pointer.
802     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
803   }
804 
805   if (isa<llvm::PointerType>(SrcTy)) {
806     // Must be an ptr to int cast.
807     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
808     return Builder.CreatePtrToInt(Src, DstTy, "conv");
809   }
810 
811   // A scalar can be splatted to an extended vector of the same element type
812   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
813     // Cast the scalar to element type
814     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
815     llvm::Value *Elt = EmitScalarConversion(
816         Src, SrcType, EltTy, Loc, CGF.getContext().getLangOpts().OpenCL);
817 
818     // Splat the element across to all elements
819     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
820     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
821   }
822 
823   // Allow bitcast from vector to integer/fp of the same size.
824   if (isa<llvm::VectorType>(SrcTy) ||
825       isa<llvm::VectorType>(DstTy))
826     return Builder.CreateBitCast(Src, DstTy, "conv");
827 
828   // Finally, we have the arithmetic types: real int/float.
829   Value *Res = nullptr;
830   llvm::Type *ResTy = DstTy;
831 
832   // An overflowing conversion has undefined behavior if either the source type
833   // or the destination type is a floating-point type.
834   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
835       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
836     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
837                              Loc);
838 
839   // Cast to half through float if half isn't a native type.
840   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
841     // Make sure we cast in a single step if from another FP type.
842     if (SrcTy->isFloatingPointTy()) {
843       // Use the intrinsic if the half type itself isn't supported
844       // (as opposed to operations on half, available with NativeHalfType).
845       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
846         return Builder.CreateCall(
847             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
848       // If the half type is supported, just use an fptrunc.
849       return Builder.CreateFPTrunc(Src, DstTy);
850     }
851     DstTy = CGF.FloatTy;
852   }
853 
854   if (isa<llvm::IntegerType>(SrcTy)) {
855     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
856     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
857       InputSigned = true;
858     }
859     if (isa<llvm::IntegerType>(DstTy))
860       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
861     else if (InputSigned)
862       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
863     else
864       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
865   } else if (isa<llvm::IntegerType>(DstTy)) {
866     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
867     if (DstType->isSignedIntegerOrEnumerationType())
868       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
869     else
870       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
871   } else {
872     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
873            "Unknown real conversion");
874     if (DstTy->getTypeID() < SrcTy->getTypeID())
875       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
876     else
877       Res = Builder.CreateFPExt(Src, DstTy, "conv");
878   }
879 
880   if (DstTy != ResTy) {
881     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
882       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
883       Res = Builder.CreateCall(
884         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
885         Res);
886     } else {
887       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
888     }
889   }
890 
891   return Res;
892 }
893 
894 /// Emit a conversion from the specified complex type to the specified
895 /// destination type, where the destination type is an LLVM scalar type.
896 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
897     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
898     SourceLocation Loc) {
899   // Get the source element type.
900   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
901 
902   // Handle conversions to bool first, they are special: comparisons against 0.
903   if (DstTy->isBooleanType()) {
904     //  Complex != 0  -> (Real != 0) | (Imag != 0)
905     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
906     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
907     return Builder.CreateOr(Src.first, Src.second, "tobool");
908   }
909 
910   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
911   // the imaginary part of the complex value is discarded and the value of the
912   // real part is converted according to the conversion rules for the
913   // corresponding real type.
914   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
915 }
916 
917 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
918   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
919 }
920 
921 /// \brief Emit a sanitization check for the given "binary" operation (which
922 /// might actually be a unary increment which has been lowered to a binary
923 /// operation). The check passes if all values in \p Checks (which are \c i1),
924 /// are \c true.
925 void ScalarExprEmitter::EmitBinOpCheck(
926     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
927   assert(CGF.IsSanitizerScope);
928   StringRef CheckName;
929   SmallVector<llvm::Constant *, 4> StaticData;
930   SmallVector<llvm::Value *, 2> DynamicData;
931 
932   BinaryOperatorKind Opcode = Info.Opcode;
933   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
934     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
935 
936   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
937   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
938   if (UO && UO->getOpcode() == UO_Minus) {
939     CheckName = "negate_overflow";
940     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
941     DynamicData.push_back(Info.RHS);
942   } else {
943     if (BinaryOperator::isShiftOp(Opcode)) {
944       // Shift LHS negative or too large, or RHS out of bounds.
945       CheckName = "shift_out_of_bounds";
946       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
947       StaticData.push_back(
948         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
949       StaticData.push_back(
950         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
951     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
952       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
953       CheckName = "divrem_overflow";
954       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
955     } else {
956       // Arithmetic overflow (+, -, *).
957       switch (Opcode) {
958       case BO_Add: CheckName = "add_overflow"; break;
959       case BO_Sub: CheckName = "sub_overflow"; break;
960       case BO_Mul: CheckName = "mul_overflow"; break;
961       default: llvm_unreachable("unexpected opcode for bin op check");
962       }
963       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
964     }
965     DynamicData.push_back(Info.LHS);
966     DynamicData.push_back(Info.RHS);
967   }
968 
969   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
970 }
971 
972 //===----------------------------------------------------------------------===//
973 //                            Visitor Methods
974 //===----------------------------------------------------------------------===//
975 
976 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
977   CGF.ErrorUnsupported(E, "scalar expression");
978   if (E->getType()->isVoidType())
979     return nullptr;
980   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
981 }
982 
983 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
984   // Vector Mask Case
985   if (E->getNumSubExprs() == 2 ||
986       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
987     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
988     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
989     Value *Mask;
990 
991     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
992     unsigned LHSElts = LTy->getNumElements();
993 
994     if (E->getNumSubExprs() == 3) {
995       Mask = CGF.EmitScalarExpr(E->getExpr(2));
996 
997       // Shuffle LHS & RHS into one input vector.
998       SmallVector<llvm::Constant*, 32> concat;
999       for (unsigned i = 0; i != LHSElts; ++i) {
1000         concat.push_back(Builder.getInt32(2*i));
1001         concat.push_back(Builder.getInt32(2*i+1));
1002       }
1003 
1004       Value* CV = llvm::ConstantVector::get(concat);
1005       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1006       LHSElts *= 2;
1007     } else {
1008       Mask = RHS;
1009     }
1010 
1011     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1012 
1013     // Mask off the high bits of each shuffle index.
1014     Value *MaskBits =
1015         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1016     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1017 
1018     // newv = undef
1019     // mask = mask & maskbits
1020     // for each elt
1021     //   n = extract mask i
1022     //   x = extract val n
1023     //   newv = insert newv, x, i
1024     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1025                                                   MTy->getNumElements());
1026     Value* NewV = llvm::UndefValue::get(RTy);
1027     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1028       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1029       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1030 
1031       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1032       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1033     }
1034     return NewV;
1035   }
1036 
1037   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1038   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1039 
1040   SmallVector<llvm::Constant*, 32> indices;
1041   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1042     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1043     // Check for -1 and output it as undef in the IR.
1044     if (Idx.isSigned() && Idx.isAllOnesValue())
1045       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1046     else
1047       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1048   }
1049 
1050   Value *SV = llvm::ConstantVector::get(indices);
1051   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1052 }
1053 
1054 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1055   QualType SrcType = E->getSrcExpr()->getType(),
1056            DstType = E->getType();
1057 
1058   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1059 
1060   SrcType = CGF.getContext().getCanonicalType(SrcType);
1061   DstType = CGF.getContext().getCanonicalType(DstType);
1062   if (SrcType == DstType) return Src;
1063 
1064   assert(SrcType->isVectorType() &&
1065          "ConvertVector source type must be a vector");
1066   assert(DstType->isVectorType() &&
1067          "ConvertVector destination type must be a vector");
1068 
1069   llvm::Type *SrcTy = Src->getType();
1070   llvm::Type *DstTy = ConvertType(DstType);
1071 
1072   // Ignore conversions like int -> uint.
1073   if (SrcTy == DstTy)
1074     return Src;
1075 
1076   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1077            DstEltType = DstType->getAs<VectorType>()->getElementType();
1078 
1079   assert(SrcTy->isVectorTy() &&
1080          "ConvertVector source IR type must be a vector");
1081   assert(DstTy->isVectorTy() &&
1082          "ConvertVector destination IR type must be a vector");
1083 
1084   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1085              *DstEltTy = DstTy->getVectorElementType();
1086 
1087   if (DstEltType->isBooleanType()) {
1088     assert((SrcEltTy->isFloatingPointTy() ||
1089             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1090 
1091     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1092     if (SrcEltTy->isFloatingPointTy()) {
1093       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1094     } else {
1095       return Builder.CreateICmpNE(Src, Zero, "tobool");
1096     }
1097   }
1098 
1099   // We have the arithmetic types: real int/float.
1100   Value *Res = nullptr;
1101 
1102   if (isa<llvm::IntegerType>(SrcEltTy)) {
1103     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1104     if (isa<llvm::IntegerType>(DstEltTy))
1105       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1106     else if (InputSigned)
1107       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1108     else
1109       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1110   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1111     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1112     if (DstEltType->isSignedIntegerOrEnumerationType())
1113       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1114     else
1115       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1116   } else {
1117     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1118            "Unknown real conversion");
1119     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1120       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1121     else
1122       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1123   }
1124 
1125   return Res;
1126 }
1127 
1128 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1129   llvm::APSInt Value;
1130   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1131     if (E->isArrow())
1132       CGF.EmitScalarExpr(E->getBase());
1133     else
1134       EmitLValue(E->getBase());
1135     return Builder.getInt(Value);
1136   }
1137 
1138   return EmitLoadOfLValue(E);
1139 }
1140 
1141 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1142   TestAndClearIgnoreResultAssign();
1143 
1144   // Emit subscript expressions in rvalue context's.  For most cases, this just
1145   // loads the lvalue formed by the subscript expr.  However, we have to be
1146   // careful, because the base of a vector subscript is occasionally an rvalue,
1147   // so we can't get it as an lvalue.
1148   if (!E->getBase()->getType()->isVectorType())
1149     return EmitLoadOfLValue(E);
1150 
1151   // Handle the vector case.  The base must be a vector, the index must be an
1152   // integer value.
1153   Value *Base = Visit(E->getBase());
1154   Value *Idx  = Visit(E->getIdx());
1155   QualType IdxTy = E->getIdx()->getType();
1156 
1157   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1158     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1159 
1160   return Builder.CreateExtractElement(Base, Idx, "vecext");
1161 }
1162 
1163 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1164                                   unsigned Off, llvm::Type *I32Ty) {
1165   int MV = SVI->getMaskValue(Idx);
1166   if (MV == -1)
1167     return llvm::UndefValue::get(I32Ty);
1168   return llvm::ConstantInt::get(I32Ty, Off+MV);
1169 }
1170 
1171 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1172   if (C->getBitWidth() != 32) {
1173       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1174                                                     C->getZExtValue()) &&
1175              "Index operand too large for shufflevector mask!");
1176       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1177   }
1178   return C;
1179 }
1180 
1181 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1182   bool Ignore = TestAndClearIgnoreResultAssign();
1183   (void)Ignore;
1184   assert (Ignore == false && "init list ignored");
1185   unsigned NumInitElements = E->getNumInits();
1186 
1187   if (E->hadArrayRangeDesignator())
1188     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1189 
1190   llvm::VectorType *VType =
1191     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1192 
1193   if (!VType) {
1194     if (NumInitElements == 0) {
1195       // C++11 value-initialization for the scalar.
1196       return EmitNullValue(E->getType());
1197     }
1198     // We have a scalar in braces. Just use the first element.
1199     return Visit(E->getInit(0));
1200   }
1201 
1202   unsigned ResElts = VType->getNumElements();
1203 
1204   // Loop over initializers collecting the Value for each, and remembering
1205   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1206   // us to fold the shuffle for the swizzle into the shuffle for the vector
1207   // initializer, since LLVM optimizers generally do not want to touch
1208   // shuffles.
1209   unsigned CurIdx = 0;
1210   bool VIsUndefShuffle = false;
1211   llvm::Value *V = llvm::UndefValue::get(VType);
1212   for (unsigned i = 0; i != NumInitElements; ++i) {
1213     Expr *IE = E->getInit(i);
1214     Value *Init = Visit(IE);
1215     SmallVector<llvm::Constant*, 16> Args;
1216 
1217     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1218 
1219     // Handle scalar elements.  If the scalar initializer is actually one
1220     // element of a different vector of the same width, use shuffle instead of
1221     // extract+insert.
1222     if (!VVT) {
1223       if (isa<ExtVectorElementExpr>(IE)) {
1224         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1225 
1226         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1227           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1228           Value *LHS = nullptr, *RHS = nullptr;
1229           if (CurIdx == 0) {
1230             // insert into undef -> shuffle (src, undef)
1231             // shufflemask must use an i32
1232             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1233             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1234 
1235             LHS = EI->getVectorOperand();
1236             RHS = V;
1237             VIsUndefShuffle = true;
1238           } else if (VIsUndefShuffle) {
1239             // insert into undefshuffle && size match -> shuffle (v, src)
1240             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1241             for (unsigned j = 0; j != CurIdx; ++j)
1242               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1243             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1244             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1245 
1246             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1247             RHS = EI->getVectorOperand();
1248             VIsUndefShuffle = false;
1249           }
1250           if (!Args.empty()) {
1251             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1252             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1253             ++CurIdx;
1254             continue;
1255           }
1256         }
1257       }
1258       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1259                                       "vecinit");
1260       VIsUndefShuffle = false;
1261       ++CurIdx;
1262       continue;
1263     }
1264 
1265     unsigned InitElts = VVT->getNumElements();
1266 
1267     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1268     // input is the same width as the vector being constructed, generate an
1269     // optimized shuffle of the swizzle input into the result.
1270     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1271     if (isa<ExtVectorElementExpr>(IE)) {
1272       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1273       Value *SVOp = SVI->getOperand(0);
1274       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1275 
1276       if (OpTy->getNumElements() == ResElts) {
1277         for (unsigned j = 0; j != CurIdx; ++j) {
1278           // If the current vector initializer is a shuffle with undef, merge
1279           // this shuffle directly into it.
1280           if (VIsUndefShuffle) {
1281             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1282                                       CGF.Int32Ty));
1283           } else {
1284             Args.push_back(Builder.getInt32(j));
1285           }
1286         }
1287         for (unsigned j = 0, je = InitElts; j != je; ++j)
1288           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1289         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1290 
1291         if (VIsUndefShuffle)
1292           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1293 
1294         Init = SVOp;
1295       }
1296     }
1297 
1298     // Extend init to result vector length, and then shuffle its contribution
1299     // to the vector initializer into V.
1300     if (Args.empty()) {
1301       for (unsigned j = 0; j != InitElts; ++j)
1302         Args.push_back(Builder.getInt32(j));
1303       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1304       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1305       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1306                                          Mask, "vext");
1307 
1308       Args.clear();
1309       for (unsigned j = 0; j != CurIdx; ++j)
1310         Args.push_back(Builder.getInt32(j));
1311       for (unsigned j = 0; j != InitElts; ++j)
1312         Args.push_back(Builder.getInt32(j+Offset));
1313       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1314     }
1315 
1316     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1317     // merging subsequent shuffles into this one.
1318     if (CurIdx == 0)
1319       std::swap(V, Init);
1320     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1321     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1322     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1323     CurIdx += InitElts;
1324   }
1325 
1326   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1327   // Emit remaining default initializers.
1328   llvm::Type *EltTy = VType->getElementType();
1329 
1330   // Emit remaining default initializers
1331   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1332     Value *Idx = Builder.getInt32(CurIdx);
1333     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1334     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1335   }
1336   return V;
1337 }
1338 
1339 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1340   const Expr *E = CE->getSubExpr();
1341 
1342   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1343     return false;
1344 
1345   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1346     // We always assume that 'this' is never null.
1347     return false;
1348   }
1349 
1350   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1351     // And that glvalue casts are never null.
1352     if (ICE->getValueKind() != VK_RValue)
1353       return false;
1354   }
1355 
1356   return true;
1357 }
1358 
1359 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1360 // have to handle a more broad range of conversions than explicit casts, as they
1361 // handle things like function to ptr-to-function decay etc.
1362 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1363   Expr *E = CE->getSubExpr();
1364   QualType DestTy = CE->getType();
1365   CastKind Kind = CE->getCastKind();
1366 
1367   if (!DestTy->isVoidType())
1368     TestAndClearIgnoreResultAssign();
1369 
1370   // Since almost all cast kinds apply to scalars, this switch doesn't have
1371   // a default case, so the compiler will warn on a missing case.  The cases
1372   // are in the same order as in the CastKind enum.
1373   switch (Kind) {
1374   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1375   case CK_BuiltinFnToFnPtr:
1376     llvm_unreachable("builtin functions are handled elsewhere");
1377 
1378   case CK_LValueBitCast:
1379   case CK_ObjCObjectLValueCast: {
1380     Address Addr = EmitLValue(E).getAddress();
1381     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1382     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1383     return EmitLoadOfLValue(LV, CE->getExprLoc());
1384   }
1385 
1386   case CK_CPointerToObjCPointerCast:
1387   case CK_BlockPointerToObjCPointerCast:
1388   case CK_AnyPointerToBlockPointerCast:
1389   case CK_BitCast: {
1390     Value *Src = Visit(const_cast<Expr*>(E));
1391     llvm::Type *SrcTy = Src->getType();
1392     llvm::Type *DstTy = ConvertType(DestTy);
1393     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1394         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1395       llvm_unreachable("wrong cast for pointers in different address spaces"
1396                        "(must be an address space cast)!");
1397     }
1398 
1399     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1400       if (auto PT = DestTy->getAs<PointerType>())
1401         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1402                                       /*MayBeNull=*/true,
1403                                       CodeGenFunction::CFITCK_UnrelatedCast,
1404                                       CE->getLocStart());
1405     }
1406 
1407     return Builder.CreateBitCast(Src, DstTy);
1408   }
1409   case CK_AddressSpaceConversion: {
1410     Value *Src = Visit(const_cast<Expr*>(E));
1411     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1412   }
1413   case CK_AtomicToNonAtomic:
1414   case CK_NonAtomicToAtomic:
1415   case CK_NoOp:
1416   case CK_UserDefinedConversion:
1417     return Visit(const_cast<Expr*>(E));
1418 
1419   case CK_BaseToDerived: {
1420     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1421     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1422 
1423     Address Base = CGF.EmitPointerWithAlignment(E);
1424     Address Derived =
1425       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1426                                    CE->path_begin(), CE->path_end(),
1427                                    CGF.ShouldNullCheckClassCastValue(CE));
1428 
1429     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1430     // performed and the object is not of the derived type.
1431     if (CGF.sanitizePerformTypeCheck())
1432       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1433                         Derived.getPointer(), DestTy->getPointeeType());
1434 
1435     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1436       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1437                                     Derived.getPointer(),
1438                                     /*MayBeNull=*/true,
1439                                     CodeGenFunction::CFITCK_DerivedCast,
1440                                     CE->getLocStart());
1441 
1442     return Derived.getPointer();
1443   }
1444   case CK_UncheckedDerivedToBase:
1445   case CK_DerivedToBase: {
1446     // The EmitPointerWithAlignment path does this fine; just discard
1447     // the alignment.
1448     return CGF.EmitPointerWithAlignment(CE).getPointer();
1449   }
1450 
1451   case CK_Dynamic: {
1452     Address V = CGF.EmitPointerWithAlignment(E);
1453     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1454     return CGF.EmitDynamicCast(V, DCE);
1455   }
1456 
1457   case CK_ArrayToPointerDecay:
1458     return CGF.EmitArrayToPointerDecay(E).getPointer();
1459   case CK_FunctionToPointerDecay:
1460     return EmitLValue(E).getPointer();
1461 
1462   case CK_NullToPointer:
1463     if (MustVisitNullValue(E))
1464       (void) Visit(E);
1465 
1466     return llvm::ConstantPointerNull::get(
1467                                cast<llvm::PointerType>(ConvertType(DestTy)));
1468 
1469   case CK_NullToMemberPointer: {
1470     if (MustVisitNullValue(E))
1471       (void) Visit(E);
1472 
1473     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1474     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1475   }
1476 
1477   case CK_ReinterpretMemberPointer:
1478   case CK_BaseToDerivedMemberPointer:
1479   case CK_DerivedToBaseMemberPointer: {
1480     Value *Src = Visit(E);
1481 
1482     // Note that the AST doesn't distinguish between checked and
1483     // unchecked member pointer conversions, so we always have to
1484     // implement checked conversions here.  This is inefficient when
1485     // actual control flow may be required in order to perform the
1486     // check, which it is for data member pointers (but not member
1487     // function pointers on Itanium and ARM).
1488     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1489   }
1490 
1491   case CK_ARCProduceObject:
1492     return CGF.EmitARCRetainScalarExpr(E);
1493   case CK_ARCConsumeObject:
1494     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1495   case CK_ARCReclaimReturnedObject: {
1496     llvm::Value *value = Visit(E);
1497     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1498     return CGF.EmitObjCConsumeObject(E->getType(), value);
1499   }
1500   case CK_ARCExtendBlockObject:
1501     return CGF.EmitARCExtendBlockObject(E);
1502 
1503   case CK_CopyAndAutoreleaseBlockObject:
1504     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1505 
1506   case CK_FloatingRealToComplex:
1507   case CK_FloatingComplexCast:
1508   case CK_IntegralRealToComplex:
1509   case CK_IntegralComplexCast:
1510   case CK_IntegralComplexToFloatingComplex:
1511   case CK_FloatingComplexToIntegralComplex:
1512   case CK_ConstructorConversion:
1513   case CK_ToUnion:
1514     llvm_unreachable("scalar cast to non-scalar value");
1515 
1516   case CK_LValueToRValue:
1517     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1518     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1519     return Visit(const_cast<Expr*>(E));
1520 
1521   case CK_IntegralToPointer: {
1522     Value *Src = Visit(const_cast<Expr*>(E));
1523 
1524     // First, convert to the correct width so that we control the kind of
1525     // extension.
1526     llvm::Type *MiddleTy = CGF.IntPtrTy;
1527     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1528     llvm::Value* IntResult =
1529       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1530 
1531     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1532   }
1533   case CK_PointerToIntegral:
1534     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1535     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1536 
1537   case CK_ToVoid: {
1538     CGF.EmitIgnoredExpr(E);
1539     return nullptr;
1540   }
1541   case CK_VectorSplat: {
1542     llvm::Type *DstTy = ConvertType(DestTy);
1543     // Need an IgnoreImpCasts here as by default a boolean will be promoted to
1544     // an int, which will not perform the sign extension, so if we know we are
1545     // going to cast to a vector we have to strip the implicit cast off.
1546     Value *Elt = Visit(const_cast<Expr*>(E->IgnoreImpCasts()));
1547     Elt = EmitScalarConversion(Elt, E->IgnoreImpCasts()->getType(),
1548                                DestTy->getAs<VectorType>()->getElementType(),
1549                                CE->getExprLoc(),
1550                                CGF.getContext().getLangOpts().OpenCL);
1551 
1552     // Splat the element across to all elements
1553     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1554     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1555   }
1556 
1557   case CK_IntegralCast:
1558   case CK_IntegralToFloating:
1559   case CK_FloatingToIntegral:
1560   case CK_FloatingCast:
1561     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1562                                 CE->getExprLoc());
1563   case CK_IntegralToBoolean:
1564     return EmitIntToBoolConversion(Visit(E));
1565   case CK_PointerToBoolean:
1566     return EmitPointerToBoolConversion(Visit(E));
1567   case CK_FloatingToBoolean:
1568     return EmitFloatToBoolConversion(Visit(E));
1569   case CK_MemberPointerToBoolean: {
1570     llvm::Value *MemPtr = Visit(E);
1571     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1572     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1573   }
1574 
1575   case CK_FloatingComplexToReal:
1576   case CK_IntegralComplexToReal:
1577     return CGF.EmitComplexExpr(E, false, true).first;
1578 
1579   case CK_FloatingComplexToBoolean:
1580   case CK_IntegralComplexToBoolean: {
1581     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1582 
1583     // TODO: kill this function off, inline appropriate case here
1584     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1585                                          CE->getExprLoc());
1586   }
1587 
1588   case CK_ZeroToOCLEvent: {
1589     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1590     return llvm::Constant::getNullValue(ConvertType(DestTy));
1591   }
1592 
1593   }
1594 
1595   llvm_unreachable("unknown scalar cast");
1596 }
1597 
1598 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1599   CodeGenFunction::StmtExprEvaluation eval(CGF);
1600   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1601                                            !E->getType()->isVoidType());
1602   if (!RetAlloca.isValid())
1603     return nullptr;
1604   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1605                               E->getExprLoc());
1606 }
1607 
1608 //===----------------------------------------------------------------------===//
1609 //                             Unary Operators
1610 //===----------------------------------------------------------------------===//
1611 
1612 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1613                                            llvm::Value *InVal, bool IsInc) {
1614   BinOpInfo BinOp;
1615   BinOp.LHS = InVal;
1616   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1617   BinOp.Ty = E->getType();
1618   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1619   BinOp.FPContractable = false;
1620   BinOp.E = E;
1621   return BinOp;
1622 }
1623 
1624 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1625     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1626   llvm::Value *Amount =
1627       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1628   StringRef Name = IsInc ? "inc" : "dec";
1629   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1630   case LangOptions::SOB_Defined:
1631     return Builder.CreateAdd(InVal, Amount, Name);
1632   case LangOptions::SOB_Undefined:
1633     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1634       return Builder.CreateNSWAdd(InVal, Amount, Name);
1635     // Fall through.
1636   case LangOptions::SOB_Trapping:
1637     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1638   }
1639   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1640 }
1641 
1642 llvm::Value *
1643 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1644                                            bool isInc, bool isPre) {
1645 
1646   QualType type = E->getSubExpr()->getType();
1647   llvm::PHINode *atomicPHI = nullptr;
1648   llvm::Value *value;
1649   llvm::Value *input;
1650 
1651   int amount = (isInc ? 1 : -1);
1652 
1653   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1654     type = atomicTy->getValueType();
1655     if (isInc && type->isBooleanType()) {
1656       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1657       if (isPre) {
1658         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1659           ->setAtomic(llvm::SequentiallyConsistent);
1660         return Builder.getTrue();
1661       }
1662       // For atomic bool increment, we just store true and return it for
1663       // preincrement, do an atomic swap with true for postincrement
1664         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1665             LV.getPointer(), True, llvm::SequentiallyConsistent);
1666     }
1667     // Special case for atomic increment / decrement on integers, emit
1668     // atomicrmw instructions.  We skip this if we want to be doing overflow
1669     // checking, and fall into the slow path with the atomic cmpxchg loop.
1670     if (!type->isBooleanType() && type->isIntegerType() &&
1671         !(type->isUnsignedIntegerType() &&
1672           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1673         CGF.getLangOpts().getSignedOverflowBehavior() !=
1674             LangOptions::SOB_Trapping) {
1675       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1676         llvm::AtomicRMWInst::Sub;
1677       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1678         llvm::Instruction::Sub;
1679       llvm::Value *amt = CGF.EmitToMemory(
1680           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1681       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1682           LV.getPointer(), amt, llvm::SequentiallyConsistent);
1683       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1684     }
1685     value = EmitLoadOfLValue(LV, E->getExprLoc());
1686     input = value;
1687     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1688     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1689     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1690     value = CGF.EmitToMemory(value, type);
1691     Builder.CreateBr(opBB);
1692     Builder.SetInsertPoint(opBB);
1693     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1694     atomicPHI->addIncoming(value, startBB);
1695     value = atomicPHI;
1696   } else {
1697     value = EmitLoadOfLValue(LV, E->getExprLoc());
1698     input = value;
1699   }
1700 
1701   // Special case of integer increment that we have to check first: bool++.
1702   // Due to promotion rules, we get:
1703   //   bool++ -> bool = bool + 1
1704   //          -> bool = (int)bool + 1
1705   //          -> bool = ((int)bool + 1 != 0)
1706   // An interesting aspect of this is that increment is always true.
1707   // Decrement does not have this property.
1708   if (isInc && type->isBooleanType()) {
1709     value = Builder.getTrue();
1710 
1711   // Most common case by far: integer increment.
1712   } else if (type->isIntegerType()) {
1713     // Note that signed integer inc/dec with width less than int can't
1714     // overflow because of promotion rules; we're just eliding a few steps here.
1715     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1716                        CGF.IntTy->getIntegerBitWidth();
1717     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1718       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1719     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1720                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1721       value =
1722           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1723     } else {
1724       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1725       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1726     }
1727 
1728   // Next most common: pointer increment.
1729   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1730     QualType type = ptr->getPointeeType();
1731 
1732     // VLA types don't have constant size.
1733     if (const VariableArrayType *vla
1734           = CGF.getContext().getAsVariableArrayType(type)) {
1735       llvm::Value *numElts = CGF.getVLASize(vla).first;
1736       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1737       if (CGF.getLangOpts().isSignedOverflowDefined())
1738         value = Builder.CreateGEP(value, numElts, "vla.inc");
1739       else
1740         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1741 
1742     // Arithmetic on function pointers (!) is just +-1.
1743     } else if (type->isFunctionType()) {
1744       llvm::Value *amt = Builder.getInt32(amount);
1745 
1746       value = CGF.EmitCastToVoidPtr(value);
1747       if (CGF.getLangOpts().isSignedOverflowDefined())
1748         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1749       else
1750         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1751       value = Builder.CreateBitCast(value, input->getType());
1752 
1753     // For everything else, we can just do a simple increment.
1754     } else {
1755       llvm::Value *amt = Builder.getInt32(amount);
1756       if (CGF.getLangOpts().isSignedOverflowDefined())
1757         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1758       else
1759         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1760     }
1761 
1762   // Vector increment/decrement.
1763   } else if (type->isVectorType()) {
1764     if (type->hasIntegerRepresentation()) {
1765       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1766 
1767       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1768     } else {
1769       value = Builder.CreateFAdd(
1770                   value,
1771                   llvm::ConstantFP::get(value->getType(), amount),
1772                   isInc ? "inc" : "dec");
1773     }
1774 
1775   // Floating point.
1776   } else if (type->isRealFloatingType()) {
1777     // Add the inc/dec to the real part.
1778     llvm::Value *amt;
1779 
1780     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1781       // Another special case: half FP increment should be done via float
1782       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1783         value = Builder.CreateCall(
1784             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1785                                  CGF.CGM.FloatTy),
1786             input, "incdec.conv");
1787       } else {
1788         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1789       }
1790     }
1791 
1792     if (value->getType()->isFloatTy())
1793       amt = llvm::ConstantFP::get(VMContext,
1794                                   llvm::APFloat(static_cast<float>(amount)));
1795     else if (value->getType()->isDoubleTy())
1796       amt = llvm::ConstantFP::get(VMContext,
1797                                   llvm::APFloat(static_cast<double>(amount)));
1798     else {
1799       // Remaining types are either Half or LongDouble.  Convert from float.
1800       llvm::APFloat F(static_cast<float>(amount));
1801       bool ignored;
1802       // Don't use getFloatTypeSemantics because Half isn't
1803       // necessarily represented using the "half" LLVM type.
1804       F.convert(value->getType()->isHalfTy()
1805                     ? CGF.getTarget().getHalfFormat()
1806                     : CGF.getTarget().getLongDoubleFormat(),
1807                 llvm::APFloat::rmTowardZero, &ignored);
1808       amt = llvm::ConstantFP::get(VMContext, F);
1809     }
1810     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1811 
1812     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1813       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1814         value = Builder.CreateCall(
1815             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1816                                  CGF.CGM.FloatTy),
1817             value, "incdec.conv");
1818       } else {
1819         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1820       }
1821     }
1822 
1823   // Objective-C pointer types.
1824   } else {
1825     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1826     value = CGF.EmitCastToVoidPtr(value);
1827 
1828     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1829     if (!isInc) size = -size;
1830     llvm::Value *sizeValue =
1831       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1832 
1833     if (CGF.getLangOpts().isSignedOverflowDefined())
1834       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1835     else
1836       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1837     value = Builder.CreateBitCast(value, input->getType());
1838   }
1839 
1840   if (atomicPHI) {
1841     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1842     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1843     auto Pair = CGF.EmitAtomicCompareExchange(
1844         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1845     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1846     llvm::Value *success = Pair.second;
1847     atomicPHI->addIncoming(old, opBB);
1848     Builder.CreateCondBr(success, contBB, opBB);
1849     Builder.SetInsertPoint(contBB);
1850     return isPre ? value : input;
1851   }
1852 
1853   // Store the updated result through the lvalue.
1854   if (LV.isBitField())
1855     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1856   else
1857     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1858 
1859   // If this is a postinc, return the value read from memory, otherwise use the
1860   // updated value.
1861   return isPre ? value : input;
1862 }
1863 
1864 
1865 
1866 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1867   TestAndClearIgnoreResultAssign();
1868   // Emit unary minus with EmitSub so we handle overflow cases etc.
1869   BinOpInfo BinOp;
1870   BinOp.RHS = Visit(E->getSubExpr());
1871 
1872   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1873     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1874   else
1875     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1876   BinOp.Ty = E->getType();
1877   BinOp.Opcode = BO_Sub;
1878   BinOp.FPContractable = false;
1879   BinOp.E = E;
1880   return EmitSub(BinOp);
1881 }
1882 
1883 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1884   TestAndClearIgnoreResultAssign();
1885   Value *Op = Visit(E->getSubExpr());
1886   return Builder.CreateNot(Op, "neg");
1887 }
1888 
1889 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1890   // Perform vector logical not on comparison with zero vector.
1891   if (E->getType()->isExtVectorType()) {
1892     Value *Oper = Visit(E->getSubExpr());
1893     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1894     Value *Result;
1895     if (Oper->getType()->isFPOrFPVectorTy())
1896       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1897     else
1898       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1899     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1900   }
1901 
1902   // Compare operand to zero.
1903   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1904 
1905   // Invert value.
1906   // TODO: Could dynamically modify easy computations here.  For example, if
1907   // the operand is an icmp ne, turn into icmp eq.
1908   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1909 
1910   // ZExt result to the expr type.
1911   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1912 }
1913 
1914 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1915   // Try folding the offsetof to a constant.
1916   llvm::APSInt Value;
1917   if (E->EvaluateAsInt(Value, CGF.getContext()))
1918     return Builder.getInt(Value);
1919 
1920   // Loop over the components of the offsetof to compute the value.
1921   unsigned n = E->getNumComponents();
1922   llvm::Type* ResultType = ConvertType(E->getType());
1923   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1924   QualType CurrentType = E->getTypeSourceInfo()->getType();
1925   for (unsigned i = 0; i != n; ++i) {
1926     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1927     llvm::Value *Offset = nullptr;
1928     switch (ON.getKind()) {
1929     case OffsetOfExpr::OffsetOfNode::Array: {
1930       // Compute the index
1931       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1932       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1933       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1934       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1935 
1936       // Save the element type
1937       CurrentType =
1938           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1939 
1940       // Compute the element size
1941       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1942           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1943 
1944       // Multiply out to compute the result
1945       Offset = Builder.CreateMul(Idx, ElemSize);
1946       break;
1947     }
1948 
1949     case OffsetOfExpr::OffsetOfNode::Field: {
1950       FieldDecl *MemberDecl = ON.getField();
1951       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1952       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1953 
1954       // Compute the index of the field in its parent.
1955       unsigned i = 0;
1956       // FIXME: It would be nice if we didn't have to loop here!
1957       for (RecordDecl::field_iterator Field = RD->field_begin(),
1958                                       FieldEnd = RD->field_end();
1959            Field != FieldEnd; ++Field, ++i) {
1960         if (*Field == MemberDecl)
1961           break;
1962       }
1963       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1964 
1965       // Compute the offset to the field
1966       int64_t OffsetInt = RL.getFieldOffset(i) /
1967                           CGF.getContext().getCharWidth();
1968       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1969 
1970       // Save the element type.
1971       CurrentType = MemberDecl->getType();
1972       break;
1973     }
1974 
1975     case OffsetOfExpr::OffsetOfNode::Identifier:
1976       llvm_unreachable("dependent __builtin_offsetof");
1977 
1978     case OffsetOfExpr::OffsetOfNode::Base: {
1979       if (ON.getBase()->isVirtual()) {
1980         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1981         continue;
1982       }
1983 
1984       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1985       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1986 
1987       // Save the element type.
1988       CurrentType = ON.getBase()->getType();
1989 
1990       // Compute the offset to the base.
1991       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1992       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1993       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1994       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1995       break;
1996     }
1997     }
1998     Result = Builder.CreateAdd(Result, Offset);
1999   }
2000   return Result;
2001 }
2002 
2003 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2004 /// argument of the sizeof expression as an integer.
2005 Value *
2006 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2007                               const UnaryExprOrTypeTraitExpr *E) {
2008   QualType TypeToSize = E->getTypeOfArgument();
2009   if (E->getKind() == UETT_SizeOf) {
2010     if (const VariableArrayType *VAT =
2011           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2012       if (E->isArgumentType()) {
2013         // sizeof(type) - make sure to emit the VLA size.
2014         CGF.EmitVariablyModifiedType(TypeToSize);
2015       } else {
2016         // C99 6.5.3.4p2: If the argument is an expression of type
2017         // VLA, it is evaluated.
2018         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2019       }
2020 
2021       QualType eltType;
2022       llvm::Value *numElts;
2023       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2024 
2025       llvm::Value *size = numElts;
2026 
2027       // Scale the number of non-VLA elements by the non-VLA element size.
2028       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2029       if (!eltSize.isOne())
2030         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2031 
2032       return size;
2033     }
2034   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2035     auto Alignment =
2036         CGF.getContext()
2037             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2038                 E->getTypeOfArgument()->getPointeeType()))
2039             .getQuantity();
2040     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2041   }
2042 
2043   // If this isn't sizeof(vla), the result must be constant; use the constant
2044   // folding logic so we don't have to duplicate it here.
2045   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2046 }
2047 
2048 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2049   Expr *Op = E->getSubExpr();
2050   if (Op->getType()->isAnyComplexType()) {
2051     // If it's an l-value, load through the appropriate subobject l-value.
2052     // Note that we have to ask E because Op might be an l-value that
2053     // this won't work for, e.g. an Obj-C property.
2054     if (E->isGLValue())
2055       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2056                                   E->getExprLoc()).getScalarVal();
2057 
2058     // Otherwise, calculate and project.
2059     return CGF.EmitComplexExpr(Op, false, true).first;
2060   }
2061 
2062   return Visit(Op);
2063 }
2064 
2065 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2066   Expr *Op = E->getSubExpr();
2067   if (Op->getType()->isAnyComplexType()) {
2068     // If it's an l-value, load through the appropriate subobject l-value.
2069     // Note that we have to ask E because Op might be an l-value that
2070     // this won't work for, e.g. an Obj-C property.
2071     if (Op->isGLValue())
2072       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2073                                   E->getExprLoc()).getScalarVal();
2074 
2075     // Otherwise, calculate and project.
2076     return CGF.EmitComplexExpr(Op, true, false).second;
2077   }
2078 
2079   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2080   // effects are evaluated, but not the actual value.
2081   if (Op->isGLValue())
2082     CGF.EmitLValue(Op);
2083   else
2084     CGF.EmitScalarExpr(Op, true);
2085   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2086 }
2087 
2088 //===----------------------------------------------------------------------===//
2089 //                           Binary Operators
2090 //===----------------------------------------------------------------------===//
2091 
2092 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2093   TestAndClearIgnoreResultAssign();
2094   BinOpInfo Result;
2095   Result.LHS = Visit(E->getLHS());
2096   Result.RHS = Visit(E->getRHS());
2097   Result.Ty  = E->getType();
2098   Result.Opcode = E->getOpcode();
2099   Result.FPContractable = E->isFPContractable();
2100   Result.E = E;
2101   return Result;
2102 }
2103 
2104 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2105                                               const CompoundAssignOperator *E,
2106                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2107                                                    Value *&Result) {
2108   QualType LHSTy = E->getLHS()->getType();
2109   BinOpInfo OpInfo;
2110 
2111   if (E->getComputationResultType()->isAnyComplexType())
2112     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2113 
2114   // Emit the RHS first.  __block variables need to have the rhs evaluated
2115   // first, plus this should improve codegen a little.
2116   OpInfo.RHS = Visit(E->getRHS());
2117   OpInfo.Ty = E->getComputationResultType();
2118   OpInfo.Opcode = E->getOpcode();
2119   OpInfo.FPContractable = E->isFPContractable();
2120   OpInfo.E = E;
2121   // Load/convert the LHS.
2122   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2123 
2124   llvm::PHINode *atomicPHI = nullptr;
2125   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2126     QualType type = atomicTy->getValueType();
2127     if (!type->isBooleanType() && type->isIntegerType() &&
2128         !(type->isUnsignedIntegerType() &&
2129           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2130         CGF.getLangOpts().getSignedOverflowBehavior() !=
2131             LangOptions::SOB_Trapping) {
2132       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2133       switch (OpInfo.Opcode) {
2134         // We don't have atomicrmw operands for *, %, /, <<, >>
2135         case BO_MulAssign: case BO_DivAssign:
2136         case BO_RemAssign:
2137         case BO_ShlAssign:
2138         case BO_ShrAssign:
2139           break;
2140         case BO_AddAssign:
2141           aop = llvm::AtomicRMWInst::Add;
2142           break;
2143         case BO_SubAssign:
2144           aop = llvm::AtomicRMWInst::Sub;
2145           break;
2146         case BO_AndAssign:
2147           aop = llvm::AtomicRMWInst::And;
2148           break;
2149         case BO_XorAssign:
2150           aop = llvm::AtomicRMWInst::Xor;
2151           break;
2152         case BO_OrAssign:
2153           aop = llvm::AtomicRMWInst::Or;
2154           break;
2155         default:
2156           llvm_unreachable("Invalid compound assignment type");
2157       }
2158       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2159         llvm::Value *amt = CGF.EmitToMemory(
2160             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2161                                  E->getExprLoc()),
2162             LHSTy);
2163         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2164             llvm::SequentiallyConsistent);
2165         return LHSLV;
2166       }
2167     }
2168     // FIXME: For floating point types, we should be saving and restoring the
2169     // floating point environment in the loop.
2170     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2171     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2172     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2173     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2174     Builder.CreateBr(opBB);
2175     Builder.SetInsertPoint(opBB);
2176     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2177     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2178     OpInfo.LHS = atomicPHI;
2179   }
2180   else
2181     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2182 
2183   SourceLocation Loc = E->getExprLoc();
2184   OpInfo.LHS =
2185       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2186 
2187   // Expand the binary operator.
2188   Result = (this->*Func)(OpInfo);
2189 
2190   // Convert the result back to the LHS type.
2191   Result =
2192       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2193 
2194   if (atomicPHI) {
2195     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2196     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2197     auto Pair = CGF.EmitAtomicCompareExchange(
2198         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2199     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2200     llvm::Value *success = Pair.second;
2201     atomicPHI->addIncoming(old, opBB);
2202     Builder.CreateCondBr(success, contBB, opBB);
2203     Builder.SetInsertPoint(contBB);
2204     return LHSLV;
2205   }
2206 
2207   // Store the result value into the LHS lvalue. Bit-fields are handled
2208   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2209   // 'An assignment expression has the value of the left operand after the
2210   // assignment...'.
2211   if (LHSLV.isBitField())
2212     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2213   else
2214     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2215 
2216   return LHSLV;
2217 }
2218 
2219 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2220                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2221   bool Ignore = TestAndClearIgnoreResultAssign();
2222   Value *RHS;
2223   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2224 
2225   // If the result is clearly ignored, return now.
2226   if (Ignore)
2227     return nullptr;
2228 
2229   // The result of an assignment in C is the assigned r-value.
2230   if (!CGF.getLangOpts().CPlusPlus)
2231     return RHS;
2232 
2233   // If the lvalue is non-volatile, return the computed value of the assignment.
2234   if (!LHS.isVolatileQualified())
2235     return RHS;
2236 
2237   // Otherwise, reload the value.
2238   return EmitLoadOfLValue(LHS, E->getExprLoc());
2239 }
2240 
2241 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2242     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2243   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2244 
2245   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2246     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2247                                     SanitizerKind::IntegerDivideByZero));
2248   }
2249 
2250   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2251       Ops.Ty->hasSignedIntegerRepresentation()) {
2252     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2253 
2254     llvm::Value *IntMin =
2255       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2256     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2257 
2258     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2259     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2260     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2261     Checks.push_back(
2262         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2263   }
2264 
2265   if (Checks.size() > 0)
2266     EmitBinOpCheck(Checks, Ops);
2267 }
2268 
2269 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2270   {
2271     CodeGenFunction::SanitizerScope SanScope(&CGF);
2272     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2273          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2274         Ops.Ty->isIntegerType()) {
2275       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2276       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2277     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2278                Ops.Ty->isRealFloatingType()) {
2279       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2280       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2281       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2282                      Ops);
2283     }
2284   }
2285 
2286   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2287     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2288     if (CGF.getLangOpts().OpenCL) {
2289       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2290       llvm::Type *ValTy = Val->getType();
2291       if (ValTy->isFloatTy() ||
2292           (isa<llvm::VectorType>(ValTy) &&
2293            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2294         CGF.SetFPAccuracy(Val, 2.5);
2295     }
2296     return Val;
2297   }
2298   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2299     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2300   else
2301     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2302 }
2303 
2304 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2305   // Rem in C can't be a floating point type: C99 6.5.5p2.
2306   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2307     CodeGenFunction::SanitizerScope SanScope(&CGF);
2308     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2309 
2310     if (Ops.Ty->isIntegerType())
2311       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2312   }
2313 
2314   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2315     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2316   else
2317     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2318 }
2319 
2320 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2321   unsigned IID;
2322   unsigned OpID = 0;
2323 
2324   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2325   switch (Ops.Opcode) {
2326   case BO_Add:
2327   case BO_AddAssign:
2328     OpID = 1;
2329     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2330                      llvm::Intrinsic::uadd_with_overflow;
2331     break;
2332   case BO_Sub:
2333   case BO_SubAssign:
2334     OpID = 2;
2335     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2336                      llvm::Intrinsic::usub_with_overflow;
2337     break;
2338   case BO_Mul:
2339   case BO_MulAssign:
2340     OpID = 3;
2341     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2342                      llvm::Intrinsic::umul_with_overflow;
2343     break;
2344   default:
2345     llvm_unreachable("Unsupported operation for overflow detection");
2346   }
2347   OpID <<= 1;
2348   if (isSigned)
2349     OpID |= 1;
2350 
2351   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2352 
2353   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2354 
2355   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2356   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2357   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2358 
2359   // Handle overflow with llvm.trap if no custom handler has been specified.
2360   const std::string *handlerName =
2361     &CGF.getLangOpts().OverflowHandler;
2362   if (handlerName->empty()) {
2363     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2364     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2365     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2366       CodeGenFunction::SanitizerScope SanScope(&CGF);
2367       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2368       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2369                               : SanitizerKind::UnsignedIntegerOverflow;
2370       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2371     } else
2372       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2373     return result;
2374   }
2375 
2376   // Branch in case of overflow.
2377   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2378   llvm::Function::iterator insertPt = initialBB->getIterator();
2379   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2380                                                       &*std::next(insertPt));
2381   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2382 
2383   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2384 
2385   // If an overflow handler is set, then we want to call it and then use its
2386   // result, if it returns.
2387   Builder.SetInsertPoint(overflowBB);
2388 
2389   // Get the overflow handler.
2390   llvm::Type *Int8Ty = CGF.Int8Ty;
2391   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2392   llvm::FunctionType *handlerTy =
2393       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2394   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2395 
2396   // Sign extend the args to 64-bit, so that we can use the same handler for
2397   // all types of overflow.
2398   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2399   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2400 
2401   // Call the handler with the two arguments, the operation, and the size of
2402   // the result.
2403   llvm::Value *handlerArgs[] = {
2404     lhs,
2405     rhs,
2406     Builder.getInt8(OpID),
2407     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2408   };
2409   llvm::Value *handlerResult =
2410     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2411 
2412   // Truncate the result back to the desired size.
2413   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2414   Builder.CreateBr(continueBB);
2415 
2416   Builder.SetInsertPoint(continueBB);
2417   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2418   phi->addIncoming(result, initialBB);
2419   phi->addIncoming(handlerResult, overflowBB);
2420 
2421   return phi;
2422 }
2423 
2424 /// Emit pointer + index arithmetic.
2425 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2426                                     const BinOpInfo &op,
2427                                     bool isSubtraction) {
2428   // Must have binary (not unary) expr here.  Unary pointer
2429   // increment/decrement doesn't use this path.
2430   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2431 
2432   Value *pointer = op.LHS;
2433   Expr *pointerOperand = expr->getLHS();
2434   Value *index = op.RHS;
2435   Expr *indexOperand = expr->getRHS();
2436 
2437   // In a subtraction, the LHS is always the pointer.
2438   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2439     std::swap(pointer, index);
2440     std::swap(pointerOperand, indexOperand);
2441   }
2442 
2443   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2444   if (width != CGF.PointerWidthInBits) {
2445     // Zero-extend or sign-extend the pointer value according to
2446     // whether the index is signed or not.
2447     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2448     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2449                                       "idx.ext");
2450   }
2451 
2452   // If this is subtraction, negate the index.
2453   if (isSubtraction)
2454     index = CGF.Builder.CreateNeg(index, "idx.neg");
2455 
2456   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2457     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2458                         /*Accessed*/ false);
2459 
2460   const PointerType *pointerType
2461     = pointerOperand->getType()->getAs<PointerType>();
2462   if (!pointerType) {
2463     QualType objectType = pointerOperand->getType()
2464                                         ->castAs<ObjCObjectPointerType>()
2465                                         ->getPointeeType();
2466     llvm::Value *objectSize
2467       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2468 
2469     index = CGF.Builder.CreateMul(index, objectSize);
2470 
2471     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2472     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2473     return CGF.Builder.CreateBitCast(result, pointer->getType());
2474   }
2475 
2476   QualType elementType = pointerType->getPointeeType();
2477   if (const VariableArrayType *vla
2478         = CGF.getContext().getAsVariableArrayType(elementType)) {
2479     // The element count here is the total number of non-VLA elements.
2480     llvm::Value *numElements = CGF.getVLASize(vla).first;
2481 
2482     // Effectively, the multiply by the VLA size is part of the GEP.
2483     // GEP indexes are signed, and scaling an index isn't permitted to
2484     // signed-overflow, so we use the same semantics for our explicit
2485     // multiply.  We suppress this if overflow is not undefined behavior.
2486     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2487       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2488       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2489     } else {
2490       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2491       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2492     }
2493     return pointer;
2494   }
2495 
2496   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2497   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2498   // future proof.
2499   if (elementType->isVoidType() || elementType->isFunctionType()) {
2500     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2501     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2502     return CGF.Builder.CreateBitCast(result, pointer->getType());
2503   }
2504 
2505   if (CGF.getLangOpts().isSignedOverflowDefined())
2506     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2507 
2508   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2509 }
2510 
2511 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2512 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2513 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2514 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2515 // efficient operations.
2516 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2517                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2518                            bool negMul, bool negAdd) {
2519   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2520 
2521   Value *MulOp0 = MulOp->getOperand(0);
2522   Value *MulOp1 = MulOp->getOperand(1);
2523   if (negMul) {
2524     MulOp0 =
2525       Builder.CreateFSub(
2526         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2527         "neg");
2528   } else if (negAdd) {
2529     Addend =
2530       Builder.CreateFSub(
2531         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2532         "neg");
2533   }
2534 
2535   Value *FMulAdd = Builder.CreateCall(
2536       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2537       {MulOp0, MulOp1, Addend});
2538    MulOp->eraseFromParent();
2539 
2540    return FMulAdd;
2541 }
2542 
2543 // Check whether it would be legal to emit an fmuladd intrinsic call to
2544 // represent op and if so, build the fmuladd.
2545 //
2546 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2547 // Does NOT check the type of the operation - it's assumed that this function
2548 // will be called from contexts where it's known that the type is contractable.
2549 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2550                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2551                          bool isSub=false) {
2552 
2553   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2554           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2555          "Only fadd/fsub can be the root of an fmuladd.");
2556 
2557   // Check whether this op is marked as fusable.
2558   if (!op.FPContractable)
2559     return nullptr;
2560 
2561   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2562   // either disabled, or handled entirely by the LLVM backend).
2563   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2564     return nullptr;
2565 
2566   // We have a potentially fusable op. Look for a mul on one of the operands.
2567   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2568     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2569       assert(LHSBinOp->getNumUses() == 0 &&
2570              "Operations with multiple uses shouldn't be contracted.");
2571       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2572     }
2573   } else if (llvm::BinaryOperator* RHSBinOp =
2574                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2575     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2576       assert(RHSBinOp->getNumUses() == 0 &&
2577              "Operations with multiple uses shouldn't be contracted.");
2578       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2579     }
2580   }
2581 
2582   return nullptr;
2583 }
2584 
2585 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2586   if (op.LHS->getType()->isPointerTy() ||
2587       op.RHS->getType()->isPointerTy())
2588     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2589 
2590   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2591     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2592     case LangOptions::SOB_Defined:
2593       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2594     case LangOptions::SOB_Undefined:
2595       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2596         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2597       // Fall through.
2598     case LangOptions::SOB_Trapping:
2599       return EmitOverflowCheckedBinOp(op);
2600     }
2601   }
2602 
2603   if (op.Ty->isUnsignedIntegerType() &&
2604       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2605     return EmitOverflowCheckedBinOp(op);
2606 
2607   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2608     // Try to form an fmuladd.
2609     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2610       return FMulAdd;
2611 
2612     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2613   }
2614 
2615   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2616 }
2617 
2618 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2619   // The LHS is always a pointer if either side is.
2620   if (!op.LHS->getType()->isPointerTy()) {
2621     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2622       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2623       case LangOptions::SOB_Defined:
2624         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2625       case LangOptions::SOB_Undefined:
2626         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2627           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2628         // Fall through.
2629       case LangOptions::SOB_Trapping:
2630         return EmitOverflowCheckedBinOp(op);
2631       }
2632     }
2633 
2634     if (op.Ty->isUnsignedIntegerType() &&
2635         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2636       return EmitOverflowCheckedBinOp(op);
2637 
2638     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2639       // Try to form an fmuladd.
2640       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2641         return FMulAdd;
2642       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2643     }
2644 
2645     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2646   }
2647 
2648   // If the RHS is not a pointer, then we have normal pointer
2649   // arithmetic.
2650   if (!op.RHS->getType()->isPointerTy())
2651     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2652 
2653   // Otherwise, this is a pointer subtraction.
2654 
2655   // Do the raw subtraction part.
2656   llvm::Value *LHS
2657     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2658   llvm::Value *RHS
2659     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2660   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2661 
2662   // Okay, figure out the element size.
2663   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2664   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2665 
2666   llvm::Value *divisor = nullptr;
2667 
2668   // For a variable-length array, this is going to be non-constant.
2669   if (const VariableArrayType *vla
2670         = CGF.getContext().getAsVariableArrayType(elementType)) {
2671     llvm::Value *numElements;
2672     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2673 
2674     divisor = numElements;
2675 
2676     // Scale the number of non-VLA elements by the non-VLA element size.
2677     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2678     if (!eltSize.isOne())
2679       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2680 
2681   // For everything elese, we can just compute it, safe in the
2682   // assumption that Sema won't let anything through that we can't
2683   // safely compute the size of.
2684   } else {
2685     CharUnits elementSize;
2686     // Handle GCC extension for pointer arithmetic on void* and
2687     // function pointer types.
2688     if (elementType->isVoidType() || elementType->isFunctionType())
2689       elementSize = CharUnits::One();
2690     else
2691       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2692 
2693     // Don't even emit the divide for element size of 1.
2694     if (elementSize.isOne())
2695       return diffInChars;
2696 
2697     divisor = CGF.CGM.getSize(elementSize);
2698   }
2699 
2700   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2701   // pointer difference in C is only defined in the case where both operands
2702   // are pointing to elements of an array.
2703   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2704 }
2705 
2706 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2707   llvm::IntegerType *Ty;
2708   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2709     Ty = cast<llvm::IntegerType>(VT->getElementType());
2710   else
2711     Ty = cast<llvm::IntegerType>(LHS->getType());
2712   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2713 }
2714 
2715 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2716   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2717   // RHS to the same size as the LHS.
2718   Value *RHS = Ops.RHS;
2719   if (Ops.LHS->getType() != RHS->getType())
2720     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2721 
2722   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2723                       Ops.Ty->hasSignedIntegerRepresentation();
2724   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2725   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2726   if (CGF.getLangOpts().OpenCL)
2727     RHS =
2728         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2729   else if ((SanitizeBase || SanitizeExponent) &&
2730            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2731     CodeGenFunction::SanitizerScope SanScope(&CGF);
2732     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2733     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2734     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2735 
2736     if (SanitizeExponent) {
2737       Checks.push_back(
2738           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2739     }
2740 
2741     if (SanitizeBase) {
2742       // Check whether we are shifting any non-zero bits off the top of the
2743       // integer. We only emit this check if exponent is valid - otherwise
2744       // instructions below will have undefined behavior themselves.
2745       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2746       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2747       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2748       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2749       CGF.EmitBlock(CheckShiftBase);
2750       llvm::Value *BitsShiftedOff =
2751         Builder.CreateLShr(Ops.LHS,
2752                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2753                                              /*NUW*/true, /*NSW*/true),
2754                            "shl.check");
2755       if (CGF.getLangOpts().CPlusPlus) {
2756         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2757         // Under C++11's rules, shifting a 1 bit into the sign bit is
2758         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2759         // define signed left shifts, so we use the C99 and C++11 rules there).
2760         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2761         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2762       }
2763       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2764       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2765       CGF.EmitBlock(Cont);
2766       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2767       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2768       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2769       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2770     }
2771 
2772     assert(!Checks.empty());
2773     EmitBinOpCheck(Checks, Ops);
2774   }
2775 
2776   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2777 }
2778 
2779 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2780   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2781   // RHS to the same size as the LHS.
2782   Value *RHS = Ops.RHS;
2783   if (Ops.LHS->getType() != RHS->getType())
2784     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2785 
2786   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2787   if (CGF.getLangOpts().OpenCL)
2788     RHS =
2789         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2790   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2791            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2792     CodeGenFunction::SanitizerScope SanScope(&CGF);
2793     llvm::Value *Valid =
2794         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2795     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2796   }
2797 
2798   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2799     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2800   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2801 }
2802 
2803 enum IntrinsicType { VCMPEQ, VCMPGT };
2804 // return corresponding comparison intrinsic for given vector type
2805 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2806                                         BuiltinType::Kind ElemKind) {
2807   switch (ElemKind) {
2808   default: llvm_unreachable("unexpected element type");
2809   case BuiltinType::Char_U:
2810   case BuiltinType::UChar:
2811     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2812                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2813   case BuiltinType::Char_S:
2814   case BuiltinType::SChar:
2815     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2816                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2817   case BuiltinType::UShort:
2818     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2819                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2820   case BuiltinType::Short:
2821     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2822                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2823   case BuiltinType::UInt:
2824   case BuiltinType::ULong:
2825     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2826                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2827   case BuiltinType::Int:
2828   case BuiltinType::Long:
2829     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2830                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2831   case BuiltinType::Float:
2832     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2833                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2834   }
2835 }
2836 
2837 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2838                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2839   TestAndClearIgnoreResultAssign();
2840   Value *Result;
2841   QualType LHSTy = E->getLHS()->getType();
2842   QualType RHSTy = E->getRHS()->getType();
2843   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2844     assert(E->getOpcode() == BO_EQ ||
2845            E->getOpcode() == BO_NE);
2846     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2847     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2848     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2849                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2850   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2851     Value *LHS = Visit(E->getLHS());
2852     Value *RHS = Visit(E->getRHS());
2853 
2854     // If AltiVec, the comparison results in a numeric type, so we use
2855     // intrinsics comparing vectors and giving 0 or 1 as a result
2856     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2857       // constants for mapping CR6 register bits to predicate result
2858       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2859 
2860       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2861 
2862       // in several cases vector arguments order will be reversed
2863       Value *FirstVecArg = LHS,
2864             *SecondVecArg = RHS;
2865 
2866       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2867       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2868       BuiltinType::Kind ElementKind = BTy->getKind();
2869 
2870       switch(E->getOpcode()) {
2871       default: llvm_unreachable("is not a comparison operation");
2872       case BO_EQ:
2873         CR6 = CR6_LT;
2874         ID = GetIntrinsic(VCMPEQ, ElementKind);
2875         break;
2876       case BO_NE:
2877         CR6 = CR6_EQ;
2878         ID = GetIntrinsic(VCMPEQ, ElementKind);
2879         break;
2880       case BO_LT:
2881         CR6 = CR6_LT;
2882         ID = GetIntrinsic(VCMPGT, ElementKind);
2883         std::swap(FirstVecArg, SecondVecArg);
2884         break;
2885       case BO_GT:
2886         CR6 = CR6_LT;
2887         ID = GetIntrinsic(VCMPGT, ElementKind);
2888         break;
2889       case BO_LE:
2890         if (ElementKind == BuiltinType::Float) {
2891           CR6 = CR6_LT;
2892           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2893           std::swap(FirstVecArg, SecondVecArg);
2894         }
2895         else {
2896           CR6 = CR6_EQ;
2897           ID = GetIntrinsic(VCMPGT, ElementKind);
2898         }
2899         break;
2900       case BO_GE:
2901         if (ElementKind == BuiltinType::Float) {
2902           CR6 = CR6_LT;
2903           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2904         }
2905         else {
2906           CR6 = CR6_EQ;
2907           ID = GetIntrinsic(VCMPGT, ElementKind);
2908           std::swap(FirstVecArg, SecondVecArg);
2909         }
2910         break;
2911       }
2912 
2913       Value *CR6Param = Builder.getInt32(CR6);
2914       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2915       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2916       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2917                                   E->getExprLoc());
2918     }
2919 
2920     if (LHS->getType()->isFPOrFPVectorTy()) {
2921       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2922                                   LHS, RHS, "cmp");
2923     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2924       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2925                                   LHS, RHS, "cmp");
2926     } else {
2927       // Unsigned integers and pointers.
2928       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2929                                   LHS, RHS, "cmp");
2930     }
2931 
2932     // If this is a vector comparison, sign extend the result to the appropriate
2933     // vector integer type and return it (don't convert to bool).
2934     if (LHSTy->isVectorType())
2935       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2936 
2937   } else {
2938     // Complex Comparison: can only be an equality comparison.
2939     CodeGenFunction::ComplexPairTy LHS, RHS;
2940     QualType CETy;
2941     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2942       LHS = CGF.EmitComplexExpr(E->getLHS());
2943       CETy = CTy->getElementType();
2944     } else {
2945       LHS.first = Visit(E->getLHS());
2946       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2947       CETy = LHSTy;
2948     }
2949     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2950       RHS = CGF.EmitComplexExpr(E->getRHS());
2951       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2952                                                      CTy->getElementType()) &&
2953              "The element types must always match.");
2954       (void)CTy;
2955     } else {
2956       RHS.first = Visit(E->getRHS());
2957       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2958       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2959              "The element types must always match.");
2960     }
2961 
2962     Value *ResultR, *ResultI;
2963     if (CETy->isRealFloatingType()) {
2964       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2965                                    LHS.first, RHS.first, "cmp.r");
2966       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2967                                    LHS.second, RHS.second, "cmp.i");
2968     } else {
2969       // Complex comparisons can only be equality comparisons.  As such, signed
2970       // and unsigned opcodes are the same.
2971       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2972                                    LHS.first, RHS.first, "cmp.r");
2973       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2974                                    LHS.second, RHS.second, "cmp.i");
2975     }
2976 
2977     if (E->getOpcode() == BO_EQ) {
2978       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2979     } else {
2980       assert(E->getOpcode() == BO_NE &&
2981              "Complex comparison other than == or != ?");
2982       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2983     }
2984   }
2985 
2986   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2987                               E->getExprLoc());
2988 }
2989 
2990 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2991   bool Ignore = TestAndClearIgnoreResultAssign();
2992 
2993   Value *RHS;
2994   LValue LHS;
2995 
2996   switch (E->getLHS()->getType().getObjCLifetime()) {
2997   case Qualifiers::OCL_Strong:
2998     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2999     break;
3000 
3001   case Qualifiers::OCL_Autoreleasing:
3002     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3003     break;
3004 
3005   case Qualifiers::OCL_Weak:
3006     RHS = Visit(E->getRHS());
3007     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3008     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3009     break;
3010 
3011   // No reason to do any of these differently.
3012   case Qualifiers::OCL_None:
3013   case Qualifiers::OCL_ExplicitNone:
3014     // __block variables need to have the rhs evaluated first, plus
3015     // this should improve codegen just a little.
3016     RHS = Visit(E->getRHS());
3017     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3018 
3019     // Store the value into the LHS.  Bit-fields are handled specially
3020     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3021     // 'An assignment expression has the value of the left operand after
3022     // the assignment...'.
3023     if (LHS.isBitField())
3024       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3025     else
3026       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3027   }
3028 
3029   // If the result is clearly ignored, return now.
3030   if (Ignore)
3031     return nullptr;
3032 
3033   // The result of an assignment in C is the assigned r-value.
3034   if (!CGF.getLangOpts().CPlusPlus)
3035     return RHS;
3036 
3037   // If the lvalue is non-volatile, return the computed value of the assignment.
3038   if (!LHS.isVolatileQualified())
3039     return RHS;
3040 
3041   // Otherwise, reload the value.
3042   return EmitLoadOfLValue(LHS, E->getExprLoc());
3043 }
3044 
3045 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3046   // Perform vector logical and on comparisons with zero vectors.
3047   if (E->getType()->isVectorType()) {
3048     CGF.incrementProfileCounter(E);
3049 
3050     Value *LHS = Visit(E->getLHS());
3051     Value *RHS = Visit(E->getRHS());
3052     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3053     if (LHS->getType()->isFPOrFPVectorTy()) {
3054       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3055       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3056     } else {
3057       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3058       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3059     }
3060     Value *And = Builder.CreateAnd(LHS, RHS);
3061     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3062   }
3063 
3064   llvm::Type *ResTy = ConvertType(E->getType());
3065 
3066   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3067   // If we have 1 && X, just emit X without inserting the control flow.
3068   bool LHSCondVal;
3069   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3070     if (LHSCondVal) { // If we have 1 && X, just emit X.
3071       CGF.incrementProfileCounter(E);
3072 
3073       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3074       // ZExt result to int or bool.
3075       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3076     }
3077 
3078     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3079     if (!CGF.ContainsLabel(E->getRHS()))
3080       return llvm::Constant::getNullValue(ResTy);
3081   }
3082 
3083   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3084   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3085 
3086   CodeGenFunction::ConditionalEvaluation eval(CGF);
3087 
3088   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3089   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3090                            CGF.getProfileCount(E->getRHS()));
3091 
3092   // Any edges into the ContBlock are now from an (indeterminate number of)
3093   // edges from this first condition.  All of these values will be false.  Start
3094   // setting up the PHI node in the Cont Block for this.
3095   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3096                                             "", ContBlock);
3097   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3098        PI != PE; ++PI)
3099     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3100 
3101   eval.begin(CGF);
3102   CGF.EmitBlock(RHSBlock);
3103   CGF.incrementProfileCounter(E);
3104   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3105   eval.end(CGF);
3106 
3107   // Reaquire the RHS block, as there may be subblocks inserted.
3108   RHSBlock = Builder.GetInsertBlock();
3109 
3110   // Emit an unconditional branch from this block to ContBlock.
3111   {
3112     // There is no need to emit line number for unconditional branch.
3113     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3114     CGF.EmitBlock(ContBlock);
3115   }
3116   // Insert an entry into the phi node for the edge with the value of RHSCond.
3117   PN->addIncoming(RHSCond, RHSBlock);
3118 
3119   // ZExt result to int.
3120   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3121 }
3122 
3123 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3124   // Perform vector logical or on comparisons with zero vectors.
3125   if (E->getType()->isVectorType()) {
3126     CGF.incrementProfileCounter(E);
3127 
3128     Value *LHS = Visit(E->getLHS());
3129     Value *RHS = Visit(E->getRHS());
3130     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3131     if (LHS->getType()->isFPOrFPVectorTy()) {
3132       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3133       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3134     } else {
3135       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3136       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3137     }
3138     Value *Or = Builder.CreateOr(LHS, RHS);
3139     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3140   }
3141 
3142   llvm::Type *ResTy = ConvertType(E->getType());
3143 
3144   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3145   // If we have 0 || X, just emit X without inserting the control flow.
3146   bool LHSCondVal;
3147   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3148     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3149       CGF.incrementProfileCounter(E);
3150 
3151       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3152       // ZExt result to int or bool.
3153       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3154     }
3155 
3156     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3157     if (!CGF.ContainsLabel(E->getRHS()))
3158       return llvm::ConstantInt::get(ResTy, 1);
3159   }
3160 
3161   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3162   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3163 
3164   CodeGenFunction::ConditionalEvaluation eval(CGF);
3165 
3166   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3167   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3168                            CGF.getCurrentProfileCount() -
3169                                CGF.getProfileCount(E->getRHS()));
3170 
3171   // Any edges into the ContBlock are now from an (indeterminate number of)
3172   // edges from this first condition.  All of these values will be true.  Start
3173   // setting up the PHI node in the Cont Block for this.
3174   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3175                                             "", ContBlock);
3176   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3177        PI != PE; ++PI)
3178     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3179 
3180   eval.begin(CGF);
3181 
3182   // Emit the RHS condition as a bool value.
3183   CGF.EmitBlock(RHSBlock);
3184   CGF.incrementProfileCounter(E);
3185   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3186 
3187   eval.end(CGF);
3188 
3189   // Reaquire the RHS block, as there may be subblocks inserted.
3190   RHSBlock = Builder.GetInsertBlock();
3191 
3192   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3193   // into the phi node for the edge with the value of RHSCond.
3194   CGF.EmitBlock(ContBlock);
3195   PN->addIncoming(RHSCond, RHSBlock);
3196 
3197   // ZExt result to int.
3198   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3199 }
3200 
3201 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3202   CGF.EmitIgnoredExpr(E->getLHS());
3203   CGF.EnsureInsertPoint();
3204   return Visit(E->getRHS());
3205 }
3206 
3207 //===----------------------------------------------------------------------===//
3208 //                             Other Operators
3209 //===----------------------------------------------------------------------===//
3210 
3211 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3212 /// expression is cheap enough and side-effect-free enough to evaluate
3213 /// unconditionally instead of conditionally.  This is used to convert control
3214 /// flow into selects in some cases.
3215 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3216                                                    CodeGenFunction &CGF) {
3217   // Anything that is an integer or floating point constant is fine.
3218   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3219 
3220   // Even non-volatile automatic variables can't be evaluated unconditionally.
3221   // Referencing a thread_local may cause non-trivial initialization work to
3222   // occur. If we're inside a lambda and one of the variables is from the scope
3223   // outside the lambda, that function may have returned already. Reading its
3224   // locals is a bad idea. Also, these reads may introduce races there didn't
3225   // exist in the source-level program.
3226 }
3227 
3228 
3229 Value *ScalarExprEmitter::
3230 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3231   TestAndClearIgnoreResultAssign();
3232 
3233   // Bind the common expression if necessary.
3234   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3235 
3236   Expr *condExpr = E->getCond();
3237   Expr *lhsExpr = E->getTrueExpr();
3238   Expr *rhsExpr = E->getFalseExpr();
3239 
3240   // If the condition constant folds and can be elided, try to avoid emitting
3241   // the condition and the dead arm.
3242   bool CondExprBool;
3243   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3244     Expr *live = lhsExpr, *dead = rhsExpr;
3245     if (!CondExprBool) std::swap(live, dead);
3246 
3247     // If the dead side doesn't have labels we need, just emit the Live part.
3248     if (!CGF.ContainsLabel(dead)) {
3249       if (CondExprBool)
3250         CGF.incrementProfileCounter(E);
3251       Value *Result = Visit(live);
3252 
3253       // If the live part is a throw expression, it acts like it has a void
3254       // type, so evaluating it returns a null Value*.  However, a conditional
3255       // with non-void type must return a non-null Value*.
3256       if (!Result && !E->getType()->isVoidType())
3257         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3258 
3259       return Result;
3260     }
3261   }
3262 
3263   // OpenCL: If the condition is a vector, we can treat this condition like
3264   // the select function.
3265   if (CGF.getLangOpts().OpenCL
3266       && condExpr->getType()->isVectorType()) {
3267     CGF.incrementProfileCounter(E);
3268 
3269     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3270     llvm::Value *LHS = Visit(lhsExpr);
3271     llvm::Value *RHS = Visit(rhsExpr);
3272 
3273     llvm::Type *condType = ConvertType(condExpr->getType());
3274     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3275 
3276     unsigned numElem = vecTy->getNumElements();
3277     llvm::Type *elemType = vecTy->getElementType();
3278 
3279     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3280     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3281     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3282                                           llvm::VectorType::get(elemType,
3283                                                                 numElem),
3284                                           "sext");
3285     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3286 
3287     // Cast float to int to perform ANDs if necessary.
3288     llvm::Value *RHSTmp = RHS;
3289     llvm::Value *LHSTmp = LHS;
3290     bool wasCast = false;
3291     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3292     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3293       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3294       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3295       wasCast = true;
3296     }
3297 
3298     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3299     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3300     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3301     if (wasCast)
3302       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3303 
3304     return tmp5;
3305   }
3306 
3307   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3308   // select instead of as control flow.  We can only do this if it is cheap and
3309   // safe to evaluate the LHS and RHS unconditionally.
3310   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3311       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3312     CGF.incrementProfileCounter(E);
3313 
3314     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3315     llvm::Value *LHS = Visit(lhsExpr);
3316     llvm::Value *RHS = Visit(rhsExpr);
3317     if (!LHS) {
3318       // If the conditional has void type, make sure we return a null Value*.
3319       assert(!RHS && "LHS and RHS types must match");
3320       return nullptr;
3321     }
3322     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3323   }
3324 
3325   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3326   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3327   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3328 
3329   CodeGenFunction::ConditionalEvaluation eval(CGF);
3330   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3331                            CGF.getProfileCount(lhsExpr));
3332 
3333   CGF.EmitBlock(LHSBlock);
3334   CGF.incrementProfileCounter(E);
3335   eval.begin(CGF);
3336   Value *LHS = Visit(lhsExpr);
3337   eval.end(CGF);
3338 
3339   LHSBlock = Builder.GetInsertBlock();
3340   Builder.CreateBr(ContBlock);
3341 
3342   CGF.EmitBlock(RHSBlock);
3343   eval.begin(CGF);
3344   Value *RHS = Visit(rhsExpr);
3345   eval.end(CGF);
3346 
3347   RHSBlock = Builder.GetInsertBlock();
3348   CGF.EmitBlock(ContBlock);
3349 
3350   // If the LHS or RHS is a throw expression, it will be legitimately null.
3351   if (!LHS)
3352     return RHS;
3353   if (!RHS)
3354     return LHS;
3355 
3356   // Create a PHI node for the real part.
3357   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3358   PN->addIncoming(LHS, LHSBlock);
3359   PN->addIncoming(RHS, RHSBlock);
3360   return PN;
3361 }
3362 
3363 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3364   return Visit(E->getChosenSubExpr());
3365 }
3366 
3367 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3368   QualType Ty = VE->getType();
3369 
3370   if (Ty->isVariablyModifiedType())
3371     CGF.EmitVariablyModifiedType(Ty);
3372 
3373   Address ArgValue = Address::invalid();
3374   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3375 
3376   llvm::Type *ArgTy = ConvertType(VE->getType());
3377 
3378   // If EmitVAArg fails, we fall back to the LLVM instruction.
3379   if (!ArgPtr.isValid())
3380     return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy);
3381 
3382   // FIXME Volatility.
3383   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3384 
3385   // If EmitVAArg promoted the type, we must truncate it.
3386   if (ArgTy != Val->getType()) {
3387     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3388       Val = Builder.CreateIntToPtr(Val, ArgTy);
3389     else
3390       Val = Builder.CreateTrunc(Val, ArgTy);
3391   }
3392 
3393   return Val;
3394 }
3395 
3396 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3397   return CGF.EmitBlockLiteral(block);
3398 }
3399 
3400 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3401   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3402   llvm::Type *DstTy = ConvertType(E->getType());
3403 
3404   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3405   // a shuffle vector instead of a bitcast.
3406   llvm::Type *SrcTy = Src->getType();
3407   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3408     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3409     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3410     if ((numElementsDst == 3 && numElementsSrc == 4)
3411         || (numElementsDst == 4 && numElementsSrc == 3)) {
3412 
3413 
3414       // In the case of going from int4->float3, a bitcast is needed before
3415       // doing a shuffle.
3416       llvm::Type *srcElemTy =
3417       cast<llvm::VectorType>(SrcTy)->getElementType();
3418       llvm::Type *dstElemTy =
3419       cast<llvm::VectorType>(DstTy)->getElementType();
3420 
3421       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3422           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3423         // Create a float type of the same size as the source or destination.
3424         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3425                                                                  numElementsSrc);
3426 
3427         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3428       }
3429 
3430       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3431 
3432       SmallVector<llvm::Constant*, 3> Args;
3433       Args.push_back(Builder.getInt32(0));
3434       Args.push_back(Builder.getInt32(1));
3435       Args.push_back(Builder.getInt32(2));
3436 
3437       if (numElementsDst == 4)
3438         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3439 
3440       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3441 
3442       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3443     }
3444   }
3445 
3446   return Builder.CreateBitCast(Src, DstTy, "astype");
3447 }
3448 
3449 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3450   return CGF.EmitAtomicExpr(E).getScalarVal();
3451 }
3452 
3453 //===----------------------------------------------------------------------===//
3454 //                         Entry Point into this File
3455 //===----------------------------------------------------------------------===//
3456 
3457 /// Emit the computation of the specified expression of scalar type, ignoring
3458 /// the result.
3459 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3460   assert(E && hasScalarEvaluationKind(E->getType()) &&
3461          "Invalid scalar expression to emit");
3462 
3463   return ScalarExprEmitter(*this, IgnoreResultAssign)
3464       .Visit(const_cast<Expr *>(E));
3465 }
3466 
3467 /// Emit a conversion from the specified type to the specified destination type,
3468 /// both of which are LLVM scalar types.
3469 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3470                                              QualType DstTy,
3471                                              SourceLocation Loc) {
3472   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3473          "Invalid scalar expression to emit");
3474   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3475 }
3476 
3477 /// Emit a conversion from the specified complex type to the specified
3478 /// destination type, where the destination type is an LLVM scalar type.
3479 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3480                                                       QualType SrcTy,
3481                                                       QualType DstTy,
3482                                                       SourceLocation Loc) {
3483   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3484          "Invalid complex -> scalar conversion");
3485   return ScalarExprEmitter(*this)
3486       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3487 }
3488 
3489 
3490 llvm::Value *CodeGenFunction::
3491 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3492                         bool isInc, bool isPre) {
3493   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3494 }
3495 
3496 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3497   // object->isa or (*object).isa
3498   // Generate code as for: *(Class*)object
3499 
3500   Expr *BaseExpr = E->getBase();
3501   Address Addr = Address::invalid();
3502   if (BaseExpr->isRValue()) {
3503     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3504   } else {
3505     Addr = EmitLValue(BaseExpr).getAddress();
3506   }
3507 
3508   // Cast the address to Class*.
3509   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3510   return MakeAddrLValue(Addr, E->getType());
3511 }
3512 
3513 
3514 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3515                                             const CompoundAssignOperator *E) {
3516   ScalarExprEmitter Scalar(*this);
3517   Value *Result = nullptr;
3518   switch (E->getOpcode()) {
3519 #define COMPOUND_OP(Op)                                                       \
3520     case BO_##Op##Assign:                                                     \
3521       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3522                                              Result)
3523   COMPOUND_OP(Mul);
3524   COMPOUND_OP(Div);
3525   COMPOUND_OP(Rem);
3526   COMPOUND_OP(Add);
3527   COMPOUND_OP(Sub);
3528   COMPOUND_OP(Shl);
3529   COMPOUND_OP(Shr);
3530   COMPOUND_OP(And);
3531   COMPOUND_OP(Xor);
3532   COMPOUND_OP(Or);
3533 #undef COMPOUND_OP
3534 
3535   case BO_PtrMemD:
3536   case BO_PtrMemI:
3537   case BO_Mul:
3538   case BO_Div:
3539   case BO_Rem:
3540   case BO_Add:
3541   case BO_Sub:
3542   case BO_Shl:
3543   case BO_Shr:
3544   case BO_LT:
3545   case BO_GT:
3546   case BO_LE:
3547   case BO_GE:
3548   case BO_EQ:
3549   case BO_NE:
3550   case BO_And:
3551   case BO_Xor:
3552   case BO_Or:
3553   case BO_LAnd:
3554   case BO_LOr:
3555   case BO_Assign:
3556   case BO_Comma:
3557     llvm_unreachable("Not valid compound assignment operators");
3558   }
3559 
3560   llvm_unreachable("Unhandled compound assignment operator");
3561 }
3562