1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/FixedPointBuilder.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsPowerPC.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include <cstdarg> 44 45 using namespace clang; 46 using namespace CodeGen; 47 using llvm::Value; 48 49 //===----------------------------------------------------------------------===// 50 // Scalar Expression Emitter 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 55 /// Determine whether the given binary operation may overflow. 56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 58 /// the returned overflow check is precise. The returned value is 'true' for 59 /// all other opcodes, to be conservative. 60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 61 BinaryOperator::Opcode Opcode, bool Signed, 62 llvm::APInt &Result) { 63 // Assume overflow is possible, unless we can prove otherwise. 64 bool Overflow = true; 65 const auto &LHSAP = LHS->getValue(); 66 const auto &RHSAP = RHS->getValue(); 67 if (Opcode == BO_Add) { 68 if (Signed) 69 Result = LHSAP.sadd_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.uadd_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Sub) { 73 if (Signed) 74 Result = LHSAP.ssub_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.usub_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Mul) { 78 if (Signed) 79 Result = LHSAP.smul_ov(RHSAP, Overflow); 80 else 81 Result = LHSAP.umul_ov(RHSAP, Overflow); 82 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 83 if (Signed && !RHS->isZero()) 84 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 85 else 86 return false; 87 } 88 return Overflow; 89 } 90 91 struct BinOpInfo { 92 Value *LHS; 93 Value *RHS; 94 QualType Ty; // Computation Type. 95 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 96 FPOptions FPFeatures; 97 const Expr *E; // Entire expr, for error unsupported. May not be binop. 98 99 /// Check if the binop can result in integer overflow. 100 bool mayHaveIntegerOverflow() const { 101 // Without constant input, we can't rule out overflow. 102 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 103 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 104 if (!LHSCI || !RHSCI) 105 return true; 106 107 llvm::APInt Result; 108 return ::mayHaveIntegerOverflow( 109 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 110 } 111 112 /// Check if the binop computes a division or a remainder. 113 bool isDivremOp() const { 114 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 115 Opcode == BO_RemAssign; 116 } 117 118 /// Check if the binop can result in an integer division by zero. 119 bool mayHaveIntegerDivisionByZero() const { 120 if (isDivremOp()) 121 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 122 return CI->isZero(); 123 return true; 124 } 125 126 /// Check if the binop can result in a float division by zero. 127 bool mayHaveFloatDivisionByZero() const { 128 if (isDivremOp()) 129 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 130 return CFP->isZero(); 131 return true; 132 } 133 134 /// Check if at least one operand is a fixed point type. In such cases, this 135 /// operation did not follow usual arithmetic conversion and both operands 136 /// might not be of the same type. 137 bool isFixedPointOp() const { 138 // We cannot simply check the result type since comparison operations return 139 // an int. 140 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 141 QualType LHSType = BinOp->getLHS()->getType(); 142 QualType RHSType = BinOp->getRHS()->getType(); 143 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 144 } 145 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 146 return UnOp->getSubExpr()->getType()->isFixedPointType(); 147 return false; 148 } 149 }; 150 151 static bool MustVisitNullValue(const Expr *E) { 152 // If a null pointer expression's type is the C++0x nullptr_t, then 153 // it's not necessarily a simple constant and it must be evaluated 154 // for its potential side effects. 155 return E->getType()->isNullPtrType(); 156 } 157 158 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 160 const Expr *E) { 161 const Expr *Base = E->IgnoreImpCasts(); 162 if (E == Base) 163 return llvm::None; 164 165 QualType BaseTy = Base->getType(); 166 if (!BaseTy->isPromotableIntegerType() || 167 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 168 return llvm::None; 169 170 return BaseTy; 171 } 172 173 /// Check if \p E is a widened promoted integer. 174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 175 return getUnwidenedIntegerType(Ctx, E).hasValue(); 176 } 177 178 /// Check if we can skip the overflow check for \p Op. 179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 180 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 181 "Expected a unary or binary operator"); 182 183 // If the binop has constant inputs and we can prove there is no overflow, 184 // we can elide the overflow check. 185 if (!Op.mayHaveIntegerOverflow()) 186 return true; 187 188 // If a unary op has a widened operand, the op cannot overflow. 189 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 190 return !UO->canOverflow(); 191 192 // We usually don't need overflow checks for binops with widened operands. 193 // Multiplication with promoted unsigned operands is a special case. 194 const auto *BO = cast<BinaryOperator>(Op.E); 195 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 196 if (!OptionalLHSTy) 197 return false; 198 199 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 200 if (!OptionalRHSTy) 201 return false; 202 203 QualType LHSTy = *OptionalLHSTy; 204 QualType RHSTy = *OptionalRHSTy; 205 206 // This is the simple case: binops without unsigned multiplication, and with 207 // widened operands. No overflow check is needed here. 208 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 209 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 210 return true; 211 212 // For unsigned multiplication the overflow check can be elided if either one 213 // of the unpromoted types are less than half the size of the promoted type. 214 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 215 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 216 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 217 } 218 219 class ScalarExprEmitter 220 : public StmtVisitor<ScalarExprEmitter, Value*> { 221 CodeGenFunction &CGF; 222 CGBuilderTy &Builder; 223 bool IgnoreResultAssign; 224 llvm::LLVMContext &VMContext; 225 public: 226 227 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 228 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 229 VMContext(cgf.getLLVMContext()) { 230 } 231 232 //===--------------------------------------------------------------------===// 233 // Utilities 234 //===--------------------------------------------------------------------===// 235 236 bool TestAndClearIgnoreResultAssign() { 237 bool I = IgnoreResultAssign; 238 IgnoreResultAssign = false; 239 return I; 240 } 241 242 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 243 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 244 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 245 return CGF.EmitCheckedLValue(E, TCK); 246 } 247 248 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 249 const BinOpInfo &Info); 250 251 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 252 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 253 } 254 255 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 256 const AlignValueAttr *AVAttr = nullptr; 257 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 258 const ValueDecl *VD = DRE->getDecl(); 259 260 if (VD->getType()->isReferenceType()) { 261 if (const auto *TTy = 262 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 263 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 264 } else { 265 // Assumptions for function parameters are emitted at the start of the 266 // function, so there is no need to repeat that here, 267 // unless the alignment-assumption sanitizer is enabled, 268 // then we prefer the assumption over alignment attribute 269 // on IR function param. 270 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 271 return; 272 273 AVAttr = VD->getAttr<AlignValueAttr>(); 274 } 275 } 276 277 if (!AVAttr) 278 if (const auto *TTy = 279 dyn_cast<TypedefType>(E->getType())) 280 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 281 282 if (!AVAttr) 283 return; 284 285 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 286 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 287 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 288 } 289 290 /// EmitLoadOfLValue - Given an expression with complex type that represents a 291 /// value l-value, this method emits the address of the l-value, then loads 292 /// and returns the result. 293 Value *EmitLoadOfLValue(const Expr *E) { 294 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 295 E->getExprLoc()); 296 297 EmitLValueAlignmentAssumption(E, V); 298 return V; 299 } 300 301 /// EmitConversionToBool - Convert the specified expression value to a 302 /// boolean (i1) truth value. This is equivalent to "Val != 0". 303 Value *EmitConversionToBool(Value *Src, QualType DstTy); 304 305 /// Emit a check that a conversion from a floating-point type does not 306 /// overflow. 307 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 308 Value *Src, QualType SrcType, QualType DstType, 309 llvm::Type *DstTy, SourceLocation Loc); 310 311 /// Known implicit conversion check kinds. 312 /// Keep in sync with the enum of the same name in ubsan_handlers.h 313 enum ImplicitConversionCheckKind : unsigned char { 314 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 315 ICCK_UnsignedIntegerTruncation = 1, 316 ICCK_SignedIntegerTruncation = 2, 317 ICCK_IntegerSignChange = 3, 318 ICCK_SignedIntegerTruncationOrSignChange = 4, 319 }; 320 321 /// Emit a check that an [implicit] truncation of an integer does not 322 /// discard any bits. It is not UB, so we use the value after truncation. 323 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 324 QualType DstType, SourceLocation Loc); 325 326 /// Emit a check that an [implicit] conversion of an integer does not change 327 /// the sign of the value. It is not UB, so we use the value after conversion. 328 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 329 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 330 QualType DstType, SourceLocation Loc); 331 332 /// Emit a conversion from the specified type to the specified destination 333 /// type, both of which are LLVM scalar types. 334 struct ScalarConversionOpts { 335 bool TreatBooleanAsSigned; 336 bool EmitImplicitIntegerTruncationChecks; 337 bool EmitImplicitIntegerSignChangeChecks; 338 339 ScalarConversionOpts() 340 : TreatBooleanAsSigned(false), 341 EmitImplicitIntegerTruncationChecks(false), 342 EmitImplicitIntegerSignChangeChecks(false) {} 343 344 ScalarConversionOpts(clang::SanitizerSet SanOpts) 345 : TreatBooleanAsSigned(false), 346 EmitImplicitIntegerTruncationChecks( 347 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 348 EmitImplicitIntegerSignChangeChecks( 349 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 350 }; 351 Value * 352 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 353 SourceLocation Loc, 354 ScalarConversionOpts Opts = ScalarConversionOpts()); 355 356 /// Convert between either a fixed point and other fixed point or fixed point 357 /// and an integer. 358 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 359 SourceLocation Loc); 360 361 /// Emit a conversion from the specified complex type to the specified 362 /// destination type, where the destination type is an LLVM scalar type. 363 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 364 QualType SrcTy, QualType DstTy, 365 SourceLocation Loc); 366 367 /// EmitNullValue - Emit a value that corresponds to null for the given type. 368 Value *EmitNullValue(QualType Ty); 369 370 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 371 Value *EmitFloatToBoolConversion(Value *V) { 372 // Compare against 0.0 for fp scalars. 373 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 374 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 375 } 376 377 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 378 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 379 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 380 381 return Builder.CreateICmpNE(V, Zero, "tobool"); 382 } 383 384 Value *EmitIntToBoolConversion(Value *V) { 385 // Because of the type rules of C, we often end up computing a 386 // logical value, then zero extending it to int, then wanting it 387 // as a logical value again. Optimize this common case. 388 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 389 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 390 Value *Result = ZI->getOperand(0); 391 // If there aren't any more uses, zap the instruction to save space. 392 // Note that there can be more uses, for example if this 393 // is the result of an assignment. 394 if (ZI->use_empty()) 395 ZI->eraseFromParent(); 396 return Result; 397 } 398 } 399 400 return Builder.CreateIsNotNull(V, "tobool"); 401 } 402 403 //===--------------------------------------------------------------------===// 404 // Visitor Methods 405 //===--------------------------------------------------------------------===// 406 407 Value *Visit(Expr *E) { 408 ApplyDebugLocation DL(CGF, E); 409 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 410 } 411 412 Value *VisitStmt(Stmt *S) { 413 S->dump(llvm::errs(), CGF.getContext()); 414 llvm_unreachable("Stmt can't have complex result type!"); 415 } 416 Value *VisitExpr(Expr *S); 417 418 Value *VisitConstantExpr(ConstantExpr *E) { 419 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 420 if (E->isGLValue()) 421 return CGF.Builder.CreateLoad(Address( 422 Result, CGF.getContext().getTypeAlignInChars(E->getType()))); 423 return Result; 424 } 425 return Visit(E->getSubExpr()); 426 } 427 Value *VisitParenExpr(ParenExpr *PE) { 428 return Visit(PE->getSubExpr()); 429 } 430 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 431 return Visit(E->getReplacement()); 432 } 433 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 434 return Visit(GE->getResultExpr()); 435 } 436 Value *VisitCoawaitExpr(CoawaitExpr *S) { 437 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 438 } 439 Value *VisitCoyieldExpr(CoyieldExpr *S) { 440 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 441 } 442 Value *VisitUnaryCoawait(const UnaryOperator *E) { 443 return Visit(E->getSubExpr()); 444 } 445 446 // Leaves. 447 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 448 return Builder.getInt(E->getValue()); 449 } 450 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 451 return Builder.getInt(E->getValue()); 452 } 453 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 454 return llvm::ConstantFP::get(VMContext, E->getValue()); 455 } 456 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 457 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 458 } 459 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 460 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 461 } 462 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 463 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 464 } 465 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 466 return EmitNullValue(E->getType()); 467 } 468 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 469 return EmitNullValue(E->getType()); 470 } 471 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 472 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 473 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 474 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 475 return Builder.CreateBitCast(V, ConvertType(E->getType())); 476 } 477 478 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 479 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 480 } 481 482 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 483 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 484 } 485 486 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 487 if (E->isGLValue()) 488 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 489 E->getExprLoc()); 490 491 // Otherwise, assume the mapping is the scalar directly. 492 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 493 } 494 495 // l-values. 496 Value *VisitDeclRefExpr(DeclRefExpr *E) { 497 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 498 return CGF.emitScalarConstant(Constant, E); 499 return EmitLoadOfLValue(E); 500 } 501 502 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 503 return CGF.EmitObjCSelectorExpr(E); 504 } 505 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 506 return CGF.EmitObjCProtocolExpr(E); 507 } 508 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 509 return EmitLoadOfLValue(E); 510 } 511 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 512 if (E->getMethodDecl() && 513 E->getMethodDecl()->getReturnType()->isReferenceType()) 514 return EmitLoadOfLValue(E); 515 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 516 } 517 518 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 519 LValue LV = CGF.EmitObjCIsaExpr(E); 520 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 521 return V; 522 } 523 524 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 525 VersionTuple Version = E->getVersion(); 526 527 // If we're checking for a platform older than our minimum deployment 528 // target, we can fold the check away. 529 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 530 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 531 532 return CGF.EmitBuiltinAvailable(Version); 533 } 534 535 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 536 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 537 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 538 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 539 Value *VisitMemberExpr(MemberExpr *E); 540 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 541 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 542 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 543 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 544 // literals aren't l-values in C++. We do so simply because that's the 545 // cleanest way to handle compound literals in C++. 546 // See the discussion here: https://reviews.llvm.org/D64464 547 return EmitLoadOfLValue(E); 548 } 549 550 Value *VisitInitListExpr(InitListExpr *E); 551 552 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 553 assert(CGF.getArrayInitIndex() && 554 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 555 return CGF.getArrayInitIndex(); 556 } 557 558 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 559 return EmitNullValue(E->getType()); 560 } 561 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 562 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 563 return VisitCastExpr(E); 564 } 565 Value *VisitCastExpr(CastExpr *E); 566 567 Value *VisitCallExpr(const CallExpr *E) { 568 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 569 return EmitLoadOfLValue(E); 570 571 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 572 573 EmitLValueAlignmentAssumption(E, V); 574 return V; 575 } 576 577 Value *VisitStmtExpr(const StmtExpr *E); 578 579 // Unary Operators. 580 Value *VisitUnaryPostDec(const UnaryOperator *E) { 581 LValue LV = EmitLValue(E->getSubExpr()); 582 return EmitScalarPrePostIncDec(E, LV, false, false); 583 } 584 Value *VisitUnaryPostInc(const UnaryOperator *E) { 585 LValue LV = EmitLValue(E->getSubExpr()); 586 return EmitScalarPrePostIncDec(E, LV, true, false); 587 } 588 Value *VisitUnaryPreDec(const UnaryOperator *E) { 589 LValue LV = EmitLValue(E->getSubExpr()); 590 return EmitScalarPrePostIncDec(E, LV, false, true); 591 } 592 Value *VisitUnaryPreInc(const UnaryOperator *E) { 593 LValue LV = EmitLValue(E->getSubExpr()); 594 return EmitScalarPrePostIncDec(E, LV, true, true); 595 } 596 597 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 598 llvm::Value *InVal, 599 bool IsInc); 600 601 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 602 bool isInc, bool isPre); 603 604 605 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 606 if (isa<MemberPointerType>(E->getType())) // never sugared 607 return CGF.CGM.getMemberPointerConstant(E); 608 609 return EmitLValue(E->getSubExpr()).getPointer(CGF); 610 } 611 Value *VisitUnaryDeref(const UnaryOperator *E) { 612 if (E->getType()->isVoidType()) 613 return Visit(E->getSubExpr()); // the actual value should be unused 614 return EmitLoadOfLValue(E); 615 } 616 Value *VisitUnaryPlus(const UnaryOperator *E) { 617 // This differs from gcc, though, most likely due to a bug in gcc. 618 TestAndClearIgnoreResultAssign(); 619 return Visit(E->getSubExpr()); 620 } 621 Value *VisitUnaryMinus (const UnaryOperator *E); 622 Value *VisitUnaryNot (const UnaryOperator *E); 623 Value *VisitUnaryLNot (const UnaryOperator *E); 624 Value *VisitUnaryReal (const UnaryOperator *E); 625 Value *VisitUnaryImag (const UnaryOperator *E); 626 Value *VisitUnaryExtension(const UnaryOperator *E) { 627 return Visit(E->getSubExpr()); 628 } 629 630 // C++ 631 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 632 return EmitLoadOfLValue(E); 633 } 634 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 635 auto &Ctx = CGF.getContext(); 636 APValue Evaluated = 637 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 638 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 639 SLE->getType()); 640 } 641 642 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 643 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 644 return Visit(DAE->getExpr()); 645 } 646 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 647 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 648 return Visit(DIE->getExpr()); 649 } 650 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 651 return CGF.LoadCXXThis(); 652 } 653 654 Value *VisitExprWithCleanups(ExprWithCleanups *E); 655 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 656 return CGF.EmitCXXNewExpr(E); 657 } 658 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 659 CGF.EmitCXXDeleteExpr(E); 660 return nullptr; 661 } 662 663 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 664 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 665 } 666 667 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 668 return Builder.getInt1(E->isSatisfied()); 669 } 670 671 Value *VisitRequiresExpr(const RequiresExpr *E) { 672 return Builder.getInt1(E->isSatisfied()); 673 } 674 675 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 676 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 677 } 678 679 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 680 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 681 } 682 683 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 684 // C++ [expr.pseudo]p1: 685 // The result shall only be used as the operand for the function call 686 // operator (), and the result of such a call has type void. The only 687 // effect is the evaluation of the postfix-expression before the dot or 688 // arrow. 689 CGF.EmitScalarExpr(E->getBase()); 690 return nullptr; 691 } 692 693 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 694 return EmitNullValue(E->getType()); 695 } 696 697 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 698 CGF.EmitCXXThrowExpr(E); 699 return nullptr; 700 } 701 702 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 703 return Builder.getInt1(E->getValue()); 704 } 705 706 // Binary Operators. 707 Value *EmitMul(const BinOpInfo &Ops) { 708 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 709 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 710 case LangOptions::SOB_Defined: 711 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 712 case LangOptions::SOB_Undefined: 713 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 714 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 715 LLVM_FALLTHROUGH; 716 case LangOptions::SOB_Trapping: 717 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 718 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 719 return EmitOverflowCheckedBinOp(Ops); 720 } 721 } 722 723 if (Ops.Ty->isConstantMatrixType()) { 724 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 725 // We need to check the types of the operands of the operator to get the 726 // correct matrix dimensions. 727 auto *BO = cast<BinaryOperator>(Ops.E); 728 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 729 BO->getLHS()->getType().getCanonicalType()); 730 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 731 BO->getRHS()->getType().getCanonicalType()); 732 if (LHSMatTy && RHSMatTy) 733 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 734 LHSMatTy->getNumColumns(), 735 RHSMatTy->getNumColumns()); 736 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 737 } 738 739 if (Ops.Ty->isUnsignedIntegerType() && 740 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 741 !CanElideOverflowCheck(CGF.getContext(), Ops)) 742 return EmitOverflowCheckedBinOp(Ops); 743 744 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 745 // Preserve the old values 746 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 747 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 748 } 749 if (Ops.isFixedPointOp()) 750 return EmitFixedPointBinOp(Ops); 751 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 752 } 753 /// Create a binary op that checks for overflow. 754 /// Currently only supports +, - and *. 755 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 756 757 // Check for undefined division and modulus behaviors. 758 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 759 llvm::Value *Zero,bool isDiv); 760 // Common helper for getting how wide LHS of shift is. 761 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 762 763 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 764 // non powers of two. 765 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 766 767 Value *EmitDiv(const BinOpInfo &Ops); 768 Value *EmitRem(const BinOpInfo &Ops); 769 Value *EmitAdd(const BinOpInfo &Ops); 770 Value *EmitSub(const BinOpInfo &Ops); 771 Value *EmitShl(const BinOpInfo &Ops); 772 Value *EmitShr(const BinOpInfo &Ops); 773 Value *EmitAnd(const BinOpInfo &Ops) { 774 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 775 } 776 Value *EmitXor(const BinOpInfo &Ops) { 777 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 778 } 779 Value *EmitOr (const BinOpInfo &Ops) { 780 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 781 } 782 783 // Helper functions for fixed point binary operations. 784 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 785 786 BinOpInfo EmitBinOps(const BinaryOperator *E); 787 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 788 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 789 Value *&Result); 790 791 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 792 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 793 794 // Binary operators and binary compound assignment operators. 795 #define HANDLEBINOP(OP) \ 796 Value *VisitBin ## OP(const BinaryOperator *E) { \ 797 return Emit ## OP(EmitBinOps(E)); \ 798 } \ 799 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 800 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 801 } 802 HANDLEBINOP(Mul) 803 HANDLEBINOP(Div) 804 HANDLEBINOP(Rem) 805 HANDLEBINOP(Add) 806 HANDLEBINOP(Sub) 807 HANDLEBINOP(Shl) 808 HANDLEBINOP(Shr) 809 HANDLEBINOP(And) 810 HANDLEBINOP(Xor) 811 HANDLEBINOP(Or) 812 #undef HANDLEBINOP 813 814 // Comparisons. 815 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 816 llvm::CmpInst::Predicate SICmpOpc, 817 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 818 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 819 Value *VisitBin##CODE(const BinaryOperator *E) { \ 820 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 821 llvm::FCmpInst::FP, SIG); } 822 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 823 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 824 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 825 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 826 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 827 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 828 #undef VISITCOMP 829 830 Value *VisitBinAssign (const BinaryOperator *E); 831 832 Value *VisitBinLAnd (const BinaryOperator *E); 833 Value *VisitBinLOr (const BinaryOperator *E); 834 Value *VisitBinComma (const BinaryOperator *E); 835 836 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 837 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 838 839 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 840 return Visit(E->getSemanticForm()); 841 } 842 843 // Other Operators. 844 Value *VisitBlockExpr(const BlockExpr *BE); 845 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 846 Value *VisitChooseExpr(ChooseExpr *CE); 847 Value *VisitVAArgExpr(VAArgExpr *VE); 848 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 849 return CGF.EmitObjCStringLiteral(E); 850 } 851 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 852 return CGF.EmitObjCBoxedExpr(E); 853 } 854 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 855 return CGF.EmitObjCArrayLiteral(E); 856 } 857 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 858 return CGF.EmitObjCDictionaryLiteral(E); 859 } 860 Value *VisitAsTypeExpr(AsTypeExpr *CE); 861 Value *VisitAtomicExpr(AtomicExpr *AE); 862 }; 863 } // end anonymous namespace. 864 865 //===----------------------------------------------------------------------===// 866 // Utilities 867 //===----------------------------------------------------------------------===// 868 869 /// EmitConversionToBool - Convert the specified expression value to a 870 /// boolean (i1) truth value. This is equivalent to "Val != 0". 871 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 872 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 873 874 if (SrcType->isRealFloatingType()) 875 return EmitFloatToBoolConversion(Src); 876 877 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 878 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 879 880 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 881 "Unknown scalar type to convert"); 882 883 if (isa<llvm::IntegerType>(Src->getType())) 884 return EmitIntToBoolConversion(Src); 885 886 assert(isa<llvm::PointerType>(Src->getType())); 887 return EmitPointerToBoolConversion(Src, SrcType); 888 } 889 890 void ScalarExprEmitter::EmitFloatConversionCheck( 891 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 892 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 893 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 894 if (!isa<llvm::IntegerType>(DstTy)) 895 return; 896 897 CodeGenFunction::SanitizerScope SanScope(&CGF); 898 using llvm::APFloat; 899 using llvm::APSInt; 900 901 llvm::Value *Check = nullptr; 902 const llvm::fltSemantics &SrcSema = 903 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 904 905 // Floating-point to integer. This has undefined behavior if the source is 906 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 907 // to an integer). 908 unsigned Width = CGF.getContext().getIntWidth(DstType); 909 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 910 911 APSInt Min = APSInt::getMinValue(Width, Unsigned); 912 APFloat MinSrc(SrcSema, APFloat::uninitialized); 913 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 914 APFloat::opOverflow) 915 // Don't need an overflow check for lower bound. Just check for 916 // -Inf/NaN. 917 MinSrc = APFloat::getInf(SrcSema, true); 918 else 919 // Find the largest value which is too small to represent (before 920 // truncation toward zero). 921 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 922 923 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 924 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 925 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 926 APFloat::opOverflow) 927 // Don't need an overflow check for upper bound. Just check for 928 // +Inf/NaN. 929 MaxSrc = APFloat::getInf(SrcSema, false); 930 else 931 // Find the smallest value which is too large to represent (before 932 // truncation toward zero). 933 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 934 935 // If we're converting from __half, convert the range to float to match 936 // the type of src. 937 if (OrigSrcType->isHalfType()) { 938 const llvm::fltSemantics &Sema = 939 CGF.getContext().getFloatTypeSemantics(SrcType); 940 bool IsInexact; 941 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 942 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 943 } 944 945 llvm::Value *GE = 946 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 947 llvm::Value *LE = 948 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 949 Check = Builder.CreateAnd(GE, LE); 950 951 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 952 CGF.EmitCheckTypeDescriptor(OrigSrcType), 953 CGF.EmitCheckTypeDescriptor(DstType)}; 954 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 955 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 956 } 957 958 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 959 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 960 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 961 std::pair<llvm::Value *, SanitizerMask>> 962 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 963 QualType DstType, CGBuilderTy &Builder) { 964 llvm::Type *SrcTy = Src->getType(); 965 llvm::Type *DstTy = Dst->getType(); 966 (void)DstTy; // Only used in assert() 967 968 // This should be truncation of integral types. 969 assert(Src != Dst); 970 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 971 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 972 "non-integer llvm type"); 973 974 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 975 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 976 977 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 978 // Else, it is a signed truncation. 979 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 980 SanitizerMask Mask; 981 if (!SrcSigned && !DstSigned) { 982 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 983 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 984 } else { 985 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 986 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 987 } 988 989 llvm::Value *Check = nullptr; 990 // 1. Extend the truncated value back to the same width as the Src. 991 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 992 // 2. Equality-compare with the original source value 993 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 994 // If the comparison result is 'i1 false', then the truncation was lossy. 995 return std::make_pair(Kind, std::make_pair(Check, Mask)); 996 } 997 998 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 999 QualType SrcType, QualType DstType) { 1000 return SrcType->isIntegerType() && DstType->isIntegerType(); 1001 } 1002 1003 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1004 Value *Dst, QualType DstType, 1005 SourceLocation Loc) { 1006 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1007 return; 1008 1009 // We only care about int->int conversions here. 1010 // We ignore conversions to/from pointer and/or bool. 1011 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1012 DstType)) 1013 return; 1014 1015 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1016 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1017 // This must be truncation. Else we do not care. 1018 if (SrcBits <= DstBits) 1019 return; 1020 1021 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1022 1023 // If the integer sign change sanitizer is enabled, 1024 // and we are truncating from larger unsigned type to smaller signed type, 1025 // let that next sanitizer deal with it. 1026 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1027 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1028 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1029 (!SrcSigned && DstSigned)) 1030 return; 1031 1032 CodeGenFunction::SanitizerScope SanScope(&CGF); 1033 1034 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1035 std::pair<llvm::Value *, SanitizerMask>> 1036 Check = 1037 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1038 // If the comparison result is 'i1 false', then the truncation was lossy. 1039 1040 // Do we care about this type of truncation? 1041 if (!CGF.SanOpts.has(Check.second.second)) 1042 return; 1043 1044 llvm::Constant *StaticArgs[] = { 1045 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1046 CGF.EmitCheckTypeDescriptor(DstType), 1047 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1048 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1049 {Src, Dst}); 1050 } 1051 1052 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1053 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1054 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1055 std::pair<llvm::Value *, SanitizerMask>> 1056 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1057 QualType DstType, CGBuilderTy &Builder) { 1058 llvm::Type *SrcTy = Src->getType(); 1059 llvm::Type *DstTy = Dst->getType(); 1060 1061 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1062 "non-integer llvm type"); 1063 1064 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1065 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1066 (void)SrcSigned; // Only used in assert() 1067 (void)DstSigned; // Only used in assert() 1068 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1069 unsigned DstBits = DstTy->getScalarSizeInBits(); 1070 (void)SrcBits; // Only used in assert() 1071 (void)DstBits; // Only used in assert() 1072 1073 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1074 "either the widths should be different, or the signednesses."); 1075 1076 // NOTE: zero value is considered to be non-negative. 1077 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1078 const char *Name) -> Value * { 1079 // Is this value a signed type? 1080 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1081 llvm::Type *VTy = V->getType(); 1082 if (!VSigned) { 1083 // If the value is unsigned, then it is never negative. 1084 // FIXME: can we encounter non-scalar VTy here? 1085 return llvm::ConstantInt::getFalse(VTy->getContext()); 1086 } 1087 // Get the zero of the same type with which we will be comparing. 1088 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1089 // %V.isnegative = icmp slt %V, 0 1090 // I.e is %V *strictly* less than zero, does it have negative value? 1091 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1092 llvm::Twine(Name) + "." + V->getName() + 1093 ".negativitycheck"); 1094 }; 1095 1096 // 1. Was the old Value negative? 1097 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1098 // 2. Is the new Value negative? 1099 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1100 // 3. Now, was the 'negativity status' preserved during the conversion? 1101 // NOTE: conversion from negative to zero is considered to change the sign. 1102 // (We want to get 'false' when the conversion changed the sign) 1103 // So we should just equality-compare the negativity statuses. 1104 llvm::Value *Check = nullptr; 1105 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1106 // If the comparison result is 'false', then the conversion changed the sign. 1107 return std::make_pair( 1108 ScalarExprEmitter::ICCK_IntegerSignChange, 1109 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1110 } 1111 1112 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1113 Value *Dst, QualType DstType, 1114 SourceLocation Loc) { 1115 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1116 return; 1117 1118 llvm::Type *SrcTy = Src->getType(); 1119 llvm::Type *DstTy = Dst->getType(); 1120 1121 // We only care about int->int conversions here. 1122 // We ignore conversions to/from pointer and/or bool. 1123 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1124 DstType)) 1125 return; 1126 1127 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1128 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1129 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1130 unsigned DstBits = DstTy->getScalarSizeInBits(); 1131 1132 // Now, we do not need to emit the check in *all* of the cases. 1133 // We can avoid emitting it in some obvious cases where it would have been 1134 // dropped by the opt passes (instcombine) always anyways. 1135 // If it's a cast between effectively the same type, no check. 1136 // NOTE: this is *not* equivalent to checking the canonical types. 1137 if (SrcSigned == DstSigned && SrcBits == DstBits) 1138 return; 1139 // At least one of the values needs to have signed type. 1140 // If both are unsigned, then obviously, neither of them can be negative. 1141 if (!SrcSigned && !DstSigned) 1142 return; 1143 // If the conversion is to *larger* *signed* type, then no check is needed. 1144 // Because either sign-extension happens (so the sign will remain), 1145 // or zero-extension will happen (the sign bit will be zero.) 1146 if ((DstBits > SrcBits) && DstSigned) 1147 return; 1148 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1149 (SrcBits > DstBits) && SrcSigned) { 1150 // If the signed integer truncation sanitizer is enabled, 1151 // and this is a truncation from signed type, then no check is needed. 1152 // Because here sign change check is interchangeable with truncation check. 1153 return; 1154 } 1155 // That's it. We can't rule out any more cases with the data we have. 1156 1157 CodeGenFunction::SanitizerScope SanScope(&CGF); 1158 1159 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1160 std::pair<llvm::Value *, SanitizerMask>> 1161 Check; 1162 1163 // Each of these checks needs to return 'false' when an issue was detected. 1164 ImplicitConversionCheckKind CheckKind; 1165 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1166 // So we can 'and' all the checks together, and still get 'false', 1167 // if at least one of the checks detected an issue. 1168 1169 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1170 CheckKind = Check.first; 1171 Checks.emplace_back(Check.second); 1172 1173 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1174 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1175 // If the signed integer truncation sanitizer was enabled, 1176 // and we are truncating from larger unsigned type to smaller signed type, 1177 // let's handle the case we skipped in that check. 1178 Check = 1179 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1180 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1181 Checks.emplace_back(Check.second); 1182 // If the comparison result is 'i1 false', then the truncation was lossy. 1183 } 1184 1185 llvm::Constant *StaticArgs[] = { 1186 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1187 CGF.EmitCheckTypeDescriptor(DstType), 1188 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1189 // EmitCheck() will 'and' all the checks together. 1190 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1191 {Src, Dst}); 1192 } 1193 1194 /// Emit a conversion from the specified type to the specified destination type, 1195 /// both of which are LLVM scalar types. 1196 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1197 QualType DstType, 1198 SourceLocation Loc, 1199 ScalarConversionOpts Opts) { 1200 // All conversions involving fixed point types should be handled by the 1201 // EmitFixedPoint family functions. This is done to prevent bloating up this 1202 // function more, and although fixed point numbers are represented by 1203 // integers, we do not want to follow any logic that assumes they should be 1204 // treated as integers. 1205 // TODO(leonardchan): When necessary, add another if statement checking for 1206 // conversions to fixed point types from other types. 1207 if (SrcType->isFixedPointType()) { 1208 if (DstType->isBooleanType()) 1209 // It is important that we check this before checking if the dest type is 1210 // an integer because booleans are technically integer types. 1211 // We do not need to check the padding bit on unsigned types if unsigned 1212 // padding is enabled because overflow into this bit is undefined 1213 // behavior. 1214 return Builder.CreateIsNotNull(Src, "tobool"); 1215 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1216 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1217 1218 llvm_unreachable( 1219 "Unhandled scalar conversion from a fixed point type to another type."); 1220 } else if (DstType->isFixedPointType()) { 1221 if (SrcType->isIntegerType()) 1222 // This also includes converting booleans and enums to fixed point types. 1223 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1224 1225 llvm_unreachable( 1226 "Unhandled scalar conversion to a fixed point type from another type."); 1227 } 1228 1229 QualType NoncanonicalSrcType = SrcType; 1230 QualType NoncanonicalDstType = DstType; 1231 1232 SrcType = CGF.getContext().getCanonicalType(SrcType); 1233 DstType = CGF.getContext().getCanonicalType(DstType); 1234 if (SrcType == DstType) return Src; 1235 1236 if (DstType->isVoidType()) return nullptr; 1237 1238 llvm::Value *OrigSrc = Src; 1239 QualType OrigSrcType = SrcType; 1240 llvm::Type *SrcTy = Src->getType(); 1241 1242 // Handle conversions to bool first, they are special: comparisons against 0. 1243 if (DstType->isBooleanType()) 1244 return EmitConversionToBool(Src, SrcType); 1245 1246 llvm::Type *DstTy = ConvertType(DstType); 1247 1248 // Cast from half through float if half isn't a native type. 1249 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1250 // Cast to FP using the intrinsic if the half type itself isn't supported. 1251 if (DstTy->isFloatingPointTy()) { 1252 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1253 return Builder.CreateCall( 1254 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1255 Src); 1256 } else { 1257 // Cast to other types through float, using either the intrinsic or FPExt, 1258 // depending on whether the half type itself is supported 1259 // (as opposed to operations on half, available with NativeHalfType). 1260 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1261 Src = Builder.CreateCall( 1262 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1263 CGF.CGM.FloatTy), 1264 Src); 1265 } else { 1266 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1267 } 1268 SrcType = CGF.getContext().FloatTy; 1269 SrcTy = CGF.FloatTy; 1270 } 1271 } 1272 1273 // Ignore conversions like int -> uint. 1274 if (SrcTy == DstTy) { 1275 if (Opts.EmitImplicitIntegerSignChangeChecks) 1276 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1277 NoncanonicalDstType, Loc); 1278 1279 return Src; 1280 } 1281 1282 // Handle pointer conversions next: pointers can only be converted to/from 1283 // other pointers and integers. Check for pointer types in terms of LLVM, as 1284 // some native types (like Obj-C id) may map to a pointer type. 1285 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1286 // The source value may be an integer, or a pointer. 1287 if (isa<llvm::PointerType>(SrcTy)) 1288 return Builder.CreateBitCast(Src, DstTy, "conv"); 1289 1290 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1291 // First, convert to the correct width so that we control the kind of 1292 // extension. 1293 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1294 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1295 llvm::Value* IntResult = 1296 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1297 // Then, cast to pointer. 1298 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1299 } 1300 1301 if (isa<llvm::PointerType>(SrcTy)) { 1302 // Must be an ptr to int cast. 1303 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1304 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1305 } 1306 1307 // A scalar can be splatted to an extended vector of the same element type 1308 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1309 // Sema should add casts to make sure that the source expression's type is 1310 // the same as the vector's element type (sans qualifiers) 1311 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1312 SrcType.getTypePtr() && 1313 "Splatted expr doesn't match with vector element type?"); 1314 1315 // Splat the element across to all elements 1316 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 1317 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1318 } 1319 1320 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1321 // Allow bitcast from vector to integer/fp of the same size. 1322 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1323 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1324 if (SrcSize == DstSize) 1325 return Builder.CreateBitCast(Src, DstTy, "conv"); 1326 1327 // Conversions between vectors of different sizes are not allowed except 1328 // when vectors of half are involved. Operations on storage-only half 1329 // vectors require promoting half vector operands to float vectors and 1330 // truncating the result, which is either an int or float vector, to a 1331 // short or half vector. 1332 1333 // Source and destination are both expected to be vectors. 1334 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1335 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1336 (void)DstElementTy; 1337 1338 assert(((SrcElementTy->isIntegerTy() && 1339 DstElementTy->isIntegerTy()) || 1340 (SrcElementTy->isFloatingPointTy() && 1341 DstElementTy->isFloatingPointTy())) && 1342 "unexpected conversion between a floating-point vector and an " 1343 "integer vector"); 1344 1345 // Truncate an i32 vector to an i16 vector. 1346 if (SrcElementTy->isIntegerTy()) 1347 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1348 1349 // Truncate a float vector to a half vector. 1350 if (SrcSize > DstSize) 1351 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1352 1353 // Promote a half vector to a float vector. 1354 return Builder.CreateFPExt(Src, DstTy, "conv"); 1355 } 1356 1357 // Finally, we have the arithmetic types: real int/float. 1358 Value *Res = nullptr; 1359 llvm::Type *ResTy = DstTy; 1360 1361 // An overflowing conversion has undefined behavior if either the source type 1362 // or the destination type is a floating-point type. However, we consider the 1363 // range of representable values for all floating-point types to be 1364 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1365 // floating-point type. 1366 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1367 OrigSrcType->isFloatingType()) 1368 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1369 Loc); 1370 1371 // Cast to half through float if half isn't a native type. 1372 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1373 // Make sure we cast in a single step if from another FP type. 1374 if (SrcTy->isFloatingPointTy()) { 1375 // Use the intrinsic if the half type itself isn't supported 1376 // (as opposed to operations on half, available with NativeHalfType). 1377 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1378 return Builder.CreateCall( 1379 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1380 // If the half type is supported, just use an fptrunc. 1381 return Builder.CreateFPTrunc(Src, DstTy); 1382 } 1383 DstTy = CGF.FloatTy; 1384 } 1385 1386 if (isa<llvm::IntegerType>(SrcTy)) { 1387 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1388 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1389 InputSigned = true; 1390 } 1391 if (isa<llvm::IntegerType>(DstTy)) 1392 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1393 else if (InputSigned) 1394 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1395 else 1396 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1397 } else if (isa<llvm::IntegerType>(DstTy)) { 1398 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1399 if (DstType->isSignedIntegerOrEnumerationType()) 1400 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1401 else 1402 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1403 } else { 1404 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1405 "Unknown real conversion"); 1406 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1407 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1408 else 1409 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1410 } 1411 1412 if (DstTy != ResTy) { 1413 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1414 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1415 Res = Builder.CreateCall( 1416 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1417 Res); 1418 } else { 1419 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1420 } 1421 } 1422 1423 if (Opts.EmitImplicitIntegerTruncationChecks) 1424 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1425 NoncanonicalDstType, Loc); 1426 1427 if (Opts.EmitImplicitIntegerSignChangeChecks) 1428 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1429 NoncanonicalDstType, Loc); 1430 1431 return Res; 1432 } 1433 1434 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1435 QualType DstTy, 1436 SourceLocation Loc) { 1437 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1438 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1439 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 1440 llvm::Value *Result; 1441 if (DstTy->isIntegerType()) 1442 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, 1443 DstFPSema.getWidth(), 1444 DstFPSema.isSigned()); 1445 else if (SrcTy->isIntegerType()) 1446 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), 1447 DstFPSema); 1448 else 1449 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); 1450 return Result; 1451 } 1452 1453 /// Emit a conversion from the specified complex type to the specified 1454 /// destination type, where the destination type is an LLVM scalar type. 1455 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1456 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1457 SourceLocation Loc) { 1458 // Get the source element type. 1459 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1460 1461 // Handle conversions to bool first, they are special: comparisons against 0. 1462 if (DstTy->isBooleanType()) { 1463 // Complex != 0 -> (Real != 0) | (Imag != 0) 1464 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1465 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1466 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1467 } 1468 1469 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1470 // the imaginary part of the complex value is discarded and the value of the 1471 // real part is converted according to the conversion rules for the 1472 // corresponding real type. 1473 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1474 } 1475 1476 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1477 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1478 } 1479 1480 /// Emit a sanitization check for the given "binary" operation (which 1481 /// might actually be a unary increment which has been lowered to a binary 1482 /// operation). The check passes if all values in \p Checks (which are \c i1), 1483 /// are \c true. 1484 void ScalarExprEmitter::EmitBinOpCheck( 1485 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1486 assert(CGF.IsSanitizerScope); 1487 SanitizerHandler Check; 1488 SmallVector<llvm::Constant *, 4> StaticData; 1489 SmallVector<llvm::Value *, 2> DynamicData; 1490 1491 BinaryOperatorKind Opcode = Info.Opcode; 1492 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1493 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1494 1495 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1496 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1497 if (UO && UO->getOpcode() == UO_Minus) { 1498 Check = SanitizerHandler::NegateOverflow; 1499 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1500 DynamicData.push_back(Info.RHS); 1501 } else { 1502 if (BinaryOperator::isShiftOp(Opcode)) { 1503 // Shift LHS negative or too large, or RHS out of bounds. 1504 Check = SanitizerHandler::ShiftOutOfBounds; 1505 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1506 StaticData.push_back( 1507 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1508 StaticData.push_back( 1509 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1510 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1511 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1512 Check = SanitizerHandler::DivremOverflow; 1513 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1514 } else { 1515 // Arithmetic overflow (+, -, *). 1516 switch (Opcode) { 1517 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1518 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1519 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1520 default: llvm_unreachable("unexpected opcode for bin op check"); 1521 } 1522 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1523 } 1524 DynamicData.push_back(Info.LHS); 1525 DynamicData.push_back(Info.RHS); 1526 } 1527 1528 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1529 } 1530 1531 //===----------------------------------------------------------------------===// 1532 // Visitor Methods 1533 //===----------------------------------------------------------------------===// 1534 1535 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1536 CGF.ErrorUnsupported(E, "scalar expression"); 1537 if (E->getType()->isVoidType()) 1538 return nullptr; 1539 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1540 } 1541 1542 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1543 // Vector Mask Case 1544 if (E->getNumSubExprs() == 2) { 1545 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1546 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1547 Value *Mask; 1548 1549 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); 1550 unsigned LHSElts = LTy->getNumElements(); 1551 1552 Mask = RHS; 1553 1554 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); 1555 1556 // Mask off the high bits of each shuffle index. 1557 Value *MaskBits = 1558 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1559 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1560 1561 // newv = undef 1562 // mask = mask & maskbits 1563 // for each elt 1564 // n = extract mask i 1565 // x = extract val n 1566 // newv = insert newv, x, i 1567 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1568 MTy->getNumElements()); 1569 Value* NewV = llvm::UndefValue::get(RTy); 1570 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1571 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1572 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1573 1574 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1575 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1576 } 1577 return NewV; 1578 } 1579 1580 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1581 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1582 1583 SmallVector<int, 32> Indices; 1584 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1585 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1586 // Check for -1 and output it as undef in the IR. 1587 if (Idx.isSigned() && Idx.isAllOnesValue()) 1588 Indices.push_back(-1); 1589 else 1590 Indices.push_back(Idx.getZExtValue()); 1591 } 1592 1593 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1594 } 1595 1596 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1597 QualType SrcType = E->getSrcExpr()->getType(), 1598 DstType = E->getType(); 1599 1600 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1601 1602 SrcType = CGF.getContext().getCanonicalType(SrcType); 1603 DstType = CGF.getContext().getCanonicalType(DstType); 1604 if (SrcType == DstType) return Src; 1605 1606 assert(SrcType->isVectorType() && 1607 "ConvertVector source type must be a vector"); 1608 assert(DstType->isVectorType() && 1609 "ConvertVector destination type must be a vector"); 1610 1611 llvm::Type *SrcTy = Src->getType(); 1612 llvm::Type *DstTy = ConvertType(DstType); 1613 1614 // Ignore conversions like int -> uint. 1615 if (SrcTy == DstTy) 1616 return Src; 1617 1618 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1619 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1620 1621 assert(SrcTy->isVectorTy() && 1622 "ConvertVector source IR type must be a vector"); 1623 assert(DstTy->isVectorTy() && 1624 "ConvertVector destination IR type must be a vector"); 1625 1626 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1627 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1628 1629 if (DstEltType->isBooleanType()) { 1630 assert((SrcEltTy->isFloatingPointTy() || 1631 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1632 1633 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1634 if (SrcEltTy->isFloatingPointTy()) { 1635 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1636 } else { 1637 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1638 } 1639 } 1640 1641 // We have the arithmetic types: real int/float. 1642 Value *Res = nullptr; 1643 1644 if (isa<llvm::IntegerType>(SrcEltTy)) { 1645 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1646 if (isa<llvm::IntegerType>(DstEltTy)) 1647 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1648 else if (InputSigned) 1649 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1650 else 1651 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1652 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1653 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1654 if (DstEltType->isSignedIntegerOrEnumerationType()) 1655 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1656 else 1657 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1658 } else { 1659 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1660 "Unknown real conversion"); 1661 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1662 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1663 else 1664 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1665 } 1666 1667 return Res; 1668 } 1669 1670 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1671 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1672 CGF.EmitIgnoredExpr(E->getBase()); 1673 return CGF.emitScalarConstant(Constant, E); 1674 } else { 1675 Expr::EvalResult Result; 1676 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1677 llvm::APSInt Value = Result.Val.getInt(); 1678 CGF.EmitIgnoredExpr(E->getBase()); 1679 return Builder.getInt(Value); 1680 } 1681 } 1682 1683 return EmitLoadOfLValue(E); 1684 } 1685 1686 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1687 TestAndClearIgnoreResultAssign(); 1688 1689 // Emit subscript expressions in rvalue context's. For most cases, this just 1690 // loads the lvalue formed by the subscript expr. However, we have to be 1691 // careful, because the base of a vector subscript is occasionally an rvalue, 1692 // so we can't get it as an lvalue. 1693 if (!E->getBase()->getType()->isVectorType()) 1694 return EmitLoadOfLValue(E); 1695 1696 // Handle the vector case. The base must be a vector, the index must be an 1697 // integer value. 1698 Value *Base = Visit(E->getBase()); 1699 Value *Idx = Visit(E->getIdx()); 1700 QualType IdxTy = E->getIdx()->getType(); 1701 1702 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1703 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1704 1705 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1706 } 1707 1708 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1709 TestAndClearIgnoreResultAssign(); 1710 1711 // Handle the vector case. The base must be a vector, the index must be an 1712 // integer value. 1713 Value *RowIdx = Visit(E->getRowIdx()); 1714 Value *ColumnIdx = Visit(E->getColumnIdx()); 1715 Value *Matrix = Visit(E->getBase()); 1716 1717 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1718 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1719 return MB.CreateExtractElement( 1720 Matrix, RowIdx, ColumnIdx, 1721 E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows()); 1722 } 1723 1724 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1725 unsigned Off) { 1726 int MV = SVI->getMaskValue(Idx); 1727 if (MV == -1) 1728 return -1; 1729 return Off + MV; 1730 } 1731 1732 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1733 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1734 "Index operand too large for shufflevector mask!"); 1735 return C->getZExtValue(); 1736 } 1737 1738 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1739 bool Ignore = TestAndClearIgnoreResultAssign(); 1740 (void)Ignore; 1741 assert (Ignore == false && "init list ignored"); 1742 unsigned NumInitElements = E->getNumInits(); 1743 1744 if (E->hadArrayRangeDesignator()) 1745 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1746 1747 llvm::VectorType *VType = 1748 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1749 1750 if (!VType) { 1751 if (NumInitElements == 0) { 1752 // C++11 value-initialization for the scalar. 1753 return EmitNullValue(E->getType()); 1754 } 1755 // We have a scalar in braces. Just use the first element. 1756 return Visit(E->getInit(0)); 1757 } 1758 1759 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); 1760 1761 // Loop over initializers collecting the Value for each, and remembering 1762 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1763 // us to fold the shuffle for the swizzle into the shuffle for the vector 1764 // initializer, since LLVM optimizers generally do not want to touch 1765 // shuffles. 1766 unsigned CurIdx = 0; 1767 bool VIsUndefShuffle = false; 1768 llvm::Value *V = llvm::UndefValue::get(VType); 1769 for (unsigned i = 0; i != NumInitElements; ++i) { 1770 Expr *IE = E->getInit(i); 1771 Value *Init = Visit(IE); 1772 SmallVector<int, 16> Args; 1773 1774 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1775 1776 // Handle scalar elements. If the scalar initializer is actually one 1777 // element of a different vector of the same width, use shuffle instead of 1778 // extract+insert. 1779 if (!VVT) { 1780 if (isa<ExtVectorElementExpr>(IE)) { 1781 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1782 1783 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) 1784 ->getNumElements() == ResElts) { 1785 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1786 Value *LHS = nullptr, *RHS = nullptr; 1787 if (CurIdx == 0) { 1788 // insert into undef -> shuffle (src, undef) 1789 // shufflemask must use an i32 1790 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1791 Args.resize(ResElts, -1); 1792 1793 LHS = EI->getVectorOperand(); 1794 RHS = V; 1795 VIsUndefShuffle = true; 1796 } else if (VIsUndefShuffle) { 1797 // insert into undefshuffle && size match -> shuffle (v, src) 1798 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1799 for (unsigned j = 0; j != CurIdx; ++j) 1800 Args.push_back(getMaskElt(SVV, j, 0)); 1801 Args.push_back(ResElts + C->getZExtValue()); 1802 Args.resize(ResElts, -1); 1803 1804 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1805 RHS = EI->getVectorOperand(); 1806 VIsUndefShuffle = false; 1807 } 1808 if (!Args.empty()) { 1809 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1810 ++CurIdx; 1811 continue; 1812 } 1813 } 1814 } 1815 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1816 "vecinit"); 1817 VIsUndefShuffle = false; 1818 ++CurIdx; 1819 continue; 1820 } 1821 1822 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); 1823 1824 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1825 // input is the same width as the vector being constructed, generate an 1826 // optimized shuffle of the swizzle input into the result. 1827 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1828 if (isa<ExtVectorElementExpr>(IE)) { 1829 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1830 Value *SVOp = SVI->getOperand(0); 1831 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); 1832 1833 if (OpTy->getNumElements() == ResElts) { 1834 for (unsigned j = 0; j != CurIdx; ++j) { 1835 // If the current vector initializer is a shuffle with undef, merge 1836 // this shuffle directly into it. 1837 if (VIsUndefShuffle) { 1838 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1839 } else { 1840 Args.push_back(j); 1841 } 1842 } 1843 for (unsigned j = 0, je = InitElts; j != je; ++j) 1844 Args.push_back(getMaskElt(SVI, j, Offset)); 1845 Args.resize(ResElts, -1); 1846 1847 if (VIsUndefShuffle) 1848 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1849 1850 Init = SVOp; 1851 } 1852 } 1853 1854 // Extend init to result vector length, and then shuffle its contribution 1855 // to the vector initializer into V. 1856 if (Args.empty()) { 1857 for (unsigned j = 0; j != InitElts; ++j) 1858 Args.push_back(j); 1859 Args.resize(ResElts, -1); 1860 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args, 1861 "vext"); 1862 1863 Args.clear(); 1864 for (unsigned j = 0; j != CurIdx; ++j) 1865 Args.push_back(j); 1866 for (unsigned j = 0; j != InitElts; ++j) 1867 Args.push_back(j + Offset); 1868 Args.resize(ResElts, -1); 1869 } 1870 1871 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1872 // merging subsequent shuffles into this one. 1873 if (CurIdx == 0) 1874 std::swap(V, Init); 1875 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 1876 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1877 CurIdx += InitElts; 1878 } 1879 1880 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1881 // Emit remaining default initializers. 1882 llvm::Type *EltTy = VType->getElementType(); 1883 1884 // Emit remaining default initializers 1885 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1886 Value *Idx = Builder.getInt32(CurIdx); 1887 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1888 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1889 } 1890 return V; 1891 } 1892 1893 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1894 const Expr *E = CE->getSubExpr(); 1895 1896 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1897 return false; 1898 1899 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1900 // We always assume that 'this' is never null. 1901 return false; 1902 } 1903 1904 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1905 // And that glvalue casts are never null. 1906 if (ICE->getValueKind() != VK_RValue) 1907 return false; 1908 } 1909 1910 return true; 1911 } 1912 1913 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1914 // have to handle a more broad range of conversions than explicit casts, as they 1915 // handle things like function to ptr-to-function decay etc. 1916 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1917 Expr *E = CE->getSubExpr(); 1918 QualType DestTy = CE->getType(); 1919 CastKind Kind = CE->getCastKind(); 1920 1921 // These cases are generally not written to ignore the result of 1922 // evaluating their sub-expressions, so we clear this now. 1923 bool Ignored = TestAndClearIgnoreResultAssign(); 1924 1925 // Since almost all cast kinds apply to scalars, this switch doesn't have 1926 // a default case, so the compiler will warn on a missing case. The cases 1927 // are in the same order as in the CastKind enum. 1928 switch (Kind) { 1929 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1930 case CK_BuiltinFnToFnPtr: 1931 llvm_unreachable("builtin functions are handled elsewhere"); 1932 1933 case CK_LValueBitCast: 1934 case CK_ObjCObjectLValueCast: { 1935 Address Addr = EmitLValue(E).getAddress(CGF); 1936 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1937 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1938 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1939 } 1940 1941 case CK_LValueToRValueBitCast: { 1942 LValue SourceLVal = CGF.EmitLValue(E); 1943 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 1944 CGF.ConvertTypeForMem(DestTy)); 1945 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 1946 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 1947 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 1948 } 1949 1950 case CK_CPointerToObjCPointerCast: 1951 case CK_BlockPointerToObjCPointerCast: 1952 case CK_AnyPointerToBlockPointerCast: 1953 case CK_BitCast: { 1954 Value *Src = Visit(const_cast<Expr*>(E)); 1955 llvm::Type *SrcTy = Src->getType(); 1956 llvm::Type *DstTy = ConvertType(DestTy); 1957 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1958 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1959 llvm_unreachable("wrong cast for pointers in different address spaces" 1960 "(must be an address space cast)!"); 1961 } 1962 1963 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1964 if (auto PT = DestTy->getAs<PointerType>()) 1965 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1966 /*MayBeNull=*/true, 1967 CodeGenFunction::CFITCK_UnrelatedCast, 1968 CE->getBeginLoc()); 1969 } 1970 1971 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1972 const QualType SrcType = E->getType(); 1973 1974 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 1975 // Casting to pointer that could carry dynamic information (provided by 1976 // invariant.group) requires launder. 1977 Src = Builder.CreateLaunderInvariantGroup(Src); 1978 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 1979 // Casting to pointer that does not carry dynamic information (provided 1980 // by invariant.group) requires stripping it. Note that we don't do it 1981 // if the source could not be dynamic type and destination could be 1982 // dynamic because dynamic information is already laundered. It is 1983 // because launder(strip(src)) == launder(src), so there is no need to 1984 // add extra strip before launder. 1985 Src = Builder.CreateStripInvariantGroup(Src); 1986 } 1987 } 1988 1989 // Update heapallocsite metadata when there is an explicit pointer cast. 1990 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 1991 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { 1992 QualType PointeeType = DestTy->getPointeeType(); 1993 if (!PointeeType.isNull()) 1994 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 1995 CE->getExprLoc()); 1996 } 1997 } 1998 1999 // Perform VLAT <-> VLST bitcast through memory. 2000 if ((isa<llvm::FixedVectorType>(SrcTy) && 2001 isa<llvm::ScalableVectorType>(DstTy)) || 2002 (isa<llvm::ScalableVectorType>(SrcTy) && 2003 isa<llvm::FixedVectorType>(DstTy))) { 2004 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 2005 // Call expressions can't have a scalar return unless the return type 2006 // is a reference type so an lvalue can't be emitted. Create a temp 2007 // alloca to store the call, bitcast the address then load. 2008 QualType RetTy = CE->getCallReturnType(CGF.getContext()); 2009 Address Addr = 2010 CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue"); 2011 LValue LV = CGF.MakeAddrLValue(Addr, RetTy); 2012 CGF.EmitStoreOfScalar(Src, LV); 2013 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy), 2014 "castFixedSve"); 2015 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2016 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2017 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2018 } 2019 2020 Address Addr = EmitLValue(E).getAddress(CGF); 2021 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2022 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2023 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2024 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2025 } 2026 2027 return Builder.CreateBitCast(Src, DstTy); 2028 } 2029 case CK_AddressSpaceConversion: { 2030 Expr::EvalResult Result; 2031 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2032 Result.Val.isNullPointer()) { 2033 // If E has side effect, it is emitted even if its final result is a 2034 // null pointer. In that case, a DCE pass should be able to 2035 // eliminate the useless instructions emitted during translating E. 2036 if (Result.HasSideEffects) 2037 Visit(E); 2038 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2039 ConvertType(DestTy)), DestTy); 2040 } 2041 // Since target may map different address spaces in AST to the same address 2042 // space, an address space conversion may end up as a bitcast. 2043 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2044 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2045 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2046 } 2047 case CK_AtomicToNonAtomic: 2048 case CK_NonAtomicToAtomic: 2049 case CK_NoOp: 2050 case CK_UserDefinedConversion: 2051 return Visit(const_cast<Expr*>(E)); 2052 2053 case CK_BaseToDerived: { 2054 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2055 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2056 2057 Address Base = CGF.EmitPointerWithAlignment(E); 2058 Address Derived = 2059 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2060 CE->path_begin(), CE->path_end(), 2061 CGF.ShouldNullCheckClassCastValue(CE)); 2062 2063 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2064 // performed and the object is not of the derived type. 2065 if (CGF.sanitizePerformTypeCheck()) 2066 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2067 Derived.getPointer(), DestTy->getPointeeType()); 2068 2069 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2070 CGF.EmitVTablePtrCheckForCast( 2071 DestTy->getPointeeType(), Derived.getPointer(), 2072 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2073 CE->getBeginLoc()); 2074 2075 return Derived.getPointer(); 2076 } 2077 case CK_UncheckedDerivedToBase: 2078 case CK_DerivedToBase: { 2079 // The EmitPointerWithAlignment path does this fine; just discard 2080 // the alignment. 2081 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2082 } 2083 2084 case CK_Dynamic: { 2085 Address V = CGF.EmitPointerWithAlignment(E); 2086 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2087 return CGF.EmitDynamicCast(V, DCE); 2088 } 2089 2090 case CK_ArrayToPointerDecay: 2091 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2092 case CK_FunctionToPointerDecay: 2093 return EmitLValue(E).getPointer(CGF); 2094 2095 case CK_NullToPointer: 2096 if (MustVisitNullValue(E)) 2097 CGF.EmitIgnoredExpr(E); 2098 2099 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2100 DestTy); 2101 2102 case CK_NullToMemberPointer: { 2103 if (MustVisitNullValue(E)) 2104 CGF.EmitIgnoredExpr(E); 2105 2106 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2107 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2108 } 2109 2110 case CK_ReinterpretMemberPointer: 2111 case CK_BaseToDerivedMemberPointer: 2112 case CK_DerivedToBaseMemberPointer: { 2113 Value *Src = Visit(E); 2114 2115 // Note that the AST doesn't distinguish between checked and 2116 // unchecked member pointer conversions, so we always have to 2117 // implement checked conversions here. This is inefficient when 2118 // actual control flow may be required in order to perform the 2119 // check, which it is for data member pointers (but not member 2120 // function pointers on Itanium and ARM). 2121 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2122 } 2123 2124 case CK_ARCProduceObject: 2125 return CGF.EmitARCRetainScalarExpr(E); 2126 case CK_ARCConsumeObject: 2127 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2128 case CK_ARCReclaimReturnedObject: 2129 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2130 case CK_ARCExtendBlockObject: 2131 return CGF.EmitARCExtendBlockObject(E); 2132 2133 case CK_CopyAndAutoreleaseBlockObject: 2134 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2135 2136 case CK_FloatingRealToComplex: 2137 case CK_FloatingComplexCast: 2138 case CK_IntegralRealToComplex: 2139 case CK_IntegralComplexCast: 2140 case CK_IntegralComplexToFloatingComplex: 2141 case CK_FloatingComplexToIntegralComplex: 2142 case CK_ConstructorConversion: 2143 case CK_ToUnion: 2144 llvm_unreachable("scalar cast to non-scalar value"); 2145 2146 case CK_LValueToRValue: 2147 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2148 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2149 return Visit(const_cast<Expr*>(E)); 2150 2151 case CK_IntegralToPointer: { 2152 Value *Src = Visit(const_cast<Expr*>(E)); 2153 2154 // First, convert to the correct width so that we control the kind of 2155 // extension. 2156 auto DestLLVMTy = ConvertType(DestTy); 2157 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2158 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2159 llvm::Value* IntResult = 2160 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2161 2162 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2163 2164 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2165 // Going from integer to pointer that could be dynamic requires reloading 2166 // dynamic information from invariant.group. 2167 if (DestTy.mayBeDynamicClass()) 2168 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2169 } 2170 return IntToPtr; 2171 } 2172 case CK_PointerToIntegral: { 2173 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2174 auto *PtrExpr = Visit(E); 2175 2176 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2177 const QualType SrcType = E->getType(); 2178 2179 // Casting to integer requires stripping dynamic information as it does 2180 // not carries it. 2181 if (SrcType.mayBeDynamicClass()) 2182 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2183 } 2184 2185 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2186 } 2187 case CK_ToVoid: { 2188 CGF.EmitIgnoredExpr(E); 2189 return nullptr; 2190 } 2191 case CK_VectorSplat: { 2192 llvm::Type *DstTy = ConvertType(DestTy); 2193 Value *Elt = Visit(const_cast<Expr*>(E)); 2194 // Splat the element across to all elements 2195 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 2196 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2197 } 2198 2199 case CK_FixedPointCast: 2200 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2201 CE->getExprLoc()); 2202 2203 case CK_FixedPointToBoolean: 2204 assert(E->getType()->isFixedPointType() && 2205 "Expected src type to be fixed point type"); 2206 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2207 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2208 CE->getExprLoc()); 2209 2210 case CK_FixedPointToIntegral: 2211 assert(E->getType()->isFixedPointType() && 2212 "Expected src type to be fixed point type"); 2213 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2214 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2215 CE->getExprLoc()); 2216 2217 case CK_IntegralToFixedPoint: 2218 assert(E->getType()->isIntegerType() && 2219 "Expected src type to be an integer"); 2220 assert(DestTy->isFixedPointType() && 2221 "Expected dest type to be fixed point type"); 2222 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2223 CE->getExprLoc()); 2224 2225 case CK_IntegralCast: { 2226 ScalarConversionOpts Opts; 2227 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2228 if (!ICE->isPartOfExplicitCast()) 2229 Opts = ScalarConversionOpts(CGF.SanOpts); 2230 } 2231 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2232 CE->getExprLoc(), Opts); 2233 } 2234 case CK_IntegralToFloating: 2235 case CK_FloatingToIntegral: 2236 case CK_FloatingCast: 2237 case CK_FixedPointToFloating: 2238 case CK_FloatingToFixedPoint: { 2239 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2240 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2241 CE->getExprLoc()); 2242 } 2243 case CK_BooleanToSignedIntegral: { 2244 ScalarConversionOpts Opts; 2245 Opts.TreatBooleanAsSigned = true; 2246 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2247 CE->getExprLoc(), Opts); 2248 } 2249 case CK_IntegralToBoolean: 2250 return EmitIntToBoolConversion(Visit(E)); 2251 case CK_PointerToBoolean: 2252 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2253 case CK_FloatingToBoolean: { 2254 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2255 return EmitFloatToBoolConversion(Visit(E)); 2256 } 2257 case CK_MemberPointerToBoolean: { 2258 llvm::Value *MemPtr = Visit(E); 2259 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2260 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2261 } 2262 2263 case CK_FloatingComplexToReal: 2264 case CK_IntegralComplexToReal: 2265 return CGF.EmitComplexExpr(E, false, true).first; 2266 2267 case CK_FloatingComplexToBoolean: 2268 case CK_IntegralComplexToBoolean: { 2269 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2270 2271 // TODO: kill this function off, inline appropriate case here 2272 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2273 CE->getExprLoc()); 2274 } 2275 2276 case CK_ZeroToOCLOpaqueType: { 2277 assert((DestTy->isEventT() || DestTy->isQueueT() || 2278 DestTy->isOCLIntelSubgroupAVCType()) && 2279 "CK_ZeroToOCLEvent cast on non-event type"); 2280 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2281 } 2282 2283 case CK_IntToOCLSampler: 2284 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2285 2286 } // end of switch 2287 2288 llvm_unreachable("unknown scalar cast"); 2289 } 2290 2291 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2292 CodeGenFunction::StmtExprEvaluation eval(CGF); 2293 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2294 !E->getType()->isVoidType()); 2295 if (!RetAlloca.isValid()) 2296 return nullptr; 2297 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2298 E->getExprLoc()); 2299 } 2300 2301 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2302 CodeGenFunction::RunCleanupsScope Scope(CGF); 2303 Value *V = Visit(E->getSubExpr()); 2304 // Defend against dominance problems caused by jumps out of expression 2305 // evaluation through the shared cleanup block. 2306 Scope.ForceCleanup({&V}); 2307 return V; 2308 } 2309 2310 //===----------------------------------------------------------------------===// 2311 // Unary Operators 2312 //===----------------------------------------------------------------------===// 2313 2314 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2315 llvm::Value *InVal, bool IsInc, 2316 FPOptions FPFeatures) { 2317 BinOpInfo BinOp; 2318 BinOp.LHS = InVal; 2319 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2320 BinOp.Ty = E->getType(); 2321 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2322 BinOp.FPFeatures = FPFeatures; 2323 BinOp.E = E; 2324 return BinOp; 2325 } 2326 2327 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2328 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2329 llvm::Value *Amount = 2330 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2331 StringRef Name = IsInc ? "inc" : "dec"; 2332 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2333 case LangOptions::SOB_Defined: 2334 return Builder.CreateAdd(InVal, Amount, Name); 2335 case LangOptions::SOB_Undefined: 2336 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2337 return Builder.CreateNSWAdd(InVal, Amount, Name); 2338 LLVM_FALLTHROUGH; 2339 case LangOptions::SOB_Trapping: 2340 if (!E->canOverflow()) 2341 return Builder.CreateNSWAdd(InVal, Amount, Name); 2342 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2343 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2344 } 2345 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2346 } 2347 2348 namespace { 2349 /// Handles check and update for lastprivate conditional variables. 2350 class OMPLastprivateConditionalUpdateRAII { 2351 private: 2352 CodeGenFunction &CGF; 2353 const UnaryOperator *E; 2354 2355 public: 2356 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2357 const UnaryOperator *E) 2358 : CGF(CGF), E(E) {} 2359 ~OMPLastprivateConditionalUpdateRAII() { 2360 if (CGF.getLangOpts().OpenMP) 2361 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2362 CGF, E->getSubExpr()); 2363 } 2364 }; 2365 } // namespace 2366 2367 llvm::Value * 2368 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2369 bool isInc, bool isPre) { 2370 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2371 QualType type = E->getSubExpr()->getType(); 2372 llvm::PHINode *atomicPHI = nullptr; 2373 llvm::Value *value; 2374 llvm::Value *input; 2375 2376 int amount = (isInc ? 1 : -1); 2377 bool isSubtraction = !isInc; 2378 2379 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2380 type = atomicTy->getValueType(); 2381 if (isInc && type->isBooleanType()) { 2382 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2383 if (isPre) { 2384 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2385 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2386 return Builder.getTrue(); 2387 } 2388 // For atomic bool increment, we just store true and return it for 2389 // preincrement, do an atomic swap with true for postincrement 2390 return Builder.CreateAtomicRMW( 2391 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2392 llvm::AtomicOrdering::SequentiallyConsistent); 2393 } 2394 // Special case for atomic increment / decrement on integers, emit 2395 // atomicrmw instructions. We skip this if we want to be doing overflow 2396 // checking, and fall into the slow path with the atomic cmpxchg loop. 2397 if (!type->isBooleanType() && type->isIntegerType() && 2398 !(type->isUnsignedIntegerType() && 2399 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2400 CGF.getLangOpts().getSignedOverflowBehavior() != 2401 LangOptions::SOB_Trapping) { 2402 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2403 llvm::AtomicRMWInst::Sub; 2404 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2405 llvm::Instruction::Sub; 2406 llvm::Value *amt = CGF.EmitToMemory( 2407 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2408 llvm::Value *old = 2409 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2410 llvm::AtomicOrdering::SequentiallyConsistent); 2411 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2412 } 2413 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2414 input = value; 2415 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2416 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2417 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2418 value = CGF.EmitToMemory(value, type); 2419 Builder.CreateBr(opBB); 2420 Builder.SetInsertPoint(opBB); 2421 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2422 atomicPHI->addIncoming(value, startBB); 2423 value = atomicPHI; 2424 } else { 2425 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2426 input = value; 2427 } 2428 2429 // Special case of integer increment that we have to check first: bool++. 2430 // Due to promotion rules, we get: 2431 // bool++ -> bool = bool + 1 2432 // -> bool = (int)bool + 1 2433 // -> bool = ((int)bool + 1 != 0) 2434 // An interesting aspect of this is that increment is always true. 2435 // Decrement does not have this property. 2436 if (isInc && type->isBooleanType()) { 2437 value = Builder.getTrue(); 2438 2439 // Most common case by far: integer increment. 2440 } else if (type->isIntegerType()) { 2441 QualType promotedType; 2442 bool canPerformLossyDemotionCheck = false; 2443 if (type->isPromotableIntegerType()) { 2444 promotedType = CGF.getContext().getPromotedIntegerType(type); 2445 assert(promotedType != type && "Shouldn't promote to the same type."); 2446 canPerformLossyDemotionCheck = true; 2447 canPerformLossyDemotionCheck &= 2448 CGF.getContext().getCanonicalType(type) != 2449 CGF.getContext().getCanonicalType(promotedType); 2450 canPerformLossyDemotionCheck &= 2451 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2452 type, promotedType); 2453 assert((!canPerformLossyDemotionCheck || 2454 type->isSignedIntegerOrEnumerationType() || 2455 promotedType->isSignedIntegerOrEnumerationType() || 2456 ConvertType(type)->getScalarSizeInBits() == 2457 ConvertType(promotedType)->getScalarSizeInBits()) && 2458 "The following check expects that if we do promotion to different " 2459 "underlying canonical type, at least one of the types (either " 2460 "base or promoted) will be signed, or the bitwidths will match."); 2461 } 2462 if (CGF.SanOpts.hasOneOf( 2463 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2464 canPerformLossyDemotionCheck) { 2465 // While `x += 1` (for `x` with width less than int) is modeled as 2466 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2467 // ease; inc/dec with width less than int can't overflow because of 2468 // promotion rules, so we omit promotion+demotion, which means that we can 2469 // not catch lossy "demotion". Because we still want to catch these cases 2470 // when the sanitizer is enabled, we perform the promotion, then perform 2471 // the increment/decrement in the wider type, and finally 2472 // perform the demotion. This will catch lossy demotions. 2473 2474 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2475 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2476 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2477 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2478 // emitted. 2479 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2480 ScalarConversionOpts(CGF.SanOpts)); 2481 2482 // Note that signed integer inc/dec with width less than int can't 2483 // overflow because of promotion rules; we're just eliding a few steps 2484 // here. 2485 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2486 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2487 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2488 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2489 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2490 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2491 } else { 2492 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2493 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2494 } 2495 2496 // Next most common: pointer increment. 2497 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2498 QualType type = ptr->getPointeeType(); 2499 2500 // VLA types don't have constant size. 2501 if (const VariableArrayType *vla 2502 = CGF.getContext().getAsVariableArrayType(type)) { 2503 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2504 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2505 if (CGF.getLangOpts().isSignedOverflowDefined()) 2506 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2507 else 2508 value = CGF.EmitCheckedInBoundsGEP( 2509 value, numElts, /*SignedIndices=*/false, isSubtraction, 2510 E->getExprLoc(), "vla.inc"); 2511 2512 // Arithmetic on function pointers (!) is just +-1. 2513 } else if (type->isFunctionType()) { 2514 llvm::Value *amt = Builder.getInt32(amount); 2515 2516 value = CGF.EmitCastToVoidPtr(value); 2517 if (CGF.getLangOpts().isSignedOverflowDefined()) 2518 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2519 else 2520 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2521 isSubtraction, E->getExprLoc(), 2522 "incdec.funcptr"); 2523 value = Builder.CreateBitCast(value, input->getType()); 2524 2525 // For everything else, we can just do a simple increment. 2526 } else { 2527 llvm::Value *amt = Builder.getInt32(amount); 2528 if (CGF.getLangOpts().isSignedOverflowDefined()) 2529 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2530 else 2531 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2532 isSubtraction, E->getExprLoc(), 2533 "incdec.ptr"); 2534 } 2535 2536 // Vector increment/decrement. 2537 } else if (type->isVectorType()) { 2538 if (type->hasIntegerRepresentation()) { 2539 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2540 2541 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2542 } else { 2543 value = Builder.CreateFAdd( 2544 value, 2545 llvm::ConstantFP::get(value->getType(), amount), 2546 isInc ? "inc" : "dec"); 2547 } 2548 2549 // Floating point. 2550 } else if (type->isRealFloatingType()) { 2551 // Add the inc/dec to the real part. 2552 llvm::Value *amt; 2553 2554 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2555 // Another special case: half FP increment should be done via float 2556 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2557 value = Builder.CreateCall( 2558 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2559 CGF.CGM.FloatTy), 2560 input, "incdec.conv"); 2561 } else { 2562 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2563 } 2564 } 2565 2566 if (value->getType()->isFloatTy()) 2567 amt = llvm::ConstantFP::get(VMContext, 2568 llvm::APFloat(static_cast<float>(amount))); 2569 else if (value->getType()->isDoubleTy()) 2570 amt = llvm::ConstantFP::get(VMContext, 2571 llvm::APFloat(static_cast<double>(amount))); 2572 else { 2573 // Remaining types are Half, LongDouble or __float128. Convert from float. 2574 llvm::APFloat F(static_cast<float>(amount)); 2575 bool ignored; 2576 const llvm::fltSemantics *FS; 2577 // Don't use getFloatTypeSemantics because Half isn't 2578 // necessarily represented using the "half" LLVM type. 2579 if (value->getType()->isFP128Ty()) 2580 FS = &CGF.getTarget().getFloat128Format(); 2581 else if (value->getType()->isHalfTy()) 2582 FS = &CGF.getTarget().getHalfFormat(); 2583 else 2584 FS = &CGF.getTarget().getLongDoubleFormat(); 2585 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2586 amt = llvm::ConstantFP::get(VMContext, F); 2587 } 2588 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2589 2590 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2591 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2592 value = Builder.CreateCall( 2593 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2594 CGF.CGM.FloatTy), 2595 value, "incdec.conv"); 2596 } else { 2597 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2598 } 2599 } 2600 2601 // Fixed-point types. 2602 } else if (type->isFixedPointType()) { 2603 // Fixed-point types are tricky. In some cases, it isn't possible to 2604 // represent a 1 or a -1 in the type at all. Piggyback off of 2605 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2606 BinOpInfo Info; 2607 Info.E = E; 2608 Info.Ty = E->getType(); 2609 Info.Opcode = isInc ? BO_Add : BO_Sub; 2610 Info.LHS = value; 2611 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2612 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2613 // since -1 is guaranteed to be representable. 2614 if (type->isSignedFixedPointType()) { 2615 Info.Opcode = isInc ? BO_Sub : BO_Add; 2616 Info.RHS = Builder.CreateNeg(Info.RHS); 2617 } 2618 // Now, convert from our invented integer literal to the type of the unary 2619 // op. This will upscale and saturate if necessary. This value can become 2620 // undef in some cases. 2621 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 2622 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2623 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); 2624 value = EmitFixedPointBinOp(Info); 2625 2626 // Objective-C pointer types. 2627 } else { 2628 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2629 value = CGF.EmitCastToVoidPtr(value); 2630 2631 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2632 if (!isInc) size = -size; 2633 llvm::Value *sizeValue = 2634 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2635 2636 if (CGF.getLangOpts().isSignedOverflowDefined()) 2637 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2638 else 2639 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2640 /*SignedIndices=*/false, isSubtraction, 2641 E->getExprLoc(), "incdec.objptr"); 2642 value = Builder.CreateBitCast(value, input->getType()); 2643 } 2644 2645 if (atomicPHI) { 2646 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2647 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2648 auto Pair = CGF.EmitAtomicCompareExchange( 2649 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2650 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2651 llvm::Value *success = Pair.second; 2652 atomicPHI->addIncoming(old, curBlock); 2653 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2654 Builder.SetInsertPoint(contBB); 2655 return isPre ? value : input; 2656 } 2657 2658 // Store the updated result through the lvalue. 2659 if (LV.isBitField()) 2660 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2661 else 2662 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2663 2664 // If this is a postinc, return the value read from memory, otherwise use the 2665 // updated value. 2666 return isPre ? value : input; 2667 } 2668 2669 2670 2671 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2672 TestAndClearIgnoreResultAssign(); 2673 Value *Op = Visit(E->getSubExpr()); 2674 2675 // Generate a unary FNeg for FP ops. 2676 if (Op->getType()->isFPOrFPVectorTy()) 2677 return Builder.CreateFNeg(Op, "fneg"); 2678 2679 // Emit unary minus with EmitSub so we handle overflow cases etc. 2680 BinOpInfo BinOp; 2681 BinOp.RHS = Op; 2682 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2683 BinOp.Ty = E->getType(); 2684 BinOp.Opcode = BO_Sub; 2685 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2686 BinOp.E = E; 2687 return EmitSub(BinOp); 2688 } 2689 2690 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2691 TestAndClearIgnoreResultAssign(); 2692 Value *Op = Visit(E->getSubExpr()); 2693 return Builder.CreateNot(Op, "neg"); 2694 } 2695 2696 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2697 // Perform vector logical not on comparison with zero vector. 2698 if (E->getType()->isVectorType() && 2699 E->getType()->castAs<VectorType>()->getVectorKind() == 2700 VectorType::GenericVector) { 2701 Value *Oper = Visit(E->getSubExpr()); 2702 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2703 Value *Result; 2704 if (Oper->getType()->isFPOrFPVectorTy()) { 2705 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2706 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2707 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2708 } else 2709 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2710 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2711 } 2712 2713 // Compare operand to zero. 2714 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2715 2716 // Invert value. 2717 // TODO: Could dynamically modify easy computations here. For example, if 2718 // the operand is an icmp ne, turn into icmp eq. 2719 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2720 2721 // ZExt result to the expr type. 2722 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2723 } 2724 2725 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2726 // Try folding the offsetof to a constant. 2727 Expr::EvalResult EVResult; 2728 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2729 llvm::APSInt Value = EVResult.Val.getInt(); 2730 return Builder.getInt(Value); 2731 } 2732 2733 // Loop over the components of the offsetof to compute the value. 2734 unsigned n = E->getNumComponents(); 2735 llvm::Type* ResultType = ConvertType(E->getType()); 2736 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2737 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2738 for (unsigned i = 0; i != n; ++i) { 2739 OffsetOfNode ON = E->getComponent(i); 2740 llvm::Value *Offset = nullptr; 2741 switch (ON.getKind()) { 2742 case OffsetOfNode::Array: { 2743 // Compute the index 2744 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2745 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2746 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2747 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2748 2749 // Save the element type 2750 CurrentType = 2751 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2752 2753 // Compute the element size 2754 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2755 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2756 2757 // Multiply out to compute the result 2758 Offset = Builder.CreateMul(Idx, ElemSize); 2759 break; 2760 } 2761 2762 case OffsetOfNode::Field: { 2763 FieldDecl *MemberDecl = ON.getField(); 2764 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2765 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2766 2767 // Compute the index of the field in its parent. 2768 unsigned i = 0; 2769 // FIXME: It would be nice if we didn't have to loop here! 2770 for (RecordDecl::field_iterator Field = RD->field_begin(), 2771 FieldEnd = RD->field_end(); 2772 Field != FieldEnd; ++Field, ++i) { 2773 if (*Field == MemberDecl) 2774 break; 2775 } 2776 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2777 2778 // Compute the offset to the field 2779 int64_t OffsetInt = RL.getFieldOffset(i) / 2780 CGF.getContext().getCharWidth(); 2781 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2782 2783 // Save the element type. 2784 CurrentType = MemberDecl->getType(); 2785 break; 2786 } 2787 2788 case OffsetOfNode::Identifier: 2789 llvm_unreachable("dependent __builtin_offsetof"); 2790 2791 case OffsetOfNode::Base: { 2792 if (ON.getBase()->isVirtual()) { 2793 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2794 continue; 2795 } 2796 2797 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2798 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2799 2800 // Save the element type. 2801 CurrentType = ON.getBase()->getType(); 2802 2803 // Compute the offset to the base. 2804 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2805 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2806 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2807 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2808 break; 2809 } 2810 } 2811 Result = Builder.CreateAdd(Result, Offset); 2812 } 2813 return Result; 2814 } 2815 2816 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2817 /// argument of the sizeof expression as an integer. 2818 Value * 2819 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2820 const UnaryExprOrTypeTraitExpr *E) { 2821 QualType TypeToSize = E->getTypeOfArgument(); 2822 if (E->getKind() == UETT_SizeOf) { 2823 if (const VariableArrayType *VAT = 2824 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2825 if (E->isArgumentType()) { 2826 // sizeof(type) - make sure to emit the VLA size. 2827 CGF.EmitVariablyModifiedType(TypeToSize); 2828 } else { 2829 // C99 6.5.3.4p2: If the argument is an expression of type 2830 // VLA, it is evaluated. 2831 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2832 } 2833 2834 auto VlaSize = CGF.getVLASize(VAT); 2835 llvm::Value *size = VlaSize.NumElts; 2836 2837 // Scale the number of non-VLA elements by the non-VLA element size. 2838 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2839 if (!eltSize.isOne()) 2840 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2841 2842 return size; 2843 } 2844 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2845 auto Alignment = 2846 CGF.getContext() 2847 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2848 E->getTypeOfArgument()->getPointeeType())) 2849 .getQuantity(); 2850 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2851 } 2852 2853 // If this isn't sizeof(vla), the result must be constant; use the constant 2854 // folding logic so we don't have to duplicate it here. 2855 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2856 } 2857 2858 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2859 Expr *Op = E->getSubExpr(); 2860 if (Op->getType()->isAnyComplexType()) { 2861 // If it's an l-value, load through the appropriate subobject l-value. 2862 // Note that we have to ask E because Op might be an l-value that 2863 // this won't work for, e.g. an Obj-C property. 2864 if (E->isGLValue()) 2865 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2866 E->getExprLoc()).getScalarVal(); 2867 2868 // Otherwise, calculate and project. 2869 return CGF.EmitComplexExpr(Op, false, true).first; 2870 } 2871 2872 return Visit(Op); 2873 } 2874 2875 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2876 Expr *Op = E->getSubExpr(); 2877 if (Op->getType()->isAnyComplexType()) { 2878 // If it's an l-value, load through the appropriate subobject l-value. 2879 // Note that we have to ask E because Op might be an l-value that 2880 // this won't work for, e.g. an Obj-C property. 2881 if (Op->isGLValue()) 2882 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2883 E->getExprLoc()).getScalarVal(); 2884 2885 // Otherwise, calculate and project. 2886 return CGF.EmitComplexExpr(Op, true, false).second; 2887 } 2888 2889 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2890 // effects are evaluated, but not the actual value. 2891 if (Op->isGLValue()) 2892 CGF.EmitLValue(Op); 2893 else 2894 CGF.EmitScalarExpr(Op, true); 2895 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2896 } 2897 2898 //===----------------------------------------------------------------------===// 2899 // Binary Operators 2900 //===----------------------------------------------------------------------===// 2901 2902 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2903 TestAndClearIgnoreResultAssign(); 2904 BinOpInfo Result; 2905 Result.LHS = Visit(E->getLHS()); 2906 Result.RHS = Visit(E->getRHS()); 2907 Result.Ty = E->getType(); 2908 Result.Opcode = E->getOpcode(); 2909 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2910 Result.E = E; 2911 return Result; 2912 } 2913 2914 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2915 const CompoundAssignOperator *E, 2916 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2917 Value *&Result) { 2918 QualType LHSTy = E->getLHS()->getType(); 2919 BinOpInfo OpInfo; 2920 2921 if (E->getComputationResultType()->isAnyComplexType()) 2922 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2923 2924 // Emit the RHS first. __block variables need to have the rhs evaluated 2925 // first, plus this should improve codegen a little. 2926 OpInfo.RHS = Visit(E->getRHS()); 2927 OpInfo.Ty = E->getComputationResultType(); 2928 OpInfo.Opcode = E->getOpcode(); 2929 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2930 OpInfo.E = E; 2931 // Load/convert the LHS. 2932 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2933 2934 llvm::PHINode *atomicPHI = nullptr; 2935 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2936 QualType type = atomicTy->getValueType(); 2937 if (!type->isBooleanType() && type->isIntegerType() && 2938 !(type->isUnsignedIntegerType() && 2939 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2940 CGF.getLangOpts().getSignedOverflowBehavior() != 2941 LangOptions::SOB_Trapping) { 2942 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 2943 llvm::Instruction::BinaryOps Op; 2944 switch (OpInfo.Opcode) { 2945 // We don't have atomicrmw operands for *, %, /, <<, >> 2946 case BO_MulAssign: case BO_DivAssign: 2947 case BO_RemAssign: 2948 case BO_ShlAssign: 2949 case BO_ShrAssign: 2950 break; 2951 case BO_AddAssign: 2952 AtomicOp = llvm::AtomicRMWInst::Add; 2953 Op = llvm::Instruction::Add; 2954 break; 2955 case BO_SubAssign: 2956 AtomicOp = llvm::AtomicRMWInst::Sub; 2957 Op = llvm::Instruction::Sub; 2958 break; 2959 case BO_AndAssign: 2960 AtomicOp = llvm::AtomicRMWInst::And; 2961 Op = llvm::Instruction::And; 2962 break; 2963 case BO_XorAssign: 2964 AtomicOp = llvm::AtomicRMWInst::Xor; 2965 Op = llvm::Instruction::Xor; 2966 break; 2967 case BO_OrAssign: 2968 AtomicOp = llvm::AtomicRMWInst::Or; 2969 Op = llvm::Instruction::Or; 2970 break; 2971 default: 2972 llvm_unreachable("Invalid compound assignment type"); 2973 } 2974 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 2975 llvm::Value *Amt = CGF.EmitToMemory( 2976 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2977 E->getExprLoc()), 2978 LHSTy); 2979 Value *OldVal = Builder.CreateAtomicRMW( 2980 AtomicOp, LHSLV.getPointer(CGF), Amt, 2981 llvm::AtomicOrdering::SequentiallyConsistent); 2982 2983 // Since operation is atomic, the result type is guaranteed to be the 2984 // same as the input in LLVM terms. 2985 Result = Builder.CreateBinOp(Op, OldVal, Amt); 2986 return LHSLV; 2987 } 2988 } 2989 // FIXME: For floating point types, we should be saving and restoring the 2990 // floating point environment in the loop. 2991 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2992 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2993 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2994 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2995 Builder.CreateBr(opBB); 2996 Builder.SetInsertPoint(opBB); 2997 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2998 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2999 OpInfo.LHS = atomicPHI; 3000 } 3001 else 3002 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3003 3004 SourceLocation Loc = E->getExprLoc(); 3005 OpInfo.LHS = 3006 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3007 3008 // Expand the binary operator. 3009 Result = (this->*Func)(OpInfo); 3010 3011 // Convert the result back to the LHS type, 3012 // potentially with Implicit Conversion sanitizer check. 3013 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3014 Loc, ScalarConversionOpts(CGF.SanOpts)); 3015 3016 if (atomicPHI) { 3017 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3018 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3019 auto Pair = CGF.EmitAtomicCompareExchange( 3020 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3021 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3022 llvm::Value *success = Pair.second; 3023 atomicPHI->addIncoming(old, curBlock); 3024 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3025 Builder.SetInsertPoint(contBB); 3026 return LHSLV; 3027 } 3028 3029 // Store the result value into the LHS lvalue. Bit-fields are handled 3030 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3031 // 'An assignment expression has the value of the left operand after the 3032 // assignment...'. 3033 if (LHSLV.isBitField()) 3034 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3035 else 3036 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3037 3038 if (CGF.getLangOpts().OpenMP) 3039 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3040 E->getLHS()); 3041 return LHSLV; 3042 } 3043 3044 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3045 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3046 bool Ignore = TestAndClearIgnoreResultAssign(); 3047 Value *RHS = nullptr; 3048 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3049 3050 // If the result is clearly ignored, return now. 3051 if (Ignore) 3052 return nullptr; 3053 3054 // The result of an assignment in C is the assigned r-value. 3055 if (!CGF.getLangOpts().CPlusPlus) 3056 return RHS; 3057 3058 // If the lvalue is non-volatile, return the computed value of the assignment. 3059 if (!LHS.isVolatileQualified()) 3060 return RHS; 3061 3062 // Otherwise, reload the value. 3063 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3064 } 3065 3066 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3067 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3068 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3069 3070 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3071 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3072 SanitizerKind::IntegerDivideByZero)); 3073 } 3074 3075 const auto *BO = cast<BinaryOperator>(Ops.E); 3076 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3077 Ops.Ty->hasSignedIntegerRepresentation() && 3078 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3079 Ops.mayHaveIntegerOverflow()) { 3080 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3081 3082 llvm::Value *IntMin = 3083 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3084 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 3085 3086 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3087 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3088 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3089 Checks.push_back( 3090 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3091 } 3092 3093 if (Checks.size() > 0) 3094 EmitBinOpCheck(Checks, Ops); 3095 } 3096 3097 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3098 { 3099 CodeGenFunction::SanitizerScope SanScope(&CGF); 3100 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3101 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3102 Ops.Ty->isIntegerType() && 3103 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3104 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3105 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3106 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3107 Ops.Ty->isRealFloatingType() && 3108 Ops.mayHaveFloatDivisionByZero()) { 3109 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3110 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3111 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3112 Ops); 3113 } 3114 } 3115 3116 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3117 llvm::Value *Val; 3118 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3119 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3120 if (CGF.getLangOpts().OpenCL && 3121 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3122 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3123 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3124 // build option allows an application to specify that single precision 3125 // floating-point divide (x/y and 1/x) and sqrt used in the program 3126 // source are correctly rounded. 3127 llvm::Type *ValTy = Val->getType(); 3128 if (ValTy->isFloatTy() || 3129 (isa<llvm::VectorType>(ValTy) && 3130 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3131 CGF.SetFPAccuracy(Val, 2.5); 3132 } 3133 return Val; 3134 } 3135 else if (Ops.isFixedPointOp()) 3136 return EmitFixedPointBinOp(Ops); 3137 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3138 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3139 else 3140 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3141 } 3142 3143 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3144 // Rem in C can't be a floating point type: C99 6.5.5p2. 3145 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3146 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3147 Ops.Ty->isIntegerType() && 3148 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3149 CodeGenFunction::SanitizerScope SanScope(&CGF); 3150 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3151 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3152 } 3153 3154 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3155 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3156 else 3157 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3158 } 3159 3160 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3161 unsigned IID; 3162 unsigned OpID = 0; 3163 3164 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3165 switch (Ops.Opcode) { 3166 case BO_Add: 3167 case BO_AddAssign: 3168 OpID = 1; 3169 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3170 llvm::Intrinsic::uadd_with_overflow; 3171 break; 3172 case BO_Sub: 3173 case BO_SubAssign: 3174 OpID = 2; 3175 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3176 llvm::Intrinsic::usub_with_overflow; 3177 break; 3178 case BO_Mul: 3179 case BO_MulAssign: 3180 OpID = 3; 3181 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3182 llvm::Intrinsic::umul_with_overflow; 3183 break; 3184 default: 3185 llvm_unreachable("Unsupported operation for overflow detection"); 3186 } 3187 OpID <<= 1; 3188 if (isSigned) 3189 OpID |= 1; 3190 3191 CodeGenFunction::SanitizerScope SanScope(&CGF); 3192 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3193 3194 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3195 3196 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3197 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3198 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3199 3200 // Handle overflow with llvm.trap if no custom handler has been specified. 3201 const std::string *handlerName = 3202 &CGF.getLangOpts().OverflowHandler; 3203 if (handlerName->empty()) { 3204 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3205 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3206 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3207 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3208 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3209 : SanitizerKind::UnsignedIntegerOverflow; 3210 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3211 } else 3212 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3213 return result; 3214 } 3215 3216 // Branch in case of overflow. 3217 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3218 llvm::BasicBlock *continueBB = 3219 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3220 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3221 3222 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3223 3224 // If an overflow handler is set, then we want to call it and then use its 3225 // result, if it returns. 3226 Builder.SetInsertPoint(overflowBB); 3227 3228 // Get the overflow handler. 3229 llvm::Type *Int8Ty = CGF.Int8Ty; 3230 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3231 llvm::FunctionType *handlerTy = 3232 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3233 llvm::FunctionCallee handler = 3234 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3235 3236 // Sign extend the args to 64-bit, so that we can use the same handler for 3237 // all types of overflow. 3238 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3239 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3240 3241 // Call the handler with the two arguments, the operation, and the size of 3242 // the result. 3243 llvm::Value *handlerArgs[] = { 3244 lhs, 3245 rhs, 3246 Builder.getInt8(OpID), 3247 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3248 }; 3249 llvm::Value *handlerResult = 3250 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3251 3252 // Truncate the result back to the desired size. 3253 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3254 Builder.CreateBr(continueBB); 3255 3256 Builder.SetInsertPoint(continueBB); 3257 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3258 phi->addIncoming(result, initialBB); 3259 phi->addIncoming(handlerResult, overflowBB); 3260 3261 return phi; 3262 } 3263 3264 /// Emit pointer + index arithmetic. 3265 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3266 const BinOpInfo &op, 3267 bool isSubtraction) { 3268 // Must have binary (not unary) expr here. Unary pointer 3269 // increment/decrement doesn't use this path. 3270 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3271 3272 Value *pointer = op.LHS; 3273 Expr *pointerOperand = expr->getLHS(); 3274 Value *index = op.RHS; 3275 Expr *indexOperand = expr->getRHS(); 3276 3277 // In a subtraction, the LHS is always the pointer. 3278 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3279 std::swap(pointer, index); 3280 std::swap(pointerOperand, indexOperand); 3281 } 3282 3283 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3284 3285 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3286 auto &DL = CGF.CGM.getDataLayout(); 3287 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3288 3289 // Some versions of glibc and gcc use idioms (particularly in their malloc 3290 // routines) that add a pointer-sized integer (known to be a pointer value) 3291 // to a null pointer in order to cast the value back to an integer or as 3292 // part of a pointer alignment algorithm. This is undefined behavior, but 3293 // we'd like to be able to compile programs that use it. 3294 // 3295 // Normally, we'd generate a GEP with a null-pointer base here in response 3296 // to that code, but it's also UB to dereference a pointer created that 3297 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3298 // generate a direct cast of the integer value to a pointer. 3299 // 3300 // The idiom (p = nullptr + N) is not met if any of the following are true: 3301 // 3302 // The operation is subtraction. 3303 // The index is not pointer-sized. 3304 // The pointer type is not byte-sized. 3305 // 3306 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3307 op.Opcode, 3308 expr->getLHS(), 3309 expr->getRHS())) 3310 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3311 3312 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3313 // Zero-extend or sign-extend the pointer value according to 3314 // whether the index is signed or not. 3315 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3316 "idx.ext"); 3317 } 3318 3319 // If this is subtraction, negate the index. 3320 if (isSubtraction) 3321 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3322 3323 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3324 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3325 /*Accessed*/ false); 3326 3327 const PointerType *pointerType 3328 = pointerOperand->getType()->getAs<PointerType>(); 3329 if (!pointerType) { 3330 QualType objectType = pointerOperand->getType() 3331 ->castAs<ObjCObjectPointerType>() 3332 ->getPointeeType(); 3333 llvm::Value *objectSize 3334 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3335 3336 index = CGF.Builder.CreateMul(index, objectSize); 3337 3338 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3339 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3340 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3341 } 3342 3343 QualType elementType = pointerType->getPointeeType(); 3344 if (const VariableArrayType *vla 3345 = CGF.getContext().getAsVariableArrayType(elementType)) { 3346 // The element count here is the total number of non-VLA elements. 3347 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3348 3349 // Effectively, the multiply by the VLA size is part of the GEP. 3350 // GEP indexes are signed, and scaling an index isn't permitted to 3351 // signed-overflow, so we use the same semantics for our explicit 3352 // multiply. We suppress this if overflow is not undefined behavior. 3353 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3354 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3355 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3356 } else { 3357 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3358 pointer = 3359 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3360 op.E->getExprLoc(), "add.ptr"); 3361 } 3362 return pointer; 3363 } 3364 3365 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3366 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3367 // future proof. 3368 if (elementType->isVoidType() || elementType->isFunctionType()) { 3369 Value *result = CGF.EmitCastToVoidPtr(pointer); 3370 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3371 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3372 } 3373 3374 if (CGF.getLangOpts().isSignedOverflowDefined()) 3375 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3376 3377 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3378 op.E->getExprLoc(), "add.ptr"); 3379 } 3380 3381 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3382 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3383 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3384 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3385 // efficient operations. 3386 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3387 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3388 bool negMul, bool negAdd) { 3389 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3390 3391 Value *MulOp0 = MulOp->getOperand(0); 3392 Value *MulOp1 = MulOp->getOperand(1); 3393 if (negMul) 3394 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3395 if (negAdd) 3396 Addend = Builder.CreateFNeg(Addend, "neg"); 3397 3398 Value *FMulAdd = nullptr; 3399 if (Builder.getIsFPConstrained()) { 3400 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3401 "Only constrained operation should be created when Builder is in FP " 3402 "constrained mode"); 3403 FMulAdd = Builder.CreateConstrainedFPCall( 3404 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3405 Addend->getType()), 3406 {MulOp0, MulOp1, Addend}); 3407 } else { 3408 FMulAdd = Builder.CreateCall( 3409 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3410 {MulOp0, MulOp1, Addend}); 3411 } 3412 MulOp->eraseFromParent(); 3413 3414 return FMulAdd; 3415 } 3416 3417 // Check whether it would be legal to emit an fmuladd intrinsic call to 3418 // represent op and if so, build the fmuladd. 3419 // 3420 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3421 // Does NOT check the type of the operation - it's assumed that this function 3422 // will be called from contexts where it's known that the type is contractable. 3423 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3424 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3425 bool isSub=false) { 3426 3427 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3428 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3429 "Only fadd/fsub can be the root of an fmuladd."); 3430 3431 // Check whether this op is marked as fusable. 3432 if (!op.FPFeatures.allowFPContractWithinStatement()) 3433 return nullptr; 3434 3435 // We have a potentially fusable op. Look for a mul on one of the operands. 3436 // Also, make sure that the mul result isn't used directly. In that case, 3437 // there's no point creating a muladd operation. 3438 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3439 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3440 LHSBinOp->use_empty()) 3441 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3442 } 3443 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3444 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3445 RHSBinOp->use_empty()) 3446 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3447 } 3448 3449 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3450 if (LHSBinOp->getIntrinsicID() == 3451 llvm::Intrinsic::experimental_constrained_fmul && 3452 LHSBinOp->use_empty()) 3453 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3454 } 3455 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3456 if (RHSBinOp->getIntrinsicID() == 3457 llvm::Intrinsic::experimental_constrained_fmul && 3458 RHSBinOp->use_empty()) 3459 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3460 } 3461 3462 return nullptr; 3463 } 3464 3465 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3466 if (op.LHS->getType()->isPointerTy() || 3467 op.RHS->getType()->isPointerTy()) 3468 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3469 3470 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3471 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3472 case LangOptions::SOB_Defined: 3473 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3474 case LangOptions::SOB_Undefined: 3475 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3476 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3477 LLVM_FALLTHROUGH; 3478 case LangOptions::SOB_Trapping: 3479 if (CanElideOverflowCheck(CGF.getContext(), op)) 3480 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3481 return EmitOverflowCheckedBinOp(op); 3482 } 3483 } 3484 3485 if (op.Ty->isConstantMatrixType()) { 3486 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3487 return MB.CreateAdd(op.LHS, op.RHS); 3488 } 3489 3490 if (op.Ty->isUnsignedIntegerType() && 3491 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3492 !CanElideOverflowCheck(CGF.getContext(), op)) 3493 return EmitOverflowCheckedBinOp(op); 3494 3495 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3496 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3497 // Try to form an fmuladd. 3498 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3499 return FMulAdd; 3500 3501 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3502 } 3503 3504 if (op.isFixedPointOp()) 3505 return EmitFixedPointBinOp(op); 3506 3507 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3508 } 3509 3510 /// The resulting value must be calculated with exact precision, so the operands 3511 /// may not be the same type. 3512 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3513 using llvm::APSInt; 3514 using llvm::ConstantInt; 3515 3516 // This is either a binary operation where at least one of the operands is 3517 // a fixed-point type, or a unary operation where the operand is a fixed-point 3518 // type. The result type of a binary operation is determined by 3519 // Sema::handleFixedPointConversions(). 3520 QualType ResultTy = op.Ty; 3521 QualType LHSTy, RHSTy; 3522 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3523 RHSTy = BinOp->getRHS()->getType(); 3524 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3525 // For compound assignment, the effective type of the LHS at this point 3526 // is the computation LHS type, not the actual LHS type, and the final 3527 // result type is not the type of the expression but rather the 3528 // computation result type. 3529 LHSTy = CAO->getComputationLHSType(); 3530 ResultTy = CAO->getComputationResultType(); 3531 } else 3532 LHSTy = BinOp->getLHS()->getType(); 3533 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3534 LHSTy = UnOp->getSubExpr()->getType(); 3535 RHSTy = UnOp->getSubExpr()->getType(); 3536 } 3537 ASTContext &Ctx = CGF.getContext(); 3538 Value *LHS = op.LHS; 3539 Value *RHS = op.RHS; 3540 3541 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3542 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3543 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3544 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3545 3546 // Perform the actual operation. 3547 Value *Result; 3548 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 3549 switch (op.Opcode) { 3550 case BO_AddAssign: 3551 case BO_Add: 3552 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); 3553 break; 3554 case BO_SubAssign: 3555 case BO_Sub: 3556 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); 3557 break; 3558 case BO_MulAssign: 3559 case BO_Mul: 3560 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); 3561 break; 3562 case BO_DivAssign: 3563 case BO_Div: 3564 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); 3565 break; 3566 case BO_ShlAssign: 3567 case BO_Shl: 3568 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); 3569 break; 3570 case BO_ShrAssign: 3571 case BO_Shr: 3572 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); 3573 break; 3574 case BO_LT: 3575 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3576 case BO_GT: 3577 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3578 case BO_LE: 3579 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3580 case BO_GE: 3581 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3582 case BO_EQ: 3583 // For equality operations, we assume any padding bits on unsigned types are 3584 // zero'd out. They could be overwritten through non-saturating operations 3585 // that cause overflow, but this leads to undefined behavior. 3586 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); 3587 case BO_NE: 3588 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3589 case BO_Cmp: 3590 case BO_LAnd: 3591 case BO_LOr: 3592 llvm_unreachable("Found unimplemented fixed point binary operation"); 3593 case BO_PtrMemD: 3594 case BO_PtrMemI: 3595 case BO_Rem: 3596 case BO_Xor: 3597 case BO_And: 3598 case BO_Or: 3599 case BO_Assign: 3600 case BO_RemAssign: 3601 case BO_AndAssign: 3602 case BO_XorAssign: 3603 case BO_OrAssign: 3604 case BO_Comma: 3605 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3606 } 3607 3608 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || 3609 BinaryOperator::isShiftAssignOp(op.Opcode); 3610 // Convert to the result type. 3611 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema 3612 : CommonFixedSema, 3613 ResultFixedSema); 3614 } 3615 3616 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3617 // The LHS is always a pointer if either side is. 3618 if (!op.LHS->getType()->isPointerTy()) { 3619 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3620 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3621 case LangOptions::SOB_Defined: 3622 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3623 case LangOptions::SOB_Undefined: 3624 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3625 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3626 LLVM_FALLTHROUGH; 3627 case LangOptions::SOB_Trapping: 3628 if (CanElideOverflowCheck(CGF.getContext(), op)) 3629 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3630 return EmitOverflowCheckedBinOp(op); 3631 } 3632 } 3633 3634 if (op.Ty->isConstantMatrixType()) { 3635 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3636 return MB.CreateSub(op.LHS, op.RHS); 3637 } 3638 3639 if (op.Ty->isUnsignedIntegerType() && 3640 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3641 !CanElideOverflowCheck(CGF.getContext(), op)) 3642 return EmitOverflowCheckedBinOp(op); 3643 3644 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3645 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3646 // Try to form an fmuladd. 3647 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3648 return FMulAdd; 3649 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3650 } 3651 3652 if (op.isFixedPointOp()) 3653 return EmitFixedPointBinOp(op); 3654 3655 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3656 } 3657 3658 // If the RHS is not a pointer, then we have normal pointer 3659 // arithmetic. 3660 if (!op.RHS->getType()->isPointerTy()) 3661 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3662 3663 // Otherwise, this is a pointer subtraction. 3664 3665 // Do the raw subtraction part. 3666 llvm::Value *LHS 3667 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3668 llvm::Value *RHS 3669 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3670 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3671 3672 // Okay, figure out the element size. 3673 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3674 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3675 3676 llvm::Value *divisor = nullptr; 3677 3678 // For a variable-length array, this is going to be non-constant. 3679 if (const VariableArrayType *vla 3680 = CGF.getContext().getAsVariableArrayType(elementType)) { 3681 auto VlaSize = CGF.getVLASize(vla); 3682 elementType = VlaSize.Type; 3683 divisor = VlaSize.NumElts; 3684 3685 // Scale the number of non-VLA elements by the non-VLA element size. 3686 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3687 if (!eltSize.isOne()) 3688 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3689 3690 // For everything elese, we can just compute it, safe in the 3691 // assumption that Sema won't let anything through that we can't 3692 // safely compute the size of. 3693 } else { 3694 CharUnits elementSize; 3695 // Handle GCC extension for pointer arithmetic on void* and 3696 // function pointer types. 3697 if (elementType->isVoidType() || elementType->isFunctionType()) 3698 elementSize = CharUnits::One(); 3699 else 3700 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3701 3702 // Don't even emit the divide for element size of 1. 3703 if (elementSize.isOne()) 3704 return diffInChars; 3705 3706 divisor = CGF.CGM.getSize(elementSize); 3707 } 3708 3709 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3710 // pointer difference in C is only defined in the case where both operands 3711 // are pointing to elements of an array. 3712 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3713 } 3714 3715 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3716 llvm::IntegerType *Ty; 3717 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3718 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3719 else 3720 Ty = cast<llvm::IntegerType>(LHS->getType()); 3721 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3722 } 3723 3724 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 3725 const Twine &Name) { 3726 llvm::IntegerType *Ty; 3727 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3728 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3729 else 3730 Ty = cast<llvm::IntegerType>(LHS->getType()); 3731 3732 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 3733 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 3734 3735 return Builder.CreateURem( 3736 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 3737 } 3738 3739 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3740 // TODO: This misses out on the sanitizer check below. 3741 if (Ops.isFixedPointOp()) 3742 return EmitFixedPointBinOp(Ops); 3743 3744 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3745 // RHS to the same size as the LHS. 3746 Value *RHS = Ops.RHS; 3747 if (Ops.LHS->getType() != RHS->getType()) 3748 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3749 3750 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3751 Ops.Ty->hasSignedIntegerRepresentation() && 3752 !CGF.getLangOpts().isSignedOverflowDefined() && 3753 !CGF.getLangOpts().CPlusPlus20; 3754 bool SanitizeUnsignedBase = 3755 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && 3756 Ops.Ty->hasUnsignedIntegerRepresentation(); 3757 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; 3758 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3759 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3760 if (CGF.getLangOpts().OpenCL) 3761 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 3762 else if ((SanitizeBase || SanitizeExponent) && 3763 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3764 CodeGenFunction::SanitizerScope SanScope(&CGF); 3765 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3766 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3767 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3768 3769 if (SanitizeExponent) { 3770 Checks.push_back( 3771 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3772 } 3773 3774 if (SanitizeBase) { 3775 // Check whether we are shifting any non-zero bits off the top of the 3776 // integer. We only emit this check if exponent is valid - otherwise 3777 // instructions below will have undefined behavior themselves. 3778 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3779 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3780 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3781 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3782 llvm::Value *PromotedWidthMinusOne = 3783 (RHS == Ops.RHS) ? WidthMinusOne 3784 : GetWidthMinusOneValue(Ops.LHS, RHS); 3785 CGF.EmitBlock(CheckShiftBase); 3786 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3787 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3788 /*NUW*/ true, /*NSW*/ true), 3789 "shl.check"); 3790 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { 3791 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3792 // Under C++11's rules, shifting a 1 bit into the sign bit is 3793 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3794 // define signed left shifts, so we use the C99 and C++11 rules there). 3795 // Unsigned shifts can always shift into the top bit. 3796 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3797 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3798 } 3799 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3800 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3801 CGF.EmitBlock(Cont); 3802 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3803 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3804 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3805 Checks.push_back(std::make_pair( 3806 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase 3807 : SanitizerKind::UnsignedShiftBase)); 3808 } 3809 3810 assert(!Checks.empty()); 3811 EmitBinOpCheck(Checks, Ops); 3812 } 3813 3814 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3815 } 3816 3817 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3818 // TODO: This misses out on the sanitizer check below. 3819 if (Ops.isFixedPointOp()) 3820 return EmitFixedPointBinOp(Ops); 3821 3822 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3823 // RHS to the same size as the LHS. 3824 Value *RHS = Ops.RHS; 3825 if (Ops.LHS->getType() != RHS->getType()) 3826 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3827 3828 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3829 if (CGF.getLangOpts().OpenCL) 3830 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 3831 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3832 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3833 CodeGenFunction::SanitizerScope SanScope(&CGF); 3834 llvm::Value *Valid = 3835 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3836 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3837 } 3838 3839 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3840 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3841 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3842 } 3843 3844 enum IntrinsicType { VCMPEQ, VCMPGT }; 3845 // return corresponding comparison intrinsic for given vector type 3846 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3847 BuiltinType::Kind ElemKind) { 3848 switch (ElemKind) { 3849 default: llvm_unreachable("unexpected element type"); 3850 case BuiltinType::Char_U: 3851 case BuiltinType::UChar: 3852 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3853 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3854 case BuiltinType::Char_S: 3855 case BuiltinType::SChar: 3856 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3857 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3858 case BuiltinType::UShort: 3859 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3860 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3861 case BuiltinType::Short: 3862 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3863 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3864 case BuiltinType::UInt: 3865 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3866 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3867 case BuiltinType::Int: 3868 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3869 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3870 case BuiltinType::ULong: 3871 case BuiltinType::ULongLong: 3872 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3873 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3874 case BuiltinType::Long: 3875 case BuiltinType::LongLong: 3876 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3877 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3878 case BuiltinType::Float: 3879 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3880 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3881 case BuiltinType::Double: 3882 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3883 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3884 case BuiltinType::UInt128: 3885 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 3886 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; 3887 case BuiltinType::Int128: 3888 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 3889 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; 3890 } 3891 } 3892 3893 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3894 llvm::CmpInst::Predicate UICmpOpc, 3895 llvm::CmpInst::Predicate SICmpOpc, 3896 llvm::CmpInst::Predicate FCmpOpc, 3897 bool IsSignaling) { 3898 TestAndClearIgnoreResultAssign(); 3899 Value *Result; 3900 QualType LHSTy = E->getLHS()->getType(); 3901 QualType RHSTy = E->getRHS()->getType(); 3902 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3903 assert(E->getOpcode() == BO_EQ || 3904 E->getOpcode() == BO_NE); 3905 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3906 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3907 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3908 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3909 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3910 BinOpInfo BOInfo = EmitBinOps(E); 3911 Value *LHS = BOInfo.LHS; 3912 Value *RHS = BOInfo.RHS; 3913 3914 // If AltiVec, the comparison results in a numeric type, so we use 3915 // intrinsics comparing vectors and giving 0 or 1 as a result 3916 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3917 // constants for mapping CR6 register bits to predicate result 3918 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3919 3920 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3921 3922 // in several cases vector arguments order will be reversed 3923 Value *FirstVecArg = LHS, 3924 *SecondVecArg = RHS; 3925 3926 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3927 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 3928 3929 switch(E->getOpcode()) { 3930 default: llvm_unreachable("is not a comparison operation"); 3931 case BO_EQ: 3932 CR6 = CR6_LT; 3933 ID = GetIntrinsic(VCMPEQ, ElementKind); 3934 break; 3935 case BO_NE: 3936 CR6 = CR6_EQ; 3937 ID = GetIntrinsic(VCMPEQ, ElementKind); 3938 break; 3939 case BO_LT: 3940 CR6 = CR6_LT; 3941 ID = GetIntrinsic(VCMPGT, ElementKind); 3942 std::swap(FirstVecArg, SecondVecArg); 3943 break; 3944 case BO_GT: 3945 CR6 = CR6_LT; 3946 ID = GetIntrinsic(VCMPGT, ElementKind); 3947 break; 3948 case BO_LE: 3949 if (ElementKind == BuiltinType::Float) { 3950 CR6 = CR6_LT; 3951 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3952 std::swap(FirstVecArg, SecondVecArg); 3953 } 3954 else { 3955 CR6 = CR6_EQ; 3956 ID = GetIntrinsic(VCMPGT, ElementKind); 3957 } 3958 break; 3959 case BO_GE: 3960 if (ElementKind == BuiltinType::Float) { 3961 CR6 = CR6_LT; 3962 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3963 } 3964 else { 3965 CR6 = CR6_EQ; 3966 ID = GetIntrinsic(VCMPGT, ElementKind); 3967 std::swap(FirstVecArg, SecondVecArg); 3968 } 3969 break; 3970 } 3971 3972 Value *CR6Param = Builder.getInt32(CR6); 3973 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3974 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3975 3976 // The result type of intrinsic may not be same as E->getType(). 3977 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3978 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3979 // do nothing, if ResultTy is not i1 at the same time, it will cause 3980 // crash later. 3981 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3982 if (ResultTy->getBitWidth() > 1 && 3983 E->getType() == CGF.getContext().BoolTy) 3984 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3985 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3986 E->getExprLoc()); 3987 } 3988 3989 if (BOInfo.isFixedPointOp()) { 3990 Result = EmitFixedPointBinOp(BOInfo); 3991 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3992 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 3993 if (!IsSignaling) 3994 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3995 else 3996 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 3997 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3998 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3999 } else { 4000 // Unsigned integers and pointers. 4001 4002 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4003 !isa<llvm::ConstantPointerNull>(LHS) && 4004 !isa<llvm::ConstantPointerNull>(RHS)) { 4005 4006 // Dynamic information is required to be stripped for comparisons, 4007 // because it could leak the dynamic information. Based on comparisons 4008 // of pointers to dynamic objects, the optimizer can replace one pointer 4009 // with another, which might be incorrect in presence of invariant 4010 // groups. Comparison with null is safe because null does not carry any 4011 // dynamic information. 4012 if (LHSTy.mayBeDynamicClass()) 4013 LHS = Builder.CreateStripInvariantGroup(LHS); 4014 if (RHSTy.mayBeDynamicClass()) 4015 RHS = Builder.CreateStripInvariantGroup(RHS); 4016 } 4017 4018 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4019 } 4020 4021 // If this is a vector comparison, sign extend the result to the appropriate 4022 // vector integer type and return it (don't convert to bool). 4023 if (LHSTy->isVectorType()) 4024 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4025 4026 } else { 4027 // Complex Comparison: can only be an equality comparison. 4028 CodeGenFunction::ComplexPairTy LHS, RHS; 4029 QualType CETy; 4030 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4031 LHS = CGF.EmitComplexExpr(E->getLHS()); 4032 CETy = CTy->getElementType(); 4033 } else { 4034 LHS.first = Visit(E->getLHS()); 4035 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4036 CETy = LHSTy; 4037 } 4038 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4039 RHS = CGF.EmitComplexExpr(E->getRHS()); 4040 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4041 CTy->getElementType()) && 4042 "The element types must always match."); 4043 (void)CTy; 4044 } else { 4045 RHS.first = Visit(E->getRHS()); 4046 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4047 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4048 "The element types must always match."); 4049 } 4050 4051 Value *ResultR, *ResultI; 4052 if (CETy->isRealFloatingType()) { 4053 // As complex comparisons can only be equality comparisons, they 4054 // are never signaling comparisons. 4055 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4056 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4057 } else { 4058 // Complex comparisons can only be equality comparisons. As such, signed 4059 // and unsigned opcodes are the same. 4060 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4061 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4062 } 4063 4064 if (E->getOpcode() == BO_EQ) { 4065 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4066 } else { 4067 assert(E->getOpcode() == BO_NE && 4068 "Complex comparison other than == or != ?"); 4069 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4070 } 4071 } 4072 4073 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4074 E->getExprLoc()); 4075 } 4076 4077 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4078 bool Ignore = TestAndClearIgnoreResultAssign(); 4079 4080 Value *RHS; 4081 LValue LHS; 4082 4083 switch (E->getLHS()->getType().getObjCLifetime()) { 4084 case Qualifiers::OCL_Strong: 4085 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4086 break; 4087 4088 case Qualifiers::OCL_Autoreleasing: 4089 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4090 break; 4091 4092 case Qualifiers::OCL_ExplicitNone: 4093 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4094 break; 4095 4096 case Qualifiers::OCL_Weak: 4097 RHS = Visit(E->getRHS()); 4098 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4099 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4100 break; 4101 4102 case Qualifiers::OCL_None: 4103 // __block variables need to have the rhs evaluated first, plus 4104 // this should improve codegen just a little. 4105 RHS = Visit(E->getRHS()); 4106 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4107 4108 // Store the value into the LHS. Bit-fields are handled specially 4109 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4110 // 'An assignment expression has the value of the left operand after 4111 // the assignment...'. 4112 if (LHS.isBitField()) { 4113 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4114 } else { 4115 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4116 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4117 } 4118 } 4119 4120 // If the result is clearly ignored, return now. 4121 if (Ignore) 4122 return nullptr; 4123 4124 // The result of an assignment in C is the assigned r-value. 4125 if (!CGF.getLangOpts().CPlusPlus) 4126 return RHS; 4127 4128 // If the lvalue is non-volatile, return the computed value of the assignment. 4129 if (!LHS.isVolatileQualified()) 4130 return RHS; 4131 4132 // Otherwise, reload the value. 4133 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4134 } 4135 4136 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4137 // Perform vector logical and on comparisons with zero vectors. 4138 if (E->getType()->isVectorType()) { 4139 CGF.incrementProfileCounter(E); 4140 4141 Value *LHS = Visit(E->getLHS()); 4142 Value *RHS = Visit(E->getRHS()); 4143 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4144 if (LHS->getType()->isFPOrFPVectorTy()) { 4145 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4146 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4147 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4148 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4149 } else { 4150 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4151 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4152 } 4153 Value *And = Builder.CreateAnd(LHS, RHS); 4154 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4155 } 4156 4157 llvm::Type *ResTy = ConvertType(E->getType()); 4158 4159 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4160 // If we have 1 && X, just emit X without inserting the control flow. 4161 bool LHSCondVal; 4162 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4163 if (LHSCondVal) { // If we have 1 && X, just emit X. 4164 CGF.incrementProfileCounter(E); 4165 4166 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4167 // ZExt result to int or bool. 4168 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4169 } 4170 4171 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4172 if (!CGF.ContainsLabel(E->getRHS())) 4173 return llvm::Constant::getNullValue(ResTy); 4174 } 4175 4176 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4177 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4178 4179 CodeGenFunction::ConditionalEvaluation eval(CGF); 4180 4181 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4182 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4183 CGF.getProfileCount(E->getRHS())); 4184 4185 // Any edges into the ContBlock are now from an (indeterminate number of) 4186 // edges from this first condition. All of these values will be false. Start 4187 // setting up the PHI node in the Cont Block for this. 4188 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4189 "", ContBlock); 4190 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4191 PI != PE; ++PI) 4192 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4193 4194 eval.begin(CGF); 4195 CGF.EmitBlock(RHSBlock); 4196 CGF.incrementProfileCounter(E); 4197 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4198 eval.end(CGF); 4199 4200 // Reaquire the RHS block, as there may be subblocks inserted. 4201 RHSBlock = Builder.GetInsertBlock(); 4202 4203 // Emit an unconditional branch from this block to ContBlock. 4204 { 4205 // There is no need to emit line number for unconditional branch. 4206 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4207 CGF.EmitBlock(ContBlock); 4208 } 4209 // Insert an entry into the phi node for the edge with the value of RHSCond. 4210 PN->addIncoming(RHSCond, RHSBlock); 4211 4212 // Artificial location to preserve the scope information 4213 { 4214 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4215 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4216 } 4217 4218 // ZExt result to int. 4219 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4220 } 4221 4222 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4223 // Perform vector logical or on comparisons with zero vectors. 4224 if (E->getType()->isVectorType()) { 4225 CGF.incrementProfileCounter(E); 4226 4227 Value *LHS = Visit(E->getLHS()); 4228 Value *RHS = Visit(E->getRHS()); 4229 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4230 if (LHS->getType()->isFPOrFPVectorTy()) { 4231 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4232 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4233 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4234 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4235 } else { 4236 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4237 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4238 } 4239 Value *Or = Builder.CreateOr(LHS, RHS); 4240 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4241 } 4242 4243 llvm::Type *ResTy = ConvertType(E->getType()); 4244 4245 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4246 // If we have 0 || X, just emit X without inserting the control flow. 4247 bool LHSCondVal; 4248 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4249 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4250 CGF.incrementProfileCounter(E); 4251 4252 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4253 // ZExt result to int or bool. 4254 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4255 } 4256 4257 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4258 if (!CGF.ContainsLabel(E->getRHS())) 4259 return llvm::ConstantInt::get(ResTy, 1); 4260 } 4261 4262 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4263 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4264 4265 CodeGenFunction::ConditionalEvaluation eval(CGF); 4266 4267 // Branch on the LHS first. If it is true, go to the success (cont) block. 4268 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4269 CGF.getCurrentProfileCount() - 4270 CGF.getProfileCount(E->getRHS())); 4271 4272 // Any edges into the ContBlock are now from an (indeterminate number of) 4273 // edges from this first condition. All of these values will be true. Start 4274 // setting up the PHI node in the Cont Block for this. 4275 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4276 "", ContBlock); 4277 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4278 PI != PE; ++PI) 4279 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4280 4281 eval.begin(CGF); 4282 4283 // Emit the RHS condition as a bool value. 4284 CGF.EmitBlock(RHSBlock); 4285 CGF.incrementProfileCounter(E); 4286 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4287 4288 eval.end(CGF); 4289 4290 // Reaquire the RHS block, as there may be subblocks inserted. 4291 RHSBlock = Builder.GetInsertBlock(); 4292 4293 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4294 // into the phi node for the edge with the value of RHSCond. 4295 CGF.EmitBlock(ContBlock); 4296 PN->addIncoming(RHSCond, RHSBlock); 4297 4298 // ZExt result to int. 4299 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4300 } 4301 4302 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4303 CGF.EmitIgnoredExpr(E->getLHS()); 4304 CGF.EnsureInsertPoint(); 4305 return Visit(E->getRHS()); 4306 } 4307 4308 //===----------------------------------------------------------------------===// 4309 // Other Operators 4310 //===----------------------------------------------------------------------===// 4311 4312 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4313 /// expression is cheap enough and side-effect-free enough to evaluate 4314 /// unconditionally instead of conditionally. This is used to convert control 4315 /// flow into selects in some cases. 4316 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4317 CodeGenFunction &CGF) { 4318 // Anything that is an integer or floating point constant is fine. 4319 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4320 4321 // Even non-volatile automatic variables can't be evaluated unconditionally. 4322 // Referencing a thread_local may cause non-trivial initialization work to 4323 // occur. If we're inside a lambda and one of the variables is from the scope 4324 // outside the lambda, that function may have returned already. Reading its 4325 // locals is a bad idea. Also, these reads may introduce races there didn't 4326 // exist in the source-level program. 4327 } 4328 4329 4330 Value *ScalarExprEmitter:: 4331 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4332 TestAndClearIgnoreResultAssign(); 4333 4334 // Bind the common expression if necessary. 4335 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4336 4337 Expr *condExpr = E->getCond(); 4338 Expr *lhsExpr = E->getTrueExpr(); 4339 Expr *rhsExpr = E->getFalseExpr(); 4340 4341 // If the condition constant folds and can be elided, try to avoid emitting 4342 // the condition and the dead arm. 4343 bool CondExprBool; 4344 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4345 Expr *live = lhsExpr, *dead = rhsExpr; 4346 if (!CondExprBool) std::swap(live, dead); 4347 4348 // If the dead side doesn't have labels we need, just emit the Live part. 4349 if (!CGF.ContainsLabel(dead)) { 4350 if (CondExprBool) 4351 CGF.incrementProfileCounter(E); 4352 Value *Result = Visit(live); 4353 4354 // If the live part is a throw expression, it acts like it has a void 4355 // type, so evaluating it returns a null Value*. However, a conditional 4356 // with non-void type must return a non-null Value*. 4357 if (!Result && !E->getType()->isVoidType()) 4358 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4359 4360 return Result; 4361 } 4362 } 4363 4364 // OpenCL: If the condition is a vector, we can treat this condition like 4365 // the select function. 4366 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4367 condExpr->getType()->isExtVectorType()) { 4368 CGF.incrementProfileCounter(E); 4369 4370 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4371 llvm::Value *LHS = Visit(lhsExpr); 4372 llvm::Value *RHS = Visit(rhsExpr); 4373 4374 llvm::Type *condType = ConvertType(condExpr->getType()); 4375 auto *vecTy = cast<llvm::FixedVectorType>(condType); 4376 4377 unsigned numElem = vecTy->getNumElements(); 4378 llvm::Type *elemType = vecTy->getElementType(); 4379 4380 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4381 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4382 llvm::Value *tmp = Builder.CreateSExt( 4383 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4384 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4385 4386 // Cast float to int to perform ANDs if necessary. 4387 llvm::Value *RHSTmp = RHS; 4388 llvm::Value *LHSTmp = LHS; 4389 bool wasCast = false; 4390 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4391 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4392 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4393 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4394 wasCast = true; 4395 } 4396 4397 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4398 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4399 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4400 if (wasCast) 4401 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4402 4403 return tmp5; 4404 } 4405 4406 if (condExpr->getType()->isVectorType()) { 4407 CGF.incrementProfileCounter(E); 4408 4409 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4410 llvm::Value *LHS = Visit(lhsExpr); 4411 llvm::Value *RHS = Visit(rhsExpr); 4412 4413 llvm::Type *CondType = ConvertType(condExpr->getType()); 4414 auto *VecTy = cast<llvm::VectorType>(CondType); 4415 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4416 4417 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4418 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4419 } 4420 4421 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4422 // select instead of as control flow. We can only do this if it is cheap and 4423 // safe to evaluate the LHS and RHS unconditionally. 4424 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4425 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4426 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4427 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4428 4429 CGF.incrementProfileCounter(E, StepV); 4430 4431 llvm::Value *LHS = Visit(lhsExpr); 4432 llvm::Value *RHS = Visit(rhsExpr); 4433 if (!LHS) { 4434 // If the conditional has void type, make sure we return a null Value*. 4435 assert(!RHS && "LHS and RHS types must match"); 4436 return nullptr; 4437 } 4438 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4439 } 4440 4441 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4442 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4443 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4444 4445 CodeGenFunction::ConditionalEvaluation eval(CGF); 4446 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4447 CGF.getProfileCount(lhsExpr)); 4448 4449 CGF.EmitBlock(LHSBlock); 4450 CGF.incrementProfileCounter(E); 4451 eval.begin(CGF); 4452 Value *LHS = Visit(lhsExpr); 4453 eval.end(CGF); 4454 4455 LHSBlock = Builder.GetInsertBlock(); 4456 Builder.CreateBr(ContBlock); 4457 4458 CGF.EmitBlock(RHSBlock); 4459 eval.begin(CGF); 4460 Value *RHS = Visit(rhsExpr); 4461 eval.end(CGF); 4462 4463 RHSBlock = Builder.GetInsertBlock(); 4464 CGF.EmitBlock(ContBlock); 4465 4466 // If the LHS or RHS is a throw expression, it will be legitimately null. 4467 if (!LHS) 4468 return RHS; 4469 if (!RHS) 4470 return LHS; 4471 4472 // Create a PHI node for the real part. 4473 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4474 PN->addIncoming(LHS, LHSBlock); 4475 PN->addIncoming(RHS, RHSBlock); 4476 return PN; 4477 } 4478 4479 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4480 return Visit(E->getChosenSubExpr()); 4481 } 4482 4483 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4484 QualType Ty = VE->getType(); 4485 4486 if (Ty->isVariablyModifiedType()) 4487 CGF.EmitVariablyModifiedType(Ty); 4488 4489 Address ArgValue = Address::invalid(); 4490 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4491 4492 llvm::Type *ArgTy = ConvertType(VE->getType()); 4493 4494 // If EmitVAArg fails, emit an error. 4495 if (!ArgPtr.isValid()) { 4496 CGF.ErrorUnsupported(VE, "va_arg expression"); 4497 return llvm::UndefValue::get(ArgTy); 4498 } 4499 4500 // FIXME Volatility. 4501 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4502 4503 // If EmitVAArg promoted the type, we must truncate it. 4504 if (ArgTy != Val->getType()) { 4505 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4506 Val = Builder.CreateIntToPtr(Val, ArgTy); 4507 else 4508 Val = Builder.CreateTrunc(Val, ArgTy); 4509 } 4510 4511 return Val; 4512 } 4513 4514 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4515 return CGF.EmitBlockLiteral(block); 4516 } 4517 4518 // Convert a vec3 to vec4, or vice versa. 4519 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4520 Value *Src, unsigned NumElementsDst) { 4521 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4522 static constexpr int Mask[] = {0, 1, 2, -1}; 4523 return Builder.CreateShuffleVector(Src, UnV, 4524 llvm::makeArrayRef(Mask, NumElementsDst)); 4525 } 4526 4527 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4528 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4529 // but could be scalar or vectors of different lengths, and either can be 4530 // pointer. 4531 // There are 4 cases: 4532 // 1. non-pointer -> non-pointer : needs 1 bitcast 4533 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4534 // 3. pointer -> non-pointer 4535 // a) pointer -> intptr_t : needs 1 ptrtoint 4536 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4537 // 4. non-pointer -> pointer 4538 // a) intptr_t -> pointer : needs 1 inttoptr 4539 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4540 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4541 // allow casting directly between pointer types and non-integer non-pointer 4542 // types. 4543 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4544 const llvm::DataLayout &DL, 4545 Value *Src, llvm::Type *DstTy, 4546 StringRef Name = "") { 4547 auto SrcTy = Src->getType(); 4548 4549 // Case 1. 4550 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4551 return Builder.CreateBitCast(Src, DstTy, Name); 4552 4553 // Case 2. 4554 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4555 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4556 4557 // Case 3. 4558 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4559 // Case 3b. 4560 if (!DstTy->isIntegerTy()) 4561 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4562 // Cases 3a and 3b. 4563 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4564 } 4565 4566 // Case 4b. 4567 if (!SrcTy->isIntegerTy()) 4568 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4569 // Cases 4a and 4b. 4570 return Builder.CreateIntToPtr(Src, DstTy, Name); 4571 } 4572 4573 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4574 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4575 llvm::Type *DstTy = ConvertType(E->getType()); 4576 4577 llvm::Type *SrcTy = Src->getType(); 4578 unsigned NumElementsSrc = 4579 isa<llvm::VectorType>(SrcTy) 4580 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() 4581 : 0; 4582 unsigned NumElementsDst = 4583 isa<llvm::VectorType>(DstTy) 4584 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() 4585 : 0; 4586 4587 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4588 // vector to get a vec4, then a bitcast if the target type is different. 4589 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4590 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4591 4592 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4593 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4594 DstTy); 4595 } 4596 4597 Src->setName("astype"); 4598 return Src; 4599 } 4600 4601 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4602 // to vec4 if the original type is not vec4, then a shuffle vector to 4603 // get a vec3. 4604 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4605 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4606 auto *Vec4Ty = llvm::FixedVectorType::get( 4607 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4608 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4609 Vec4Ty); 4610 } 4611 4612 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4613 Src->setName("astype"); 4614 return Src; 4615 } 4616 4617 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4618 Src, DstTy, "astype"); 4619 } 4620 4621 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4622 return CGF.EmitAtomicExpr(E).getScalarVal(); 4623 } 4624 4625 //===----------------------------------------------------------------------===// 4626 // Entry Point into this File 4627 //===----------------------------------------------------------------------===// 4628 4629 /// Emit the computation of the specified expression of scalar type, ignoring 4630 /// the result. 4631 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4632 assert(E && hasScalarEvaluationKind(E->getType()) && 4633 "Invalid scalar expression to emit"); 4634 4635 return ScalarExprEmitter(*this, IgnoreResultAssign) 4636 .Visit(const_cast<Expr *>(E)); 4637 } 4638 4639 /// Emit a conversion from the specified type to the specified destination type, 4640 /// both of which are LLVM scalar types. 4641 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4642 QualType DstTy, 4643 SourceLocation Loc) { 4644 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4645 "Invalid scalar expression to emit"); 4646 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4647 } 4648 4649 /// Emit a conversion from the specified complex type to the specified 4650 /// destination type, where the destination type is an LLVM scalar type. 4651 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4652 QualType SrcTy, 4653 QualType DstTy, 4654 SourceLocation Loc) { 4655 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4656 "Invalid complex -> scalar conversion"); 4657 return ScalarExprEmitter(*this) 4658 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4659 } 4660 4661 4662 llvm::Value *CodeGenFunction:: 4663 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4664 bool isInc, bool isPre) { 4665 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4666 } 4667 4668 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4669 // object->isa or (*object).isa 4670 // Generate code as for: *(Class*)object 4671 4672 Expr *BaseExpr = E->getBase(); 4673 Address Addr = Address::invalid(); 4674 if (BaseExpr->isRValue()) { 4675 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4676 } else { 4677 Addr = EmitLValue(BaseExpr).getAddress(*this); 4678 } 4679 4680 // Cast the address to Class*. 4681 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4682 return MakeAddrLValue(Addr, E->getType()); 4683 } 4684 4685 4686 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4687 const CompoundAssignOperator *E) { 4688 ScalarExprEmitter Scalar(*this); 4689 Value *Result = nullptr; 4690 switch (E->getOpcode()) { 4691 #define COMPOUND_OP(Op) \ 4692 case BO_##Op##Assign: \ 4693 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4694 Result) 4695 COMPOUND_OP(Mul); 4696 COMPOUND_OP(Div); 4697 COMPOUND_OP(Rem); 4698 COMPOUND_OP(Add); 4699 COMPOUND_OP(Sub); 4700 COMPOUND_OP(Shl); 4701 COMPOUND_OP(Shr); 4702 COMPOUND_OP(And); 4703 COMPOUND_OP(Xor); 4704 COMPOUND_OP(Or); 4705 #undef COMPOUND_OP 4706 4707 case BO_PtrMemD: 4708 case BO_PtrMemI: 4709 case BO_Mul: 4710 case BO_Div: 4711 case BO_Rem: 4712 case BO_Add: 4713 case BO_Sub: 4714 case BO_Shl: 4715 case BO_Shr: 4716 case BO_LT: 4717 case BO_GT: 4718 case BO_LE: 4719 case BO_GE: 4720 case BO_EQ: 4721 case BO_NE: 4722 case BO_Cmp: 4723 case BO_And: 4724 case BO_Xor: 4725 case BO_Or: 4726 case BO_LAnd: 4727 case BO_LOr: 4728 case BO_Assign: 4729 case BO_Comma: 4730 llvm_unreachable("Not valid compound assignment operators"); 4731 } 4732 4733 llvm_unreachable("Unhandled compound assignment operator"); 4734 } 4735 4736 struct GEPOffsetAndOverflow { 4737 // The total (signed) byte offset for the GEP. 4738 llvm::Value *TotalOffset; 4739 // The offset overflow flag - true if the total offset overflows. 4740 llvm::Value *OffsetOverflows; 4741 }; 4742 4743 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4744 /// and compute the total offset it applies from it's base pointer BasePtr. 4745 /// Returns offset in bytes and a boolean flag whether an overflow happened 4746 /// during evaluation. 4747 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4748 llvm::LLVMContext &VMContext, 4749 CodeGenModule &CGM, 4750 CGBuilderTy &Builder) { 4751 const auto &DL = CGM.getDataLayout(); 4752 4753 // The total (signed) byte offset for the GEP. 4754 llvm::Value *TotalOffset = nullptr; 4755 4756 // Was the GEP already reduced to a constant? 4757 if (isa<llvm::Constant>(GEPVal)) { 4758 // Compute the offset by casting both pointers to integers and subtracting: 4759 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4760 Value *BasePtr_int = 4761 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4762 Value *GEPVal_int = 4763 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4764 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4765 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4766 } 4767 4768 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4769 assert(GEP->getPointerOperand() == BasePtr && 4770 "BasePtr must be the the base of the GEP."); 4771 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4772 4773 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4774 4775 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4776 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4777 auto *SAddIntrinsic = 4778 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4779 auto *SMulIntrinsic = 4780 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4781 4782 // The offset overflow flag - true if the total offset overflows. 4783 llvm::Value *OffsetOverflows = Builder.getFalse(); 4784 4785 /// Return the result of the given binary operation. 4786 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4787 llvm::Value *RHS) -> llvm::Value * { 4788 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4789 4790 // If the operands are constants, return a constant result. 4791 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4792 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4793 llvm::APInt N; 4794 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4795 /*Signed=*/true, N); 4796 if (HasOverflow) 4797 OffsetOverflows = Builder.getTrue(); 4798 return llvm::ConstantInt::get(VMContext, N); 4799 } 4800 } 4801 4802 // Otherwise, compute the result with checked arithmetic. 4803 auto *ResultAndOverflow = Builder.CreateCall( 4804 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4805 OffsetOverflows = Builder.CreateOr( 4806 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4807 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4808 }; 4809 4810 // Determine the total byte offset by looking at each GEP operand. 4811 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4812 GTI != GTE; ++GTI) { 4813 llvm::Value *LocalOffset; 4814 auto *Index = GTI.getOperand(); 4815 // Compute the local offset contributed by this indexing step: 4816 if (auto *STy = GTI.getStructTypeOrNull()) { 4817 // For struct indexing, the local offset is the byte position of the 4818 // specified field. 4819 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4820 LocalOffset = llvm::ConstantInt::get( 4821 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4822 } else { 4823 // Otherwise this is array-like indexing. The local offset is the index 4824 // multiplied by the element size. 4825 auto *ElementSize = llvm::ConstantInt::get( 4826 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4827 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4828 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4829 } 4830 4831 // If this is the first offset, set it as the total offset. Otherwise, add 4832 // the local offset into the running total. 4833 if (!TotalOffset || TotalOffset == Zero) 4834 TotalOffset = LocalOffset; 4835 else 4836 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4837 } 4838 4839 return {TotalOffset, OffsetOverflows}; 4840 } 4841 4842 Value * 4843 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4844 bool SignedIndices, bool IsSubtraction, 4845 SourceLocation Loc, const Twine &Name) { 4846 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4847 4848 // If the pointer overflow sanitizer isn't enabled, do nothing. 4849 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4850 return GEPVal; 4851 4852 llvm::Type *PtrTy = Ptr->getType(); 4853 4854 // Perform nullptr-and-offset check unless the nullptr is defined. 4855 bool PerformNullCheck = !NullPointerIsDefined( 4856 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4857 // Check for overflows unless the GEP got constant-folded, 4858 // and only in the default address space 4859 bool PerformOverflowCheck = 4860 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4861 4862 if (!(PerformNullCheck || PerformOverflowCheck)) 4863 return GEPVal; 4864 4865 const auto &DL = CGM.getDataLayout(); 4866 4867 SanitizerScope SanScope(this); 4868 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4869 4870 GEPOffsetAndOverflow EvaluatedGEP = 4871 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4872 4873 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4874 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4875 "If the offset got constant-folded, we don't expect that there was an " 4876 "overflow."); 4877 4878 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4879 4880 // Common case: if the total offset is zero, and we are using C++ semantics, 4881 // where nullptr+0 is defined, don't emit a check. 4882 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4883 return GEPVal; 4884 4885 // Now that we've computed the total offset, add it to the base pointer (with 4886 // wrapping semantics). 4887 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4888 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4889 4890 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4891 4892 if (PerformNullCheck) { 4893 // In C++, if the base pointer evaluates to a null pointer value, 4894 // the only valid pointer this inbounds GEP can produce is also 4895 // a null pointer, so the offset must also evaluate to zero. 4896 // Likewise, if we have non-zero base pointer, we can not get null pointer 4897 // as a result, so the offset can not be -intptr_t(BasePtr). 4898 // In other words, both pointers are either null, or both are non-null, 4899 // or the behaviour is undefined. 4900 // 4901 // C, however, is more strict in this regard, and gives more 4902 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4903 // So both the input to the 'gep inbounds' AND the output must not be null. 4904 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4905 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4906 auto *Valid = 4907 CGM.getLangOpts().CPlusPlus 4908 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4909 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4910 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4911 } 4912 4913 if (PerformOverflowCheck) { 4914 // The GEP is valid if: 4915 // 1) The total offset doesn't overflow, and 4916 // 2) The sign of the difference between the computed address and the base 4917 // pointer matches the sign of the total offset. 4918 llvm::Value *ValidGEP; 4919 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4920 if (SignedIndices) { 4921 // GEP is computed as `unsigned base + signed offset`, therefore: 4922 // * If offset was positive, then the computed pointer can not be 4923 // [unsigned] less than the base pointer, unless it overflowed. 4924 // * If offset was negative, then the computed pointer can not be 4925 // [unsigned] greater than the bas pointere, unless it overflowed. 4926 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4927 auto *PosOrZeroOffset = 4928 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4929 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4930 ValidGEP = 4931 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4932 } else if (!IsSubtraction) { 4933 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4934 // computed pointer can not be [unsigned] less than base pointer, 4935 // unless there was an overflow. 4936 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4937 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4938 } else { 4939 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4940 // computed pointer can not be [unsigned] greater than base pointer, 4941 // unless there was an overflow. 4942 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4943 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4944 } 4945 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4946 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4947 } 4948 4949 assert(!Checks.empty() && "Should have produced some checks."); 4950 4951 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4952 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4953 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4954 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4955 4956 return GEPVal; 4957 } 4958