1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *
352   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
353                        SourceLocation Loc,
354                        ScalarConversionOpts Opts = ScalarConversionOpts());
355 
356   /// Convert between either a fixed point and other fixed point or fixed point
357   /// and an integer.
358   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
359                                   SourceLocation Loc);
360 
361   /// Emit a conversion from the specified complex type to the specified
362   /// destination type, where the destination type is an LLVM scalar type.
363   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
364                                        QualType SrcTy, QualType DstTy,
365                                        SourceLocation Loc);
366 
367   /// EmitNullValue - Emit a value that corresponds to null for the given type.
368   Value *EmitNullValue(QualType Ty);
369 
370   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
371   Value *EmitFloatToBoolConversion(Value *V) {
372     // Compare against 0.0 for fp scalars.
373     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
374     return Builder.CreateFCmpUNE(V, Zero, "tobool");
375   }
376 
377   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
378   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
379     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
380 
381     return Builder.CreateICmpNE(V, Zero, "tobool");
382   }
383 
384   Value *EmitIntToBoolConversion(Value *V) {
385     // Because of the type rules of C, we often end up computing a
386     // logical value, then zero extending it to int, then wanting it
387     // as a logical value again.  Optimize this common case.
388     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
389       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
390         Value *Result = ZI->getOperand(0);
391         // If there aren't any more uses, zap the instruction to save space.
392         // Note that there can be more uses, for example if this
393         // is the result of an assignment.
394         if (ZI->use_empty())
395           ZI->eraseFromParent();
396         return Result;
397       }
398     }
399 
400     return Builder.CreateIsNotNull(V, "tobool");
401   }
402 
403   //===--------------------------------------------------------------------===//
404   //                            Visitor Methods
405   //===--------------------------------------------------------------------===//
406 
407   Value *Visit(Expr *E) {
408     ApplyDebugLocation DL(CGF, E);
409     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
410   }
411 
412   Value *VisitStmt(Stmt *S) {
413     S->dump(llvm::errs(), CGF.getContext());
414     llvm_unreachable("Stmt can't have complex result type!");
415   }
416   Value *VisitExpr(Expr *S);
417 
418   Value *VisitConstantExpr(ConstantExpr *E) {
419     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
420       if (E->isGLValue())
421         return CGF.Builder.CreateLoad(Address(
422             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
423       return Result;
424     }
425     return Visit(E->getSubExpr());
426   }
427   Value *VisitParenExpr(ParenExpr *PE) {
428     return Visit(PE->getSubExpr());
429   }
430   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
431     return Visit(E->getReplacement());
432   }
433   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
434     return Visit(GE->getResultExpr());
435   }
436   Value *VisitCoawaitExpr(CoawaitExpr *S) {
437     return CGF.EmitCoawaitExpr(*S).getScalarVal();
438   }
439   Value *VisitCoyieldExpr(CoyieldExpr *S) {
440     return CGF.EmitCoyieldExpr(*S).getScalarVal();
441   }
442   Value *VisitUnaryCoawait(const UnaryOperator *E) {
443     return Visit(E->getSubExpr());
444   }
445 
446   // Leaves.
447   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
448     return Builder.getInt(E->getValue());
449   }
450   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
454     return llvm::ConstantFP::get(VMContext, E->getValue());
455   }
456   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
457     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
458   }
459   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
466     return EmitNullValue(E->getType());
467   }
468   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
472   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
473   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
474     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
475     return Builder.CreateBitCast(V, ConvertType(E->getType()));
476   }
477 
478   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
479     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
480   }
481 
482   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
483     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
484   }
485 
486   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
487     if (E->isGLValue())
488       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
489                               E->getExprLoc());
490 
491     // Otherwise, assume the mapping is the scalar directly.
492     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
493   }
494 
495   // l-values.
496   Value *VisitDeclRefExpr(DeclRefExpr *E) {
497     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
498       return CGF.emitScalarConstant(Constant, E);
499     return EmitLoadOfLValue(E);
500   }
501 
502   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
503     return CGF.EmitObjCSelectorExpr(E);
504   }
505   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
506     return CGF.EmitObjCProtocolExpr(E);
507   }
508   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
509     return EmitLoadOfLValue(E);
510   }
511   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
512     if (E->getMethodDecl() &&
513         E->getMethodDecl()->getReturnType()->isReferenceType())
514       return EmitLoadOfLValue(E);
515     return CGF.EmitObjCMessageExpr(E).getScalarVal();
516   }
517 
518   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
519     LValue LV = CGF.EmitObjCIsaExpr(E);
520     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
521     return V;
522   }
523 
524   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
525     VersionTuple Version = E->getVersion();
526 
527     // If we're checking for a platform older than our minimum deployment
528     // target, we can fold the check away.
529     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
530       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
531 
532     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
533     llvm::Value *Args[] = {
534         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
535         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
536         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
537     };
538 
539     return CGF.EmitBuiltinAvailable(Args);
540   }
541 
542   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
543   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
544   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
545   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
546   Value *VisitMemberExpr(MemberExpr *E);
547   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
548   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
549     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
550     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
551     // literals aren't l-values in C++. We do so simply because that's the
552     // cleanest way to handle compound literals in C++.
553     // See the discussion here: https://reviews.llvm.org/D64464
554     return EmitLoadOfLValue(E);
555   }
556 
557   Value *VisitInitListExpr(InitListExpr *E);
558 
559   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
560     assert(CGF.getArrayInitIndex() &&
561            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
562     return CGF.getArrayInitIndex();
563   }
564 
565   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
566     return EmitNullValue(E->getType());
567   }
568   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
569     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
570     return VisitCastExpr(E);
571   }
572   Value *VisitCastExpr(CastExpr *E);
573 
574   Value *VisitCallExpr(const CallExpr *E) {
575     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
576       return EmitLoadOfLValue(E);
577 
578     Value *V = CGF.EmitCallExpr(E).getScalarVal();
579 
580     EmitLValueAlignmentAssumption(E, V);
581     return V;
582   }
583 
584   Value *VisitStmtExpr(const StmtExpr *E);
585 
586   // Unary Operators.
587   Value *VisitUnaryPostDec(const UnaryOperator *E) {
588     LValue LV = EmitLValue(E->getSubExpr());
589     return EmitScalarPrePostIncDec(E, LV, false, false);
590   }
591   Value *VisitUnaryPostInc(const UnaryOperator *E) {
592     LValue LV = EmitLValue(E->getSubExpr());
593     return EmitScalarPrePostIncDec(E, LV, true, false);
594   }
595   Value *VisitUnaryPreDec(const UnaryOperator *E) {
596     LValue LV = EmitLValue(E->getSubExpr());
597     return EmitScalarPrePostIncDec(E, LV, false, true);
598   }
599   Value *VisitUnaryPreInc(const UnaryOperator *E) {
600     LValue LV = EmitLValue(E->getSubExpr());
601     return EmitScalarPrePostIncDec(E, LV, true, true);
602   }
603 
604   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
605                                                   llvm::Value *InVal,
606                                                   bool IsInc);
607 
608   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
609                                        bool isInc, bool isPre);
610 
611 
612   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
613     if (isa<MemberPointerType>(E->getType())) // never sugared
614       return CGF.CGM.getMemberPointerConstant(E);
615 
616     return EmitLValue(E->getSubExpr()).getPointer(CGF);
617   }
618   Value *VisitUnaryDeref(const UnaryOperator *E) {
619     if (E->getType()->isVoidType())
620       return Visit(E->getSubExpr()); // the actual value should be unused
621     return EmitLoadOfLValue(E);
622   }
623   Value *VisitUnaryPlus(const UnaryOperator *E) {
624     // This differs from gcc, though, most likely due to a bug in gcc.
625     TestAndClearIgnoreResultAssign();
626     return Visit(E->getSubExpr());
627   }
628   Value *VisitUnaryMinus    (const UnaryOperator *E);
629   Value *VisitUnaryNot      (const UnaryOperator *E);
630   Value *VisitUnaryLNot     (const UnaryOperator *E);
631   Value *VisitUnaryReal     (const UnaryOperator *E);
632   Value *VisitUnaryImag     (const UnaryOperator *E);
633   Value *VisitUnaryExtension(const UnaryOperator *E) {
634     return Visit(E->getSubExpr());
635   }
636 
637   // C++
638   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
639     return EmitLoadOfLValue(E);
640   }
641   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
642     auto &Ctx = CGF.getContext();
643     APValue Evaluated =
644         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
645     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
646                                              SLE->getType());
647   }
648 
649   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
650     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
651     return Visit(DAE->getExpr());
652   }
653   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
654     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
655     return Visit(DIE->getExpr());
656   }
657   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
658     return CGF.LoadCXXThis();
659   }
660 
661   Value *VisitExprWithCleanups(ExprWithCleanups *E);
662   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
663     return CGF.EmitCXXNewExpr(E);
664   }
665   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
666     CGF.EmitCXXDeleteExpr(E);
667     return nullptr;
668   }
669 
670   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
671     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
672   }
673 
674   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
675     return Builder.getInt1(E->isSatisfied());
676   }
677 
678   Value *VisitRequiresExpr(const RequiresExpr *E) {
679     return Builder.getInt1(E->isSatisfied());
680   }
681 
682   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
683     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
684   }
685 
686   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
687     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
688   }
689 
690   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
691     // C++ [expr.pseudo]p1:
692     //   The result shall only be used as the operand for the function call
693     //   operator (), and the result of such a call has type void. The only
694     //   effect is the evaluation of the postfix-expression before the dot or
695     //   arrow.
696     CGF.EmitScalarExpr(E->getBase());
697     return nullptr;
698   }
699 
700   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
701     return EmitNullValue(E->getType());
702   }
703 
704   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
705     CGF.EmitCXXThrowExpr(E);
706     return nullptr;
707   }
708 
709   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
710     return Builder.getInt1(E->getValue());
711   }
712 
713   // Binary Operators.
714   Value *EmitMul(const BinOpInfo &Ops) {
715     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
716       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
717       case LangOptions::SOB_Defined:
718         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
719       case LangOptions::SOB_Undefined:
720         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
721           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
722         LLVM_FALLTHROUGH;
723       case LangOptions::SOB_Trapping:
724         if (CanElideOverflowCheck(CGF.getContext(), Ops))
725           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
726         return EmitOverflowCheckedBinOp(Ops);
727       }
728     }
729 
730     if (Ops.Ty->isConstantMatrixType()) {
731       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
732       // We need to check the types of the operands of the operator to get the
733       // correct matrix dimensions.
734       auto *BO = cast<BinaryOperator>(Ops.E);
735       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
736           BO->getLHS()->getType().getCanonicalType());
737       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
738           BO->getRHS()->getType().getCanonicalType());
739       if (LHSMatTy && RHSMatTy)
740         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
741                                        LHSMatTy->getNumColumns(),
742                                        RHSMatTy->getNumColumns());
743       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
744     }
745 
746     if (Ops.Ty->isUnsignedIntegerType() &&
747         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
748         !CanElideOverflowCheck(CGF.getContext(), Ops))
749       return EmitOverflowCheckedBinOp(Ops);
750 
751     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
752       //  Preserve the old values
753       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
754       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
755     }
756     if (Ops.isFixedPointOp())
757       return EmitFixedPointBinOp(Ops);
758     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
759   }
760   /// Create a binary op that checks for overflow.
761   /// Currently only supports +, - and *.
762   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
763 
764   // Check for undefined division and modulus behaviors.
765   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
766                                                   llvm::Value *Zero,bool isDiv);
767   // Common helper for getting how wide LHS of shift is.
768   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
769 
770   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
771   // non powers of two.
772   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
773 
774   Value *EmitDiv(const BinOpInfo &Ops);
775   Value *EmitRem(const BinOpInfo &Ops);
776   Value *EmitAdd(const BinOpInfo &Ops);
777   Value *EmitSub(const BinOpInfo &Ops);
778   Value *EmitShl(const BinOpInfo &Ops);
779   Value *EmitShr(const BinOpInfo &Ops);
780   Value *EmitAnd(const BinOpInfo &Ops) {
781     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
782   }
783   Value *EmitXor(const BinOpInfo &Ops) {
784     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
785   }
786   Value *EmitOr (const BinOpInfo &Ops) {
787     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
788   }
789 
790   // Helper functions for fixed point binary operations.
791   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
792 
793   BinOpInfo EmitBinOps(const BinaryOperator *E);
794   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
795                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
796                                   Value *&Result);
797 
798   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
799                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
800 
801   // Binary operators and binary compound assignment operators.
802 #define HANDLEBINOP(OP) \
803   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
804     return Emit ## OP(EmitBinOps(E));                                      \
805   }                                                                        \
806   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
807     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
808   }
809   HANDLEBINOP(Mul)
810   HANDLEBINOP(Div)
811   HANDLEBINOP(Rem)
812   HANDLEBINOP(Add)
813   HANDLEBINOP(Sub)
814   HANDLEBINOP(Shl)
815   HANDLEBINOP(Shr)
816   HANDLEBINOP(And)
817   HANDLEBINOP(Xor)
818   HANDLEBINOP(Or)
819 #undef HANDLEBINOP
820 
821   // Comparisons.
822   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
823                      llvm::CmpInst::Predicate SICmpOpc,
824                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
825 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
826     Value *VisitBin##CODE(const BinaryOperator *E) { \
827       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
828                          llvm::FCmpInst::FP, SIG); }
829   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
830   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
831   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
832   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
833   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
834   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
835 #undef VISITCOMP
836 
837   Value *VisitBinAssign     (const BinaryOperator *E);
838 
839   Value *VisitBinLAnd       (const BinaryOperator *E);
840   Value *VisitBinLOr        (const BinaryOperator *E);
841   Value *VisitBinComma      (const BinaryOperator *E);
842 
843   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
844   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
845 
846   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
847     return Visit(E->getSemanticForm());
848   }
849 
850   // Other Operators.
851   Value *VisitBlockExpr(const BlockExpr *BE);
852   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
853   Value *VisitChooseExpr(ChooseExpr *CE);
854   Value *VisitVAArgExpr(VAArgExpr *VE);
855   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
856     return CGF.EmitObjCStringLiteral(E);
857   }
858   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
859     return CGF.EmitObjCBoxedExpr(E);
860   }
861   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
862     return CGF.EmitObjCArrayLiteral(E);
863   }
864   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
865     return CGF.EmitObjCDictionaryLiteral(E);
866   }
867   Value *VisitAsTypeExpr(AsTypeExpr *CE);
868   Value *VisitAtomicExpr(AtomicExpr *AE);
869 };
870 }  // end anonymous namespace.
871 
872 //===----------------------------------------------------------------------===//
873 //                                Utilities
874 //===----------------------------------------------------------------------===//
875 
876 /// EmitConversionToBool - Convert the specified expression value to a
877 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
878 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
879   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
880 
881   if (SrcType->isRealFloatingType())
882     return EmitFloatToBoolConversion(Src);
883 
884   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
885     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
886 
887   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
888          "Unknown scalar type to convert");
889 
890   if (isa<llvm::IntegerType>(Src->getType()))
891     return EmitIntToBoolConversion(Src);
892 
893   assert(isa<llvm::PointerType>(Src->getType()));
894   return EmitPointerToBoolConversion(Src, SrcType);
895 }
896 
897 void ScalarExprEmitter::EmitFloatConversionCheck(
898     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
899     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
900   assert(SrcType->isFloatingType() && "not a conversion from floating point");
901   if (!isa<llvm::IntegerType>(DstTy))
902     return;
903 
904   CodeGenFunction::SanitizerScope SanScope(&CGF);
905   using llvm::APFloat;
906   using llvm::APSInt;
907 
908   llvm::Value *Check = nullptr;
909   const llvm::fltSemantics &SrcSema =
910     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
911 
912   // Floating-point to integer. This has undefined behavior if the source is
913   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
914   // to an integer).
915   unsigned Width = CGF.getContext().getIntWidth(DstType);
916   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
917 
918   APSInt Min = APSInt::getMinValue(Width, Unsigned);
919   APFloat MinSrc(SrcSema, APFloat::uninitialized);
920   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
921       APFloat::opOverflow)
922     // Don't need an overflow check for lower bound. Just check for
923     // -Inf/NaN.
924     MinSrc = APFloat::getInf(SrcSema, true);
925   else
926     // Find the largest value which is too small to represent (before
927     // truncation toward zero).
928     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
929 
930   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
931   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
932   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
933       APFloat::opOverflow)
934     // Don't need an overflow check for upper bound. Just check for
935     // +Inf/NaN.
936     MaxSrc = APFloat::getInf(SrcSema, false);
937   else
938     // Find the smallest value which is too large to represent (before
939     // truncation toward zero).
940     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
941 
942   // If we're converting from __half, convert the range to float to match
943   // the type of src.
944   if (OrigSrcType->isHalfType()) {
945     const llvm::fltSemantics &Sema =
946       CGF.getContext().getFloatTypeSemantics(SrcType);
947     bool IsInexact;
948     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
949     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
950   }
951 
952   llvm::Value *GE =
953     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
954   llvm::Value *LE =
955     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
956   Check = Builder.CreateAnd(GE, LE);
957 
958   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
959                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
960                                   CGF.EmitCheckTypeDescriptor(DstType)};
961   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
962                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
963 }
964 
965 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
966 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
967 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
968                  std::pair<llvm::Value *, SanitizerMask>>
969 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
970                                  QualType DstType, CGBuilderTy &Builder) {
971   llvm::Type *SrcTy = Src->getType();
972   llvm::Type *DstTy = Dst->getType();
973   (void)DstTy; // Only used in assert()
974 
975   // This should be truncation of integral types.
976   assert(Src != Dst);
977   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
978   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
979          "non-integer llvm type");
980 
981   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
982   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
983 
984   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
985   // Else, it is a signed truncation.
986   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
987   SanitizerMask Mask;
988   if (!SrcSigned && !DstSigned) {
989     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
990     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
991   } else {
992     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
993     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
994   }
995 
996   llvm::Value *Check = nullptr;
997   // 1. Extend the truncated value back to the same width as the Src.
998   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
999   // 2. Equality-compare with the original source value
1000   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1001   // If the comparison result is 'i1 false', then the truncation was lossy.
1002   return std::make_pair(Kind, std::make_pair(Check, Mask));
1003 }
1004 
1005 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1006     QualType SrcType, QualType DstType) {
1007   return SrcType->isIntegerType() && DstType->isIntegerType();
1008 }
1009 
1010 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1011                                                    Value *Dst, QualType DstType,
1012                                                    SourceLocation Loc) {
1013   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1014     return;
1015 
1016   // We only care about int->int conversions here.
1017   // We ignore conversions to/from pointer and/or bool.
1018   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1019                                                                        DstType))
1020     return;
1021 
1022   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1023   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1024   // This must be truncation. Else we do not care.
1025   if (SrcBits <= DstBits)
1026     return;
1027 
1028   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1029 
1030   // If the integer sign change sanitizer is enabled,
1031   // and we are truncating from larger unsigned type to smaller signed type,
1032   // let that next sanitizer deal with it.
1033   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1034   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1035   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1036       (!SrcSigned && DstSigned))
1037     return;
1038 
1039   CodeGenFunction::SanitizerScope SanScope(&CGF);
1040 
1041   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1042             std::pair<llvm::Value *, SanitizerMask>>
1043       Check =
1044           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1045   // If the comparison result is 'i1 false', then the truncation was lossy.
1046 
1047   // Do we care about this type of truncation?
1048   if (!CGF.SanOpts.has(Check.second.second))
1049     return;
1050 
1051   llvm::Constant *StaticArgs[] = {
1052       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1053       CGF.EmitCheckTypeDescriptor(DstType),
1054       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1055   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1056                 {Src, Dst});
1057 }
1058 
1059 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1060 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1061 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1062                  std::pair<llvm::Value *, SanitizerMask>>
1063 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1064                                  QualType DstType, CGBuilderTy &Builder) {
1065   llvm::Type *SrcTy = Src->getType();
1066   llvm::Type *DstTy = Dst->getType();
1067 
1068   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1069          "non-integer llvm type");
1070 
1071   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1072   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1073   (void)SrcSigned; // Only used in assert()
1074   (void)DstSigned; // Only used in assert()
1075   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1076   unsigned DstBits = DstTy->getScalarSizeInBits();
1077   (void)SrcBits; // Only used in assert()
1078   (void)DstBits; // Only used in assert()
1079 
1080   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1081          "either the widths should be different, or the signednesses.");
1082 
1083   // NOTE: zero value is considered to be non-negative.
1084   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1085                                        const char *Name) -> Value * {
1086     // Is this value a signed type?
1087     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1088     llvm::Type *VTy = V->getType();
1089     if (!VSigned) {
1090       // If the value is unsigned, then it is never negative.
1091       // FIXME: can we encounter non-scalar VTy here?
1092       return llvm::ConstantInt::getFalse(VTy->getContext());
1093     }
1094     // Get the zero of the same type with which we will be comparing.
1095     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1096     // %V.isnegative = icmp slt %V, 0
1097     // I.e is %V *strictly* less than zero, does it have negative value?
1098     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1099                               llvm::Twine(Name) + "." + V->getName() +
1100                                   ".negativitycheck");
1101   };
1102 
1103   // 1. Was the old Value negative?
1104   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1105   // 2. Is the new Value negative?
1106   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1107   // 3. Now, was the 'negativity status' preserved during the conversion?
1108   //    NOTE: conversion from negative to zero is considered to change the sign.
1109   //    (We want to get 'false' when the conversion changed the sign)
1110   //    So we should just equality-compare the negativity statuses.
1111   llvm::Value *Check = nullptr;
1112   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1113   // If the comparison result is 'false', then the conversion changed the sign.
1114   return std::make_pair(
1115       ScalarExprEmitter::ICCK_IntegerSignChange,
1116       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1117 }
1118 
1119 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1120                                                    Value *Dst, QualType DstType,
1121                                                    SourceLocation Loc) {
1122   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1123     return;
1124 
1125   llvm::Type *SrcTy = Src->getType();
1126   llvm::Type *DstTy = Dst->getType();
1127 
1128   // We only care about int->int conversions here.
1129   // We ignore conversions to/from pointer and/or bool.
1130   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1131                                                                        DstType))
1132     return;
1133 
1134   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1135   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1136   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1137   unsigned DstBits = DstTy->getScalarSizeInBits();
1138 
1139   // Now, we do not need to emit the check in *all* of the cases.
1140   // We can avoid emitting it in some obvious cases where it would have been
1141   // dropped by the opt passes (instcombine) always anyways.
1142   // If it's a cast between effectively the same type, no check.
1143   // NOTE: this is *not* equivalent to checking the canonical types.
1144   if (SrcSigned == DstSigned && SrcBits == DstBits)
1145     return;
1146   // At least one of the values needs to have signed type.
1147   // If both are unsigned, then obviously, neither of them can be negative.
1148   if (!SrcSigned && !DstSigned)
1149     return;
1150   // If the conversion is to *larger* *signed* type, then no check is needed.
1151   // Because either sign-extension happens (so the sign will remain),
1152   // or zero-extension will happen (the sign bit will be zero.)
1153   if ((DstBits > SrcBits) && DstSigned)
1154     return;
1155   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1156       (SrcBits > DstBits) && SrcSigned) {
1157     // If the signed integer truncation sanitizer is enabled,
1158     // and this is a truncation from signed type, then no check is needed.
1159     // Because here sign change check is interchangeable with truncation check.
1160     return;
1161   }
1162   // That's it. We can't rule out any more cases with the data we have.
1163 
1164   CodeGenFunction::SanitizerScope SanScope(&CGF);
1165 
1166   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1167             std::pair<llvm::Value *, SanitizerMask>>
1168       Check;
1169 
1170   // Each of these checks needs to return 'false' when an issue was detected.
1171   ImplicitConversionCheckKind CheckKind;
1172   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1173   // So we can 'and' all the checks together, and still get 'false',
1174   // if at least one of the checks detected an issue.
1175 
1176   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1177   CheckKind = Check.first;
1178   Checks.emplace_back(Check.second);
1179 
1180   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1181       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1182     // If the signed integer truncation sanitizer was enabled,
1183     // and we are truncating from larger unsigned type to smaller signed type,
1184     // let's handle the case we skipped in that check.
1185     Check =
1186         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1187     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1188     Checks.emplace_back(Check.second);
1189     // If the comparison result is 'i1 false', then the truncation was lossy.
1190   }
1191 
1192   llvm::Constant *StaticArgs[] = {
1193       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1194       CGF.EmitCheckTypeDescriptor(DstType),
1195       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1196   // EmitCheck() will 'and' all the checks together.
1197   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1198                 {Src, Dst});
1199 }
1200 
1201 /// Emit a conversion from the specified type to the specified destination type,
1202 /// both of which are LLVM scalar types.
1203 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1204                                                QualType DstType,
1205                                                SourceLocation Loc,
1206                                                ScalarConversionOpts Opts) {
1207   // All conversions involving fixed point types should be handled by the
1208   // EmitFixedPoint family functions. This is done to prevent bloating up this
1209   // function more, and although fixed point numbers are represented by
1210   // integers, we do not want to follow any logic that assumes they should be
1211   // treated as integers.
1212   // TODO(leonardchan): When necessary, add another if statement checking for
1213   // conversions to fixed point types from other types.
1214   if (SrcType->isFixedPointType()) {
1215     if (DstType->isBooleanType())
1216       // It is important that we check this before checking if the dest type is
1217       // an integer because booleans are technically integer types.
1218       // We do not need to check the padding bit on unsigned types if unsigned
1219       // padding is enabled because overflow into this bit is undefined
1220       // behavior.
1221       return Builder.CreateIsNotNull(Src, "tobool");
1222     if (DstType->isFixedPointType() || DstType->isIntegerType())
1223       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1224 
1225     llvm_unreachable(
1226         "Unhandled scalar conversion from a fixed point type to another type.");
1227   } else if (DstType->isFixedPointType()) {
1228     if (SrcType->isIntegerType())
1229       // This also includes converting booleans and enums to fixed point types.
1230       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1231 
1232     llvm_unreachable(
1233         "Unhandled scalar conversion to a fixed point type from another type.");
1234   }
1235 
1236   QualType NoncanonicalSrcType = SrcType;
1237   QualType NoncanonicalDstType = DstType;
1238 
1239   SrcType = CGF.getContext().getCanonicalType(SrcType);
1240   DstType = CGF.getContext().getCanonicalType(DstType);
1241   if (SrcType == DstType) return Src;
1242 
1243   if (DstType->isVoidType()) return nullptr;
1244 
1245   llvm::Value *OrigSrc = Src;
1246   QualType OrigSrcType = SrcType;
1247   llvm::Type *SrcTy = Src->getType();
1248 
1249   // Handle conversions to bool first, they are special: comparisons against 0.
1250   if (DstType->isBooleanType())
1251     return EmitConversionToBool(Src, SrcType);
1252 
1253   llvm::Type *DstTy = ConvertType(DstType);
1254 
1255   // Cast from half through float if half isn't a native type.
1256   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1257     // Cast to FP using the intrinsic if the half type itself isn't supported.
1258     if (DstTy->isFloatingPointTy()) {
1259       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1260         return Builder.CreateCall(
1261             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1262             Src);
1263     } else {
1264       // Cast to other types through float, using either the intrinsic or FPExt,
1265       // depending on whether the half type itself is supported
1266       // (as opposed to operations on half, available with NativeHalfType).
1267       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1268         Src = Builder.CreateCall(
1269             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1270                                  CGF.CGM.FloatTy),
1271             Src);
1272       } else {
1273         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1274       }
1275       SrcType = CGF.getContext().FloatTy;
1276       SrcTy = CGF.FloatTy;
1277     }
1278   }
1279 
1280   // Ignore conversions like int -> uint.
1281   if (SrcTy == DstTy) {
1282     if (Opts.EmitImplicitIntegerSignChangeChecks)
1283       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1284                                  NoncanonicalDstType, Loc);
1285 
1286     return Src;
1287   }
1288 
1289   // Handle pointer conversions next: pointers can only be converted to/from
1290   // other pointers and integers. Check for pointer types in terms of LLVM, as
1291   // some native types (like Obj-C id) may map to a pointer type.
1292   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1293     // The source value may be an integer, or a pointer.
1294     if (isa<llvm::PointerType>(SrcTy))
1295       return Builder.CreateBitCast(Src, DstTy, "conv");
1296 
1297     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1298     // First, convert to the correct width so that we control the kind of
1299     // extension.
1300     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1301     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1302     llvm::Value* IntResult =
1303         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1304     // Then, cast to pointer.
1305     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1306   }
1307 
1308   if (isa<llvm::PointerType>(SrcTy)) {
1309     // Must be an ptr to int cast.
1310     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1311     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1312   }
1313 
1314   // A scalar can be splatted to an extended vector of the same element type
1315   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1316     // Sema should add casts to make sure that the source expression's type is
1317     // the same as the vector's element type (sans qualifiers)
1318     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1319                SrcType.getTypePtr() &&
1320            "Splatted expr doesn't match with vector element type?");
1321 
1322     // Splat the element across to all elements
1323     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1324     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1325   }
1326 
1327   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1328     // Allow bitcast from vector to integer/fp of the same size.
1329     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1330     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1331     if (SrcSize == DstSize)
1332       return Builder.CreateBitCast(Src, DstTy, "conv");
1333 
1334     // Conversions between vectors of different sizes are not allowed except
1335     // when vectors of half are involved. Operations on storage-only half
1336     // vectors require promoting half vector operands to float vectors and
1337     // truncating the result, which is either an int or float vector, to a
1338     // short or half vector.
1339 
1340     // Source and destination are both expected to be vectors.
1341     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1342     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1343     (void)DstElementTy;
1344 
1345     assert(((SrcElementTy->isIntegerTy() &&
1346              DstElementTy->isIntegerTy()) ||
1347             (SrcElementTy->isFloatingPointTy() &&
1348              DstElementTy->isFloatingPointTy())) &&
1349            "unexpected conversion between a floating-point vector and an "
1350            "integer vector");
1351 
1352     // Truncate an i32 vector to an i16 vector.
1353     if (SrcElementTy->isIntegerTy())
1354       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1355 
1356     // Truncate a float vector to a half vector.
1357     if (SrcSize > DstSize)
1358       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1359 
1360     // Promote a half vector to a float vector.
1361     return Builder.CreateFPExt(Src, DstTy, "conv");
1362   }
1363 
1364   // Finally, we have the arithmetic types: real int/float.
1365   Value *Res = nullptr;
1366   llvm::Type *ResTy = DstTy;
1367 
1368   // An overflowing conversion has undefined behavior if either the source type
1369   // or the destination type is a floating-point type. However, we consider the
1370   // range of representable values for all floating-point types to be
1371   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1372   // floating-point type.
1373   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1374       OrigSrcType->isFloatingType())
1375     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1376                              Loc);
1377 
1378   // Cast to half through float if half isn't a native type.
1379   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1380     // Make sure we cast in a single step if from another FP type.
1381     if (SrcTy->isFloatingPointTy()) {
1382       // Use the intrinsic if the half type itself isn't supported
1383       // (as opposed to operations on half, available with NativeHalfType).
1384       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1385         return Builder.CreateCall(
1386             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1387       // If the half type is supported, just use an fptrunc.
1388       return Builder.CreateFPTrunc(Src, DstTy);
1389     }
1390     DstTy = CGF.FloatTy;
1391   }
1392 
1393   if (isa<llvm::IntegerType>(SrcTy)) {
1394     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1395     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1396       InputSigned = true;
1397     }
1398     if (isa<llvm::IntegerType>(DstTy))
1399       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1400     else if (InputSigned)
1401       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1402     else
1403       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1404   } else if (isa<llvm::IntegerType>(DstTy)) {
1405     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1406     if (DstType->isSignedIntegerOrEnumerationType())
1407       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1408     else
1409       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1410   } else {
1411     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1412            "Unknown real conversion");
1413     if (DstTy->getTypeID() < SrcTy->getTypeID())
1414       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1415     else
1416       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1417   }
1418 
1419   if (DstTy != ResTy) {
1420     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1421       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1422       Res = Builder.CreateCall(
1423         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1424         Res);
1425     } else {
1426       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1427     }
1428   }
1429 
1430   if (Opts.EmitImplicitIntegerTruncationChecks)
1431     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1432                                NoncanonicalDstType, Loc);
1433 
1434   if (Opts.EmitImplicitIntegerSignChangeChecks)
1435     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1436                                NoncanonicalDstType, Loc);
1437 
1438   return Res;
1439 }
1440 
1441 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1442                                                    QualType DstTy,
1443                                                    SourceLocation Loc) {
1444   auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1445   auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1446   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1447   llvm::Value *Result;
1448   if (DstTy->isIntegerType())
1449     Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1450                                             DstFPSema.getWidth(),
1451                                             DstFPSema.isSigned());
1452   else if (SrcTy->isIntegerType())
1453     Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1454                                              DstFPSema);
1455   else
1456     Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1457   return Result;
1458 }
1459 
1460 /// Emit a conversion from the specified complex type to the specified
1461 /// destination type, where the destination type is an LLVM scalar type.
1462 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1463     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1464     SourceLocation Loc) {
1465   // Get the source element type.
1466   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1467 
1468   // Handle conversions to bool first, they are special: comparisons against 0.
1469   if (DstTy->isBooleanType()) {
1470     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1471     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1472     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1473     return Builder.CreateOr(Src.first, Src.second, "tobool");
1474   }
1475 
1476   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1477   // the imaginary part of the complex value is discarded and the value of the
1478   // real part is converted according to the conversion rules for the
1479   // corresponding real type.
1480   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1481 }
1482 
1483 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1484   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1485 }
1486 
1487 /// Emit a sanitization check for the given "binary" operation (which
1488 /// might actually be a unary increment which has been lowered to a binary
1489 /// operation). The check passes if all values in \p Checks (which are \c i1),
1490 /// are \c true.
1491 void ScalarExprEmitter::EmitBinOpCheck(
1492     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1493   assert(CGF.IsSanitizerScope);
1494   SanitizerHandler Check;
1495   SmallVector<llvm::Constant *, 4> StaticData;
1496   SmallVector<llvm::Value *, 2> DynamicData;
1497 
1498   BinaryOperatorKind Opcode = Info.Opcode;
1499   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1500     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1501 
1502   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1503   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1504   if (UO && UO->getOpcode() == UO_Minus) {
1505     Check = SanitizerHandler::NegateOverflow;
1506     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1507     DynamicData.push_back(Info.RHS);
1508   } else {
1509     if (BinaryOperator::isShiftOp(Opcode)) {
1510       // Shift LHS negative or too large, or RHS out of bounds.
1511       Check = SanitizerHandler::ShiftOutOfBounds;
1512       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1513       StaticData.push_back(
1514         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1515       StaticData.push_back(
1516         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1517     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1518       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1519       Check = SanitizerHandler::DivremOverflow;
1520       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1521     } else {
1522       // Arithmetic overflow (+, -, *).
1523       switch (Opcode) {
1524       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1525       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1526       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1527       default: llvm_unreachable("unexpected opcode for bin op check");
1528       }
1529       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1530     }
1531     DynamicData.push_back(Info.LHS);
1532     DynamicData.push_back(Info.RHS);
1533   }
1534 
1535   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1536 }
1537 
1538 //===----------------------------------------------------------------------===//
1539 //                            Visitor Methods
1540 //===----------------------------------------------------------------------===//
1541 
1542 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1543   CGF.ErrorUnsupported(E, "scalar expression");
1544   if (E->getType()->isVoidType())
1545     return nullptr;
1546   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1547 }
1548 
1549 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1550   // Vector Mask Case
1551   if (E->getNumSubExprs() == 2) {
1552     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1553     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1554     Value *Mask;
1555 
1556     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1557     unsigned LHSElts = LTy->getNumElements();
1558 
1559     Mask = RHS;
1560 
1561     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1562 
1563     // Mask off the high bits of each shuffle index.
1564     Value *MaskBits =
1565         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1566     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1567 
1568     // newv = undef
1569     // mask = mask & maskbits
1570     // for each elt
1571     //   n = extract mask i
1572     //   x = extract val n
1573     //   newv = insert newv, x, i
1574     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1575                                            MTy->getNumElements());
1576     Value* NewV = llvm::UndefValue::get(RTy);
1577     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1578       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1579       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1580 
1581       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1582       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1583     }
1584     return NewV;
1585   }
1586 
1587   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1588   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1589 
1590   SmallVector<int, 32> Indices;
1591   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1592     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1593     // Check for -1 and output it as undef in the IR.
1594     if (Idx.isSigned() && Idx.isAllOnesValue())
1595       Indices.push_back(-1);
1596     else
1597       Indices.push_back(Idx.getZExtValue());
1598   }
1599 
1600   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1601 }
1602 
1603 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1604   QualType SrcType = E->getSrcExpr()->getType(),
1605            DstType = E->getType();
1606 
1607   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1608 
1609   SrcType = CGF.getContext().getCanonicalType(SrcType);
1610   DstType = CGF.getContext().getCanonicalType(DstType);
1611   if (SrcType == DstType) return Src;
1612 
1613   assert(SrcType->isVectorType() &&
1614          "ConvertVector source type must be a vector");
1615   assert(DstType->isVectorType() &&
1616          "ConvertVector destination type must be a vector");
1617 
1618   llvm::Type *SrcTy = Src->getType();
1619   llvm::Type *DstTy = ConvertType(DstType);
1620 
1621   // Ignore conversions like int -> uint.
1622   if (SrcTy == DstTy)
1623     return Src;
1624 
1625   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1626            DstEltType = DstType->castAs<VectorType>()->getElementType();
1627 
1628   assert(SrcTy->isVectorTy() &&
1629          "ConvertVector source IR type must be a vector");
1630   assert(DstTy->isVectorTy() &&
1631          "ConvertVector destination IR type must be a vector");
1632 
1633   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1634              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1635 
1636   if (DstEltType->isBooleanType()) {
1637     assert((SrcEltTy->isFloatingPointTy() ||
1638             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1639 
1640     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1641     if (SrcEltTy->isFloatingPointTy()) {
1642       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1643     } else {
1644       return Builder.CreateICmpNE(Src, Zero, "tobool");
1645     }
1646   }
1647 
1648   // We have the arithmetic types: real int/float.
1649   Value *Res = nullptr;
1650 
1651   if (isa<llvm::IntegerType>(SrcEltTy)) {
1652     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1653     if (isa<llvm::IntegerType>(DstEltTy))
1654       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1655     else if (InputSigned)
1656       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1657     else
1658       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1659   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1660     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1661     if (DstEltType->isSignedIntegerOrEnumerationType())
1662       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1663     else
1664       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1665   } else {
1666     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1667            "Unknown real conversion");
1668     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1669       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1670     else
1671       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1672   }
1673 
1674   return Res;
1675 }
1676 
1677 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1678   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1679     CGF.EmitIgnoredExpr(E->getBase());
1680     return CGF.emitScalarConstant(Constant, E);
1681   } else {
1682     Expr::EvalResult Result;
1683     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1684       llvm::APSInt Value = Result.Val.getInt();
1685       CGF.EmitIgnoredExpr(E->getBase());
1686       return Builder.getInt(Value);
1687     }
1688   }
1689 
1690   return EmitLoadOfLValue(E);
1691 }
1692 
1693 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1694   TestAndClearIgnoreResultAssign();
1695 
1696   // Emit subscript expressions in rvalue context's.  For most cases, this just
1697   // loads the lvalue formed by the subscript expr.  However, we have to be
1698   // careful, because the base of a vector subscript is occasionally an rvalue,
1699   // so we can't get it as an lvalue.
1700   if (!E->getBase()->getType()->isVectorType())
1701     return EmitLoadOfLValue(E);
1702 
1703   // Handle the vector case.  The base must be a vector, the index must be an
1704   // integer value.
1705   Value *Base = Visit(E->getBase());
1706   Value *Idx  = Visit(E->getIdx());
1707   QualType IdxTy = E->getIdx()->getType();
1708 
1709   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1710     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1711 
1712   return Builder.CreateExtractElement(Base, Idx, "vecext");
1713 }
1714 
1715 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1716   TestAndClearIgnoreResultAssign();
1717 
1718   // Handle the vector case.  The base must be a vector, the index must be an
1719   // integer value.
1720   Value *RowIdx = Visit(E->getRowIdx());
1721   Value *ColumnIdx = Visit(E->getColumnIdx());
1722   Value *Matrix = Visit(E->getBase());
1723 
1724   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1725   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1726   return MB.CreateExtractElement(
1727       Matrix, RowIdx, ColumnIdx,
1728       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
1729 }
1730 
1731 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1732                       unsigned Off) {
1733   int MV = SVI->getMaskValue(Idx);
1734   if (MV == -1)
1735     return -1;
1736   return Off + MV;
1737 }
1738 
1739 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1740   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1741          "Index operand too large for shufflevector mask!");
1742   return C->getZExtValue();
1743 }
1744 
1745 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1746   bool Ignore = TestAndClearIgnoreResultAssign();
1747   (void)Ignore;
1748   assert (Ignore == false && "init list ignored");
1749   unsigned NumInitElements = E->getNumInits();
1750 
1751   if (E->hadArrayRangeDesignator())
1752     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1753 
1754   llvm::VectorType *VType =
1755     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1756 
1757   if (!VType) {
1758     if (NumInitElements == 0) {
1759       // C++11 value-initialization for the scalar.
1760       return EmitNullValue(E->getType());
1761     }
1762     // We have a scalar in braces. Just use the first element.
1763     return Visit(E->getInit(0));
1764   }
1765 
1766   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1767 
1768   // Loop over initializers collecting the Value for each, and remembering
1769   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1770   // us to fold the shuffle for the swizzle into the shuffle for the vector
1771   // initializer, since LLVM optimizers generally do not want to touch
1772   // shuffles.
1773   unsigned CurIdx = 0;
1774   bool VIsUndefShuffle = false;
1775   llvm::Value *V = llvm::UndefValue::get(VType);
1776   for (unsigned i = 0; i != NumInitElements; ++i) {
1777     Expr *IE = E->getInit(i);
1778     Value *Init = Visit(IE);
1779     SmallVector<int, 16> Args;
1780 
1781     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1782 
1783     // Handle scalar elements.  If the scalar initializer is actually one
1784     // element of a different vector of the same width, use shuffle instead of
1785     // extract+insert.
1786     if (!VVT) {
1787       if (isa<ExtVectorElementExpr>(IE)) {
1788         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1789 
1790         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1791                 ->getNumElements() == ResElts) {
1792           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1793           Value *LHS = nullptr, *RHS = nullptr;
1794           if (CurIdx == 0) {
1795             // insert into undef -> shuffle (src, undef)
1796             // shufflemask must use an i32
1797             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1798             Args.resize(ResElts, -1);
1799 
1800             LHS = EI->getVectorOperand();
1801             RHS = V;
1802             VIsUndefShuffle = true;
1803           } else if (VIsUndefShuffle) {
1804             // insert into undefshuffle && size match -> shuffle (v, src)
1805             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1806             for (unsigned j = 0; j != CurIdx; ++j)
1807               Args.push_back(getMaskElt(SVV, j, 0));
1808             Args.push_back(ResElts + C->getZExtValue());
1809             Args.resize(ResElts, -1);
1810 
1811             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1812             RHS = EI->getVectorOperand();
1813             VIsUndefShuffle = false;
1814           }
1815           if (!Args.empty()) {
1816             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1817             ++CurIdx;
1818             continue;
1819           }
1820         }
1821       }
1822       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1823                                       "vecinit");
1824       VIsUndefShuffle = false;
1825       ++CurIdx;
1826       continue;
1827     }
1828 
1829     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1830 
1831     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1832     // input is the same width as the vector being constructed, generate an
1833     // optimized shuffle of the swizzle input into the result.
1834     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1835     if (isa<ExtVectorElementExpr>(IE)) {
1836       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1837       Value *SVOp = SVI->getOperand(0);
1838       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1839 
1840       if (OpTy->getNumElements() == ResElts) {
1841         for (unsigned j = 0; j != CurIdx; ++j) {
1842           // If the current vector initializer is a shuffle with undef, merge
1843           // this shuffle directly into it.
1844           if (VIsUndefShuffle) {
1845             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1846           } else {
1847             Args.push_back(j);
1848           }
1849         }
1850         for (unsigned j = 0, je = InitElts; j != je; ++j)
1851           Args.push_back(getMaskElt(SVI, j, Offset));
1852         Args.resize(ResElts, -1);
1853 
1854         if (VIsUndefShuffle)
1855           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1856 
1857         Init = SVOp;
1858       }
1859     }
1860 
1861     // Extend init to result vector length, and then shuffle its contribution
1862     // to the vector initializer into V.
1863     if (Args.empty()) {
1864       for (unsigned j = 0; j != InitElts; ++j)
1865         Args.push_back(j);
1866       Args.resize(ResElts, -1);
1867       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args,
1868                                          "vext");
1869 
1870       Args.clear();
1871       for (unsigned j = 0; j != CurIdx; ++j)
1872         Args.push_back(j);
1873       for (unsigned j = 0; j != InitElts; ++j)
1874         Args.push_back(j + Offset);
1875       Args.resize(ResElts, -1);
1876     }
1877 
1878     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1879     // merging subsequent shuffles into this one.
1880     if (CurIdx == 0)
1881       std::swap(V, Init);
1882     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1883     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1884     CurIdx += InitElts;
1885   }
1886 
1887   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1888   // Emit remaining default initializers.
1889   llvm::Type *EltTy = VType->getElementType();
1890 
1891   // Emit remaining default initializers
1892   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1893     Value *Idx = Builder.getInt32(CurIdx);
1894     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1895     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1896   }
1897   return V;
1898 }
1899 
1900 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1901   const Expr *E = CE->getSubExpr();
1902 
1903   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1904     return false;
1905 
1906   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1907     // We always assume that 'this' is never null.
1908     return false;
1909   }
1910 
1911   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1912     // And that glvalue casts are never null.
1913     if (ICE->getValueKind() != VK_RValue)
1914       return false;
1915   }
1916 
1917   return true;
1918 }
1919 
1920 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1921 // have to handle a more broad range of conversions than explicit casts, as they
1922 // handle things like function to ptr-to-function decay etc.
1923 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1924   Expr *E = CE->getSubExpr();
1925   QualType DestTy = CE->getType();
1926   CastKind Kind = CE->getCastKind();
1927 
1928   // These cases are generally not written to ignore the result of
1929   // evaluating their sub-expressions, so we clear this now.
1930   bool Ignored = TestAndClearIgnoreResultAssign();
1931 
1932   // Since almost all cast kinds apply to scalars, this switch doesn't have
1933   // a default case, so the compiler will warn on a missing case.  The cases
1934   // are in the same order as in the CastKind enum.
1935   switch (Kind) {
1936   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1937   case CK_BuiltinFnToFnPtr:
1938     llvm_unreachable("builtin functions are handled elsewhere");
1939 
1940   case CK_LValueBitCast:
1941   case CK_ObjCObjectLValueCast: {
1942     Address Addr = EmitLValue(E).getAddress(CGF);
1943     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1944     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1945     return EmitLoadOfLValue(LV, CE->getExprLoc());
1946   }
1947 
1948   case CK_LValueToRValueBitCast: {
1949     LValue SourceLVal = CGF.EmitLValue(E);
1950     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1951                                                 CGF.ConvertTypeForMem(DestTy));
1952     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1953     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1954     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1955   }
1956 
1957   case CK_CPointerToObjCPointerCast:
1958   case CK_BlockPointerToObjCPointerCast:
1959   case CK_AnyPointerToBlockPointerCast:
1960   case CK_BitCast: {
1961     Value *Src = Visit(const_cast<Expr*>(E));
1962     llvm::Type *SrcTy = Src->getType();
1963     llvm::Type *DstTy = ConvertType(DestTy);
1964     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1965         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1966       llvm_unreachable("wrong cast for pointers in different address spaces"
1967                        "(must be an address space cast)!");
1968     }
1969 
1970     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1971       if (auto PT = DestTy->getAs<PointerType>())
1972         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1973                                       /*MayBeNull=*/true,
1974                                       CodeGenFunction::CFITCK_UnrelatedCast,
1975                                       CE->getBeginLoc());
1976     }
1977 
1978     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1979       const QualType SrcType = E->getType();
1980 
1981       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
1982         // Casting to pointer that could carry dynamic information (provided by
1983         // invariant.group) requires launder.
1984         Src = Builder.CreateLaunderInvariantGroup(Src);
1985       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
1986         // Casting to pointer that does not carry dynamic information (provided
1987         // by invariant.group) requires stripping it.  Note that we don't do it
1988         // if the source could not be dynamic type and destination could be
1989         // dynamic because dynamic information is already laundered.  It is
1990         // because launder(strip(src)) == launder(src), so there is no need to
1991         // add extra strip before launder.
1992         Src = Builder.CreateStripInvariantGroup(Src);
1993       }
1994     }
1995 
1996     // Update heapallocsite metadata when there is an explicit pointer cast.
1997     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
1998       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
1999         QualType PointeeType = DestTy->getPointeeType();
2000         if (!PointeeType.isNull())
2001           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2002                                                        CE->getExprLoc());
2003       }
2004     }
2005 
2006     // Perform VLAT <-> VLST bitcast through memory.
2007     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2008          isa<llvm::ScalableVectorType>(DstTy)) ||
2009         (isa<llvm::ScalableVectorType>(SrcTy) &&
2010          isa<llvm::FixedVectorType>(DstTy))) {
2011       if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2012         // Call expressions can't have a scalar return unless the return type
2013         // is a reference type so an lvalue can't be emitted. Create a temp
2014         // alloca to store the call, bitcast the address then load.
2015         QualType RetTy = CE->getCallReturnType(CGF.getContext());
2016         Address Addr =
2017             CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue");
2018         LValue LV = CGF.MakeAddrLValue(Addr, RetTy);
2019         CGF.EmitStoreOfScalar(Src, LV);
2020         Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2021                                             "castFixedSve");
2022         LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2023         DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2024         return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2025       }
2026 
2027       Address Addr = EmitLValue(E).getAddress(CGF);
2028       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2029       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2030       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2031       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2032     }
2033 
2034     return Builder.CreateBitCast(Src, DstTy);
2035   }
2036   case CK_AddressSpaceConversion: {
2037     Expr::EvalResult Result;
2038     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2039         Result.Val.isNullPointer()) {
2040       // If E has side effect, it is emitted even if its final result is a
2041       // null pointer. In that case, a DCE pass should be able to
2042       // eliminate the useless instructions emitted during translating E.
2043       if (Result.HasSideEffects)
2044         Visit(E);
2045       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2046           ConvertType(DestTy)), DestTy);
2047     }
2048     // Since target may map different address spaces in AST to the same address
2049     // space, an address space conversion may end up as a bitcast.
2050     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2051         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2052         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2053   }
2054   case CK_AtomicToNonAtomic:
2055   case CK_NonAtomicToAtomic:
2056   case CK_NoOp:
2057   case CK_UserDefinedConversion:
2058     return Visit(const_cast<Expr*>(E));
2059 
2060   case CK_BaseToDerived: {
2061     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2062     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2063 
2064     Address Base = CGF.EmitPointerWithAlignment(E);
2065     Address Derived =
2066       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2067                                    CE->path_begin(), CE->path_end(),
2068                                    CGF.ShouldNullCheckClassCastValue(CE));
2069 
2070     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2071     // performed and the object is not of the derived type.
2072     if (CGF.sanitizePerformTypeCheck())
2073       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2074                         Derived.getPointer(), DestTy->getPointeeType());
2075 
2076     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2077       CGF.EmitVTablePtrCheckForCast(
2078           DestTy->getPointeeType(), Derived.getPointer(),
2079           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2080           CE->getBeginLoc());
2081 
2082     return Derived.getPointer();
2083   }
2084   case CK_UncheckedDerivedToBase:
2085   case CK_DerivedToBase: {
2086     // The EmitPointerWithAlignment path does this fine; just discard
2087     // the alignment.
2088     return CGF.EmitPointerWithAlignment(CE).getPointer();
2089   }
2090 
2091   case CK_Dynamic: {
2092     Address V = CGF.EmitPointerWithAlignment(E);
2093     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2094     return CGF.EmitDynamicCast(V, DCE);
2095   }
2096 
2097   case CK_ArrayToPointerDecay:
2098     return CGF.EmitArrayToPointerDecay(E).getPointer();
2099   case CK_FunctionToPointerDecay:
2100     return EmitLValue(E).getPointer(CGF);
2101 
2102   case CK_NullToPointer:
2103     if (MustVisitNullValue(E))
2104       CGF.EmitIgnoredExpr(E);
2105 
2106     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2107                               DestTy);
2108 
2109   case CK_NullToMemberPointer: {
2110     if (MustVisitNullValue(E))
2111       CGF.EmitIgnoredExpr(E);
2112 
2113     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2114     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2115   }
2116 
2117   case CK_ReinterpretMemberPointer:
2118   case CK_BaseToDerivedMemberPointer:
2119   case CK_DerivedToBaseMemberPointer: {
2120     Value *Src = Visit(E);
2121 
2122     // Note that the AST doesn't distinguish between checked and
2123     // unchecked member pointer conversions, so we always have to
2124     // implement checked conversions here.  This is inefficient when
2125     // actual control flow may be required in order to perform the
2126     // check, which it is for data member pointers (but not member
2127     // function pointers on Itanium and ARM).
2128     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2129   }
2130 
2131   case CK_ARCProduceObject:
2132     return CGF.EmitARCRetainScalarExpr(E);
2133   case CK_ARCConsumeObject:
2134     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2135   case CK_ARCReclaimReturnedObject:
2136     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2137   case CK_ARCExtendBlockObject:
2138     return CGF.EmitARCExtendBlockObject(E);
2139 
2140   case CK_CopyAndAutoreleaseBlockObject:
2141     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2142 
2143   case CK_FloatingRealToComplex:
2144   case CK_FloatingComplexCast:
2145   case CK_IntegralRealToComplex:
2146   case CK_IntegralComplexCast:
2147   case CK_IntegralComplexToFloatingComplex:
2148   case CK_FloatingComplexToIntegralComplex:
2149   case CK_ConstructorConversion:
2150   case CK_ToUnion:
2151     llvm_unreachable("scalar cast to non-scalar value");
2152 
2153   case CK_LValueToRValue:
2154     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2155     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2156     return Visit(const_cast<Expr*>(E));
2157 
2158   case CK_IntegralToPointer: {
2159     Value *Src = Visit(const_cast<Expr*>(E));
2160 
2161     // First, convert to the correct width so that we control the kind of
2162     // extension.
2163     auto DestLLVMTy = ConvertType(DestTy);
2164     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2165     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2166     llvm::Value* IntResult =
2167       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2168 
2169     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2170 
2171     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2172       // Going from integer to pointer that could be dynamic requires reloading
2173       // dynamic information from invariant.group.
2174       if (DestTy.mayBeDynamicClass())
2175         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2176     }
2177     return IntToPtr;
2178   }
2179   case CK_PointerToIntegral: {
2180     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2181     auto *PtrExpr = Visit(E);
2182 
2183     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2184       const QualType SrcType = E->getType();
2185 
2186       // Casting to integer requires stripping dynamic information as it does
2187       // not carries it.
2188       if (SrcType.mayBeDynamicClass())
2189         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2190     }
2191 
2192     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2193   }
2194   case CK_ToVoid: {
2195     CGF.EmitIgnoredExpr(E);
2196     return nullptr;
2197   }
2198   case CK_VectorSplat: {
2199     llvm::Type *DstTy = ConvertType(DestTy);
2200     Value *Elt = Visit(const_cast<Expr*>(E));
2201     // Splat the element across to all elements
2202     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2203     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2204   }
2205 
2206   case CK_FixedPointCast:
2207     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2208                                 CE->getExprLoc());
2209 
2210   case CK_FixedPointToBoolean:
2211     assert(E->getType()->isFixedPointType() &&
2212            "Expected src type to be fixed point type");
2213     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2214     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2215                                 CE->getExprLoc());
2216 
2217   case CK_FixedPointToIntegral:
2218     assert(E->getType()->isFixedPointType() &&
2219            "Expected src type to be fixed point type");
2220     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2221     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2222                                 CE->getExprLoc());
2223 
2224   case CK_IntegralToFixedPoint:
2225     assert(E->getType()->isIntegerType() &&
2226            "Expected src type to be an integer");
2227     assert(DestTy->isFixedPointType() &&
2228            "Expected dest type to be fixed point type");
2229     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2230                                 CE->getExprLoc());
2231 
2232   case CK_IntegralCast: {
2233     ScalarConversionOpts Opts;
2234     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2235       if (!ICE->isPartOfExplicitCast())
2236         Opts = ScalarConversionOpts(CGF.SanOpts);
2237     }
2238     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2239                                 CE->getExprLoc(), Opts);
2240   }
2241   case CK_IntegralToFloating:
2242   case CK_FloatingToIntegral:
2243   case CK_FloatingCast:
2244     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2245                                 CE->getExprLoc());
2246   case CK_BooleanToSignedIntegral: {
2247     ScalarConversionOpts Opts;
2248     Opts.TreatBooleanAsSigned = true;
2249     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2250                                 CE->getExprLoc(), Opts);
2251   }
2252   case CK_IntegralToBoolean:
2253     return EmitIntToBoolConversion(Visit(E));
2254   case CK_PointerToBoolean:
2255     return EmitPointerToBoolConversion(Visit(E), E->getType());
2256   case CK_FloatingToBoolean:
2257     return EmitFloatToBoolConversion(Visit(E));
2258   case CK_MemberPointerToBoolean: {
2259     llvm::Value *MemPtr = Visit(E);
2260     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2261     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2262   }
2263 
2264   case CK_FloatingComplexToReal:
2265   case CK_IntegralComplexToReal:
2266     return CGF.EmitComplexExpr(E, false, true).first;
2267 
2268   case CK_FloatingComplexToBoolean:
2269   case CK_IntegralComplexToBoolean: {
2270     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2271 
2272     // TODO: kill this function off, inline appropriate case here
2273     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2274                                          CE->getExprLoc());
2275   }
2276 
2277   case CK_ZeroToOCLOpaqueType: {
2278     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2279             DestTy->isOCLIntelSubgroupAVCType()) &&
2280            "CK_ZeroToOCLEvent cast on non-event type");
2281     return llvm::Constant::getNullValue(ConvertType(DestTy));
2282   }
2283 
2284   case CK_IntToOCLSampler:
2285     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2286 
2287   } // end of switch
2288 
2289   llvm_unreachable("unknown scalar cast");
2290 }
2291 
2292 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2293   CodeGenFunction::StmtExprEvaluation eval(CGF);
2294   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2295                                            !E->getType()->isVoidType());
2296   if (!RetAlloca.isValid())
2297     return nullptr;
2298   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2299                               E->getExprLoc());
2300 }
2301 
2302 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2303   CodeGenFunction::RunCleanupsScope Scope(CGF);
2304   Value *V = Visit(E->getSubExpr());
2305   // Defend against dominance problems caused by jumps out of expression
2306   // evaluation through the shared cleanup block.
2307   Scope.ForceCleanup({&V});
2308   return V;
2309 }
2310 
2311 //===----------------------------------------------------------------------===//
2312 //                             Unary Operators
2313 //===----------------------------------------------------------------------===//
2314 
2315 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2316                                            llvm::Value *InVal, bool IsInc,
2317                                            FPOptions FPFeatures) {
2318   BinOpInfo BinOp;
2319   BinOp.LHS = InVal;
2320   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2321   BinOp.Ty = E->getType();
2322   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2323   BinOp.FPFeatures = FPFeatures;
2324   BinOp.E = E;
2325   return BinOp;
2326 }
2327 
2328 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2329     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2330   llvm::Value *Amount =
2331       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2332   StringRef Name = IsInc ? "inc" : "dec";
2333   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2334   case LangOptions::SOB_Defined:
2335     return Builder.CreateAdd(InVal, Amount, Name);
2336   case LangOptions::SOB_Undefined:
2337     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2338       return Builder.CreateNSWAdd(InVal, Amount, Name);
2339     LLVM_FALLTHROUGH;
2340   case LangOptions::SOB_Trapping:
2341     if (!E->canOverflow())
2342       return Builder.CreateNSWAdd(InVal, Amount, Name);
2343     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2344         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2345   }
2346   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2347 }
2348 
2349 namespace {
2350 /// Handles check and update for lastprivate conditional variables.
2351 class OMPLastprivateConditionalUpdateRAII {
2352 private:
2353   CodeGenFunction &CGF;
2354   const UnaryOperator *E;
2355 
2356 public:
2357   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2358                                       const UnaryOperator *E)
2359       : CGF(CGF), E(E) {}
2360   ~OMPLastprivateConditionalUpdateRAII() {
2361     if (CGF.getLangOpts().OpenMP)
2362       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2363           CGF, E->getSubExpr());
2364   }
2365 };
2366 } // namespace
2367 
2368 llvm::Value *
2369 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2370                                            bool isInc, bool isPre) {
2371   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2372   QualType type = E->getSubExpr()->getType();
2373   llvm::PHINode *atomicPHI = nullptr;
2374   llvm::Value *value;
2375   llvm::Value *input;
2376 
2377   int amount = (isInc ? 1 : -1);
2378   bool isSubtraction = !isInc;
2379 
2380   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2381     type = atomicTy->getValueType();
2382     if (isInc && type->isBooleanType()) {
2383       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2384       if (isPre) {
2385         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2386             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2387         return Builder.getTrue();
2388       }
2389       // For atomic bool increment, we just store true and return it for
2390       // preincrement, do an atomic swap with true for postincrement
2391       return Builder.CreateAtomicRMW(
2392           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2393           llvm::AtomicOrdering::SequentiallyConsistent);
2394     }
2395     // Special case for atomic increment / decrement on integers, emit
2396     // atomicrmw instructions.  We skip this if we want to be doing overflow
2397     // checking, and fall into the slow path with the atomic cmpxchg loop.
2398     if (!type->isBooleanType() && type->isIntegerType() &&
2399         !(type->isUnsignedIntegerType() &&
2400           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2401         CGF.getLangOpts().getSignedOverflowBehavior() !=
2402             LangOptions::SOB_Trapping) {
2403       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2404         llvm::AtomicRMWInst::Sub;
2405       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2406         llvm::Instruction::Sub;
2407       llvm::Value *amt = CGF.EmitToMemory(
2408           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2409       llvm::Value *old =
2410           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2411                                   llvm::AtomicOrdering::SequentiallyConsistent);
2412       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2413     }
2414     value = EmitLoadOfLValue(LV, E->getExprLoc());
2415     input = value;
2416     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2417     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2418     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2419     value = CGF.EmitToMemory(value, type);
2420     Builder.CreateBr(opBB);
2421     Builder.SetInsertPoint(opBB);
2422     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2423     atomicPHI->addIncoming(value, startBB);
2424     value = atomicPHI;
2425   } else {
2426     value = EmitLoadOfLValue(LV, E->getExprLoc());
2427     input = value;
2428   }
2429 
2430   // Special case of integer increment that we have to check first: bool++.
2431   // Due to promotion rules, we get:
2432   //   bool++ -> bool = bool + 1
2433   //          -> bool = (int)bool + 1
2434   //          -> bool = ((int)bool + 1 != 0)
2435   // An interesting aspect of this is that increment is always true.
2436   // Decrement does not have this property.
2437   if (isInc && type->isBooleanType()) {
2438     value = Builder.getTrue();
2439 
2440   // Most common case by far: integer increment.
2441   } else if (type->isIntegerType()) {
2442     QualType promotedType;
2443     bool canPerformLossyDemotionCheck = false;
2444     if (type->isPromotableIntegerType()) {
2445       promotedType = CGF.getContext().getPromotedIntegerType(type);
2446       assert(promotedType != type && "Shouldn't promote to the same type.");
2447       canPerformLossyDemotionCheck = true;
2448       canPerformLossyDemotionCheck &=
2449           CGF.getContext().getCanonicalType(type) !=
2450           CGF.getContext().getCanonicalType(promotedType);
2451       canPerformLossyDemotionCheck &=
2452           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2453               type, promotedType);
2454       assert((!canPerformLossyDemotionCheck ||
2455               type->isSignedIntegerOrEnumerationType() ||
2456               promotedType->isSignedIntegerOrEnumerationType() ||
2457               ConvertType(type)->getScalarSizeInBits() ==
2458                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2459              "The following check expects that if we do promotion to different "
2460              "underlying canonical type, at least one of the types (either "
2461              "base or promoted) will be signed, or the bitwidths will match.");
2462     }
2463     if (CGF.SanOpts.hasOneOf(
2464             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2465         canPerformLossyDemotionCheck) {
2466       // While `x += 1` (for `x` with width less than int) is modeled as
2467       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2468       // ease; inc/dec with width less than int can't overflow because of
2469       // promotion rules, so we omit promotion+demotion, which means that we can
2470       // not catch lossy "demotion". Because we still want to catch these cases
2471       // when the sanitizer is enabled, we perform the promotion, then perform
2472       // the increment/decrement in the wider type, and finally
2473       // perform the demotion. This will catch lossy demotions.
2474 
2475       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2476       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2477       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2478       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2479       // emitted.
2480       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2481                                    ScalarConversionOpts(CGF.SanOpts));
2482 
2483       // Note that signed integer inc/dec with width less than int can't
2484       // overflow because of promotion rules; we're just eliding a few steps
2485       // here.
2486     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2487       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2488     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2489                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2490       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2491           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2492     } else {
2493       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2494       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2495     }
2496 
2497   // Next most common: pointer increment.
2498   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2499     QualType type = ptr->getPointeeType();
2500 
2501     // VLA types don't have constant size.
2502     if (const VariableArrayType *vla
2503           = CGF.getContext().getAsVariableArrayType(type)) {
2504       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2505       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2506       if (CGF.getLangOpts().isSignedOverflowDefined())
2507         value = Builder.CreateGEP(value, numElts, "vla.inc");
2508       else
2509         value = CGF.EmitCheckedInBoundsGEP(
2510             value, numElts, /*SignedIndices=*/false, isSubtraction,
2511             E->getExprLoc(), "vla.inc");
2512 
2513     // Arithmetic on function pointers (!) is just +-1.
2514     } else if (type->isFunctionType()) {
2515       llvm::Value *amt = Builder.getInt32(amount);
2516 
2517       value = CGF.EmitCastToVoidPtr(value);
2518       if (CGF.getLangOpts().isSignedOverflowDefined())
2519         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2520       else
2521         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2522                                            isSubtraction, E->getExprLoc(),
2523                                            "incdec.funcptr");
2524       value = Builder.CreateBitCast(value, input->getType());
2525 
2526     // For everything else, we can just do a simple increment.
2527     } else {
2528       llvm::Value *amt = Builder.getInt32(amount);
2529       if (CGF.getLangOpts().isSignedOverflowDefined())
2530         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2531       else
2532         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2533                                            isSubtraction, E->getExprLoc(),
2534                                            "incdec.ptr");
2535     }
2536 
2537   // Vector increment/decrement.
2538   } else if (type->isVectorType()) {
2539     if (type->hasIntegerRepresentation()) {
2540       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2541 
2542       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2543     } else {
2544       value = Builder.CreateFAdd(
2545                   value,
2546                   llvm::ConstantFP::get(value->getType(), amount),
2547                   isInc ? "inc" : "dec");
2548     }
2549 
2550   // Floating point.
2551   } else if (type->isRealFloatingType()) {
2552     // Add the inc/dec to the real part.
2553     llvm::Value *amt;
2554 
2555     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2556       // Another special case: half FP increment should be done via float
2557       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2558         value = Builder.CreateCall(
2559             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2560                                  CGF.CGM.FloatTy),
2561             input, "incdec.conv");
2562       } else {
2563         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2564       }
2565     }
2566 
2567     if (value->getType()->isFloatTy())
2568       amt = llvm::ConstantFP::get(VMContext,
2569                                   llvm::APFloat(static_cast<float>(amount)));
2570     else if (value->getType()->isDoubleTy())
2571       amt = llvm::ConstantFP::get(VMContext,
2572                                   llvm::APFloat(static_cast<double>(amount)));
2573     else {
2574       // Remaining types are Half, LongDouble or __float128. Convert from float.
2575       llvm::APFloat F(static_cast<float>(amount));
2576       bool ignored;
2577       const llvm::fltSemantics *FS;
2578       // Don't use getFloatTypeSemantics because Half isn't
2579       // necessarily represented using the "half" LLVM type.
2580       if (value->getType()->isFP128Ty())
2581         FS = &CGF.getTarget().getFloat128Format();
2582       else if (value->getType()->isHalfTy())
2583         FS = &CGF.getTarget().getHalfFormat();
2584       else
2585         FS = &CGF.getTarget().getLongDoubleFormat();
2586       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2587       amt = llvm::ConstantFP::get(VMContext, F);
2588     }
2589     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2590 
2591     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2592       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2593         value = Builder.CreateCall(
2594             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2595                                  CGF.CGM.FloatTy),
2596             value, "incdec.conv");
2597       } else {
2598         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2599       }
2600     }
2601 
2602   // Fixed-point types.
2603   } else if (type->isFixedPointType()) {
2604     // Fixed-point types are tricky. In some cases, it isn't possible to
2605     // represent a 1 or a -1 in the type at all. Piggyback off of
2606     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2607     BinOpInfo Info;
2608     Info.E = E;
2609     Info.Ty = E->getType();
2610     Info.Opcode = isInc ? BO_Add : BO_Sub;
2611     Info.LHS = value;
2612     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2613     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2614     // since -1 is guaranteed to be representable.
2615     if (type->isSignedFixedPointType()) {
2616       Info.Opcode = isInc ? BO_Sub : BO_Add;
2617       Info.RHS = Builder.CreateNeg(Info.RHS);
2618     }
2619     // Now, convert from our invented integer literal to the type of the unary
2620     // op. This will upscale and saturate if necessary. This value can become
2621     // undef in some cases.
2622     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2623     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2624     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2625     value = EmitFixedPointBinOp(Info);
2626 
2627   // Objective-C pointer types.
2628   } else {
2629     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2630     value = CGF.EmitCastToVoidPtr(value);
2631 
2632     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2633     if (!isInc) size = -size;
2634     llvm::Value *sizeValue =
2635       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2636 
2637     if (CGF.getLangOpts().isSignedOverflowDefined())
2638       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2639     else
2640       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2641                                          /*SignedIndices=*/false, isSubtraction,
2642                                          E->getExprLoc(), "incdec.objptr");
2643     value = Builder.CreateBitCast(value, input->getType());
2644   }
2645 
2646   if (atomicPHI) {
2647     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2648     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2649     auto Pair = CGF.EmitAtomicCompareExchange(
2650         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2651     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2652     llvm::Value *success = Pair.second;
2653     atomicPHI->addIncoming(old, curBlock);
2654     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2655     Builder.SetInsertPoint(contBB);
2656     return isPre ? value : input;
2657   }
2658 
2659   // Store the updated result through the lvalue.
2660   if (LV.isBitField())
2661     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2662   else
2663     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2664 
2665   // If this is a postinc, return the value read from memory, otherwise use the
2666   // updated value.
2667   return isPre ? value : input;
2668 }
2669 
2670 
2671 
2672 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2673   TestAndClearIgnoreResultAssign();
2674   Value *Op = Visit(E->getSubExpr());
2675 
2676   // Generate a unary FNeg for FP ops.
2677   if (Op->getType()->isFPOrFPVectorTy())
2678     return Builder.CreateFNeg(Op, "fneg");
2679 
2680   // Emit unary minus with EmitSub so we handle overflow cases etc.
2681   BinOpInfo BinOp;
2682   BinOp.RHS = Op;
2683   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2684   BinOp.Ty = E->getType();
2685   BinOp.Opcode = BO_Sub;
2686   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2687   BinOp.E = E;
2688   return EmitSub(BinOp);
2689 }
2690 
2691 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2692   TestAndClearIgnoreResultAssign();
2693   Value *Op = Visit(E->getSubExpr());
2694   return Builder.CreateNot(Op, "neg");
2695 }
2696 
2697 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2698   // Perform vector logical not on comparison with zero vector.
2699   if (E->getType()->isVectorType() &&
2700       E->getType()->castAs<VectorType>()->getVectorKind() ==
2701           VectorType::GenericVector) {
2702     Value *Oper = Visit(E->getSubExpr());
2703     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2704     Value *Result;
2705     if (Oper->getType()->isFPOrFPVectorTy()) {
2706       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2707           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2708       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2709     } else
2710       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2711     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2712   }
2713 
2714   // Compare operand to zero.
2715   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2716 
2717   // Invert value.
2718   // TODO: Could dynamically modify easy computations here.  For example, if
2719   // the operand is an icmp ne, turn into icmp eq.
2720   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2721 
2722   // ZExt result to the expr type.
2723   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2724 }
2725 
2726 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2727   // Try folding the offsetof to a constant.
2728   Expr::EvalResult EVResult;
2729   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2730     llvm::APSInt Value = EVResult.Val.getInt();
2731     return Builder.getInt(Value);
2732   }
2733 
2734   // Loop over the components of the offsetof to compute the value.
2735   unsigned n = E->getNumComponents();
2736   llvm::Type* ResultType = ConvertType(E->getType());
2737   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2738   QualType CurrentType = E->getTypeSourceInfo()->getType();
2739   for (unsigned i = 0; i != n; ++i) {
2740     OffsetOfNode ON = E->getComponent(i);
2741     llvm::Value *Offset = nullptr;
2742     switch (ON.getKind()) {
2743     case OffsetOfNode::Array: {
2744       // Compute the index
2745       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2746       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2747       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2748       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2749 
2750       // Save the element type
2751       CurrentType =
2752           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2753 
2754       // Compute the element size
2755       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2756           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2757 
2758       // Multiply out to compute the result
2759       Offset = Builder.CreateMul(Idx, ElemSize);
2760       break;
2761     }
2762 
2763     case OffsetOfNode::Field: {
2764       FieldDecl *MemberDecl = ON.getField();
2765       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2766       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2767 
2768       // Compute the index of the field in its parent.
2769       unsigned i = 0;
2770       // FIXME: It would be nice if we didn't have to loop here!
2771       for (RecordDecl::field_iterator Field = RD->field_begin(),
2772                                       FieldEnd = RD->field_end();
2773            Field != FieldEnd; ++Field, ++i) {
2774         if (*Field == MemberDecl)
2775           break;
2776       }
2777       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2778 
2779       // Compute the offset to the field
2780       int64_t OffsetInt = RL.getFieldOffset(i) /
2781                           CGF.getContext().getCharWidth();
2782       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2783 
2784       // Save the element type.
2785       CurrentType = MemberDecl->getType();
2786       break;
2787     }
2788 
2789     case OffsetOfNode::Identifier:
2790       llvm_unreachable("dependent __builtin_offsetof");
2791 
2792     case OffsetOfNode::Base: {
2793       if (ON.getBase()->isVirtual()) {
2794         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2795         continue;
2796       }
2797 
2798       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2799       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2800 
2801       // Save the element type.
2802       CurrentType = ON.getBase()->getType();
2803 
2804       // Compute the offset to the base.
2805       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2806       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2807       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2808       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2809       break;
2810     }
2811     }
2812     Result = Builder.CreateAdd(Result, Offset);
2813   }
2814   return Result;
2815 }
2816 
2817 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2818 /// argument of the sizeof expression as an integer.
2819 Value *
2820 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2821                               const UnaryExprOrTypeTraitExpr *E) {
2822   QualType TypeToSize = E->getTypeOfArgument();
2823   if (E->getKind() == UETT_SizeOf) {
2824     if (const VariableArrayType *VAT =
2825           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2826       if (E->isArgumentType()) {
2827         // sizeof(type) - make sure to emit the VLA size.
2828         CGF.EmitVariablyModifiedType(TypeToSize);
2829       } else {
2830         // C99 6.5.3.4p2: If the argument is an expression of type
2831         // VLA, it is evaluated.
2832         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2833       }
2834 
2835       auto VlaSize = CGF.getVLASize(VAT);
2836       llvm::Value *size = VlaSize.NumElts;
2837 
2838       // Scale the number of non-VLA elements by the non-VLA element size.
2839       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2840       if (!eltSize.isOne())
2841         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2842 
2843       return size;
2844     }
2845   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2846     auto Alignment =
2847         CGF.getContext()
2848             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2849                 E->getTypeOfArgument()->getPointeeType()))
2850             .getQuantity();
2851     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2852   }
2853 
2854   // If this isn't sizeof(vla), the result must be constant; use the constant
2855   // folding logic so we don't have to duplicate it here.
2856   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2857 }
2858 
2859 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2860   Expr *Op = E->getSubExpr();
2861   if (Op->getType()->isAnyComplexType()) {
2862     // If it's an l-value, load through the appropriate subobject l-value.
2863     // Note that we have to ask E because Op might be an l-value that
2864     // this won't work for, e.g. an Obj-C property.
2865     if (E->isGLValue())
2866       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2867                                   E->getExprLoc()).getScalarVal();
2868 
2869     // Otherwise, calculate and project.
2870     return CGF.EmitComplexExpr(Op, false, true).first;
2871   }
2872 
2873   return Visit(Op);
2874 }
2875 
2876 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2877   Expr *Op = E->getSubExpr();
2878   if (Op->getType()->isAnyComplexType()) {
2879     // If it's an l-value, load through the appropriate subobject l-value.
2880     // Note that we have to ask E because Op might be an l-value that
2881     // this won't work for, e.g. an Obj-C property.
2882     if (Op->isGLValue())
2883       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2884                                   E->getExprLoc()).getScalarVal();
2885 
2886     // Otherwise, calculate and project.
2887     return CGF.EmitComplexExpr(Op, true, false).second;
2888   }
2889 
2890   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2891   // effects are evaluated, but not the actual value.
2892   if (Op->isGLValue())
2893     CGF.EmitLValue(Op);
2894   else
2895     CGF.EmitScalarExpr(Op, true);
2896   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2897 }
2898 
2899 //===----------------------------------------------------------------------===//
2900 //                           Binary Operators
2901 //===----------------------------------------------------------------------===//
2902 
2903 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2904   TestAndClearIgnoreResultAssign();
2905   BinOpInfo Result;
2906   Result.LHS = Visit(E->getLHS());
2907   Result.RHS = Visit(E->getRHS());
2908   Result.Ty  = E->getType();
2909   Result.Opcode = E->getOpcode();
2910   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2911   Result.E = E;
2912   return Result;
2913 }
2914 
2915 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2916                                               const CompoundAssignOperator *E,
2917                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2918                                                    Value *&Result) {
2919   QualType LHSTy = E->getLHS()->getType();
2920   BinOpInfo OpInfo;
2921 
2922   if (E->getComputationResultType()->isAnyComplexType())
2923     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2924 
2925   // Emit the RHS first.  __block variables need to have the rhs evaluated
2926   // first, plus this should improve codegen a little.
2927   OpInfo.RHS = Visit(E->getRHS());
2928   OpInfo.Ty = E->getComputationResultType();
2929   OpInfo.Opcode = E->getOpcode();
2930   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2931   OpInfo.E = E;
2932   // Load/convert the LHS.
2933   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2934 
2935   llvm::PHINode *atomicPHI = nullptr;
2936   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2937     QualType type = atomicTy->getValueType();
2938     if (!type->isBooleanType() && type->isIntegerType() &&
2939         !(type->isUnsignedIntegerType() &&
2940           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2941         CGF.getLangOpts().getSignedOverflowBehavior() !=
2942             LangOptions::SOB_Trapping) {
2943       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2944       llvm::Instruction::BinaryOps Op;
2945       switch (OpInfo.Opcode) {
2946         // We don't have atomicrmw operands for *, %, /, <<, >>
2947         case BO_MulAssign: case BO_DivAssign:
2948         case BO_RemAssign:
2949         case BO_ShlAssign:
2950         case BO_ShrAssign:
2951           break;
2952         case BO_AddAssign:
2953           AtomicOp = llvm::AtomicRMWInst::Add;
2954           Op = llvm::Instruction::Add;
2955           break;
2956         case BO_SubAssign:
2957           AtomicOp = llvm::AtomicRMWInst::Sub;
2958           Op = llvm::Instruction::Sub;
2959           break;
2960         case BO_AndAssign:
2961           AtomicOp = llvm::AtomicRMWInst::And;
2962           Op = llvm::Instruction::And;
2963           break;
2964         case BO_XorAssign:
2965           AtomicOp = llvm::AtomicRMWInst::Xor;
2966           Op = llvm::Instruction::Xor;
2967           break;
2968         case BO_OrAssign:
2969           AtomicOp = llvm::AtomicRMWInst::Or;
2970           Op = llvm::Instruction::Or;
2971           break;
2972         default:
2973           llvm_unreachable("Invalid compound assignment type");
2974       }
2975       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2976         llvm::Value *Amt = CGF.EmitToMemory(
2977             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2978                                  E->getExprLoc()),
2979             LHSTy);
2980         Value *OldVal = Builder.CreateAtomicRMW(
2981             AtomicOp, LHSLV.getPointer(CGF), Amt,
2982             llvm::AtomicOrdering::SequentiallyConsistent);
2983 
2984         // Since operation is atomic, the result type is guaranteed to be the
2985         // same as the input in LLVM terms.
2986         Result = Builder.CreateBinOp(Op, OldVal, Amt);
2987         return LHSLV;
2988       }
2989     }
2990     // FIXME: For floating point types, we should be saving and restoring the
2991     // floating point environment in the loop.
2992     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2993     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2994     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2995     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2996     Builder.CreateBr(opBB);
2997     Builder.SetInsertPoint(opBB);
2998     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2999     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3000     OpInfo.LHS = atomicPHI;
3001   }
3002   else
3003     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3004 
3005   SourceLocation Loc = E->getExprLoc();
3006   OpInfo.LHS =
3007       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3008 
3009   // Expand the binary operator.
3010   Result = (this->*Func)(OpInfo);
3011 
3012   // Convert the result back to the LHS type,
3013   // potentially with Implicit Conversion sanitizer check.
3014   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3015                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3016 
3017   if (atomicPHI) {
3018     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3019     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3020     auto Pair = CGF.EmitAtomicCompareExchange(
3021         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3022     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3023     llvm::Value *success = Pair.second;
3024     atomicPHI->addIncoming(old, curBlock);
3025     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3026     Builder.SetInsertPoint(contBB);
3027     return LHSLV;
3028   }
3029 
3030   // Store the result value into the LHS lvalue. Bit-fields are handled
3031   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3032   // 'An assignment expression has the value of the left operand after the
3033   // assignment...'.
3034   if (LHSLV.isBitField())
3035     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3036   else
3037     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3038 
3039   if (CGF.getLangOpts().OpenMP)
3040     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3041                                                                   E->getLHS());
3042   return LHSLV;
3043 }
3044 
3045 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3046                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3047   bool Ignore = TestAndClearIgnoreResultAssign();
3048   Value *RHS = nullptr;
3049   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3050 
3051   // If the result is clearly ignored, return now.
3052   if (Ignore)
3053     return nullptr;
3054 
3055   // The result of an assignment in C is the assigned r-value.
3056   if (!CGF.getLangOpts().CPlusPlus)
3057     return RHS;
3058 
3059   // If the lvalue is non-volatile, return the computed value of the assignment.
3060   if (!LHS.isVolatileQualified())
3061     return RHS;
3062 
3063   // Otherwise, reload the value.
3064   return EmitLoadOfLValue(LHS, E->getExprLoc());
3065 }
3066 
3067 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3068     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3069   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3070 
3071   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3072     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3073                                     SanitizerKind::IntegerDivideByZero));
3074   }
3075 
3076   const auto *BO = cast<BinaryOperator>(Ops.E);
3077   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3078       Ops.Ty->hasSignedIntegerRepresentation() &&
3079       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3080       Ops.mayHaveIntegerOverflow()) {
3081     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3082 
3083     llvm::Value *IntMin =
3084       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3085     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3086 
3087     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3088     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3089     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3090     Checks.push_back(
3091         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3092   }
3093 
3094   if (Checks.size() > 0)
3095     EmitBinOpCheck(Checks, Ops);
3096 }
3097 
3098 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3099   {
3100     CodeGenFunction::SanitizerScope SanScope(&CGF);
3101     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3102          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3103         Ops.Ty->isIntegerType() &&
3104         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3105       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3106       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3107     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3108                Ops.Ty->isRealFloatingType() &&
3109                Ops.mayHaveFloatDivisionByZero()) {
3110       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3111       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3112       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3113                      Ops);
3114     }
3115   }
3116 
3117   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3118     llvm::Value *Val;
3119     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3120     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3121     if (CGF.getLangOpts().OpenCL &&
3122         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3123       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3124       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3125       // build option allows an application to specify that single precision
3126       // floating-point divide (x/y and 1/x) and sqrt used in the program
3127       // source are correctly rounded.
3128       llvm::Type *ValTy = Val->getType();
3129       if (ValTy->isFloatTy() ||
3130           (isa<llvm::VectorType>(ValTy) &&
3131            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3132         CGF.SetFPAccuracy(Val, 2.5);
3133     }
3134     return Val;
3135   }
3136   else if (Ops.isFixedPointOp())
3137     return EmitFixedPointBinOp(Ops);
3138   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3139     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3140   else
3141     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3142 }
3143 
3144 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3145   // Rem in C can't be a floating point type: C99 6.5.5p2.
3146   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3147        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3148       Ops.Ty->isIntegerType() &&
3149       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3150     CodeGenFunction::SanitizerScope SanScope(&CGF);
3151     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3152     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3153   }
3154 
3155   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3156     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3157   else
3158     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3159 }
3160 
3161 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3162   unsigned IID;
3163   unsigned OpID = 0;
3164 
3165   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3166   switch (Ops.Opcode) {
3167   case BO_Add:
3168   case BO_AddAssign:
3169     OpID = 1;
3170     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3171                      llvm::Intrinsic::uadd_with_overflow;
3172     break;
3173   case BO_Sub:
3174   case BO_SubAssign:
3175     OpID = 2;
3176     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3177                      llvm::Intrinsic::usub_with_overflow;
3178     break;
3179   case BO_Mul:
3180   case BO_MulAssign:
3181     OpID = 3;
3182     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3183                      llvm::Intrinsic::umul_with_overflow;
3184     break;
3185   default:
3186     llvm_unreachable("Unsupported operation for overflow detection");
3187   }
3188   OpID <<= 1;
3189   if (isSigned)
3190     OpID |= 1;
3191 
3192   CodeGenFunction::SanitizerScope SanScope(&CGF);
3193   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3194 
3195   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3196 
3197   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3198   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3199   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3200 
3201   // Handle overflow with llvm.trap if no custom handler has been specified.
3202   const std::string *handlerName =
3203     &CGF.getLangOpts().OverflowHandler;
3204   if (handlerName->empty()) {
3205     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3206     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3207     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3208       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3209       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3210                               : SanitizerKind::UnsignedIntegerOverflow;
3211       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3212     } else
3213       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3214     return result;
3215   }
3216 
3217   // Branch in case of overflow.
3218   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3219   llvm::BasicBlock *continueBB =
3220       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3221   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3222 
3223   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3224 
3225   // If an overflow handler is set, then we want to call it and then use its
3226   // result, if it returns.
3227   Builder.SetInsertPoint(overflowBB);
3228 
3229   // Get the overflow handler.
3230   llvm::Type *Int8Ty = CGF.Int8Ty;
3231   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3232   llvm::FunctionType *handlerTy =
3233       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3234   llvm::FunctionCallee handler =
3235       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3236 
3237   // Sign extend the args to 64-bit, so that we can use the same handler for
3238   // all types of overflow.
3239   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3240   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3241 
3242   // Call the handler with the two arguments, the operation, and the size of
3243   // the result.
3244   llvm::Value *handlerArgs[] = {
3245     lhs,
3246     rhs,
3247     Builder.getInt8(OpID),
3248     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3249   };
3250   llvm::Value *handlerResult =
3251     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3252 
3253   // Truncate the result back to the desired size.
3254   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3255   Builder.CreateBr(continueBB);
3256 
3257   Builder.SetInsertPoint(continueBB);
3258   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3259   phi->addIncoming(result, initialBB);
3260   phi->addIncoming(handlerResult, overflowBB);
3261 
3262   return phi;
3263 }
3264 
3265 /// Emit pointer + index arithmetic.
3266 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3267                                     const BinOpInfo &op,
3268                                     bool isSubtraction) {
3269   // Must have binary (not unary) expr here.  Unary pointer
3270   // increment/decrement doesn't use this path.
3271   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3272 
3273   Value *pointer = op.LHS;
3274   Expr *pointerOperand = expr->getLHS();
3275   Value *index = op.RHS;
3276   Expr *indexOperand = expr->getRHS();
3277 
3278   // In a subtraction, the LHS is always the pointer.
3279   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3280     std::swap(pointer, index);
3281     std::swap(pointerOperand, indexOperand);
3282   }
3283 
3284   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3285 
3286   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3287   auto &DL = CGF.CGM.getDataLayout();
3288   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3289 
3290   // Some versions of glibc and gcc use idioms (particularly in their malloc
3291   // routines) that add a pointer-sized integer (known to be a pointer value)
3292   // to a null pointer in order to cast the value back to an integer or as
3293   // part of a pointer alignment algorithm.  This is undefined behavior, but
3294   // we'd like to be able to compile programs that use it.
3295   //
3296   // Normally, we'd generate a GEP with a null-pointer base here in response
3297   // to that code, but it's also UB to dereference a pointer created that
3298   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3299   // generate a direct cast of the integer value to a pointer.
3300   //
3301   // The idiom (p = nullptr + N) is not met if any of the following are true:
3302   //
3303   //   The operation is subtraction.
3304   //   The index is not pointer-sized.
3305   //   The pointer type is not byte-sized.
3306   //
3307   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3308                                                        op.Opcode,
3309                                                        expr->getLHS(),
3310                                                        expr->getRHS()))
3311     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3312 
3313   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3314     // Zero-extend or sign-extend the pointer value according to
3315     // whether the index is signed or not.
3316     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3317                                       "idx.ext");
3318   }
3319 
3320   // If this is subtraction, negate the index.
3321   if (isSubtraction)
3322     index = CGF.Builder.CreateNeg(index, "idx.neg");
3323 
3324   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3325     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3326                         /*Accessed*/ false);
3327 
3328   const PointerType *pointerType
3329     = pointerOperand->getType()->getAs<PointerType>();
3330   if (!pointerType) {
3331     QualType objectType = pointerOperand->getType()
3332                                         ->castAs<ObjCObjectPointerType>()
3333                                         ->getPointeeType();
3334     llvm::Value *objectSize
3335       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3336 
3337     index = CGF.Builder.CreateMul(index, objectSize);
3338 
3339     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3340     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3341     return CGF.Builder.CreateBitCast(result, pointer->getType());
3342   }
3343 
3344   QualType elementType = pointerType->getPointeeType();
3345   if (const VariableArrayType *vla
3346         = CGF.getContext().getAsVariableArrayType(elementType)) {
3347     // The element count here is the total number of non-VLA elements.
3348     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3349 
3350     // Effectively, the multiply by the VLA size is part of the GEP.
3351     // GEP indexes are signed, and scaling an index isn't permitted to
3352     // signed-overflow, so we use the same semantics for our explicit
3353     // multiply.  We suppress this if overflow is not undefined behavior.
3354     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3355       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3356       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3357     } else {
3358       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3359       pointer =
3360           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3361                                      op.E->getExprLoc(), "add.ptr");
3362     }
3363     return pointer;
3364   }
3365 
3366   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3367   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3368   // future proof.
3369   if (elementType->isVoidType() || elementType->isFunctionType()) {
3370     Value *result = CGF.EmitCastToVoidPtr(pointer);
3371     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3372     return CGF.Builder.CreateBitCast(result, pointer->getType());
3373   }
3374 
3375   if (CGF.getLangOpts().isSignedOverflowDefined())
3376     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3377 
3378   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3379                                     op.E->getExprLoc(), "add.ptr");
3380 }
3381 
3382 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3383 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3384 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3385 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3386 // efficient operations.
3387 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3388                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3389                            bool negMul, bool negAdd) {
3390   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3391 
3392   Value *MulOp0 = MulOp->getOperand(0);
3393   Value *MulOp1 = MulOp->getOperand(1);
3394   if (negMul)
3395     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3396   if (negAdd)
3397     Addend = Builder.CreateFNeg(Addend, "neg");
3398 
3399   Value *FMulAdd = nullptr;
3400   if (Builder.getIsFPConstrained()) {
3401     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3402            "Only constrained operation should be created when Builder is in FP "
3403            "constrained mode");
3404     FMulAdd = Builder.CreateConstrainedFPCall(
3405         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3406                              Addend->getType()),
3407         {MulOp0, MulOp1, Addend});
3408   } else {
3409     FMulAdd = Builder.CreateCall(
3410         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3411         {MulOp0, MulOp1, Addend});
3412   }
3413   MulOp->eraseFromParent();
3414 
3415   return FMulAdd;
3416 }
3417 
3418 // Check whether it would be legal to emit an fmuladd intrinsic call to
3419 // represent op and if so, build the fmuladd.
3420 //
3421 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3422 // Does NOT check the type of the operation - it's assumed that this function
3423 // will be called from contexts where it's known that the type is contractable.
3424 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3425                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3426                          bool isSub=false) {
3427 
3428   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3429           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3430          "Only fadd/fsub can be the root of an fmuladd.");
3431 
3432   // Check whether this op is marked as fusable.
3433   if (!op.FPFeatures.allowFPContractWithinStatement())
3434     return nullptr;
3435 
3436   // We have a potentially fusable op. Look for a mul on one of the operands.
3437   // Also, make sure that the mul result isn't used directly. In that case,
3438   // there's no point creating a muladd operation.
3439   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3440     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3441         LHSBinOp->use_empty())
3442       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3443   }
3444   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3445     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3446         RHSBinOp->use_empty())
3447       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3448   }
3449 
3450   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3451     if (LHSBinOp->getIntrinsicID() ==
3452             llvm::Intrinsic::experimental_constrained_fmul &&
3453         LHSBinOp->use_empty())
3454       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3455   }
3456   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3457     if (RHSBinOp->getIntrinsicID() ==
3458             llvm::Intrinsic::experimental_constrained_fmul &&
3459         RHSBinOp->use_empty())
3460       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3461   }
3462 
3463   return nullptr;
3464 }
3465 
3466 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3467   if (op.LHS->getType()->isPointerTy() ||
3468       op.RHS->getType()->isPointerTy())
3469     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3470 
3471   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3472     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3473     case LangOptions::SOB_Defined:
3474       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3475     case LangOptions::SOB_Undefined:
3476       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3477         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3478       LLVM_FALLTHROUGH;
3479     case LangOptions::SOB_Trapping:
3480       if (CanElideOverflowCheck(CGF.getContext(), op))
3481         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3482       return EmitOverflowCheckedBinOp(op);
3483     }
3484   }
3485 
3486   if (op.Ty->isConstantMatrixType()) {
3487     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3488     return MB.CreateAdd(op.LHS, op.RHS);
3489   }
3490 
3491   if (op.Ty->isUnsignedIntegerType() &&
3492       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3493       !CanElideOverflowCheck(CGF.getContext(), op))
3494     return EmitOverflowCheckedBinOp(op);
3495 
3496   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3497     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3498     // Try to form an fmuladd.
3499     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3500       return FMulAdd;
3501 
3502     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3503   }
3504 
3505   if (op.isFixedPointOp())
3506     return EmitFixedPointBinOp(op);
3507 
3508   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3509 }
3510 
3511 /// The resulting value must be calculated with exact precision, so the operands
3512 /// may not be the same type.
3513 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3514   using llvm::APSInt;
3515   using llvm::ConstantInt;
3516 
3517   // This is either a binary operation where at least one of the operands is
3518   // a fixed-point type, or a unary operation where the operand is a fixed-point
3519   // type. The result type of a binary operation is determined by
3520   // Sema::handleFixedPointConversions().
3521   QualType ResultTy = op.Ty;
3522   QualType LHSTy, RHSTy;
3523   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3524     RHSTy = BinOp->getRHS()->getType();
3525     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3526       // For compound assignment, the effective type of the LHS at this point
3527       // is the computation LHS type, not the actual LHS type, and the final
3528       // result type is not the type of the expression but rather the
3529       // computation result type.
3530       LHSTy = CAO->getComputationLHSType();
3531       ResultTy = CAO->getComputationResultType();
3532     } else
3533       LHSTy = BinOp->getLHS()->getType();
3534   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3535     LHSTy = UnOp->getSubExpr()->getType();
3536     RHSTy = UnOp->getSubExpr()->getType();
3537   }
3538   ASTContext &Ctx = CGF.getContext();
3539   Value *LHS = op.LHS;
3540   Value *RHS = op.RHS;
3541 
3542   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3543   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3544   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3545   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3546 
3547   // Perform the actual operation.
3548   Value *Result;
3549   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3550   switch (op.Opcode) {
3551   case BO_AddAssign:
3552   case BO_Add:
3553     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3554     break;
3555   case BO_SubAssign:
3556   case BO_Sub:
3557     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3558     break;
3559   case BO_MulAssign:
3560   case BO_Mul:
3561     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3562     break;
3563   case BO_DivAssign:
3564   case BO_Div:
3565     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3566     break;
3567   case BO_ShlAssign:
3568   case BO_Shl:
3569     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3570     break;
3571   case BO_ShrAssign:
3572   case BO_Shr:
3573     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3574     break;
3575   case BO_LT:
3576     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3577   case BO_GT:
3578     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3579   case BO_LE:
3580     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3581   case BO_GE:
3582     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3583   case BO_EQ:
3584     // For equality operations, we assume any padding bits on unsigned types are
3585     // zero'd out. They could be overwritten through non-saturating operations
3586     // that cause overflow, but this leads to undefined behavior.
3587     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3588   case BO_NE:
3589     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3590   case BO_Cmp:
3591   case BO_LAnd:
3592   case BO_LOr:
3593     llvm_unreachable("Found unimplemented fixed point binary operation");
3594   case BO_PtrMemD:
3595   case BO_PtrMemI:
3596   case BO_Rem:
3597   case BO_Xor:
3598   case BO_And:
3599   case BO_Or:
3600   case BO_Assign:
3601   case BO_RemAssign:
3602   case BO_AndAssign:
3603   case BO_XorAssign:
3604   case BO_OrAssign:
3605   case BO_Comma:
3606     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3607   }
3608 
3609   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3610                  BinaryOperator::isShiftAssignOp(op.Opcode);
3611   // Convert to the result type.
3612   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3613                                                       : CommonFixedSema,
3614                                       ResultFixedSema);
3615 }
3616 
3617 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3618   // The LHS is always a pointer if either side is.
3619   if (!op.LHS->getType()->isPointerTy()) {
3620     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3621       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3622       case LangOptions::SOB_Defined:
3623         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3624       case LangOptions::SOB_Undefined:
3625         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3626           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3627         LLVM_FALLTHROUGH;
3628       case LangOptions::SOB_Trapping:
3629         if (CanElideOverflowCheck(CGF.getContext(), op))
3630           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3631         return EmitOverflowCheckedBinOp(op);
3632       }
3633     }
3634 
3635     if (op.Ty->isConstantMatrixType()) {
3636       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3637       return MB.CreateSub(op.LHS, op.RHS);
3638     }
3639 
3640     if (op.Ty->isUnsignedIntegerType() &&
3641         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3642         !CanElideOverflowCheck(CGF.getContext(), op))
3643       return EmitOverflowCheckedBinOp(op);
3644 
3645     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3646       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3647       // Try to form an fmuladd.
3648       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3649         return FMulAdd;
3650       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3651     }
3652 
3653     if (op.isFixedPointOp())
3654       return EmitFixedPointBinOp(op);
3655 
3656     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3657   }
3658 
3659   // If the RHS is not a pointer, then we have normal pointer
3660   // arithmetic.
3661   if (!op.RHS->getType()->isPointerTy())
3662     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3663 
3664   // Otherwise, this is a pointer subtraction.
3665 
3666   // Do the raw subtraction part.
3667   llvm::Value *LHS
3668     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3669   llvm::Value *RHS
3670     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3671   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3672 
3673   // Okay, figure out the element size.
3674   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3675   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3676 
3677   llvm::Value *divisor = nullptr;
3678 
3679   // For a variable-length array, this is going to be non-constant.
3680   if (const VariableArrayType *vla
3681         = CGF.getContext().getAsVariableArrayType(elementType)) {
3682     auto VlaSize = CGF.getVLASize(vla);
3683     elementType = VlaSize.Type;
3684     divisor = VlaSize.NumElts;
3685 
3686     // Scale the number of non-VLA elements by the non-VLA element size.
3687     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3688     if (!eltSize.isOne())
3689       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3690 
3691   // For everything elese, we can just compute it, safe in the
3692   // assumption that Sema won't let anything through that we can't
3693   // safely compute the size of.
3694   } else {
3695     CharUnits elementSize;
3696     // Handle GCC extension for pointer arithmetic on void* and
3697     // function pointer types.
3698     if (elementType->isVoidType() || elementType->isFunctionType())
3699       elementSize = CharUnits::One();
3700     else
3701       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3702 
3703     // Don't even emit the divide for element size of 1.
3704     if (elementSize.isOne())
3705       return diffInChars;
3706 
3707     divisor = CGF.CGM.getSize(elementSize);
3708   }
3709 
3710   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3711   // pointer difference in C is only defined in the case where both operands
3712   // are pointing to elements of an array.
3713   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3714 }
3715 
3716 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3717   llvm::IntegerType *Ty;
3718   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3719     Ty = cast<llvm::IntegerType>(VT->getElementType());
3720   else
3721     Ty = cast<llvm::IntegerType>(LHS->getType());
3722   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3723 }
3724 
3725 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3726                                               const Twine &Name) {
3727   llvm::IntegerType *Ty;
3728   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3729     Ty = cast<llvm::IntegerType>(VT->getElementType());
3730   else
3731     Ty = cast<llvm::IntegerType>(LHS->getType());
3732 
3733   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3734         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3735 
3736   return Builder.CreateURem(
3737       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3738 }
3739 
3740 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3741   // TODO: This misses out on the sanitizer check below.
3742   if (Ops.isFixedPointOp())
3743     return EmitFixedPointBinOp(Ops);
3744 
3745   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3746   // RHS to the same size as the LHS.
3747   Value *RHS = Ops.RHS;
3748   if (Ops.LHS->getType() != RHS->getType())
3749     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3750 
3751   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3752                             Ops.Ty->hasSignedIntegerRepresentation() &&
3753                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3754                             !CGF.getLangOpts().CPlusPlus20;
3755   bool SanitizeUnsignedBase =
3756       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3757       Ops.Ty->hasUnsignedIntegerRepresentation();
3758   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3759   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3760   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3761   if (CGF.getLangOpts().OpenCL)
3762     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3763   else if ((SanitizeBase || SanitizeExponent) &&
3764            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3765     CodeGenFunction::SanitizerScope SanScope(&CGF);
3766     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3767     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3768     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3769 
3770     if (SanitizeExponent) {
3771       Checks.push_back(
3772           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3773     }
3774 
3775     if (SanitizeBase) {
3776       // Check whether we are shifting any non-zero bits off the top of the
3777       // integer. We only emit this check if exponent is valid - otherwise
3778       // instructions below will have undefined behavior themselves.
3779       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3780       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3781       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3782       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3783       llvm::Value *PromotedWidthMinusOne =
3784           (RHS == Ops.RHS) ? WidthMinusOne
3785                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3786       CGF.EmitBlock(CheckShiftBase);
3787       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3788           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3789                                      /*NUW*/ true, /*NSW*/ true),
3790           "shl.check");
3791       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3792         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3793         // Under C++11's rules, shifting a 1 bit into the sign bit is
3794         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3795         // define signed left shifts, so we use the C99 and C++11 rules there).
3796         // Unsigned shifts can always shift into the top bit.
3797         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3798         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3799       }
3800       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3801       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3802       CGF.EmitBlock(Cont);
3803       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3804       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3805       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3806       Checks.push_back(std::make_pair(
3807           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3808                                         : SanitizerKind::UnsignedShiftBase));
3809     }
3810 
3811     assert(!Checks.empty());
3812     EmitBinOpCheck(Checks, Ops);
3813   }
3814 
3815   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3816 }
3817 
3818 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3819   // TODO: This misses out on the sanitizer check below.
3820   if (Ops.isFixedPointOp())
3821     return EmitFixedPointBinOp(Ops);
3822 
3823   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3824   // RHS to the same size as the LHS.
3825   Value *RHS = Ops.RHS;
3826   if (Ops.LHS->getType() != RHS->getType())
3827     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3828 
3829   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3830   if (CGF.getLangOpts().OpenCL)
3831     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3832   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3833            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3834     CodeGenFunction::SanitizerScope SanScope(&CGF);
3835     llvm::Value *Valid =
3836         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3837     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3838   }
3839 
3840   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3841     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3842   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3843 }
3844 
3845 enum IntrinsicType { VCMPEQ, VCMPGT };
3846 // return corresponding comparison intrinsic for given vector type
3847 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3848                                         BuiltinType::Kind ElemKind) {
3849   switch (ElemKind) {
3850   default: llvm_unreachable("unexpected element type");
3851   case BuiltinType::Char_U:
3852   case BuiltinType::UChar:
3853     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3854                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3855   case BuiltinType::Char_S:
3856   case BuiltinType::SChar:
3857     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3858                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3859   case BuiltinType::UShort:
3860     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3861                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3862   case BuiltinType::Short:
3863     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3864                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3865   case BuiltinType::UInt:
3866     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3867                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3868   case BuiltinType::Int:
3869     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3870                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3871   case BuiltinType::ULong:
3872   case BuiltinType::ULongLong:
3873     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3874                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3875   case BuiltinType::Long:
3876   case BuiltinType::LongLong:
3877     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3878                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3879   case BuiltinType::Float:
3880     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3881                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3882   case BuiltinType::Double:
3883     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3884                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3885   }
3886 }
3887 
3888 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3889                                       llvm::CmpInst::Predicate UICmpOpc,
3890                                       llvm::CmpInst::Predicate SICmpOpc,
3891                                       llvm::CmpInst::Predicate FCmpOpc,
3892                                       bool IsSignaling) {
3893   TestAndClearIgnoreResultAssign();
3894   Value *Result;
3895   QualType LHSTy = E->getLHS()->getType();
3896   QualType RHSTy = E->getRHS()->getType();
3897   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3898     assert(E->getOpcode() == BO_EQ ||
3899            E->getOpcode() == BO_NE);
3900     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3901     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3902     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3903                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3904   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3905     BinOpInfo BOInfo = EmitBinOps(E);
3906     Value *LHS = BOInfo.LHS;
3907     Value *RHS = BOInfo.RHS;
3908 
3909     // If AltiVec, the comparison results in a numeric type, so we use
3910     // intrinsics comparing vectors and giving 0 or 1 as a result
3911     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3912       // constants for mapping CR6 register bits to predicate result
3913       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3914 
3915       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3916 
3917       // in several cases vector arguments order will be reversed
3918       Value *FirstVecArg = LHS,
3919             *SecondVecArg = RHS;
3920 
3921       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3922       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3923 
3924       switch(E->getOpcode()) {
3925       default: llvm_unreachable("is not a comparison operation");
3926       case BO_EQ:
3927         CR6 = CR6_LT;
3928         ID = GetIntrinsic(VCMPEQ, ElementKind);
3929         break;
3930       case BO_NE:
3931         CR6 = CR6_EQ;
3932         ID = GetIntrinsic(VCMPEQ, ElementKind);
3933         break;
3934       case BO_LT:
3935         CR6 = CR6_LT;
3936         ID = GetIntrinsic(VCMPGT, ElementKind);
3937         std::swap(FirstVecArg, SecondVecArg);
3938         break;
3939       case BO_GT:
3940         CR6 = CR6_LT;
3941         ID = GetIntrinsic(VCMPGT, ElementKind);
3942         break;
3943       case BO_LE:
3944         if (ElementKind == BuiltinType::Float) {
3945           CR6 = CR6_LT;
3946           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3947           std::swap(FirstVecArg, SecondVecArg);
3948         }
3949         else {
3950           CR6 = CR6_EQ;
3951           ID = GetIntrinsic(VCMPGT, ElementKind);
3952         }
3953         break;
3954       case BO_GE:
3955         if (ElementKind == BuiltinType::Float) {
3956           CR6 = CR6_LT;
3957           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3958         }
3959         else {
3960           CR6 = CR6_EQ;
3961           ID = GetIntrinsic(VCMPGT, ElementKind);
3962           std::swap(FirstVecArg, SecondVecArg);
3963         }
3964         break;
3965       }
3966 
3967       Value *CR6Param = Builder.getInt32(CR6);
3968       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3969       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3970 
3971       // The result type of intrinsic may not be same as E->getType().
3972       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3973       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3974       // do nothing, if ResultTy is not i1 at the same time, it will cause
3975       // crash later.
3976       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3977       if (ResultTy->getBitWidth() > 1 &&
3978           E->getType() == CGF.getContext().BoolTy)
3979         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3980       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3981                                   E->getExprLoc());
3982     }
3983 
3984     if (BOInfo.isFixedPointOp()) {
3985       Result = EmitFixedPointBinOp(BOInfo);
3986     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3987       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
3988       if (!IsSignaling)
3989         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3990       else
3991         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
3992     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3993       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3994     } else {
3995       // Unsigned integers and pointers.
3996 
3997       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3998           !isa<llvm::ConstantPointerNull>(LHS) &&
3999           !isa<llvm::ConstantPointerNull>(RHS)) {
4000 
4001         // Dynamic information is required to be stripped for comparisons,
4002         // because it could leak the dynamic information.  Based on comparisons
4003         // of pointers to dynamic objects, the optimizer can replace one pointer
4004         // with another, which might be incorrect in presence of invariant
4005         // groups. Comparison with null is safe because null does not carry any
4006         // dynamic information.
4007         if (LHSTy.mayBeDynamicClass())
4008           LHS = Builder.CreateStripInvariantGroup(LHS);
4009         if (RHSTy.mayBeDynamicClass())
4010           RHS = Builder.CreateStripInvariantGroup(RHS);
4011       }
4012 
4013       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4014     }
4015 
4016     // If this is a vector comparison, sign extend the result to the appropriate
4017     // vector integer type and return it (don't convert to bool).
4018     if (LHSTy->isVectorType())
4019       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4020 
4021   } else {
4022     // Complex Comparison: can only be an equality comparison.
4023     CodeGenFunction::ComplexPairTy LHS, RHS;
4024     QualType CETy;
4025     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4026       LHS = CGF.EmitComplexExpr(E->getLHS());
4027       CETy = CTy->getElementType();
4028     } else {
4029       LHS.first = Visit(E->getLHS());
4030       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4031       CETy = LHSTy;
4032     }
4033     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4034       RHS = CGF.EmitComplexExpr(E->getRHS());
4035       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4036                                                      CTy->getElementType()) &&
4037              "The element types must always match.");
4038       (void)CTy;
4039     } else {
4040       RHS.first = Visit(E->getRHS());
4041       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4042       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4043              "The element types must always match.");
4044     }
4045 
4046     Value *ResultR, *ResultI;
4047     if (CETy->isRealFloatingType()) {
4048       // As complex comparisons can only be equality comparisons, they
4049       // are never signaling comparisons.
4050       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4051       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4052     } else {
4053       // Complex comparisons can only be equality comparisons.  As such, signed
4054       // and unsigned opcodes are the same.
4055       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4056       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4057     }
4058 
4059     if (E->getOpcode() == BO_EQ) {
4060       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4061     } else {
4062       assert(E->getOpcode() == BO_NE &&
4063              "Complex comparison other than == or != ?");
4064       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4065     }
4066   }
4067 
4068   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4069                               E->getExprLoc());
4070 }
4071 
4072 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4073   bool Ignore = TestAndClearIgnoreResultAssign();
4074 
4075   Value *RHS;
4076   LValue LHS;
4077 
4078   switch (E->getLHS()->getType().getObjCLifetime()) {
4079   case Qualifiers::OCL_Strong:
4080     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4081     break;
4082 
4083   case Qualifiers::OCL_Autoreleasing:
4084     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4085     break;
4086 
4087   case Qualifiers::OCL_ExplicitNone:
4088     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4089     break;
4090 
4091   case Qualifiers::OCL_Weak:
4092     RHS = Visit(E->getRHS());
4093     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4094     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4095     break;
4096 
4097   case Qualifiers::OCL_None:
4098     // __block variables need to have the rhs evaluated first, plus
4099     // this should improve codegen just a little.
4100     RHS = Visit(E->getRHS());
4101     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4102 
4103     // Store the value into the LHS.  Bit-fields are handled specially
4104     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4105     // 'An assignment expression has the value of the left operand after
4106     // the assignment...'.
4107     if (LHS.isBitField()) {
4108       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4109     } else {
4110       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4111       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4112     }
4113   }
4114 
4115   // If the result is clearly ignored, return now.
4116   if (Ignore)
4117     return nullptr;
4118 
4119   // The result of an assignment in C is the assigned r-value.
4120   if (!CGF.getLangOpts().CPlusPlus)
4121     return RHS;
4122 
4123   // If the lvalue is non-volatile, return the computed value of the assignment.
4124   if (!LHS.isVolatileQualified())
4125     return RHS;
4126 
4127   // Otherwise, reload the value.
4128   return EmitLoadOfLValue(LHS, E->getExprLoc());
4129 }
4130 
4131 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4132   // Perform vector logical and on comparisons with zero vectors.
4133   if (E->getType()->isVectorType()) {
4134     CGF.incrementProfileCounter(E);
4135 
4136     Value *LHS = Visit(E->getLHS());
4137     Value *RHS = Visit(E->getRHS());
4138     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4139     if (LHS->getType()->isFPOrFPVectorTy()) {
4140       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4141           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4142       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4143       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4144     } else {
4145       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4146       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4147     }
4148     Value *And = Builder.CreateAnd(LHS, RHS);
4149     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4150   }
4151 
4152   llvm::Type *ResTy = ConvertType(E->getType());
4153 
4154   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4155   // If we have 1 && X, just emit X without inserting the control flow.
4156   bool LHSCondVal;
4157   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4158     if (LHSCondVal) { // If we have 1 && X, just emit X.
4159       CGF.incrementProfileCounter(E);
4160 
4161       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4162       // ZExt result to int or bool.
4163       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4164     }
4165 
4166     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4167     if (!CGF.ContainsLabel(E->getRHS()))
4168       return llvm::Constant::getNullValue(ResTy);
4169   }
4170 
4171   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4172   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4173 
4174   CodeGenFunction::ConditionalEvaluation eval(CGF);
4175 
4176   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4177   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4178                            CGF.getProfileCount(E->getRHS()));
4179 
4180   // Any edges into the ContBlock are now from an (indeterminate number of)
4181   // edges from this first condition.  All of these values will be false.  Start
4182   // setting up the PHI node in the Cont Block for this.
4183   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4184                                             "", ContBlock);
4185   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4186        PI != PE; ++PI)
4187     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4188 
4189   eval.begin(CGF);
4190   CGF.EmitBlock(RHSBlock);
4191   CGF.incrementProfileCounter(E);
4192   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4193   eval.end(CGF);
4194 
4195   // Reaquire the RHS block, as there may be subblocks inserted.
4196   RHSBlock = Builder.GetInsertBlock();
4197 
4198   // Emit an unconditional branch from this block to ContBlock.
4199   {
4200     // There is no need to emit line number for unconditional branch.
4201     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4202     CGF.EmitBlock(ContBlock);
4203   }
4204   // Insert an entry into the phi node for the edge with the value of RHSCond.
4205   PN->addIncoming(RHSCond, RHSBlock);
4206 
4207   // Artificial location to preserve the scope information
4208   {
4209     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4210     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4211   }
4212 
4213   // ZExt result to int.
4214   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4215 }
4216 
4217 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4218   // Perform vector logical or on comparisons with zero vectors.
4219   if (E->getType()->isVectorType()) {
4220     CGF.incrementProfileCounter(E);
4221 
4222     Value *LHS = Visit(E->getLHS());
4223     Value *RHS = Visit(E->getRHS());
4224     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4225     if (LHS->getType()->isFPOrFPVectorTy()) {
4226       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4227           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4228       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4229       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4230     } else {
4231       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4232       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4233     }
4234     Value *Or = Builder.CreateOr(LHS, RHS);
4235     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4236   }
4237 
4238   llvm::Type *ResTy = ConvertType(E->getType());
4239 
4240   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4241   // If we have 0 || X, just emit X without inserting the control flow.
4242   bool LHSCondVal;
4243   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4244     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4245       CGF.incrementProfileCounter(E);
4246 
4247       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4248       // ZExt result to int or bool.
4249       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4250     }
4251 
4252     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4253     if (!CGF.ContainsLabel(E->getRHS()))
4254       return llvm::ConstantInt::get(ResTy, 1);
4255   }
4256 
4257   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4258   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4259 
4260   CodeGenFunction::ConditionalEvaluation eval(CGF);
4261 
4262   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4263   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4264                            CGF.getCurrentProfileCount() -
4265                                CGF.getProfileCount(E->getRHS()));
4266 
4267   // Any edges into the ContBlock are now from an (indeterminate number of)
4268   // edges from this first condition.  All of these values will be true.  Start
4269   // setting up the PHI node in the Cont Block for this.
4270   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4271                                             "", ContBlock);
4272   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4273        PI != PE; ++PI)
4274     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4275 
4276   eval.begin(CGF);
4277 
4278   // Emit the RHS condition as a bool value.
4279   CGF.EmitBlock(RHSBlock);
4280   CGF.incrementProfileCounter(E);
4281   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4282 
4283   eval.end(CGF);
4284 
4285   // Reaquire the RHS block, as there may be subblocks inserted.
4286   RHSBlock = Builder.GetInsertBlock();
4287 
4288   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4289   // into the phi node for the edge with the value of RHSCond.
4290   CGF.EmitBlock(ContBlock);
4291   PN->addIncoming(RHSCond, RHSBlock);
4292 
4293   // ZExt result to int.
4294   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4295 }
4296 
4297 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4298   CGF.EmitIgnoredExpr(E->getLHS());
4299   CGF.EnsureInsertPoint();
4300   return Visit(E->getRHS());
4301 }
4302 
4303 //===----------------------------------------------------------------------===//
4304 //                             Other Operators
4305 //===----------------------------------------------------------------------===//
4306 
4307 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4308 /// expression is cheap enough and side-effect-free enough to evaluate
4309 /// unconditionally instead of conditionally.  This is used to convert control
4310 /// flow into selects in some cases.
4311 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4312                                                    CodeGenFunction &CGF) {
4313   // Anything that is an integer or floating point constant is fine.
4314   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4315 
4316   // Even non-volatile automatic variables can't be evaluated unconditionally.
4317   // Referencing a thread_local may cause non-trivial initialization work to
4318   // occur. If we're inside a lambda and one of the variables is from the scope
4319   // outside the lambda, that function may have returned already. Reading its
4320   // locals is a bad idea. Also, these reads may introduce races there didn't
4321   // exist in the source-level program.
4322 }
4323 
4324 
4325 Value *ScalarExprEmitter::
4326 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4327   TestAndClearIgnoreResultAssign();
4328 
4329   // Bind the common expression if necessary.
4330   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4331 
4332   Expr *condExpr = E->getCond();
4333   Expr *lhsExpr = E->getTrueExpr();
4334   Expr *rhsExpr = E->getFalseExpr();
4335 
4336   // If the condition constant folds and can be elided, try to avoid emitting
4337   // the condition and the dead arm.
4338   bool CondExprBool;
4339   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4340     Expr *live = lhsExpr, *dead = rhsExpr;
4341     if (!CondExprBool) std::swap(live, dead);
4342 
4343     // If the dead side doesn't have labels we need, just emit the Live part.
4344     if (!CGF.ContainsLabel(dead)) {
4345       if (CondExprBool)
4346         CGF.incrementProfileCounter(E);
4347       Value *Result = Visit(live);
4348 
4349       // If the live part is a throw expression, it acts like it has a void
4350       // type, so evaluating it returns a null Value*.  However, a conditional
4351       // with non-void type must return a non-null Value*.
4352       if (!Result && !E->getType()->isVoidType())
4353         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4354 
4355       return Result;
4356     }
4357   }
4358 
4359   // OpenCL: If the condition is a vector, we can treat this condition like
4360   // the select function.
4361   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4362       condExpr->getType()->isExtVectorType()) {
4363     CGF.incrementProfileCounter(E);
4364 
4365     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4366     llvm::Value *LHS = Visit(lhsExpr);
4367     llvm::Value *RHS = Visit(rhsExpr);
4368 
4369     llvm::Type *condType = ConvertType(condExpr->getType());
4370     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4371 
4372     unsigned numElem = vecTy->getNumElements();
4373     llvm::Type *elemType = vecTy->getElementType();
4374 
4375     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4376     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4377     llvm::Value *tmp = Builder.CreateSExt(
4378         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4379     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4380 
4381     // Cast float to int to perform ANDs if necessary.
4382     llvm::Value *RHSTmp = RHS;
4383     llvm::Value *LHSTmp = LHS;
4384     bool wasCast = false;
4385     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4386     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4387       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4388       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4389       wasCast = true;
4390     }
4391 
4392     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4393     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4394     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4395     if (wasCast)
4396       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4397 
4398     return tmp5;
4399   }
4400 
4401   if (condExpr->getType()->isVectorType()) {
4402     CGF.incrementProfileCounter(E);
4403 
4404     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4405     llvm::Value *LHS = Visit(lhsExpr);
4406     llvm::Value *RHS = Visit(rhsExpr);
4407 
4408     llvm::Type *CondType = ConvertType(condExpr->getType());
4409     auto *VecTy = cast<llvm::VectorType>(CondType);
4410     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4411 
4412     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4413     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4414   }
4415 
4416   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4417   // select instead of as control flow.  We can only do this if it is cheap and
4418   // safe to evaluate the LHS and RHS unconditionally.
4419   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4420       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4421     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4422     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4423 
4424     CGF.incrementProfileCounter(E, StepV);
4425 
4426     llvm::Value *LHS = Visit(lhsExpr);
4427     llvm::Value *RHS = Visit(rhsExpr);
4428     if (!LHS) {
4429       // If the conditional has void type, make sure we return a null Value*.
4430       assert(!RHS && "LHS and RHS types must match");
4431       return nullptr;
4432     }
4433     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4434   }
4435 
4436   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4437   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4438   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4439 
4440   CodeGenFunction::ConditionalEvaluation eval(CGF);
4441   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4442                            CGF.getProfileCount(lhsExpr));
4443 
4444   CGF.EmitBlock(LHSBlock);
4445   CGF.incrementProfileCounter(E);
4446   eval.begin(CGF);
4447   Value *LHS = Visit(lhsExpr);
4448   eval.end(CGF);
4449 
4450   LHSBlock = Builder.GetInsertBlock();
4451   Builder.CreateBr(ContBlock);
4452 
4453   CGF.EmitBlock(RHSBlock);
4454   eval.begin(CGF);
4455   Value *RHS = Visit(rhsExpr);
4456   eval.end(CGF);
4457 
4458   RHSBlock = Builder.GetInsertBlock();
4459   CGF.EmitBlock(ContBlock);
4460 
4461   // If the LHS or RHS is a throw expression, it will be legitimately null.
4462   if (!LHS)
4463     return RHS;
4464   if (!RHS)
4465     return LHS;
4466 
4467   // Create a PHI node for the real part.
4468   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4469   PN->addIncoming(LHS, LHSBlock);
4470   PN->addIncoming(RHS, RHSBlock);
4471   return PN;
4472 }
4473 
4474 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4475   return Visit(E->getChosenSubExpr());
4476 }
4477 
4478 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4479   QualType Ty = VE->getType();
4480 
4481   if (Ty->isVariablyModifiedType())
4482     CGF.EmitVariablyModifiedType(Ty);
4483 
4484   Address ArgValue = Address::invalid();
4485   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4486 
4487   llvm::Type *ArgTy = ConvertType(VE->getType());
4488 
4489   // If EmitVAArg fails, emit an error.
4490   if (!ArgPtr.isValid()) {
4491     CGF.ErrorUnsupported(VE, "va_arg expression");
4492     return llvm::UndefValue::get(ArgTy);
4493   }
4494 
4495   // FIXME Volatility.
4496   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4497 
4498   // If EmitVAArg promoted the type, we must truncate it.
4499   if (ArgTy != Val->getType()) {
4500     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4501       Val = Builder.CreateIntToPtr(Val, ArgTy);
4502     else
4503       Val = Builder.CreateTrunc(Val, ArgTy);
4504   }
4505 
4506   return Val;
4507 }
4508 
4509 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4510   return CGF.EmitBlockLiteral(block);
4511 }
4512 
4513 // Convert a vec3 to vec4, or vice versa.
4514 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4515                                  Value *Src, unsigned NumElementsDst) {
4516   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4517   static constexpr int Mask[] = {0, 1, 2, -1};
4518   return Builder.CreateShuffleVector(Src, UnV,
4519                                      llvm::makeArrayRef(Mask, NumElementsDst));
4520 }
4521 
4522 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4523 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4524 // but could be scalar or vectors of different lengths, and either can be
4525 // pointer.
4526 // There are 4 cases:
4527 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4528 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4529 // 3. pointer -> non-pointer
4530 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4531 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4532 // 4. non-pointer -> pointer
4533 //   a) intptr_t -> pointer       : needs 1 inttoptr
4534 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4535 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4536 // allow casting directly between pointer types and non-integer non-pointer
4537 // types.
4538 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4539                                            const llvm::DataLayout &DL,
4540                                            Value *Src, llvm::Type *DstTy,
4541                                            StringRef Name = "") {
4542   auto SrcTy = Src->getType();
4543 
4544   // Case 1.
4545   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4546     return Builder.CreateBitCast(Src, DstTy, Name);
4547 
4548   // Case 2.
4549   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4550     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4551 
4552   // Case 3.
4553   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4554     // Case 3b.
4555     if (!DstTy->isIntegerTy())
4556       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4557     // Cases 3a and 3b.
4558     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4559   }
4560 
4561   // Case 4b.
4562   if (!SrcTy->isIntegerTy())
4563     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4564   // Cases 4a and 4b.
4565   return Builder.CreateIntToPtr(Src, DstTy, Name);
4566 }
4567 
4568 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4569   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4570   llvm::Type *DstTy = ConvertType(E->getType());
4571 
4572   llvm::Type *SrcTy = Src->getType();
4573   unsigned NumElementsSrc =
4574       isa<llvm::VectorType>(SrcTy)
4575           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4576           : 0;
4577   unsigned NumElementsDst =
4578       isa<llvm::VectorType>(DstTy)
4579           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4580           : 0;
4581 
4582   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4583   // vector to get a vec4, then a bitcast if the target type is different.
4584   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4585     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4586 
4587     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4588       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4589                                          DstTy);
4590     }
4591 
4592     Src->setName("astype");
4593     return Src;
4594   }
4595 
4596   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4597   // to vec4 if the original type is not vec4, then a shuffle vector to
4598   // get a vec3.
4599   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4600     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4601       auto *Vec4Ty = llvm::FixedVectorType::get(
4602           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4603       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4604                                          Vec4Ty);
4605     }
4606 
4607     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4608     Src->setName("astype");
4609     return Src;
4610   }
4611 
4612   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4613                                       Src, DstTy, "astype");
4614 }
4615 
4616 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4617   return CGF.EmitAtomicExpr(E).getScalarVal();
4618 }
4619 
4620 //===----------------------------------------------------------------------===//
4621 //                         Entry Point into this File
4622 //===----------------------------------------------------------------------===//
4623 
4624 /// Emit the computation of the specified expression of scalar type, ignoring
4625 /// the result.
4626 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4627   assert(E && hasScalarEvaluationKind(E->getType()) &&
4628          "Invalid scalar expression to emit");
4629 
4630   return ScalarExprEmitter(*this, IgnoreResultAssign)
4631       .Visit(const_cast<Expr *>(E));
4632 }
4633 
4634 /// Emit a conversion from the specified type to the specified destination type,
4635 /// both of which are LLVM scalar types.
4636 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4637                                              QualType DstTy,
4638                                              SourceLocation Loc) {
4639   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4640          "Invalid scalar expression to emit");
4641   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4642 }
4643 
4644 /// Emit a conversion from the specified complex type to the specified
4645 /// destination type, where the destination type is an LLVM scalar type.
4646 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4647                                                       QualType SrcTy,
4648                                                       QualType DstTy,
4649                                                       SourceLocation Loc) {
4650   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4651          "Invalid complex -> scalar conversion");
4652   return ScalarExprEmitter(*this)
4653       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4654 }
4655 
4656 
4657 llvm::Value *CodeGenFunction::
4658 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4659                         bool isInc, bool isPre) {
4660   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4661 }
4662 
4663 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4664   // object->isa or (*object).isa
4665   // Generate code as for: *(Class*)object
4666 
4667   Expr *BaseExpr = E->getBase();
4668   Address Addr = Address::invalid();
4669   if (BaseExpr->isRValue()) {
4670     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4671   } else {
4672     Addr = EmitLValue(BaseExpr).getAddress(*this);
4673   }
4674 
4675   // Cast the address to Class*.
4676   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4677   return MakeAddrLValue(Addr, E->getType());
4678 }
4679 
4680 
4681 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4682                                             const CompoundAssignOperator *E) {
4683   ScalarExprEmitter Scalar(*this);
4684   Value *Result = nullptr;
4685   switch (E->getOpcode()) {
4686 #define COMPOUND_OP(Op)                                                       \
4687     case BO_##Op##Assign:                                                     \
4688       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4689                                              Result)
4690   COMPOUND_OP(Mul);
4691   COMPOUND_OP(Div);
4692   COMPOUND_OP(Rem);
4693   COMPOUND_OP(Add);
4694   COMPOUND_OP(Sub);
4695   COMPOUND_OP(Shl);
4696   COMPOUND_OP(Shr);
4697   COMPOUND_OP(And);
4698   COMPOUND_OP(Xor);
4699   COMPOUND_OP(Or);
4700 #undef COMPOUND_OP
4701 
4702   case BO_PtrMemD:
4703   case BO_PtrMemI:
4704   case BO_Mul:
4705   case BO_Div:
4706   case BO_Rem:
4707   case BO_Add:
4708   case BO_Sub:
4709   case BO_Shl:
4710   case BO_Shr:
4711   case BO_LT:
4712   case BO_GT:
4713   case BO_LE:
4714   case BO_GE:
4715   case BO_EQ:
4716   case BO_NE:
4717   case BO_Cmp:
4718   case BO_And:
4719   case BO_Xor:
4720   case BO_Or:
4721   case BO_LAnd:
4722   case BO_LOr:
4723   case BO_Assign:
4724   case BO_Comma:
4725     llvm_unreachable("Not valid compound assignment operators");
4726   }
4727 
4728   llvm_unreachable("Unhandled compound assignment operator");
4729 }
4730 
4731 struct GEPOffsetAndOverflow {
4732   // The total (signed) byte offset for the GEP.
4733   llvm::Value *TotalOffset;
4734   // The offset overflow flag - true if the total offset overflows.
4735   llvm::Value *OffsetOverflows;
4736 };
4737 
4738 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4739 /// and compute the total offset it applies from it's base pointer BasePtr.
4740 /// Returns offset in bytes and a boolean flag whether an overflow happened
4741 /// during evaluation.
4742 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4743                                                  llvm::LLVMContext &VMContext,
4744                                                  CodeGenModule &CGM,
4745                                                  CGBuilderTy &Builder) {
4746   const auto &DL = CGM.getDataLayout();
4747 
4748   // The total (signed) byte offset for the GEP.
4749   llvm::Value *TotalOffset = nullptr;
4750 
4751   // Was the GEP already reduced to a constant?
4752   if (isa<llvm::Constant>(GEPVal)) {
4753     // Compute the offset by casting both pointers to integers and subtracting:
4754     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4755     Value *BasePtr_int =
4756         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4757     Value *GEPVal_int =
4758         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4759     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4760     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4761   }
4762 
4763   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4764   assert(GEP->getPointerOperand() == BasePtr &&
4765          "BasePtr must be the the base of the GEP.");
4766   assert(GEP->isInBounds() && "Expected inbounds GEP");
4767 
4768   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4769 
4770   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4771   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4772   auto *SAddIntrinsic =
4773       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4774   auto *SMulIntrinsic =
4775       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4776 
4777   // The offset overflow flag - true if the total offset overflows.
4778   llvm::Value *OffsetOverflows = Builder.getFalse();
4779 
4780   /// Return the result of the given binary operation.
4781   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4782                   llvm::Value *RHS) -> llvm::Value * {
4783     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4784 
4785     // If the operands are constants, return a constant result.
4786     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4787       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4788         llvm::APInt N;
4789         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4790                                                   /*Signed=*/true, N);
4791         if (HasOverflow)
4792           OffsetOverflows = Builder.getTrue();
4793         return llvm::ConstantInt::get(VMContext, N);
4794       }
4795     }
4796 
4797     // Otherwise, compute the result with checked arithmetic.
4798     auto *ResultAndOverflow = Builder.CreateCall(
4799         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4800     OffsetOverflows = Builder.CreateOr(
4801         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4802     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4803   };
4804 
4805   // Determine the total byte offset by looking at each GEP operand.
4806   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4807        GTI != GTE; ++GTI) {
4808     llvm::Value *LocalOffset;
4809     auto *Index = GTI.getOperand();
4810     // Compute the local offset contributed by this indexing step:
4811     if (auto *STy = GTI.getStructTypeOrNull()) {
4812       // For struct indexing, the local offset is the byte position of the
4813       // specified field.
4814       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4815       LocalOffset = llvm::ConstantInt::get(
4816           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4817     } else {
4818       // Otherwise this is array-like indexing. The local offset is the index
4819       // multiplied by the element size.
4820       auto *ElementSize = llvm::ConstantInt::get(
4821           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4822       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4823       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4824     }
4825 
4826     // If this is the first offset, set it as the total offset. Otherwise, add
4827     // the local offset into the running total.
4828     if (!TotalOffset || TotalOffset == Zero)
4829       TotalOffset = LocalOffset;
4830     else
4831       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4832   }
4833 
4834   return {TotalOffset, OffsetOverflows};
4835 }
4836 
4837 Value *
4838 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4839                                         bool SignedIndices, bool IsSubtraction,
4840                                         SourceLocation Loc, const Twine &Name) {
4841   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4842 
4843   // If the pointer overflow sanitizer isn't enabled, do nothing.
4844   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4845     return GEPVal;
4846 
4847   llvm::Type *PtrTy = Ptr->getType();
4848 
4849   // Perform nullptr-and-offset check unless the nullptr is defined.
4850   bool PerformNullCheck = !NullPointerIsDefined(
4851       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4852   // Check for overflows unless the GEP got constant-folded,
4853   // and only in the default address space
4854   bool PerformOverflowCheck =
4855       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4856 
4857   if (!(PerformNullCheck || PerformOverflowCheck))
4858     return GEPVal;
4859 
4860   const auto &DL = CGM.getDataLayout();
4861 
4862   SanitizerScope SanScope(this);
4863   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4864 
4865   GEPOffsetAndOverflow EvaluatedGEP =
4866       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4867 
4868   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4869           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4870          "If the offset got constant-folded, we don't expect that there was an "
4871          "overflow.");
4872 
4873   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4874 
4875   // Common case: if the total offset is zero, and we are using C++ semantics,
4876   // where nullptr+0 is defined, don't emit a check.
4877   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4878     return GEPVal;
4879 
4880   // Now that we've computed the total offset, add it to the base pointer (with
4881   // wrapping semantics).
4882   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4883   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4884 
4885   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4886 
4887   if (PerformNullCheck) {
4888     // In C++, if the base pointer evaluates to a null pointer value,
4889     // the only valid  pointer this inbounds GEP can produce is also
4890     // a null pointer, so the offset must also evaluate to zero.
4891     // Likewise, if we have non-zero base pointer, we can not get null pointer
4892     // as a result, so the offset can not be -intptr_t(BasePtr).
4893     // In other words, both pointers are either null, or both are non-null,
4894     // or the behaviour is undefined.
4895     //
4896     // C, however, is more strict in this regard, and gives more
4897     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4898     // So both the input to the 'gep inbounds' AND the output must not be null.
4899     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4900     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4901     auto *Valid =
4902         CGM.getLangOpts().CPlusPlus
4903             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4904             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4905     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4906   }
4907 
4908   if (PerformOverflowCheck) {
4909     // The GEP is valid if:
4910     // 1) The total offset doesn't overflow, and
4911     // 2) The sign of the difference between the computed address and the base
4912     // pointer matches the sign of the total offset.
4913     llvm::Value *ValidGEP;
4914     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4915     if (SignedIndices) {
4916       // GEP is computed as `unsigned base + signed offset`, therefore:
4917       // * If offset was positive, then the computed pointer can not be
4918       //   [unsigned] less than the base pointer, unless it overflowed.
4919       // * If offset was negative, then the computed pointer can not be
4920       //   [unsigned] greater than the bas pointere, unless it overflowed.
4921       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4922       auto *PosOrZeroOffset =
4923           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4924       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4925       ValidGEP =
4926           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4927     } else if (!IsSubtraction) {
4928       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4929       // computed pointer can not be [unsigned] less than base pointer,
4930       // unless there was an overflow.
4931       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4932       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4933     } else {
4934       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4935       // computed pointer can not be [unsigned] greater than base pointer,
4936       // unless there was an overflow.
4937       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4938       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4939     }
4940     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4941     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4942   }
4943 
4944   assert(!Checks.empty() && "Should have produced some checks.");
4945 
4946   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4947   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4948   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4949   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4950 
4951   return GEPVal;
4952 }
4953