1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/FixedPoint.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/IntrinsicsPowerPC.h"
39 #include "llvm/IR/Module.h"
40 #include <cstdarg>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 using llvm::Value;
45 
46 //===----------------------------------------------------------------------===//
47 //                         Scalar Expression Emitter
48 //===----------------------------------------------------------------------===//
49 
50 namespace {
51 
52 /// Determine whether the given binary operation may overflow.
53 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
54 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
55 /// the returned overflow check is precise. The returned value is 'true' for
56 /// all other opcodes, to be conservative.
57 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
58                              BinaryOperator::Opcode Opcode, bool Signed,
59                              llvm::APInt &Result) {
60   // Assume overflow is possible, unless we can prove otherwise.
61   bool Overflow = true;
62   const auto &LHSAP = LHS->getValue();
63   const auto &RHSAP = RHS->getValue();
64   if (Opcode == BO_Add) {
65     if (Signed)
66       Result = LHSAP.sadd_ov(RHSAP, Overflow);
67     else
68       Result = LHSAP.uadd_ov(RHSAP, Overflow);
69   } else if (Opcode == BO_Sub) {
70     if (Signed)
71       Result = LHSAP.ssub_ov(RHSAP, Overflow);
72     else
73       Result = LHSAP.usub_ov(RHSAP, Overflow);
74   } else if (Opcode == BO_Mul) {
75     if (Signed)
76       Result = LHSAP.smul_ov(RHSAP, Overflow);
77     else
78       Result = LHSAP.umul_ov(RHSAP, Overflow);
79   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
80     if (Signed && !RHS->isZero())
81       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
82     else
83       return false;
84   }
85   return Overflow;
86 }
87 
88 struct BinOpInfo {
89   Value *LHS;
90   Value *RHS;
91   QualType Ty;  // Computation Type.
92   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
93   FPOptions FPFeatures;
94   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
95 
96   /// Check if the binop can result in integer overflow.
97   bool mayHaveIntegerOverflow() const {
98     // Without constant input, we can't rule out overflow.
99     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
100     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
101     if (!LHSCI || !RHSCI)
102       return true;
103 
104     llvm::APInt Result;
105     return ::mayHaveIntegerOverflow(
106         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
107   }
108 
109   /// Check if the binop computes a division or a remainder.
110   bool isDivremOp() const {
111     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
112            Opcode == BO_RemAssign;
113   }
114 
115   /// Check if the binop can result in an integer division by zero.
116   bool mayHaveIntegerDivisionByZero() const {
117     if (isDivremOp())
118       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
119         return CI->isZero();
120     return true;
121   }
122 
123   /// Check if the binop can result in a float division by zero.
124   bool mayHaveFloatDivisionByZero() const {
125     if (isDivremOp())
126       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
127         return CFP->isZero();
128     return true;
129   }
130 
131   /// Check if either operand is a fixed point type or integer type, with at
132   /// least one being a fixed point type. In any case, this
133   /// operation did not follow usual arithmetic conversion and both operands may
134   /// not be the same.
135   bool isFixedPointBinOp() const {
136     // We cannot simply check the result type since comparison operations return
137     // an int.
138     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
139       QualType LHSType = BinOp->getLHS()->getType();
140       QualType RHSType = BinOp->getRHS()->getType();
141       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
142     }
143     return false;
144   }
145 };
146 
147 static bool MustVisitNullValue(const Expr *E) {
148   // If a null pointer expression's type is the C++0x nullptr_t, then
149   // it's not necessarily a simple constant and it must be evaluated
150   // for its potential side effects.
151   return E->getType()->isNullPtrType();
152 }
153 
154 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
155 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
156                                                         const Expr *E) {
157   const Expr *Base = E->IgnoreImpCasts();
158   if (E == Base)
159     return llvm::None;
160 
161   QualType BaseTy = Base->getType();
162   if (!BaseTy->isPromotableIntegerType() ||
163       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
164     return llvm::None;
165 
166   return BaseTy;
167 }
168 
169 /// Check if \p E is a widened promoted integer.
170 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
171   return getUnwidenedIntegerType(Ctx, E).hasValue();
172 }
173 
174 /// Check if we can skip the overflow check for \p Op.
175 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
176   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
177          "Expected a unary or binary operator");
178 
179   // If the binop has constant inputs and we can prove there is no overflow,
180   // we can elide the overflow check.
181   if (!Op.mayHaveIntegerOverflow())
182     return true;
183 
184   // If a unary op has a widened operand, the op cannot overflow.
185   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
186     return !UO->canOverflow();
187 
188   // We usually don't need overflow checks for binops with widened operands.
189   // Multiplication with promoted unsigned operands is a special case.
190   const auto *BO = cast<BinaryOperator>(Op.E);
191   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
192   if (!OptionalLHSTy)
193     return false;
194 
195   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
196   if (!OptionalRHSTy)
197     return false;
198 
199   QualType LHSTy = *OptionalLHSTy;
200   QualType RHSTy = *OptionalRHSTy;
201 
202   // This is the simple case: binops without unsigned multiplication, and with
203   // widened operands. No overflow check is needed here.
204   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
205       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
206     return true;
207 
208   // For unsigned multiplication the overflow check can be elided if either one
209   // of the unpromoted types are less than half the size of the promoted type.
210   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
211   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
212          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
213 }
214 
215 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
216 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
217                                 FPOptions FPFeatures) {
218   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
219 }
220 
221 /// Propagate fast-math flags from \p Op to the instruction in \p V.
222 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
223   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
224     llvm::FastMathFlags FMF = I->getFastMathFlags();
225     updateFastMathFlags(FMF, Op.FPFeatures);
226     I->setFastMathFlags(FMF);
227   }
228   return V;
229 }
230 
231 class ScalarExprEmitter
232   : public StmtVisitor<ScalarExprEmitter, Value*> {
233   CodeGenFunction &CGF;
234   CGBuilderTy &Builder;
235   bool IgnoreResultAssign;
236   llvm::LLVMContext &VMContext;
237 public:
238 
239   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
240     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
241       VMContext(cgf.getLLVMContext()) {
242   }
243 
244   //===--------------------------------------------------------------------===//
245   //                               Utilities
246   //===--------------------------------------------------------------------===//
247 
248   bool TestAndClearIgnoreResultAssign() {
249     bool I = IgnoreResultAssign;
250     IgnoreResultAssign = false;
251     return I;
252   }
253 
254   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
255   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
256   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
257     return CGF.EmitCheckedLValue(E, TCK);
258   }
259 
260   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
261                       const BinOpInfo &Info);
262 
263   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
264     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
265   }
266 
267   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
268     const AlignValueAttr *AVAttr = nullptr;
269     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
270       const ValueDecl *VD = DRE->getDecl();
271 
272       if (VD->getType()->isReferenceType()) {
273         if (const auto *TTy =
274             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
275           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
276       } else {
277         // Assumptions for function parameters are emitted at the start of the
278         // function, so there is no need to repeat that here,
279         // unless the alignment-assumption sanitizer is enabled,
280         // then we prefer the assumption over alignment attribute
281         // on IR function param.
282         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
283           return;
284 
285         AVAttr = VD->getAttr<AlignValueAttr>();
286       }
287     }
288 
289     if (!AVAttr)
290       if (const auto *TTy =
291           dyn_cast<TypedefType>(E->getType()))
292         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
293 
294     if (!AVAttr)
295       return;
296 
297     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
298     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
299     CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
300   }
301 
302   /// EmitLoadOfLValue - Given an expression with complex type that represents a
303   /// value l-value, this method emits the address of the l-value, then loads
304   /// and returns the result.
305   Value *EmitLoadOfLValue(const Expr *E) {
306     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
307                                 E->getExprLoc());
308 
309     EmitLValueAlignmentAssumption(E, V);
310     return V;
311   }
312 
313   /// EmitConversionToBool - Convert the specified expression value to a
314   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
315   Value *EmitConversionToBool(Value *Src, QualType DstTy);
316 
317   /// Emit a check that a conversion from a floating-point type does not
318   /// overflow.
319   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
320                                 Value *Src, QualType SrcType, QualType DstType,
321                                 llvm::Type *DstTy, SourceLocation Loc);
322 
323   /// Known implicit conversion check kinds.
324   /// Keep in sync with the enum of the same name in ubsan_handlers.h
325   enum ImplicitConversionCheckKind : unsigned char {
326     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
327     ICCK_UnsignedIntegerTruncation = 1,
328     ICCK_SignedIntegerTruncation = 2,
329     ICCK_IntegerSignChange = 3,
330     ICCK_SignedIntegerTruncationOrSignChange = 4,
331   };
332 
333   /// Emit a check that an [implicit] truncation of an integer  does not
334   /// discard any bits. It is not UB, so we use the value after truncation.
335   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
336                                   QualType DstType, SourceLocation Loc);
337 
338   /// Emit a check that an [implicit] conversion of an integer does not change
339   /// the sign of the value. It is not UB, so we use the value after conversion.
340   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
341   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
342                                   QualType DstType, SourceLocation Loc);
343 
344   /// Emit a conversion from the specified type to the specified destination
345   /// type, both of which are LLVM scalar types.
346   struct ScalarConversionOpts {
347     bool TreatBooleanAsSigned;
348     bool EmitImplicitIntegerTruncationChecks;
349     bool EmitImplicitIntegerSignChangeChecks;
350 
351     ScalarConversionOpts()
352         : TreatBooleanAsSigned(false),
353           EmitImplicitIntegerTruncationChecks(false),
354           EmitImplicitIntegerSignChangeChecks(false) {}
355 
356     ScalarConversionOpts(clang::SanitizerSet SanOpts)
357         : TreatBooleanAsSigned(false),
358           EmitImplicitIntegerTruncationChecks(
359               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
360           EmitImplicitIntegerSignChangeChecks(
361               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
362   };
363   Value *
364   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
365                        SourceLocation Loc,
366                        ScalarConversionOpts Opts = ScalarConversionOpts());
367 
368   /// Convert between either a fixed point and other fixed point or fixed point
369   /// and an integer.
370   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
371                                   SourceLocation Loc);
372   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
373                                   FixedPointSemantics &DstFixedSema,
374                                   SourceLocation Loc,
375                                   bool DstIsInteger = false);
376 
377   /// Emit a conversion from the specified complex type to the specified
378   /// destination type, where the destination type is an LLVM scalar type.
379   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
380                                        QualType SrcTy, QualType DstTy,
381                                        SourceLocation Loc);
382 
383   /// EmitNullValue - Emit a value that corresponds to null for the given type.
384   Value *EmitNullValue(QualType Ty);
385 
386   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
387   Value *EmitFloatToBoolConversion(Value *V) {
388     // Compare against 0.0 for fp scalars.
389     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
390     return Builder.CreateFCmpUNE(V, Zero, "tobool");
391   }
392 
393   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
394   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
395     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
396 
397     return Builder.CreateICmpNE(V, Zero, "tobool");
398   }
399 
400   Value *EmitIntToBoolConversion(Value *V) {
401     // Because of the type rules of C, we often end up computing a
402     // logical value, then zero extending it to int, then wanting it
403     // as a logical value again.  Optimize this common case.
404     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
405       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
406         Value *Result = ZI->getOperand(0);
407         // If there aren't any more uses, zap the instruction to save space.
408         // Note that there can be more uses, for example if this
409         // is the result of an assignment.
410         if (ZI->use_empty())
411           ZI->eraseFromParent();
412         return Result;
413       }
414     }
415 
416     return Builder.CreateIsNotNull(V, "tobool");
417   }
418 
419   //===--------------------------------------------------------------------===//
420   //                            Visitor Methods
421   //===--------------------------------------------------------------------===//
422 
423   Value *Visit(Expr *E) {
424     ApplyDebugLocation DL(CGF, E);
425     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
426   }
427 
428   Value *VisitStmt(Stmt *S) {
429     S->dump(CGF.getContext().getSourceManager());
430     llvm_unreachable("Stmt can't have complex result type!");
431   }
432   Value *VisitExpr(Expr *S);
433 
434   Value *VisitConstantExpr(ConstantExpr *E) {
435     return Visit(E->getSubExpr());
436   }
437   Value *VisitParenExpr(ParenExpr *PE) {
438     return Visit(PE->getSubExpr());
439   }
440   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
441     return Visit(E->getReplacement());
442   }
443   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
444     return Visit(GE->getResultExpr());
445   }
446   Value *VisitCoawaitExpr(CoawaitExpr *S) {
447     return CGF.EmitCoawaitExpr(*S).getScalarVal();
448   }
449   Value *VisitCoyieldExpr(CoyieldExpr *S) {
450     return CGF.EmitCoyieldExpr(*S).getScalarVal();
451   }
452   Value *VisitUnaryCoawait(const UnaryOperator *E) {
453     return Visit(E->getSubExpr());
454   }
455 
456   // Leaves.
457   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
458     return Builder.getInt(E->getValue());
459   }
460   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
461     return Builder.getInt(E->getValue());
462   }
463   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
464     return llvm::ConstantFP::get(VMContext, E->getValue());
465   }
466   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
467     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
468   }
469   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
470     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
471   }
472   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
473     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
474   }
475   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
476     return EmitNullValue(E->getType());
477   }
478   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
479     return EmitNullValue(E->getType());
480   }
481   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
482   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
483   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
484     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
485     return Builder.CreateBitCast(V, ConvertType(E->getType()));
486   }
487 
488   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
489     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
490   }
491 
492   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
493     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
494   }
495 
496   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
497     if (E->isGLValue())
498       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
499                               E->getExprLoc());
500 
501     // Otherwise, assume the mapping is the scalar directly.
502     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
503   }
504 
505   // l-values.
506   Value *VisitDeclRefExpr(DeclRefExpr *E) {
507     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
508       return CGF.emitScalarConstant(Constant, E);
509     return EmitLoadOfLValue(E);
510   }
511 
512   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
513     return CGF.EmitObjCSelectorExpr(E);
514   }
515   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
516     return CGF.EmitObjCProtocolExpr(E);
517   }
518   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
519     return EmitLoadOfLValue(E);
520   }
521   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
522     if (E->getMethodDecl() &&
523         E->getMethodDecl()->getReturnType()->isReferenceType())
524       return EmitLoadOfLValue(E);
525     return CGF.EmitObjCMessageExpr(E).getScalarVal();
526   }
527 
528   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
529     LValue LV = CGF.EmitObjCIsaExpr(E);
530     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
531     return V;
532   }
533 
534   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
535     VersionTuple Version = E->getVersion();
536 
537     // If we're checking for a platform older than our minimum deployment
538     // target, we can fold the check away.
539     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
540       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
541 
542     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
543     llvm::Value *Args[] = {
544         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
545         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
546         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
547     };
548 
549     return CGF.EmitBuiltinAvailable(Args);
550   }
551 
552   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
553   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
554   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
555   Value *VisitMemberExpr(MemberExpr *E);
556   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
557   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
558     return EmitLoadOfLValue(E);
559   }
560 
561   Value *VisitInitListExpr(InitListExpr *E);
562 
563   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
564     assert(CGF.getArrayInitIndex() &&
565            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
566     return CGF.getArrayInitIndex();
567   }
568 
569   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
570     return EmitNullValue(E->getType());
571   }
572   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
573     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
574     return VisitCastExpr(E);
575   }
576   Value *VisitCastExpr(CastExpr *E);
577 
578   Value *VisitCallExpr(const CallExpr *E) {
579     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
580       return EmitLoadOfLValue(E);
581 
582     Value *V = CGF.EmitCallExpr(E).getScalarVal();
583 
584     EmitLValueAlignmentAssumption(E, V);
585     return V;
586   }
587 
588   Value *VisitStmtExpr(const StmtExpr *E);
589 
590   // Unary Operators.
591   Value *VisitUnaryPostDec(const UnaryOperator *E) {
592     LValue LV = EmitLValue(E->getSubExpr());
593     return EmitScalarPrePostIncDec(E, LV, false, false);
594   }
595   Value *VisitUnaryPostInc(const UnaryOperator *E) {
596     LValue LV = EmitLValue(E->getSubExpr());
597     return EmitScalarPrePostIncDec(E, LV, true, false);
598   }
599   Value *VisitUnaryPreDec(const UnaryOperator *E) {
600     LValue LV = EmitLValue(E->getSubExpr());
601     return EmitScalarPrePostIncDec(E, LV, false, true);
602   }
603   Value *VisitUnaryPreInc(const UnaryOperator *E) {
604     LValue LV = EmitLValue(E->getSubExpr());
605     return EmitScalarPrePostIncDec(E, LV, true, true);
606   }
607 
608   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
609                                                   llvm::Value *InVal,
610                                                   bool IsInc);
611 
612   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
613                                        bool isInc, bool isPre);
614 
615 
616   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
617     if (isa<MemberPointerType>(E->getType())) // never sugared
618       return CGF.CGM.getMemberPointerConstant(E);
619 
620     return EmitLValue(E->getSubExpr()).getPointer(CGF);
621   }
622   Value *VisitUnaryDeref(const UnaryOperator *E) {
623     if (E->getType()->isVoidType())
624       return Visit(E->getSubExpr()); // the actual value should be unused
625     return EmitLoadOfLValue(E);
626   }
627   Value *VisitUnaryPlus(const UnaryOperator *E) {
628     // This differs from gcc, though, most likely due to a bug in gcc.
629     TestAndClearIgnoreResultAssign();
630     return Visit(E->getSubExpr());
631   }
632   Value *VisitUnaryMinus    (const UnaryOperator *E);
633   Value *VisitUnaryNot      (const UnaryOperator *E);
634   Value *VisitUnaryLNot     (const UnaryOperator *E);
635   Value *VisitUnaryReal     (const UnaryOperator *E);
636   Value *VisitUnaryImag     (const UnaryOperator *E);
637   Value *VisitUnaryExtension(const UnaryOperator *E) {
638     return Visit(E->getSubExpr());
639   }
640 
641   // C++
642   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
643     return EmitLoadOfLValue(E);
644   }
645   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
646     auto &Ctx = CGF.getContext();
647     APValue Evaluated =
648         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
649     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
650                                              SLE->getType());
651   }
652 
653   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
654     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
655     return Visit(DAE->getExpr());
656   }
657   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
658     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
659     return Visit(DIE->getExpr());
660   }
661   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
662     return CGF.LoadCXXThis();
663   }
664 
665   Value *VisitExprWithCleanups(ExprWithCleanups *E);
666   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
667     return CGF.EmitCXXNewExpr(E);
668   }
669   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
670     CGF.EmitCXXDeleteExpr(E);
671     return nullptr;
672   }
673 
674   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
675     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
676   }
677 
678   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
679     return Builder.getInt1(E->isSatisfied());
680   }
681 
682   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
683     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
684   }
685 
686   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
687     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
688   }
689 
690   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
691     // C++ [expr.pseudo]p1:
692     //   The result shall only be used as the operand for the function call
693     //   operator (), and the result of such a call has type void. The only
694     //   effect is the evaluation of the postfix-expression before the dot or
695     //   arrow.
696     CGF.EmitScalarExpr(E->getBase());
697     return nullptr;
698   }
699 
700   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
701     return EmitNullValue(E->getType());
702   }
703 
704   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
705     CGF.EmitCXXThrowExpr(E);
706     return nullptr;
707   }
708 
709   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
710     return Builder.getInt1(E->getValue());
711   }
712 
713   // Binary Operators.
714   Value *EmitMul(const BinOpInfo &Ops) {
715     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
716       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
717       case LangOptions::SOB_Defined:
718         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
719       case LangOptions::SOB_Undefined:
720         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
721           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
722         LLVM_FALLTHROUGH;
723       case LangOptions::SOB_Trapping:
724         if (CanElideOverflowCheck(CGF.getContext(), Ops))
725           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
726         return EmitOverflowCheckedBinOp(Ops);
727       }
728     }
729 
730     if (Ops.Ty->isUnsignedIntegerType() &&
731         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
732         !CanElideOverflowCheck(CGF.getContext(), Ops))
733       return EmitOverflowCheckedBinOp(Ops);
734 
735     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
736       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
737       return propagateFMFlags(V, Ops);
738     }
739     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
740   }
741   /// Create a binary op that checks for overflow.
742   /// Currently only supports +, - and *.
743   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
744 
745   // Check for undefined division and modulus behaviors.
746   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
747                                                   llvm::Value *Zero,bool isDiv);
748   // Common helper for getting how wide LHS of shift is.
749   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
750   Value *EmitDiv(const BinOpInfo &Ops);
751   Value *EmitRem(const BinOpInfo &Ops);
752   Value *EmitAdd(const BinOpInfo &Ops);
753   Value *EmitSub(const BinOpInfo &Ops);
754   Value *EmitShl(const BinOpInfo &Ops);
755   Value *EmitShr(const BinOpInfo &Ops);
756   Value *EmitAnd(const BinOpInfo &Ops) {
757     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
758   }
759   Value *EmitXor(const BinOpInfo &Ops) {
760     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
761   }
762   Value *EmitOr (const BinOpInfo &Ops) {
763     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
764   }
765 
766   // Helper functions for fixed point binary operations.
767   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
768 
769   BinOpInfo EmitBinOps(const BinaryOperator *E);
770   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
771                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
772                                   Value *&Result);
773 
774   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
775                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
776 
777   // Binary operators and binary compound assignment operators.
778 #define HANDLEBINOP(OP) \
779   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
780     return Emit ## OP(EmitBinOps(E));                                      \
781   }                                                                        \
782   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
783     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
784   }
785   HANDLEBINOP(Mul)
786   HANDLEBINOP(Div)
787   HANDLEBINOP(Rem)
788   HANDLEBINOP(Add)
789   HANDLEBINOP(Sub)
790   HANDLEBINOP(Shl)
791   HANDLEBINOP(Shr)
792   HANDLEBINOP(And)
793   HANDLEBINOP(Xor)
794   HANDLEBINOP(Or)
795 #undef HANDLEBINOP
796 
797   // Comparisons.
798   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
799                      llvm::CmpInst::Predicate SICmpOpc,
800                      llvm::CmpInst::Predicate FCmpOpc);
801 #define VISITCOMP(CODE, UI, SI, FP) \
802     Value *VisitBin##CODE(const BinaryOperator *E) { \
803       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
804                          llvm::FCmpInst::FP); }
805   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
806   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
807   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
808   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
809   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
810   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
811 #undef VISITCOMP
812 
813   Value *VisitBinAssign     (const BinaryOperator *E);
814 
815   Value *VisitBinLAnd       (const BinaryOperator *E);
816   Value *VisitBinLOr        (const BinaryOperator *E);
817   Value *VisitBinComma      (const BinaryOperator *E);
818 
819   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
820   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
821 
822   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
823     return Visit(E->getSemanticForm());
824   }
825 
826   // Other Operators.
827   Value *VisitBlockExpr(const BlockExpr *BE);
828   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
829   Value *VisitChooseExpr(ChooseExpr *CE);
830   Value *VisitVAArgExpr(VAArgExpr *VE);
831   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
832     return CGF.EmitObjCStringLiteral(E);
833   }
834   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
835     return CGF.EmitObjCBoxedExpr(E);
836   }
837   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
838     return CGF.EmitObjCArrayLiteral(E);
839   }
840   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
841     return CGF.EmitObjCDictionaryLiteral(E);
842   }
843   Value *VisitAsTypeExpr(AsTypeExpr *CE);
844   Value *VisitAtomicExpr(AtomicExpr *AE);
845 };
846 }  // end anonymous namespace.
847 
848 //===----------------------------------------------------------------------===//
849 //                                Utilities
850 //===----------------------------------------------------------------------===//
851 
852 /// EmitConversionToBool - Convert the specified expression value to a
853 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
854 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
855   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
856 
857   if (SrcType->isRealFloatingType())
858     return EmitFloatToBoolConversion(Src);
859 
860   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
861     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
862 
863   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
864          "Unknown scalar type to convert");
865 
866   if (isa<llvm::IntegerType>(Src->getType()))
867     return EmitIntToBoolConversion(Src);
868 
869   assert(isa<llvm::PointerType>(Src->getType()));
870   return EmitPointerToBoolConversion(Src, SrcType);
871 }
872 
873 void ScalarExprEmitter::EmitFloatConversionCheck(
874     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
875     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
876   assert(SrcType->isFloatingType() && "not a conversion from floating point");
877   if (!isa<llvm::IntegerType>(DstTy))
878     return;
879 
880   CodeGenFunction::SanitizerScope SanScope(&CGF);
881   using llvm::APFloat;
882   using llvm::APSInt;
883 
884   llvm::Value *Check = nullptr;
885   const llvm::fltSemantics &SrcSema =
886     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
887 
888   // Floating-point to integer. This has undefined behavior if the source is
889   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
890   // to an integer).
891   unsigned Width = CGF.getContext().getIntWidth(DstType);
892   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
893 
894   APSInt Min = APSInt::getMinValue(Width, Unsigned);
895   APFloat MinSrc(SrcSema, APFloat::uninitialized);
896   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
897       APFloat::opOverflow)
898     // Don't need an overflow check for lower bound. Just check for
899     // -Inf/NaN.
900     MinSrc = APFloat::getInf(SrcSema, true);
901   else
902     // Find the largest value which is too small to represent (before
903     // truncation toward zero).
904     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
905 
906   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
907   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
908   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
909       APFloat::opOverflow)
910     // Don't need an overflow check for upper bound. Just check for
911     // +Inf/NaN.
912     MaxSrc = APFloat::getInf(SrcSema, false);
913   else
914     // Find the smallest value which is too large to represent (before
915     // truncation toward zero).
916     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
917 
918   // If we're converting from __half, convert the range to float to match
919   // the type of src.
920   if (OrigSrcType->isHalfType()) {
921     const llvm::fltSemantics &Sema =
922       CGF.getContext().getFloatTypeSemantics(SrcType);
923     bool IsInexact;
924     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
925     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
926   }
927 
928   llvm::Value *GE =
929     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
930   llvm::Value *LE =
931     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
932   Check = Builder.CreateAnd(GE, LE);
933 
934   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
935                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
936                                   CGF.EmitCheckTypeDescriptor(DstType)};
937   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
938                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
939 }
940 
941 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
942 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
943 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
944                  std::pair<llvm::Value *, SanitizerMask>>
945 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
946                                  QualType DstType, CGBuilderTy &Builder) {
947   llvm::Type *SrcTy = Src->getType();
948   llvm::Type *DstTy = Dst->getType();
949   (void)DstTy; // Only used in assert()
950 
951   // This should be truncation of integral types.
952   assert(Src != Dst);
953   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
954   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
955          "non-integer llvm type");
956 
957   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
958   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
959 
960   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
961   // Else, it is a signed truncation.
962   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
963   SanitizerMask Mask;
964   if (!SrcSigned && !DstSigned) {
965     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
966     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
967   } else {
968     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
969     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
970   }
971 
972   llvm::Value *Check = nullptr;
973   // 1. Extend the truncated value back to the same width as the Src.
974   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
975   // 2. Equality-compare with the original source value
976   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
977   // If the comparison result is 'i1 false', then the truncation was lossy.
978   return std::make_pair(Kind, std::make_pair(Check, Mask));
979 }
980 
981 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
982     QualType SrcType, QualType DstType) {
983   return SrcType->isIntegerType() && DstType->isIntegerType();
984 }
985 
986 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
987                                                    Value *Dst, QualType DstType,
988                                                    SourceLocation Loc) {
989   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
990     return;
991 
992   // We only care about int->int conversions here.
993   // We ignore conversions to/from pointer and/or bool.
994   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
995                                                                        DstType))
996     return;
997 
998   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
999   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1000   // This must be truncation. Else we do not care.
1001   if (SrcBits <= DstBits)
1002     return;
1003 
1004   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1005 
1006   // If the integer sign change sanitizer is enabled,
1007   // and we are truncating from larger unsigned type to smaller signed type,
1008   // let that next sanitizer deal with it.
1009   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1010   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1011   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1012       (!SrcSigned && DstSigned))
1013     return;
1014 
1015   CodeGenFunction::SanitizerScope SanScope(&CGF);
1016 
1017   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1018             std::pair<llvm::Value *, SanitizerMask>>
1019       Check =
1020           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1021   // If the comparison result is 'i1 false', then the truncation was lossy.
1022 
1023   // Do we care about this type of truncation?
1024   if (!CGF.SanOpts.has(Check.second.second))
1025     return;
1026 
1027   llvm::Constant *StaticArgs[] = {
1028       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1029       CGF.EmitCheckTypeDescriptor(DstType),
1030       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1031   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1032                 {Src, Dst});
1033 }
1034 
1035 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1036 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1037 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1038                  std::pair<llvm::Value *, SanitizerMask>>
1039 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1040                                  QualType DstType, CGBuilderTy &Builder) {
1041   llvm::Type *SrcTy = Src->getType();
1042   llvm::Type *DstTy = Dst->getType();
1043 
1044   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1045          "non-integer llvm type");
1046 
1047   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1048   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1049   (void)SrcSigned; // Only used in assert()
1050   (void)DstSigned; // Only used in assert()
1051   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1052   unsigned DstBits = DstTy->getScalarSizeInBits();
1053   (void)SrcBits; // Only used in assert()
1054   (void)DstBits; // Only used in assert()
1055 
1056   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1057          "either the widths should be different, or the signednesses.");
1058 
1059   // NOTE: zero value is considered to be non-negative.
1060   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1061                                        const char *Name) -> Value * {
1062     // Is this value a signed type?
1063     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1064     llvm::Type *VTy = V->getType();
1065     if (!VSigned) {
1066       // If the value is unsigned, then it is never negative.
1067       // FIXME: can we encounter non-scalar VTy here?
1068       return llvm::ConstantInt::getFalse(VTy->getContext());
1069     }
1070     // Get the zero of the same type with which we will be comparing.
1071     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1072     // %V.isnegative = icmp slt %V, 0
1073     // I.e is %V *strictly* less than zero, does it have negative value?
1074     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1075                               llvm::Twine(Name) + "." + V->getName() +
1076                                   ".negativitycheck");
1077   };
1078 
1079   // 1. Was the old Value negative?
1080   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1081   // 2. Is the new Value negative?
1082   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1083   // 3. Now, was the 'negativity status' preserved during the conversion?
1084   //    NOTE: conversion from negative to zero is considered to change the sign.
1085   //    (We want to get 'false' when the conversion changed the sign)
1086   //    So we should just equality-compare the negativity statuses.
1087   llvm::Value *Check = nullptr;
1088   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1089   // If the comparison result is 'false', then the conversion changed the sign.
1090   return std::make_pair(
1091       ScalarExprEmitter::ICCK_IntegerSignChange,
1092       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1093 }
1094 
1095 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1096                                                    Value *Dst, QualType DstType,
1097                                                    SourceLocation Loc) {
1098   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1099     return;
1100 
1101   llvm::Type *SrcTy = Src->getType();
1102   llvm::Type *DstTy = Dst->getType();
1103 
1104   // We only care about int->int conversions here.
1105   // We ignore conversions to/from pointer and/or bool.
1106   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1107                                                                        DstType))
1108     return;
1109 
1110   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1111   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1112   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1113   unsigned DstBits = DstTy->getScalarSizeInBits();
1114 
1115   // Now, we do not need to emit the check in *all* of the cases.
1116   // We can avoid emitting it in some obvious cases where it would have been
1117   // dropped by the opt passes (instcombine) always anyways.
1118   // If it's a cast between effectively the same type, no check.
1119   // NOTE: this is *not* equivalent to checking the canonical types.
1120   if (SrcSigned == DstSigned && SrcBits == DstBits)
1121     return;
1122   // At least one of the values needs to have signed type.
1123   // If both are unsigned, then obviously, neither of them can be negative.
1124   if (!SrcSigned && !DstSigned)
1125     return;
1126   // If the conversion is to *larger* *signed* type, then no check is needed.
1127   // Because either sign-extension happens (so the sign will remain),
1128   // or zero-extension will happen (the sign bit will be zero.)
1129   if ((DstBits > SrcBits) && DstSigned)
1130     return;
1131   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1132       (SrcBits > DstBits) && SrcSigned) {
1133     // If the signed integer truncation sanitizer is enabled,
1134     // and this is a truncation from signed type, then no check is needed.
1135     // Because here sign change check is interchangeable with truncation check.
1136     return;
1137   }
1138   // That's it. We can't rule out any more cases with the data we have.
1139 
1140   CodeGenFunction::SanitizerScope SanScope(&CGF);
1141 
1142   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1143             std::pair<llvm::Value *, SanitizerMask>>
1144       Check;
1145 
1146   // Each of these checks needs to return 'false' when an issue was detected.
1147   ImplicitConversionCheckKind CheckKind;
1148   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1149   // So we can 'and' all the checks together, and still get 'false',
1150   // if at least one of the checks detected an issue.
1151 
1152   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1153   CheckKind = Check.first;
1154   Checks.emplace_back(Check.second);
1155 
1156   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1157       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1158     // If the signed integer truncation sanitizer was enabled,
1159     // and we are truncating from larger unsigned type to smaller signed type,
1160     // let's handle the case we skipped in that check.
1161     Check =
1162         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1163     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1164     Checks.emplace_back(Check.second);
1165     // If the comparison result is 'i1 false', then the truncation was lossy.
1166   }
1167 
1168   llvm::Constant *StaticArgs[] = {
1169       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1170       CGF.EmitCheckTypeDescriptor(DstType),
1171       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1172   // EmitCheck() will 'and' all the checks together.
1173   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1174                 {Src, Dst});
1175 }
1176 
1177 /// Emit a conversion from the specified type to the specified destination type,
1178 /// both of which are LLVM scalar types.
1179 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1180                                                QualType DstType,
1181                                                SourceLocation Loc,
1182                                                ScalarConversionOpts Opts) {
1183   // All conversions involving fixed point types should be handled by the
1184   // EmitFixedPoint family functions. This is done to prevent bloating up this
1185   // function more, and although fixed point numbers are represented by
1186   // integers, we do not want to follow any logic that assumes they should be
1187   // treated as integers.
1188   // TODO(leonardchan): When necessary, add another if statement checking for
1189   // conversions to fixed point types from other types.
1190   if (SrcType->isFixedPointType()) {
1191     if (DstType->isBooleanType())
1192       // It is important that we check this before checking if the dest type is
1193       // an integer because booleans are technically integer types.
1194       // We do not need to check the padding bit on unsigned types if unsigned
1195       // padding is enabled because overflow into this bit is undefined
1196       // behavior.
1197       return Builder.CreateIsNotNull(Src, "tobool");
1198     if (DstType->isFixedPointType() || DstType->isIntegerType())
1199       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1200 
1201     llvm_unreachable(
1202         "Unhandled scalar conversion from a fixed point type to another type.");
1203   } else if (DstType->isFixedPointType()) {
1204     if (SrcType->isIntegerType())
1205       // This also includes converting booleans and enums to fixed point types.
1206       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1207 
1208     llvm_unreachable(
1209         "Unhandled scalar conversion to a fixed point type from another type.");
1210   }
1211 
1212   QualType NoncanonicalSrcType = SrcType;
1213   QualType NoncanonicalDstType = DstType;
1214 
1215   SrcType = CGF.getContext().getCanonicalType(SrcType);
1216   DstType = CGF.getContext().getCanonicalType(DstType);
1217   if (SrcType == DstType) return Src;
1218 
1219   if (DstType->isVoidType()) return nullptr;
1220 
1221   llvm::Value *OrigSrc = Src;
1222   QualType OrigSrcType = SrcType;
1223   llvm::Type *SrcTy = Src->getType();
1224 
1225   // Handle conversions to bool first, they are special: comparisons against 0.
1226   if (DstType->isBooleanType())
1227     return EmitConversionToBool(Src, SrcType);
1228 
1229   llvm::Type *DstTy = ConvertType(DstType);
1230 
1231   // Cast from half through float if half isn't a native type.
1232   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1233     // Cast to FP using the intrinsic if the half type itself isn't supported.
1234     if (DstTy->isFloatingPointTy()) {
1235       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1236         return Builder.CreateCall(
1237             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1238             Src);
1239     } else {
1240       // Cast to other types through float, using either the intrinsic or FPExt,
1241       // depending on whether the half type itself is supported
1242       // (as opposed to operations on half, available with NativeHalfType).
1243       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1244         Src = Builder.CreateCall(
1245             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1246                                  CGF.CGM.FloatTy),
1247             Src);
1248       } else {
1249         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1250       }
1251       SrcType = CGF.getContext().FloatTy;
1252       SrcTy = CGF.FloatTy;
1253     }
1254   }
1255 
1256   // Ignore conversions like int -> uint.
1257   if (SrcTy == DstTy) {
1258     if (Opts.EmitImplicitIntegerSignChangeChecks)
1259       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1260                                  NoncanonicalDstType, Loc);
1261 
1262     return Src;
1263   }
1264 
1265   // Handle pointer conversions next: pointers can only be converted to/from
1266   // other pointers and integers. Check for pointer types in terms of LLVM, as
1267   // some native types (like Obj-C id) may map to a pointer type.
1268   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1269     // The source value may be an integer, or a pointer.
1270     if (isa<llvm::PointerType>(SrcTy))
1271       return Builder.CreateBitCast(Src, DstTy, "conv");
1272 
1273     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1274     // First, convert to the correct width so that we control the kind of
1275     // extension.
1276     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1277     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1278     llvm::Value* IntResult =
1279         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1280     // Then, cast to pointer.
1281     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1282   }
1283 
1284   if (isa<llvm::PointerType>(SrcTy)) {
1285     // Must be an ptr to int cast.
1286     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1287     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1288   }
1289 
1290   // A scalar can be splatted to an extended vector of the same element type
1291   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1292     // Sema should add casts to make sure that the source expression's type is
1293     // the same as the vector's element type (sans qualifiers)
1294     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1295                SrcType.getTypePtr() &&
1296            "Splatted expr doesn't match with vector element type?");
1297 
1298     // Splat the element across to all elements
1299     unsigned NumElements = DstTy->getVectorNumElements();
1300     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1301   }
1302 
1303   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1304     // Allow bitcast from vector to integer/fp of the same size.
1305     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1306     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1307     if (SrcSize == DstSize)
1308       return Builder.CreateBitCast(Src, DstTy, "conv");
1309 
1310     // Conversions between vectors of different sizes are not allowed except
1311     // when vectors of half are involved. Operations on storage-only half
1312     // vectors require promoting half vector operands to float vectors and
1313     // truncating the result, which is either an int or float vector, to a
1314     // short or half vector.
1315 
1316     // Source and destination are both expected to be vectors.
1317     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1318     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1319     (void)DstElementTy;
1320 
1321     assert(((SrcElementTy->isIntegerTy() &&
1322              DstElementTy->isIntegerTy()) ||
1323             (SrcElementTy->isFloatingPointTy() &&
1324              DstElementTy->isFloatingPointTy())) &&
1325            "unexpected conversion between a floating-point vector and an "
1326            "integer vector");
1327 
1328     // Truncate an i32 vector to an i16 vector.
1329     if (SrcElementTy->isIntegerTy())
1330       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1331 
1332     // Truncate a float vector to a half vector.
1333     if (SrcSize > DstSize)
1334       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1335 
1336     // Promote a half vector to a float vector.
1337     return Builder.CreateFPExt(Src, DstTy, "conv");
1338   }
1339 
1340   // Finally, we have the arithmetic types: real int/float.
1341   Value *Res = nullptr;
1342   llvm::Type *ResTy = DstTy;
1343 
1344   // An overflowing conversion has undefined behavior if either the source type
1345   // or the destination type is a floating-point type. However, we consider the
1346   // range of representable values for all floating-point types to be
1347   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1348   // floating-point type.
1349   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1350       OrigSrcType->isFloatingType())
1351     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1352                              Loc);
1353 
1354   // Cast to half through float if half isn't a native type.
1355   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1356     // Make sure we cast in a single step if from another FP type.
1357     if (SrcTy->isFloatingPointTy()) {
1358       // Use the intrinsic if the half type itself isn't supported
1359       // (as opposed to operations on half, available with NativeHalfType).
1360       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1361         return Builder.CreateCall(
1362             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1363       // If the half type is supported, just use an fptrunc.
1364       return Builder.CreateFPTrunc(Src, DstTy);
1365     }
1366     DstTy = CGF.FloatTy;
1367   }
1368 
1369   if (isa<llvm::IntegerType>(SrcTy)) {
1370     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1371     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1372       InputSigned = true;
1373     }
1374     if (isa<llvm::IntegerType>(DstTy))
1375       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1376     else if (InputSigned)
1377       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1378     else
1379       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1380   } else if (isa<llvm::IntegerType>(DstTy)) {
1381     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1382     if (DstType->isSignedIntegerOrEnumerationType())
1383       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1384     else
1385       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1386   } else {
1387     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1388            "Unknown real conversion");
1389     if (DstTy->getTypeID() < SrcTy->getTypeID())
1390       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1391     else
1392       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1393   }
1394 
1395   if (DstTy != ResTy) {
1396     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1397       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1398       Res = Builder.CreateCall(
1399         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1400         Res);
1401     } else {
1402       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1403     }
1404   }
1405 
1406   if (Opts.EmitImplicitIntegerTruncationChecks)
1407     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1408                                NoncanonicalDstType, Loc);
1409 
1410   if (Opts.EmitImplicitIntegerSignChangeChecks)
1411     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1412                                NoncanonicalDstType, Loc);
1413 
1414   return Res;
1415 }
1416 
1417 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1418                                                    QualType DstTy,
1419                                                    SourceLocation Loc) {
1420   FixedPointSemantics SrcFPSema =
1421       CGF.getContext().getFixedPointSemantics(SrcTy);
1422   FixedPointSemantics DstFPSema =
1423       CGF.getContext().getFixedPointSemantics(DstTy);
1424   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1425                                   DstTy->isIntegerType());
1426 }
1427 
1428 Value *ScalarExprEmitter::EmitFixedPointConversion(
1429     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1430     SourceLocation Loc, bool DstIsInteger) {
1431   using llvm::APInt;
1432   using llvm::ConstantInt;
1433   using llvm::Value;
1434 
1435   unsigned SrcWidth = SrcFPSema.getWidth();
1436   unsigned DstWidth = DstFPSema.getWidth();
1437   unsigned SrcScale = SrcFPSema.getScale();
1438   unsigned DstScale = DstFPSema.getScale();
1439   bool SrcIsSigned = SrcFPSema.isSigned();
1440   bool DstIsSigned = DstFPSema.isSigned();
1441 
1442   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1443 
1444   Value *Result = Src;
1445   unsigned ResultWidth = SrcWidth;
1446 
1447   // Downscale.
1448   if (DstScale < SrcScale) {
1449     // When converting to integers, we round towards zero. For negative numbers,
1450     // right shifting rounds towards negative infinity. In this case, we can
1451     // just round up before shifting.
1452     if (DstIsInteger && SrcIsSigned) {
1453       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1454       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1455       Value *LowBits = ConstantInt::get(
1456           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1457       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1458       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1459     }
1460 
1461     Result = SrcIsSigned
1462                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1463                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1464   }
1465 
1466   if (!DstFPSema.isSaturated()) {
1467     // Resize.
1468     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1469 
1470     // Upscale.
1471     if (DstScale > SrcScale)
1472       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1473   } else {
1474     // Adjust the number of fractional bits.
1475     if (DstScale > SrcScale) {
1476       // Compare to DstWidth to prevent resizing twice.
1477       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1478       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1479       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1480       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1481     }
1482 
1483     // Handle saturation.
1484     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1485     if (LessIntBits) {
1486       Value *Max = ConstantInt::get(
1487           CGF.getLLVMContext(),
1488           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1489       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1490                                    : Builder.CreateICmpUGT(Result, Max);
1491       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1492     }
1493     // Cannot overflow min to dest type if src is unsigned since all fixed
1494     // point types can cover the unsigned min of 0.
1495     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1496       Value *Min = ConstantInt::get(
1497           CGF.getLLVMContext(),
1498           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1499       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1500       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1501     }
1502 
1503     // Resize the integer part to get the final destination size.
1504     if (ResultWidth != DstWidth)
1505       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1506   }
1507   return Result;
1508 }
1509 
1510 /// Emit a conversion from the specified complex type to the specified
1511 /// destination type, where the destination type is an LLVM scalar type.
1512 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1513     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1514     SourceLocation Loc) {
1515   // Get the source element type.
1516   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1517 
1518   // Handle conversions to bool first, they are special: comparisons against 0.
1519   if (DstTy->isBooleanType()) {
1520     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1521     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1522     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1523     return Builder.CreateOr(Src.first, Src.second, "tobool");
1524   }
1525 
1526   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1527   // the imaginary part of the complex value is discarded and the value of the
1528   // real part is converted according to the conversion rules for the
1529   // corresponding real type.
1530   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1531 }
1532 
1533 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1534   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1535 }
1536 
1537 /// Emit a sanitization check for the given "binary" operation (which
1538 /// might actually be a unary increment which has been lowered to a binary
1539 /// operation). The check passes if all values in \p Checks (which are \c i1),
1540 /// are \c true.
1541 void ScalarExprEmitter::EmitBinOpCheck(
1542     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1543   assert(CGF.IsSanitizerScope);
1544   SanitizerHandler Check;
1545   SmallVector<llvm::Constant *, 4> StaticData;
1546   SmallVector<llvm::Value *, 2> DynamicData;
1547 
1548   BinaryOperatorKind Opcode = Info.Opcode;
1549   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1550     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1551 
1552   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1553   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1554   if (UO && UO->getOpcode() == UO_Minus) {
1555     Check = SanitizerHandler::NegateOverflow;
1556     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1557     DynamicData.push_back(Info.RHS);
1558   } else {
1559     if (BinaryOperator::isShiftOp(Opcode)) {
1560       // Shift LHS negative or too large, or RHS out of bounds.
1561       Check = SanitizerHandler::ShiftOutOfBounds;
1562       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1563       StaticData.push_back(
1564         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1565       StaticData.push_back(
1566         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1567     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1568       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1569       Check = SanitizerHandler::DivremOverflow;
1570       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1571     } else {
1572       // Arithmetic overflow (+, -, *).
1573       switch (Opcode) {
1574       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1575       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1576       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1577       default: llvm_unreachable("unexpected opcode for bin op check");
1578       }
1579       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1580     }
1581     DynamicData.push_back(Info.LHS);
1582     DynamicData.push_back(Info.RHS);
1583   }
1584 
1585   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1586 }
1587 
1588 //===----------------------------------------------------------------------===//
1589 //                            Visitor Methods
1590 //===----------------------------------------------------------------------===//
1591 
1592 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1593   CGF.ErrorUnsupported(E, "scalar expression");
1594   if (E->getType()->isVoidType())
1595     return nullptr;
1596   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1597 }
1598 
1599 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1600   // Vector Mask Case
1601   if (E->getNumSubExprs() == 2) {
1602     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1603     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1604     Value *Mask;
1605 
1606     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1607     unsigned LHSElts = LTy->getNumElements();
1608 
1609     Mask = RHS;
1610 
1611     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1612 
1613     // Mask off the high bits of each shuffle index.
1614     Value *MaskBits =
1615         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1616     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1617 
1618     // newv = undef
1619     // mask = mask & maskbits
1620     // for each elt
1621     //   n = extract mask i
1622     //   x = extract val n
1623     //   newv = insert newv, x, i
1624     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1625                                                   MTy->getNumElements());
1626     Value* NewV = llvm::UndefValue::get(RTy);
1627     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1628       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1629       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1630 
1631       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1632       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1633     }
1634     return NewV;
1635   }
1636 
1637   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1638   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1639 
1640   SmallVector<llvm::Constant*, 32> indices;
1641   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1642     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1643     // Check for -1 and output it as undef in the IR.
1644     if (Idx.isSigned() && Idx.isAllOnesValue())
1645       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1646     else
1647       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1648   }
1649 
1650   Value *SV = llvm::ConstantVector::get(indices);
1651   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1652 }
1653 
1654 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1655   QualType SrcType = E->getSrcExpr()->getType(),
1656            DstType = E->getType();
1657 
1658   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1659 
1660   SrcType = CGF.getContext().getCanonicalType(SrcType);
1661   DstType = CGF.getContext().getCanonicalType(DstType);
1662   if (SrcType == DstType) return Src;
1663 
1664   assert(SrcType->isVectorType() &&
1665          "ConvertVector source type must be a vector");
1666   assert(DstType->isVectorType() &&
1667          "ConvertVector destination type must be a vector");
1668 
1669   llvm::Type *SrcTy = Src->getType();
1670   llvm::Type *DstTy = ConvertType(DstType);
1671 
1672   // Ignore conversions like int -> uint.
1673   if (SrcTy == DstTy)
1674     return Src;
1675 
1676   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1677            DstEltType = DstType->castAs<VectorType>()->getElementType();
1678 
1679   assert(SrcTy->isVectorTy() &&
1680          "ConvertVector source IR type must be a vector");
1681   assert(DstTy->isVectorTy() &&
1682          "ConvertVector destination IR type must be a vector");
1683 
1684   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1685              *DstEltTy = DstTy->getVectorElementType();
1686 
1687   if (DstEltType->isBooleanType()) {
1688     assert((SrcEltTy->isFloatingPointTy() ||
1689             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1690 
1691     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1692     if (SrcEltTy->isFloatingPointTy()) {
1693       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1694     } else {
1695       return Builder.CreateICmpNE(Src, Zero, "tobool");
1696     }
1697   }
1698 
1699   // We have the arithmetic types: real int/float.
1700   Value *Res = nullptr;
1701 
1702   if (isa<llvm::IntegerType>(SrcEltTy)) {
1703     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1704     if (isa<llvm::IntegerType>(DstEltTy))
1705       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1706     else if (InputSigned)
1707       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1708     else
1709       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1710   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1711     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1712     if (DstEltType->isSignedIntegerOrEnumerationType())
1713       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1714     else
1715       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1716   } else {
1717     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1718            "Unknown real conversion");
1719     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1720       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1721     else
1722       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1723   }
1724 
1725   return Res;
1726 }
1727 
1728 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1729   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1730     CGF.EmitIgnoredExpr(E->getBase());
1731     return CGF.emitScalarConstant(Constant, E);
1732   } else {
1733     Expr::EvalResult Result;
1734     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1735       llvm::APSInt Value = Result.Val.getInt();
1736       CGF.EmitIgnoredExpr(E->getBase());
1737       return Builder.getInt(Value);
1738     }
1739   }
1740 
1741   return EmitLoadOfLValue(E);
1742 }
1743 
1744 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1745   TestAndClearIgnoreResultAssign();
1746 
1747   // Emit subscript expressions in rvalue context's.  For most cases, this just
1748   // loads the lvalue formed by the subscript expr.  However, we have to be
1749   // careful, because the base of a vector subscript is occasionally an rvalue,
1750   // so we can't get it as an lvalue.
1751   if (!E->getBase()->getType()->isVectorType())
1752     return EmitLoadOfLValue(E);
1753 
1754   // Handle the vector case.  The base must be a vector, the index must be an
1755   // integer value.
1756   Value *Base = Visit(E->getBase());
1757   Value *Idx  = Visit(E->getIdx());
1758   QualType IdxTy = E->getIdx()->getType();
1759 
1760   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1761     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1762 
1763   return Builder.CreateExtractElement(Base, Idx, "vecext");
1764 }
1765 
1766 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1767                                   unsigned Off, llvm::Type *I32Ty) {
1768   int MV = SVI->getMaskValue(Idx);
1769   if (MV == -1)
1770     return llvm::UndefValue::get(I32Ty);
1771   return llvm::ConstantInt::get(I32Ty, Off+MV);
1772 }
1773 
1774 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1775   if (C->getBitWidth() != 32) {
1776       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1777                                                     C->getZExtValue()) &&
1778              "Index operand too large for shufflevector mask!");
1779       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1780   }
1781   return C;
1782 }
1783 
1784 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1785   bool Ignore = TestAndClearIgnoreResultAssign();
1786   (void)Ignore;
1787   assert (Ignore == false && "init list ignored");
1788   unsigned NumInitElements = E->getNumInits();
1789 
1790   if (E->hadArrayRangeDesignator())
1791     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1792 
1793   llvm::VectorType *VType =
1794     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1795 
1796   if (!VType) {
1797     if (NumInitElements == 0) {
1798       // C++11 value-initialization for the scalar.
1799       return EmitNullValue(E->getType());
1800     }
1801     // We have a scalar in braces. Just use the first element.
1802     return Visit(E->getInit(0));
1803   }
1804 
1805   unsigned ResElts = VType->getNumElements();
1806 
1807   // Loop over initializers collecting the Value for each, and remembering
1808   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1809   // us to fold the shuffle for the swizzle into the shuffle for the vector
1810   // initializer, since LLVM optimizers generally do not want to touch
1811   // shuffles.
1812   unsigned CurIdx = 0;
1813   bool VIsUndefShuffle = false;
1814   llvm::Value *V = llvm::UndefValue::get(VType);
1815   for (unsigned i = 0; i != NumInitElements; ++i) {
1816     Expr *IE = E->getInit(i);
1817     Value *Init = Visit(IE);
1818     SmallVector<llvm::Constant*, 16> Args;
1819 
1820     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1821 
1822     // Handle scalar elements.  If the scalar initializer is actually one
1823     // element of a different vector of the same width, use shuffle instead of
1824     // extract+insert.
1825     if (!VVT) {
1826       if (isa<ExtVectorElementExpr>(IE)) {
1827         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1828 
1829         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1830           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1831           Value *LHS = nullptr, *RHS = nullptr;
1832           if (CurIdx == 0) {
1833             // insert into undef -> shuffle (src, undef)
1834             // shufflemask must use an i32
1835             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1836             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1837 
1838             LHS = EI->getVectorOperand();
1839             RHS = V;
1840             VIsUndefShuffle = true;
1841           } else if (VIsUndefShuffle) {
1842             // insert into undefshuffle && size match -> shuffle (v, src)
1843             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1844             for (unsigned j = 0; j != CurIdx; ++j)
1845               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1846             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1847             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1848 
1849             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1850             RHS = EI->getVectorOperand();
1851             VIsUndefShuffle = false;
1852           }
1853           if (!Args.empty()) {
1854             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1855             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1856             ++CurIdx;
1857             continue;
1858           }
1859         }
1860       }
1861       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1862                                       "vecinit");
1863       VIsUndefShuffle = false;
1864       ++CurIdx;
1865       continue;
1866     }
1867 
1868     unsigned InitElts = VVT->getNumElements();
1869 
1870     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1871     // input is the same width as the vector being constructed, generate an
1872     // optimized shuffle of the swizzle input into the result.
1873     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1874     if (isa<ExtVectorElementExpr>(IE)) {
1875       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1876       Value *SVOp = SVI->getOperand(0);
1877       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1878 
1879       if (OpTy->getNumElements() == ResElts) {
1880         for (unsigned j = 0; j != CurIdx; ++j) {
1881           // If the current vector initializer is a shuffle with undef, merge
1882           // this shuffle directly into it.
1883           if (VIsUndefShuffle) {
1884             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1885                                       CGF.Int32Ty));
1886           } else {
1887             Args.push_back(Builder.getInt32(j));
1888           }
1889         }
1890         for (unsigned j = 0, je = InitElts; j != je; ++j)
1891           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1892         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1893 
1894         if (VIsUndefShuffle)
1895           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1896 
1897         Init = SVOp;
1898       }
1899     }
1900 
1901     // Extend init to result vector length, and then shuffle its contribution
1902     // to the vector initializer into V.
1903     if (Args.empty()) {
1904       for (unsigned j = 0; j != InitElts; ++j)
1905         Args.push_back(Builder.getInt32(j));
1906       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1907       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1908       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1909                                          Mask, "vext");
1910 
1911       Args.clear();
1912       for (unsigned j = 0; j != CurIdx; ++j)
1913         Args.push_back(Builder.getInt32(j));
1914       for (unsigned j = 0; j != InitElts; ++j)
1915         Args.push_back(Builder.getInt32(j+Offset));
1916       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1917     }
1918 
1919     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1920     // merging subsequent shuffles into this one.
1921     if (CurIdx == 0)
1922       std::swap(V, Init);
1923     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1924     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1925     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1926     CurIdx += InitElts;
1927   }
1928 
1929   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1930   // Emit remaining default initializers.
1931   llvm::Type *EltTy = VType->getElementType();
1932 
1933   // Emit remaining default initializers
1934   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1935     Value *Idx = Builder.getInt32(CurIdx);
1936     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1937     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1938   }
1939   return V;
1940 }
1941 
1942 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1943   const Expr *E = CE->getSubExpr();
1944 
1945   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1946     return false;
1947 
1948   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1949     // We always assume that 'this' is never null.
1950     return false;
1951   }
1952 
1953   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1954     // And that glvalue casts are never null.
1955     if (ICE->getValueKind() != VK_RValue)
1956       return false;
1957   }
1958 
1959   return true;
1960 }
1961 
1962 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1963 // have to handle a more broad range of conversions than explicit casts, as they
1964 // handle things like function to ptr-to-function decay etc.
1965 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1966   Expr *E = CE->getSubExpr();
1967   QualType DestTy = CE->getType();
1968   CastKind Kind = CE->getCastKind();
1969 
1970   // These cases are generally not written to ignore the result of
1971   // evaluating their sub-expressions, so we clear this now.
1972   bool Ignored = TestAndClearIgnoreResultAssign();
1973 
1974   // Since almost all cast kinds apply to scalars, this switch doesn't have
1975   // a default case, so the compiler will warn on a missing case.  The cases
1976   // are in the same order as in the CastKind enum.
1977   switch (Kind) {
1978   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1979   case CK_BuiltinFnToFnPtr:
1980     llvm_unreachable("builtin functions are handled elsewhere");
1981 
1982   case CK_LValueBitCast:
1983   case CK_ObjCObjectLValueCast: {
1984     Address Addr = EmitLValue(E).getAddress(CGF);
1985     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1986     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1987     return EmitLoadOfLValue(LV, CE->getExprLoc());
1988   }
1989 
1990   case CK_LValueToRValueBitCast: {
1991     LValue SourceLVal = CGF.EmitLValue(E);
1992     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1993                                                 CGF.ConvertTypeForMem(DestTy));
1994     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1995     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1996     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1997   }
1998 
1999   case CK_CPointerToObjCPointerCast:
2000   case CK_BlockPointerToObjCPointerCast:
2001   case CK_AnyPointerToBlockPointerCast:
2002   case CK_BitCast: {
2003     Value *Src = Visit(const_cast<Expr*>(E));
2004     llvm::Type *SrcTy = Src->getType();
2005     llvm::Type *DstTy = ConvertType(DestTy);
2006     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2007         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2008       llvm_unreachable("wrong cast for pointers in different address spaces"
2009                        "(must be an address space cast)!");
2010     }
2011 
2012     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2013       if (auto PT = DestTy->getAs<PointerType>())
2014         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2015                                       /*MayBeNull=*/true,
2016                                       CodeGenFunction::CFITCK_UnrelatedCast,
2017                                       CE->getBeginLoc());
2018     }
2019 
2020     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2021       const QualType SrcType = E->getType();
2022 
2023       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2024         // Casting to pointer that could carry dynamic information (provided by
2025         // invariant.group) requires launder.
2026         Src = Builder.CreateLaunderInvariantGroup(Src);
2027       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2028         // Casting to pointer that does not carry dynamic information (provided
2029         // by invariant.group) requires stripping it.  Note that we don't do it
2030         // if the source could not be dynamic type and destination could be
2031         // dynamic because dynamic information is already laundered.  It is
2032         // because launder(strip(src)) == launder(src), so there is no need to
2033         // add extra strip before launder.
2034         Src = Builder.CreateStripInvariantGroup(Src);
2035       }
2036     }
2037 
2038     // Update heapallocsite metadata when there is an explicit cast.
2039     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2040       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2041           CGF.getDebugInfo()->
2042               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2043 
2044     return Builder.CreateBitCast(Src, DstTy);
2045   }
2046   case CK_AddressSpaceConversion: {
2047     Expr::EvalResult Result;
2048     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2049         Result.Val.isNullPointer()) {
2050       // If E has side effect, it is emitted even if its final result is a
2051       // null pointer. In that case, a DCE pass should be able to
2052       // eliminate the useless instructions emitted during translating E.
2053       if (Result.HasSideEffects)
2054         Visit(E);
2055       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2056           ConvertType(DestTy)), DestTy);
2057     }
2058     // Since target may map different address spaces in AST to the same address
2059     // space, an address space conversion may end up as a bitcast.
2060     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2061         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2062         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2063   }
2064   case CK_AtomicToNonAtomic:
2065   case CK_NonAtomicToAtomic:
2066   case CK_NoOp:
2067   case CK_UserDefinedConversion:
2068     return Visit(const_cast<Expr*>(E));
2069 
2070   case CK_BaseToDerived: {
2071     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2072     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2073 
2074     Address Base = CGF.EmitPointerWithAlignment(E);
2075     Address Derived =
2076       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2077                                    CE->path_begin(), CE->path_end(),
2078                                    CGF.ShouldNullCheckClassCastValue(CE));
2079 
2080     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2081     // performed and the object is not of the derived type.
2082     if (CGF.sanitizePerformTypeCheck())
2083       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2084                         Derived.getPointer(), DestTy->getPointeeType());
2085 
2086     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2087       CGF.EmitVTablePtrCheckForCast(
2088           DestTy->getPointeeType(), Derived.getPointer(),
2089           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2090           CE->getBeginLoc());
2091 
2092     return Derived.getPointer();
2093   }
2094   case CK_UncheckedDerivedToBase:
2095   case CK_DerivedToBase: {
2096     // The EmitPointerWithAlignment path does this fine; just discard
2097     // the alignment.
2098     return CGF.EmitPointerWithAlignment(CE).getPointer();
2099   }
2100 
2101   case CK_Dynamic: {
2102     Address V = CGF.EmitPointerWithAlignment(E);
2103     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2104     return CGF.EmitDynamicCast(V, DCE);
2105   }
2106 
2107   case CK_ArrayToPointerDecay:
2108     return CGF.EmitArrayToPointerDecay(E).getPointer();
2109   case CK_FunctionToPointerDecay:
2110     return EmitLValue(E).getPointer(CGF);
2111 
2112   case CK_NullToPointer:
2113     if (MustVisitNullValue(E))
2114       CGF.EmitIgnoredExpr(E);
2115 
2116     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2117                               DestTy);
2118 
2119   case CK_NullToMemberPointer: {
2120     if (MustVisitNullValue(E))
2121       CGF.EmitIgnoredExpr(E);
2122 
2123     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2124     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2125   }
2126 
2127   case CK_ReinterpretMemberPointer:
2128   case CK_BaseToDerivedMemberPointer:
2129   case CK_DerivedToBaseMemberPointer: {
2130     Value *Src = Visit(E);
2131 
2132     // Note that the AST doesn't distinguish between checked and
2133     // unchecked member pointer conversions, so we always have to
2134     // implement checked conversions here.  This is inefficient when
2135     // actual control flow may be required in order to perform the
2136     // check, which it is for data member pointers (but not member
2137     // function pointers on Itanium and ARM).
2138     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2139   }
2140 
2141   case CK_ARCProduceObject:
2142     return CGF.EmitARCRetainScalarExpr(E);
2143   case CK_ARCConsumeObject:
2144     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2145   case CK_ARCReclaimReturnedObject:
2146     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2147   case CK_ARCExtendBlockObject:
2148     return CGF.EmitARCExtendBlockObject(E);
2149 
2150   case CK_CopyAndAutoreleaseBlockObject:
2151     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2152 
2153   case CK_FloatingRealToComplex:
2154   case CK_FloatingComplexCast:
2155   case CK_IntegralRealToComplex:
2156   case CK_IntegralComplexCast:
2157   case CK_IntegralComplexToFloatingComplex:
2158   case CK_FloatingComplexToIntegralComplex:
2159   case CK_ConstructorConversion:
2160   case CK_ToUnion:
2161     llvm_unreachable("scalar cast to non-scalar value");
2162 
2163   case CK_LValueToRValue:
2164     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2165     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2166     return Visit(const_cast<Expr*>(E));
2167 
2168   case CK_IntegralToPointer: {
2169     Value *Src = Visit(const_cast<Expr*>(E));
2170 
2171     // First, convert to the correct width so that we control the kind of
2172     // extension.
2173     auto DestLLVMTy = ConvertType(DestTy);
2174     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2175     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2176     llvm::Value* IntResult =
2177       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2178 
2179     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2180 
2181     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2182       // Going from integer to pointer that could be dynamic requires reloading
2183       // dynamic information from invariant.group.
2184       if (DestTy.mayBeDynamicClass())
2185         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2186     }
2187     return IntToPtr;
2188   }
2189   case CK_PointerToIntegral: {
2190     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2191     auto *PtrExpr = Visit(E);
2192 
2193     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2194       const QualType SrcType = E->getType();
2195 
2196       // Casting to integer requires stripping dynamic information as it does
2197       // not carries it.
2198       if (SrcType.mayBeDynamicClass())
2199         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2200     }
2201 
2202     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2203   }
2204   case CK_ToVoid: {
2205     CGF.EmitIgnoredExpr(E);
2206     return nullptr;
2207   }
2208   case CK_VectorSplat: {
2209     llvm::Type *DstTy = ConvertType(DestTy);
2210     Value *Elt = Visit(const_cast<Expr*>(E));
2211     // Splat the element across to all elements
2212     unsigned NumElements = DstTy->getVectorNumElements();
2213     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2214   }
2215 
2216   case CK_FixedPointCast:
2217     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2218                                 CE->getExprLoc());
2219 
2220   case CK_FixedPointToBoolean:
2221     assert(E->getType()->isFixedPointType() &&
2222            "Expected src type to be fixed point type");
2223     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2224     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2225                                 CE->getExprLoc());
2226 
2227   case CK_FixedPointToIntegral:
2228     assert(E->getType()->isFixedPointType() &&
2229            "Expected src type to be fixed point type");
2230     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2231     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2232                                 CE->getExprLoc());
2233 
2234   case CK_IntegralToFixedPoint:
2235     assert(E->getType()->isIntegerType() &&
2236            "Expected src type to be an integer");
2237     assert(DestTy->isFixedPointType() &&
2238            "Expected dest type to be fixed point type");
2239     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2240                                 CE->getExprLoc());
2241 
2242   case CK_IntegralCast: {
2243     ScalarConversionOpts Opts;
2244     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2245       if (!ICE->isPartOfExplicitCast())
2246         Opts = ScalarConversionOpts(CGF.SanOpts);
2247     }
2248     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2249                                 CE->getExprLoc(), Opts);
2250   }
2251   case CK_IntegralToFloating:
2252   case CK_FloatingToIntegral:
2253   case CK_FloatingCast:
2254     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2255                                 CE->getExprLoc());
2256   case CK_BooleanToSignedIntegral: {
2257     ScalarConversionOpts Opts;
2258     Opts.TreatBooleanAsSigned = true;
2259     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2260                                 CE->getExprLoc(), Opts);
2261   }
2262   case CK_IntegralToBoolean:
2263     return EmitIntToBoolConversion(Visit(E));
2264   case CK_PointerToBoolean:
2265     return EmitPointerToBoolConversion(Visit(E), E->getType());
2266   case CK_FloatingToBoolean:
2267     return EmitFloatToBoolConversion(Visit(E));
2268   case CK_MemberPointerToBoolean: {
2269     llvm::Value *MemPtr = Visit(E);
2270     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2271     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2272   }
2273 
2274   case CK_FloatingComplexToReal:
2275   case CK_IntegralComplexToReal:
2276     return CGF.EmitComplexExpr(E, false, true).first;
2277 
2278   case CK_FloatingComplexToBoolean:
2279   case CK_IntegralComplexToBoolean: {
2280     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2281 
2282     // TODO: kill this function off, inline appropriate case here
2283     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2284                                          CE->getExprLoc());
2285   }
2286 
2287   case CK_ZeroToOCLOpaqueType: {
2288     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2289             DestTy->isOCLIntelSubgroupAVCType()) &&
2290            "CK_ZeroToOCLEvent cast on non-event type");
2291     return llvm::Constant::getNullValue(ConvertType(DestTy));
2292   }
2293 
2294   case CK_IntToOCLSampler:
2295     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2296 
2297   } // end of switch
2298 
2299   llvm_unreachable("unknown scalar cast");
2300 }
2301 
2302 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2303   CodeGenFunction::StmtExprEvaluation eval(CGF);
2304   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2305                                            !E->getType()->isVoidType());
2306   if (!RetAlloca.isValid())
2307     return nullptr;
2308   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2309                               E->getExprLoc());
2310 }
2311 
2312 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2313   CGF.enterFullExpression(E);
2314   CodeGenFunction::RunCleanupsScope Scope(CGF);
2315   Value *V = Visit(E->getSubExpr());
2316   // Defend against dominance problems caused by jumps out of expression
2317   // evaluation through the shared cleanup block.
2318   Scope.ForceCleanup({&V});
2319   return V;
2320 }
2321 
2322 //===----------------------------------------------------------------------===//
2323 //                             Unary Operators
2324 //===----------------------------------------------------------------------===//
2325 
2326 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2327                                            llvm::Value *InVal, bool IsInc) {
2328   BinOpInfo BinOp;
2329   BinOp.LHS = InVal;
2330   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2331   BinOp.Ty = E->getType();
2332   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2333   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2334   BinOp.E = E;
2335   return BinOp;
2336 }
2337 
2338 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2339     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2340   llvm::Value *Amount =
2341       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2342   StringRef Name = IsInc ? "inc" : "dec";
2343   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2344   case LangOptions::SOB_Defined:
2345     return Builder.CreateAdd(InVal, Amount, Name);
2346   case LangOptions::SOB_Undefined:
2347     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2348       return Builder.CreateNSWAdd(InVal, Amount, Name);
2349     LLVM_FALLTHROUGH;
2350   case LangOptions::SOB_Trapping:
2351     if (!E->canOverflow())
2352       return Builder.CreateNSWAdd(InVal, Amount, Name);
2353     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2354   }
2355   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2356 }
2357 
2358 llvm::Value *
2359 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2360                                            bool isInc, bool isPre) {
2361 
2362   QualType type = E->getSubExpr()->getType();
2363   llvm::PHINode *atomicPHI = nullptr;
2364   llvm::Value *value;
2365   llvm::Value *input;
2366 
2367   int amount = (isInc ? 1 : -1);
2368   bool isSubtraction = !isInc;
2369 
2370   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2371     type = atomicTy->getValueType();
2372     if (isInc && type->isBooleanType()) {
2373       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2374       if (isPre) {
2375         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2376             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2377         return Builder.getTrue();
2378       }
2379       // For atomic bool increment, we just store true and return it for
2380       // preincrement, do an atomic swap with true for postincrement
2381       return Builder.CreateAtomicRMW(
2382           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2383           llvm::AtomicOrdering::SequentiallyConsistent);
2384     }
2385     // Special case for atomic increment / decrement on integers, emit
2386     // atomicrmw instructions.  We skip this if we want to be doing overflow
2387     // checking, and fall into the slow path with the atomic cmpxchg loop.
2388     if (!type->isBooleanType() && type->isIntegerType() &&
2389         !(type->isUnsignedIntegerType() &&
2390           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2391         CGF.getLangOpts().getSignedOverflowBehavior() !=
2392             LangOptions::SOB_Trapping) {
2393       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2394         llvm::AtomicRMWInst::Sub;
2395       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2396         llvm::Instruction::Sub;
2397       llvm::Value *amt = CGF.EmitToMemory(
2398           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2399       llvm::Value *old =
2400           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2401                                   llvm::AtomicOrdering::SequentiallyConsistent);
2402       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2403     }
2404     value = EmitLoadOfLValue(LV, E->getExprLoc());
2405     input = value;
2406     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2407     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2408     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2409     value = CGF.EmitToMemory(value, type);
2410     Builder.CreateBr(opBB);
2411     Builder.SetInsertPoint(opBB);
2412     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2413     atomicPHI->addIncoming(value, startBB);
2414     value = atomicPHI;
2415   } else {
2416     value = EmitLoadOfLValue(LV, E->getExprLoc());
2417     input = value;
2418   }
2419 
2420   // Special case of integer increment that we have to check first: bool++.
2421   // Due to promotion rules, we get:
2422   //   bool++ -> bool = bool + 1
2423   //          -> bool = (int)bool + 1
2424   //          -> bool = ((int)bool + 1 != 0)
2425   // An interesting aspect of this is that increment is always true.
2426   // Decrement does not have this property.
2427   if (isInc && type->isBooleanType()) {
2428     value = Builder.getTrue();
2429 
2430   // Most common case by far: integer increment.
2431   } else if (type->isIntegerType()) {
2432     QualType promotedType;
2433     bool canPerformLossyDemotionCheck = false;
2434     if (type->isPromotableIntegerType()) {
2435       promotedType = CGF.getContext().getPromotedIntegerType(type);
2436       assert(promotedType != type && "Shouldn't promote to the same type.");
2437       canPerformLossyDemotionCheck = true;
2438       canPerformLossyDemotionCheck &=
2439           CGF.getContext().getCanonicalType(type) !=
2440           CGF.getContext().getCanonicalType(promotedType);
2441       canPerformLossyDemotionCheck &=
2442           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2443               type, promotedType);
2444       assert((!canPerformLossyDemotionCheck ||
2445               type->isSignedIntegerOrEnumerationType() ||
2446               promotedType->isSignedIntegerOrEnumerationType() ||
2447               ConvertType(type)->getScalarSizeInBits() ==
2448                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2449              "The following check expects that if we do promotion to different "
2450              "underlying canonical type, at least one of the types (either "
2451              "base or promoted) will be signed, or the bitwidths will match.");
2452     }
2453     if (CGF.SanOpts.hasOneOf(
2454             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2455         canPerformLossyDemotionCheck) {
2456       // While `x += 1` (for `x` with width less than int) is modeled as
2457       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2458       // ease; inc/dec with width less than int can't overflow because of
2459       // promotion rules, so we omit promotion+demotion, which means that we can
2460       // not catch lossy "demotion". Because we still want to catch these cases
2461       // when the sanitizer is enabled, we perform the promotion, then perform
2462       // the increment/decrement in the wider type, and finally
2463       // perform the demotion. This will catch lossy demotions.
2464 
2465       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2466       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2467       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2468       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2469       // emitted.
2470       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2471                                    ScalarConversionOpts(CGF.SanOpts));
2472 
2473       // Note that signed integer inc/dec with width less than int can't
2474       // overflow because of promotion rules; we're just eliding a few steps
2475       // here.
2476     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2477       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2478     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2479                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2480       value =
2481           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2482     } else {
2483       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2484       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2485     }
2486 
2487   // Next most common: pointer increment.
2488   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2489     QualType type = ptr->getPointeeType();
2490 
2491     // VLA types don't have constant size.
2492     if (const VariableArrayType *vla
2493           = CGF.getContext().getAsVariableArrayType(type)) {
2494       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2495       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2496       if (CGF.getLangOpts().isSignedOverflowDefined())
2497         value = Builder.CreateGEP(value, numElts, "vla.inc");
2498       else
2499         value = CGF.EmitCheckedInBoundsGEP(
2500             value, numElts, /*SignedIndices=*/false, isSubtraction,
2501             E->getExprLoc(), "vla.inc");
2502 
2503     // Arithmetic on function pointers (!) is just +-1.
2504     } else if (type->isFunctionType()) {
2505       llvm::Value *amt = Builder.getInt32(amount);
2506 
2507       value = CGF.EmitCastToVoidPtr(value);
2508       if (CGF.getLangOpts().isSignedOverflowDefined())
2509         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2510       else
2511         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2512                                            isSubtraction, E->getExprLoc(),
2513                                            "incdec.funcptr");
2514       value = Builder.CreateBitCast(value, input->getType());
2515 
2516     // For everything else, we can just do a simple increment.
2517     } else {
2518       llvm::Value *amt = Builder.getInt32(amount);
2519       if (CGF.getLangOpts().isSignedOverflowDefined())
2520         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2521       else
2522         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2523                                            isSubtraction, E->getExprLoc(),
2524                                            "incdec.ptr");
2525     }
2526 
2527   // Vector increment/decrement.
2528   } else if (type->isVectorType()) {
2529     if (type->hasIntegerRepresentation()) {
2530       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2531 
2532       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2533     } else {
2534       value = Builder.CreateFAdd(
2535                   value,
2536                   llvm::ConstantFP::get(value->getType(), amount),
2537                   isInc ? "inc" : "dec");
2538     }
2539 
2540   // Floating point.
2541   } else if (type->isRealFloatingType()) {
2542     // Add the inc/dec to the real part.
2543     llvm::Value *amt;
2544 
2545     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2546       // Another special case: half FP increment should be done via float
2547       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2548         value = Builder.CreateCall(
2549             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2550                                  CGF.CGM.FloatTy),
2551             input, "incdec.conv");
2552       } else {
2553         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2554       }
2555     }
2556 
2557     if (value->getType()->isFloatTy())
2558       amt = llvm::ConstantFP::get(VMContext,
2559                                   llvm::APFloat(static_cast<float>(amount)));
2560     else if (value->getType()->isDoubleTy())
2561       amt = llvm::ConstantFP::get(VMContext,
2562                                   llvm::APFloat(static_cast<double>(amount)));
2563     else {
2564       // Remaining types are Half, LongDouble or __float128. Convert from float.
2565       llvm::APFloat F(static_cast<float>(amount));
2566       bool ignored;
2567       const llvm::fltSemantics *FS;
2568       // Don't use getFloatTypeSemantics because Half isn't
2569       // necessarily represented using the "half" LLVM type.
2570       if (value->getType()->isFP128Ty())
2571         FS = &CGF.getTarget().getFloat128Format();
2572       else if (value->getType()->isHalfTy())
2573         FS = &CGF.getTarget().getHalfFormat();
2574       else
2575         FS = &CGF.getTarget().getLongDoubleFormat();
2576       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2577       amt = llvm::ConstantFP::get(VMContext, F);
2578     }
2579     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2580 
2581     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2582       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2583         value = Builder.CreateCall(
2584             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2585                                  CGF.CGM.FloatTy),
2586             value, "incdec.conv");
2587       } else {
2588         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2589       }
2590     }
2591 
2592   // Objective-C pointer types.
2593   } else {
2594     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2595     value = CGF.EmitCastToVoidPtr(value);
2596 
2597     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2598     if (!isInc) size = -size;
2599     llvm::Value *sizeValue =
2600       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2601 
2602     if (CGF.getLangOpts().isSignedOverflowDefined())
2603       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2604     else
2605       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2606                                          /*SignedIndices=*/false, isSubtraction,
2607                                          E->getExprLoc(), "incdec.objptr");
2608     value = Builder.CreateBitCast(value, input->getType());
2609   }
2610 
2611   if (atomicPHI) {
2612     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2613     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2614     auto Pair = CGF.EmitAtomicCompareExchange(
2615         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2616     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2617     llvm::Value *success = Pair.second;
2618     atomicPHI->addIncoming(old, curBlock);
2619     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2620     Builder.SetInsertPoint(contBB);
2621     return isPre ? value : input;
2622   }
2623 
2624   // Store the updated result through the lvalue.
2625   if (LV.isBitField())
2626     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2627   else
2628     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2629 
2630   // If this is a postinc, return the value read from memory, otherwise use the
2631   // updated value.
2632   return isPre ? value : input;
2633 }
2634 
2635 
2636 
2637 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2638   TestAndClearIgnoreResultAssign();
2639   Value *Op = Visit(E->getSubExpr());
2640 
2641   // Generate a unary FNeg for FP ops.
2642   if (Op->getType()->isFPOrFPVectorTy())
2643     return Builder.CreateFNeg(Op, "fneg");
2644 
2645   // Emit unary minus with EmitSub so we handle overflow cases etc.
2646   BinOpInfo BinOp;
2647   BinOp.RHS = Op;
2648   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2649   BinOp.Ty = E->getType();
2650   BinOp.Opcode = BO_Sub;
2651   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2652   BinOp.E = E;
2653   return EmitSub(BinOp);
2654 }
2655 
2656 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2657   TestAndClearIgnoreResultAssign();
2658   Value *Op = Visit(E->getSubExpr());
2659   return Builder.CreateNot(Op, "neg");
2660 }
2661 
2662 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2663   // Perform vector logical not on comparison with zero vector.
2664   if (E->getType()->isExtVectorType()) {
2665     Value *Oper = Visit(E->getSubExpr());
2666     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2667     Value *Result;
2668     if (Oper->getType()->isFPOrFPVectorTy())
2669       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2670     else
2671       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2672     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2673   }
2674 
2675   // Compare operand to zero.
2676   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2677 
2678   // Invert value.
2679   // TODO: Could dynamically modify easy computations here.  For example, if
2680   // the operand is an icmp ne, turn into icmp eq.
2681   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2682 
2683   // ZExt result to the expr type.
2684   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2685 }
2686 
2687 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2688   // Try folding the offsetof to a constant.
2689   Expr::EvalResult EVResult;
2690   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2691     llvm::APSInt Value = EVResult.Val.getInt();
2692     return Builder.getInt(Value);
2693   }
2694 
2695   // Loop over the components of the offsetof to compute the value.
2696   unsigned n = E->getNumComponents();
2697   llvm::Type* ResultType = ConvertType(E->getType());
2698   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2699   QualType CurrentType = E->getTypeSourceInfo()->getType();
2700   for (unsigned i = 0; i != n; ++i) {
2701     OffsetOfNode ON = E->getComponent(i);
2702     llvm::Value *Offset = nullptr;
2703     switch (ON.getKind()) {
2704     case OffsetOfNode::Array: {
2705       // Compute the index
2706       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2707       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2708       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2709       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2710 
2711       // Save the element type
2712       CurrentType =
2713           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2714 
2715       // Compute the element size
2716       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2717           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2718 
2719       // Multiply out to compute the result
2720       Offset = Builder.CreateMul(Idx, ElemSize);
2721       break;
2722     }
2723 
2724     case OffsetOfNode::Field: {
2725       FieldDecl *MemberDecl = ON.getField();
2726       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2727       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2728 
2729       // Compute the index of the field in its parent.
2730       unsigned i = 0;
2731       // FIXME: It would be nice if we didn't have to loop here!
2732       for (RecordDecl::field_iterator Field = RD->field_begin(),
2733                                       FieldEnd = RD->field_end();
2734            Field != FieldEnd; ++Field, ++i) {
2735         if (*Field == MemberDecl)
2736           break;
2737       }
2738       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2739 
2740       // Compute the offset to the field
2741       int64_t OffsetInt = RL.getFieldOffset(i) /
2742                           CGF.getContext().getCharWidth();
2743       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2744 
2745       // Save the element type.
2746       CurrentType = MemberDecl->getType();
2747       break;
2748     }
2749 
2750     case OffsetOfNode::Identifier:
2751       llvm_unreachable("dependent __builtin_offsetof");
2752 
2753     case OffsetOfNode::Base: {
2754       if (ON.getBase()->isVirtual()) {
2755         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2756         continue;
2757       }
2758 
2759       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2760       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2761 
2762       // Save the element type.
2763       CurrentType = ON.getBase()->getType();
2764 
2765       // Compute the offset to the base.
2766       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2767       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2768       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2769       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2770       break;
2771     }
2772     }
2773     Result = Builder.CreateAdd(Result, Offset);
2774   }
2775   return Result;
2776 }
2777 
2778 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2779 /// argument of the sizeof expression as an integer.
2780 Value *
2781 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2782                               const UnaryExprOrTypeTraitExpr *E) {
2783   QualType TypeToSize = E->getTypeOfArgument();
2784   if (E->getKind() == UETT_SizeOf) {
2785     if (const VariableArrayType *VAT =
2786           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2787       if (E->isArgumentType()) {
2788         // sizeof(type) - make sure to emit the VLA size.
2789         CGF.EmitVariablyModifiedType(TypeToSize);
2790       } else {
2791         // C99 6.5.3.4p2: If the argument is an expression of type
2792         // VLA, it is evaluated.
2793         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2794       }
2795 
2796       auto VlaSize = CGF.getVLASize(VAT);
2797       llvm::Value *size = VlaSize.NumElts;
2798 
2799       // Scale the number of non-VLA elements by the non-VLA element size.
2800       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2801       if (!eltSize.isOne())
2802         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2803 
2804       return size;
2805     }
2806   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2807     auto Alignment =
2808         CGF.getContext()
2809             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2810                 E->getTypeOfArgument()->getPointeeType()))
2811             .getQuantity();
2812     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2813   }
2814 
2815   // If this isn't sizeof(vla), the result must be constant; use the constant
2816   // folding logic so we don't have to duplicate it here.
2817   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2818 }
2819 
2820 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2821   Expr *Op = E->getSubExpr();
2822   if (Op->getType()->isAnyComplexType()) {
2823     // If it's an l-value, load through the appropriate subobject l-value.
2824     // Note that we have to ask E because Op might be an l-value that
2825     // this won't work for, e.g. an Obj-C property.
2826     if (E->isGLValue())
2827       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2828                                   E->getExprLoc()).getScalarVal();
2829 
2830     // Otherwise, calculate and project.
2831     return CGF.EmitComplexExpr(Op, false, true).first;
2832   }
2833 
2834   return Visit(Op);
2835 }
2836 
2837 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2838   Expr *Op = E->getSubExpr();
2839   if (Op->getType()->isAnyComplexType()) {
2840     // If it's an l-value, load through the appropriate subobject l-value.
2841     // Note that we have to ask E because Op might be an l-value that
2842     // this won't work for, e.g. an Obj-C property.
2843     if (Op->isGLValue())
2844       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2845                                   E->getExprLoc()).getScalarVal();
2846 
2847     // Otherwise, calculate and project.
2848     return CGF.EmitComplexExpr(Op, true, false).second;
2849   }
2850 
2851   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2852   // effects are evaluated, but not the actual value.
2853   if (Op->isGLValue())
2854     CGF.EmitLValue(Op);
2855   else
2856     CGF.EmitScalarExpr(Op, true);
2857   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2858 }
2859 
2860 //===----------------------------------------------------------------------===//
2861 //                           Binary Operators
2862 //===----------------------------------------------------------------------===//
2863 
2864 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2865   TestAndClearIgnoreResultAssign();
2866   BinOpInfo Result;
2867   Result.LHS = Visit(E->getLHS());
2868   Result.RHS = Visit(E->getRHS());
2869   Result.Ty  = E->getType();
2870   Result.Opcode = E->getOpcode();
2871   Result.FPFeatures = E->getFPFeatures();
2872   Result.E = E;
2873   return Result;
2874 }
2875 
2876 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2877                                               const CompoundAssignOperator *E,
2878                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2879                                                    Value *&Result) {
2880   QualType LHSTy = E->getLHS()->getType();
2881   BinOpInfo OpInfo;
2882 
2883   if (E->getComputationResultType()->isAnyComplexType())
2884     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2885 
2886   // Emit the RHS first.  __block variables need to have the rhs evaluated
2887   // first, plus this should improve codegen a little.
2888   OpInfo.RHS = Visit(E->getRHS());
2889   OpInfo.Ty = E->getComputationResultType();
2890   OpInfo.Opcode = E->getOpcode();
2891   OpInfo.FPFeatures = E->getFPFeatures();
2892   OpInfo.E = E;
2893   // Load/convert the LHS.
2894   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2895 
2896   llvm::PHINode *atomicPHI = nullptr;
2897   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2898     QualType type = atomicTy->getValueType();
2899     if (!type->isBooleanType() && type->isIntegerType() &&
2900         !(type->isUnsignedIntegerType() &&
2901           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2902         CGF.getLangOpts().getSignedOverflowBehavior() !=
2903             LangOptions::SOB_Trapping) {
2904       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2905       llvm::Instruction::BinaryOps Op;
2906       switch (OpInfo.Opcode) {
2907         // We don't have atomicrmw operands for *, %, /, <<, >>
2908         case BO_MulAssign: case BO_DivAssign:
2909         case BO_RemAssign:
2910         case BO_ShlAssign:
2911         case BO_ShrAssign:
2912           break;
2913         case BO_AddAssign:
2914           AtomicOp = llvm::AtomicRMWInst::Add;
2915           Op = llvm::Instruction::Add;
2916           break;
2917         case BO_SubAssign:
2918           AtomicOp = llvm::AtomicRMWInst::Sub;
2919           Op = llvm::Instruction::Sub;
2920           break;
2921         case BO_AndAssign:
2922           AtomicOp = llvm::AtomicRMWInst::And;
2923           Op = llvm::Instruction::And;
2924           break;
2925         case BO_XorAssign:
2926           AtomicOp = llvm::AtomicRMWInst::Xor;
2927           Op = llvm::Instruction::Xor;
2928           break;
2929         case BO_OrAssign:
2930           AtomicOp = llvm::AtomicRMWInst::Or;
2931           Op = llvm::Instruction::Or;
2932           break;
2933         default:
2934           llvm_unreachable("Invalid compound assignment type");
2935       }
2936       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2937         llvm::Value *Amt = CGF.EmitToMemory(
2938             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2939                                  E->getExprLoc()),
2940             LHSTy);
2941         Value *OldVal = Builder.CreateAtomicRMW(
2942             AtomicOp, LHSLV.getPointer(CGF), Amt,
2943             llvm::AtomicOrdering::SequentiallyConsistent);
2944 
2945         // Since operation is atomic, the result type is guaranteed to be the
2946         // same as the input in LLVM terms.
2947         Result = Builder.CreateBinOp(Op, OldVal, Amt);
2948         return LHSLV;
2949       }
2950     }
2951     // FIXME: For floating point types, we should be saving and restoring the
2952     // floating point environment in the loop.
2953     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2954     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2955     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2956     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2957     Builder.CreateBr(opBB);
2958     Builder.SetInsertPoint(opBB);
2959     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2960     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2961     OpInfo.LHS = atomicPHI;
2962   }
2963   else
2964     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2965 
2966   SourceLocation Loc = E->getExprLoc();
2967   OpInfo.LHS =
2968       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2969 
2970   // Expand the binary operator.
2971   Result = (this->*Func)(OpInfo);
2972 
2973   // Convert the result back to the LHS type,
2974   // potentially with Implicit Conversion sanitizer check.
2975   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2976                                 Loc, ScalarConversionOpts(CGF.SanOpts));
2977 
2978   if (atomicPHI) {
2979     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2980     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2981     auto Pair = CGF.EmitAtomicCompareExchange(
2982         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2983     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2984     llvm::Value *success = Pair.second;
2985     atomicPHI->addIncoming(old, curBlock);
2986     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2987     Builder.SetInsertPoint(contBB);
2988     return LHSLV;
2989   }
2990 
2991   // Store the result value into the LHS lvalue. Bit-fields are handled
2992   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2993   // 'An assignment expression has the value of the left operand after the
2994   // assignment...'.
2995   if (LHSLV.isBitField())
2996     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2997   else
2998     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2999 
3000   return LHSLV;
3001 }
3002 
3003 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3004                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3005   bool Ignore = TestAndClearIgnoreResultAssign();
3006   Value *RHS = nullptr;
3007   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3008 
3009   // If the result is clearly ignored, return now.
3010   if (Ignore)
3011     return nullptr;
3012 
3013   // The result of an assignment in C is the assigned r-value.
3014   if (!CGF.getLangOpts().CPlusPlus)
3015     return RHS;
3016 
3017   // If the lvalue is non-volatile, return the computed value of the assignment.
3018   if (!LHS.isVolatileQualified())
3019     return RHS;
3020 
3021   // Otherwise, reload the value.
3022   return EmitLoadOfLValue(LHS, E->getExprLoc());
3023 }
3024 
3025 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3026     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3027   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3028 
3029   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3030     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3031                                     SanitizerKind::IntegerDivideByZero));
3032   }
3033 
3034   const auto *BO = cast<BinaryOperator>(Ops.E);
3035   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3036       Ops.Ty->hasSignedIntegerRepresentation() &&
3037       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3038       Ops.mayHaveIntegerOverflow()) {
3039     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3040 
3041     llvm::Value *IntMin =
3042       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3043     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3044 
3045     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3046     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3047     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3048     Checks.push_back(
3049         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3050   }
3051 
3052   if (Checks.size() > 0)
3053     EmitBinOpCheck(Checks, Ops);
3054 }
3055 
3056 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3057   {
3058     CodeGenFunction::SanitizerScope SanScope(&CGF);
3059     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3060          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3061         Ops.Ty->isIntegerType() &&
3062         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3063       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3064       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3065     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3066                Ops.Ty->isRealFloatingType() &&
3067                Ops.mayHaveFloatDivisionByZero()) {
3068       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3069       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3070       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3071                      Ops);
3072     }
3073   }
3074 
3075   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3076     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3077     if (CGF.getLangOpts().OpenCL &&
3078         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3079       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3080       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3081       // build option allows an application to specify that single precision
3082       // floating-point divide (x/y and 1/x) and sqrt used in the program
3083       // source are correctly rounded.
3084       llvm::Type *ValTy = Val->getType();
3085       if (ValTy->isFloatTy() ||
3086           (isa<llvm::VectorType>(ValTy) &&
3087            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3088         CGF.SetFPAccuracy(Val, 2.5);
3089     }
3090     return Val;
3091   }
3092   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3093     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3094   else
3095     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3096 }
3097 
3098 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3099   // Rem in C can't be a floating point type: C99 6.5.5p2.
3100   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3101        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3102       Ops.Ty->isIntegerType() &&
3103       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3104     CodeGenFunction::SanitizerScope SanScope(&CGF);
3105     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3106     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3107   }
3108 
3109   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3110     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3111   else
3112     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3113 }
3114 
3115 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3116   unsigned IID;
3117   unsigned OpID = 0;
3118 
3119   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3120   switch (Ops.Opcode) {
3121   case BO_Add:
3122   case BO_AddAssign:
3123     OpID = 1;
3124     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3125                      llvm::Intrinsic::uadd_with_overflow;
3126     break;
3127   case BO_Sub:
3128   case BO_SubAssign:
3129     OpID = 2;
3130     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3131                      llvm::Intrinsic::usub_with_overflow;
3132     break;
3133   case BO_Mul:
3134   case BO_MulAssign:
3135     OpID = 3;
3136     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3137                      llvm::Intrinsic::umul_with_overflow;
3138     break;
3139   default:
3140     llvm_unreachable("Unsupported operation for overflow detection");
3141   }
3142   OpID <<= 1;
3143   if (isSigned)
3144     OpID |= 1;
3145 
3146   CodeGenFunction::SanitizerScope SanScope(&CGF);
3147   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3148 
3149   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3150 
3151   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3152   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3153   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3154 
3155   // Handle overflow with llvm.trap if no custom handler has been specified.
3156   const std::string *handlerName =
3157     &CGF.getLangOpts().OverflowHandler;
3158   if (handlerName->empty()) {
3159     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3160     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3161     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3162       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3163       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3164                               : SanitizerKind::UnsignedIntegerOverflow;
3165       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3166     } else
3167       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3168     return result;
3169   }
3170 
3171   // Branch in case of overflow.
3172   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3173   llvm::BasicBlock *continueBB =
3174       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3175   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3176 
3177   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3178 
3179   // If an overflow handler is set, then we want to call it and then use its
3180   // result, if it returns.
3181   Builder.SetInsertPoint(overflowBB);
3182 
3183   // Get the overflow handler.
3184   llvm::Type *Int8Ty = CGF.Int8Ty;
3185   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3186   llvm::FunctionType *handlerTy =
3187       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3188   llvm::FunctionCallee handler =
3189       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3190 
3191   // Sign extend the args to 64-bit, so that we can use the same handler for
3192   // all types of overflow.
3193   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3194   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3195 
3196   // Call the handler with the two arguments, the operation, and the size of
3197   // the result.
3198   llvm::Value *handlerArgs[] = {
3199     lhs,
3200     rhs,
3201     Builder.getInt8(OpID),
3202     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3203   };
3204   llvm::Value *handlerResult =
3205     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3206 
3207   // Truncate the result back to the desired size.
3208   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3209   Builder.CreateBr(continueBB);
3210 
3211   Builder.SetInsertPoint(continueBB);
3212   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3213   phi->addIncoming(result, initialBB);
3214   phi->addIncoming(handlerResult, overflowBB);
3215 
3216   return phi;
3217 }
3218 
3219 /// Emit pointer + index arithmetic.
3220 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3221                                     const BinOpInfo &op,
3222                                     bool isSubtraction) {
3223   // Must have binary (not unary) expr here.  Unary pointer
3224   // increment/decrement doesn't use this path.
3225   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3226 
3227   Value *pointer = op.LHS;
3228   Expr *pointerOperand = expr->getLHS();
3229   Value *index = op.RHS;
3230   Expr *indexOperand = expr->getRHS();
3231 
3232   // In a subtraction, the LHS is always the pointer.
3233   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3234     std::swap(pointer, index);
3235     std::swap(pointerOperand, indexOperand);
3236   }
3237 
3238   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3239 
3240   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3241   auto &DL = CGF.CGM.getDataLayout();
3242   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3243 
3244   // Some versions of glibc and gcc use idioms (particularly in their malloc
3245   // routines) that add a pointer-sized integer (known to be a pointer value)
3246   // to a null pointer in order to cast the value back to an integer or as
3247   // part of a pointer alignment algorithm.  This is undefined behavior, but
3248   // we'd like to be able to compile programs that use it.
3249   //
3250   // Normally, we'd generate a GEP with a null-pointer base here in response
3251   // to that code, but it's also UB to dereference a pointer created that
3252   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3253   // generate a direct cast of the integer value to a pointer.
3254   //
3255   // The idiom (p = nullptr + N) is not met if any of the following are true:
3256   //
3257   //   The operation is subtraction.
3258   //   The index is not pointer-sized.
3259   //   The pointer type is not byte-sized.
3260   //
3261   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3262                                                        op.Opcode,
3263                                                        expr->getLHS(),
3264                                                        expr->getRHS()))
3265     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3266 
3267   if (width != DL.getTypeSizeInBits(PtrTy)) {
3268     // Zero-extend or sign-extend the pointer value according to
3269     // whether the index is signed or not.
3270     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3271                                       "idx.ext");
3272   }
3273 
3274   // If this is subtraction, negate the index.
3275   if (isSubtraction)
3276     index = CGF.Builder.CreateNeg(index, "idx.neg");
3277 
3278   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3279     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3280                         /*Accessed*/ false);
3281 
3282   const PointerType *pointerType
3283     = pointerOperand->getType()->getAs<PointerType>();
3284   if (!pointerType) {
3285     QualType objectType = pointerOperand->getType()
3286                                         ->castAs<ObjCObjectPointerType>()
3287                                         ->getPointeeType();
3288     llvm::Value *objectSize
3289       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3290 
3291     index = CGF.Builder.CreateMul(index, objectSize);
3292 
3293     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3294     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3295     return CGF.Builder.CreateBitCast(result, pointer->getType());
3296   }
3297 
3298   QualType elementType = pointerType->getPointeeType();
3299   if (const VariableArrayType *vla
3300         = CGF.getContext().getAsVariableArrayType(elementType)) {
3301     // The element count here is the total number of non-VLA elements.
3302     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3303 
3304     // Effectively, the multiply by the VLA size is part of the GEP.
3305     // GEP indexes are signed, and scaling an index isn't permitted to
3306     // signed-overflow, so we use the same semantics for our explicit
3307     // multiply.  We suppress this if overflow is not undefined behavior.
3308     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3309       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3310       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3311     } else {
3312       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3313       pointer =
3314           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3315                                      op.E->getExprLoc(), "add.ptr");
3316     }
3317     return pointer;
3318   }
3319 
3320   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3321   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3322   // future proof.
3323   if (elementType->isVoidType() || elementType->isFunctionType()) {
3324     Value *result = CGF.EmitCastToVoidPtr(pointer);
3325     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3326     return CGF.Builder.CreateBitCast(result, pointer->getType());
3327   }
3328 
3329   if (CGF.getLangOpts().isSignedOverflowDefined())
3330     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3331 
3332   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3333                                     op.E->getExprLoc(), "add.ptr");
3334 }
3335 
3336 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3337 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3338 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3339 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3340 // efficient operations.
3341 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3342                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3343                            bool negMul, bool negAdd) {
3344   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3345 
3346   Value *MulOp0 = MulOp->getOperand(0);
3347   Value *MulOp1 = MulOp->getOperand(1);
3348   if (negMul) {
3349     MulOp0 =
3350       Builder.CreateFSub(
3351         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3352         "neg");
3353   } else if (negAdd) {
3354     Addend =
3355       Builder.CreateFSub(
3356         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3357         "neg");
3358   }
3359 
3360   Value *FMulAdd = Builder.CreateCall(
3361       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3362       {MulOp0, MulOp1, Addend});
3363    MulOp->eraseFromParent();
3364 
3365    return FMulAdd;
3366 }
3367 
3368 // Check whether it would be legal to emit an fmuladd intrinsic call to
3369 // represent op and if so, build the fmuladd.
3370 //
3371 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3372 // Does NOT check the type of the operation - it's assumed that this function
3373 // will be called from contexts where it's known that the type is contractable.
3374 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3375                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3376                          bool isSub=false) {
3377 
3378   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3379           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3380          "Only fadd/fsub can be the root of an fmuladd.");
3381 
3382   // Check whether this op is marked as fusable.
3383   if (!op.FPFeatures.allowFPContractWithinStatement())
3384     return nullptr;
3385 
3386   // We have a potentially fusable op. Look for a mul on one of the operands.
3387   // Also, make sure that the mul result isn't used directly. In that case,
3388   // there's no point creating a muladd operation.
3389   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3390     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3391         LHSBinOp->use_empty())
3392       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3393   }
3394   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3395     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3396         RHSBinOp->use_empty())
3397       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3398   }
3399 
3400   return nullptr;
3401 }
3402 
3403 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3404   if (op.LHS->getType()->isPointerTy() ||
3405       op.RHS->getType()->isPointerTy())
3406     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3407 
3408   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3409     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3410     case LangOptions::SOB_Defined:
3411       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3412     case LangOptions::SOB_Undefined:
3413       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3414         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3415       LLVM_FALLTHROUGH;
3416     case LangOptions::SOB_Trapping:
3417       if (CanElideOverflowCheck(CGF.getContext(), op))
3418         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3419       return EmitOverflowCheckedBinOp(op);
3420     }
3421   }
3422 
3423   if (op.Ty->isUnsignedIntegerType() &&
3424       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3425       !CanElideOverflowCheck(CGF.getContext(), op))
3426     return EmitOverflowCheckedBinOp(op);
3427 
3428   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3429     // Try to form an fmuladd.
3430     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3431       return FMulAdd;
3432 
3433     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3434     return propagateFMFlags(V, op);
3435   }
3436 
3437   if (op.isFixedPointBinOp())
3438     return EmitFixedPointBinOp(op);
3439 
3440   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3441 }
3442 
3443 /// The resulting value must be calculated with exact precision, so the operands
3444 /// may not be the same type.
3445 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3446   using llvm::APSInt;
3447   using llvm::ConstantInt;
3448 
3449   const auto *BinOp = cast<BinaryOperator>(op.E);
3450 
3451   // The result is a fixed point type and at least one of the operands is fixed
3452   // point while the other is either fixed point or an int. This resulting type
3453   // should be determined by Sema::handleFixedPointConversions().
3454   QualType ResultTy = op.Ty;
3455   QualType LHSTy = BinOp->getLHS()->getType();
3456   QualType RHSTy = BinOp->getRHS()->getType();
3457   ASTContext &Ctx = CGF.getContext();
3458   Value *LHS = op.LHS;
3459   Value *RHS = op.RHS;
3460 
3461   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3462   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3463   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3464   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3465 
3466   // Convert the operands to the full precision type.
3467   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3468                                             BinOp->getExprLoc());
3469   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3470                                             BinOp->getExprLoc());
3471 
3472   // Perform the actual addition.
3473   Value *Result;
3474   switch (BinOp->getOpcode()) {
3475   case BO_Add: {
3476     if (ResultFixedSema.isSaturated()) {
3477       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3478                                     ? llvm::Intrinsic::sadd_sat
3479                                     : llvm::Intrinsic::uadd_sat;
3480       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3481     } else {
3482       Result = Builder.CreateAdd(FullLHS, FullRHS);
3483     }
3484     break;
3485   }
3486   case BO_Sub: {
3487     if (ResultFixedSema.isSaturated()) {
3488       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3489                                     ? llvm::Intrinsic::ssub_sat
3490                                     : llvm::Intrinsic::usub_sat;
3491       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3492     } else {
3493       Result = Builder.CreateSub(FullLHS, FullRHS);
3494     }
3495     break;
3496   }
3497   case BO_LT:
3498     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3499                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3500   case BO_GT:
3501     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3502                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3503   case BO_LE:
3504     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3505                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3506   case BO_GE:
3507     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3508                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3509   case BO_EQ:
3510     // For equality operations, we assume any padding bits on unsigned types are
3511     // zero'd out. They could be overwritten through non-saturating operations
3512     // that cause overflow, but this leads to undefined behavior.
3513     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3514   case BO_NE:
3515     return Builder.CreateICmpNE(FullLHS, FullRHS);
3516   case BO_Mul:
3517   case BO_Div:
3518   case BO_Shl:
3519   case BO_Shr:
3520   case BO_Cmp:
3521   case BO_LAnd:
3522   case BO_LOr:
3523   case BO_MulAssign:
3524   case BO_DivAssign:
3525   case BO_AddAssign:
3526   case BO_SubAssign:
3527   case BO_ShlAssign:
3528   case BO_ShrAssign:
3529     llvm_unreachable("Found unimplemented fixed point binary operation");
3530   case BO_PtrMemD:
3531   case BO_PtrMemI:
3532   case BO_Rem:
3533   case BO_Xor:
3534   case BO_And:
3535   case BO_Or:
3536   case BO_Assign:
3537   case BO_RemAssign:
3538   case BO_AndAssign:
3539   case BO_XorAssign:
3540   case BO_OrAssign:
3541   case BO_Comma:
3542     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3543   }
3544 
3545   // Convert to the result type.
3546   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3547                                   BinOp->getExprLoc());
3548 }
3549 
3550 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3551   // The LHS is always a pointer if either side is.
3552   if (!op.LHS->getType()->isPointerTy()) {
3553     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3554       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3555       case LangOptions::SOB_Defined:
3556         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3557       case LangOptions::SOB_Undefined:
3558         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3559           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3560         LLVM_FALLTHROUGH;
3561       case LangOptions::SOB_Trapping:
3562         if (CanElideOverflowCheck(CGF.getContext(), op))
3563           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3564         return EmitOverflowCheckedBinOp(op);
3565       }
3566     }
3567 
3568     if (op.Ty->isUnsignedIntegerType() &&
3569         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3570         !CanElideOverflowCheck(CGF.getContext(), op))
3571       return EmitOverflowCheckedBinOp(op);
3572 
3573     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3574       // Try to form an fmuladd.
3575       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3576         return FMulAdd;
3577       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3578       return propagateFMFlags(V, op);
3579     }
3580 
3581     if (op.isFixedPointBinOp())
3582       return EmitFixedPointBinOp(op);
3583 
3584     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3585   }
3586 
3587   // If the RHS is not a pointer, then we have normal pointer
3588   // arithmetic.
3589   if (!op.RHS->getType()->isPointerTy())
3590     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3591 
3592   // Otherwise, this is a pointer subtraction.
3593 
3594   // Do the raw subtraction part.
3595   llvm::Value *LHS
3596     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3597   llvm::Value *RHS
3598     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3599   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3600 
3601   // Okay, figure out the element size.
3602   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3603   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3604 
3605   llvm::Value *divisor = nullptr;
3606 
3607   // For a variable-length array, this is going to be non-constant.
3608   if (const VariableArrayType *vla
3609         = CGF.getContext().getAsVariableArrayType(elementType)) {
3610     auto VlaSize = CGF.getVLASize(vla);
3611     elementType = VlaSize.Type;
3612     divisor = VlaSize.NumElts;
3613 
3614     // Scale the number of non-VLA elements by the non-VLA element size.
3615     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3616     if (!eltSize.isOne())
3617       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3618 
3619   // For everything elese, we can just compute it, safe in the
3620   // assumption that Sema won't let anything through that we can't
3621   // safely compute the size of.
3622   } else {
3623     CharUnits elementSize;
3624     // Handle GCC extension for pointer arithmetic on void* and
3625     // function pointer types.
3626     if (elementType->isVoidType() || elementType->isFunctionType())
3627       elementSize = CharUnits::One();
3628     else
3629       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3630 
3631     // Don't even emit the divide for element size of 1.
3632     if (elementSize.isOne())
3633       return diffInChars;
3634 
3635     divisor = CGF.CGM.getSize(elementSize);
3636   }
3637 
3638   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3639   // pointer difference in C is only defined in the case where both operands
3640   // are pointing to elements of an array.
3641   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3642 }
3643 
3644 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3645   llvm::IntegerType *Ty;
3646   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3647     Ty = cast<llvm::IntegerType>(VT->getElementType());
3648   else
3649     Ty = cast<llvm::IntegerType>(LHS->getType());
3650   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3651 }
3652 
3653 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3654   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3655   // RHS to the same size as the LHS.
3656   Value *RHS = Ops.RHS;
3657   if (Ops.LHS->getType() != RHS->getType())
3658     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3659 
3660   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3661                       Ops.Ty->hasSignedIntegerRepresentation() &&
3662                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3663                       !CGF.getLangOpts().CPlusPlus2a;
3664   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3665   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3666   if (CGF.getLangOpts().OpenCL)
3667     RHS =
3668         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3669   else if ((SanitizeBase || SanitizeExponent) &&
3670            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3671     CodeGenFunction::SanitizerScope SanScope(&CGF);
3672     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3673     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3674     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3675 
3676     if (SanitizeExponent) {
3677       Checks.push_back(
3678           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3679     }
3680 
3681     if (SanitizeBase) {
3682       // Check whether we are shifting any non-zero bits off the top of the
3683       // integer. We only emit this check if exponent is valid - otherwise
3684       // instructions below will have undefined behavior themselves.
3685       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3686       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3687       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3688       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3689       llvm::Value *PromotedWidthMinusOne =
3690           (RHS == Ops.RHS) ? WidthMinusOne
3691                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3692       CGF.EmitBlock(CheckShiftBase);
3693       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3694           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3695                                      /*NUW*/ true, /*NSW*/ true),
3696           "shl.check");
3697       if (CGF.getLangOpts().CPlusPlus) {
3698         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3699         // Under C++11's rules, shifting a 1 bit into the sign bit is
3700         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3701         // define signed left shifts, so we use the C99 and C++11 rules there).
3702         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3703         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3704       }
3705       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3706       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3707       CGF.EmitBlock(Cont);
3708       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3709       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3710       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3711       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3712     }
3713 
3714     assert(!Checks.empty());
3715     EmitBinOpCheck(Checks, Ops);
3716   }
3717 
3718   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3719 }
3720 
3721 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3722   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3723   // RHS to the same size as the LHS.
3724   Value *RHS = Ops.RHS;
3725   if (Ops.LHS->getType() != RHS->getType())
3726     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3727 
3728   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3729   if (CGF.getLangOpts().OpenCL)
3730     RHS =
3731         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3732   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3733            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3734     CodeGenFunction::SanitizerScope SanScope(&CGF);
3735     llvm::Value *Valid =
3736         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3737     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3738   }
3739 
3740   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3741     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3742   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3743 }
3744 
3745 enum IntrinsicType { VCMPEQ, VCMPGT };
3746 // return corresponding comparison intrinsic for given vector type
3747 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3748                                         BuiltinType::Kind ElemKind) {
3749   switch (ElemKind) {
3750   default: llvm_unreachable("unexpected element type");
3751   case BuiltinType::Char_U:
3752   case BuiltinType::UChar:
3753     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3754                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3755   case BuiltinType::Char_S:
3756   case BuiltinType::SChar:
3757     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3758                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3759   case BuiltinType::UShort:
3760     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3761                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3762   case BuiltinType::Short:
3763     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3764                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3765   case BuiltinType::UInt:
3766     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3767                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3768   case BuiltinType::Int:
3769     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3770                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3771   case BuiltinType::ULong:
3772   case BuiltinType::ULongLong:
3773     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3774                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3775   case BuiltinType::Long:
3776   case BuiltinType::LongLong:
3777     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3778                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3779   case BuiltinType::Float:
3780     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3781                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3782   case BuiltinType::Double:
3783     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3784                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3785   }
3786 }
3787 
3788 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3789                                       llvm::CmpInst::Predicate UICmpOpc,
3790                                       llvm::CmpInst::Predicate SICmpOpc,
3791                                       llvm::CmpInst::Predicate FCmpOpc) {
3792   TestAndClearIgnoreResultAssign();
3793   Value *Result;
3794   QualType LHSTy = E->getLHS()->getType();
3795   QualType RHSTy = E->getRHS()->getType();
3796   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3797     assert(E->getOpcode() == BO_EQ ||
3798            E->getOpcode() == BO_NE);
3799     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3800     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3801     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3802                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3803   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3804     BinOpInfo BOInfo = EmitBinOps(E);
3805     Value *LHS = BOInfo.LHS;
3806     Value *RHS = BOInfo.RHS;
3807 
3808     // If AltiVec, the comparison results in a numeric type, so we use
3809     // intrinsics comparing vectors and giving 0 or 1 as a result
3810     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3811       // constants for mapping CR6 register bits to predicate result
3812       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3813 
3814       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3815 
3816       // in several cases vector arguments order will be reversed
3817       Value *FirstVecArg = LHS,
3818             *SecondVecArg = RHS;
3819 
3820       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3821       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3822       BuiltinType::Kind ElementKind = BTy->getKind();
3823 
3824       switch(E->getOpcode()) {
3825       default: llvm_unreachable("is not a comparison operation");
3826       case BO_EQ:
3827         CR6 = CR6_LT;
3828         ID = GetIntrinsic(VCMPEQ, ElementKind);
3829         break;
3830       case BO_NE:
3831         CR6 = CR6_EQ;
3832         ID = GetIntrinsic(VCMPEQ, ElementKind);
3833         break;
3834       case BO_LT:
3835         CR6 = CR6_LT;
3836         ID = GetIntrinsic(VCMPGT, ElementKind);
3837         std::swap(FirstVecArg, SecondVecArg);
3838         break;
3839       case BO_GT:
3840         CR6 = CR6_LT;
3841         ID = GetIntrinsic(VCMPGT, ElementKind);
3842         break;
3843       case BO_LE:
3844         if (ElementKind == BuiltinType::Float) {
3845           CR6 = CR6_LT;
3846           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3847           std::swap(FirstVecArg, SecondVecArg);
3848         }
3849         else {
3850           CR6 = CR6_EQ;
3851           ID = GetIntrinsic(VCMPGT, ElementKind);
3852         }
3853         break;
3854       case BO_GE:
3855         if (ElementKind == BuiltinType::Float) {
3856           CR6 = CR6_LT;
3857           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3858         }
3859         else {
3860           CR6 = CR6_EQ;
3861           ID = GetIntrinsic(VCMPGT, ElementKind);
3862           std::swap(FirstVecArg, SecondVecArg);
3863         }
3864         break;
3865       }
3866 
3867       Value *CR6Param = Builder.getInt32(CR6);
3868       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3869       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3870 
3871       // The result type of intrinsic may not be same as E->getType().
3872       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3873       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3874       // do nothing, if ResultTy is not i1 at the same time, it will cause
3875       // crash later.
3876       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3877       if (ResultTy->getBitWidth() > 1 &&
3878           E->getType() == CGF.getContext().BoolTy)
3879         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3880       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3881                                   E->getExprLoc());
3882     }
3883 
3884     if (BOInfo.isFixedPointBinOp()) {
3885       Result = EmitFixedPointBinOp(BOInfo);
3886     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3887       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3888     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3889       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3890     } else {
3891       // Unsigned integers and pointers.
3892 
3893       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3894           !isa<llvm::ConstantPointerNull>(LHS) &&
3895           !isa<llvm::ConstantPointerNull>(RHS)) {
3896 
3897         // Dynamic information is required to be stripped for comparisons,
3898         // because it could leak the dynamic information.  Based on comparisons
3899         // of pointers to dynamic objects, the optimizer can replace one pointer
3900         // with another, which might be incorrect in presence of invariant
3901         // groups. Comparison with null is safe because null does not carry any
3902         // dynamic information.
3903         if (LHSTy.mayBeDynamicClass())
3904           LHS = Builder.CreateStripInvariantGroup(LHS);
3905         if (RHSTy.mayBeDynamicClass())
3906           RHS = Builder.CreateStripInvariantGroup(RHS);
3907       }
3908 
3909       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3910     }
3911 
3912     // If this is a vector comparison, sign extend the result to the appropriate
3913     // vector integer type and return it (don't convert to bool).
3914     if (LHSTy->isVectorType())
3915       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3916 
3917   } else {
3918     // Complex Comparison: can only be an equality comparison.
3919     CodeGenFunction::ComplexPairTy LHS, RHS;
3920     QualType CETy;
3921     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3922       LHS = CGF.EmitComplexExpr(E->getLHS());
3923       CETy = CTy->getElementType();
3924     } else {
3925       LHS.first = Visit(E->getLHS());
3926       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3927       CETy = LHSTy;
3928     }
3929     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3930       RHS = CGF.EmitComplexExpr(E->getRHS());
3931       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3932                                                      CTy->getElementType()) &&
3933              "The element types must always match.");
3934       (void)CTy;
3935     } else {
3936       RHS.first = Visit(E->getRHS());
3937       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3938       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3939              "The element types must always match.");
3940     }
3941 
3942     Value *ResultR, *ResultI;
3943     if (CETy->isRealFloatingType()) {
3944       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3945       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3946     } else {
3947       // Complex comparisons can only be equality comparisons.  As such, signed
3948       // and unsigned opcodes are the same.
3949       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3950       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3951     }
3952 
3953     if (E->getOpcode() == BO_EQ) {
3954       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3955     } else {
3956       assert(E->getOpcode() == BO_NE &&
3957              "Complex comparison other than == or != ?");
3958       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3959     }
3960   }
3961 
3962   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3963                               E->getExprLoc());
3964 }
3965 
3966 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3967   bool Ignore = TestAndClearIgnoreResultAssign();
3968 
3969   Value *RHS;
3970   LValue LHS;
3971 
3972   switch (E->getLHS()->getType().getObjCLifetime()) {
3973   case Qualifiers::OCL_Strong:
3974     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3975     break;
3976 
3977   case Qualifiers::OCL_Autoreleasing:
3978     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3979     break;
3980 
3981   case Qualifiers::OCL_ExplicitNone:
3982     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3983     break;
3984 
3985   case Qualifiers::OCL_Weak:
3986     RHS = Visit(E->getRHS());
3987     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3988     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
3989     break;
3990 
3991   case Qualifiers::OCL_None:
3992     // __block variables need to have the rhs evaluated first, plus
3993     // this should improve codegen just a little.
3994     RHS = Visit(E->getRHS());
3995     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3996 
3997     // Store the value into the LHS.  Bit-fields are handled specially
3998     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3999     // 'An assignment expression has the value of the left operand after
4000     // the assignment...'.
4001     if (LHS.isBitField()) {
4002       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4003     } else {
4004       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4005       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4006     }
4007   }
4008 
4009   // If the result is clearly ignored, return now.
4010   if (Ignore)
4011     return nullptr;
4012 
4013   // The result of an assignment in C is the assigned r-value.
4014   if (!CGF.getLangOpts().CPlusPlus)
4015     return RHS;
4016 
4017   // If the lvalue is non-volatile, return the computed value of the assignment.
4018   if (!LHS.isVolatileQualified())
4019     return RHS;
4020 
4021   // Otherwise, reload the value.
4022   return EmitLoadOfLValue(LHS, E->getExprLoc());
4023 }
4024 
4025 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4026   // Perform vector logical and on comparisons with zero vectors.
4027   if (E->getType()->isVectorType()) {
4028     CGF.incrementProfileCounter(E);
4029 
4030     Value *LHS = Visit(E->getLHS());
4031     Value *RHS = Visit(E->getRHS());
4032     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4033     if (LHS->getType()->isFPOrFPVectorTy()) {
4034       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4035       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4036     } else {
4037       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4038       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4039     }
4040     Value *And = Builder.CreateAnd(LHS, RHS);
4041     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4042   }
4043 
4044   llvm::Type *ResTy = ConvertType(E->getType());
4045 
4046   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4047   // If we have 1 && X, just emit X without inserting the control flow.
4048   bool LHSCondVal;
4049   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4050     if (LHSCondVal) { // If we have 1 && X, just emit X.
4051       CGF.incrementProfileCounter(E);
4052 
4053       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4054       // ZExt result to int or bool.
4055       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4056     }
4057 
4058     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4059     if (!CGF.ContainsLabel(E->getRHS()))
4060       return llvm::Constant::getNullValue(ResTy);
4061   }
4062 
4063   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4064   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4065 
4066   CodeGenFunction::ConditionalEvaluation eval(CGF);
4067 
4068   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4069   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4070                            CGF.getProfileCount(E->getRHS()));
4071 
4072   // Any edges into the ContBlock are now from an (indeterminate number of)
4073   // edges from this first condition.  All of these values will be false.  Start
4074   // setting up the PHI node in the Cont Block for this.
4075   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4076                                             "", ContBlock);
4077   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4078        PI != PE; ++PI)
4079     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4080 
4081   eval.begin(CGF);
4082   CGF.EmitBlock(RHSBlock);
4083   CGF.incrementProfileCounter(E);
4084   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4085   eval.end(CGF);
4086 
4087   // Reaquire the RHS block, as there may be subblocks inserted.
4088   RHSBlock = Builder.GetInsertBlock();
4089 
4090   // Emit an unconditional branch from this block to ContBlock.
4091   {
4092     // There is no need to emit line number for unconditional branch.
4093     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4094     CGF.EmitBlock(ContBlock);
4095   }
4096   // Insert an entry into the phi node for the edge with the value of RHSCond.
4097   PN->addIncoming(RHSCond, RHSBlock);
4098 
4099   // Artificial location to preserve the scope information
4100   {
4101     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4102     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4103   }
4104 
4105   // ZExt result to int.
4106   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4107 }
4108 
4109 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4110   // Perform vector logical or on comparisons with zero vectors.
4111   if (E->getType()->isVectorType()) {
4112     CGF.incrementProfileCounter(E);
4113 
4114     Value *LHS = Visit(E->getLHS());
4115     Value *RHS = Visit(E->getRHS());
4116     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4117     if (LHS->getType()->isFPOrFPVectorTy()) {
4118       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4119       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4120     } else {
4121       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4122       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4123     }
4124     Value *Or = Builder.CreateOr(LHS, RHS);
4125     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4126   }
4127 
4128   llvm::Type *ResTy = ConvertType(E->getType());
4129 
4130   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4131   // If we have 0 || X, just emit X without inserting the control flow.
4132   bool LHSCondVal;
4133   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4134     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4135       CGF.incrementProfileCounter(E);
4136 
4137       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4138       // ZExt result to int or bool.
4139       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4140     }
4141 
4142     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4143     if (!CGF.ContainsLabel(E->getRHS()))
4144       return llvm::ConstantInt::get(ResTy, 1);
4145   }
4146 
4147   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4148   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4149 
4150   CodeGenFunction::ConditionalEvaluation eval(CGF);
4151 
4152   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4153   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4154                            CGF.getCurrentProfileCount() -
4155                                CGF.getProfileCount(E->getRHS()));
4156 
4157   // Any edges into the ContBlock are now from an (indeterminate number of)
4158   // edges from this first condition.  All of these values will be true.  Start
4159   // setting up the PHI node in the Cont Block for this.
4160   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4161                                             "", ContBlock);
4162   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4163        PI != PE; ++PI)
4164     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4165 
4166   eval.begin(CGF);
4167 
4168   // Emit the RHS condition as a bool value.
4169   CGF.EmitBlock(RHSBlock);
4170   CGF.incrementProfileCounter(E);
4171   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4172 
4173   eval.end(CGF);
4174 
4175   // Reaquire the RHS block, as there may be subblocks inserted.
4176   RHSBlock = Builder.GetInsertBlock();
4177 
4178   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4179   // into the phi node for the edge with the value of RHSCond.
4180   CGF.EmitBlock(ContBlock);
4181   PN->addIncoming(RHSCond, RHSBlock);
4182 
4183   // ZExt result to int.
4184   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4185 }
4186 
4187 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4188   CGF.EmitIgnoredExpr(E->getLHS());
4189   CGF.EnsureInsertPoint();
4190   return Visit(E->getRHS());
4191 }
4192 
4193 //===----------------------------------------------------------------------===//
4194 //                             Other Operators
4195 //===----------------------------------------------------------------------===//
4196 
4197 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4198 /// expression is cheap enough and side-effect-free enough to evaluate
4199 /// unconditionally instead of conditionally.  This is used to convert control
4200 /// flow into selects in some cases.
4201 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4202                                                    CodeGenFunction &CGF) {
4203   // Anything that is an integer or floating point constant is fine.
4204   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4205 
4206   // Even non-volatile automatic variables can't be evaluated unconditionally.
4207   // Referencing a thread_local may cause non-trivial initialization work to
4208   // occur. If we're inside a lambda and one of the variables is from the scope
4209   // outside the lambda, that function may have returned already. Reading its
4210   // locals is a bad idea. Also, these reads may introduce races there didn't
4211   // exist in the source-level program.
4212 }
4213 
4214 
4215 Value *ScalarExprEmitter::
4216 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4217   TestAndClearIgnoreResultAssign();
4218 
4219   // Bind the common expression if necessary.
4220   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4221 
4222   Expr *condExpr = E->getCond();
4223   Expr *lhsExpr = E->getTrueExpr();
4224   Expr *rhsExpr = E->getFalseExpr();
4225 
4226   // If the condition constant folds and can be elided, try to avoid emitting
4227   // the condition and the dead arm.
4228   bool CondExprBool;
4229   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4230     Expr *live = lhsExpr, *dead = rhsExpr;
4231     if (!CondExprBool) std::swap(live, dead);
4232 
4233     // If the dead side doesn't have labels we need, just emit the Live part.
4234     if (!CGF.ContainsLabel(dead)) {
4235       if (CondExprBool)
4236         CGF.incrementProfileCounter(E);
4237       Value *Result = Visit(live);
4238 
4239       // If the live part is a throw expression, it acts like it has a void
4240       // type, so evaluating it returns a null Value*.  However, a conditional
4241       // with non-void type must return a non-null Value*.
4242       if (!Result && !E->getType()->isVoidType())
4243         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4244 
4245       return Result;
4246     }
4247   }
4248 
4249   // OpenCL: If the condition is a vector, we can treat this condition like
4250   // the select function.
4251   if (CGF.getLangOpts().OpenCL
4252       && condExpr->getType()->isVectorType()) {
4253     CGF.incrementProfileCounter(E);
4254 
4255     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4256     llvm::Value *LHS = Visit(lhsExpr);
4257     llvm::Value *RHS = Visit(rhsExpr);
4258 
4259     llvm::Type *condType = ConvertType(condExpr->getType());
4260     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4261 
4262     unsigned numElem = vecTy->getNumElements();
4263     llvm::Type *elemType = vecTy->getElementType();
4264 
4265     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4266     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4267     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4268                                           llvm::VectorType::get(elemType,
4269                                                                 numElem),
4270                                           "sext");
4271     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4272 
4273     // Cast float to int to perform ANDs if necessary.
4274     llvm::Value *RHSTmp = RHS;
4275     llvm::Value *LHSTmp = LHS;
4276     bool wasCast = false;
4277     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4278     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4279       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4280       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4281       wasCast = true;
4282     }
4283 
4284     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4285     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4286     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4287     if (wasCast)
4288       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4289 
4290     return tmp5;
4291   }
4292 
4293   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4294   // select instead of as control flow.  We can only do this if it is cheap and
4295   // safe to evaluate the LHS and RHS unconditionally.
4296   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4297       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4298     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4299     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4300 
4301     CGF.incrementProfileCounter(E, StepV);
4302 
4303     llvm::Value *LHS = Visit(lhsExpr);
4304     llvm::Value *RHS = Visit(rhsExpr);
4305     if (!LHS) {
4306       // If the conditional has void type, make sure we return a null Value*.
4307       assert(!RHS && "LHS and RHS types must match");
4308       return nullptr;
4309     }
4310     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4311   }
4312 
4313   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4314   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4315   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4316 
4317   CodeGenFunction::ConditionalEvaluation eval(CGF);
4318   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4319                            CGF.getProfileCount(lhsExpr));
4320 
4321   CGF.EmitBlock(LHSBlock);
4322   CGF.incrementProfileCounter(E);
4323   eval.begin(CGF);
4324   Value *LHS = Visit(lhsExpr);
4325   eval.end(CGF);
4326 
4327   LHSBlock = Builder.GetInsertBlock();
4328   Builder.CreateBr(ContBlock);
4329 
4330   CGF.EmitBlock(RHSBlock);
4331   eval.begin(CGF);
4332   Value *RHS = Visit(rhsExpr);
4333   eval.end(CGF);
4334 
4335   RHSBlock = Builder.GetInsertBlock();
4336   CGF.EmitBlock(ContBlock);
4337 
4338   // If the LHS or RHS is a throw expression, it will be legitimately null.
4339   if (!LHS)
4340     return RHS;
4341   if (!RHS)
4342     return LHS;
4343 
4344   // Create a PHI node for the real part.
4345   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4346   PN->addIncoming(LHS, LHSBlock);
4347   PN->addIncoming(RHS, RHSBlock);
4348   return PN;
4349 }
4350 
4351 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4352   return Visit(E->getChosenSubExpr());
4353 }
4354 
4355 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4356   QualType Ty = VE->getType();
4357 
4358   if (Ty->isVariablyModifiedType())
4359     CGF.EmitVariablyModifiedType(Ty);
4360 
4361   Address ArgValue = Address::invalid();
4362   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4363 
4364   llvm::Type *ArgTy = ConvertType(VE->getType());
4365 
4366   // If EmitVAArg fails, emit an error.
4367   if (!ArgPtr.isValid()) {
4368     CGF.ErrorUnsupported(VE, "va_arg expression");
4369     return llvm::UndefValue::get(ArgTy);
4370   }
4371 
4372   // FIXME Volatility.
4373   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4374 
4375   // If EmitVAArg promoted the type, we must truncate it.
4376   if (ArgTy != Val->getType()) {
4377     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4378       Val = Builder.CreateIntToPtr(Val, ArgTy);
4379     else
4380       Val = Builder.CreateTrunc(Val, ArgTy);
4381   }
4382 
4383   return Val;
4384 }
4385 
4386 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4387   return CGF.EmitBlockLiteral(block);
4388 }
4389 
4390 // Convert a vec3 to vec4, or vice versa.
4391 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4392                                  Value *Src, unsigned NumElementsDst) {
4393   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4394   SmallVector<llvm::Constant*, 4> Args;
4395   Args.push_back(Builder.getInt32(0));
4396   Args.push_back(Builder.getInt32(1));
4397   Args.push_back(Builder.getInt32(2));
4398   if (NumElementsDst == 4)
4399     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4400   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4401   return Builder.CreateShuffleVector(Src, UnV, Mask);
4402 }
4403 
4404 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4405 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4406 // but could be scalar or vectors of different lengths, and either can be
4407 // pointer.
4408 // There are 4 cases:
4409 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4410 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4411 // 3. pointer -> non-pointer
4412 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4413 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4414 // 4. non-pointer -> pointer
4415 //   a) intptr_t -> pointer       : needs 1 inttoptr
4416 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4417 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4418 // allow casting directly between pointer types and non-integer non-pointer
4419 // types.
4420 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4421                                            const llvm::DataLayout &DL,
4422                                            Value *Src, llvm::Type *DstTy,
4423                                            StringRef Name = "") {
4424   auto SrcTy = Src->getType();
4425 
4426   // Case 1.
4427   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4428     return Builder.CreateBitCast(Src, DstTy, Name);
4429 
4430   // Case 2.
4431   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4432     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4433 
4434   // Case 3.
4435   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4436     // Case 3b.
4437     if (!DstTy->isIntegerTy())
4438       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4439     // Cases 3a and 3b.
4440     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4441   }
4442 
4443   // Case 4b.
4444   if (!SrcTy->isIntegerTy())
4445     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4446   // Cases 4a and 4b.
4447   return Builder.CreateIntToPtr(Src, DstTy, Name);
4448 }
4449 
4450 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4451   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4452   llvm::Type *DstTy = ConvertType(E->getType());
4453 
4454   llvm::Type *SrcTy = Src->getType();
4455   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4456     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4457   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4458     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4459 
4460   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4461   // vector to get a vec4, then a bitcast if the target type is different.
4462   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4463     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4464 
4465     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4466       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4467                                          DstTy);
4468     }
4469 
4470     Src->setName("astype");
4471     return Src;
4472   }
4473 
4474   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4475   // to vec4 if the original type is not vec4, then a shuffle vector to
4476   // get a vec3.
4477   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4478     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4479       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4480       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4481                                          Vec4Ty);
4482     }
4483 
4484     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4485     Src->setName("astype");
4486     return Src;
4487   }
4488 
4489   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4490                                       Src, DstTy, "astype");
4491 }
4492 
4493 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4494   return CGF.EmitAtomicExpr(E).getScalarVal();
4495 }
4496 
4497 //===----------------------------------------------------------------------===//
4498 //                         Entry Point into this File
4499 //===----------------------------------------------------------------------===//
4500 
4501 /// Emit the computation of the specified expression of scalar type, ignoring
4502 /// the result.
4503 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4504   assert(E && hasScalarEvaluationKind(E->getType()) &&
4505          "Invalid scalar expression to emit");
4506 
4507   return ScalarExprEmitter(*this, IgnoreResultAssign)
4508       .Visit(const_cast<Expr *>(E));
4509 }
4510 
4511 /// Emit a conversion from the specified type to the specified destination type,
4512 /// both of which are LLVM scalar types.
4513 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4514                                              QualType DstTy,
4515                                              SourceLocation Loc) {
4516   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4517          "Invalid scalar expression to emit");
4518   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4519 }
4520 
4521 /// Emit a conversion from the specified complex type to the specified
4522 /// destination type, where the destination type is an LLVM scalar type.
4523 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4524                                                       QualType SrcTy,
4525                                                       QualType DstTy,
4526                                                       SourceLocation Loc) {
4527   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4528          "Invalid complex -> scalar conversion");
4529   return ScalarExprEmitter(*this)
4530       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4531 }
4532 
4533 
4534 llvm::Value *CodeGenFunction::
4535 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4536                         bool isInc, bool isPre) {
4537   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4538 }
4539 
4540 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4541   // object->isa or (*object).isa
4542   // Generate code as for: *(Class*)object
4543 
4544   Expr *BaseExpr = E->getBase();
4545   Address Addr = Address::invalid();
4546   if (BaseExpr->isRValue()) {
4547     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4548   } else {
4549     Addr = EmitLValue(BaseExpr).getAddress(*this);
4550   }
4551 
4552   // Cast the address to Class*.
4553   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4554   return MakeAddrLValue(Addr, E->getType());
4555 }
4556 
4557 
4558 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4559                                             const CompoundAssignOperator *E) {
4560   ScalarExprEmitter Scalar(*this);
4561   Value *Result = nullptr;
4562   switch (E->getOpcode()) {
4563 #define COMPOUND_OP(Op)                                                       \
4564     case BO_##Op##Assign:                                                     \
4565       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4566                                              Result)
4567   COMPOUND_OP(Mul);
4568   COMPOUND_OP(Div);
4569   COMPOUND_OP(Rem);
4570   COMPOUND_OP(Add);
4571   COMPOUND_OP(Sub);
4572   COMPOUND_OP(Shl);
4573   COMPOUND_OP(Shr);
4574   COMPOUND_OP(And);
4575   COMPOUND_OP(Xor);
4576   COMPOUND_OP(Or);
4577 #undef COMPOUND_OP
4578 
4579   case BO_PtrMemD:
4580   case BO_PtrMemI:
4581   case BO_Mul:
4582   case BO_Div:
4583   case BO_Rem:
4584   case BO_Add:
4585   case BO_Sub:
4586   case BO_Shl:
4587   case BO_Shr:
4588   case BO_LT:
4589   case BO_GT:
4590   case BO_LE:
4591   case BO_GE:
4592   case BO_EQ:
4593   case BO_NE:
4594   case BO_Cmp:
4595   case BO_And:
4596   case BO_Xor:
4597   case BO_Or:
4598   case BO_LAnd:
4599   case BO_LOr:
4600   case BO_Assign:
4601   case BO_Comma:
4602     llvm_unreachable("Not valid compound assignment operators");
4603   }
4604 
4605   llvm_unreachable("Unhandled compound assignment operator");
4606 }
4607 
4608 struct GEPOffsetAndOverflow {
4609   // The total (signed) byte offset for the GEP.
4610   llvm::Value *TotalOffset;
4611   // The offset overflow flag - true if the total offset overflows.
4612   llvm::Value *OffsetOverflows;
4613 };
4614 
4615 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4616 /// and compute the total offset it applies from it's base pointer BasePtr.
4617 /// Returns offset in bytes and a boolean flag whether an overflow happened
4618 /// during evaluation.
4619 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4620                                                  llvm::LLVMContext &VMContext,
4621                                                  CodeGenModule &CGM,
4622                                                  CGBuilderTy Builder) {
4623   const auto &DL = CGM.getDataLayout();
4624 
4625   // The total (signed) byte offset for the GEP.
4626   llvm::Value *TotalOffset = nullptr;
4627 
4628   // Was the GEP already reduced to a constant?
4629   if (isa<llvm::Constant>(GEPVal)) {
4630     // Compute the offset by casting both pointers to integers and subtracting:
4631     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4632     Value *BasePtr_int =
4633         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4634     Value *GEPVal_int =
4635         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4636     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4637     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4638   }
4639 
4640   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4641   assert(GEP->getPointerOperand() == BasePtr &&
4642          "BasePtr must be the the base of the GEP.");
4643   assert(GEP->isInBounds() && "Expected inbounds GEP");
4644 
4645   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4646 
4647   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4648   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4649   auto *SAddIntrinsic =
4650       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4651   auto *SMulIntrinsic =
4652       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4653 
4654   // The offset overflow flag - true if the total offset overflows.
4655   llvm::Value *OffsetOverflows = Builder.getFalse();
4656 
4657   /// Return the result of the given binary operation.
4658   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4659                   llvm::Value *RHS) -> llvm::Value * {
4660     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4661 
4662     // If the operands are constants, return a constant result.
4663     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4664       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4665         llvm::APInt N;
4666         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4667                                                   /*Signed=*/true, N);
4668         if (HasOverflow)
4669           OffsetOverflows = Builder.getTrue();
4670         return llvm::ConstantInt::get(VMContext, N);
4671       }
4672     }
4673 
4674     // Otherwise, compute the result with checked arithmetic.
4675     auto *ResultAndOverflow = Builder.CreateCall(
4676         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4677     OffsetOverflows = Builder.CreateOr(
4678         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4679     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4680   };
4681 
4682   // Determine the total byte offset by looking at each GEP operand.
4683   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4684        GTI != GTE; ++GTI) {
4685     llvm::Value *LocalOffset;
4686     auto *Index = GTI.getOperand();
4687     // Compute the local offset contributed by this indexing step:
4688     if (auto *STy = GTI.getStructTypeOrNull()) {
4689       // For struct indexing, the local offset is the byte position of the
4690       // specified field.
4691       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4692       LocalOffset = llvm::ConstantInt::get(
4693           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4694     } else {
4695       // Otherwise this is array-like indexing. The local offset is the index
4696       // multiplied by the element size.
4697       auto *ElementSize = llvm::ConstantInt::get(
4698           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4699       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4700       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4701     }
4702 
4703     // If this is the first offset, set it as the total offset. Otherwise, add
4704     // the local offset into the running total.
4705     if (!TotalOffset || TotalOffset == Zero)
4706       TotalOffset = LocalOffset;
4707     else
4708       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4709   }
4710 
4711   return {TotalOffset, OffsetOverflows};
4712 }
4713 
4714 Value *
4715 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4716                                         bool SignedIndices, bool IsSubtraction,
4717                                         SourceLocation Loc, const Twine &Name) {
4718   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4719 
4720   // If the pointer overflow sanitizer isn't enabled, do nothing.
4721   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4722     return GEPVal;
4723 
4724   llvm::Type *PtrTy = Ptr->getType();
4725 
4726   // Perform nullptr-and-offset check unless the nullptr is defined.
4727   bool PerformNullCheck = !NullPointerIsDefined(
4728       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4729   // Check for overflows unless the GEP got constant-folded,
4730   // and only in the default address space
4731   bool PerformOverflowCheck =
4732       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4733 
4734   if (!(PerformNullCheck || PerformOverflowCheck))
4735     return GEPVal;
4736 
4737   const auto &DL = CGM.getDataLayout();
4738 
4739   SanitizerScope SanScope(this);
4740   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4741 
4742   GEPOffsetAndOverflow EvaluatedGEP =
4743       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4744 
4745   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4746           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4747          "If the offset got constant-folded, we don't expect that there was an "
4748          "overflow.");
4749 
4750   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4751 
4752   // Common case: if the total offset is zero, and we are using C++ semantics,
4753   // where nullptr+0 is defined, don't emit a check.
4754   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4755     return GEPVal;
4756 
4757   // Now that we've computed the total offset, add it to the base pointer (with
4758   // wrapping semantics).
4759   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4760   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4761 
4762   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4763 
4764   if (PerformNullCheck) {
4765     // In C++, if the base pointer evaluates to a null pointer value,
4766     // the only valid  pointer this inbounds GEP can produce is also
4767     // a null pointer, so the offset must also evaluate to zero.
4768     // Likewise, if we have non-zero base pointer, we can not get null pointer
4769     // as a result, so the offset can not be -intptr_t(BasePtr).
4770     // In other words, both pointers are either null, or both are non-null,
4771     // or the behaviour is undefined.
4772     //
4773     // C, however, is more strict in this regard, and gives more
4774     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4775     // So both the input to the 'gep inbounds' AND the output must not be null.
4776     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4777     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4778     auto *Valid =
4779         CGM.getLangOpts().CPlusPlus
4780             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4781             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4782     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4783   }
4784 
4785   if (PerformOverflowCheck) {
4786     // The GEP is valid if:
4787     // 1) The total offset doesn't overflow, and
4788     // 2) The sign of the difference between the computed address and the base
4789     // pointer matches the sign of the total offset.
4790     llvm::Value *ValidGEP;
4791     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4792     if (SignedIndices) {
4793       // GEP is computed as `unsigned base + signed offset`, therefore:
4794       // * If offset was positive, then the computed pointer can not be
4795       //   [unsigned] less than the base pointer, unless it overflowed.
4796       // * If offset was negative, then the computed pointer can not be
4797       //   [unsigned] greater than the bas pointere, unless it overflowed.
4798       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4799       auto *PosOrZeroOffset =
4800           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4801       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4802       ValidGEP =
4803           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4804     } else if (!IsSubtraction) {
4805       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4806       // computed pointer can not be [unsigned] less than base pointer,
4807       // unless there was an overflow.
4808       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4809       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4810     } else {
4811       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4812       // computed pointer can not be [unsigned] greater than base pointer,
4813       // unless there was an overflow.
4814       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4815       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4816     }
4817     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4818     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4819   }
4820 
4821   assert(!Checks.empty() && "Should have produced some checks.");
4822 
4823   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4824   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4825   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4826   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4827 
4828   return GEPVal;
4829 }
4830