1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/FixedPointBuilder.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsPowerPC.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include <cstdarg> 44 45 using namespace clang; 46 using namespace CodeGen; 47 using llvm::Value; 48 49 //===----------------------------------------------------------------------===// 50 // Scalar Expression Emitter 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 55 /// Determine whether the given binary operation may overflow. 56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 58 /// the returned overflow check is precise. The returned value is 'true' for 59 /// all other opcodes, to be conservative. 60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 61 BinaryOperator::Opcode Opcode, bool Signed, 62 llvm::APInt &Result) { 63 // Assume overflow is possible, unless we can prove otherwise. 64 bool Overflow = true; 65 const auto &LHSAP = LHS->getValue(); 66 const auto &RHSAP = RHS->getValue(); 67 if (Opcode == BO_Add) { 68 Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow) 69 : LHSAP.uadd_ov(RHSAP, Overflow); 70 } else if (Opcode == BO_Sub) { 71 Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow) 72 : LHSAP.usub_ov(RHSAP, Overflow); 73 } else if (Opcode == BO_Mul) { 74 Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow) 75 : LHSAP.umul_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 77 if (Signed && !RHS->isZero()) 78 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 79 else 80 return false; 81 } 82 return Overflow; 83 } 84 85 struct BinOpInfo { 86 Value *LHS; 87 Value *RHS; 88 QualType Ty; // Computation Type. 89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 90 FPOptions FPFeatures; 91 const Expr *E; // Entire expr, for error unsupported. May not be binop. 92 93 /// Check if the binop can result in integer overflow. 94 bool mayHaveIntegerOverflow() const { 95 // Without constant input, we can't rule out overflow. 96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 98 if (!LHSCI || !RHSCI) 99 return true; 100 101 llvm::APInt Result; 102 return ::mayHaveIntegerOverflow( 103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 104 } 105 106 /// Check if the binop computes a division or a remainder. 107 bool isDivremOp() const { 108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 109 Opcode == BO_RemAssign; 110 } 111 112 /// Check if the binop can result in an integer division by zero. 113 bool mayHaveIntegerDivisionByZero() const { 114 if (isDivremOp()) 115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 116 return CI->isZero(); 117 return true; 118 } 119 120 /// Check if the binop can result in a float division by zero. 121 bool mayHaveFloatDivisionByZero() const { 122 if (isDivremOp()) 123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 124 return CFP->isZero(); 125 return true; 126 } 127 128 /// Check if at least one operand is a fixed point type. In such cases, this 129 /// operation did not follow usual arithmetic conversion and both operands 130 /// might not be of the same type. 131 bool isFixedPointOp() const { 132 // We cannot simply check the result type since comparison operations return 133 // an int. 134 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 135 QualType LHSType = BinOp->getLHS()->getType(); 136 QualType RHSType = BinOp->getRHS()->getType(); 137 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 138 } 139 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 140 return UnOp->getSubExpr()->getType()->isFixedPointType(); 141 return false; 142 } 143 }; 144 145 static bool MustVisitNullValue(const Expr *E) { 146 // If a null pointer expression's type is the C++0x nullptr_t, then 147 // it's not necessarily a simple constant and it must be evaluated 148 // for its potential side effects. 149 return E->getType()->isNullPtrType(); 150 } 151 152 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 154 const Expr *E) { 155 const Expr *Base = E->IgnoreImpCasts(); 156 if (E == Base) 157 return llvm::None; 158 159 QualType BaseTy = Base->getType(); 160 if (!BaseTy->isPromotableIntegerType() || 161 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 162 return llvm::None; 163 164 return BaseTy; 165 } 166 167 /// Check if \p E is a widened promoted integer. 168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 169 return getUnwidenedIntegerType(Ctx, E).hasValue(); 170 } 171 172 /// Check if we can skip the overflow check for \p Op. 173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 174 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 175 "Expected a unary or binary operator"); 176 177 // If the binop has constant inputs and we can prove there is no overflow, 178 // we can elide the overflow check. 179 if (!Op.mayHaveIntegerOverflow()) 180 return true; 181 182 // If a unary op has a widened operand, the op cannot overflow. 183 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 184 return !UO->canOverflow(); 185 186 // We usually don't need overflow checks for binops with widened operands. 187 // Multiplication with promoted unsigned operands is a special case. 188 const auto *BO = cast<BinaryOperator>(Op.E); 189 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 190 if (!OptionalLHSTy) 191 return false; 192 193 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 194 if (!OptionalRHSTy) 195 return false; 196 197 QualType LHSTy = *OptionalLHSTy; 198 QualType RHSTy = *OptionalRHSTy; 199 200 // This is the simple case: binops without unsigned multiplication, and with 201 // widened operands. No overflow check is needed here. 202 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 203 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 204 return true; 205 206 // For unsigned multiplication the overflow check can be elided if either one 207 // of the unpromoted types are less than half the size of the promoted type. 208 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 209 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 210 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 211 } 212 213 class ScalarExprEmitter 214 : public StmtVisitor<ScalarExprEmitter, Value*> { 215 CodeGenFunction &CGF; 216 CGBuilderTy &Builder; 217 bool IgnoreResultAssign; 218 llvm::LLVMContext &VMContext; 219 public: 220 221 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 222 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 223 VMContext(cgf.getLLVMContext()) { 224 } 225 226 //===--------------------------------------------------------------------===// 227 // Utilities 228 //===--------------------------------------------------------------------===// 229 230 bool TestAndClearIgnoreResultAssign() { 231 bool I = IgnoreResultAssign; 232 IgnoreResultAssign = false; 233 return I; 234 } 235 236 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 237 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 238 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 239 return CGF.EmitCheckedLValue(E, TCK); 240 } 241 242 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 243 const BinOpInfo &Info); 244 245 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 246 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 247 } 248 249 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 250 const AlignValueAttr *AVAttr = nullptr; 251 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 252 const ValueDecl *VD = DRE->getDecl(); 253 254 if (VD->getType()->isReferenceType()) { 255 if (const auto *TTy = 256 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 257 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 258 } else { 259 // Assumptions for function parameters are emitted at the start of the 260 // function, so there is no need to repeat that here, 261 // unless the alignment-assumption sanitizer is enabled, 262 // then we prefer the assumption over alignment attribute 263 // on IR function param. 264 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 265 return; 266 267 AVAttr = VD->getAttr<AlignValueAttr>(); 268 } 269 } 270 271 if (!AVAttr) 272 if (const auto *TTy = 273 dyn_cast<TypedefType>(E->getType())) 274 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 275 276 if (!AVAttr) 277 return; 278 279 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 280 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 281 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 282 } 283 284 /// EmitLoadOfLValue - Given an expression with complex type that represents a 285 /// value l-value, this method emits the address of the l-value, then loads 286 /// and returns the result. 287 Value *EmitLoadOfLValue(const Expr *E) { 288 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 289 E->getExprLoc()); 290 291 EmitLValueAlignmentAssumption(E, V); 292 return V; 293 } 294 295 /// EmitConversionToBool - Convert the specified expression value to a 296 /// boolean (i1) truth value. This is equivalent to "Val != 0". 297 Value *EmitConversionToBool(Value *Src, QualType DstTy); 298 299 /// Emit a check that a conversion from a floating-point type does not 300 /// overflow. 301 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 302 Value *Src, QualType SrcType, QualType DstType, 303 llvm::Type *DstTy, SourceLocation Loc); 304 305 /// Known implicit conversion check kinds. 306 /// Keep in sync with the enum of the same name in ubsan_handlers.h 307 enum ImplicitConversionCheckKind : unsigned char { 308 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 309 ICCK_UnsignedIntegerTruncation = 1, 310 ICCK_SignedIntegerTruncation = 2, 311 ICCK_IntegerSignChange = 3, 312 ICCK_SignedIntegerTruncationOrSignChange = 4, 313 }; 314 315 /// Emit a check that an [implicit] truncation of an integer does not 316 /// discard any bits. It is not UB, so we use the value after truncation. 317 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 318 QualType DstType, SourceLocation Loc); 319 320 /// Emit a check that an [implicit] conversion of an integer does not change 321 /// the sign of the value. It is not UB, so we use the value after conversion. 322 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 323 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 324 QualType DstType, SourceLocation Loc); 325 326 /// Emit a conversion from the specified type to the specified destination 327 /// type, both of which are LLVM scalar types. 328 struct ScalarConversionOpts { 329 bool TreatBooleanAsSigned; 330 bool EmitImplicitIntegerTruncationChecks; 331 bool EmitImplicitIntegerSignChangeChecks; 332 333 ScalarConversionOpts() 334 : TreatBooleanAsSigned(false), 335 EmitImplicitIntegerTruncationChecks(false), 336 EmitImplicitIntegerSignChangeChecks(false) {} 337 338 ScalarConversionOpts(clang::SanitizerSet SanOpts) 339 : TreatBooleanAsSigned(false), 340 EmitImplicitIntegerTruncationChecks( 341 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 342 EmitImplicitIntegerSignChangeChecks( 343 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 344 }; 345 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, 346 llvm::Type *SrcTy, llvm::Type *DstTy, 347 ScalarConversionOpts Opts); 348 Value * 349 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 350 SourceLocation Loc, 351 ScalarConversionOpts Opts = ScalarConversionOpts()); 352 353 /// Convert between either a fixed point and other fixed point or fixed point 354 /// and an integer. 355 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 356 SourceLocation Loc); 357 358 /// Emit a conversion from the specified complex type to the specified 359 /// destination type, where the destination type is an LLVM scalar type. 360 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 361 QualType SrcTy, QualType DstTy, 362 SourceLocation Loc); 363 364 /// EmitNullValue - Emit a value that corresponds to null for the given type. 365 Value *EmitNullValue(QualType Ty); 366 367 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 368 Value *EmitFloatToBoolConversion(Value *V) { 369 // Compare against 0.0 for fp scalars. 370 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 371 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 372 } 373 374 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 375 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 376 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 377 378 return Builder.CreateICmpNE(V, Zero, "tobool"); 379 } 380 381 Value *EmitIntToBoolConversion(Value *V) { 382 // Because of the type rules of C, we often end up computing a 383 // logical value, then zero extending it to int, then wanting it 384 // as a logical value again. Optimize this common case. 385 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 386 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 387 Value *Result = ZI->getOperand(0); 388 // If there aren't any more uses, zap the instruction to save space. 389 // Note that there can be more uses, for example if this 390 // is the result of an assignment. 391 if (ZI->use_empty()) 392 ZI->eraseFromParent(); 393 return Result; 394 } 395 } 396 397 return Builder.CreateIsNotNull(V, "tobool"); 398 } 399 400 //===--------------------------------------------------------------------===// 401 // Visitor Methods 402 //===--------------------------------------------------------------------===// 403 404 Value *Visit(Expr *E) { 405 ApplyDebugLocation DL(CGF, E); 406 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 407 } 408 409 Value *VisitStmt(Stmt *S) { 410 S->dump(llvm::errs(), CGF.getContext()); 411 llvm_unreachable("Stmt can't have complex result type!"); 412 } 413 Value *VisitExpr(Expr *S); 414 415 Value *VisitConstantExpr(ConstantExpr *E) { 416 // A constant expression of type 'void' generates no code and produces no 417 // value. 418 if (E->getType()->isVoidType()) 419 return nullptr; 420 421 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 422 if (E->isGLValue()) 423 return CGF.Builder.CreateLoad(Address::deprecated( 424 Result, CGF.getContext().getTypeAlignInChars(E->getType()))); 425 return Result; 426 } 427 return Visit(E->getSubExpr()); 428 } 429 Value *VisitParenExpr(ParenExpr *PE) { 430 return Visit(PE->getSubExpr()); 431 } 432 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 433 return Visit(E->getReplacement()); 434 } 435 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 436 return Visit(GE->getResultExpr()); 437 } 438 Value *VisitCoawaitExpr(CoawaitExpr *S) { 439 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 440 } 441 Value *VisitCoyieldExpr(CoyieldExpr *S) { 442 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 443 } 444 Value *VisitUnaryCoawait(const UnaryOperator *E) { 445 return Visit(E->getSubExpr()); 446 } 447 448 // Leaves. 449 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 450 return Builder.getInt(E->getValue()); 451 } 452 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 453 return Builder.getInt(E->getValue()); 454 } 455 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 456 return llvm::ConstantFP::get(VMContext, E->getValue()); 457 } 458 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 459 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 460 } 461 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 462 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 463 } 464 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 466 } 467 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 468 return EmitNullValue(E->getType()); 469 } 470 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 471 return EmitNullValue(E->getType()); 472 } 473 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 474 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 475 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 476 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 477 return Builder.CreateBitCast(V, ConvertType(E->getType())); 478 } 479 480 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 481 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 482 } 483 484 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 485 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 486 } 487 488 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E); 489 490 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 491 if (E->isGLValue()) 492 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 493 E->getExprLoc()); 494 495 // Otherwise, assume the mapping is the scalar directly. 496 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 497 } 498 499 // l-values. 500 Value *VisitDeclRefExpr(DeclRefExpr *E) { 501 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 502 return CGF.emitScalarConstant(Constant, E); 503 return EmitLoadOfLValue(E); 504 } 505 506 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 507 return CGF.EmitObjCSelectorExpr(E); 508 } 509 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 510 return CGF.EmitObjCProtocolExpr(E); 511 } 512 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 513 return EmitLoadOfLValue(E); 514 } 515 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 516 if (E->getMethodDecl() && 517 E->getMethodDecl()->getReturnType()->isReferenceType()) 518 return EmitLoadOfLValue(E); 519 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 520 } 521 522 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 523 LValue LV = CGF.EmitObjCIsaExpr(E); 524 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 525 return V; 526 } 527 528 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 529 VersionTuple Version = E->getVersion(); 530 531 // If we're checking for a platform older than our minimum deployment 532 // target, we can fold the check away. 533 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 534 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 535 536 return CGF.EmitBuiltinAvailable(Version); 537 } 538 539 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 540 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 541 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 542 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 543 Value *VisitMemberExpr(MemberExpr *E); 544 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 545 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 546 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 547 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 548 // literals aren't l-values in C++. We do so simply because that's the 549 // cleanest way to handle compound literals in C++. 550 // See the discussion here: https://reviews.llvm.org/D64464 551 return EmitLoadOfLValue(E); 552 } 553 554 Value *VisitInitListExpr(InitListExpr *E); 555 556 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 557 assert(CGF.getArrayInitIndex() && 558 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 559 return CGF.getArrayInitIndex(); 560 } 561 562 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 563 return EmitNullValue(E->getType()); 564 } 565 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 566 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 567 return VisitCastExpr(E); 568 } 569 Value *VisitCastExpr(CastExpr *E); 570 571 Value *VisitCallExpr(const CallExpr *E) { 572 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 573 return EmitLoadOfLValue(E); 574 575 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 576 577 EmitLValueAlignmentAssumption(E, V); 578 return V; 579 } 580 581 Value *VisitStmtExpr(const StmtExpr *E); 582 583 // Unary Operators. 584 Value *VisitUnaryPostDec(const UnaryOperator *E) { 585 LValue LV = EmitLValue(E->getSubExpr()); 586 return EmitScalarPrePostIncDec(E, LV, false, false); 587 } 588 Value *VisitUnaryPostInc(const UnaryOperator *E) { 589 LValue LV = EmitLValue(E->getSubExpr()); 590 return EmitScalarPrePostIncDec(E, LV, true, false); 591 } 592 Value *VisitUnaryPreDec(const UnaryOperator *E) { 593 LValue LV = EmitLValue(E->getSubExpr()); 594 return EmitScalarPrePostIncDec(E, LV, false, true); 595 } 596 Value *VisitUnaryPreInc(const UnaryOperator *E) { 597 LValue LV = EmitLValue(E->getSubExpr()); 598 return EmitScalarPrePostIncDec(E, LV, true, true); 599 } 600 601 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 602 llvm::Value *InVal, 603 bool IsInc); 604 605 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 606 bool isInc, bool isPre); 607 608 609 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 610 if (isa<MemberPointerType>(E->getType())) // never sugared 611 return CGF.CGM.getMemberPointerConstant(E); 612 613 return EmitLValue(E->getSubExpr()).getPointer(CGF); 614 } 615 Value *VisitUnaryDeref(const UnaryOperator *E) { 616 if (E->getType()->isVoidType()) 617 return Visit(E->getSubExpr()); // the actual value should be unused 618 return EmitLoadOfLValue(E); 619 } 620 Value *VisitUnaryPlus(const UnaryOperator *E) { 621 // This differs from gcc, though, most likely due to a bug in gcc. 622 TestAndClearIgnoreResultAssign(); 623 return Visit(E->getSubExpr()); 624 } 625 Value *VisitUnaryMinus (const UnaryOperator *E); 626 Value *VisitUnaryNot (const UnaryOperator *E); 627 Value *VisitUnaryLNot (const UnaryOperator *E); 628 Value *VisitUnaryReal (const UnaryOperator *E); 629 Value *VisitUnaryImag (const UnaryOperator *E); 630 Value *VisitUnaryExtension(const UnaryOperator *E) { 631 return Visit(E->getSubExpr()); 632 } 633 634 // C++ 635 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 636 return EmitLoadOfLValue(E); 637 } 638 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 639 auto &Ctx = CGF.getContext(); 640 APValue Evaluated = 641 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 642 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 643 SLE->getType()); 644 } 645 646 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 647 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 648 return Visit(DAE->getExpr()); 649 } 650 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 651 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 652 return Visit(DIE->getExpr()); 653 } 654 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 655 return CGF.LoadCXXThis(); 656 } 657 658 Value *VisitExprWithCleanups(ExprWithCleanups *E); 659 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 660 return CGF.EmitCXXNewExpr(E); 661 } 662 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 663 CGF.EmitCXXDeleteExpr(E); 664 return nullptr; 665 } 666 667 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 668 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 669 } 670 671 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 672 return Builder.getInt1(E->isSatisfied()); 673 } 674 675 Value *VisitRequiresExpr(const RequiresExpr *E) { 676 return Builder.getInt1(E->isSatisfied()); 677 } 678 679 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 680 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 681 } 682 683 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 684 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 685 } 686 687 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 688 // C++ [expr.pseudo]p1: 689 // The result shall only be used as the operand for the function call 690 // operator (), and the result of such a call has type void. The only 691 // effect is the evaluation of the postfix-expression before the dot or 692 // arrow. 693 CGF.EmitScalarExpr(E->getBase()); 694 return nullptr; 695 } 696 697 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 698 return EmitNullValue(E->getType()); 699 } 700 701 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 702 CGF.EmitCXXThrowExpr(E); 703 return nullptr; 704 } 705 706 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 707 return Builder.getInt1(E->getValue()); 708 } 709 710 // Binary Operators. 711 Value *EmitMul(const BinOpInfo &Ops) { 712 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 713 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 714 case LangOptions::SOB_Defined: 715 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 716 case LangOptions::SOB_Undefined: 717 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 718 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 719 LLVM_FALLTHROUGH; 720 case LangOptions::SOB_Trapping: 721 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 722 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 723 return EmitOverflowCheckedBinOp(Ops); 724 } 725 } 726 727 if (Ops.Ty->isConstantMatrixType()) { 728 llvm::MatrixBuilder MB(Builder); 729 // We need to check the types of the operands of the operator to get the 730 // correct matrix dimensions. 731 auto *BO = cast<BinaryOperator>(Ops.E); 732 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 733 BO->getLHS()->getType().getCanonicalType()); 734 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 735 BO->getRHS()->getType().getCanonicalType()); 736 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 737 if (LHSMatTy && RHSMatTy) 738 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 739 LHSMatTy->getNumColumns(), 740 RHSMatTy->getNumColumns()); 741 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 742 } 743 744 if (Ops.Ty->isUnsignedIntegerType() && 745 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 746 !CanElideOverflowCheck(CGF.getContext(), Ops)) 747 return EmitOverflowCheckedBinOp(Ops); 748 749 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 750 // Preserve the old values 751 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 752 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 753 } 754 if (Ops.isFixedPointOp()) 755 return EmitFixedPointBinOp(Ops); 756 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 757 } 758 /// Create a binary op that checks for overflow. 759 /// Currently only supports +, - and *. 760 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 761 762 // Check for undefined division and modulus behaviors. 763 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 764 llvm::Value *Zero,bool isDiv); 765 // Common helper for getting how wide LHS of shift is. 766 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 767 768 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 769 // non powers of two. 770 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 771 772 Value *EmitDiv(const BinOpInfo &Ops); 773 Value *EmitRem(const BinOpInfo &Ops); 774 Value *EmitAdd(const BinOpInfo &Ops); 775 Value *EmitSub(const BinOpInfo &Ops); 776 Value *EmitShl(const BinOpInfo &Ops); 777 Value *EmitShr(const BinOpInfo &Ops); 778 Value *EmitAnd(const BinOpInfo &Ops) { 779 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 780 } 781 Value *EmitXor(const BinOpInfo &Ops) { 782 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 783 } 784 Value *EmitOr (const BinOpInfo &Ops) { 785 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 786 } 787 788 // Helper functions for fixed point binary operations. 789 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 790 791 BinOpInfo EmitBinOps(const BinaryOperator *E); 792 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 793 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 794 Value *&Result); 795 796 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 797 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 798 799 // Binary operators and binary compound assignment operators. 800 #define HANDLEBINOP(OP) \ 801 Value *VisitBin ## OP(const BinaryOperator *E) { \ 802 return Emit ## OP(EmitBinOps(E)); \ 803 } \ 804 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 805 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 806 } 807 HANDLEBINOP(Mul) 808 HANDLEBINOP(Div) 809 HANDLEBINOP(Rem) 810 HANDLEBINOP(Add) 811 HANDLEBINOP(Sub) 812 HANDLEBINOP(Shl) 813 HANDLEBINOP(Shr) 814 HANDLEBINOP(And) 815 HANDLEBINOP(Xor) 816 HANDLEBINOP(Or) 817 #undef HANDLEBINOP 818 819 // Comparisons. 820 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 821 llvm::CmpInst::Predicate SICmpOpc, 822 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 823 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 824 Value *VisitBin##CODE(const BinaryOperator *E) { \ 825 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 826 llvm::FCmpInst::FP, SIG); } 827 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 828 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 829 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 830 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 831 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 832 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 833 #undef VISITCOMP 834 835 Value *VisitBinAssign (const BinaryOperator *E); 836 837 Value *VisitBinLAnd (const BinaryOperator *E); 838 Value *VisitBinLOr (const BinaryOperator *E); 839 Value *VisitBinComma (const BinaryOperator *E); 840 841 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 842 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 843 844 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 845 return Visit(E->getSemanticForm()); 846 } 847 848 // Other Operators. 849 Value *VisitBlockExpr(const BlockExpr *BE); 850 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 851 Value *VisitChooseExpr(ChooseExpr *CE); 852 Value *VisitVAArgExpr(VAArgExpr *VE); 853 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 854 return CGF.EmitObjCStringLiteral(E); 855 } 856 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 857 return CGF.EmitObjCBoxedExpr(E); 858 } 859 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 860 return CGF.EmitObjCArrayLiteral(E); 861 } 862 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 863 return CGF.EmitObjCDictionaryLiteral(E); 864 } 865 Value *VisitAsTypeExpr(AsTypeExpr *CE); 866 Value *VisitAtomicExpr(AtomicExpr *AE); 867 }; 868 } // end anonymous namespace. 869 870 //===----------------------------------------------------------------------===// 871 // Utilities 872 //===----------------------------------------------------------------------===// 873 874 /// EmitConversionToBool - Convert the specified expression value to a 875 /// boolean (i1) truth value. This is equivalent to "Val != 0". 876 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 877 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 878 879 if (SrcType->isRealFloatingType()) 880 return EmitFloatToBoolConversion(Src); 881 882 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 883 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 884 885 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 886 "Unknown scalar type to convert"); 887 888 if (isa<llvm::IntegerType>(Src->getType())) 889 return EmitIntToBoolConversion(Src); 890 891 assert(isa<llvm::PointerType>(Src->getType())); 892 return EmitPointerToBoolConversion(Src, SrcType); 893 } 894 895 void ScalarExprEmitter::EmitFloatConversionCheck( 896 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 897 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 898 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 899 if (!isa<llvm::IntegerType>(DstTy)) 900 return; 901 902 CodeGenFunction::SanitizerScope SanScope(&CGF); 903 using llvm::APFloat; 904 using llvm::APSInt; 905 906 llvm::Value *Check = nullptr; 907 const llvm::fltSemantics &SrcSema = 908 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 909 910 // Floating-point to integer. This has undefined behavior if the source is 911 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 912 // to an integer). 913 unsigned Width = CGF.getContext().getIntWidth(DstType); 914 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 915 916 APSInt Min = APSInt::getMinValue(Width, Unsigned); 917 APFloat MinSrc(SrcSema, APFloat::uninitialized); 918 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 919 APFloat::opOverflow) 920 // Don't need an overflow check for lower bound. Just check for 921 // -Inf/NaN. 922 MinSrc = APFloat::getInf(SrcSema, true); 923 else 924 // Find the largest value which is too small to represent (before 925 // truncation toward zero). 926 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 927 928 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 929 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 930 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 931 APFloat::opOverflow) 932 // Don't need an overflow check for upper bound. Just check for 933 // +Inf/NaN. 934 MaxSrc = APFloat::getInf(SrcSema, false); 935 else 936 // Find the smallest value which is too large to represent (before 937 // truncation toward zero). 938 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 939 940 // If we're converting from __half, convert the range to float to match 941 // the type of src. 942 if (OrigSrcType->isHalfType()) { 943 const llvm::fltSemantics &Sema = 944 CGF.getContext().getFloatTypeSemantics(SrcType); 945 bool IsInexact; 946 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 947 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 948 } 949 950 llvm::Value *GE = 951 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 952 llvm::Value *LE = 953 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 954 Check = Builder.CreateAnd(GE, LE); 955 956 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 957 CGF.EmitCheckTypeDescriptor(OrigSrcType), 958 CGF.EmitCheckTypeDescriptor(DstType)}; 959 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 960 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 961 } 962 963 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 964 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 965 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 966 std::pair<llvm::Value *, SanitizerMask>> 967 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 968 QualType DstType, CGBuilderTy &Builder) { 969 llvm::Type *SrcTy = Src->getType(); 970 llvm::Type *DstTy = Dst->getType(); 971 (void)DstTy; // Only used in assert() 972 973 // This should be truncation of integral types. 974 assert(Src != Dst); 975 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 976 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 977 "non-integer llvm type"); 978 979 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 980 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 981 982 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 983 // Else, it is a signed truncation. 984 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 985 SanitizerMask Mask; 986 if (!SrcSigned && !DstSigned) { 987 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 988 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 989 } else { 990 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 991 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 992 } 993 994 llvm::Value *Check = nullptr; 995 // 1. Extend the truncated value back to the same width as the Src. 996 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 997 // 2. Equality-compare with the original source value 998 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 999 // If the comparison result is 'i1 false', then the truncation was lossy. 1000 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1001 } 1002 1003 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 1004 QualType SrcType, QualType DstType) { 1005 return SrcType->isIntegerType() && DstType->isIntegerType(); 1006 } 1007 1008 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1009 Value *Dst, QualType DstType, 1010 SourceLocation Loc) { 1011 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1012 return; 1013 1014 // We only care about int->int conversions here. 1015 // We ignore conversions to/from pointer and/or bool. 1016 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1017 DstType)) 1018 return; 1019 1020 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1021 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1022 // This must be truncation. Else we do not care. 1023 if (SrcBits <= DstBits) 1024 return; 1025 1026 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1027 1028 // If the integer sign change sanitizer is enabled, 1029 // and we are truncating from larger unsigned type to smaller signed type, 1030 // let that next sanitizer deal with it. 1031 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1032 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1033 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1034 (!SrcSigned && DstSigned)) 1035 return; 1036 1037 CodeGenFunction::SanitizerScope SanScope(&CGF); 1038 1039 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1040 std::pair<llvm::Value *, SanitizerMask>> 1041 Check = 1042 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1043 // If the comparison result is 'i1 false', then the truncation was lossy. 1044 1045 // Do we care about this type of truncation? 1046 if (!CGF.SanOpts.has(Check.second.second)) 1047 return; 1048 1049 llvm::Constant *StaticArgs[] = { 1050 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1051 CGF.EmitCheckTypeDescriptor(DstType), 1052 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1053 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1054 {Src, Dst}); 1055 } 1056 1057 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1058 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1059 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1060 std::pair<llvm::Value *, SanitizerMask>> 1061 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1062 QualType DstType, CGBuilderTy &Builder) { 1063 llvm::Type *SrcTy = Src->getType(); 1064 llvm::Type *DstTy = Dst->getType(); 1065 1066 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1067 "non-integer llvm type"); 1068 1069 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1070 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1071 (void)SrcSigned; // Only used in assert() 1072 (void)DstSigned; // Only used in assert() 1073 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1074 unsigned DstBits = DstTy->getScalarSizeInBits(); 1075 (void)SrcBits; // Only used in assert() 1076 (void)DstBits; // Only used in assert() 1077 1078 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1079 "either the widths should be different, or the signednesses."); 1080 1081 // NOTE: zero value is considered to be non-negative. 1082 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1083 const char *Name) -> Value * { 1084 // Is this value a signed type? 1085 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1086 llvm::Type *VTy = V->getType(); 1087 if (!VSigned) { 1088 // If the value is unsigned, then it is never negative. 1089 // FIXME: can we encounter non-scalar VTy here? 1090 return llvm::ConstantInt::getFalse(VTy->getContext()); 1091 } 1092 // Get the zero of the same type with which we will be comparing. 1093 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1094 // %V.isnegative = icmp slt %V, 0 1095 // I.e is %V *strictly* less than zero, does it have negative value? 1096 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1097 llvm::Twine(Name) + "." + V->getName() + 1098 ".negativitycheck"); 1099 }; 1100 1101 // 1. Was the old Value negative? 1102 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1103 // 2. Is the new Value negative? 1104 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1105 // 3. Now, was the 'negativity status' preserved during the conversion? 1106 // NOTE: conversion from negative to zero is considered to change the sign. 1107 // (We want to get 'false' when the conversion changed the sign) 1108 // So we should just equality-compare the negativity statuses. 1109 llvm::Value *Check = nullptr; 1110 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1111 // If the comparison result is 'false', then the conversion changed the sign. 1112 return std::make_pair( 1113 ScalarExprEmitter::ICCK_IntegerSignChange, 1114 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1115 } 1116 1117 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1118 Value *Dst, QualType DstType, 1119 SourceLocation Loc) { 1120 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1121 return; 1122 1123 llvm::Type *SrcTy = Src->getType(); 1124 llvm::Type *DstTy = Dst->getType(); 1125 1126 // We only care about int->int conversions here. 1127 // We ignore conversions to/from pointer and/or bool. 1128 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1129 DstType)) 1130 return; 1131 1132 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1133 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1134 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1135 unsigned DstBits = DstTy->getScalarSizeInBits(); 1136 1137 // Now, we do not need to emit the check in *all* of the cases. 1138 // We can avoid emitting it in some obvious cases where it would have been 1139 // dropped by the opt passes (instcombine) always anyways. 1140 // If it's a cast between effectively the same type, no check. 1141 // NOTE: this is *not* equivalent to checking the canonical types. 1142 if (SrcSigned == DstSigned && SrcBits == DstBits) 1143 return; 1144 // At least one of the values needs to have signed type. 1145 // If both are unsigned, then obviously, neither of them can be negative. 1146 if (!SrcSigned && !DstSigned) 1147 return; 1148 // If the conversion is to *larger* *signed* type, then no check is needed. 1149 // Because either sign-extension happens (so the sign will remain), 1150 // or zero-extension will happen (the sign bit will be zero.) 1151 if ((DstBits > SrcBits) && DstSigned) 1152 return; 1153 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1154 (SrcBits > DstBits) && SrcSigned) { 1155 // If the signed integer truncation sanitizer is enabled, 1156 // and this is a truncation from signed type, then no check is needed. 1157 // Because here sign change check is interchangeable with truncation check. 1158 return; 1159 } 1160 // That's it. We can't rule out any more cases with the data we have. 1161 1162 CodeGenFunction::SanitizerScope SanScope(&CGF); 1163 1164 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1165 std::pair<llvm::Value *, SanitizerMask>> 1166 Check; 1167 1168 // Each of these checks needs to return 'false' when an issue was detected. 1169 ImplicitConversionCheckKind CheckKind; 1170 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1171 // So we can 'and' all the checks together, and still get 'false', 1172 // if at least one of the checks detected an issue. 1173 1174 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1175 CheckKind = Check.first; 1176 Checks.emplace_back(Check.second); 1177 1178 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1179 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1180 // If the signed integer truncation sanitizer was enabled, 1181 // and we are truncating from larger unsigned type to smaller signed type, 1182 // let's handle the case we skipped in that check. 1183 Check = 1184 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1185 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1186 Checks.emplace_back(Check.second); 1187 // If the comparison result is 'i1 false', then the truncation was lossy. 1188 } 1189 1190 llvm::Constant *StaticArgs[] = { 1191 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1192 CGF.EmitCheckTypeDescriptor(DstType), 1193 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1194 // EmitCheck() will 'and' all the checks together. 1195 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1196 {Src, Dst}); 1197 } 1198 1199 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, 1200 QualType DstType, llvm::Type *SrcTy, 1201 llvm::Type *DstTy, 1202 ScalarConversionOpts Opts) { 1203 // The Element types determine the type of cast to perform. 1204 llvm::Type *SrcElementTy; 1205 llvm::Type *DstElementTy; 1206 QualType SrcElementType; 1207 QualType DstElementType; 1208 if (SrcType->isMatrixType() && DstType->isMatrixType()) { 1209 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1210 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1211 SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); 1212 DstElementType = DstType->castAs<MatrixType>()->getElementType(); 1213 } else { 1214 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && 1215 "cannot cast between matrix and non-matrix types"); 1216 SrcElementTy = SrcTy; 1217 DstElementTy = DstTy; 1218 SrcElementType = SrcType; 1219 DstElementType = DstType; 1220 } 1221 1222 if (isa<llvm::IntegerType>(SrcElementTy)) { 1223 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); 1224 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1225 InputSigned = true; 1226 } 1227 1228 if (isa<llvm::IntegerType>(DstElementTy)) 1229 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1230 if (InputSigned) 1231 return Builder.CreateSIToFP(Src, DstTy, "conv"); 1232 return Builder.CreateUIToFP(Src, DstTy, "conv"); 1233 } 1234 1235 if (isa<llvm::IntegerType>(DstElementTy)) { 1236 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion"); 1237 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType(); 1238 1239 // If we can't recognize overflow as undefined behavior, assume that 1240 // overflow saturates. This protects against normal optimizations if we are 1241 // compiling with non-standard FP semantics. 1242 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) { 1243 llvm::Intrinsic::ID IID = 1244 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat; 1245 return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src); 1246 } 1247 1248 if (IsSigned) 1249 return Builder.CreateFPToSI(Src, DstTy, "conv"); 1250 return Builder.CreateFPToUI(Src, DstTy, "conv"); 1251 } 1252 1253 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) 1254 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1255 return Builder.CreateFPExt(Src, DstTy, "conv"); 1256 } 1257 1258 /// Emit a conversion from the specified type to the specified destination type, 1259 /// both of which are LLVM scalar types. 1260 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1261 QualType DstType, 1262 SourceLocation Loc, 1263 ScalarConversionOpts Opts) { 1264 // All conversions involving fixed point types should be handled by the 1265 // EmitFixedPoint family functions. This is done to prevent bloating up this 1266 // function more, and although fixed point numbers are represented by 1267 // integers, we do not want to follow any logic that assumes they should be 1268 // treated as integers. 1269 // TODO(leonardchan): When necessary, add another if statement checking for 1270 // conversions to fixed point types from other types. 1271 if (SrcType->isFixedPointType()) { 1272 if (DstType->isBooleanType()) 1273 // It is important that we check this before checking if the dest type is 1274 // an integer because booleans are technically integer types. 1275 // We do not need to check the padding bit on unsigned types if unsigned 1276 // padding is enabled because overflow into this bit is undefined 1277 // behavior. 1278 return Builder.CreateIsNotNull(Src, "tobool"); 1279 if (DstType->isFixedPointType() || DstType->isIntegerType() || 1280 DstType->isRealFloatingType()) 1281 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1282 1283 llvm_unreachable( 1284 "Unhandled scalar conversion from a fixed point type to another type."); 1285 } else if (DstType->isFixedPointType()) { 1286 if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) 1287 // This also includes converting booleans and enums to fixed point types. 1288 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1289 1290 llvm_unreachable( 1291 "Unhandled scalar conversion to a fixed point type from another type."); 1292 } 1293 1294 QualType NoncanonicalSrcType = SrcType; 1295 QualType NoncanonicalDstType = DstType; 1296 1297 SrcType = CGF.getContext().getCanonicalType(SrcType); 1298 DstType = CGF.getContext().getCanonicalType(DstType); 1299 if (SrcType == DstType) return Src; 1300 1301 if (DstType->isVoidType()) return nullptr; 1302 1303 llvm::Value *OrigSrc = Src; 1304 QualType OrigSrcType = SrcType; 1305 llvm::Type *SrcTy = Src->getType(); 1306 1307 // Handle conversions to bool first, they are special: comparisons against 0. 1308 if (DstType->isBooleanType()) 1309 return EmitConversionToBool(Src, SrcType); 1310 1311 llvm::Type *DstTy = ConvertType(DstType); 1312 1313 // Cast from half through float if half isn't a native type. 1314 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1315 // Cast to FP using the intrinsic if the half type itself isn't supported. 1316 if (DstTy->isFloatingPointTy()) { 1317 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1318 return Builder.CreateCall( 1319 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1320 Src); 1321 } else { 1322 // Cast to other types through float, using either the intrinsic or FPExt, 1323 // depending on whether the half type itself is supported 1324 // (as opposed to operations on half, available with NativeHalfType). 1325 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1326 Src = Builder.CreateCall( 1327 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1328 CGF.CGM.FloatTy), 1329 Src); 1330 } else { 1331 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1332 } 1333 SrcType = CGF.getContext().FloatTy; 1334 SrcTy = CGF.FloatTy; 1335 } 1336 } 1337 1338 // Ignore conversions like int -> uint. 1339 if (SrcTy == DstTy) { 1340 if (Opts.EmitImplicitIntegerSignChangeChecks) 1341 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1342 NoncanonicalDstType, Loc); 1343 1344 return Src; 1345 } 1346 1347 // Handle pointer conversions next: pointers can only be converted to/from 1348 // other pointers and integers. Check for pointer types in terms of LLVM, as 1349 // some native types (like Obj-C id) may map to a pointer type. 1350 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1351 // The source value may be an integer, or a pointer. 1352 if (isa<llvm::PointerType>(SrcTy)) 1353 return Builder.CreateBitCast(Src, DstTy, "conv"); 1354 1355 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1356 // First, convert to the correct width so that we control the kind of 1357 // extension. 1358 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1359 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1360 llvm::Value* IntResult = 1361 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1362 // Then, cast to pointer. 1363 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1364 } 1365 1366 if (isa<llvm::PointerType>(SrcTy)) { 1367 // Must be an ptr to int cast. 1368 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1369 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1370 } 1371 1372 // A scalar can be splatted to an extended vector of the same element type 1373 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1374 // Sema should add casts to make sure that the source expression's type is 1375 // the same as the vector's element type (sans qualifiers) 1376 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1377 SrcType.getTypePtr() && 1378 "Splatted expr doesn't match with vector element type?"); 1379 1380 // Splat the element across to all elements 1381 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 1382 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1383 } 1384 1385 if (SrcType->isMatrixType() && DstType->isMatrixType()) 1386 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1387 1388 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1389 // Allow bitcast from vector to integer/fp of the same size. 1390 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1391 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1392 if (SrcSize == DstSize) 1393 return Builder.CreateBitCast(Src, DstTy, "conv"); 1394 1395 // Conversions between vectors of different sizes are not allowed except 1396 // when vectors of half are involved. Operations on storage-only half 1397 // vectors require promoting half vector operands to float vectors and 1398 // truncating the result, which is either an int or float vector, to a 1399 // short or half vector. 1400 1401 // Source and destination are both expected to be vectors. 1402 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1403 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1404 (void)DstElementTy; 1405 1406 assert(((SrcElementTy->isIntegerTy() && 1407 DstElementTy->isIntegerTy()) || 1408 (SrcElementTy->isFloatingPointTy() && 1409 DstElementTy->isFloatingPointTy())) && 1410 "unexpected conversion between a floating-point vector and an " 1411 "integer vector"); 1412 1413 // Truncate an i32 vector to an i16 vector. 1414 if (SrcElementTy->isIntegerTy()) 1415 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1416 1417 // Truncate a float vector to a half vector. 1418 if (SrcSize > DstSize) 1419 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1420 1421 // Promote a half vector to a float vector. 1422 return Builder.CreateFPExt(Src, DstTy, "conv"); 1423 } 1424 1425 // Finally, we have the arithmetic types: real int/float. 1426 Value *Res = nullptr; 1427 llvm::Type *ResTy = DstTy; 1428 1429 // An overflowing conversion has undefined behavior if either the source type 1430 // or the destination type is a floating-point type. However, we consider the 1431 // range of representable values for all floating-point types to be 1432 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1433 // floating-point type. 1434 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1435 OrigSrcType->isFloatingType()) 1436 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1437 Loc); 1438 1439 // Cast to half through float if half isn't a native type. 1440 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1441 // Make sure we cast in a single step if from another FP type. 1442 if (SrcTy->isFloatingPointTy()) { 1443 // Use the intrinsic if the half type itself isn't supported 1444 // (as opposed to operations on half, available with NativeHalfType). 1445 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1446 return Builder.CreateCall( 1447 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1448 // If the half type is supported, just use an fptrunc. 1449 return Builder.CreateFPTrunc(Src, DstTy); 1450 } 1451 DstTy = CGF.FloatTy; 1452 } 1453 1454 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1455 1456 if (DstTy != ResTy) { 1457 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1458 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1459 Res = Builder.CreateCall( 1460 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1461 Res); 1462 } else { 1463 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1464 } 1465 } 1466 1467 if (Opts.EmitImplicitIntegerTruncationChecks) 1468 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1469 NoncanonicalDstType, Loc); 1470 1471 if (Opts.EmitImplicitIntegerSignChangeChecks) 1472 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1473 NoncanonicalDstType, Loc); 1474 1475 return Res; 1476 } 1477 1478 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1479 QualType DstTy, 1480 SourceLocation Loc) { 1481 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 1482 llvm::Value *Result; 1483 if (SrcTy->isRealFloatingType()) 1484 Result = FPBuilder.CreateFloatingToFixed(Src, 1485 CGF.getContext().getFixedPointSemantics(DstTy)); 1486 else if (DstTy->isRealFloatingType()) 1487 Result = FPBuilder.CreateFixedToFloating(Src, 1488 CGF.getContext().getFixedPointSemantics(SrcTy), 1489 ConvertType(DstTy)); 1490 else { 1491 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1492 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1493 1494 if (DstTy->isIntegerType()) 1495 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, 1496 DstFPSema.getWidth(), 1497 DstFPSema.isSigned()); 1498 else if (SrcTy->isIntegerType()) 1499 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), 1500 DstFPSema); 1501 else 1502 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); 1503 } 1504 return Result; 1505 } 1506 1507 /// Emit a conversion from the specified complex type to the specified 1508 /// destination type, where the destination type is an LLVM scalar type. 1509 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1510 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1511 SourceLocation Loc) { 1512 // Get the source element type. 1513 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1514 1515 // Handle conversions to bool first, they are special: comparisons against 0. 1516 if (DstTy->isBooleanType()) { 1517 // Complex != 0 -> (Real != 0) | (Imag != 0) 1518 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1519 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1520 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1521 } 1522 1523 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1524 // the imaginary part of the complex value is discarded and the value of the 1525 // real part is converted according to the conversion rules for the 1526 // corresponding real type. 1527 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1528 } 1529 1530 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1531 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1532 } 1533 1534 /// Emit a sanitization check for the given "binary" operation (which 1535 /// might actually be a unary increment which has been lowered to a binary 1536 /// operation). The check passes if all values in \p Checks (which are \c i1), 1537 /// are \c true. 1538 void ScalarExprEmitter::EmitBinOpCheck( 1539 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1540 assert(CGF.IsSanitizerScope); 1541 SanitizerHandler Check; 1542 SmallVector<llvm::Constant *, 4> StaticData; 1543 SmallVector<llvm::Value *, 2> DynamicData; 1544 1545 BinaryOperatorKind Opcode = Info.Opcode; 1546 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1547 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1548 1549 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1550 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1551 if (UO && UO->getOpcode() == UO_Minus) { 1552 Check = SanitizerHandler::NegateOverflow; 1553 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1554 DynamicData.push_back(Info.RHS); 1555 } else { 1556 if (BinaryOperator::isShiftOp(Opcode)) { 1557 // Shift LHS negative or too large, or RHS out of bounds. 1558 Check = SanitizerHandler::ShiftOutOfBounds; 1559 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1560 StaticData.push_back( 1561 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1562 StaticData.push_back( 1563 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1564 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1565 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1566 Check = SanitizerHandler::DivremOverflow; 1567 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1568 } else { 1569 // Arithmetic overflow (+, -, *). 1570 switch (Opcode) { 1571 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1572 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1573 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1574 default: llvm_unreachable("unexpected opcode for bin op check"); 1575 } 1576 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1577 } 1578 DynamicData.push_back(Info.LHS); 1579 DynamicData.push_back(Info.RHS); 1580 } 1581 1582 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1583 } 1584 1585 //===----------------------------------------------------------------------===// 1586 // Visitor Methods 1587 //===----------------------------------------------------------------------===// 1588 1589 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1590 CGF.ErrorUnsupported(E, "scalar expression"); 1591 if (E->getType()->isVoidType()) 1592 return nullptr; 1593 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1594 } 1595 1596 Value * 1597 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) { 1598 ASTContext &Context = CGF.getContext(); 1599 llvm::Optional<LangAS> GlobalAS = 1600 Context.getTargetInfo().getConstantAddressSpace(); 1601 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr( 1602 E->ComputeName(Context), "__usn_str", 1603 static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default))); 1604 1605 unsigned ExprAS = Context.getTargetAddressSpace(E->getType()); 1606 1607 if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS) 1608 return GlobalConstStr; 1609 1610 llvm::PointerType *PtrTy = cast<llvm::PointerType>(GlobalConstStr->getType()); 1611 llvm::PointerType *NewPtrTy = 1612 llvm::PointerType::getWithSamePointeeType(PtrTy, ExprAS); 1613 return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast"); 1614 } 1615 1616 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1617 // Vector Mask Case 1618 if (E->getNumSubExprs() == 2) { 1619 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1620 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1621 Value *Mask; 1622 1623 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); 1624 unsigned LHSElts = LTy->getNumElements(); 1625 1626 Mask = RHS; 1627 1628 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); 1629 1630 // Mask off the high bits of each shuffle index. 1631 Value *MaskBits = 1632 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1633 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1634 1635 // newv = undef 1636 // mask = mask & maskbits 1637 // for each elt 1638 // n = extract mask i 1639 // x = extract val n 1640 // newv = insert newv, x, i 1641 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1642 MTy->getNumElements()); 1643 Value* NewV = llvm::UndefValue::get(RTy); 1644 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1645 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1646 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1647 1648 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1649 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1650 } 1651 return NewV; 1652 } 1653 1654 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1655 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1656 1657 SmallVector<int, 32> Indices; 1658 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1659 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1660 // Check for -1 and output it as undef in the IR. 1661 if (Idx.isSigned() && Idx.isAllOnes()) 1662 Indices.push_back(-1); 1663 else 1664 Indices.push_back(Idx.getZExtValue()); 1665 } 1666 1667 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1668 } 1669 1670 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1671 QualType SrcType = E->getSrcExpr()->getType(), 1672 DstType = E->getType(); 1673 1674 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1675 1676 SrcType = CGF.getContext().getCanonicalType(SrcType); 1677 DstType = CGF.getContext().getCanonicalType(DstType); 1678 if (SrcType == DstType) return Src; 1679 1680 assert(SrcType->isVectorType() && 1681 "ConvertVector source type must be a vector"); 1682 assert(DstType->isVectorType() && 1683 "ConvertVector destination type must be a vector"); 1684 1685 llvm::Type *SrcTy = Src->getType(); 1686 llvm::Type *DstTy = ConvertType(DstType); 1687 1688 // Ignore conversions like int -> uint. 1689 if (SrcTy == DstTy) 1690 return Src; 1691 1692 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1693 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1694 1695 assert(SrcTy->isVectorTy() && 1696 "ConvertVector source IR type must be a vector"); 1697 assert(DstTy->isVectorTy() && 1698 "ConvertVector destination IR type must be a vector"); 1699 1700 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1701 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1702 1703 if (DstEltType->isBooleanType()) { 1704 assert((SrcEltTy->isFloatingPointTy() || 1705 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1706 1707 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1708 if (SrcEltTy->isFloatingPointTy()) { 1709 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1710 } else { 1711 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1712 } 1713 } 1714 1715 // We have the arithmetic types: real int/float. 1716 Value *Res = nullptr; 1717 1718 if (isa<llvm::IntegerType>(SrcEltTy)) { 1719 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1720 if (isa<llvm::IntegerType>(DstEltTy)) 1721 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1722 else if (InputSigned) 1723 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1724 else 1725 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1726 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1727 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1728 if (DstEltType->isSignedIntegerOrEnumerationType()) 1729 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1730 else 1731 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1732 } else { 1733 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1734 "Unknown real conversion"); 1735 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1736 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1737 else 1738 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1739 } 1740 1741 return Res; 1742 } 1743 1744 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1745 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1746 CGF.EmitIgnoredExpr(E->getBase()); 1747 return CGF.emitScalarConstant(Constant, E); 1748 } else { 1749 Expr::EvalResult Result; 1750 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1751 llvm::APSInt Value = Result.Val.getInt(); 1752 CGF.EmitIgnoredExpr(E->getBase()); 1753 return Builder.getInt(Value); 1754 } 1755 } 1756 1757 return EmitLoadOfLValue(E); 1758 } 1759 1760 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1761 TestAndClearIgnoreResultAssign(); 1762 1763 // Emit subscript expressions in rvalue context's. For most cases, this just 1764 // loads the lvalue formed by the subscript expr. However, we have to be 1765 // careful, because the base of a vector subscript is occasionally an rvalue, 1766 // so we can't get it as an lvalue. 1767 if (!E->getBase()->getType()->isVectorType()) 1768 return EmitLoadOfLValue(E); 1769 1770 // Handle the vector case. The base must be a vector, the index must be an 1771 // integer value. 1772 Value *Base = Visit(E->getBase()); 1773 Value *Idx = Visit(E->getIdx()); 1774 QualType IdxTy = E->getIdx()->getType(); 1775 1776 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1777 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1778 1779 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1780 } 1781 1782 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1783 TestAndClearIgnoreResultAssign(); 1784 1785 // Handle the vector case. The base must be a vector, the index must be an 1786 // integer value. 1787 Value *RowIdx = Visit(E->getRowIdx()); 1788 Value *ColumnIdx = Visit(E->getColumnIdx()); 1789 1790 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>(); 1791 unsigned NumRows = MatrixTy->getNumRows(); 1792 llvm::MatrixBuilder MB(Builder); 1793 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows); 1794 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0) 1795 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened()); 1796 1797 Value *Matrix = Visit(E->getBase()); 1798 1799 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1800 return Builder.CreateExtractElement(Matrix, Idx, "matrixext"); 1801 } 1802 1803 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1804 unsigned Off) { 1805 int MV = SVI->getMaskValue(Idx); 1806 if (MV == -1) 1807 return -1; 1808 return Off + MV; 1809 } 1810 1811 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1812 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1813 "Index operand too large for shufflevector mask!"); 1814 return C->getZExtValue(); 1815 } 1816 1817 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1818 bool Ignore = TestAndClearIgnoreResultAssign(); 1819 (void)Ignore; 1820 assert (Ignore == false && "init list ignored"); 1821 unsigned NumInitElements = E->getNumInits(); 1822 1823 if (E->hadArrayRangeDesignator()) 1824 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1825 1826 llvm::VectorType *VType = 1827 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1828 1829 if (!VType) { 1830 if (NumInitElements == 0) { 1831 // C++11 value-initialization for the scalar. 1832 return EmitNullValue(E->getType()); 1833 } 1834 // We have a scalar in braces. Just use the first element. 1835 return Visit(E->getInit(0)); 1836 } 1837 1838 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); 1839 1840 // Loop over initializers collecting the Value for each, and remembering 1841 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1842 // us to fold the shuffle for the swizzle into the shuffle for the vector 1843 // initializer, since LLVM optimizers generally do not want to touch 1844 // shuffles. 1845 unsigned CurIdx = 0; 1846 bool VIsUndefShuffle = false; 1847 llvm::Value *V = llvm::UndefValue::get(VType); 1848 for (unsigned i = 0; i != NumInitElements; ++i) { 1849 Expr *IE = E->getInit(i); 1850 Value *Init = Visit(IE); 1851 SmallVector<int, 16> Args; 1852 1853 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1854 1855 // Handle scalar elements. If the scalar initializer is actually one 1856 // element of a different vector of the same width, use shuffle instead of 1857 // extract+insert. 1858 if (!VVT) { 1859 if (isa<ExtVectorElementExpr>(IE)) { 1860 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1861 1862 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) 1863 ->getNumElements() == ResElts) { 1864 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1865 Value *LHS = nullptr, *RHS = nullptr; 1866 if (CurIdx == 0) { 1867 // insert into undef -> shuffle (src, undef) 1868 // shufflemask must use an i32 1869 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1870 Args.resize(ResElts, -1); 1871 1872 LHS = EI->getVectorOperand(); 1873 RHS = V; 1874 VIsUndefShuffle = true; 1875 } else if (VIsUndefShuffle) { 1876 // insert into undefshuffle && size match -> shuffle (v, src) 1877 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1878 for (unsigned j = 0; j != CurIdx; ++j) 1879 Args.push_back(getMaskElt(SVV, j, 0)); 1880 Args.push_back(ResElts + C->getZExtValue()); 1881 Args.resize(ResElts, -1); 1882 1883 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1884 RHS = EI->getVectorOperand(); 1885 VIsUndefShuffle = false; 1886 } 1887 if (!Args.empty()) { 1888 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1889 ++CurIdx; 1890 continue; 1891 } 1892 } 1893 } 1894 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1895 "vecinit"); 1896 VIsUndefShuffle = false; 1897 ++CurIdx; 1898 continue; 1899 } 1900 1901 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); 1902 1903 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1904 // input is the same width as the vector being constructed, generate an 1905 // optimized shuffle of the swizzle input into the result. 1906 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1907 if (isa<ExtVectorElementExpr>(IE)) { 1908 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1909 Value *SVOp = SVI->getOperand(0); 1910 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); 1911 1912 if (OpTy->getNumElements() == ResElts) { 1913 for (unsigned j = 0; j != CurIdx; ++j) { 1914 // If the current vector initializer is a shuffle with undef, merge 1915 // this shuffle directly into it. 1916 if (VIsUndefShuffle) { 1917 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1918 } else { 1919 Args.push_back(j); 1920 } 1921 } 1922 for (unsigned j = 0, je = InitElts; j != je; ++j) 1923 Args.push_back(getMaskElt(SVI, j, Offset)); 1924 Args.resize(ResElts, -1); 1925 1926 if (VIsUndefShuffle) 1927 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1928 1929 Init = SVOp; 1930 } 1931 } 1932 1933 // Extend init to result vector length, and then shuffle its contribution 1934 // to the vector initializer into V. 1935 if (Args.empty()) { 1936 for (unsigned j = 0; j != InitElts; ++j) 1937 Args.push_back(j); 1938 Args.resize(ResElts, -1); 1939 Init = Builder.CreateShuffleVector(Init, Args, "vext"); 1940 1941 Args.clear(); 1942 for (unsigned j = 0; j != CurIdx; ++j) 1943 Args.push_back(j); 1944 for (unsigned j = 0; j != InitElts; ++j) 1945 Args.push_back(j + Offset); 1946 Args.resize(ResElts, -1); 1947 } 1948 1949 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1950 // merging subsequent shuffles into this one. 1951 if (CurIdx == 0) 1952 std::swap(V, Init); 1953 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 1954 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1955 CurIdx += InitElts; 1956 } 1957 1958 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1959 // Emit remaining default initializers. 1960 llvm::Type *EltTy = VType->getElementType(); 1961 1962 // Emit remaining default initializers 1963 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1964 Value *Idx = Builder.getInt32(CurIdx); 1965 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1966 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1967 } 1968 return V; 1969 } 1970 1971 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1972 const Expr *E = CE->getSubExpr(); 1973 1974 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1975 return false; 1976 1977 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1978 // We always assume that 'this' is never null. 1979 return false; 1980 } 1981 1982 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1983 // And that glvalue casts are never null. 1984 if (ICE->isGLValue()) 1985 return false; 1986 } 1987 1988 return true; 1989 } 1990 1991 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1992 // have to handle a more broad range of conversions than explicit casts, as they 1993 // handle things like function to ptr-to-function decay etc. 1994 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1995 Expr *E = CE->getSubExpr(); 1996 QualType DestTy = CE->getType(); 1997 CastKind Kind = CE->getCastKind(); 1998 1999 // These cases are generally not written to ignore the result of 2000 // evaluating their sub-expressions, so we clear this now. 2001 bool Ignored = TestAndClearIgnoreResultAssign(); 2002 2003 // Since almost all cast kinds apply to scalars, this switch doesn't have 2004 // a default case, so the compiler will warn on a missing case. The cases 2005 // are in the same order as in the CastKind enum. 2006 switch (Kind) { 2007 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 2008 case CK_BuiltinFnToFnPtr: 2009 llvm_unreachable("builtin functions are handled elsewhere"); 2010 2011 case CK_LValueBitCast: 2012 case CK_ObjCObjectLValueCast: { 2013 Address Addr = EmitLValue(E).getAddress(CGF); 2014 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2015 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 2016 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2017 } 2018 2019 case CK_LValueToRValueBitCast: { 2020 LValue SourceLVal = CGF.EmitLValue(E); 2021 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 2022 CGF.ConvertTypeForMem(DestTy)); 2023 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2024 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2025 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2026 } 2027 2028 case CK_CPointerToObjCPointerCast: 2029 case CK_BlockPointerToObjCPointerCast: 2030 case CK_AnyPointerToBlockPointerCast: 2031 case CK_BitCast: { 2032 Value *Src = Visit(const_cast<Expr*>(E)); 2033 llvm::Type *SrcTy = Src->getType(); 2034 llvm::Type *DstTy = ConvertType(DestTy); 2035 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2036 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2037 llvm_unreachable("wrong cast for pointers in different address spaces" 2038 "(must be an address space cast)!"); 2039 } 2040 2041 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2042 if (auto *PT = DestTy->getAs<PointerType>()) { 2043 CGF.EmitVTablePtrCheckForCast( 2044 PT->getPointeeType(), 2045 Address(Src, 2046 CGF.ConvertTypeForMem( 2047 E->getType()->castAs<PointerType>()->getPointeeType()), 2048 CGF.getPointerAlign()), 2049 /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast, 2050 CE->getBeginLoc()); 2051 } 2052 } 2053 2054 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2055 const QualType SrcType = E->getType(); 2056 2057 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2058 // Casting to pointer that could carry dynamic information (provided by 2059 // invariant.group) requires launder. 2060 Src = Builder.CreateLaunderInvariantGroup(Src); 2061 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2062 // Casting to pointer that does not carry dynamic information (provided 2063 // by invariant.group) requires stripping it. Note that we don't do it 2064 // if the source could not be dynamic type and destination could be 2065 // dynamic because dynamic information is already laundered. It is 2066 // because launder(strip(src)) == launder(src), so there is no need to 2067 // add extra strip before launder. 2068 Src = Builder.CreateStripInvariantGroup(Src); 2069 } 2070 } 2071 2072 // Update heapallocsite metadata when there is an explicit pointer cast. 2073 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 2074 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { 2075 QualType PointeeType = DestTy->getPointeeType(); 2076 if (!PointeeType.isNull()) 2077 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 2078 CE->getExprLoc()); 2079 } 2080 } 2081 2082 // If Src is a fixed vector and Dst is a scalable vector, and both have the 2083 // same element type, use the llvm.experimental.vector.insert intrinsic to 2084 // perform the bitcast. 2085 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 2086 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { 2087 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 2088 // vector, use a vector insert and bitcast the result. 2089 bool NeedsBitCast = false; 2090 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2091 llvm::Type *OrigType = DstTy; 2092 if (ScalableDst == PredType && 2093 FixedSrc->getElementType() == Builder.getInt8Ty()) { 2094 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2095 ScalableDst = cast<llvm::ScalableVectorType>(DstTy); 2096 NeedsBitCast = true; 2097 } 2098 if (FixedSrc->getElementType() == ScalableDst->getElementType()) { 2099 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); 2100 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2101 llvm::Value *Result = Builder.CreateInsertVector( 2102 DstTy, UndefVec, Src, Zero, "castScalableSve"); 2103 if (NeedsBitCast) 2104 Result = Builder.CreateBitCast(Result, OrigType); 2105 return Result; 2106 } 2107 } 2108 } 2109 2110 // If Src is a scalable vector and Dst is a fixed vector, and both have the 2111 // same element type, use the llvm.experimental.vector.extract intrinsic to 2112 // perform the bitcast. 2113 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { 2114 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { 2115 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2116 // vector, bitcast the source and use a vector extract. 2117 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2118 if (ScalableSrc == PredType && 2119 FixedDst->getElementType() == Builder.getInt8Ty()) { 2120 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2121 ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy); 2122 Src = Builder.CreateBitCast(Src, SrcTy); 2123 } 2124 if (ScalableSrc->getElementType() == FixedDst->getElementType()) { 2125 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2126 return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve"); 2127 } 2128 } 2129 } 2130 2131 // Perform VLAT <-> VLST bitcast through memory. 2132 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics 2133 // require the element types of the vectors to be the same, we 2134 // need to keep this around for bitcasts between VLAT <-> VLST where 2135 // the element types of the vectors are not the same, until we figure 2136 // out a better way of doing these casts. 2137 if ((isa<llvm::FixedVectorType>(SrcTy) && 2138 isa<llvm::ScalableVectorType>(DstTy)) || 2139 (isa<llvm::ScalableVectorType>(SrcTy) && 2140 isa<llvm::FixedVectorType>(DstTy))) { 2141 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value"); 2142 LValue LV = CGF.MakeAddrLValue(Addr, E->getType()); 2143 CGF.EmitStoreOfScalar(Src, LV); 2144 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy), 2145 "castFixedSve"); 2146 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2147 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2148 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2149 } 2150 return Builder.CreateBitCast(Src, DstTy); 2151 } 2152 case CK_AddressSpaceConversion: { 2153 Expr::EvalResult Result; 2154 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2155 Result.Val.isNullPointer()) { 2156 // If E has side effect, it is emitted even if its final result is a 2157 // null pointer. In that case, a DCE pass should be able to 2158 // eliminate the useless instructions emitted during translating E. 2159 if (Result.HasSideEffects) 2160 Visit(E); 2161 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2162 ConvertType(DestTy)), DestTy); 2163 } 2164 // Since target may map different address spaces in AST to the same address 2165 // space, an address space conversion may end up as a bitcast. 2166 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2167 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2168 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2169 } 2170 case CK_AtomicToNonAtomic: 2171 case CK_NonAtomicToAtomic: 2172 case CK_UserDefinedConversion: 2173 return Visit(const_cast<Expr*>(E)); 2174 2175 case CK_NoOp: { 2176 llvm::Value *V = Visit(const_cast<Expr *>(E)); 2177 if (V) { 2178 // CK_NoOp can model a pointer qualification conversion, which can remove 2179 // an array bound and change the IR type. 2180 // FIXME: Once pointee types are removed from IR, remove this. 2181 llvm::Type *T = ConvertType(DestTy); 2182 if (T != V->getType()) 2183 V = Builder.CreateBitCast(V, T); 2184 } 2185 return V; 2186 } 2187 2188 case CK_BaseToDerived: { 2189 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2190 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2191 2192 Address Base = CGF.EmitPointerWithAlignment(E); 2193 Address Derived = 2194 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2195 CE->path_begin(), CE->path_end(), 2196 CGF.ShouldNullCheckClassCastValue(CE)); 2197 2198 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2199 // performed and the object is not of the derived type. 2200 if (CGF.sanitizePerformTypeCheck()) 2201 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2202 Derived.getPointer(), DestTy->getPointeeType()); 2203 2204 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2205 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived, 2206 /*MayBeNull=*/true, 2207 CodeGenFunction::CFITCK_DerivedCast, 2208 CE->getBeginLoc()); 2209 2210 return Derived.getPointer(); 2211 } 2212 case CK_UncheckedDerivedToBase: 2213 case CK_DerivedToBase: { 2214 // The EmitPointerWithAlignment path does this fine; just discard 2215 // the alignment. 2216 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2217 } 2218 2219 case CK_Dynamic: { 2220 Address V = CGF.EmitPointerWithAlignment(E); 2221 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2222 return CGF.EmitDynamicCast(V, DCE); 2223 } 2224 2225 case CK_ArrayToPointerDecay: 2226 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2227 case CK_FunctionToPointerDecay: 2228 return EmitLValue(E).getPointer(CGF); 2229 2230 case CK_NullToPointer: 2231 if (MustVisitNullValue(E)) 2232 CGF.EmitIgnoredExpr(E); 2233 2234 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2235 DestTy); 2236 2237 case CK_NullToMemberPointer: { 2238 if (MustVisitNullValue(E)) 2239 CGF.EmitIgnoredExpr(E); 2240 2241 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2242 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2243 } 2244 2245 case CK_ReinterpretMemberPointer: 2246 case CK_BaseToDerivedMemberPointer: 2247 case CK_DerivedToBaseMemberPointer: { 2248 Value *Src = Visit(E); 2249 2250 // Note that the AST doesn't distinguish between checked and 2251 // unchecked member pointer conversions, so we always have to 2252 // implement checked conversions here. This is inefficient when 2253 // actual control flow may be required in order to perform the 2254 // check, which it is for data member pointers (but not member 2255 // function pointers on Itanium and ARM). 2256 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2257 } 2258 2259 case CK_ARCProduceObject: 2260 return CGF.EmitARCRetainScalarExpr(E); 2261 case CK_ARCConsumeObject: 2262 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2263 case CK_ARCReclaimReturnedObject: 2264 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2265 case CK_ARCExtendBlockObject: 2266 return CGF.EmitARCExtendBlockObject(E); 2267 2268 case CK_CopyAndAutoreleaseBlockObject: 2269 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2270 2271 case CK_FloatingRealToComplex: 2272 case CK_FloatingComplexCast: 2273 case CK_IntegralRealToComplex: 2274 case CK_IntegralComplexCast: 2275 case CK_IntegralComplexToFloatingComplex: 2276 case CK_FloatingComplexToIntegralComplex: 2277 case CK_ConstructorConversion: 2278 case CK_ToUnion: 2279 llvm_unreachable("scalar cast to non-scalar value"); 2280 2281 case CK_LValueToRValue: 2282 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2283 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2284 return Visit(const_cast<Expr*>(E)); 2285 2286 case CK_IntegralToPointer: { 2287 Value *Src = Visit(const_cast<Expr*>(E)); 2288 2289 // First, convert to the correct width so that we control the kind of 2290 // extension. 2291 auto DestLLVMTy = ConvertType(DestTy); 2292 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2293 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2294 llvm::Value* IntResult = 2295 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2296 2297 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2298 2299 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2300 // Going from integer to pointer that could be dynamic requires reloading 2301 // dynamic information from invariant.group. 2302 if (DestTy.mayBeDynamicClass()) 2303 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2304 } 2305 return IntToPtr; 2306 } 2307 case CK_PointerToIntegral: { 2308 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2309 auto *PtrExpr = Visit(E); 2310 2311 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2312 const QualType SrcType = E->getType(); 2313 2314 // Casting to integer requires stripping dynamic information as it does 2315 // not carries it. 2316 if (SrcType.mayBeDynamicClass()) 2317 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2318 } 2319 2320 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2321 } 2322 case CK_ToVoid: { 2323 CGF.EmitIgnoredExpr(E); 2324 return nullptr; 2325 } 2326 case CK_MatrixCast: { 2327 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2328 CE->getExprLoc()); 2329 } 2330 case CK_VectorSplat: { 2331 llvm::Type *DstTy = ConvertType(DestTy); 2332 Value *Elt = Visit(const_cast<Expr*>(E)); 2333 // Splat the element across to all elements 2334 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 2335 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2336 } 2337 2338 case CK_FixedPointCast: 2339 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2340 CE->getExprLoc()); 2341 2342 case CK_FixedPointToBoolean: 2343 assert(E->getType()->isFixedPointType() && 2344 "Expected src type to be fixed point type"); 2345 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2346 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2347 CE->getExprLoc()); 2348 2349 case CK_FixedPointToIntegral: 2350 assert(E->getType()->isFixedPointType() && 2351 "Expected src type to be fixed point type"); 2352 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2353 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2354 CE->getExprLoc()); 2355 2356 case CK_IntegralToFixedPoint: 2357 assert(E->getType()->isIntegerType() && 2358 "Expected src type to be an integer"); 2359 assert(DestTy->isFixedPointType() && 2360 "Expected dest type to be fixed point type"); 2361 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2362 CE->getExprLoc()); 2363 2364 case CK_IntegralCast: { 2365 ScalarConversionOpts Opts; 2366 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2367 if (!ICE->isPartOfExplicitCast()) 2368 Opts = ScalarConversionOpts(CGF.SanOpts); 2369 } 2370 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2371 CE->getExprLoc(), Opts); 2372 } 2373 case CK_IntegralToFloating: 2374 case CK_FloatingToIntegral: 2375 case CK_FloatingCast: 2376 case CK_FixedPointToFloating: 2377 case CK_FloatingToFixedPoint: { 2378 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2379 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2380 CE->getExprLoc()); 2381 } 2382 case CK_BooleanToSignedIntegral: { 2383 ScalarConversionOpts Opts; 2384 Opts.TreatBooleanAsSigned = true; 2385 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2386 CE->getExprLoc(), Opts); 2387 } 2388 case CK_IntegralToBoolean: 2389 return EmitIntToBoolConversion(Visit(E)); 2390 case CK_PointerToBoolean: 2391 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2392 case CK_FloatingToBoolean: { 2393 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2394 return EmitFloatToBoolConversion(Visit(E)); 2395 } 2396 case CK_MemberPointerToBoolean: { 2397 llvm::Value *MemPtr = Visit(E); 2398 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2399 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2400 } 2401 2402 case CK_FloatingComplexToReal: 2403 case CK_IntegralComplexToReal: 2404 return CGF.EmitComplexExpr(E, false, true).first; 2405 2406 case CK_FloatingComplexToBoolean: 2407 case CK_IntegralComplexToBoolean: { 2408 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2409 2410 // TODO: kill this function off, inline appropriate case here 2411 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2412 CE->getExprLoc()); 2413 } 2414 2415 case CK_ZeroToOCLOpaqueType: { 2416 assert((DestTy->isEventT() || DestTy->isQueueT() || 2417 DestTy->isOCLIntelSubgroupAVCType()) && 2418 "CK_ZeroToOCLEvent cast on non-event type"); 2419 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2420 } 2421 2422 case CK_IntToOCLSampler: 2423 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2424 2425 } // end of switch 2426 2427 llvm_unreachable("unknown scalar cast"); 2428 } 2429 2430 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2431 CodeGenFunction::StmtExprEvaluation eval(CGF); 2432 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2433 !E->getType()->isVoidType()); 2434 if (!RetAlloca.isValid()) 2435 return nullptr; 2436 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2437 E->getExprLoc()); 2438 } 2439 2440 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2441 CodeGenFunction::RunCleanupsScope Scope(CGF); 2442 Value *V = Visit(E->getSubExpr()); 2443 // Defend against dominance problems caused by jumps out of expression 2444 // evaluation through the shared cleanup block. 2445 Scope.ForceCleanup({&V}); 2446 return V; 2447 } 2448 2449 //===----------------------------------------------------------------------===// 2450 // Unary Operators 2451 //===----------------------------------------------------------------------===// 2452 2453 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2454 llvm::Value *InVal, bool IsInc, 2455 FPOptions FPFeatures) { 2456 BinOpInfo BinOp; 2457 BinOp.LHS = InVal; 2458 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2459 BinOp.Ty = E->getType(); 2460 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2461 BinOp.FPFeatures = FPFeatures; 2462 BinOp.E = E; 2463 return BinOp; 2464 } 2465 2466 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2467 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2468 llvm::Value *Amount = 2469 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2470 StringRef Name = IsInc ? "inc" : "dec"; 2471 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2472 case LangOptions::SOB_Defined: 2473 return Builder.CreateAdd(InVal, Amount, Name); 2474 case LangOptions::SOB_Undefined: 2475 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2476 return Builder.CreateNSWAdd(InVal, Amount, Name); 2477 LLVM_FALLTHROUGH; 2478 case LangOptions::SOB_Trapping: 2479 if (!E->canOverflow()) 2480 return Builder.CreateNSWAdd(InVal, Amount, Name); 2481 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2482 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2483 } 2484 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2485 } 2486 2487 namespace { 2488 /// Handles check and update for lastprivate conditional variables. 2489 class OMPLastprivateConditionalUpdateRAII { 2490 private: 2491 CodeGenFunction &CGF; 2492 const UnaryOperator *E; 2493 2494 public: 2495 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2496 const UnaryOperator *E) 2497 : CGF(CGF), E(E) {} 2498 ~OMPLastprivateConditionalUpdateRAII() { 2499 if (CGF.getLangOpts().OpenMP) 2500 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2501 CGF, E->getSubExpr()); 2502 } 2503 }; 2504 } // namespace 2505 2506 llvm::Value * 2507 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2508 bool isInc, bool isPre) { 2509 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2510 QualType type = E->getSubExpr()->getType(); 2511 llvm::PHINode *atomicPHI = nullptr; 2512 llvm::Value *value; 2513 llvm::Value *input; 2514 2515 int amount = (isInc ? 1 : -1); 2516 bool isSubtraction = !isInc; 2517 2518 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2519 type = atomicTy->getValueType(); 2520 if (isInc && type->isBooleanType()) { 2521 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2522 if (isPre) { 2523 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2524 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2525 return Builder.getTrue(); 2526 } 2527 // For atomic bool increment, we just store true and return it for 2528 // preincrement, do an atomic swap with true for postincrement 2529 return Builder.CreateAtomicRMW( 2530 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2531 llvm::AtomicOrdering::SequentiallyConsistent); 2532 } 2533 // Special case for atomic increment / decrement on integers, emit 2534 // atomicrmw instructions. We skip this if we want to be doing overflow 2535 // checking, and fall into the slow path with the atomic cmpxchg loop. 2536 if (!type->isBooleanType() && type->isIntegerType() && 2537 !(type->isUnsignedIntegerType() && 2538 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2539 CGF.getLangOpts().getSignedOverflowBehavior() != 2540 LangOptions::SOB_Trapping) { 2541 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2542 llvm::AtomicRMWInst::Sub; 2543 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2544 llvm::Instruction::Sub; 2545 llvm::Value *amt = CGF.EmitToMemory( 2546 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2547 llvm::Value *old = 2548 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2549 llvm::AtomicOrdering::SequentiallyConsistent); 2550 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2551 } 2552 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2553 input = value; 2554 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2555 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2556 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2557 value = CGF.EmitToMemory(value, type); 2558 Builder.CreateBr(opBB); 2559 Builder.SetInsertPoint(opBB); 2560 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2561 atomicPHI->addIncoming(value, startBB); 2562 value = atomicPHI; 2563 } else { 2564 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2565 input = value; 2566 } 2567 2568 // Special case of integer increment that we have to check first: bool++. 2569 // Due to promotion rules, we get: 2570 // bool++ -> bool = bool + 1 2571 // -> bool = (int)bool + 1 2572 // -> bool = ((int)bool + 1 != 0) 2573 // An interesting aspect of this is that increment is always true. 2574 // Decrement does not have this property. 2575 if (isInc && type->isBooleanType()) { 2576 value = Builder.getTrue(); 2577 2578 // Most common case by far: integer increment. 2579 } else if (type->isIntegerType()) { 2580 QualType promotedType; 2581 bool canPerformLossyDemotionCheck = false; 2582 if (type->isPromotableIntegerType()) { 2583 promotedType = CGF.getContext().getPromotedIntegerType(type); 2584 assert(promotedType != type && "Shouldn't promote to the same type."); 2585 canPerformLossyDemotionCheck = true; 2586 canPerformLossyDemotionCheck &= 2587 CGF.getContext().getCanonicalType(type) != 2588 CGF.getContext().getCanonicalType(promotedType); 2589 canPerformLossyDemotionCheck &= 2590 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2591 type, promotedType); 2592 assert((!canPerformLossyDemotionCheck || 2593 type->isSignedIntegerOrEnumerationType() || 2594 promotedType->isSignedIntegerOrEnumerationType() || 2595 ConvertType(type)->getScalarSizeInBits() == 2596 ConvertType(promotedType)->getScalarSizeInBits()) && 2597 "The following check expects that if we do promotion to different " 2598 "underlying canonical type, at least one of the types (either " 2599 "base or promoted) will be signed, or the bitwidths will match."); 2600 } 2601 if (CGF.SanOpts.hasOneOf( 2602 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2603 canPerformLossyDemotionCheck) { 2604 // While `x += 1` (for `x` with width less than int) is modeled as 2605 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2606 // ease; inc/dec with width less than int can't overflow because of 2607 // promotion rules, so we omit promotion+demotion, which means that we can 2608 // not catch lossy "demotion". Because we still want to catch these cases 2609 // when the sanitizer is enabled, we perform the promotion, then perform 2610 // the increment/decrement in the wider type, and finally 2611 // perform the demotion. This will catch lossy demotions. 2612 2613 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2614 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2615 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2616 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2617 // emitted. 2618 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2619 ScalarConversionOpts(CGF.SanOpts)); 2620 2621 // Note that signed integer inc/dec with width less than int can't 2622 // overflow because of promotion rules; we're just eliding a few steps 2623 // here. 2624 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2625 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2626 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2627 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2628 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2629 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2630 } else { 2631 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2632 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2633 } 2634 2635 // Next most common: pointer increment. 2636 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2637 QualType type = ptr->getPointeeType(); 2638 2639 // VLA types don't have constant size. 2640 if (const VariableArrayType *vla 2641 = CGF.getContext().getAsVariableArrayType(type)) { 2642 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2643 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2644 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType()); 2645 if (CGF.getLangOpts().isSignedOverflowDefined()) 2646 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc"); 2647 else 2648 value = CGF.EmitCheckedInBoundsGEP( 2649 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction, 2650 E->getExprLoc(), "vla.inc"); 2651 2652 // Arithmetic on function pointers (!) is just +-1. 2653 } else if (type->isFunctionType()) { 2654 llvm::Value *amt = Builder.getInt32(amount); 2655 2656 value = CGF.EmitCastToVoidPtr(value); 2657 if (CGF.getLangOpts().isSignedOverflowDefined()) 2658 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr"); 2659 else 2660 value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt, 2661 /*SignedIndices=*/false, 2662 isSubtraction, E->getExprLoc(), 2663 "incdec.funcptr"); 2664 value = Builder.CreateBitCast(value, input->getType()); 2665 2666 // For everything else, we can just do a simple increment. 2667 } else { 2668 llvm::Value *amt = Builder.getInt32(amount); 2669 llvm::Type *elemTy = CGF.ConvertTypeForMem(type); 2670 if (CGF.getLangOpts().isSignedOverflowDefined()) 2671 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr"); 2672 else 2673 value = CGF.EmitCheckedInBoundsGEP( 2674 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction, 2675 E->getExprLoc(), "incdec.ptr"); 2676 } 2677 2678 // Vector increment/decrement. 2679 } else if (type->isVectorType()) { 2680 if (type->hasIntegerRepresentation()) { 2681 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2682 2683 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2684 } else { 2685 value = Builder.CreateFAdd( 2686 value, 2687 llvm::ConstantFP::get(value->getType(), amount), 2688 isInc ? "inc" : "dec"); 2689 } 2690 2691 // Floating point. 2692 } else if (type->isRealFloatingType()) { 2693 // Add the inc/dec to the real part. 2694 llvm::Value *amt; 2695 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 2696 2697 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2698 // Another special case: half FP increment should be done via float 2699 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2700 value = Builder.CreateCall( 2701 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2702 CGF.CGM.FloatTy), 2703 input, "incdec.conv"); 2704 } else { 2705 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2706 } 2707 } 2708 2709 if (value->getType()->isFloatTy()) 2710 amt = llvm::ConstantFP::get(VMContext, 2711 llvm::APFloat(static_cast<float>(amount))); 2712 else if (value->getType()->isDoubleTy()) 2713 amt = llvm::ConstantFP::get(VMContext, 2714 llvm::APFloat(static_cast<double>(amount))); 2715 else { 2716 // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert 2717 // from float. 2718 llvm::APFloat F(static_cast<float>(amount)); 2719 bool ignored; 2720 const llvm::fltSemantics *FS; 2721 // Don't use getFloatTypeSemantics because Half isn't 2722 // necessarily represented using the "half" LLVM type. 2723 if (value->getType()->isFP128Ty()) 2724 FS = &CGF.getTarget().getFloat128Format(); 2725 else if (value->getType()->isHalfTy()) 2726 FS = &CGF.getTarget().getHalfFormat(); 2727 else if (value->getType()->isPPC_FP128Ty()) 2728 FS = &CGF.getTarget().getIbm128Format(); 2729 else 2730 FS = &CGF.getTarget().getLongDoubleFormat(); 2731 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2732 amt = llvm::ConstantFP::get(VMContext, F); 2733 } 2734 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2735 2736 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2737 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2738 value = Builder.CreateCall( 2739 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2740 CGF.CGM.FloatTy), 2741 value, "incdec.conv"); 2742 } else { 2743 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2744 } 2745 } 2746 2747 // Fixed-point types. 2748 } else if (type->isFixedPointType()) { 2749 // Fixed-point types are tricky. In some cases, it isn't possible to 2750 // represent a 1 or a -1 in the type at all. Piggyback off of 2751 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2752 BinOpInfo Info; 2753 Info.E = E; 2754 Info.Ty = E->getType(); 2755 Info.Opcode = isInc ? BO_Add : BO_Sub; 2756 Info.LHS = value; 2757 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2758 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2759 // since -1 is guaranteed to be representable. 2760 if (type->isSignedFixedPointType()) { 2761 Info.Opcode = isInc ? BO_Sub : BO_Add; 2762 Info.RHS = Builder.CreateNeg(Info.RHS); 2763 } 2764 // Now, convert from our invented integer literal to the type of the unary 2765 // op. This will upscale and saturate if necessary. This value can become 2766 // undef in some cases. 2767 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 2768 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2769 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); 2770 value = EmitFixedPointBinOp(Info); 2771 2772 // Objective-C pointer types. 2773 } else { 2774 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2775 value = CGF.EmitCastToVoidPtr(value); 2776 2777 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2778 if (!isInc) size = -size; 2779 llvm::Value *sizeValue = 2780 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2781 2782 if (CGF.getLangOpts().isSignedOverflowDefined()) 2783 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr"); 2784 else 2785 value = CGF.EmitCheckedInBoundsGEP( 2786 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction, 2787 E->getExprLoc(), "incdec.objptr"); 2788 value = Builder.CreateBitCast(value, input->getType()); 2789 } 2790 2791 if (atomicPHI) { 2792 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2793 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2794 auto Pair = CGF.EmitAtomicCompareExchange( 2795 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2796 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2797 llvm::Value *success = Pair.second; 2798 atomicPHI->addIncoming(old, curBlock); 2799 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2800 Builder.SetInsertPoint(contBB); 2801 return isPre ? value : input; 2802 } 2803 2804 // Store the updated result through the lvalue. 2805 if (LV.isBitField()) 2806 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2807 else 2808 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2809 2810 // If this is a postinc, return the value read from memory, otherwise use the 2811 // updated value. 2812 return isPre ? value : input; 2813 } 2814 2815 2816 2817 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2818 TestAndClearIgnoreResultAssign(); 2819 Value *Op = Visit(E->getSubExpr()); 2820 2821 // Generate a unary FNeg for FP ops. 2822 if (Op->getType()->isFPOrFPVectorTy()) 2823 return Builder.CreateFNeg(Op, "fneg"); 2824 2825 // Emit unary minus with EmitSub so we handle overflow cases etc. 2826 BinOpInfo BinOp; 2827 BinOp.RHS = Op; 2828 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2829 BinOp.Ty = E->getType(); 2830 BinOp.Opcode = BO_Sub; 2831 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2832 BinOp.E = E; 2833 return EmitSub(BinOp); 2834 } 2835 2836 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2837 TestAndClearIgnoreResultAssign(); 2838 Value *Op = Visit(E->getSubExpr()); 2839 return Builder.CreateNot(Op, "neg"); 2840 } 2841 2842 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2843 // Perform vector logical not on comparison with zero vector. 2844 if (E->getType()->isVectorType() && 2845 E->getType()->castAs<VectorType>()->getVectorKind() == 2846 VectorType::GenericVector) { 2847 Value *Oper = Visit(E->getSubExpr()); 2848 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2849 Value *Result; 2850 if (Oper->getType()->isFPOrFPVectorTy()) { 2851 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2852 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2853 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2854 } else 2855 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2856 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2857 } 2858 2859 // Compare operand to zero. 2860 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2861 2862 // Invert value. 2863 // TODO: Could dynamically modify easy computations here. For example, if 2864 // the operand is an icmp ne, turn into icmp eq. 2865 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2866 2867 // ZExt result to the expr type. 2868 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2869 } 2870 2871 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2872 // Try folding the offsetof to a constant. 2873 Expr::EvalResult EVResult; 2874 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2875 llvm::APSInt Value = EVResult.Val.getInt(); 2876 return Builder.getInt(Value); 2877 } 2878 2879 // Loop over the components of the offsetof to compute the value. 2880 unsigned n = E->getNumComponents(); 2881 llvm::Type* ResultType = ConvertType(E->getType()); 2882 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2883 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2884 for (unsigned i = 0; i != n; ++i) { 2885 OffsetOfNode ON = E->getComponent(i); 2886 llvm::Value *Offset = nullptr; 2887 switch (ON.getKind()) { 2888 case OffsetOfNode::Array: { 2889 // Compute the index 2890 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2891 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2892 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2893 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2894 2895 // Save the element type 2896 CurrentType = 2897 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2898 2899 // Compute the element size 2900 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2901 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2902 2903 // Multiply out to compute the result 2904 Offset = Builder.CreateMul(Idx, ElemSize); 2905 break; 2906 } 2907 2908 case OffsetOfNode::Field: { 2909 FieldDecl *MemberDecl = ON.getField(); 2910 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2911 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2912 2913 // Compute the index of the field in its parent. 2914 unsigned i = 0; 2915 // FIXME: It would be nice if we didn't have to loop here! 2916 for (RecordDecl::field_iterator Field = RD->field_begin(), 2917 FieldEnd = RD->field_end(); 2918 Field != FieldEnd; ++Field, ++i) { 2919 if (*Field == MemberDecl) 2920 break; 2921 } 2922 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2923 2924 // Compute the offset to the field 2925 int64_t OffsetInt = RL.getFieldOffset(i) / 2926 CGF.getContext().getCharWidth(); 2927 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2928 2929 // Save the element type. 2930 CurrentType = MemberDecl->getType(); 2931 break; 2932 } 2933 2934 case OffsetOfNode::Identifier: 2935 llvm_unreachable("dependent __builtin_offsetof"); 2936 2937 case OffsetOfNode::Base: { 2938 if (ON.getBase()->isVirtual()) { 2939 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2940 continue; 2941 } 2942 2943 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2944 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2945 2946 // Save the element type. 2947 CurrentType = ON.getBase()->getType(); 2948 2949 // Compute the offset to the base. 2950 auto *BaseRT = CurrentType->castAs<RecordType>(); 2951 auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2952 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2953 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2954 break; 2955 } 2956 } 2957 Result = Builder.CreateAdd(Result, Offset); 2958 } 2959 return Result; 2960 } 2961 2962 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2963 /// argument of the sizeof expression as an integer. 2964 Value * 2965 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2966 const UnaryExprOrTypeTraitExpr *E) { 2967 QualType TypeToSize = E->getTypeOfArgument(); 2968 if (E->getKind() == UETT_SizeOf) { 2969 if (const VariableArrayType *VAT = 2970 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2971 if (E->isArgumentType()) { 2972 // sizeof(type) - make sure to emit the VLA size. 2973 CGF.EmitVariablyModifiedType(TypeToSize); 2974 } else { 2975 // C99 6.5.3.4p2: If the argument is an expression of type 2976 // VLA, it is evaluated. 2977 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2978 } 2979 2980 auto VlaSize = CGF.getVLASize(VAT); 2981 llvm::Value *size = VlaSize.NumElts; 2982 2983 // Scale the number of non-VLA elements by the non-VLA element size. 2984 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2985 if (!eltSize.isOne()) 2986 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2987 2988 return size; 2989 } 2990 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2991 auto Alignment = 2992 CGF.getContext() 2993 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2994 E->getTypeOfArgument()->getPointeeType())) 2995 .getQuantity(); 2996 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2997 } 2998 2999 // If this isn't sizeof(vla), the result must be constant; use the constant 3000 // folding logic so we don't have to duplicate it here. 3001 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 3002 } 3003 3004 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 3005 Expr *Op = E->getSubExpr(); 3006 if (Op->getType()->isAnyComplexType()) { 3007 // If it's an l-value, load through the appropriate subobject l-value. 3008 // Note that we have to ask E because Op might be an l-value that 3009 // this won't work for, e.g. an Obj-C property. 3010 if (E->isGLValue()) 3011 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 3012 E->getExprLoc()).getScalarVal(); 3013 3014 // Otherwise, calculate and project. 3015 return CGF.EmitComplexExpr(Op, false, true).first; 3016 } 3017 3018 return Visit(Op); 3019 } 3020 3021 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 3022 Expr *Op = E->getSubExpr(); 3023 if (Op->getType()->isAnyComplexType()) { 3024 // If it's an l-value, load through the appropriate subobject l-value. 3025 // Note that we have to ask E because Op might be an l-value that 3026 // this won't work for, e.g. an Obj-C property. 3027 if (Op->isGLValue()) 3028 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 3029 E->getExprLoc()).getScalarVal(); 3030 3031 // Otherwise, calculate and project. 3032 return CGF.EmitComplexExpr(Op, true, false).second; 3033 } 3034 3035 // __imag on a scalar returns zero. Emit the subexpr to ensure side 3036 // effects are evaluated, but not the actual value. 3037 if (Op->isGLValue()) 3038 CGF.EmitLValue(Op); 3039 else 3040 CGF.EmitScalarExpr(Op, true); 3041 return llvm::Constant::getNullValue(ConvertType(E->getType())); 3042 } 3043 3044 //===----------------------------------------------------------------------===// 3045 // Binary Operators 3046 //===----------------------------------------------------------------------===// 3047 3048 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 3049 TestAndClearIgnoreResultAssign(); 3050 BinOpInfo Result; 3051 Result.LHS = Visit(E->getLHS()); 3052 Result.RHS = Visit(E->getRHS()); 3053 Result.Ty = E->getType(); 3054 Result.Opcode = E->getOpcode(); 3055 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3056 Result.E = E; 3057 return Result; 3058 } 3059 3060 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 3061 const CompoundAssignOperator *E, 3062 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 3063 Value *&Result) { 3064 QualType LHSTy = E->getLHS()->getType(); 3065 BinOpInfo OpInfo; 3066 3067 if (E->getComputationResultType()->isAnyComplexType()) 3068 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 3069 3070 // Emit the RHS first. __block variables need to have the rhs evaluated 3071 // first, plus this should improve codegen a little. 3072 OpInfo.RHS = Visit(E->getRHS()); 3073 OpInfo.Ty = E->getComputationResultType(); 3074 OpInfo.Opcode = E->getOpcode(); 3075 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3076 OpInfo.E = E; 3077 // Load/convert the LHS. 3078 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3079 3080 llvm::PHINode *atomicPHI = nullptr; 3081 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 3082 QualType type = atomicTy->getValueType(); 3083 if (!type->isBooleanType() && type->isIntegerType() && 3084 !(type->isUnsignedIntegerType() && 3085 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 3086 CGF.getLangOpts().getSignedOverflowBehavior() != 3087 LangOptions::SOB_Trapping) { 3088 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 3089 llvm::Instruction::BinaryOps Op; 3090 switch (OpInfo.Opcode) { 3091 // We don't have atomicrmw operands for *, %, /, <<, >> 3092 case BO_MulAssign: case BO_DivAssign: 3093 case BO_RemAssign: 3094 case BO_ShlAssign: 3095 case BO_ShrAssign: 3096 break; 3097 case BO_AddAssign: 3098 AtomicOp = llvm::AtomicRMWInst::Add; 3099 Op = llvm::Instruction::Add; 3100 break; 3101 case BO_SubAssign: 3102 AtomicOp = llvm::AtomicRMWInst::Sub; 3103 Op = llvm::Instruction::Sub; 3104 break; 3105 case BO_AndAssign: 3106 AtomicOp = llvm::AtomicRMWInst::And; 3107 Op = llvm::Instruction::And; 3108 break; 3109 case BO_XorAssign: 3110 AtomicOp = llvm::AtomicRMWInst::Xor; 3111 Op = llvm::Instruction::Xor; 3112 break; 3113 case BO_OrAssign: 3114 AtomicOp = llvm::AtomicRMWInst::Or; 3115 Op = llvm::Instruction::Or; 3116 break; 3117 default: 3118 llvm_unreachable("Invalid compound assignment type"); 3119 } 3120 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 3121 llvm::Value *Amt = CGF.EmitToMemory( 3122 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 3123 E->getExprLoc()), 3124 LHSTy); 3125 Value *OldVal = Builder.CreateAtomicRMW( 3126 AtomicOp, LHSLV.getPointer(CGF), Amt, 3127 llvm::AtomicOrdering::SequentiallyConsistent); 3128 3129 // Since operation is atomic, the result type is guaranteed to be the 3130 // same as the input in LLVM terms. 3131 Result = Builder.CreateBinOp(Op, OldVal, Amt); 3132 return LHSLV; 3133 } 3134 } 3135 // FIXME: For floating point types, we should be saving and restoring the 3136 // floating point environment in the loop. 3137 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 3138 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 3139 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3140 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 3141 Builder.CreateBr(opBB); 3142 Builder.SetInsertPoint(opBB); 3143 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 3144 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3145 OpInfo.LHS = atomicPHI; 3146 } 3147 else 3148 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3149 3150 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 3151 SourceLocation Loc = E->getExprLoc(); 3152 OpInfo.LHS = 3153 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3154 3155 // Expand the binary operator. 3156 Result = (this->*Func)(OpInfo); 3157 3158 // Convert the result back to the LHS type, 3159 // potentially with Implicit Conversion sanitizer check. 3160 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3161 Loc, ScalarConversionOpts(CGF.SanOpts)); 3162 3163 if (atomicPHI) { 3164 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3165 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3166 auto Pair = CGF.EmitAtomicCompareExchange( 3167 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3168 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3169 llvm::Value *success = Pair.second; 3170 atomicPHI->addIncoming(old, curBlock); 3171 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3172 Builder.SetInsertPoint(contBB); 3173 return LHSLV; 3174 } 3175 3176 // Store the result value into the LHS lvalue. Bit-fields are handled 3177 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3178 // 'An assignment expression has the value of the left operand after the 3179 // assignment...'. 3180 if (LHSLV.isBitField()) 3181 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3182 else 3183 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3184 3185 if (CGF.getLangOpts().OpenMP) 3186 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3187 E->getLHS()); 3188 return LHSLV; 3189 } 3190 3191 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3192 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3193 bool Ignore = TestAndClearIgnoreResultAssign(); 3194 Value *RHS = nullptr; 3195 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3196 3197 // If the result is clearly ignored, return now. 3198 if (Ignore) 3199 return nullptr; 3200 3201 // The result of an assignment in C is the assigned r-value. 3202 if (!CGF.getLangOpts().CPlusPlus) 3203 return RHS; 3204 3205 // If the lvalue is non-volatile, return the computed value of the assignment. 3206 if (!LHS.isVolatileQualified()) 3207 return RHS; 3208 3209 // Otherwise, reload the value. 3210 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3211 } 3212 3213 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3214 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3215 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3216 3217 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3218 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3219 SanitizerKind::IntegerDivideByZero)); 3220 } 3221 3222 const auto *BO = cast<BinaryOperator>(Ops.E); 3223 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3224 Ops.Ty->hasSignedIntegerRepresentation() && 3225 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3226 Ops.mayHaveIntegerOverflow()) { 3227 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3228 3229 llvm::Value *IntMin = 3230 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3231 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); 3232 3233 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3234 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3235 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3236 Checks.push_back( 3237 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3238 } 3239 3240 if (Checks.size() > 0) 3241 EmitBinOpCheck(Checks, Ops); 3242 } 3243 3244 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3245 { 3246 CodeGenFunction::SanitizerScope SanScope(&CGF); 3247 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3248 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3249 Ops.Ty->isIntegerType() && 3250 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3251 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3252 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3253 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3254 Ops.Ty->isRealFloatingType() && 3255 Ops.mayHaveFloatDivisionByZero()) { 3256 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3257 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3258 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3259 Ops); 3260 } 3261 } 3262 3263 if (Ops.Ty->isConstantMatrixType()) { 3264 llvm::MatrixBuilder MB(Builder); 3265 // We need to check the types of the operands of the operator to get the 3266 // correct matrix dimensions. 3267 auto *BO = cast<BinaryOperator>(Ops.E); 3268 (void)BO; 3269 assert( 3270 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && 3271 "first operand must be a matrix"); 3272 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && 3273 "second operand must be an arithmetic type"); 3274 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3275 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS, 3276 Ops.Ty->hasUnsignedIntegerRepresentation()); 3277 } 3278 3279 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3280 llvm::Value *Val; 3281 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3282 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3283 if ((CGF.getLangOpts().OpenCL && 3284 !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || 3285 (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice && 3286 !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { 3287 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3288 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3289 // build option allows an application to specify that single precision 3290 // floating-point divide (x/y and 1/x) and sqrt used in the program 3291 // source are correctly rounded. 3292 llvm::Type *ValTy = Val->getType(); 3293 if (ValTy->isFloatTy() || 3294 (isa<llvm::VectorType>(ValTy) && 3295 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3296 CGF.SetFPAccuracy(Val, 2.5); 3297 } 3298 return Val; 3299 } 3300 else if (Ops.isFixedPointOp()) 3301 return EmitFixedPointBinOp(Ops); 3302 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3303 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3304 else 3305 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3306 } 3307 3308 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3309 // Rem in C can't be a floating point type: C99 6.5.5p2. 3310 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3311 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3312 Ops.Ty->isIntegerType() && 3313 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3314 CodeGenFunction::SanitizerScope SanScope(&CGF); 3315 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3316 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3317 } 3318 3319 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3320 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3321 else 3322 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3323 } 3324 3325 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3326 unsigned IID; 3327 unsigned OpID = 0; 3328 SanitizerHandler OverflowKind; 3329 3330 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3331 switch (Ops.Opcode) { 3332 case BO_Add: 3333 case BO_AddAssign: 3334 OpID = 1; 3335 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3336 llvm::Intrinsic::uadd_with_overflow; 3337 OverflowKind = SanitizerHandler::AddOverflow; 3338 break; 3339 case BO_Sub: 3340 case BO_SubAssign: 3341 OpID = 2; 3342 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3343 llvm::Intrinsic::usub_with_overflow; 3344 OverflowKind = SanitizerHandler::SubOverflow; 3345 break; 3346 case BO_Mul: 3347 case BO_MulAssign: 3348 OpID = 3; 3349 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3350 llvm::Intrinsic::umul_with_overflow; 3351 OverflowKind = SanitizerHandler::MulOverflow; 3352 break; 3353 default: 3354 llvm_unreachable("Unsupported operation for overflow detection"); 3355 } 3356 OpID <<= 1; 3357 if (isSigned) 3358 OpID |= 1; 3359 3360 CodeGenFunction::SanitizerScope SanScope(&CGF); 3361 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3362 3363 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3364 3365 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3366 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3367 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3368 3369 // Handle overflow with llvm.trap if no custom handler has been specified. 3370 const std::string *handlerName = 3371 &CGF.getLangOpts().OverflowHandler; 3372 if (handlerName->empty()) { 3373 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3374 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3375 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3376 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3377 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3378 : SanitizerKind::UnsignedIntegerOverflow; 3379 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3380 } else 3381 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); 3382 return result; 3383 } 3384 3385 // Branch in case of overflow. 3386 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3387 llvm::BasicBlock *continueBB = 3388 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3389 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3390 3391 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3392 3393 // If an overflow handler is set, then we want to call it and then use its 3394 // result, if it returns. 3395 Builder.SetInsertPoint(overflowBB); 3396 3397 // Get the overflow handler. 3398 llvm::Type *Int8Ty = CGF.Int8Ty; 3399 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3400 llvm::FunctionType *handlerTy = 3401 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3402 llvm::FunctionCallee handler = 3403 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3404 3405 // Sign extend the args to 64-bit, so that we can use the same handler for 3406 // all types of overflow. 3407 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3408 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3409 3410 // Call the handler with the two arguments, the operation, and the size of 3411 // the result. 3412 llvm::Value *handlerArgs[] = { 3413 lhs, 3414 rhs, 3415 Builder.getInt8(OpID), 3416 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3417 }; 3418 llvm::Value *handlerResult = 3419 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3420 3421 // Truncate the result back to the desired size. 3422 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3423 Builder.CreateBr(continueBB); 3424 3425 Builder.SetInsertPoint(continueBB); 3426 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3427 phi->addIncoming(result, initialBB); 3428 phi->addIncoming(handlerResult, overflowBB); 3429 3430 return phi; 3431 } 3432 3433 /// Emit pointer + index arithmetic. 3434 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3435 const BinOpInfo &op, 3436 bool isSubtraction) { 3437 // Must have binary (not unary) expr here. Unary pointer 3438 // increment/decrement doesn't use this path. 3439 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3440 3441 Value *pointer = op.LHS; 3442 Expr *pointerOperand = expr->getLHS(); 3443 Value *index = op.RHS; 3444 Expr *indexOperand = expr->getRHS(); 3445 3446 // In a subtraction, the LHS is always the pointer. 3447 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3448 std::swap(pointer, index); 3449 std::swap(pointerOperand, indexOperand); 3450 } 3451 3452 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3453 3454 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3455 auto &DL = CGF.CGM.getDataLayout(); 3456 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3457 3458 // Some versions of glibc and gcc use idioms (particularly in their malloc 3459 // routines) that add a pointer-sized integer (known to be a pointer value) 3460 // to a null pointer in order to cast the value back to an integer or as 3461 // part of a pointer alignment algorithm. This is undefined behavior, but 3462 // we'd like to be able to compile programs that use it. 3463 // 3464 // Normally, we'd generate a GEP with a null-pointer base here in response 3465 // to that code, but it's also UB to dereference a pointer created that 3466 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3467 // generate a direct cast of the integer value to a pointer. 3468 // 3469 // The idiom (p = nullptr + N) is not met if any of the following are true: 3470 // 3471 // The operation is subtraction. 3472 // The index is not pointer-sized. 3473 // The pointer type is not byte-sized. 3474 // 3475 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3476 op.Opcode, 3477 expr->getLHS(), 3478 expr->getRHS())) 3479 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3480 3481 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3482 // Zero-extend or sign-extend the pointer value according to 3483 // whether the index is signed or not. 3484 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3485 "idx.ext"); 3486 } 3487 3488 // If this is subtraction, negate the index. 3489 if (isSubtraction) 3490 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3491 3492 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3493 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3494 /*Accessed*/ false); 3495 3496 const PointerType *pointerType 3497 = pointerOperand->getType()->getAs<PointerType>(); 3498 if (!pointerType) { 3499 QualType objectType = pointerOperand->getType() 3500 ->castAs<ObjCObjectPointerType>() 3501 ->getPointeeType(); 3502 llvm::Value *objectSize 3503 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3504 3505 index = CGF.Builder.CreateMul(index, objectSize); 3506 3507 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3508 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3509 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3510 } 3511 3512 QualType elementType = pointerType->getPointeeType(); 3513 if (const VariableArrayType *vla 3514 = CGF.getContext().getAsVariableArrayType(elementType)) { 3515 // The element count here is the total number of non-VLA elements. 3516 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3517 3518 // Effectively, the multiply by the VLA size is part of the GEP. 3519 // GEP indexes are signed, and scaling an index isn't permitted to 3520 // signed-overflow, so we use the same semantics for our explicit 3521 // multiply. We suppress this if overflow is not undefined behavior. 3522 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType()); 3523 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3524 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3525 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); 3526 } else { 3527 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3528 pointer = CGF.EmitCheckedInBoundsGEP( 3529 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), 3530 "add.ptr"); 3531 } 3532 return pointer; 3533 } 3534 3535 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3536 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3537 // future proof. 3538 if (elementType->isVoidType() || elementType->isFunctionType()) { 3539 Value *result = CGF.EmitCastToVoidPtr(pointer); 3540 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3541 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3542 } 3543 3544 llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType); 3545 if (CGF.getLangOpts().isSignedOverflowDefined()) 3546 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); 3547 3548 return CGF.EmitCheckedInBoundsGEP( 3549 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), 3550 "add.ptr"); 3551 } 3552 3553 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3554 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3555 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3556 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3557 // efficient operations. 3558 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3559 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3560 bool negMul, bool negAdd) { 3561 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3562 3563 Value *MulOp0 = MulOp->getOperand(0); 3564 Value *MulOp1 = MulOp->getOperand(1); 3565 if (negMul) 3566 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3567 if (negAdd) 3568 Addend = Builder.CreateFNeg(Addend, "neg"); 3569 3570 Value *FMulAdd = nullptr; 3571 if (Builder.getIsFPConstrained()) { 3572 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3573 "Only constrained operation should be created when Builder is in FP " 3574 "constrained mode"); 3575 FMulAdd = Builder.CreateConstrainedFPCall( 3576 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3577 Addend->getType()), 3578 {MulOp0, MulOp1, Addend}); 3579 } else { 3580 FMulAdd = Builder.CreateCall( 3581 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3582 {MulOp0, MulOp1, Addend}); 3583 } 3584 MulOp->eraseFromParent(); 3585 3586 return FMulAdd; 3587 } 3588 3589 // Check whether it would be legal to emit an fmuladd intrinsic call to 3590 // represent op and if so, build the fmuladd. 3591 // 3592 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3593 // Does NOT check the type of the operation - it's assumed that this function 3594 // will be called from contexts where it's known that the type is contractable. 3595 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3596 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3597 bool isSub=false) { 3598 3599 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3600 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3601 "Only fadd/fsub can be the root of an fmuladd."); 3602 3603 // Check whether this op is marked as fusable. 3604 if (!op.FPFeatures.allowFPContractWithinStatement()) 3605 return nullptr; 3606 3607 // We have a potentially fusable op. Look for a mul on one of the operands. 3608 // Also, make sure that the mul result isn't used directly. In that case, 3609 // there's no point creating a muladd operation. 3610 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3611 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3612 LHSBinOp->use_empty()) 3613 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3614 } 3615 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3616 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3617 RHSBinOp->use_empty()) 3618 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3619 } 3620 3621 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3622 if (LHSBinOp->getIntrinsicID() == 3623 llvm::Intrinsic::experimental_constrained_fmul && 3624 LHSBinOp->use_empty()) 3625 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3626 } 3627 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3628 if (RHSBinOp->getIntrinsicID() == 3629 llvm::Intrinsic::experimental_constrained_fmul && 3630 RHSBinOp->use_empty()) 3631 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3632 } 3633 3634 return nullptr; 3635 } 3636 3637 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3638 if (op.LHS->getType()->isPointerTy() || 3639 op.RHS->getType()->isPointerTy()) 3640 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3641 3642 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3643 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3644 case LangOptions::SOB_Defined: 3645 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3646 case LangOptions::SOB_Undefined: 3647 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3648 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3649 LLVM_FALLTHROUGH; 3650 case LangOptions::SOB_Trapping: 3651 if (CanElideOverflowCheck(CGF.getContext(), op)) 3652 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3653 return EmitOverflowCheckedBinOp(op); 3654 } 3655 } 3656 3657 if (op.Ty->isConstantMatrixType()) { 3658 llvm::MatrixBuilder MB(Builder); 3659 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3660 return MB.CreateAdd(op.LHS, op.RHS); 3661 } 3662 3663 if (op.Ty->isUnsignedIntegerType() && 3664 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3665 !CanElideOverflowCheck(CGF.getContext(), op)) 3666 return EmitOverflowCheckedBinOp(op); 3667 3668 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3669 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3670 // Try to form an fmuladd. 3671 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3672 return FMulAdd; 3673 3674 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3675 } 3676 3677 if (op.isFixedPointOp()) 3678 return EmitFixedPointBinOp(op); 3679 3680 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3681 } 3682 3683 /// The resulting value must be calculated with exact precision, so the operands 3684 /// may not be the same type. 3685 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3686 using llvm::APSInt; 3687 using llvm::ConstantInt; 3688 3689 // This is either a binary operation where at least one of the operands is 3690 // a fixed-point type, or a unary operation where the operand is a fixed-point 3691 // type. The result type of a binary operation is determined by 3692 // Sema::handleFixedPointConversions(). 3693 QualType ResultTy = op.Ty; 3694 QualType LHSTy, RHSTy; 3695 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3696 RHSTy = BinOp->getRHS()->getType(); 3697 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3698 // For compound assignment, the effective type of the LHS at this point 3699 // is the computation LHS type, not the actual LHS type, and the final 3700 // result type is not the type of the expression but rather the 3701 // computation result type. 3702 LHSTy = CAO->getComputationLHSType(); 3703 ResultTy = CAO->getComputationResultType(); 3704 } else 3705 LHSTy = BinOp->getLHS()->getType(); 3706 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3707 LHSTy = UnOp->getSubExpr()->getType(); 3708 RHSTy = UnOp->getSubExpr()->getType(); 3709 } 3710 ASTContext &Ctx = CGF.getContext(); 3711 Value *LHS = op.LHS; 3712 Value *RHS = op.RHS; 3713 3714 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3715 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3716 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3717 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3718 3719 // Perform the actual operation. 3720 Value *Result; 3721 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 3722 switch (op.Opcode) { 3723 case BO_AddAssign: 3724 case BO_Add: 3725 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); 3726 break; 3727 case BO_SubAssign: 3728 case BO_Sub: 3729 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); 3730 break; 3731 case BO_MulAssign: 3732 case BO_Mul: 3733 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); 3734 break; 3735 case BO_DivAssign: 3736 case BO_Div: 3737 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); 3738 break; 3739 case BO_ShlAssign: 3740 case BO_Shl: 3741 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); 3742 break; 3743 case BO_ShrAssign: 3744 case BO_Shr: 3745 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); 3746 break; 3747 case BO_LT: 3748 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3749 case BO_GT: 3750 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3751 case BO_LE: 3752 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3753 case BO_GE: 3754 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3755 case BO_EQ: 3756 // For equality operations, we assume any padding bits on unsigned types are 3757 // zero'd out. They could be overwritten through non-saturating operations 3758 // that cause overflow, but this leads to undefined behavior. 3759 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); 3760 case BO_NE: 3761 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3762 case BO_Cmp: 3763 case BO_LAnd: 3764 case BO_LOr: 3765 llvm_unreachable("Found unimplemented fixed point binary operation"); 3766 case BO_PtrMemD: 3767 case BO_PtrMemI: 3768 case BO_Rem: 3769 case BO_Xor: 3770 case BO_And: 3771 case BO_Or: 3772 case BO_Assign: 3773 case BO_RemAssign: 3774 case BO_AndAssign: 3775 case BO_XorAssign: 3776 case BO_OrAssign: 3777 case BO_Comma: 3778 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3779 } 3780 3781 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || 3782 BinaryOperator::isShiftAssignOp(op.Opcode); 3783 // Convert to the result type. 3784 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema 3785 : CommonFixedSema, 3786 ResultFixedSema); 3787 } 3788 3789 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3790 // The LHS is always a pointer if either side is. 3791 if (!op.LHS->getType()->isPointerTy()) { 3792 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3793 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3794 case LangOptions::SOB_Defined: 3795 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3796 case LangOptions::SOB_Undefined: 3797 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3798 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3799 LLVM_FALLTHROUGH; 3800 case LangOptions::SOB_Trapping: 3801 if (CanElideOverflowCheck(CGF.getContext(), op)) 3802 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3803 return EmitOverflowCheckedBinOp(op); 3804 } 3805 } 3806 3807 if (op.Ty->isConstantMatrixType()) { 3808 llvm::MatrixBuilder MB(Builder); 3809 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3810 return MB.CreateSub(op.LHS, op.RHS); 3811 } 3812 3813 if (op.Ty->isUnsignedIntegerType() && 3814 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3815 !CanElideOverflowCheck(CGF.getContext(), op)) 3816 return EmitOverflowCheckedBinOp(op); 3817 3818 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3819 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3820 // Try to form an fmuladd. 3821 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3822 return FMulAdd; 3823 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3824 } 3825 3826 if (op.isFixedPointOp()) 3827 return EmitFixedPointBinOp(op); 3828 3829 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3830 } 3831 3832 // If the RHS is not a pointer, then we have normal pointer 3833 // arithmetic. 3834 if (!op.RHS->getType()->isPointerTy()) 3835 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3836 3837 // Otherwise, this is a pointer subtraction. 3838 3839 // Do the raw subtraction part. 3840 llvm::Value *LHS 3841 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3842 llvm::Value *RHS 3843 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3844 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3845 3846 // Okay, figure out the element size. 3847 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3848 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3849 3850 llvm::Value *divisor = nullptr; 3851 3852 // For a variable-length array, this is going to be non-constant. 3853 if (const VariableArrayType *vla 3854 = CGF.getContext().getAsVariableArrayType(elementType)) { 3855 auto VlaSize = CGF.getVLASize(vla); 3856 elementType = VlaSize.Type; 3857 divisor = VlaSize.NumElts; 3858 3859 // Scale the number of non-VLA elements by the non-VLA element size. 3860 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3861 if (!eltSize.isOne()) 3862 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3863 3864 // For everything elese, we can just compute it, safe in the 3865 // assumption that Sema won't let anything through that we can't 3866 // safely compute the size of. 3867 } else { 3868 CharUnits elementSize; 3869 // Handle GCC extension for pointer arithmetic on void* and 3870 // function pointer types. 3871 if (elementType->isVoidType() || elementType->isFunctionType()) 3872 elementSize = CharUnits::One(); 3873 else 3874 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3875 3876 // Don't even emit the divide for element size of 1. 3877 if (elementSize.isOne()) 3878 return diffInChars; 3879 3880 divisor = CGF.CGM.getSize(elementSize); 3881 } 3882 3883 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3884 // pointer difference in C is only defined in the case where both operands 3885 // are pointing to elements of an array. 3886 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3887 } 3888 3889 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3890 llvm::IntegerType *Ty; 3891 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3892 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3893 else 3894 Ty = cast<llvm::IntegerType>(LHS->getType()); 3895 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3896 } 3897 3898 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 3899 const Twine &Name) { 3900 llvm::IntegerType *Ty; 3901 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3902 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3903 else 3904 Ty = cast<llvm::IntegerType>(LHS->getType()); 3905 3906 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 3907 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 3908 3909 return Builder.CreateURem( 3910 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 3911 } 3912 3913 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3914 // TODO: This misses out on the sanitizer check below. 3915 if (Ops.isFixedPointOp()) 3916 return EmitFixedPointBinOp(Ops); 3917 3918 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3919 // RHS to the same size as the LHS. 3920 Value *RHS = Ops.RHS; 3921 if (Ops.LHS->getType() != RHS->getType()) 3922 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3923 3924 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3925 Ops.Ty->hasSignedIntegerRepresentation() && 3926 !CGF.getLangOpts().isSignedOverflowDefined() && 3927 !CGF.getLangOpts().CPlusPlus20; 3928 bool SanitizeUnsignedBase = 3929 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && 3930 Ops.Ty->hasUnsignedIntegerRepresentation(); 3931 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; 3932 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3933 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3934 if (CGF.getLangOpts().OpenCL) 3935 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 3936 else if ((SanitizeBase || SanitizeExponent) && 3937 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3938 CodeGenFunction::SanitizerScope SanScope(&CGF); 3939 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3940 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3941 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3942 3943 if (SanitizeExponent) { 3944 Checks.push_back( 3945 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3946 } 3947 3948 if (SanitizeBase) { 3949 // Check whether we are shifting any non-zero bits off the top of the 3950 // integer. We only emit this check if exponent is valid - otherwise 3951 // instructions below will have undefined behavior themselves. 3952 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3953 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3954 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3955 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3956 llvm::Value *PromotedWidthMinusOne = 3957 (RHS == Ops.RHS) ? WidthMinusOne 3958 : GetWidthMinusOneValue(Ops.LHS, RHS); 3959 CGF.EmitBlock(CheckShiftBase); 3960 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3961 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3962 /*NUW*/ true, /*NSW*/ true), 3963 "shl.check"); 3964 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { 3965 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3966 // Under C++11's rules, shifting a 1 bit into the sign bit is 3967 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3968 // define signed left shifts, so we use the C99 and C++11 rules there). 3969 // Unsigned shifts can always shift into the top bit. 3970 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3971 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3972 } 3973 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3974 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3975 CGF.EmitBlock(Cont); 3976 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3977 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3978 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3979 Checks.push_back(std::make_pair( 3980 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase 3981 : SanitizerKind::UnsignedShiftBase)); 3982 } 3983 3984 assert(!Checks.empty()); 3985 EmitBinOpCheck(Checks, Ops); 3986 } 3987 3988 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3989 } 3990 3991 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3992 // TODO: This misses out on the sanitizer check below. 3993 if (Ops.isFixedPointOp()) 3994 return EmitFixedPointBinOp(Ops); 3995 3996 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3997 // RHS to the same size as the LHS. 3998 Value *RHS = Ops.RHS; 3999 if (Ops.LHS->getType() != RHS->getType()) 4000 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 4001 4002 // OpenCL 6.3j: shift values are effectively % word size of LHS. 4003 if (CGF.getLangOpts().OpenCL) 4004 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 4005 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 4006 isa<llvm::IntegerType>(Ops.LHS->getType())) { 4007 CodeGenFunction::SanitizerScope SanScope(&CGF); 4008 llvm::Value *Valid = 4009 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 4010 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 4011 } 4012 4013 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 4014 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 4015 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 4016 } 4017 4018 enum IntrinsicType { VCMPEQ, VCMPGT }; 4019 // return corresponding comparison intrinsic for given vector type 4020 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 4021 BuiltinType::Kind ElemKind) { 4022 switch (ElemKind) { 4023 default: llvm_unreachable("unexpected element type"); 4024 case BuiltinType::Char_U: 4025 case BuiltinType::UChar: 4026 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4027 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 4028 case BuiltinType::Char_S: 4029 case BuiltinType::SChar: 4030 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4031 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 4032 case BuiltinType::UShort: 4033 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4034 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 4035 case BuiltinType::Short: 4036 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4037 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 4038 case BuiltinType::UInt: 4039 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4040 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 4041 case BuiltinType::Int: 4042 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4043 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 4044 case BuiltinType::ULong: 4045 case BuiltinType::ULongLong: 4046 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4047 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 4048 case BuiltinType::Long: 4049 case BuiltinType::LongLong: 4050 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4051 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 4052 case BuiltinType::Float: 4053 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 4054 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 4055 case BuiltinType::Double: 4056 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 4057 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 4058 case BuiltinType::UInt128: 4059 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4060 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; 4061 case BuiltinType::Int128: 4062 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4063 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; 4064 } 4065 } 4066 4067 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 4068 llvm::CmpInst::Predicate UICmpOpc, 4069 llvm::CmpInst::Predicate SICmpOpc, 4070 llvm::CmpInst::Predicate FCmpOpc, 4071 bool IsSignaling) { 4072 TestAndClearIgnoreResultAssign(); 4073 Value *Result; 4074 QualType LHSTy = E->getLHS()->getType(); 4075 QualType RHSTy = E->getRHS()->getType(); 4076 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 4077 assert(E->getOpcode() == BO_EQ || 4078 E->getOpcode() == BO_NE); 4079 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 4080 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 4081 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 4082 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 4083 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 4084 BinOpInfo BOInfo = EmitBinOps(E); 4085 Value *LHS = BOInfo.LHS; 4086 Value *RHS = BOInfo.RHS; 4087 4088 // If AltiVec, the comparison results in a numeric type, so we use 4089 // intrinsics comparing vectors and giving 0 or 1 as a result 4090 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 4091 // constants for mapping CR6 register bits to predicate result 4092 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 4093 4094 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 4095 4096 // in several cases vector arguments order will be reversed 4097 Value *FirstVecArg = LHS, 4098 *SecondVecArg = RHS; 4099 4100 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 4101 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 4102 4103 switch(E->getOpcode()) { 4104 default: llvm_unreachable("is not a comparison operation"); 4105 case BO_EQ: 4106 CR6 = CR6_LT; 4107 ID = GetIntrinsic(VCMPEQ, ElementKind); 4108 break; 4109 case BO_NE: 4110 CR6 = CR6_EQ; 4111 ID = GetIntrinsic(VCMPEQ, ElementKind); 4112 break; 4113 case BO_LT: 4114 CR6 = CR6_LT; 4115 ID = GetIntrinsic(VCMPGT, ElementKind); 4116 std::swap(FirstVecArg, SecondVecArg); 4117 break; 4118 case BO_GT: 4119 CR6 = CR6_LT; 4120 ID = GetIntrinsic(VCMPGT, ElementKind); 4121 break; 4122 case BO_LE: 4123 if (ElementKind == BuiltinType::Float) { 4124 CR6 = CR6_LT; 4125 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4126 std::swap(FirstVecArg, SecondVecArg); 4127 } 4128 else { 4129 CR6 = CR6_EQ; 4130 ID = GetIntrinsic(VCMPGT, ElementKind); 4131 } 4132 break; 4133 case BO_GE: 4134 if (ElementKind == BuiltinType::Float) { 4135 CR6 = CR6_LT; 4136 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4137 } 4138 else { 4139 CR6 = CR6_EQ; 4140 ID = GetIntrinsic(VCMPGT, ElementKind); 4141 std::swap(FirstVecArg, SecondVecArg); 4142 } 4143 break; 4144 } 4145 4146 Value *CR6Param = Builder.getInt32(CR6); 4147 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 4148 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 4149 4150 // The result type of intrinsic may not be same as E->getType(). 4151 // If E->getType() is not BoolTy, EmitScalarConversion will do the 4152 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 4153 // do nothing, if ResultTy is not i1 at the same time, it will cause 4154 // crash later. 4155 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 4156 if (ResultTy->getBitWidth() > 1 && 4157 E->getType() == CGF.getContext().BoolTy) 4158 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 4159 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4160 E->getExprLoc()); 4161 } 4162 4163 if (BOInfo.isFixedPointOp()) { 4164 Result = EmitFixedPointBinOp(BOInfo); 4165 } else if (LHS->getType()->isFPOrFPVectorTy()) { 4166 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 4167 if (!IsSignaling) 4168 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 4169 else 4170 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 4171 } else if (LHSTy->hasSignedIntegerRepresentation()) { 4172 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4173 } else { 4174 // Unsigned integers and pointers. 4175 4176 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4177 !isa<llvm::ConstantPointerNull>(LHS) && 4178 !isa<llvm::ConstantPointerNull>(RHS)) { 4179 4180 // Dynamic information is required to be stripped for comparisons, 4181 // because it could leak the dynamic information. Based on comparisons 4182 // of pointers to dynamic objects, the optimizer can replace one pointer 4183 // with another, which might be incorrect in presence of invariant 4184 // groups. Comparison with null is safe because null does not carry any 4185 // dynamic information. 4186 if (LHSTy.mayBeDynamicClass()) 4187 LHS = Builder.CreateStripInvariantGroup(LHS); 4188 if (RHSTy.mayBeDynamicClass()) 4189 RHS = Builder.CreateStripInvariantGroup(RHS); 4190 } 4191 4192 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4193 } 4194 4195 // If this is a vector comparison, sign extend the result to the appropriate 4196 // vector integer type and return it (don't convert to bool). 4197 if (LHSTy->isVectorType()) 4198 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4199 4200 } else { 4201 // Complex Comparison: can only be an equality comparison. 4202 CodeGenFunction::ComplexPairTy LHS, RHS; 4203 QualType CETy; 4204 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4205 LHS = CGF.EmitComplexExpr(E->getLHS()); 4206 CETy = CTy->getElementType(); 4207 } else { 4208 LHS.first = Visit(E->getLHS()); 4209 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4210 CETy = LHSTy; 4211 } 4212 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4213 RHS = CGF.EmitComplexExpr(E->getRHS()); 4214 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4215 CTy->getElementType()) && 4216 "The element types must always match."); 4217 (void)CTy; 4218 } else { 4219 RHS.first = Visit(E->getRHS()); 4220 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4221 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4222 "The element types must always match."); 4223 } 4224 4225 Value *ResultR, *ResultI; 4226 if (CETy->isRealFloatingType()) { 4227 // As complex comparisons can only be equality comparisons, they 4228 // are never signaling comparisons. 4229 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4230 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4231 } else { 4232 // Complex comparisons can only be equality comparisons. As such, signed 4233 // and unsigned opcodes are the same. 4234 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4235 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4236 } 4237 4238 if (E->getOpcode() == BO_EQ) { 4239 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4240 } else { 4241 assert(E->getOpcode() == BO_NE && 4242 "Complex comparison other than == or != ?"); 4243 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4244 } 4245 } 4246 4247 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4248 E->getExprLoc()); 4249 } 4250 4251 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4252 bool Ignore = TestAndClearIgnoreResultAssign(); 4253 4254 Value *RHS; 4255 LValue LHS; 4256 4257 switch (E->getLHS()->getType().getObjCLifetime()) { 4258 case Qualifiers::OCL_Strong: 4259 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4260 break; 4261 4262 case Qualifiers::OCL_Autoreleasing: 4263 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4264 break; 4265 4266 case Qualifiers::OCL_ExplicitNone: 4267 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4268 break; 4269 4270 case Qualifiers::OCL_Weak: 4271 RHS = Visit(E->getRHS()); 4272 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4273 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4274 break; 4275 4276 case Qualifiers::OCL_None: 4277 // __block variables need to have the rhs evaluated first, plus 4278 // this should improve codegen just a little. 4279 RHS = Visit(E->getRHS()); 4280 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4281 4282 // Store the value into the LHS. Bit-fields are handled specially 4283 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4284 // 'An assignment expression has the value of the left operand after 4285 // the assignment...'. 4286 if (LHS.isBitField()) { 4287 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4288 } else { 4289 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4290 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4291 } 4292 } 4293 4294 // If the result is clearly ignored, return now. 4295 if (Ignore) 4296 return nullptr; 4297 4298 // The result of an assignment in C is the assigned r-value. 4299 if (!CGF.getLangOpts().CPlusPlus) 4300 return RHS; 4301 4302 // If the lvalue is non-volatile, return the computed value of the assignment. 4303 if (!LHS.isVolatileQualified()) 4304 return RHS; 4305 4306 // Otherwise, reload the value. 4307 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4308 } 4309 4310 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4311 // Perform vector logical and on comparisons with zero vectors. 4312 if (E->getType()->isVectorType()) { 4313 CGF.incrementProfileCounter(E); 4314 4315 Value *LHS = Visit(E->getLHS()); 4316 Value *RHS = Visit(E->getRHS()); 4317 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4318 if (LHS->getType()->isFPOrFPVectorTy()) { 4319 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4320 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4321 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4322 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4323 } else { 4324 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4325 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4326 } 4327 Value *And = Builder.CreateAnd(LHS, RHS); 4328 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4329 } 4330 4331 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4332 llvm::Type *ResTy = ConvertType(E->getType()); 4333 4334 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4335 // If we have 1 && X, just emit X without inserting the control flow. 4336 bool LHSCondVal; 4337 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4338 if (LHSCondVal) { // If we have 1 && X, just emit X. 4339 CGF.incrementProfileCounter(E); 4340 4341 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4342 4343 // If we're generating for profiling or coverage, generate a branch to a 4344 // block that increments the RHS counter needed to track branch condition 4345 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4346 // "FalseBlock" after the increment is done. 4347 if (InstrumentRegions && 4348 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4349 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end"); 4350 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4351 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock); 4352 CGF.EmitBlock(RHSBlockCnt); 4353 CGF.incrementProfileCounter(E->getRHS()); 4354 CGF.EmitBranch(FBlock); 4355 CGF.EmitBlock(FBlock); 4356 } 4357 4358 // ZExt result to int or bool. 4359 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4360 } 4361 4362 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4363 if (!CGF.ContainsLabel(E->getRHS())) 4364 return llvm::Constant::getNullValue(ResTy); 4365 } 4366 4367 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4368 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4369 4370 CodeGenFunction::ConditionalEvaluation eval(CGF); 4371 4372 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4373 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4374 CGF.getProfileCount(E->getRHS())); 4375 4376 // Any edges into the ContBlock are now from an (indeterminate number of) 4377 // edges from this first condition. All of these values will be false. Start 4378 // setting up the PHI node in the Cont Block for this. 4379 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4380 "", ContBlock); 4381 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4382 PI != PE; ++PI) 4383 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4384 4385 eval.begin(CGF); 4386 CGF.EmitBlock(RHSBlock); 4387 CGF.incrementProfileCounter(E); 4388 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4389 eval.end(CGF); 4390 4391 // Reaquire the RHS block, as there may be subblocks inserted. 4392 RHSBlock = Builder.GetInsertBlock(); 4393 4394 // If we're generating for profiling or coverage, generate a branch on the 4395 // RHS to a block that increments the RHS true counter needed to track branch 4396 // condition coverage. 4397 if (InstrumentRegions && 4398 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4399 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4400 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock); 4401 CGF.EmitBlock(RHSBlockCnt); 4402 CGF.incrementProfileCounter(E->getRHS()); 4403 CGF.EmitBranch(ContBlock); 4404 PN->addIncoming(RHSCond, RHSBlockCnt); 4405 } 4406 4407 // Emit an unconditional branch from this block to ContBlock. 4408 { 4409 // There is no need to emit line number for unconditional branch. 4410 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4411 CGF.EmitBlock(ContBlock); 4412 } 4413 // Insert an entry into the phi node for the edge with the value of RHSCond. 4414 PN->addIncoming(RHSCond, RHSBlock); 4415 4416 // Artificial location to preserve the scope information 4417 { 4418 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4419 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4420 } 4421 4422 // ZExt result to int. 4423 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4424 } 4425 4426 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4427 // Perform vector logical or on comparisons with zero vectors. 4428 if (E->getType()->isVectorType()) { 4429 CGF.incrementProfileCounter(E); 4430 4431 Value *LHS = Visit(E->getLHS()); 4432 Value *RHS = Visit(E->getRHS()); 4433 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4434 if (LHS->getType()->isFPOrFPVectorTy()) { 4435 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4436 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4437 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4438 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4439 } else { 4440 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4441 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4442 } 4443 Value *Or = Builder.CreateOr(LHS, RHS); 4444 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4445 } 4446 4447 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4448 llvm::Type *ResTy = ConvertType(E->getType()); 4449 4450 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4451 // If we have 0 || X, just emit X without inserting the control flow. 4452 bool LHSCondVal; 4453 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4454 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4455 CGF.incrementProfileCounter(E); 4456 4457 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4458 4459 // If we're generating for profiling or coverage, generate a branch to a 4460 // block that increments the RHS counter need to track branch condition 4461 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4462 // "FalseBlock" after the increment is done. 4463 if (InstrumentRegions && 4464 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4465 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end"); 4466 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4467 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt); 4468 CGF.EmitBlock(RHSBlockCnt); 4469 CGF.incrementProfileCounter(E->getRHS()); 4470 CGF.EmitBranch(FBlock); 4471 CGF.EmitBlock(FBlock); 4472 } 4473 4474 // ZExt result to int or bool. 4475 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4476 } 4477 4478 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4479 if (!CGF.ContainsLabel(E->getRHS())) 4480 return llvm::ConstantInt::get(ResTy, 1); 4481 } 4482 4483 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4484 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4485 4486 CodeGenFunction::ConditionalEvaluation eval(CGF); 4487 4488 // Branch on the LHS first. If it is true, go to the success (cont) block. 4489 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4490 CGF.getCurrentProfileCount() - 4491 CGF.getProfileCount(E->getRHS())); 4492 4493 // Any edges into the ContBlock are now from an (indeterminate number of) 4494 // edges from this first condition. All of these values will be true. Start 4495 // setting up the PHI node in the Cont Block for this. 4496 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4497 "", ContBlock); 4498 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4499 PI != PE; ++PI) 4500 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4501 4502 eval.begin(CGF); 4503 4504 // Emit the RHS condition as a bool value. 4505 CGF.EmitBlock(RHSBlock); 4506 CGF.incrementProfileCounter(E); 4507 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4508 4509 eval.end(CGF); 4510 4511 // Reaquire the RHS block, as there may be subblocks inserted. 4512 RHSBlock = Builder.GetInsertBlock(); 4513 4514 // If we're generating for profiling or coverage, generate a branch on the 4515 // RHS to a block that increments the RHS true counter needed to track branch 4516 // condition coverage. 4517 if (InstrumentRegions && 4518 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4519 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4520 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt); 4521 CGF.EmitBlock(RHSBlockCnt); 4522 CGF.incrementProfileCounter(E->getRHS()); 4523 CGF.EmitBranch(ContBlock); 4524 PN->addIncoming(RHSCond, RHSBlockCnt); 4525 } 4526 4527 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4528 // into the phi node for the edge with the value of RHSCond. 4529 CGF.EmitBlock(ContBlock); 4530 PN->addIncoming(RHSCond, RHSBlock); 4531 4532 // ZExt result to int. 4533 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4534 } 4535 4536 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4537 CGF.EmitIgnoredExpr(E->getLHS()); 4538 CGF.EnsureInsertPoint(); 4539 return Visit(E->getRHS()); 4540 } 4541 4542 //===----------------------------------------------------------------------===// 4543 // Other Operators 4544 //===----------------------------------------------------------------------===// 4545 4546 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4547 /// expression is cheap enough and side-effect-free enough to evaluate 4548 /// unconditionally instead of conditionally. This is used to convert control 4549 /// flow into selects in some cases. 4550 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4551 CodeGenFunction &CGF) { 4552 // Anything that is an integer or floating point constant is fine. 4553 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4554 4555 // Even non-volatile automatic variables can't be evaluated unconditionally. 4556 // Referencing a thread_local may cause non-trivial initialization work to 4557 // occur. If we're inside a lambda and one of the variables is from the scope 4558 // outside the lambda, that function may have returned already. Reading its 4559 // locals is a bad idea. Also, these reads may introduce races there didn't 4560 // exist in the source-level program. 4561 } 4562 4563 4564 Value *ScalarExprEmitter:: 4565 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4566 TestAndClearIgnoreResultAssign(); 4567 4568 // Bind the common expression if necessary. 4569 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4570 4571 Expr *condExpr = E->getCond(); 4572 Expr *lhsExpr = E->getTrueExpr(); 4573 Expr *rhsExpr = E->getFalseExpr(); 4574 4575 // If the condition constant folds and can be elided, try to avoid emitting 4576 // the condition and the dead arm. 4577 bool CondExprBool; 4578 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4579 Expr *live = lhsExpr, *dead = rhsExpr; 4580 if (!CondExprBool) std::swap(live, dead); 4581 4582 // If the dead side doesn't have labels we need, just emit the Live part. 4583 if (!CGF.ContainsLabel(dead)) { 4584 if (CondExprBool) 4585 CGF.incrementProfileCounter(E); 4586 Value *Result = Visit(live); 4587 4588 // If the live part is a throw expression, it acts like it has a void 4589 // type, so evaluating it returns a null Value*. However, a conditional 4590 // with non-void type must return a non-null Value*. 4591 if (!Result && !E->getType()->isVoidType()) 4592 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4593 4594 return Result; 4595 } 4596 } 4597 4598 // OpenCL: If the condition is a vector, we can treat this condition like 4599 // the select function. 4600 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4601 condExpr->getType()->isExtVectorType()) { 4602 CGF.incrementProfileCounter(E); 4603 4604 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4605 llvm::Value *LHS = Visit(lhsExpr); 4606 llvm::Value *RHS = Visit(rhsExpr); 4607 4608 llvm::Type *condType = ConvertType(condExpr->getType()); 4609 auto *vecTy = cast<llvm::FixedVectorType>(condType); 4610 4611 unsigned numElem = vecTy->getNumElements(); 4612 llvm::Type *elemType = vecTy->getElementType(); 4613 4614 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4615 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4616 llvm::Value *tmp = Builder.CreateSExt( 4617 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4618 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4619 4620 // Cast float to int to perform ANDs if necessary. 4621 llvm::Value *RHSTmp = RHS; 4622 llvm::Value *LHSTmp = LHS; 4623 bool wasCast = false; 4624 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4625 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4626 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4627 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4628 wasCast = true; 4629 } 4630 4631 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4632 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4633 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4634 if (wasCast) 4635 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4636 4637 return tmp5; 4638 } 4639 4640 if (condExpr->getType()->isVectorType()) { 4641 CGF.incrementProfileCounter(E); 4642 4643 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4644 llvm::Value *LHS = Visit(lhsExpr); 4645 llvm::Value *RHS = Visit(rhsExpr); 4646 4647 llvm::Type *CondType = ConvertType(condExpr->getType()); 4648 auto *VecTy = cast<llvm::VectorType>(CondType); 4649 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4650 4651 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4652 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4653 } 4654 4655 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4656 // select instead of as control flow. We can only do this if it is cheap and 4657 // safe to evaluate the LHS and RHS unconditionally. 4658 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4659 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4660 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4661 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4662 4663 CGF.incrementProfileCounter(E, StepV); 4664 4665 llvm::Value *LHS = Visit(lhsExpr); 4666 llvm::Value *RHS = Visit(rhsExpr); 4667 if (!LHS) { 4668 // If the conditional has void type, make sure we return a null Value*. 4669 assert(!RHS && "LHS and RHS types must match"); 4670 return nullptr; 4671 } 4672 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4673 } 4674 4675 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4676 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4677 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4678 4679 CodeGenFunction::ConditionalEvaluation eval(CGF); 4680 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4681 CGF.getProfileCount(lhsExpr)); 4682 4683 CGF.EmitBlock(LHSBlock); 4684 CGF.incrementProfileCounter(E); 4685 eval.begin(CGF); 4686 Value *LHS = Visit(lhsExpr); 4687 eval.end(CGF); 4688 4689 LHSBlock = Builder.GetInsertBlock(); 4690 Builder.CreateBr(ContBlock); 4691 4692 CGF.EmitBlock(RHSBlock); 4693 eval.begin(CGF); 4694 Value *RHS = Visit(rhsExpr); 4695 eval.end(CGF); 4696 4697 RHSBlock = Builder.GetInsertBlock(); 4698 CGF.EmitBlock(ContBlock); 4699 4700 // If the LHS or RHS is a throw expression, it will be legitimately null. 4701 if (!LHS) 4702 return RHS; 4703 if (!RHS) 4704 return LHS; 4705 4706 // Create a PHI node for the real part. 4707 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4708 PN->addIncoming(LHS, LHSBlock); 4709 PN->addIncoming(RHS, RHSBlock); 4710 return PN; 4711 } 4712 4713 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4714 return Visit(E->getChosenSubExpr()); 4715 } 4716 4717 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4718 QualType Ty = VE->getType(); 4719 4720 if (Ty->isVariablyModifiedType()) 4721 CGF.EmitVariablyModifiedType(Ty); 4722 4723 Address ArgValue = Address::invalid(); 4724 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4725 4726 llvm::Type *ArgTy = ConvertType(VE->getType()); 4727 4728 // If EmitVAArg fails, emit an error. 4729 if (!ArgPtr.isValid()) { 4730 CGF.ErrorUnsupported(VE, "va_arg expression"); 4731 return llvm::UndefValue::get(ArgTy); 4732 } 4733 4734 // FIXME Volatility. 4735 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4736 4737 // If EmitVAArg promoted the type, we must truncate it. 4738 if (ArgTy != Val->getType()) { 4739 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4740 Val = Builder.CreateIntToPtr(Val, ArgTy); 4741 else 4742 Val = Builder.CreateTrunc(Val, ArgTy); 4743 } 4744 4745 return Val; 4746 } 4747 4748 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4749 return CGF.EmitBlockLiteral(block); 4750 } 4751 4752 // Convert a vec3 to vec4, or vice versa. 4753 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4754 Value *Src, unsigned NumElementsDst) { 4755 static constexpr int Mask[] = {0, 1, 2, -1}; 4756 return Builder.CreateShuffleVector(Src, 4757 llvm::makeArrayRef(Mask, NumElementsDst)); 4758 } 4759 4760 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4761 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4762 // but could be scalar or vectors of different lengths, and either can be 4763 // pointer. 4764 // There are 4 cases: 4765 // 1. non-pointer -> non-pointer : needs 1 bitcast 4766 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4767 // 3. pointer -> non-pointer 4768 // a) pointer -> intptr_t : needs 1 ptrtoint 4769 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4770 // 4. non-pointer -> pointer 4771 // a) intptr_t -> pointer : needs 1 inttoptr 4772 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4773 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4774 // allow casting directly between pointer types and non-integer non-pointer 4775 // types. 4776 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4777 const llvm::DataLayout &DL, 4778 Value *Src, llvm::Type *DstTy, 4779 StringRef Name = "") { 4780 auto SrcTy = Src->getType(); 4781 4782 // Case 1. 4783 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4784 return Builder.CreateBitCast(Src, DstTy, Name); 4785 4786 // Case 2. 4787 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4788 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4789 4790 // Case 3. 4791 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4792 // Case 3b. 4793 if (!DstTy->isIntegerTy()) 4794 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4795 // Cases 3a and 3b. 4796 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4797 } 4798 4799 // Case 4b. 4800 if (!SrcTy->isIntegerTy()) 4801 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4802 // Cases 4a and 4b. 4803 return Builder.CreateIntToPtr(Src, DstTy, Name); 4804 } 4805 4806 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4807 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4808 llvm::Type *DstTy = ConvertType(E->getType()); 4809 4810 llvm::Type *SrcTy = Src->getType(); 4811 unsigned NumElementsSrc = 4812 isa<llvm::VectorType>(SrcTy) 4813 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() 4814 : 0; 4815 unsigned NumElementsDst = 4816 isa<llvm::VectorType>(DstTy) 4817 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() 4818 : 0; 4819 4820 // Use bit vector expansion for ext_vector_type boolean vectors. 4821 if (E->getType()->isExtVectorBoolType()) 4822 return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype"); 4823 4824 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4825 // vector to get a vec4, then a bitcast if the target type is different. 4826 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4827 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4828 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4829 DstTy); 4830 4831 Src->setName("astype"); 4832 return Src; 4833 } 4834 4835 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4836 // to vec4 if the original type is not vec4, then a shuffle vector to 4837 // get a vec3. 4838 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4839 auto *Vec4Ty = llvm::FixedVectorType::get( 4840 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4841 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4842 Vec4Ty); 4843 4844 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4845 Src->setName("astype"); 4846 return Src; 4847 } 4848 4849 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4850 Src, DstTy, "astype"); 4851 } 4852 4853 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4854 return CGF.EmitAtomicExpr(E).getScalarVal(); 4855 } 4856 4857 //===----------------------------------------------------------------------===// 4858 // Entry Point into this File 4859 //===----------------------------------------------------------------------===// 4860 4861 /// Emit the computation of the specified expression of scalar type, ignoring 4862 /// the result. 4863 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4864 assert(E && hasScalarEvaluationKind(E->getType()) && 4865 "Invalid scalar expression to emit"); 4866 4867 return ScalarExprEmitter(*this, IgnoreResultAssign) 4868 .Visit(const_cast<Expr *>(E)); 4869 } 4870 4871 /// Emit a conversion from the specified type to the specified destination type, 4872 /// both of which are LLVM scalar types. 4873 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4874 QualType DstTy, 4875 SourceLocation Loc) { 4876 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4877 "Invalid scalar expression to emit"); 4878 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4879 } 4880 4881 /// Emit a conversion from the specified complex type to the specified 4882 /// destination type, where the destination type is an LLVM scalar type. 4883 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4884 QualType SrcTy, 4885 QualType DstTy, 4886 SourceLocation Loc) { 4887 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4888 "Invalid complex -> scalar conversion"); 4889 return ScalarExprEmitter(*this) 4890 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4891 } 4892 4893 4894 llvm::Value *CodeGenFunction:: 4895 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4896 bool isInc, bool isPre) { 4897 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4898 } 4899 4900 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4901 // object->isa or (*object).isa 4902 // Generate code as for: *(Class*)object 4903 4904 Expr *BaseExpr = E->getBase(); 4905 Address Addr = Address::invalid(); 4906 if (BaseExpr->isPRValue()) { 4907 Addr = Address::deprecated(EmitScalarExpr(BaseExpr), getPointerAlign()); 4908 } else { 4909 Addr = EmitLValue(BaseExpr).getAddress(*this); 4910 } 4911 4912 // Cast the address to Class*. 4913 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4914 return MakeAddrLValue(Addr, E->getType()); 4915 } 4916 4917 4918 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4919 const CompoundAssignOperator *E) { 4920 ScalarExprEmitter Scalar(*this); 4921 Value *Result = nullptr; 4922 switch (E->getOpcode()) { 4923 #define COMPOUND_OP(Op) \ 4924 case BO_##Op##Assign: \ 4925 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4926 Result) 4927 COMPOUND_OP(Mul); 4928 COMPOUND_OP(Div); 4929 COMPOUND_OP(Rem); 4930 COMPOUND_OP(Add); 4931 COMPOUND_OP(Sub); 4932 COMPOUND_OP(Shl); 4933 COMPOUND_OP(Shr); 4934 COMPOUND_OP(And); 4935 COMPOUND_OP(Xor); 4936 COMPOUND_OP(Or); 4937 #undef COMPOUND_OP 4938 4939 case BO_PtrMemD: 4940 case BO_PtrMemI: 4941 case BO_Mul: 4942 case BO_Div: 4943 case BO_Rem: 4944 case BO_Add: 4945 case BO_Sub: 4946 case BO_Shl: 4947 case BO_Shr: 4948 case BO_LT: 4949 case BO_GT: 4950 case BO_LE: 4951 case BO_GE: 4952 case BO_EQ: 4953 case BO_NE: 4954 case BO_Cmp: 4955 case BO_And: 4956 case BO_Xor: 4957 case BO_Or: 4958 case BO_LAnd: 4959 case BO_LOr: 4960 case BO_Assign: 4961 case BO_Comma: 4962 llvm_unreachable("Not valid compound assignment operators"); 4963 } 4964 4965 llvm_unreachable("Unhandled compound assignment operator"); 4966 } 4967 4968 struct GEPOffsetAndOverflow { 4969 // The total (signed) byte offset for the GEP. 4970 llvm::Value *TotalOffset; 4971 // The offset overflow flag - true if the total offset overflows. 4972 llvm::Value *OffsetOverflows; 4973 }; 4974 4975 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4976 /// and compute the total offset it applies from it's base pointer BasePtr. 4977 /// Returns offset in bytes and a boolean flag whether an overflow happened 4978 /// during evaluation. 4979 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4980 llvm::LLVMContext &VMContext, 4981 CodeGenModule &CGM, 4982 CGBuilderTy &Builder) { 4983 const auto &DL = CGM.getDataLayout(); 4984 4985 // The total (signed) byte offset for the GEP. 4986 llvm::Value *TotalOffset = nullptr; 4987 4988 // Was the GEP already reduced to a constant? 4989 if (isa<llvm::Constant>(GEPVal)) { 4990 // Compute the offset by casting both pointers to integers and subtracting: 4991 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4992 Value *BasePtr_int = 4993 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4994 Value *GEPVal_int = 4995 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4996 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4997 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4998 } 4999 5000 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 5001 assert(GEP->getPointerOperand() == BasePtr && 5002 "BasePtr must be the base of the GEP."); 5003 assert(GEP->isInBounds() && "Expected inbounds GEP"); 5004 5005 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 5006 5007 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 5008 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 5009 auto *SAddIntrinsic = 5010 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 5011 auto *SMulIntrinsic = 5012 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 5013 5014 // The offset overflow flag - true if the total offset overflows. 5015 llvm::Value *OffsetOverflows = Builder.getFalse(); 5016 5017 /// Return the result of the given binary operation. 5018 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 5019 llvm::Value *RHS) -> llvm::Value * { 5020 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 5021 5022 // If the operands are constants, return a constant result. 5023 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 5024 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 5025 llvm::APInt N; 5026 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 5027 /*Signed=*/true, N); 5028 if (HasOverflow) 5029 OffsetOverflows = Builder.getTrue(); 5030 return llvm::ConstantInt::get(VMContext, N); 5031 } 5032 } 5033 5034 // Otherwise, compute the result with checked arithmetic. 5035 auto *ResultAndOverflow = Builder.CreateCall( 5036 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 5037 OffsetOverflows = Builder.CreateOr( 5038 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 5039 return Builder.CreateExtractValue(ResultAndOverflow, 0); 5040 }; 5041 5042 // Determine the total byte offset by looking at each GEP operand. 5043 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 5044 GTI != GTE; ++GTI) { 5045 llvm::Value *LocalOffset; 5046 auto *Index = GTI.getOperand(); 5047 // Compute the local offset contributed by this indexing step: 5048 if (auto *STy = GTI.getStructTypeOrNull()) { 5049 // For struct indexing, the local offset is the byte position of the 5050 // specified field. 5051 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 5052 LocalOffset = llvm::ConstantInt::get( 5053 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 5054 } else { 5055 // Otherwise this is array-like indexing. The local offset is the index 5056 // multiplied by the element size. 5057 auto *ElementSize = llvm::ConstantInt::get( 5058 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 5059 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 5060 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 5061 } 5062 5063 // If this is the first offset, set it as the total offset. Otherwise, add 5064 // the local offset into the running total. 5065 if (!TotalOffset || TotalOffset == Zero) 5066 TotalOffset = LocalOffset; 5067 else 5068 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 5069 } 5070 5071 return {TotalOffset, OffsetOverflows}; 5072 } 5073 5074 Value * 5075 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr, 5076 ArrayRef<Value *> IdxList, 5077 bool SignedIndices, bool IsSubtraction, 5078 SourceLocation Loc, const Twine &Name) { 5079 llvm::Type *PtrTy = Ptr->getType(); 5080 Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name); 5081 5082 // If the pointer overflow sanitizer isn't enabled, do nothing. 5083 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 5084 return GEPVal; 5085 5086 // Perform nullptr-and-offset check unless the nullptr is defined. 5087 bool PerformNullCheck = !NullPointerIsDefined( 5088 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 5089 // Check for overflows unless the GEP got constant-folded, 5090 // and only in the default address space 5091 bool PerformOverflowCheck = 5092 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 5093 5094 if (!(PerformNullCheck || PerformOverflowCheck)) 5095 return GEPVal; 5096 5097 const auto &DL = CGM.getDataLayout(); 5098 5099 SanitizerScope SanScope(this); 5100 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 5101 5102 GEPOffsetAndOverflow EvaluatedGEP = 5103 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 5104 5105 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 5106 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 5107 "If the offset got constant-folded, we don't expect that there was an " 5108 "overflow."); 5109 5110 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 5111 5112 // Common case: if the total offset is zero, and we are using C++ semantics, 5113 // where nullptr+0 is defined, don't emit a check. 5114 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 5115 return GEPVal; 5116 5117 // Now that we've computed the total offset, add it to the base pointer (with 5118 // wrapping semantics). 5119 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 5120 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 5121 5122 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 5123 5124 if (PerformNullCheck) { 5125 // In C++, if the base pointer evaluates to a null pointer value, 5126 // the only valid pointer this inbounds GEP can produce is also 5127 // a null pointer, so the offset must also evaluate to zero. 5128 // Likewise, if we have non-zero base pointer, we can not get null pointer 5129 // as a result, so the offset can not be -intptr_t(BasePtr). 5130 // In other words, both pointers are either null, or both are non-null, 5131 // or the behaviour is undefined. 5132 // 5133 // C, however, is more strict in this regard, and gives more 5134 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 5135 // So both the input to the 'gep inbounds' AND the output must not be null. 5136 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 5137 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 5138 auto *Valid = 5139 CGM.getLangOpts().CPlusPlus 5140 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 5141 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 5142 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 5143 } 5144 5145 if (PerformOverflowCheck) { 5146 // The GEP is valid if: 5147 // 1) The total offset doesn't overflow, and 5148 // 2) The sign of the difference between the computed address and the base 5149 // pointer matches the sign of the total offset. 5150 llvm::Value *ValidGEP; 5151 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 5152 if (SignedIndices) { 5153 // GEP is computed as `unsigned base + signed offset`, therefore: 5154 // * If offset was positive, then the computed pointer can not be 5155 // [unsigned] less than the base pointer, unless it overflowed. 5156 // * If offset was negative, then the computed pointer can not be 5157 // [unsigned] greater than the bas pointere, unless it overflowed. 5158 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5159 auto *PosOrZeroOffset = 5160 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 5161 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 5162 ValidGEP = 5163 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 5164 } else if (!IsSubtraction) { 5165 // GEP is computed as `unsigned base + unsigned offset`, therefore the 5166 // computed pointer can not be [unsigned] less than base pointer, 5167 // unless there was an overflow. 5168 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 5169 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5170 } else { 5171 // GEP is computed as `unsigned base - unsigned offset`, therefore the 5172 // computed pointer can not be [unsigned] greater than base pointer, 5173 // unless there was an overflow. 5174 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 5175 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 5176 } 5177 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 5178 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 5179 } 5180 5181 assert(!Checks.empty() && "Should have produced some checks."); 5182 5183 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 5184 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 5185 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 5186 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 5187 5188 return GEPVal; 5189 } 5190