1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *
352   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
353                        SourceLocation Loc,
354                        ScalarConversionOpts Opts = ScalarConversionOpts());
355 
356   /// Convert between either a fixed point and other fixed point or fixed point
357   /// and an integer.
358   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
359                                   SourceLocation Loc);
360 
361   /// Emit a conversion from the specified complex type to the specified
362   /// destination type, where the destination type is an LLVM scalar type.
363   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
364                                        QualType SrcTy, QualType DstTy,
365                                        SourceLocation Loc);
366 
367   /// EmitNullValue - Emit a value that corresponds to null for the given type.
368   Value *EmitNullValue(QualType Ty);
369 
370   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
371   Value *EmitFloatToBoolConversion(Value *V) {
372     // Compare against 0.0 for fp scalars.
373     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
374     return Builder.CreateFCmpUNE(V, Zero, "tobool");
375   }
376 
377   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
378   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
379     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
380 
381     return Builder.CreateICmpNE(V, Zero, "tobool");
382   }
383 
384   Value *EmitIntToBoolConversion(Value *V) {
385     // Because of the type rules of C, we often end up computing a
386     // logical value, then zero extending it to int, then wanting it
387     // as a logical value again.  Optimize this common case.
388     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
389       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
390         Value *Result = ZI->getOperand(0);
391         // If there aren't any more uses, zap the instruction to save space.
392         // Note that there can be more uses, for example if this
393         // is the result of an assignment.
394         if (ZI->use_empty())
395           ZI->eraseFromParent();
396         return Result;
397       }
398     }
399 
400     return Builder.CreateIsNotNull(V, "tobool");
401   }
402 
403   //===--------------------------------------------------------------------===//
404   //                            Visitor Methods
405   //===--------------------------------------------------------------------===//
406 
407   Value *Visit(Expr *E) {
408     ApplyDebugLocation DL(CGF, E);
409     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
410   }
411 
412   Value *VisitStmt(Stmt *S) {
413     S->dump(llvm::errs(), CGF.getContext());
414     llvm_unreachable("Stmt can't have complex result type!");
415   }
416   Value *VisitExpr(Expr *S);
417 
418   Value *VisitConstantExpr(ConstantExpr *E) {
419     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
420       if (E->isGLValue())
421         return CGF.Builder.CreateLoad(Address(
422             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
423       return Result;
424     }
425     return Visit(E->getSubExpr());
426   }
427   Value *VisitParenExpr(ParenExpr *PE) {
428     return Visit(PE->getSubExpr());
429   }
430   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
431     return Visit(E->getReplacement());
432   }
433   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
434     return Visit(GE->getResultExpr());
435   }
436   Value *VisitCoawaitExpr(CoawaitExpr *S) {
437     return CGF.EmitCoawaitExpr(*S).getScalarVal();
438   }
439   Value *VisitCoyieldExpr(CoyieldExpr *S) {
440     return CGF.EmitCoyieldExpr(*S).getScalarVal();
441   }
442   Value *VisitUnaryCoawait(const UnaryOperator *E) {
443     return Visit(E->getSubExpr());
444   }
445 
446   // Leaves.
447   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
448     return Builder.getInt(E->getValue());
449   }
450   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
454     return llvm::ConstantFP::get(VMContext, E->getValue());
455   }
456   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
457     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
458   }
459   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
466     return EmitNullValue(E->getType());
467   }
468   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
472   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
473   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
474     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
475     return Builder.CreateBitCast(V, ConvertType(E->getType()));
476   }
477 
478   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
479     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
480   }
481 
482   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
483     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
484   }
485 
486   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
487     if (E->isGLValue())
488       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
489                               E->getExprLoc());
490 
491     // Otherwise, assume the mapping is the scalar directly.
492     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
493   }
494 
495   // l-values.
496   Value *VisitDeclRefExpr(DeclRefExpr *E) {
497     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
498       return CGF.emitScalarConstant(Constant, E);
499     return EmitLoadOfLValue(E);
500   }
501 
502   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
503     return CGF.EmitObjCSelectorExpr(E);
504   }
505   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
506     return CGF.EmitObjCProtocolExpr(E);
507   }
508   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
509     return EmitLoadOfLValue(E);
510   }
511   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
512     if (E->getMethodDecl() &&
513         E->getMethodDecl()->getReturnType()->isReferenceType())
514       return EmitLoadOfLValue(E);
515     return CGF.EmitObjCMessageExpr(E).getScalarVal();
516   }
517 
518   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
519     LValue LV = CGF.EmitObjCIsaExpr(E);
520     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
521     return V;
522   }
523 
524   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
525     VersionTuple Version = E->getVersion();
526 
527     // If we're checking for a platform older than our minimum deployment
528     // target, we can fold the check away.
529     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
530       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
531 
532     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
533     llvm::Value *Args[] = {
534         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
535         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
536         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
537     };
538 
539     return CGF.EmitBuiltinAvailable(Args);
540   }
541 
542   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
543   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
544   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
545   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
546   Value *VisitMemberExpr(MemberExpr *E);
547   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
548   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
549     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
550     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
551     // literals aren't l-values in C++. We do so simply because that's the
552     // cleanest way to handle compound literals in C++.
553     // See the discussion here: https://reviews.llvm.org/D64464
554     return EmitLoadOfLValue(E);
555   }
556 
557   Value *VisitInitListExpr(InitListExpr *E);
558 
559   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
560     assert(CGF.getArrayInitIndex() &&
561            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
562     return CGF.getArrayInitIndex();
563   }
564 
565   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
566     return EmitNullValue(E->getType());
567   }
568   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
569     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
570     return VisitCastExpr(E);
571   }
572   Value *VisitCastExpr(CastExpr *E);
573 
574   Value *VisitCallExpr(const CallExpr *E) {
575     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
576       return EmitLoadOfLValue(E);
577 
578     Value *V = CGF.EmitCallExpr(E).getScalarVal();
579 
580     EmitLValueAlignmentAssumption(E, V);
581     return V;
582   }
583 
584   Value *VisitStmtExpr(const StmtExpr *E);
585 
586   // Unary Operators.
587   Value *VisitUnaryPostDec(const UnaryOperator *E) {
588     LValue LV = EmitLValue(E->getSubExpr());
589     return EmitScalarPrePostIncDec(E, LV, false, false);
590   }
591   Value *VisitUnaryPostInc(const UnaryOperator *E) {
592     LValue LV = EmitLValue(E->getSubExpr());
593     return EmitScalarPrePostIncDec(E, LV, true, false);
594   }
595   Value *VisitUnaryPreDec(const UnaryOperator *E) {
596     LValue LV = EmitLValue(E->getSubExpr());
597     return EmitScalarPrePostIncDec(E, LV, false, true);
598   }
599   Value *VisitUnaryPreInc(const UnaryOperator *E) {
600     LValue LV = EmitLValue(E->getSubExpr());
601     return EmitScalarPrePostIncDec(E, LV, true, true);
602   }
603 
604   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
605                                                   llvm::Value *InVal,
606                                                   bool IsInc);
607 
608   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
609                                        bool isInc, bool isPre);
610 
611 
612   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
613     if (isa<MemberPointerType>(E->getType())) // never sugared
614       return CGF.CGM.getMemberPointerConstant(E);
615 
616     return EmitLValue(E->getSubExpr()).getPointer(CGF);
617   }
618   Value *VisitUnaryDeref(const UnaryOperator *E) {
619     if (E->getType()->isVoidType())
620       return Visit(E->getSubExpr()); // the actual value should be unused
621     return EmitLoadOfLValue(E);
622   }
623   Value *VisitUnaryPlus(const UnaryOperator *E) {
624     // This differs from gcc, though, most likely due to a bug in gcc.
625     TestAndClearIgnoreResultAssign();
626     return Visit(E->getSubExpr());
627   }
628   Value *VisitUnaryMinus    (const UnaryOperator *E);
629   Value *VisitUnaryNot      (const UnaryOperator *E);
630   Value *VisitUnaryLNot     (const UnaryOperator *E);
631   Value *VisitUnaryReal     (const UnaryOperator *E);
632   Value *VisitUnaryImag     (const UnaryOperator *E);
633   Value *VisitUnaryExtension(const UnaryOperator *E) {
634     return Visit(E->getSubExpr());
635   }
636 
637   // C++
638   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
639     return EmitLoadOfLValue(E);
640   }
641   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
642     auto &Ctx = CGF.getContext();
643     APValue Evaluated =
644         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
645     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
646                                              SLE->getType());
647   }
648 
649   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
650     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
651     return Visit(DAE->getExpr());
652   }
653   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
654     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
655     return Visit(DIE->getExpr());
656   }
657   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
658     return CGF.LoadCXXThis();
659   }
660 
661   Value *VisitExprWithCleanups(ExprWithCleanups *E);
662   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
663     return CGF.EmitCXXNewExpr(E);
664   }
665   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
666     CGF.EmitCXXDeleteExpr(E);
667     return nullptr;
668   }
669 
670   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
671     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
672   }
673 
674   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
675     return Builder.getInt1(E->isSatisfied());
676   }
677 
678   Value *VisitRequiresExpr(const RequiresExpr *E) {
679     return Builder.getInt1(E->isSatisfied());
680   }
681 
682   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
683     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
684   }
685 
686   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
687     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
688   }
689 
690   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
691     // C++ [expr.pseudo]p1:
692     //   The result shall only be used as the operand for the function call
693     //   operator (), and the result of such a call has type void. The only
694     //   effect is the evaluation of the postfix-expression before the dot or
695     //   arrow.
696     CGF.EmitScalarExpr(E->getBase());
697     return nullptr;
698   }
699 
700   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
701     return EmitNullValue(E->getType());
702   }
703 
704   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
705     CGF.EmitCXXThrowExpr(E);
706     return nullptr;
707   }
708 
709   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
710     return Builder.getInt1(E->getValue());
711   }
712 
713   // Binary Operators.
714   Value *EmitMul(const BinOpInfo &Ops) {
715     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
716       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
717       case LangOptions::SOB_Defined:
718         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
719       case LangOptions::SOB_Undefined:
720         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
721           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
722         LLVM_FALLTHROUGH;
723       case LangOptions::SOB_Trapping:
724         if (CanElideOverflowCheck(CGF.getContext(), Ops))
725           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
726         return EmitOverflowCheckedBinOp(Ops);
727       }
728     }
729 
730     if (Ops.Ty->isConstantMatrixType()) {
731       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
732       // We need to check the types of the operands of the operator to get the
733       // correct matrix dimensions.
734       auto *BO = cast<BinaryOperator>(Ops.E);
735       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
736           BO->getLHS()->getType().getCanonicalType());
737       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
738           BO->getRHS()->getType().getCanonicalType());
739       if (LHSMatTy && RHSMatTy)
740         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
741                                        LHSMatTy->getNumColumns(),
742                                        RHSMatTy->getNumColumns());
743       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
744     }
745 
746     if (Ops.Ty->isUnsignedIntegerType() &&
747         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
748         !CanElideOverflowCheck(CGF.getContext(), Ops))
749       return EmitOverflowCheckedBinOp(Ops);
750 
751     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
752       //  Preserve the old values
753       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
754       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
755     }
756     if (Ops.isFixedPointOp())
757       return EmitFixedPointBinOp(Ops);
758     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
759   }
760   /// Create a binary op that checks for overflow.
761   /// Currently only supports +, - and *.
762   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
763 
764   // Check for undefined division and modulus behaviors.
765   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
766                                                   llvm::Value *Zero,bool isDiv);
767   // Common helper for getting how wide LHS of shift is.
768   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
769 
770   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
771   // non powers of two.
772   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
773 
774   Value *EmitDiv(const BinOpInfo &Ops);
775   Value *EmitRem(const BinOpInfo &Ops);
776   Value *EmitAdd(const BinOpInfo &Ops);
777   Value *EmitSub(const BinOpInfo &Ops);
778   Value *EmitShl(const BinOpInfo &Ops);
779   Value *EmitShr(const BinOpInfo &Ops);
780   Value *EmitAnd(const BinOpInfo &Ops) {
781     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
782   }
783   Value *EmitXor(const BinOpInfo &Ops) {
784     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
785   }
786   Value *EmitOr (const BinOpInfo &Ops) {
787     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
788   }
789 
790   // Helper functions for fixed point binary operations.
791   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
792 
793   BinOpInfo EmitBinOps(const BinaryOperator *E);
794   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
795                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
796                                   Value *&Result);
797 
798   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
799                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
800 
801   // Binary operators and binary compound assignment operators.
802 #define HANDLEBINOP(OP) \
803   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
804     return Emit ## OP(EmitBinOps(E));                                      \
805   }                                                                        \
806   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
807     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
808   }
809   HANDLEBINOP(Mul)
810   HANDLEBINOP(Div)
811   HANDLEBINOP(Rem)
812   HANDLEBINOP(Add)
813   HANDLEBINOP(Sub)
814   HANDLEBINOP(Shl)
815   HANDLEBINOP(Shr)
816   HANDLEBINOP(And)
817   HANDLEBINOP(Xor)
818   HANDLEBINOP(Or)
819 #undef HANDLEBINOP
820 
821   // Comparisons.
822   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
823                      llvm::CmpInst::Predicate SICmpOpc,
824                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
825 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
826     Value *VisitBin##CODE(const BinaryOperator *E) { \
827       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
828                          llvm::FCmpInst::FP, SIG); }
829   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
830   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
831   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
832   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
833   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
834   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
835 #undef VISITCOMP
836 
837   Value *VisitBinAssign     (const BinaryOperator *E);
838 
839   Value *VisitBinLAnd       (const BinaryOperator *E);
840   Value *VisitBinLOr        (const BinaryOperator *E);
841   Value *VisitBinComma      (const BinaryOperator *E);
842 
843   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
844   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
845 
846   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
847     return Visit(E->getSemanticForm());
848   }
849 
850   // Other Operators.
851   Value *VisitBlockExpr(const BlockExpr *BE);
852   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
853   Value *VisitChooseExpr(ChooseExpr *CE);
854   Value *VisitVAArgExpr(VAArgExpr *VE);
855   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
856     return CGF.EmitObjCStringLiteral(E);
857   }
858   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
859     return CGF.EmitObjCBoxedExpr(E);
860   }
861   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
862     return CGF.EmitObjCArrayLiteral(E);
863   }
864   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
865     return CGF.EmitObjCDictionaryLiteral(E);
866   }
867   Value *VisitAsTypeExpr(AsTypeExpr *CE);
868   Value *VisitAtomicExpr(AtomicExpr *AE);
869 };
870 }  // end anonymous namespace.
871 
872 //===----------------------------------------------------------------------===//
873 //                                Utilities
874 //===----------------------------------------------------------------------===//
875 
876 /// EmitConversionToBool - Convert the specified expression value to a
877 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
878 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
879   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
880 
881   if (SrcType->isRealFloatingType())
882     return EmitFloatToBoolConversion(Src);
883 
884   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
885     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
886 
887   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
888          "Unknown scalar type to convert");
889 
890   if (isa<llvm::IntegerType>(Src->getType()))
891     return EmitIntToBoolConversion(Src);
892 
893   assert(isa<llvm::PointerType>(Src->getType()));
894   return EmitPointerToBoolConversion(Src, SrcType);
895 }
896 
897 void ScalarExprEmitter::EmitFloatConversionCheck(
898     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
899     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
900   assert(SrcType->isFloatingType() && "not a conversion from floating point");
901   if (!isa<llvm::IntegerType>(DstTy))
902     return;
903 
904   CodeGenFunction::SanitizerScope SanScope(&CGF);
905   using llvm::APFloat;
906   using llvm::APSInt;
907 
908   llvm::Value *Check = nullptr;
909   const llvm::fltSemantics &SrcSema =
910     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
911 
912   // Floating-point to integer. This has undefined behavior if the source is
913   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
914   // to an integer).
915   unsigned Width = CGF.getContext().getIntWidth(DstType);
916   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
917 
918   APSInt Min = APSInt::getMinValue(Width, Unsigned);
919   APFloat MinSrc(SrcSema, APFloat::uninitialized);
920   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
921       APFloat::opOverflow)
922     // Don't need an overflow check for lower bound. Just check for
923     // -Inf/NaN.
924     MinSrc = APFloat::getInf(SrcSema, true);
925   else
926     // Find the largest value which is too small to represent (before
927     // truncation toward zero).
928     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
929 
930   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
931   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
932   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
933       APFloat::opOverflow)
934     // Don't need an overflow check for upper bound. Just check for
935     // +Inf/NaN.
936     MaxSrc = APFloat::getInf(SrcSema, false);
937   else
938     // Find the smallest value which is too large to represent (before
939     // truncation toward zero).
940     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
941 
942   // If we're converting from __half, convert the range to float to match
943   // the type of src.
944   if (OrigSrcType->isHalfType()) {
945     const llvm::fltSemantics &Sema =
946       CGF.getContext().getFloatTypeSemantics(SrcType);
947     bool IsInexact;
948     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
949     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
950   }
951 
952   llvm::Value *GE =
953     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
954   llvm::Value *LE =
955     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
956   Check = Builder.CreateAnd(GE, LE);
957 
958   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
959                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
960                                   CGF.EmitCheckTypeDescriptor(DstType)};
961   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
962                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
963 }
964 
965 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
966 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
967 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
968                  std::pair<llvm::Value *, SanitizerMask>>
969 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
970                                  QualType DstType, CGBuilderTy &Builder) {
971   llvm::Type *SrcTy = Src->getType();
972   llvm::Type *DstTy = Dst->getType();
973   (void)DstTy; // Only used in assert()
974 
975   // This should be truncation of integral types.
976   assert(Src != Dst);
977   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
978   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
979          "non-integer llvm type");
980 
981   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
982   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
983 
984   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
985   // Else, it is a signed truncation.
986   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
987   SanitizerMask Mask;
988   if (!SrcSigned && !DstSigned) {
989     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
990     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
991   } else {
992     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
993     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
994   }
995 
996   llvm::Value *Check = nullptr;
997   // 1. Extend the truncated value back to the same width as the Src.
998   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
999   // 2. Equality-compare with the original source value
1000   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1001   // If the comparison result is 'i1 false', then the truncation was lossy.
1002   return std::make_pair(Kind, std::make_pair(Check, Mask));
1003 }
1004 
1005 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1006     QualType SrcType, QualType DstType) {
1007   return SrcType->isIntegerType() && DstType->isIntegerType();
1008 }
1009 
1010 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1011                                                    Value *Dst, QualType DstType,
1012                                                    SourceLocation Loc) {
1013   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1014     return;
1015 
1016   // We only care about int->int conversions here.
1017   // We ignore conversions to/from pointer and/or bool.
1018   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1019                                                                        DstType))
1020     return;
1021 
1022   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1023   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1024   // This must be truncation. Else we do not care.
1025   if (SrcBits <= DstBits)
1026     return;
1027 
1028   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1029 
1030   // If the integer sign change sanitizer is enabled,
1031   // and we are truncating from larger unsigned type to smaller signed type,
1032   // let that next sanitizer deal with it.
1033   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1034   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1035   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1036       (!SrcSigned && DstSigned))
1037     return;
1038 
1039   CodeGenFunction::SanitizerScope SanScope(&CGF);
1040 
1041   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1042             std::pair<llvm::Value *, SanitizerMask>>
1043       Check =
1044           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1045   // If the comparison result is 'i1 false', then the truncation was lossy.
1046 
1047   // Do we care about this type of truncation?
1048   if (!CGF.SanOpts.has(Check.second.second))
1049     return;
1050 
1051   llvm::Constant *StaticArgs[] = {
1052       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1053       CGF.EmitCheckTypeDescriptor(DstType),
1054       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1055   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1056                 {Src, Dst});
1057 }
1058 
1059 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1060 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1061 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1062                  std::pair<llvm::Value *, SanitizerMask>>
1063 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1064                                  QualType DstType, CGBuilderTy &Builder) {
1065   llvm::Type *SrcTy = Src->getType();
1066   llvm::Type *DstTy = Dst->getType();
1067 
1068   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1069          "non-integer llvm type");
1070 
1071   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1072   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1073   (void)SrcSigned; // Only used in assert()
1074   (void)DstSigned; // Only used in assert()
1075   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1076   unsigned DstBits = DstTy->getScalarSizeInBits();
1077   (void)SrcBits; // Only used in assert()
1078   (void)DstBits; // Only used in assert()
1079 
1080   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1081          "either the widths should be different, or the signednesses.");
1082 
1083   // NOTE: zero value is considered to be non-negative.
1084   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1085                                        const char *Name) -> Value * {
1086     // Is this value a signed type?
1087     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1088     llvm::Type *VTy = V->getType();
1089     if (!VSigned) {
1090       // If the value is unsigned, then it is never negative.
1091       // FIXME: can we encounter non-scalar VTy here?
1092       return llvm::ConstantInt::getFalse(VTy->getContext());
1093     }
1094     // Get the zero of the same type with which we will be comparing.
1095     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1096     // %V.isnegative = icmp slt %V, 0
1097     // I.e is %V *strictly* less than zero, does it have negative value?
1098     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1099                               llvm::Twine(Name) + "." + V->getName() +
1100                                   ".negativitycheck");
1101   };
1102 
1103   // 1. Was the old Value negative?
1104   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1105   // 2. Is the new Value negative?
1106   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1107   // 3. Now, was the 'negativity status' preserved during the conversion?
1108   //    NOTE: conversion from negative to zero is considered to change the sign.
1109   //    (We want to get 'false' when the conversion changed the sign)
1110   //    So we should just equality-compare the negativity statuses.
1111   llvm::Value *Check = nullptr;
1112   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1113   // If the comparison result is 'false', then the conversion changed the sign.
1114   return std::make_pair(
1115       ScalarExprEmitter::ICCK_IntegerSignChange,
1116       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1117 }
1118 
1119 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1120                                                    Value *Dst, QualType DstType,
1121                                                    SourceLocation Loc) {
1122   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1123     return;
1124 
1125   llvm::Type *SrcTy = Src->getType();
1126   llvm::Type *DstTy = Dst->getType();
1127 
1128   // We only care about int->int conversions here.
1129   // We ignore conversions to/from pointer and/or bool.
1130   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1131                                                                        DstType))
1132     return;
1133 
1134   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1135   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1136   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1137   unsigned DstBits = DstTy->getScalarSizeInBits();
1138 
1139   // Now, we do not need to emit the check in *all* of the cases.
1140   // We can avoid emitting it in some obvious cases where it would have been
1141   // dropped by the opt passes (instcombine) always anyways.
1142   // If it's a cast between effectively the same type, no check.
1143   // NOTE: this is *not* equivalent to checking the canonical types.
1144   if (SrcSigned == DstSigned && SrcBits == DstBits)
1145     return;
1146   // At least one of the values needs to have signed type.
1147   // If both are unsigned, then obviously, neither of them can be negative.
1148   if (!SrcSigned && !DstSigned)
1149     return;
1150   // If the conversion is to *larger* *signed* type, then no check is needed.
1151   // Because either sign-extension happens (so the sign will remain),
1152   // or zero-extension will happen (the sign bit will be zero.)
1153   if ((DstBits > SrcBits) && DstSigned)
1154     return;
1155   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1156       (SrcBits > DstBits) && SrcSigned) {
1157     // If the signed integer truncation sanitizer is enabled,
1158     // and this is a truncation from signed type, then no check is needed.
1159     // Because here sign change check is interchangeable with truncation check.
1160     return;
1161   }
1162   // That's it. We can't rule out any more cases with the data we have.
1163 
1164   CodeGenFunction::SanitizerScope SanScope(&CGF);
1165 
1166   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1167             std::pair<llvm::Value *, SanitizerMask>>
1168       Check;
1169 
1170   // Each of these checks needs to return 'false' when an issue was detected.
1171   ImplicitConversionCheckKind CheckKind;
1172   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1173   // So we can 'and' all the checks together, and still get 'false',
1174   // if at least one of the checks detected an issue.
1175 
1176   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1177   CheckKind = Check.first;
1178   Checks.emplace_back(Check.second);
1179 
1180   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1181       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1182     // If the signed integer truncation sanitizer was enabled,
1183     // and we are truncating from larger unsigned type to smaller signed type,
1184     // let's handle the case we skipped in that check.
1185     Check =
1186         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1187     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1188     Checks.emplace_back(Check.second);
1189     // If the comparison result is 'i1 false', then the truncation was lossy.
1190   }
1191 
1192   llvm::Constant *StaticArgs[] = {
1193       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1194       CGF.EmitCheckTypeDescriptor(DstType),
1195       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1196   // EmitCheck() will 'and' all the checks together.
1197   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1198                 {Src, Dst});
1199 }
1200 
1201 /// Emit a conversion from the specified type to the specified destination type,
1202 /// both of which are LLVM scalar types.
1203 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1204                                                QualType DstType,
1205                                                SourceLocation Loc,
1206                                                ScalarConversionOpts Opts) {
1207   // All conversions involving fixed point types should be handled by the
1208   // EmitFixedPoint family functions. This is done to prevent bloating up this
1209   // function more, and although fixed point numbers are represented by
1210   // integers, we do not want to follow any logic that assumes they should be
1211   // treated as integers.
1212   // TODO(leonardchan): When necessary, add another if statement checking for
1213   // conversions to fixed point types from other types.
1214   if (SrcType->isFixedPointType()) {
1215     if (DstType->isBooleanType())
1216       // It is important that we check this before checking if the dest type is
1217       // an integer because booleans are technically integer types.
1218       // We do not need to check the padding bit on unsigned types if unsigned
1219       // padding is enabled because overflow into this bit is undefined
1220       // behavior.
1221       return Builder.CreateIsNotNull(Src, "tobool");
1222     if (DstType->isFixedPointType() || DstType->isIntegerType())
1223       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1224 
1225     llvm_unreachable(
1226         "Unhandled scalar conversion from a fixed point type to another type.");
1227   } else if (DstType->isFixedPointType()) {
1228     if (SrcType->isIntegerType())
1229       // This also includes converting booleans and enums to fixed point types.
1230       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1231 
1232     llvm_unreachable(
1233         "Unhandled scalar conversion to a fixed point type from another type.");
1234   }
1235 
1236   QualType NoncanonicalSrcType = SrcType;
1237   QualType NoncanonicalDstType = DstType;
1238 
1239   SrcType = CGF.getContext().getCanonicalType(SrcType);
1240   DstType = CGF.getContext().getCanonicalType(DstType);
1241   if (SrcType == DstType) return Src;
1242 
1243   if (DstType->isVoidType()) return nullptr;
1244 
1245   llvm::Value *OrigSrc = Src;
1246   QualType OrigSrcType = SrcType;
1247   llvm::Type *SrcTy = Src->getType();
1248 
1249   // Handle conversions to bool first, they are special: comparisons against 0.
1250   if (DstType->isBooleanType())
1251     return EmitConversionToBool(Src, SrcType);
1252 
1253   llvm::Type *DstTy = ConvertType(DstType);
1254 
1255   // Cast from half through float if half isn't a native type.
1256   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1257     // Cast to FP using the intrinsic if the half type itself isn't supported.
1258     if (DstTy->isFloatingPointTy()) {
1259       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1260         return Builder.CreateCall(
1261             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1262             Src);
1263     } else {
1264       // Cast to other types through float, using either the intrinsic or FPExt,
1265       // depending on whether the half type itself is supported
1266       // (as opposed to operations on half, available with NativeHalfType).
1267       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1268         Src = Builder.CreateCall(
1269             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1270                                  CGF.CGM.FloatTy),
1271             Src);
1272       } else {
1273         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1274       }
1275       SrcType = CGF.getContext().FloatTy;
1276       SrcTy = CGF.FloatTy;
1277     }
1278   }
1279 
1280   // Ignore conversions like int -> uint.
1281   if (SrcTy == DstTy) {
1282     if (Opts.EmitImplicitIntegerSignChangeChecks)
1283       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1284                                  NoncanonicalDstType, Loc);
1285 
1286     return Src;
1287   }
1288 
1289   // Handle pointer conversions next: pointers can only be converted to/from
1290   // other pointers and integers. Check for pointer types in terms of LLVM, as
1291   // some native types (like Obj-C id) may map to a pointer type.
1292   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1293     // The source value may be an integer, or a pointer.
1294     if (isa<llvm::PointerType>(SrcTy))
1295       return Builder.CreateBitCast(Src, DstTy, "conv");
1296 
1297     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1298     // First, convert to the correct width so that we control the kind of
1299     // extension.
1300     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1301     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1302     llvm::Value* IntResult =
1303         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1304     // Then, cast to pointer.
1305     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1306   }
1307 
1308   if (isa<llvm::PointerType>(SrcTy)) {
1309     // Must be an ptr to int cast.
1310     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1311     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1312   }
1313 
1314   // A scalar can be splatted to an extended vector of the same element type
1315   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1316     // Sema should add casts to make sure that the source expression's type is
1317     // the same as the vector's element type (sans qualifiers)
1318     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1319                SrcType.getTypePtr() &&
1320            "Splatted expr doesn't match with vector element type?");
1321 
1322     // Splat the element across to all elements
1323     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1324     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1325   }
1326 
1327   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1328     // Allow bitcast from vector to integer/fp of the same size.
1329     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1330     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1331     if (SrcSize == DstSize)
1332       return Builder.CreateBitCast(Src, DstTy, "conv");
1333 
1334     // Conversions between vectors of different sizes are not allowed except
1335     // when vectors of half are involved. Operations on storage-only half
1336     // vectors require promoting half vector operands to float vectors and
1337     // truncating the result, which is either an int or float vector, to a
1338     // short or half vector.
1339 
1340     // Source and destination are both expected to be vectors.
1341     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1342     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1343     (void)DstElementTy;
1344 
1345     assert(((SrcElementTy->isIntegerTy() &&
1346              DstElementTy->isIntegerTy()) ||
1347             (SrcElementTy->isFloatingPointTy() &&
1348              DstElementTy->isFloatingPointTy())) &&
1349            "unexpected conversion between a floating-point vector and an "
1350            "integer vector");
1351 
1352     // Truncate an i32 vector to an i16 vector.
1353     if (SrcElementTy->isIntegerTy())
1354       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1355 
1356     // Truncate a float vector to a half vector.
1357     if (SrcSize > DstSize)
1358       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1359 
1360     // Promote a half vector to a float vector.
1361     return Builder.CreateFPExt(Src, DstTy, "conv");
1362   }
1363 
1364   // Finally, we have the arithmetic types: real int/float.
1365   Value *Res = nullptr;
1366   llvm::Type *ResTy = DstTy;
1367 
1368   // An overflowing conversion has undefined behavior if either the source type
1369   // or the destination type is a floating-point type. However, we consider the
1370   // range of representable values for all floating-point types to be
1371   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1372   // floating-point type.
1373   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1374       OrigSrcType->isFloatingType())
1375     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1376                              Loc);
1377 
1378   // Cast to half through float if half isn't a native type.
1379   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1380     // Make sure we cast in a single step if from another FP type.
1381     if (SrcTy->isFloatingPointTy()) {
1382       // Use the intrinsic if the half type itself isn't supported
1383       // (as opposed to operations on half, available with NativeHalfType).
1384       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1385         return Builder.CreateCall(
1386             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1387       // If the half type is supported, just use an fptrunc.
1388       return Builder.CreateFPTrunc(Src, DstTy);
1389     }
1390     DstTy = CGF.FloatTy;
1391   }
1392 
1393   if (isa<llvm::IntegerType>(SrcTy)) {
1394     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1395     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1396       InputSigned = true;
1397     }
1398     if (isa<llvm::IntegerType>(DstTy))
1399       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1400     else if (InputSigned)
1401       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1402     else
1403       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1404   } else if (isa<llvm::IntegerType>(DstTy)) {
1405     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1406     if (DstType->isSignedIntegerOrEnumerationType())
1407       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1408     else
1409       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1410   } else {
1411     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1412            "Unknown real conversion");
1413     if (DstTy->getTypeID() < SrcTy->getTypeID())
1414       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1415     else
1416       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1417   }
1418 
1419   if (DstTy != ResTy) {
1420     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1421       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1422       Res = Builder.CreateCall(
1423         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1424         Res);
1425     } else {
1426       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1427     }
1428   }
1429 
1430   if (Opts.EmitImplicitIntegerTruncationChecks)
1431     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1432                                NoncanonicalDstType, Loc);
1433 
1434   if (Opts.EmitImplicitIntegerSignChangeChecks)
1435     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1436                                NoncanonicalDstType, Loc);
1437 
1438   return Res;
1439 }
1440 
1441 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1442                                                    QualType DstTy,
1443                                                    SourceLocation Loc) {
1444   auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1445   auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1446   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1447   llvm::Value *Result;
1448   if (DstTy->isIntegerType())
1449     Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1450                                             DstFPSema.getWidth(),
1451                                             DstFPSema.isSigned());
1452   else if (SrcTy->isIntegerType())
1453     Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1454                                              DstFPSema);
1455   else
1456     Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1457   return Result;
1458 }
1459 
1460 /// Emit a conversion from the specified complex type to the specified
1461 /// destination type, where the destination type is an LLVM scalar type.
1462 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1463     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1464     SourceLocation Loc) {
1465   // Get the source element type.
1466   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1467 
1468   // Handle conversions to bool first, they are special: comparisons against 0.
1469   if (DstTy->isBooleanType()) {
1470     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1471     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1472     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1473     return Builder.CreateOr(Src.first, Src.second, "tobool");
1474   }
1475 
1476   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1477   // the imaginary part of the complex value is discarded and the value of the
1478   // real part is converted according to the conversion rules for the
1479   // corresponding real type.
1480   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1481 }
1482 
1483 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1484   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1485 }
1486 
1487 /// Emit a sanitization check for the given "binary" operation (which
1488 /// might actually be a unary increment which has been lowered to a binary
1489 /// operation). The check passes if all values in \p Checks (which are \c i1),
1490 /// are \c true.
1491 void ScalarExprEmitter::EmitBinOpCheck(
1492     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1493   assert(CGF.IsSanitizerScope);
1494   SanitizerHandler Check;
1495   SmallVector<llvm::Constant *, 4> StaticData;
1496   SmallVector<llvm::Value *, 2> DynamicData;
1497 
1498   BinaryOperatorKind Opcode = Info.Opcode;
1499   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1500     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1501 
1502   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1503   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1504   if (UO && UO->getOpcode() == UO_Minus) {
1505     Check = SanitizerHandler::NegateOverflow;
1506     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1507     DynamicData.push_back(Info.RHS);
1508   } else {
1509     if (BinaryOperator::isShiftOp(Opcode)) {
1510       // Shift LHS negative or too large, or RHS out of bounds.
1511       Check = SanitizerHandler::ShiftOutOfBounds;
1512       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1513       StaticData.push_back(
1514         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1515       StaticData.push_back(
1516         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1517     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1518       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1519       Check = SanitizerHandler::DivremOverflow;
1520       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1521     } else {
1522       // Arithmetic overflow (+, -, *).
1523       switch (Opcode) {
1524       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1525       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1526       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1527       default: llvm_unreachable("unexpected opcode for bin op check");
1528       }
1529       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1530     }
1531     DynamicData.push_back(Info.LHS);
1532     DynamicData.push_back(Info.RHS);
1533   }
1534 
1535   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1536 }
1537 
1538 //===----------------------------------------------------------------------===//
1539 //                            Visitor Methods
1540 //===----------------------------------------------------------------------===//
1541 
1542 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1543   CGF.ErrorUnsupported(E, "scalar expression");
1544   if (E->getType()->isVoidType())
1545     return nullptr;
1546   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1547 }
1548 
1549 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1550   // Vector Mask Case
1551   if (E->getNumSubExprs() == 2) {
1552     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1553     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1554     Value *Mask;
1555 
1556     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1557     unsigned LHSElts = LTy->getNumElements();
1558 
1559     Mask = RHS;
1560 
1561     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1562 
1563     // Mask off the high bits of each shuffle index.
1564     Value *MaskBits =
1565         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1566     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1567 
1568     // newv = undef
1569     // mask = mask & maskbits
1570     // for each elt
1571     //   n = extract mask i
1572     //   x = extract val n
1573     //   newv = insert newv, x, i
1574     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1575                                            MTy->getNumElements());
1576     Value* NewV = llvm::UndefValue::get(RTy);
1577     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1578       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1579       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1580 
1581       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1582       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1583     }
1584     return NewV;
1585   }
1586 
1587   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1588   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1589 
1590   SmallVector<int, 32> Indices;
1591   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1592     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1593     // Check for -1 and output it as undef in the IR.
1594     if (Idx.isSigned() && Idx.isAllOnesValue())
1595       Indices.push_back(-1);
1596     else
1597       Indices.push_back(Idx.getZExtValue());
1598   }
1599 
1600   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1601 }
1602 
1603 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1604   QualType SrcType = E->getSrcExpr()->getType(),
1605            DstType = E->getType();
1606 
1607   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1608 
1609   SrcType = CGF.getContext().getCanonicalType(SrcType);
1610   DstType = CGF.getContext().getCanonicalType(DstType);
1611   if (SrcType == DstType) return Src;
1612 
1613   assert(SrcType->isVectorType() &&
1614          "ConvertVector source type must be a vector");
1615   assert(DstType->isVectorType() &&
1616          "ConvertVector destination type must be a vector");
1617 
1618   llvm::Type *SrcTy = Src->getType();
1619   llvm::Type *DstTy = ConvertType(DstType);
1620 
1621   // Ignore conversions like int -> uint.
1622   if (SrcTy == DstTy)
1623     return Src;
1624 
1625   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1626            DstEltType = DstType->castAs<VectorType>()->getElementType();
1627 
1628   assert(SrcTy->isVectorTy() &&
1629          "ConvertVector source IR type must be a vector");
1630   assert(DstTy->isVectorTy() &&
1631          "ConvertVector destination IR type must be a vector");
1632 
1633   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1634              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1635 
1636   if (DstEltType->isBooleanType()) {
1637     assert((SrcEltTy->isFloatingPointTy() ||
1638             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1639 
1640     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1641     if (SrcEltTy->isFloatingPointTy()) {
1642       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1643     } else {
1644       return Builder.CreateICmpNE(Src, Zero, "tobool");
1645     }
1646   }
1647 
1648   // We have the arithmetic types: real int/float.
1649   Value *Res = nullptr;
1650 
1651   if (isa<llvm::IntegerType>(SrcEltTy)) {
1652     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1653     if (isa<llvm::IntegerType>(DstEltTy))
1654       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1655     else if (InputSigned)
1656       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1657     else
1658       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1659   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1660     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1661     if (DstEltType->isSignedIntegerOrEnumerationType())
1662       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1663     else
1664       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1665   } else {
1666     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1667            "Unknown real conversion");
1668     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1669       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1670     else
1671       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1672   }
1673 
1674   return Res;
1675 }
1676 
1677 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1678   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1679     CGF.EmitIgnoredExpr(E->getBase());
1680     return CGF.emitScalarConstant(Constant, E);
1681   } else {
1682     Expr::EvalResult Result;
1683     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1684       llvm::APSInt Value = Result.Val.getInt();
1685       CGF.EmitIgnoredExpr(E->getBase());
1686       return Builder.getInt(Value);
1687     }
1688   }
1689 
1690   return EmitLoadOfLValue(E);
1691 }
1692 
1693 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1694   TestAndClearIgnoreResultAssign();
1695 
1696   // Emit subscript expressions in rvalue context's.  For most cases, this just
1697   // loads the lvalue formed by the subscript expr.  However, we have to be
1698   // careful, because the base of a vector subscript is occasionally an rvalue,
1699   // so we can't get it as an lvalue.
1700   if (!E->getBase()->getType()->isVectorType())
1701     return EmitLoadOfLValue(E);
1702 
1703   // Handle the vector case.  The base must be a vector, the index must be an
1704   // integer value.
1705   Value *Base = Visit(E->getBase());
1706   Value *Idx  = Visit(E->getIdx());
1707   QualType IdxTy = E->getIdx()->getType();
1708 
1709   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1710     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1711 
1712   return Builder.CreateExtractElement(Base, Idx, "vecext");
1713 }
1714 
1715 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1716   TestAndClearIgnoreResultAssign();
1717 
1718   // Handle the vector case.  The base must be a vector, the index must be an
1719   // integer value.
1720   Value *RowIdx = Visit(E->getRowIdx());
1721   Value *ColumnIdx = Visit(E->getColumnIdx());
1722   Value *Matrix = Visit(E->getBase());
1723 
1724   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1725   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1726   return MB.CreateExtractElement(
1727       Matrix, RowIdx, ColumnIdx,
1728       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
1729 }
1730 
1731 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1732                       unsigned Off) {
1733   int MV = SVI->getMaskValue(Idx);
1734   if (MV == -1)
1735     return -1;
1736   return Off + MV;
1737 }
1738 
1739 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1740   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1741          "Index operand too large for shufflevector mask!");
1742   return C->getZExtValue();
1743 }
1744 
1745 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1746   bool Ignore = TestAndClearIgnoreResultAssign();
1747   (void)Ignore;
1748   assert (Ignore == false && "init list ignored");
1749   unsigned NumInitElements = E->getNumInits();
1750 
1751   if (E->hadArrayRangeDesignator())
1752     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1753 
1754   llvm::VectorType *VType =
1755     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1756 
1757   if (!VType) {
1758     if (NumInitElements == 0) {
1759       // C++11 value-initialization for the scalar.
1760       return EmitNullValue(E->getType());
1761     }
1762     // We have a scalar in braces. Just use the first element.
1763     return Visit(E->getInit(0));
1764   }
1765 
1766   unsigned ResElts = VType->getNumElements();
1767 
1768   // Loop over initializers collecting the Value for each, and remembering
1769   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1770   // us to fold the shuffle for the swizzle into the shuffle for the vector
1771   // initializer, since LLVM optimizers generally do not want to touch
1772   // shuffles.
1773   unsigned CurIdx = 0;
1774   bool VIsUndefShuffle = false;
1775   llvm::Value *V = llvm::UndefValue::get(VType);
1776   for (unsigned i = 0; i != NumInitElements; ++i) {
1777     Expr *IE = E->getInit(i);
1778     Value *Init = Visit(IE);
1779     SmallVector<int, 16> Args;
1780 
1781     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1782 
1783     // Handle scalar elements.  If the scalar initializer is actually one
1784     // element of a different vector of the same width, use shuffle instead of
1785     // extract+insert.
1786     if (!VVT) {
1787       if (isa<ExtVectorElementExpr>(IE)) {
1788         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1789 
1790         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1791           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1792           Value *LHS = nullptr, *RHS = nullptr;
1793           if (CurIdx == 0) {
1794             // insert into undef -> shuffle (src, undef)
1795             // shufflemask must use an i32
1796             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1797             Args.resize(ResElts, -1);
1798 
1799             LHS = EI->getVectorOperand();
1800             RHS = V;
1801             VIsUndefShuffle = true;
1802           } else if (VIsUndefShuffle) {
1803             // insert into undefshuffle && size match -> shuffle (v, src)
1804             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1805             for (unsigned j = 0; j != CurIdx; ++j)
1806               Args.push_back(getMaskElt(SVV, j, 0));
1807             Args.push_back(ResElts + C->getZExtValue());
1808             Args.resize(ResElts, -1);
1809 
1810             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1811             RHS = EI->getVectorOperand();
1812             VIsUndefShuffle = false;
1813           }
1814           if (!Args.empty()) {
1815             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1816             ++CurIdx;
1817             continue;
1818           }
1819         }
1820       }
1821       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1822                                       "vecinit");
1823       VIsUndefShuffle = false;
1824       ++CurIdx;
1825       continue;
1826     }
1827 
1828     unsigned InitElts = VVT->getNumElements();
1829 
1830     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1831     // input is the same width as the vector being constructed, generate an
1832     // optimized shuffle of the swizzle input into the result.
1833     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1834     if (isa<ExtVectorElementExpr>(IE)) {
1835       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1836       Value *SVOp = SVI->getOperand(0);
1837       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1838 
1839       if (OpTy->getNumElements() == ResElts) {
1840         for (unsigned j = 0; j != CurIdx; ++j) {
1841           // If the current vector initializer is a shuffle with undef, merge
1842           // this shuffle directly into it.
1843           if (VIsUndefShuffle) {
1844             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1845           } else {
1846             Args.push_back(j);
1847           }
1848         }
1849         for (unsigned j = 0, je = InitElts; j != je; ++j)
1850           Args.push_back(getMaskElt(SVI, j, Offset));
1851         Args.resize(ResElts, -1);
1852 
1853         if (VIsUndefShuffle)
1854           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1855 
1856         Init = SVOp;
1857       }
1858     }
1859 
1860     // Extend init to result vector length, and then shuffle its contribution
1861     // to the vector initializer into V.
1862     if (Args.empty()) {
1863       for (unsigned j = 0; j != InitElts; ++j)
1864         Args.push_back(j);
1865       Args.resize(ResElts, -1);
1866       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args,
1867                                          "vext");
1868 
1869       Args.clear();
1870       for (unsigned j = 0; j != CurIdx; ++j)
1871         Args.push_back(j);
1872       for (unsigned j = 0; j != InitElts; ++j)
1873         Args.push_back(j + Offset);
1874       Args.resize(ResElts, -1);
1875     }
1876 
1877     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1878     // merging subsequent shuffles into this one.
1879     if (CurIdx == 0)
1880       std::swap(V, Init);
1881     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1882     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1883     CurIdx += InitElts;
1884   }
1885 
1886   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1887   // Emit remaining default initializers.
1888   llvm::Type *EltTy = VType->getElementType();
1889 
1890   // Emit remaining default initializers
1891   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1892     Value *Idx = Builder.getInt32(CurIdx);
1893     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1894     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1895   }
1896   return V;
1897 }
1898 
1899 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1900   const Expr *E = CE->getSubExpr();
1901 
1902   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1903     return false;
1904 
1905   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1906     // We always assume that 'this' is never null.
1907     return false;
1908   }
1909 
1910   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1911     // And that glvalue casts are never null.
1912     if (ICE->getValueKind() != VK_RValue)
1913       return false;
1914   }
1915 
1916   return true;
1917 }
1918 
1919 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1920 // have to handle a more broad range of conversions than explicit casts, as they
1921 // handle things like function to ptr-to-function decay etc.
1922 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1923   Expr *E = CE->getSubExpr();
1924   QualType DestTy = CE->getType();
1925   CastKind Kind = CE->getCastKind();
1926 
1927   // These cases are generally not written to ignore the result of
1928   // evaluating their sub-expressions, so we clear this now.
1929   bool Ignored = TestAndClearIgnoreResultAssign();
1930 
1931   // Since almost all cast kinds apply to scalars, this switch doesn't have
1932   // a default case, so the compiler will warn on a missing case.  The cases
1933   // are in the same order as in the CastKind enum.
1934   switch (Kind) {
1935   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1936   case CK_BuiltinFnToFnPtr:
1937     llvm_unreachable("builtin functions are handled elsewhere");
1938 
1939   case CK_LValueBitCast:
1940   case CK_ObjCObjectLValueCast: {
1941     Address Addr = EmitLValue(E).getAddress(CGF);
1942     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1943     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1944     return EmitLoadOfLValue(LV, CE->getExprLoc());
1945   }
1946 
1947   case CK_LValueToRValueBitCast: {
1948     LValue SourceLVal = CGF.EmitLValue(E);
1949     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1950                                                 CGF.ConvertTypeForMem(DestTy));
1951     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1952     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1953     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1954   }
1955 
1956   case CK_CPointerToObjCPointerCast:
1957   case CK_BlockPointerToObjCPointerCast:
1958   case CK_AnyPointerToBlockPointerCast:
1959   case CK_BitCast: {
1960     Value *Src = Visit(const_cast<Expr*>(E));
1961     llvm::Type *SrcTy = Src->getType();
1962     llvm::Type *DstTy = ConvertType(DestTy);
1963     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1964         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1965       llvm_unreachable("wrong cast for pointers in different address spaces"
1966                        "(must be an address space cast)!");
1967     }
1968 
1969     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1970       if (auto PT = DestTy->getAs<PointerType>())
1971         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1972                                       /*MayBeNull=*/true,
1973                                       CodeGenFunction::CFITCK_UnrelatedCast,
1974                                       CE->getBeginLoc());
1975     }
1976 
1977     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1978       const QualType SrcType = E->getType();
1979 
1980       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
1981         // Casting to pointer that could carry dynamic information (provided by
1982         // invariant.group) requires launder.
1983         Src = Builder.CreateLaunderInvariantGroup(Src);
1984       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
1985         // Casting to pointer that does not carry dynamic information (provided
1986         // by invariant.group) requires stripping it.  Note that we don't do it
1987         // if the source could not be dynamic type and destination could be
1988         // dynamic because dynamic information is already laundered.  It is
1989         // because launder(strip(src)) == launder(src), so there is no need to
1990         // add extra strip before launder.
1991         Src = Builder.CreateStripInvariantGroup(Src);
1992       }
1993     }
1994 
1995     // Update heapallocsite metadata when there is an explicit pointer cast.
1996     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
1997       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
1998         QualType PointeeType = DestTy->getPointeeType();
1999         if (!PointeeType.isNull())
2000           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2001                                                        CE->getExprLoc());
2002       }
2003     }
2004 
2005     return Builder.CreateBitCast(Src, DstTy);
2006   }
2007   case CK_AddressSpaceConversion: {
2008     Expr::EvalResult Result;
2009     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2010         Result.Val.isNullPointer()) {
2011       // If E has side effect, it is emitted even if its final result is a
2012       // null pointer. In that case, a DCE pass should be able to
2013       // eliminate the useless instructions emitted during translating E.
2014       if (Result.HasSideEffects)
2015         Visit(E);
2016       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2017           ConvertType(DestTy)), DestTy);
2018     }
2019     // Since target may map different address spaces in AST to the same address
2020     // space, an address space conversion may end up as a bitcast.
2021     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2022         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2023         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2024   }
2025   case CK_AtomicToNonAtomic:
2026   case CK_NonAtomicToAtomic:
2027   case CK_NoOp:
2028   case CK_UserDefinedConversion:
2029     return Visit(const_cast<Expr*>(E));
2030 
2031   case CK_BaseToDerived: {
2032     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2033     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2034 
2035     Address Base = CGF.EmitPointerWithAlignment(E);
2036     Address Derived =
2037       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2038                                    CE->path_begin(), CE->path_end(),
2039                                    CGF.ShouldNullCheckClassCastValue(CE));
2040 
2041     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2042     // performed and the object is not of the derived type.
2043     if (CGF.sanitizePerformTypeCheck())
2044       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2045                         Derived.getPointer(), DestTy->getPointeeType());
2046 
2047     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2048       CGF.EmitVTablePtrCheckForCast(
2049           DestTy->getPointeeType(), Derived.getPointer(),
2050           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2051           CE->getBeginLoc());
2052 
2053     return Derived.getPointer();
2054   }
2055   case CK_UncheckedDerivedToBase:
2056   case CK_DerivedToBase: {
2057     // The EmitPointerWithAlignment path does this fine; just discard
2058     // the alignment.
2059     return CGF.EmitPointerWithAlignment(CE).getPointer();
2060   }
2061 
2062   case CK_Dynamic: {
2063     Address V = CGF.EmitPointerWithAlignment(E);
2064     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2065     return CGF.EmitDynamicCast(V, DCE);
2066   }
2067 
2068   case CK_ArrayToPointerDecay:
2069     return CGF.EmitArrayToPointerDecay(E).getPointer();
2070   case CK_FunctionToPointerDecay:
2071     return EmitLValue(E).getPointer(CGF);
2072 
2073   case CK_NullToPointer:
2074     if (MustVisitNullValue(E))
2075       CGF.EmitIgnoredExpr(E);
2076 
2077     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2078                               DestTy);
2079 
2080   case CK_NullToMemberPointer: {
2081     if (MustVisitNullValue(E))
2082       CGF.EmitIgnoredExpr(E);
2083 
2084     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2085     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2086   }
2087 
2088   case CK_ReinterpretMemberPointer:
2089   case CK_BaseToDerivedMemberPointer:
2090   case CK_DerivedToBaseMemberPointer: {
2091     Value *Src = Visit(E);
2092 
2093     // Note that the AST doesn't distinguish between checked and
2094     // unchecked member pointer conversions, so we always have to
2095     // implement checked conversions here.  This is inefficient when
2096     // actual control flow may be required in order to perform the
2097     // check, which it is for data member pointers (but not member
2098     // function pointers on Itanium and ARM).
2099     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2100   }
2101 
2102   case CK_ARCProduceObject:
2103     return CGF.EmitARCRetainScalarExpr(E);
2104   case CK_ARCConsumeObject:
2105     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2106   case CK_ARCReclaimReturnedObject:
2107     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2108   case CK_ARCExtendBlockObject:
2109     return CGF.EmitARCExtendBlockObject(E);
2110 
2111   case CK_CopyAndAutoreleaseBlockObject:
2112     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2113 
2114   case CK_FloatingRealToComplex:
2115   case CK_FloatingComplexCast:
2116   case CK_IntegralRealToComplex:
2117   case CK_IntegralComplexCast:
2118   case CK_IntegralComplexToFloatingComplex:
2119   case CK_FloatingComplexToIntegralComplex:
2120   case CK_ConstructorConversion:
2121   case CK_ToUnion:
2122     llvm_unreachable("scalar cast to non-scalar value");
2123 
2124   case CK_LValueToRValue:
2125     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2126     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2127     return Visit(const_cast<Expr*>(E));
2128 
2129   case CK_IntegralToPointer: {
2130     Value *Src = Visit(const_cast<Expr*>(E));
2131 
2132     // First, convert to the correct width so that we control the kind of
2133     // extension.
2134     auto DestLLVMTy = ConvertType(DestTy);
2135     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2136     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2137     llvm::Value* IntResult =
2138       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2139 
2140     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2141 
2142     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2143       // Going from integer to pointer that could be dynamic requires reloading
2144       // dynamic information from invariant.group.
2145       if (DestTy.mayBeDynamicClass())
2146         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2147     }
2148     return IntToPtr;
2149   }
2150   case CK_PointerToIntegral: {
2151     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2152     auto *PtrExpr = Visit(E);
2153 
2154     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2155       const QualType SrcType = E->getType();
2156 
2157       // Casting to integer requires stripping dynamic information as it does
2158       // not carries it.
2159       if (SrcType.mayBeDynamicClass())
2160         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2161     }
2162 
2163     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2164   }
2165   case CK_ToVoid: {
2166     CGF.EmitIgnoredExpr(E);
2167     return nullptr;
2168   }
2169   case CK_VectorSplat: {
2170     llvm::Type *DstTy = ConvertType(DestTy);
2171     Value *Elt = Visit(const_cast<Expr*>(E));
2172     // Splat the element across to all elements
2173     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
2174     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2175   }
2176 
2177   case CK_FixedPointCast:
2178     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2179                                 CE->getExprLoc());
2180 
2181   case CK_FixedPointToBoolean:
2182     assert(E->getType()->isFixedPointType() &&
2183            "Expected src type to be fixed point type");
2184     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2185     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2186                                 CE->getExprLoc());
2187 
2188   case CK_FixedPointToIntegral:
2189     assert(E->getType()->isFixedPointType() &&
2190            "Expected src type to be fixed point type");
2191     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2192     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2193                                 CE->getExprLoc());
2194 
2195   case CK_IntegralToFixedPoint:
2196     assert(E->getType()->isIntegerType() &&
2197            "Expected src type to be an integer");
2198     assert(DestTy->isFixedPointType() &&
2199            "Expected dest type to be fixed point type");
2200     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2201                                 CE->getExprLoc());
2202 
2203   case CK_IntegralCast: {
2204     ScalarConversionOpts Opts;
2205     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2206       if (!ICE->isPartOfExplicitCast())
2207         Opts = ScalarConversionOpts(CGF.SanOpts);
2208     }
2209     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2210                                 CE->getExprLoc(), Opts);
2211   }
2212   case CK_IntegralToFloating:
2213   case CK_FloatingToIntegral:
2214   case CK_FloatingCast:
2215     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2216                                 CE->getExprLoc());
2217   case CK_BooleanToSignedIntegral: {
2218     ScalarConversionOpts Opts;
2219     Opts.TreatBooleanAsSigned = true;
2220     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2221                                 CE->getExprLoc(), Opts);
2222   }
2223   case CK_IntegralToBoolean:
2224     return EmitIntToBoolConversion(Visit(E));
2225   case CK_PointerToBoolean:
2226     return EmitPointerToBoolConversion(Visit(E), E->getType());
2227   case CK_FloatingToBoolean:
2228     return EmitFloatToBoolConversion(Visit(E));
2229   case CK_MemberPointerToBoolean: {
2230     llvm::Value *MemPtr = Visit(E);
2231     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2232     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2233   }
2234 
2235   case CK_FloatingComplexToReal:
2236   case CK_IntegralComplexToReal:
2237     return CGF.EmitComplexExpr(E, false, true).first;
2238 
2239   case CK_FloatingComplexToBoolean:
2240   case CK_IntegralComplexToBoolean: {
2241     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2242 
2243     // TODO: kill this function off, inline appropriate case here
2244     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2245                                          CE->getExprLoc());
2246   }
2247 
2248   case CK_ZeroToOCLOpaqueType: {
2249     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2250             DestTy->isOCLIntelSubgroupAVCType()) &&
2251            "CK_ZeroToOCLEvent cast on non-event type");
2252     return llvm::Constant::getNullValue(ConvertType(DestTy));
2253   }
2254 
2255   case CK_IntToOCLSampler:
2256     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2257 
2258   } // end of switch
2259 
2260   llvm_unreachable("unknown scalar cast");
2261 }
2262 
2263 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2264   CodeGenFunction::StmtExprEvaluation eval(CGF);
2265   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2266                                            !E->getType()->isVoidType());
2267   if (!RetAlloca.isValid())
2268     return nullptr;
2269   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2270                               E->getExprLoc());
2271 }
2272 
2273 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2274   CodeGenFunction::RunCleanupsScope Scope(CGF);
2275   Value *V = Visit(E->getSubExpr());
2276   // Defend against dominance problems caused by jumps out of expression
2277   // evaluation through the shared cleanup block.
2278   Scope.ForceCleanup({&V});
2279   return V;
2280 }
2281 
2282 //===----------------------------------------------------------------------===//
2283 //                             Unary Operators
2284 //===----------------------------------------------------------------------===//
2285 
2286 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2287                                            llvm::Value *InVal, bool IsInc,
2288                                            FPOptions FPFeatures) {
2289   BinOpInfo BinOp;
2290   BinOp.LHS = InVal;
2291   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2292   BinOp.Ty = E->getType();
2293   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2294   BinOp.FPFeatures = FPFeatures;
2295   BinOp.E = E;
2296   return BinOp;
2297 }
2298 
2299 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2300     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2301   llvm::Value *Amount =
2302       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2303   StringRef Name = IsInc ? "inc" : "dec";
2304   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2305   case LangOptions::SOB_Defined:
2306     return Builder.CreateAdd(InVal, Amount, Name);
2307   case LangOptions::SOB_Undefined:
2308     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2309       return Builder.CreateNSWAdd(InVal, Amount, Name);
2310     LLVM_FALLTHROUGH;
2311   case LangOptions::SOB_Trapping:
2312     if (!E->canOverflow())
2313       return Builder.CreateNSWAdd(InVal, Amount, Name);
2314     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2315         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2316   }
2317   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2318 }
2319 
2320 namespace {
2321 /// Handles check and update for lastprivate conditional variables.
2322 class OMPLastprivateConditionalUpdateRAII {
2323 private:
2324   CodeGenFunction &CGF;
2325   const UnaryOperator *E;
2326 
2327 public:
2328   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2329                                       const UnaryOperator *E)
2330       : CGF(CGF), E(E) {}
2331   ~OMPLastprivateConditionalUpdateRAII() {
2332     if (CGF.getLangOpts().OpenMP)
2333       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2334           CGF, E->getSubExpr());
2335   }
2336 };
2337 } // namespace
2338 
2339 llvm::Value *
2340 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2341                                            bool isInc, bool isPre) {
2342   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2343   QualType type = E->getSubExpr()->getType();
2344   llvm::PHINode *atomicPHI = nullptr;
2345   llvm::Value *value;
2346   llvm::Value *input;
2347 
2348   int amount = (isInc ? 1 : -1);
2349   bool isSubtraction = !isInc;
2350 
2351   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2352     type = atomicTy->getValueType();
2353     if (isInc && type->isBooleanType()) {
2354       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2355       if (isPre) {
2356         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2357             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2358         return Builder.getTrue();
2359       }
2360       // For atomic bool increment, we just store true and return it for
2361       // preincrement, do an atomic swap with true for postincrement
2362       return Builder.CreateAtomicRMW(
2363           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2364           llvm::AtomicOrdering::SequentiallyConsistent);
2365     }
2366     // Special case for atomic increment / decrement on integers, emit
2367     // atomicrmw instructions.  We skip this if we want to be doing overflow
2368     // checking, and fall into the slow path with the atomic cmpxchg loop.
2369     if (!type->isBooleanType() && type->isIntegerType() &&
2370         !(type->isUnsignedIntegerType() &&
2371           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2372         CGF.getLangOpts().getSignedOverflowBehavior() !=
2373             LangOptions::SOB_Trapping) {
2374       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2375         llvm::AtomicRMWInst::Sub;
2376       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2377         llvm::Instruction::Sub;
2378       llvm::Value *amt = CGF.EmitToMemory(
2379           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2380       llvm::Value *old =
2381           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2382                                   llvm::AtomicOrdering::SequentiallyConsistent);
2383       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2384     }
2385     value = EmitLoadOfLValue(LV, E->getExprLoc());
2386     input = value;
2387     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2388     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2389     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2390     value = CGF.EmitToMemory(value, type);
2391     Builder.CreateBr(opBB);
2392     Builder.SetInsertPoint(opBB);
2393     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2394     atomicPHI->addIncoming(value, startBB);
2395     value = atomicPHI;
2396   } else {
2397     value = EmitLoadOfLValue(LV, E->getExprLoc());
2398     input = value;
2399   }
2400 
2401   // Special case of integer increment that we have to check first: bool++.
2402   // Due to promotion rules, we get:
2403   //   bool++ -> bool = bool + 1
2404   //          -> bool = (int)bool + 1
2405   //          -> bool = ((int)bool + 1 != 0)
2406   // An interesting aspect of this is that increment is always true.
2407   // Decrement does not have this property.
2408   if (isInc && type->isBooleanType()) {
2409     value = Builder.getTrue();
2410 
2411   // Most common case by far: integer increment.
2412   } else if (type->isIntegerType()) {
2413     QualType promotedType;
2414     bool canPerformLossyDemotionCheck = false;
2415     if (type->isPromotableIntegerType()) {
2416       promotedType = CGF.getContext().getPromotedIntegerType(type);
2417       assert(promotedType != type && "Shouldn't promote to the same type.");
2418       canPerformLossyDemotionCheck = true;
2419       canPerformLossyDemotionCheck &=
2420           CGF.getContext().getCanonicalType(type) !=
2421           CGF.getContext().getCanonicalType(promotedType);
2422       canPerformLossyDemotionCheck &=
2423           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2424               type, promotedType);
2425       assert((!canPerformLossyDemotionCheck ||
2426               type->isSignedIntegerOrEnumerationType() ||
2427               promotedType->isSignedIntegerOrEnumerationType() ||
2428               ConvertType(type)->getScalarSizeInBits() ==
2429                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2430              "The following check expects that if we do promotion to different "
2431              "underlying canonical type, at least one of the types (either "
2432              "base or promoted) will be signed, or the bitwidths will match.");
2433     }
2434     if (CGF.SanOpts.hasOneOf(
2435             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2436         canPerformLossyDemotionCheck) {
2437       // While `x += 1` (for `x` with width less than int) is modeled as
2438       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2439       // ease; inc/dec with width less than int can't overflow because of
2440       // promotion rules, so we omit promotion+demotion, which means that we can
2441       // not catch lossy "demotion". Because we still want to catch these cases
2442       // when the sanitizer is enabled, we perform the promotion, then perform
2443       // the increment/decrement in the wider type, and finally
2444       // perform the demotion. This will catch lossy demotions.
2445 
2446       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2447       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2448       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2449       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2450       // emitted.
2451       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2452                                    ScalarConversionOpts(CGF.SanOpts));
2453 
2454       // Note that signed integer inc/dec with width less than int can't
2455       // overflow because of promotion rules; we're just eliding a few steps
2456       // here.
2457     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2458       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2459     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2460                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2461       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2462           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2463     } else {
2464       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2465       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2466     }
2467 
2468   // Next most common: pointer increment.
2469   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2470     QualType type = ptr->getPointeeType();
2471 
2472     // VLA types don't have constant size.
2473     if (const VariableArrayType *vla
2474           = CGF.getContext().getAsVariableArrayType(type)) {
2475       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2476       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2477       if (CGF.getLangOpts().isSignedOverflowDefined())
2478         value = Builder.CreateGEP(value, numElts, "vla.inc");
2479       else
2480         value = CGF.EmitCheckedInBoundsGEP(
2481             value, numElts, /*SignedIndices=*/false, isSubtraction,
2482             E->getExprLoc(), "vla.inc");
2483 
2484     // Arithmetic on function pointers (!) is just +-1.
2485     } else if (type->isFunctionType()) {
2486       llvm::Value *amt = Builder.getInt32(amount);
2487 
2488       value = CGF.EmitCastToVoidPtr(value);
2489       if (CGF.getLangOpts().isSignedOverflowDefined())
2490         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2491       else
2492         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2493                                            isSubtraction, E->getExprLoc(),
2494                                            "incdec.funcptr");
2495       value = Builder.CreateBitCast(value, input->getType());
2496 
2497     // For everything else, we can just do a simple increment.
2498     } else {
2499       llvm::Value *amt = Builder.getInt32(amount);
2500       if (CGF.getLangOpts().isSignedOverflowDefined())
2501         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2502       else
2503         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2504                                            isSubtraction, E->getExprLoc(),
2505                                            "incdec.ptr");
2506     }
2507 
2508   // Vector increment/decrement.
2509   } else if (type->isVectorType()) {
2510     if (type->hasIntegerRepresentation()) {
2511       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2512 
2513       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2514     } else {
2515       value = Builder.CreateFAdd(
2516                   value,
2517                   llvm::ConstantFP::get(value->getType(), amount),
2518                   isInc ? "inc" : "dec");
2519     }
2520 
2521   // Floating point.
2522   } else if (type->isRealFloatingType()) {
2523     // Add the inc/dec to the real part.
2524     llvm::Value *amt;
2525 
2526     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2527       // Another special case: half FP increment should be done via float
2528       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2529         value = Builder.CreateCall(
2530             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2531                                  CGF.CGM.FloatTy),
2532             input, "incdec.conv");
2533       } else {
2534         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2535       }
2536     }
2537 
2538     if (value->getType()->isFloatTy())
2539       amt = llvm::ConstantFP::get(VMContext,
2540                                   llvm::APFloat(static_cast<float>(amount)));
2541     else if (value->getType()->isDoubleTy())
2542       amt = llvm::ConstantFP::get(VMContext,
2543                                   llvm::APFloat(static_cast<double>(amount)));
2544     else {
2545       // Remaining types are Half, LongDouble or __float128. Convert from float.
2546       llvm::APFloat F(static_cast<float>(amount));
2547       bool ignored;
2548       const llvm::fltSemantics *FS;
2549       // Don't use getFloatTypeSemantics because Half isn't
2550       // necessarily represented using the "half" LLVM type.
2551       if (value->getType()->isFP128Ty())
2552         FS = &CGF.getTarget().getFloat128Format();
2553       else if (value->getType()->isHalfTy())
2554         FS = &CGF.getTarget().getHalfFormat();
2555       else
2556         FS = &CGF.getTarget().getLongDoubleFormat();
2557       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2558       amt = llvm::ConstantFP::get(VMContext, F);
2559     }
2560     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2561 
2562     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2563       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2564         value = Builder.CreateCall(
2565             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2566                                  CGF.CGM.FloatTy),
2567             value, "incdec.conv");
2568       } else {
2569         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2570       }
2571     }
2572 
2573   // Fixed-point types.
2574   } else if (type->isFixedPointType()) {
2575     // Fixed-point types are tricky. In some cases, it isn't possible to
2576     // represent a 1 or a -1 in the type at all. Piggyback off of
2577     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2578     BinOpInfo Info;
2579     Info.E = E;
2580     Info.Ty = E->getType();
2581     Info.Opcode = isInc ? BO_Add : BO_Sub;
2582     Info.LHS = value;
2583     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2584     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2585     // since -1 is guaranteed to be representable.
2586     if (type->isSignedFixedPointType()) {
2587       Info.Opcode = isInc ? BO_Sub : BO_Add;
2588       Info.RHS = Builder.CreateNeg(Info.RHS);
2589     }
2590     // Now, convert from our invented integer literal to the type of the unary
2591     // op. This will upscale and saturate if necessary. This value can become
2592     // undef in some cases.
2593     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2594     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2595     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2596     value = EmitFixedPointBinOp(Info);
2597 
2598   // Objective-C pointer types.
2599   } else {
2600     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2601     value = CGF.EmitCastToVoidPtr(value);
2602 
2603     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2604     if (!isInc) size = -size;
2605     llvm::Value *sizeValue =
2606       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2607 
2608     if (CGF.getLangOpts().isSignedOverflowDefined())
2609       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2610     else
2611       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2612                                          /*SignedIndices=*/false, isSubtraction,
2613                                          E->getExprLoc(), "incdec.objptr");
2614     value = Builder.CreateBitCast(value, input->getType());
2615   }
2616 
2617   if (atomicPHI) {
2618     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2619     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2620     auto Pair = CGF.EmitAtomicCompareExchange(
2621         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2622     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2623     llvm::Value *success = Pair.second;
2624     atomicPHI->addIncoming(old, curBlock);
2625     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2626     Builder.SetInsertPoint(contBB);
2627     return isPre ? value : input;
2628   }
2629 
2630   // Store the updated result through the lvalue.
2631   if (LV.isBitField())
2632     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2633   else
2634     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2635 
2636   // If this is a postinc, return the value read from memory, otherwise use the
2637   // updated value.
2638   return isPre ? value : input;
2639 }
2640 
2641 
2642 
2643 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2644   TestAndClearIgnoreResultAssign();
2645   Value *Op = Visit(E->getSubExpr());
2646 
2647   // Generate a unary FNeg for FP ops.
2648   if (Op->getType()->isFPOrFPVectorTy())
2649     return Builder.CreateFNeg(Op, "fneg");
2650 
2651   // Emit unary minus with EmitSub so we handle overflow cases etc.
2652   BinOpInfo BinOp;
2653   BinOp.RHS = Op;
2654   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2655   BinOp.Ty = E->getType();
2656   BinOp.Opcode = BO_Sub;
2657   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2658   BinOp.E = E;
2659   return EmitSub(BinOp);
2660 }
2661 
2662 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2663   TestAndClearIgnoreResultAssign();
2664   Value *Op = Visit(E->getSubExpr());
2665   return Builder.CreateNot(Op, "neg");
2666 }
2667 
2668 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2669   // Perform vector logical not on comparison with zero vector.
2670   if (E->getType()->isVectorType() &&
2671       E->getType()->castAs<VectorType>()->getVectorKind() ==
2672           VectorType::GenericVector) {
2673     Value *Oper = Visit(E->getSubExpr());
2674     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2675     Value *Result;
2676     if (Oper->getType()->isFPOrFPVectorTy()) {
2677       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2678           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2679       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2680     } else
2681       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2682     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2683   }
2684 
2685   // Compare operand to zero.
2686   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2687 
2688   // Invert value.
2689   // TODO: Could dynamically modify easy computations here.  For example, if
2690   // the operand is an icmp ne, turn into icmp eq.
2691   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2692 
2693   // ZExt result to the expr type.
2694   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2695 }
2696 
2697 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2698   // Try folding the offsetof to a constant.
2699   Expr::EvalResult EVResult;
2700   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2701     llvm::APSInt Value = EVResult.Val.getInt();
2702     return Builder.getInt(Value);
2703   }
2704 
2705   // Loop over the components of the offsetof to compute the value.
2706   unsigned n = E->getNumComponents();
2707   llvm::Type* ResultType = ConvertType(E->getType());
2708   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2709   QualType CurrentType = E->getTypeSourceInfo()->getType();
2710   for (unsigned i = 0; i != n; ++i) {
2711     OffsetOfNode ON = E->getComponent(i);
2712     llvm::Value *Offset = nullptr;
2713     switch (ON.getKind()) {
2714     case OffsetOfNode::Array: {
2715       // Compute the index
2716       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2717       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2718       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2719       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2720 
2721       // Save the element type
2722       CurrentType =
2723           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2724 
2725       // Compute the element size
2726       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2727           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2728 
2729       // Multiply out to compute the result
2730       Offset = Builder.CreateMul(Idx, ElemSize);
2731       break;
2732     }
2733 
2734     case OffsetOfNode::Field: {
2735       FieldDecl *MemberDecl = ON.getField();
2736       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2737       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2738 
2739       // Compute the index of the field in its parent.
2740       unsigned i = 0;
2741       // FIXME: It would be nice if we didn't have to loop here!
2742       for (RecordDecl::field_iterator Field = RD->field_begin(),
2743                                       FieldEnd = RD->field_end();
2744            Field != FieldEnd; ++Field, ++i) {
2745         if (*Field == MemberDecl)
2746           break;
2747       }
2748       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2749 
2750       // Compute the offset to the field
2751       int64_t OffsetInt = RL.getFieldOffset(i) /
2752                           CGF.getContext().getCharWidth();
2753       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2754 
2755       // Save the element type.
2756       CurrentType = MemberDecl->getType();
2757       break;
2758     }
2759 
2760     case OffsetOfNode::Identifier:
2761       llvm_unreachable("dependent __builtin_offsetof");
2762 
2763     case OffsetOfNode::Base: {
2764       if (ON.getBase()->isVirtual()) {
2765         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2766         continue;
2767       }
2768 
2769       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2770       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2771 
2772       // Save the element type.
2773       CurrentType = ON.getBase()->getType();
2774 
2775       // Compute the offset to the base.
2776       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2777       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2778       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2779       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2780       break;
2781     }
2782     }
2783     Result = Builder.CreateAdd(Result, Offset);
2784   }
2785   return Result;
2786 }
2787 
2788 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2789 /// argument of the sizeof expression as an integer.
2790 Value *
2791 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2792                               const UnaryExprOrTypeTraitExpr *E) {
2793   QualType TypeToSize = E->getTypeOfArgument();
2794   if (E->getKind() == UETT_SizeOf) {
2795     if (const VariableArrayType *VAT =
2796           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2797       if (E->isArgumentType()) {
2798         // sizeof(type) - make sure to emit the VLA size.
2799         CGF.EmitVariablyModifiedType(TypeToSize);
2800       } else {
2801         // C99 6.5.3.4p2: If the argument is an expression of type
2802         // VLA, it is evaluated.
2803         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2804       }
2805 
2806       auto VlaSize = CGF.getVLASize(VAT);
2807       llvm::Value *size = VlaSize.NumElts;
2808 
2809       // Scale the number of non-VLA elements by the non-VLA element size.
2810       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2811       if (!eltSize.isOne())
2812         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2813 
2814       return size;
2815     }
2816   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2817     auto Alignment =
2818         CGF.getContext()
2819             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2820                 E->getTypeOfArgument()->getPointeeType()))
2821             .getQuantity();
2822     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2823   }
2824 
2825   // If this isn't sizeof(vla), the result must be constant; use the constant
2826   // folding logic so we don't have to duplicate it here.
2827   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2828 }
2829 
2830 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2831   Expr *Op = E->getSubExpr();
2832   if (Op->getType()->isAnyComplexType()) {
2833     // If it's an l-value, load through the appropriate subobject l-value.
2834     // Note that we have to ask E because Op might be an l-value that
2835     // this won't work for, e.g. an Obj-C property.
2836     if (E->isGLValue())
2837       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2838                                   E->getExprLoc()).getScalarVal();
2839 
2840     // Otherwise, calculate and project.
2841     return CGF.EmitComplexExpr(Op, false, true).first;
2842   }
2843 
2844   return Visit(Op);
2845 }
2846 
2847 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2848   Expr *Op = E->getSubExpr();
2849   if (Op->getType()->isAnyComplexType()) {
2850     // If it's an l-value, load through the appropriate subobject l-value.
2851     // Note that we have to ask E because Op might be an l-value that
2852     // this won't work for, e.g. an Obj-C property.
2853     if (Op->isGLValue())
2854       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2855                                   E->getExprLoc()).getScalarVal();
2856 
2857     // Otherwise, calculate and project.
2858     return CGF.EmitComplexExpr(Op, true, false).second;
2859   }
2860 
2861   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2862   // effects are evaluated, but not the actual value.
2863   if (Op->isGLValue())
2864     CGF.EmitLValue(Op);
2865   else
2866     CGF.EmitScalarExpr(Op, true);
2867   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2868 }
2869 
2870 //===----------------------------------------------------------------------===//
2871 //                           Binary Operators
2872 //===----------------------------------------------------------------------===//
2873 
2874 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2875   TestAndClearIgnoreResultAssign();
2876   BinOpInfo Result;
2877   Result.LHS = Visit(E->getLHS());
2878   Result.RHS = Visit(E->getRHS());
2879   Result.Ty  = E->getType();
2880   Result.Opcode = E->getOpcode();
2881   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2882   Result.E = E;
2883   return Result;
2884 }
2885 
2886 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2887                                               const CompoundAssignOperator *E,
2888                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2889                                                    Value *&Result) {
2890   QualType LHSTy = E->getLHS()->getType();
2891   BinOpInfo OpInfo;
2892 
2893   if (E->getComputationResultType()->isAnyComplexType())
2894     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2895 
2896   // Emit the RHS first.  __block variables need to have the rhs evaluated
2897   // first, plus this should improve codegen a little.
2898   OpInfo.RHS = Visit(E->getRHS());
2899   OpInfo.Ty = E->getComputationResultType();
2900   OpInfo.Opcode = E->getOpcode();
2901   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2902   OpInfo.E = E;
2903   // Load/convert the LHS.
2904   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2905 
2906   llvm::PHINode *atomicPHI = nullptr;
2907   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2908     QualType type = atomicTy->getValueType();
2909     if (!type->isBooleanType() && type->isIntegerType() &&
2910         !(type->isUnsignedIntegerType() &&
2911           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2912         CGF.getLangOpts().getSignedOverflowBehavior() !=
2913             LangOptions::SOB_Trapping) {
2914       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2915       llvm::Instruction::BinaryOps Op;
2916       switch (OpInfo.Opcode) {
2917         // We don't have atomicrmw operands for *, %, /, <<, >>
2918         case BO_MulAssign: case BO_DivAssign:
2919         case BO_RemAssign:
2920         case BO_ShlAssign:
2921         case BO_ShrAssign:
2922           break;
2923         case BO_AddAssign:
2924           AtomicOp = llvm::AtomicRMWInst::Add;
2925           Op = llvm::Instruction::Add;
2926           break;
2927         case BO_SubAssign:
2928           AtomicOp = llvm::AtomicRMWInst::Sub;
2929           Op = llvm::Instruction::Sub;
2930           break;
2931         case BO_AndAssign:
2932           AtomicOp = llvm::AtomicRMWInst::And;
2933           Op = llvm::Instruction::And;
2934           break;
2935         case BO_XorAssign:
2936           AtomicOp = llvm::AtomicRMWInst::Xor;
2937           Op = llvm::Instruction::Xor;
2938           break;
2939         case BO_OrAssign:
2940           AtomicOp = llvm::AtomicRMWInst::Or;
2941           Op = llvm::Instruction::Or;
2942           break;
2943         default:
2944           llvm_unreachable("Invalid compound assignment type");
2945       }
2946       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2947         llvm::Value *Amt = CGF.EmitToMemory(
2948             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2949                                  E->getExprLoc()),
2950             LHSTy);
2951         Value *OldVal = Builder.CreateAtomicRMW(
2952             AtomicOp, LHSLV.getPointer(CGF), Amt,
2953             llvm::AtomicOrdering::SequentiallyConsistent);
2954 
2955         // Since operation is atomic, the result type is guaranteed to be the
2956         // same as the input in LLVM terms.
2957         Result = Builder.CreateBinOp(Op, OldVal, Amt);
2958         return LHSLV;
2959       }
2960     }
2961     // FIXME: For floating point types, we should be saving and restoring the
2962     // floating point environment in the loop.
2963     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2964     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2965     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2966     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2967     Builder.CreateBr(opBB);
2968     Builder.SetInsertPoint(opBB);
2969     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2970     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2971     OpInfo.LHS = atomicPHI;
2972   }
2973   else
2974     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2975 
2976   SourceLocation Loc = E->getExprLoc();
2977   OpInfo.LHS =
2978       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2979 
2980   // Expand the binary operator.
2981   Result = (this->*Func)(OpInfo);
2982 
2983   // Convert the result back to the LHS type,
2984   // potentially with Implicit Conversion sanitizer check.
2985   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2986                                 Loc, ScalarConversionOpts(CGF.SanOpts));
2987 
2988   if (atomicPHI) {
2989     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2990     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2991     auto Pair = CGF.EmitAtomicCompareExchange(
2992         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2993     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2994     llvm::Value *success = Pair.second;
2995     atomicPHI->addIncoming(old, curBlock);
2996     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2997     Builder.SetInsertPoint(contBB);
2998     return LHSLV;
2999   }
3000 
3001   // Store the result value into the LHS lvalue. Bit-fields are handled
3002   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3003   // 'An assignment expression has the value of the left operand after the
3004   // assignment...'.
3005   if (LHSLV.isBitField())
3006     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3007   else
3008     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3009 
3010   if (CGF.getLangOpts().OpenMP)
3011     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3012                                                                   E->getLHS());
3013   return LHSLV;
3014 }
3015 
3016 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3017                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3018   bool Ignore = TestAndClearIgnoreResultAssign();
3019   Value *RHS = nullptr;
3020   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3021 
3022   // If the result is clearly ignored, return now.
3023   if (Ignore)
3024     return nullptr;
3025 
3026   // The result of an assignment in C is the assigned r-value.
3027   if (!CGF.getLangOpts().CPlusPlus)
3028     return RHS;
3029 
3030   // If the lvalue is non-volatile, return the computed value of the assignment.
3031   if (!LHS.isVolatileQualified())
3032     return RHS;
3033 
3034   // Otherwise, reload the value.
3035   return EmitLoadOfLValue(LHS, E->getExprLoc());
3036 }
3037 
3038 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3039     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3040   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3041 
3042   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3043     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3044                                     SanitizerKind::IntegerDivideByZero));
3045   }
3046 
3047   const auto *BO = cast<BinaryOperator>(Ops.E);
3048   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3049       Ops.Ty->hasSignedIntegerRepresentation() &&
3050       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3051       Ops.mayHaveIntegerOverflow()) {
3052     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3053 
3054     llvm::Value *IntMin =
3055       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3056     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3057 
3058     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3059     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3060     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3061     Checks.push_back(
3062         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3063   }
3064 
3065   if (Checks.size() > 0)
3066     EmitBinOpCheck(Checks, Ops);
3067 }
3068 
3069 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3070   {
3071     CodeGenFunction::SanitizerScope SanScope(&CGF);
3072     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3073          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3074         Ops.Ty->isIntegerType() &&
3075         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3076       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3077       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3078     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3079                Ops.Ty->isRealFloatingType() &&
3080                Ops.mayHaveFloatDivisionByZero()) {
3081       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3082       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3083       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3084                      Ops);
3085     }
3086   }
3087 
3088   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3089     llvm::Value *Val;
3090     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3091     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3092     if (CGF.getLangOpts().OpenCL &&
3093         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3094       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3095       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3096       // build option allows an application to specify that single precision
3097       // floating-point divide (x/y and 1/x) and sqrt used in the program
3098       // source are correctly rounded.
3099       llvm::Type *ValTy = Val->getType();
3100       if (ValTy->isFloatTy() ||
3101           (isa<llvm::VectorType>(ValTy) &&
3102            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3103         CGF.SetFPAccuracy(Val, 2.5);
3104     }
3105     return Val;
3106   }
3107   else if (Ops.isFixedPointOp())
3108     return EmitFixedPointBinOp(Ops);
3109   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3110     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3111   else
3112     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3113 }
3114 
3115 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3116   // Rem in C can't be a floating point type: C99 6.5.5p2.
3117   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3118        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3119       Ops.Ty->isIntegerType() &&
3120       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3121     CodeGenFunction::SanitizerScope SanScope(&CGF);
3122     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3123     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3124   }
3125 
3126   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3127     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3128   else
3129     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3130 }
3131 
3132 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3133   unsigned IID;
3134   unsigned OpID = 0;
3135 
3136   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3137   switch (Ops.Opcode) {
3138   case BO_Add:
3139   case BO_AddAssign:
3140     OpID = 1;
3141     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3142                      llvm::Intrinsic::uadd_with_overflow;
3143     break;
3144   case BO_Sub:
3145   case BO_SubAssign:
3146     OpID = 2;
3147     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3148                      llvm::Intrinsic::usub_with_overflow;
3149     break;
3150   case BO_Mul:
3151   case BO_MulAssign:
3152     OpID = 3;
3153     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3154                      llvm::Intrinsic::umul_with_overflow;
3155     break;
3156   default:
3157     llvm_unreachable("Unsupported operation for overflow detection");
3158   }
3159   OpID <<= 1;
3160   if (isSigned)
3161     OpID |= 1;
3162 
3163   CodeGenFunction::SanitizerScope SanScope(&CGF);
3164   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3165 
3166   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3167 
3168   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3169   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3170   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3171 
3172   // Handle overflow with llvm.trap if no custom handler has been specified.
3173   const std::string *handlerName =
3174     &CGF.getLangOpts().OverflowHandler;
3175   if (handlerName->empty()) {
3176     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3177     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3178     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3179       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3180       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3181                               : SanitizerKind::UnsignedIntegerOverflow;
3182       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3183     } else
3184       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3185     return result;
3186   }
3187 
3188   // Branch in case of overflow.
3189   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3190   llvm::BasicBlock *continueBB =
3191       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3192   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3193 
3194   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3195 
3196   // If an overflow handler is set, then we want to call it and then use its
3197   // result, if it returns.
3198   Builder.SetInsertPoint(overflowBB);
3199 
3200   // Get the overflow handler.
3201   llvm::Type *Int8Ty = CGF.Int8Ty;
3202   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3203   llvm::FunctionType *handlerTy =
3204       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3205   llvm::FunctionCallee handler =
3206       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3207 
3208   // Sign extend the args to 64-bit, so that we can use the same handler for
3209   // all types of overflow.
3210   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3211   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3212 
3213   // Call the handler with the two arguments, the operation, and the size of
3214   // the result.
3215   llvm::Value *handlerArgs[] = {
3216     lhs,
3217     rhs,
3218     Builder.getInt8(OpID),
3219     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3220   };
3221   llvm::Value *handlerResult =
3222     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3223 
3224   // Truncate the result back to the desired size.
3225   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3226   Builder.CreateBr(continueBB);
3227 
3228   Builder.SetInsertPoint(continueBB);
3229   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3230   phi->addIncoming(result, initialBB);
3231   phi->addIncoming(handlerResult, overflowBB);
3232 
3233   return phi;
3234 }
3235 
3236 /// Emit pointer + index arithmetic.
3237 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3238                                     const BinOpInfo &op,
3239                                     bool isSubtraction) {
3240   // Must have binary (not unary) expr here.  Unary pointer
3241   // increment/decrement doesn't use this path.
3242   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3243 
3244   Value *pointer = op.LHS;
3245   Expr *pointerOperand = expr->getLHS();
3246   Value *index = op.RHS;
3247   Expr *indexOperand = expr->getRHS();
3248 
3249   // In a subtraction, the LHS is always the pointer.
3250   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3251     std::swap(pointer, index);
3252     std::swap(pointerOperand, indexOperand);
3253   }
3254 
3255   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3256 
3257   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3258   auto &DL = CGF.CGM.getDataLayout();
3259   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3260 
3261   // Some versions of glibc and gcc use idioms (particularly in their malloc
3262   // routines) that add a pointer-sized integer (known to be a pointer value)
3263   // to a null pointer in order to cast the value back to an integer or as
3264   // part of a pointer alignment algorithm.  This is undefined behavior, but
3265   // we'd like to be able to compile programs that use it.
3266   //
3267   // Normally, we'd generate a GEP with a null-pointer base here in response
3268   // to that code, but it's also UB to dereference a pointer created that
3269   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3270   // generate a direct cast of the integer value to a pointer.
3271   //
3272   // The idiom (p = nullptr + N) is not met if any of the following are true:
3273   //
3274   //   The operation is subtraction.
3275   //   The index is not pointer-sized.
3276   //   The pointer type is not byte-sized.
3277   //
3278   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3279                                                        op.Opcode,
3280                                                        expr->getLHS(),
3281                                                        expr->getRHS()))
3282     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3283 
3284   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3285     // Zero-extend or sign-extend the pointer value according to
3286     // whether the index is signed or not.
3287     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3288                                       "idx.ext");
3289   }
3290 
3291   // If this is subtraction, negate the index.
3292   if (isSubtraction)
3293     index = CGF.Builder.CreateNeg(index, "idx.neg");
3294 
3295   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3296     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3297                         /*Accessed*/ false);
3298 
3299   const PointerType *pointerType
3300     = pointerOperand->getType()->getAs<PointerType>();
3301   if (!pointerType) {
3302     QualType objectType = pointerOperand->getType()
3303                                         ->castAs<ObjCObjectPointerType>()
3304                                         ->getPointeeType();
3305     llvm::Value *objectSize
3306       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3307 
3308     index = CGF.Builder.CreateMul(index, objectSize);
3309 
3310     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3311     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3312     return CGF.Builder.CreateBitCast(result, pointer->getType());
3313   }
3314 
3315   QualType elementType = pointerType->getPointeeType();
3316   if (const VariableArrayType *vla
3317         = CGF.getContext().getAsVariableArrayType(elementType)) {
3318     // The element count here is the total number of non-VLA elements.
3319     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3320 
3321     // Effectively, the multiply by the VLA size is part of the GEP.
3322     // GEP indexes are signed, and scaling an index isn't permitted to
3323     // signed-overflow, so we use the same semantics for our explicit
3324     // multiply.  We suppress this if overflow is not undefined behavior.
3325     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3326       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3327       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3328     } else {
3329       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3330       pointer =
3331           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3332                                      op.E->getExprLoc(), "add.ptr");
3333     }
3334     return pointer;
3335   }
3336 
3337   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3338   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3339   // future proof.
3340   if (elementType->isVoidType() || elementType->isFunctionType()) {
3341     Value *result = CGF.EmitCastToVoidPtr(pointer);
3342     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3343     return CGF.Builder.CreateBitCast(result, pointer->getType());
3344   }
3345 
3346   if (CGF.getLangOpts().isSignedOverflowDefined())
3347     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3348 
3349   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3350                                     op.E->getExprLoc(), "add.ptr");
3351 }
3352 
3353 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3354 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3355 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3356 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3357 // efficient operations.
3358 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3359                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3360                            bool negMul, bool negAdd) {
3361   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3362 
3363   Value *MulOp0 = MulOp->getOperand(0);
3364   Value *MulOp1 = MulOp->getOperand(1);
3365   if (negMul)
3366     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3367   if (negAdd)
3368     Addend = Builder.CreateFNeg(Addend, "neg");
3369 
3370   Value *FMulAdd = nullptr;
3371   if (Builder.getIsFPConstrained()) {
3372     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3373            "Only constrained operation should be created when Builder is in FP "
3374            "constrained mode");
3375     FMulAdd = Builder.CreateConstrainedFPCall(
3376         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3377                              Addend->getType()),
3378         {MulOp0, MulOp1, Addend});
3379   } else {
3380     FMulAdd = Builder.CreateCall(
3381         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3382         {MulOp0, MulOp1, Addend});
3383   }
3384   MulOp->eraseFromParent();
3385 
3386   return FMulAdd;
3387 }
3388 
3389 // Check whether it would be legal to emit an fmuladd intrinsic call to
3390 // represent op and if so, build the fmuladd.
3391 //
3392 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3393 // Does NOT check the type of the operation - it's assumed that this function
3394 // will be called from contexts where it's known that the type is contractable.
3395 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3396                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3397                          bool isSub=false) {
3398 
3399   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3400           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3401          "Only fadd/fsub can be the root of an fmuladd.");
3402 
3403   // Check whether this op is marked as fusable.
3404   if (!op.FPFeatures.allowFPContractWithinStatement())
3405     return nullptr;
3406 
3407   // We have a potentially fusable op. Look for a mul on one of the operands.
3408   // Also, make sure that the mul result isn't used directly. In that case,
3409   // there's no point creating a muladd operation.
3410   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3411     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3412         LHSBinOp->use_empty())
3413       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3414   }
3415   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3416     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3417         RHSBinOp->use_empty())
3418       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3419   }
3420 
3421   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3422     if (LHSBinOp->getIntrinsicID() ==
3423             llvm::Intrinsic::experimental_constrained_fmul &&
3424         LHSBinOp->use_empty())
3425       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3426   }
3427   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3428     if (RHSBinOp->getIntrinsicID() ==
3429             llvm::Intrinsic::experimental_constrained_fmul &&
3430         RHSBinOp->use_empty())
3431       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3432   }
3433 
3434   return nullptr;
3435 }
3436 
3437 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3438   if (op.LHS->getType()->isPointerTy() ||
3439       op.RHS->getType()->isPointerTy())
3440     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3441 
3442   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3443     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3444     case LangOptions::SOB_Defined:
3445       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3446     case LangOptions::SOB_Undefined:
3447       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3448         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3449       LLVM_FALLTHROUGH;
3450     case LangOptions::SOB_Trapping:
3451       if (CanElideOverflowCheck(CGF.getContext(), op))
3452         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3453       return EmitOverflowCheckedBinOp(op);
3454     }
3455   }
3456 
3457   if (op.Ty->isConstantMatrixType()) {
3458     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3459     return MB.CreateAdd(op.LHS, op.RHS);
3460   }
3461 
3462   if (op.Ty->isUnsignedIntegerType() &&
3463       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3464       !CanElideOverflowCheck(CGF.getContext(), op))
3465     return EmitOverflowCheckedBinOp(op);
3466 
3467   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3468     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3469     // Try to form an fmuladd.
3470     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3471       return FMulAdd;
3472 
3473     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3474   }
3475 
3476   if (op.isFixedPointOp())
3477     return EmitFixedPointBinOp(op);
3478 
3479   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3480 }
3481 
3482 /// The resulting value must be calculated with exact precision, so the operands
3483 /// may not be the same type.
3484 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3485   using llvm::APSInt;
3486   using llvm::ConstantInt;
3487 
3488   // This is either a binary operation where at least one of the operands is
3489   // a fixed-point type, or a unary operation where the operand is a fixed-point
3490   // type. The result type of a binary operation is determined by
3491   // Sema::handleFixedPointConversions().
3492   QualType ResultTy = op.Ty;
3493   QualType LHSTy, RHSTy;
3494   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3495     RHSTy = BinOp->getRHS()->getType();
3496     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3497       // For compound assignment, the effective type of the LHS at this point
3498       // is the computation LHS type, not the actual LHS type, and the final
3499       // result type is not the type of the expression but rather the
3500       // computation result type.
3501       LHSTy = CAO->getComputationLHSType();
3502       ResultTy = CAO->getComputationResultType();
3503     } else
3504       LHSTy = BinOp->getLHS()->getType();
3505   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3506     LHSTy = UnOp->getSubExpr()->getType();
3507     RHSTy = UnOp->getSubExpr()->getType();
3508   }
3509   ASTContext &Ctx = CGF.getContext();
3510   Value *LHS = op.LHS;
3511   Value *RHS = op.RHS;
3512 
3513   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3514   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3515   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3516   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3517 
3518   // Perform the actual operation.
3519   Value *Result;
3520   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3521   switch (op.Opcode) {
3522   case BO_AddAssign:
3523   case BO_Add:
3524     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3525     break;
3526   case BO_SubAssign:
3527   case BO_Sub:
3528     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3529     break;
3530   case BO_MulAssign:
3531   case BO_Mul:
3532     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3533     break;
3534   case BO_DivAssign:
3535   case BO_Div:
3536     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3537     break;
3538   case BO_ShlAssign:
3539   case BO_Shl:
3540     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3541     break;
3542   case BO_ShrAssign:
3543   case BO_Shr:
3544     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3545     break;
3546   case BO_LT:
3547     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3548   case BO_GT:
3549     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3550   case BO_LE:
3551     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3552   case BO_GE:
3553     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3554   case BO_EQ:
3555     // For equality operations, we assume any padding bits on unsigned types are
3556     // zero'd out. They could be overwritten through non-saturating operations
3557     // that cause overflow, but this leads to undefined behavior.
3558     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3559   case BO_NE:
3560     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3561   case BO_Cmp:
3562   case BO_LAnd:
3563   case BO_LOr:
3564     llvm_unreachable("Found unimplemented fixed point binary operation");
3565   case BO_PtrMemD:
3566   case BO_PtrMemI:
3567   case BO_Rem:
3568   case BO_Xor:
3569   case BO_And:
3570   case BO_Or:
3571   case BO_Assign:
3572   case BO_RemAssign:
3573   case BO_AndAssign:
3574   case BO_XorAssign:
3575   case BO_OrAssign:
3576   case BO_Comma:
3577     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3578   }
3579 
3580   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3581                  BinaryOperator::isShiftAssignOp(op.Opcode);
3582   // Convert to the result type.
3583   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3584                                                       : CommonFixedSema,
3585                                       ResultFixedSema);
3586 }
3587 
3588 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3589   // The LHS is always a pointer if either side is.
3590   if (!op.LHS->getType()->isPointerTy()) {
3591     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3592       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3593       case LangOptions::SOB_Defined:
3594         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3595       case LangOptions::SOB_Undefined:
3596         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3597           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3598         LLVM_FALLTHROUGH;
3599       case LangOptions::SOB_Trapping:
3600         if (CanElideOverflowCheck(CGF.getContext(), op))
3601           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3602         return EmitOverflowCheckedBinOp(op);
3603       }
3604     }
3605 
3606     if (op.Ty->isConstantMatrixType()) {
3607       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3608       return MB.CreateSub(op.LHS, op.RHS);
3609     }
3610 
3611     if (op.Ty->isUnsignedIntegerType() &&
3612         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3613         !CanElideOverflowCheck(CGF.getContext(), op))
3614       return EmitOverflowCheckedBinOp(op);
3615 
3616     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3617       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3618       // Try to form an fmuladd.
3619       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3620         return FMulAdd;
3621       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3622     }
3623 
3624     if (op.isFixedPointOp())
3625       return EmitFixedPointBinOp(op);
3626 
3627     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3628   }
3629 
3630   // If the RHS is not a pointer, then we have normal pointer
3631   // arithmetic.
3632   if (!op.RHS->getType()->isPointerTy())
3633     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3634 
3635   // Otherwise, this is a pointer subtraction.
3636 
3637   // Do the raw subtraction part.
3638   llvm::Value *LHS
3639     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3640   llvm::Value *RHS
3641     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3642   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3643 
3644   // Okay, figure out the element size.
3645   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3646   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3647 
3648   llvm::Value *divisor = nullptr;
3649 
3650   // For a variable-length array, this is going to be non-constant.
3651   if (const VariableArrayType *vla
3652         = CGF.getContext().getAsVariableArrayType(elementType)) {
3653     auto VlaSize = CGF.getVLASize(vla);
3654     elementType = VlaSize.Type;
3655     divisor = VlaSize.NumElts;
3656 
3657     // Scale the number of non-VLA elements by the non-VLA element size.
3658     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3659     if (!eltSize.isOne())
3660       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3661 
3662   // For everything elese, we can just compute it, safe in the
3663   // assumption that Sema won't let anything through that we can't
3664   // safely compute the size of.
3665   } else {
3666     CharUnits elementSize;
3667     // Handle GCC extension for pointer arithmetic on void* and
3668     // function pointer types.
3669     if (elementType->isVoidType() || elementType->isFunctionType())
3670       elementSize = CharUnits::One();
3671     else
3672       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3673 
3674     // Don't even emit the divide for element size of 1.
3675     if (elementSize.isOne())
3676       return diffInChars;
3677 
3678     divisor = CGF.CGM.getSize(elementSize);
3679   }
3680 
3681   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3682   // pointer difference in C is only defined in the case where both operands
3683   // are pointing to elements of an array.
3684   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3685 }
3686 
3687 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3688   llvm::IntegerType *Ty;
3689   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3690     Ty = cast<llvm::IntegerType>(VT->getElementType());
3691   else
3692     Ty = cast<llvm::IntegerType>(LHS->getType());
3693   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3694 }
3695 
3696 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3697                                               const Twine &Name) {
3698   llvm::IntegerType *Ty;
3699   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3700     Ty = cast<llvm::IntegerType>(VT->getElementType());
3701   else
3702     Ty = cast<llvm::IntegerType>(LHS->getType());
3703 
3704   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3705         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3706 
3707   return Builder.CreateURem(
3708       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3709 }
3710 
3711 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3712   // TODO: This misses out on the sanitizer check below.
3713   if (Ops.isFixedPointOp())
3714     return EmitFixedPointBinOp(Ops);
3715 
3716   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3717   // RHS to the same size as the LHS.
3718   Value *RHS = Ops.RHS;
3719   if (Ops.LHS->getType() != RHS->getType())
3720     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3721 
3722   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3723                       Ops.Ty->hasSignedIntegerRepresentation() &&
3724                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3725                       !CGF.getLangOpts().CPlusPlus20;
3726   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3727   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3728   if (CGF.getLangOpts().OpenCL)
3729     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3730   else if ((SanitizeBase || SanitizeExponent) &&
3731            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3732     CodeGenFunction::SanitizerScope SanScope(&CGF);
3733     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3734     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3735     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3736 
3737     if (SanitizeExponent) {
3738       Checks.push_back(
3739           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3740     }
3741 
3742     if (SanitizeBase) {
3743       // Check whether we are shifting any non-zero bits off the top of the
3744       // integer. We only emit this check if exponent is valid - otherwise
3745       // instructions below will have undefined behavior themselves.
3746       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3747       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3748       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3749       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3750       llvm::Value *PromotedWidthMinusOne =
3751           (RHS == Ops.RHS) ? WidthMinusOne
3752                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3753       CGF.EmitBlock(CheckShiftBase);
3754       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3755           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3756                                      /*NUW*/ true, /*NSW*/ true),
3757           "shl.check");
3758       if (CGF.getLangOpts().CPlusPlus) {
3759         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3760         // Under C++11's rules, shifting a 1 bit into the sign bit is
3761         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3762         // define signed left shifts, so we use the C99 and C++11 rules there).
3763         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3764         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3765       }
3766       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3767       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3768       CGF.EmitBlock(Cont);
3769       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3770       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3771       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3772       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3773     }
3774 
3775     assert(!Checks.empty());
3776     EmitBinOpCheck(Checks, Ops);
3777   }
3778 
3779   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3780 }
3781 
3782 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3783   // TODO: This misses out on the sanitizer check below.
3784   if (Ops.isFixedPointOp())
3785     return EmitFixedPointBinOp(Ops);
3786 
3787   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3788   // RHS to the same size as the LHS.
3789   Value *RHS = Ops.RHS;
3790   if (Ops.LHS->getType() != RHS->getType())
3791     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3792 
3793   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3794   if (CGF.getLangOpts().OpenCL)
3795     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3796   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3797            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3798     CodeGenFunction::SanitizerScope SanScope(&CGF);
3799     llvm::Value *Valid =
3800         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3801     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3802   }
3803 
3804   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3805     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3806   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3807 }
3808 
3809 enum IntrinsicType { VCMPEQ, VCMPGT };
3810 // return corresponding comparison intrinsic for given vector type
3811 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3812                                         BuiltinType::Kind ElemKind) {
3813   switch (ElemKind) {
3814   default: llvm_unreachable("unexpected element type");
3815   case BuiltinType::Char_U:
3816   case BuiltinType::UChar:
3817     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3818                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3819   case BuiltinType::Char_S:
3820   case BuiltinType::SChar:
3821     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3822                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3823   case BuiltinType::UShort:
3824     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3825                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3826   case BuiltinType::Short:
3827     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3828                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3829   case BuiltinType::UInt:
3830     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3831                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3832   case BuiltinType::Int:
3833     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3834                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3835   case BuiltinType::ULong:
3836   case BuiltinType::ULongLong:
3837     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3838                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3839   case BuiltinType::Long:
3840   case BuiltinType::LongLong:
3841     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3842                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3843   case BuiltinType::Float:
3844     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3845                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3846   case BuiltinType::Double:
3847     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3848                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3849   }
3850 }
3851 
3852 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3853                                       llvm::CmpInst::Predicate UICmpOpc,
3854                                       llvm::CmpInst::Predicate SICmpOpc,
3855                                       llvm::CmpInst::Predicate FCmpOpc,
3856                                       bool IsSignaling) {
3857   TestAndClearIgnoreResultAssign();
3858   Value *Result;
3859   QualType LHSTy = E->getLHS()->getType();
3860   QualType RHSTy = E->getRHS()->getType();
3861   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3862     assert(E->getOpcode() == BO_EQ ||
3863            E->getOpcode() == BO_NE);
3864     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3865     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3866     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3867                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3868   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3869     BinOpInfo BOInfo = EmitBinOps(E);
3870     Value *LHS = BOInfo.LHS;
3871     Value *RHS = BOInfo.RHS;
3872 
3873     // If AltiVec, the comparison results in a numeric type, so we use
3874     // intrinsics comparing vectors and giving 0 or 1 as a result
3875     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3876       // constants for mapping CR6 register bits to predicate result
3877       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3878 
3879       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3880 
3881       // in several cases vector arguments order will be reversed
3882       Value *FirstVecArg = LHS,
3883             *SecondVecArg = RHS;
3884 
3885       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3886       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3887 
3888       switch(E->getOpcode()) {
3889       default: llvm_unreachable("is not a comparison operation");
3890       case BO_EQ:
3891         CR6 = CR6_LT;
3892         ID = GetIntrinsic(VCMPEQ, ElementKind);
3893         break;
3894       case BO_NE:
3895         CR6 = CR6_EQ;
3896         ID = GetIntrinsic(VCMPEQ, ElementKind);
3897         break;
3898       case BO_LT:
3899         CR6 = CR6_LT;
3900         ID = GetIntrinsic(VCMPGT, ElementKind);
3901         std::swap(FirstVecArg, SecondVecArg);
3902         break;
3903       case BO_GT:
3904         CR6 = CR6_LT;
3905         ID = GetIntrinsic(VCMPGT, ElementKind);
3906         break;
3907       case BO_LE:
3908         if (ElementKind == BuiltinType::Float) {
3909           CR6 = CR6_LT;
3910           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3911           std::swap(FirstVecArg, SecondVecArg);
3912         }
3913         else {
3914           CR6 = CR6_EQ;
3915           ID = GetIntrinsic(VCMPGT, ElementKind);
3916         }
3917         break;
3918       case BO_GE:
3919         if (ElementKind == BuiltinType::Float) {
3920           CR6 = CR6_LT;
3921           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3922         }
3923         else {
3924           CR6 = CR6_EQ;
3925           ID = GetIntrinsic(VCMPGT, ElementKind);
3926           std::swap(FirstVecArg, SecondVecArg);
3927         }
3928         break;
3929       }
3930 
3931       Value *CR6Param = Builder.getInt32(CR6);
3932       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3933       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3934 
3935       // The result type of intrinsic may not be same as E->getType().
3936       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3937       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3938       // do nothing, if ResultTy is not i1 at the same time, it will cause
3939       // crash later.
3940       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3941       if (ResultTy->getBitWidth() > 1 &&
3942           E->getType() == CGF.getContext().BoolTy)
3943         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3944       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3945                                   E->getExprLoc());
3946     }
3947 
3948     if (BOInfo.isFixedPointOp()) {
3949       Result = EmitFixedPointBinOp(BOInfo);
3950     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3951       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
3952       if (!IsSignaling)
3953         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3954       else
3955         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
3956     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3957       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3958     } else {
3959       // Unsigned integers and pointers.
3960 
3961       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3962           !isa<llvm::ConstantPointerNull>(LHS) &&
3963           !isa<llvm::ConstantPointerNull>(RHS)) {
3964 
3965         // Dynamic information is required to be stripped for comparisons,
3966         // because it could leak the dynamic information.  Based on comparisons
3967         // of pointers to dynamic objects, the optimizer can replace one pointer
3968         // with another, which might be incorrect in presence of invariant
3969         // groups. Comparison with null is safe because null does not carry any
3970         // dynamic information.
3971         if (LHSTy.mayBeDynamicClass())
3972           LHS = Builder.CreateStripInvariantGroup(LHS);
3973         if (RHSTy.mayBeDynamicClass())
3974           RHS = Builder.CreateStripInvariantGroup(RHS);
3975       }
3976 
3977       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3978     }
3979 
3980     // If this is a vector comparison, sign extend the result to the appropriate
3981     // vector integer type and return it (don't convert to bool).
3982     if (LHSTy->isVectorType())
3983       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3984 
3985   } else {
3986     // Complex Comparison: can only be an equality comparison.
3987     CodeGenFunction::ComplexPairTy LHS, RHS;
3988     QualType CETy;
3989     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3990       LHS = CGF.EmitComplexExpr(E->getLHS());
3991       CETy = CTy->getElementType();
3992     } else {
3993       LHS.first = Visit(E->getLHS());
3994       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3995       CETy = LHSTy;
3996     }
3997     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3998       RHS = CGF.EmitComplexExpr(E->getRHS());
3999       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4000                                                      CTy->getElementType()) &&
4001              "The element types must always match.");
4002       (void)CTy;
4003     } else {
4004       RHS.first = Visit(E->getRHS());
4005       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4006       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4007              "The element types must always match.");
4008     }
4009 
4010     Value *ResultR, *ResultI;
4011     if (CETy->isRealFloatingType()) {
4012       // As complex comparisons can only be equality comparisons, they
4013       // are never signaling comparisons.
4014       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4015       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4016     } else {
4017       // Complex comparisons can only be equality comparisons.  As such, signed
4018       // and unsigned opcodes are the same.
4019       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4020       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4021     }
4022 
4023     if (E->getOpcode() == BO_EQ) {
4024       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4025     } else {
4026       assert(E->getOpcode() == BO_NE &&
4027              "Complex comparison other than == or != ?");
4028       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4029     }
4030   }
4031 
4032   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4033                               E->getExprLoc());
4034 }
4035 
4036 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4037   bool Ignore = TestAndClearIgnoreResultAssign();
4038 
4039   Value *RHS;
4040   LValue LHS;
4041 
4042   switch (E->getLHS()->getType().getObjCLifetime()) {
4043   case Qualifiers::OCL_Strong:
4044     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4045     break;
4046 
4047   case Qualifiers::OCL_Autoreleasing:
4048     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4049     break;
4050 
4051   case Qualifiers::OCL_ExplicitNone:
4052     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4053     break;
4054 
4055   case Qualifiers::OCL_Weak:
4056     RHS = Visit(E->getRHS());
4057     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4058     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4059     break;
4060 
4061   case Qualifiers::OCL_None:
4062     // __block variables need to have the rhs evaluated first, plus
4063     // this should improve codegen just a little.
4064     RHS = Visit(E->getRHS());
4065     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4066 
4067     // Store the value into the LHS.  Bit-fields are handled specially
4068     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4069     // 'An assignment expression has the value of the left operand after
4070     // the assignment...'.
4071     if (LHS.isBitField()) {
4072       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4073     } else {
4074       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4075       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4076     }
4077   }
4078 
4079   // If the result is clearly ignored, return now.
4080   if (Ignore)
4081     return nullptr;
4082 
4083   // The result of an assignment in C is the assigned r-value.
4084   if (!CGF.getLangOpts().CPlusPlus)
4085     return RHS;
4086 
4087   // If the lvalue is non-volatile, return the computed value of the assignment.
4088   if (!LHS.isVolatileQualified())
4089     return RHS;
4090 
4091   // Otherwise, reload the value.
4092   return EmitLoadOfLValue(LHS, E->getExprLoc());
4093 }
4094 
4095 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4096   // Perform vector logical and on comparisons with zero vectors.
4097   if (E->getType()->isVectorType()) {
4098     CGF.incrementProfileCounter(E);
4099 
4100     Value *LHS = Visit(E->getLHS());
4101     Value *RHS = Visit(E->getRHS());
4102     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4103     if (LHS->getType()->isFPOrFPVectorTy()) {
4104       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4105           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4106       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4107       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4108     } else {
4109       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4110       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4111     }
4112     Value *And = Builder.CreateAnd(LHS, RHS);
4113     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4114   }
4115 
4116   llvm::Type *ResTy = ConvertType(E->getType());
4117 
4118   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4119   // If we have 1 && X, just emit X without inserting the control flow.
4120   bool LHSCondVal;
4121   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4122     if (LHSCondVal) { // If we have 1 && X, just emit X.
4123       CGF.incrementProfileCounter(E);
4124 
4125       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4126       // ZExt result to int or bool.
4127       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4128     }
4129 
4130     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4131     if (!CGF.ContainsLabel(E->getRHS()))
4132       return llvm::Constant::getNullValue(ResTy);
4133   }
4134 
4135   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4136   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4137 
4138   CodeGenFunction::ConditionalEvaluation eval(CGF);
4139 
4140   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4141   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4142                            CGF.getProfileCount(E->getRHS()));
4143 
4144   // Any edges into the ContBlock are now from an (indeterminate number of)
4145   // edges from this first condition.  All of these values will be false.  Start
4146   // setting up the PHI node in the Cont Block for this.
4147   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4148                                             "", ContBlock);
4149   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4150        PI != PE; ++PI)
4151     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4152 
4153   eval.begin(CGF);
4154   CGF.EmitBlock(RHSBlock);
4155   CGF.incrementProfileCounter(E);
4156   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4157   eval.end(CGF);
4158 
4159   // Reaquire the RHS block, as there may be subblocks inserted.
4160   RHSBlock = Builder.GetInsertBlock();
4161 
4162   // Emit an unconditional branch from this block to ContBlock.
4163   {
4164     // There is no need to emit line number for unconditional branch.
4165     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4166     CGF.EmitBlock(ContBlock);
4167   }
4168   // Insert an entry into the phi node for the edge with the value of RHSCond.
4169   PN->addIncoming(RHSCond, RHSBlock);
4170 
4171   // Artificial location to preserve the scope information
4172   {
4173     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4174     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4175   }
4176 
4177   // ZExt result to int.
4178   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4179 }
4180 
4181 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4182   // Perform vector logical or on comparisons with zero vectors.
4183   if (E->getType()->isVectorType()) {
4184     CGF.incrementProfileCounter(E);
4185 
4186     Value *LHS = Visit(E->getLHS());
4187     Value *RHS = Visit(E->getRHS());
4188     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4189     if (LHS->getType()->isFPOrFPVectorTy()) {
4190       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4191           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4192       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4193       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4194     } else {
4195       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4196       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4197     }
4198     Value *Or = Builder.CreateOr(LHS, RHS);
4199     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4200   }
4201 
4202   llvm::Type *ResTy = ConvertType(E->getType());
4203 
4204   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4205   // If we have 0 || X, just emit X without inserting the control flow.
4206   bool LHSCondVal;
4207   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4208     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4209       CGF.incrementProfileCounter(E);
4210 
4211       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4212       // ZExt result to int or bool.
4213       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4214     }
4215 
4216     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4217     if (!CGF.ContainsLabel(E->getRHS()))
4218       return llvm::ConstantInt::get(ResTy, 1);
4219   }
4220 
4221   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4222   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4223 
4224   CodeGenFunction::ConditionalEvaluation eval(CGF);
4225 
4226   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4227   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4228                            CGF.getCurrentProfileCount() -
4229                                CGF.getProfileCount(E->getRHS()));
4230 
4231   // Any edges into the ContBlock are now from an (indeterminate number of)
4232   // edges from this first condition.  All of these values will be true.  Start
4233   // setting up the PHI node in the Cont Block for this.
4234   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4235                                             "", ContBlock);
4236   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4237        PI != PE; ++PI)
4238     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4239 
4240   eval.begin(CGF);
4241 
4242   // Emit the RHS condition as a bool value.
4243   CGF.EmitBlock(RHSBlock);
4244   CGF.incrementProfileCounter(E);
4245   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4246 
4247   eval.end(CGF);
4248 
4249   // Reaquire the RHS block, as there may be subblocks inserted.
4250   RHSBlock = Builder.GetInsertBlock();
4251 
4252   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4253   // into the phi node for the edge with the value of RHSCond.
4254   CGF.EmitBlock(ContBlock);
4255   PN->addIncoming(RHSCond, RHSBlock);
4256 
4257   // ZExt result to int.
4258   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4259 }
4260 
4261 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4262   CGF.EmitIgnoredExpr(E->getLHS());
4263   CGF.EnsureInsertPoint();
4264   return Visit(E->getRHS());
4265 }
4266 
4267 //===----------------------------------------------------------------------===//
4268 //                             Other Operators
4269 //===----------------------------------------------------------------------===//
4270 
4271 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4272 /// expression is cheap enough and side-effect-free enough to evaluate
4273 /// unconditionally instead of conditionally.  This is used to convert control
4274 /// flow into selects in some cases.
4275 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4276                                                    CodeGenFunction &CGF) {
4277   // Anything that is an integer or floating point constant is fine.
4278   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4279 
4280   // Even non-volatile automatic variables can't be evaluated unconditionally.
4281   // Referencing a thread_local may cause non-trivial initialization work to
4282   // occur. If we're inside a lambda and one of the variables is from the scope
4283   // outside the lambda, that function may have returned already. Reading its
4284   // locals is a bad idea. Also, these reads may introduce races there didn't
4285   // exist in the source-level program.
4286 }
4287 
4288 
4289 Value *ScalarExprEmitter::
4290 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4291   TestAndClearIgnoreResultAssign();
4292 
4293   // Bind the common expression if necessary.
4294   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4295 
4296   Expr *condExpr = E->getCond();
4297   Expr *lhsExpr = E->getTrueExpr();
4298   Expr *rhsExpr = E->getFalseExpr();
4299 
4300   // If the condition constant folds and can be elided, try to avoid emitting
4301   // the condition and the dead arm.
4302   bool CondExprBool;
4303   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4304     Expr *live = lhsExpr, *dead = rhsExpr;
4305     if (!CondExprBool) std::swap(live, dead);
4306 
4307     // If the dead side doesn't have labels we need, just emit the Live part.
4308     if (!CGF.ContainsLabel(dead)) {
4309       if (CondExprBool)
4310         CGF.incrementProfileCounter(E);
4311       Value *Result = Visit(live);
4312 
4313       // If the live part is a throw expression, it acts like it has a void
4314       // type, so evaluating it returns a null Value*.  However, a conditional
4315       // with non-void type must return a non-null Value*.
4316       if (!Result && !E->getType()->isVoidType())
4317         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4318 
4319       return Result;
4320     }
4321   }
4322 
4323   // OpenCL: If the condition is a vector, we can treat this condition like
4324   // the select function.
4325   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4326       condExpr->getType()->isExtVectorType()) {
4327     CGF.incrementProfileCounter(E);
4328 
4329     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4330     llvm::Value *LHS = Visit(lhsExpr);
4331     llvm::Value *RHS = Visit(rhsExpr);
4332 
4333     llvm::Type *condType = ConvertType(condExpr->getType());
4334     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4335 
4336     unsigned numElem = vecTy->getNumElements();
4337     llvm::Type *elemType = vecTy->getElementType();
4338 
4339     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4340     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4341     llvm::Value *tmp = Builder.CreateSExt(
4342         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4343     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4344 
4345     // Cast float to int to perform ANDs if necessary.
4346     llvm::Value *RHSTmp = RHS;
4347     llvm::Value *LHSTmp = LHS;
4348     bool wasCast = false;
4349     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4350     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4351       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4352       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4353       wasCast = true;
4354     }
4355 
4356     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4357     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4358     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4359     if (wasCast)
4360       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4361 
4362     return tmp5;
4363   }
4364 
4365   if (condExpr->getType()->isVectorType()) {
4366     CGF.incrementProfileCounter(E);
4367 
4368     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4369     llvm::Value *LHS = Visit(lhsExpr);
4370     llvm::Value *RHS = Visit(rhsExpr);
4371 
4372     llvm::Type *CondType = ConvertType(condExpr->getType());
4373     auto *VecTy = cast<llvm::VectorType>(CondType);
4374     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4375 
4376     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4377     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4378   }
4379 
4380   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4381   // select instead of as control flow.  We can only do this if it is cheap and
4382   // safe to evaluate the LHS and RHS unconditionally.
4383   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4384       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4385     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4386     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4387 
4388     CGF.incrementProfileCounter(E, StepV);
4389 
4390     llvm::Value *LHS = Visit(lhsExpr);
4391     llvm::Value *RHS = Visit(rhsExpr);
4392     if (!LHS) {
4393       // If the conditional has void type, make sure we return a null Value*.
4394       assert(!RHS && "LHS and RHS types must match");
4395       return nullptr;
4396     }
4397     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4398   }
4399 
4400   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4401   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4402   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4403 
4404   CodeGenFunction::ConditionalEvaluation eval(CGF);
4405   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4406                            CGF.getProfileCount(lhsExpr));
4407 
4408   CGF.EmitBlock(LHSBlock);
4409   CGF.incrementProfileCounter(E);
4410   eval.begin(CGF);
4411   Value *LHS = Visit(lhsExpr);
4412   eval.end(CGF);
4413 
4414   LHSBlock = Builder.GetInsertBlock();
4415   Builder.CreateBr(ContBlock);
4416 
4417   CGF.EmitBlock(RHSBlock);
4418   eval.begin(CGF);
4419   Value *RHS = Visit(rhsExpr);
4420   eval.end(CGF);
4421 
4422   RHSBlock = Builder.GetInsertBlock();
4423   CGF.EmitBlock(ContBlock);
4424 
4425   // If the LHS or RHS is a throw expression, it will be legitimately null.
4426   if (!LHS)
4427     return RHS;
4428   if (!RHS)
4429     return LHS;
4430 
4431   // Create a PHI node for the real part.
4432   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4433   PN->addIncoming(LHS, LHSBlock);
4434   PN->addIncoming(RHS, RHSBlock);
4435   return PN;
4436 }
4437 
4438 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4439   return Visit(E->getChosenSubExpr());
4440 }
4441 
4442 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4443   QualType Ty = VE->getType();
4444 
4445   if (Ty->isVariablyModifiedType())
4446     CGF.EmitVariablyModifiedType(Ty);
4447 
4448   Address ArgValue = Address::invalid();
4449   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4450 
4451   llvm::Type *ArgTy = ConvertType(VE->getType());
4452 
4453   // If EmitVAArg fails, emit an error.
4454   if (!ArgPtr.isValid()) {
4455     CGF.ErrorUnsupported(VE, "va_arg expression");
4456     return llvm::UndefValue::get(ArgTy);
4457   }
4458 
4459   // FIXME Volatility.
4460   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4461 
4462   // If EmitVAArg promoted the type, we must truncate it.
4463   if (ArgTy != Val->getType()) {
4464     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4465       Val = Builder.CreateIntToPtr(Val, ArgTy);
4466     else
4467       Val = Builder.CreateTrunc(Val, ArgTy);
4468   }
4469 
4470   return Val;
4471 }
4472 
4473 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4474   return CGF.EmitBlockLiteral(block);
4475 }
4476 
4477 // Convert a vec3 to vec4, or vice versa.
4478 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4479                                  Value *Src, unsigned NumElementsDst) {
4480   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4481   static constexpr int Mask[] = {0, 1, 2, -1};
4482   return Builder.CreateShuffleVector(Src, UnV,
4483                                      llvm::makeArrayRef(Mask, NumElementsDst));
4484 }
4485 
4486 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4487 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4488 // but could be scalar or vectors of different lengths, and either can be
4489 // pointer.
4490 // There are 4 cases:
4491 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4492 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4493 // 3. pointer -> non-pointer
4494 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4495 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4496 // 4. non-pointer -> pointer
4497 //   a) intptr_t -> pointer       : needs 1 inttoptr
4498 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4499 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4500 // allow casting directly between pointer types and non-integer non-pointer
4501 // types.
4502 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4503                                            const llvm::DataLayout &DL,
4504                                            Value *Src, llvm::Type *DstTy,
4505                                            StringRef Name = "") {
4506   auto SrcTy = Src->getType();
4507 
4508   // Case 1.
4509   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4510     return Builder.CreateBitCast(Src, DstTy, Name);
4511 
4512   // Case 2.
4513   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4514     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4515 
4516   // Case 3.
4517   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4518     // Case 3b.
4519     if (!DstTy->isIntegerTy())
4520       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4521     // Cases 3a and 3b.
4522     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4523   }
4524 
4525   // Case 4b.
4526   if (!SrcTy->isIntegerTy())
4527     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4528   // Cases 4a and 4b.
4529   return Builder.CreateIntToPtr(Src, DstTy, Name);
4530 }
4531 
4532 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4533   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4534   llvm::Type *DstTy = ConvertType(E->getType());
4535 
4536   llvm::Type *SrcTy = Src->getType();
4537   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4538     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4539   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4540     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4541 
4542   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4543   // vector to get a vec4, then a bitcast if the target type is different.
4544   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4545     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4546 
4547     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4548       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4549                                          DstTy);
4550     }
4551 
4552     Src->setName("astype");
4553     return Src;
4554   }
4555 
4556   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4557   // to vec4 if the original type is not vec4, then a shuffle vector to
4558   // get a vec3.
4559   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4560     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4561       auto *Vec4Ty = llvm::FixedVectorType::get(
4562           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4563       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4564                                          Vec4Ty);
4565     }
4566 
4567     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4568     Src->setName("astype");
4569     return Src;
4570   }
4571 
4572   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4573                                       Src, DstTy, "astype");
4574 }
4575 
4576 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4577   return CGF.EmitAtomicExpr(E).getScalarVal();
4578 }
4579 
4580 //===----------------------------------------------------------------------===//
4581 //                         Entry Point into this File
4582 //===----------------------------------------------------------------------===//
4583 
4584 /// Emit the computation of the specified expression of scalar type, ignoring
4585 /// the result.
4586 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4587   assert(E && hasScalarEvaluationKind(E->getType()) &&
4588          "Invalid scalar expression to emit");
4589 
4590   return ScalarExprEmitter(*this, IgnoreResultAssign)
4591       .Visit(const_cast<Expr *>(E));
4592 }
4593 
4594 /// Emit a conversion from the specified type to the specified destination type,
4595 /// both of which are LLVM scalar types.
4596 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4597                                              QualType DstTy,
4598                                              SourceLocation Loc) {
4599   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4600          "Invalid scalar expression to emit");
4601   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4602 }
4603 
4604 /// Emit a conversion from the specified complex type to the specified
4605 /// destination type, where the destination type is an LLVM scalar type.
4606 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4607                                                       QualType SrcTy,
4608                                                       QualType DstTy,
4609                                                       SourceLocation Loc) {
4610   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4611          "Invalid complex -> scalar conversion");
4612   return ScalarExprEmitter(*this)
4613       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4614 }
4615 
4616 
4617 llvm::Value *CodeGenFunction::
4618 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4619                         bool isInc, bool isPre) {
4620   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4621 }
4622 
4623 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4624   // object->isa or (*object).isa
4625   // Generate code as for: *(Class*)object
4626 
4627   Expr *BaseExpr = E->getBase();
4628   Address Addr = Address::invalid();
4629   if (BaseExpr->isRValue()) {
4630     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4631   } else {
4632     Addr = EmitLValue(BaseExpr).getAddress(*this);
4633   }
4634 
4635   // Cast the address to Class*.
4636   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4637   return MakeAddrLValue(Addr, E->getType());
4638 }
4639 
4640 
4641 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4642                                             const CompoundAssignOperator *E) {
4643   ScalarExprEmitter Scalar(*this);
4644   Value *Result = nullptr;
4645   switch (E->getOpcode()) {
4646 #define COMPOUND_OP(Op)                                                       \
4647     case BO_##Op##Assign:                                                     \
4648       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4649                                              Result)
4650   COMPOUND_OP(Mul);
4651   COMPOUND_OP(Div);
4652   COMPOUND_OP(Rem);
4653   COMPOUND_OP(Add);
4654   COMPOUND_OP(Sub);
4655   COMPOUND_OP(Shl);
4656   COMPOUND_OP(Shr);
4657   COMPOUND_OP(And);
4658   COMPOUND_OP(Xor);
4659   COMPOUND_OP(Or);
4660 #undef COMPOUND_OP
4661 
4662   case BO_PtrMemD:
4663   case BO_PtrMemI:
4664   case BO_Mul:
4665   case BO_Div:
4666   case BO_Rem:
4667   case BO_Add:
4668   case BO_Sub:
4669   case BO_Shl:
4670   case BO_Shr:
4671   case BO_LT:
4672   case BO_GT:
4673   case BO_LE:
4674   case BO_GE:
4675   case BO_EQ:
4676   case BO_NE:
4677   case BO_Cmp:
4678   case BO_And:
4679   case BO_Xor:
4680   case BO_Or:
4681   case BO_LAnd:
4682   case BO_LOr:
4683   case BO_Assign:
4684   case BO_Comma:
4685     llvm_unreachable("Not valid compound assignment operators");
4686   }
4687 
4688   llvm_unreachable("Unhandled compound assignment operator");
4689 }
4690 
4691 struct GEPOffsetAndOverflow {
4692   // The total (signed) byte offset for the GEP.
4693   llvm::Value *TotalOffset;
4694   // The offset overflow flag - true if the total offset overflows.
4695   llvm::Value *OffsetOverflows;
4696 };
4697 
4698 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4699 /// and compute the total offset it applies from it's base pointer BasePtr.
4700 /// Returns offset in bytes and a boolean flag whether an overflow happened
4701 /// during evaluation.
4702 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4703                                                  llvm::LLVMContext &VMContext,
4704                                                  CodeGenModule &CGM,
4705                                                  CGBuilderTy &Builder) {
4706   const auto &DL = CGM.getDataLayout();
4707 
4708   // The total (signed) byte offset for the GEP.
4709   llvm::Value *TotalOffset = nullptr;
4710 
4711   // Was the GEP already reduced to a constant?
4712   if (isa<llvm::Constant>(GEPVal)) {
4713     // Compute the offset by casting both pointers to integers and subtracting:
4714     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4715     Value *BasePtr_int =
4716         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4717     Value *GEPVal_int =
4718         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4719     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4720     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4721   }
4722 
4723   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4724   assert(GEP->getPointerOperand() == BasePtr &&
4725          "BasePtr must be the the base of the GEP.");
4726   assert(GEP->isInBounds() && "Expected inbounds GEP");
4727 
4728   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4729 
4730   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4731   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4732   auto *SAddIntrinsic =
4733       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4734   auto *SMulIntrinsic =
4735       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4736 
4737   // The offset overflow flag - true if the total offset overflows.
4738   llvm::Value *OffsetOverflows = Builder.getFalse();
4739 
4740   /// Return the result of the given binary operation.
4741   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4742                   llvm::Value *RHS) -> llvm::Value * {
4743     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4744 
4745     // If the operands are constants, return a constant result.
4746     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4747       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4748         llvm::APInt N;
4749         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4750                                                   /*Signed=*/true, N);
4751         if (HasOverflow)
4752           OffsetOverflows = Builder.getTrue();
4753         return llvm::ConstantInt::get(VMContext, N);
4754       }
4755     }
4756 
4757     // Otherwise, compute the result with checked arithmetic.
4758     auto *ResultAndOverflow = Builder.CreateCall(
4759         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4760     OffsetOverflows = Builder.CreateOr(
4761         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4762     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4763   };
4764 
4765   // Determine the total byte offset by looking at each GEP operand.
4766   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4767        GTI != GTE; ++GTI) {
4768     llvm::Value *LocalOffset;
4769     auto *Index = GTI.getOperand();
4770     // Compute the local offset contributed by this indexing step:
4771     if (auto *STy = GTI.getStructTypeOrNull()) {
4772       // For struct indexing, the local offset is the byte position of the
4773       // specified field.
4774       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4775       LocalOffset = llvm::ConstantInt::get(
4776           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4777     } else {
4778       // Otherwise this is array-like indexing. The local offset is the index
4779       // multiplied by the element size.
4780       auto *ElementSize = llvm::ConstantInt::get(
4781           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4782       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4783       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4784     }
4785 
4786     // If this is the first offset, set it as the total offset. Otherwise, add
4787     // the local offset into the running total.
4788     if (!TotalOffset || TotalOffset == Zero)
4789       TotalOffset = LocalOffset;
4790     else
4791       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4792   }
4793 
4794   return {TotalOffset, OffsetOverflows};
4795 }
4796 
4797 Value *
4798 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4799                                         bool SignedIndices, bool IsSubtraction,
4800                                         SourceLocation Loc, const Twine &Name) {
4801   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4802 
4803   // If the pointer overflow sanitizer isn't enabled, do nothing.
4804   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4805     return GEPVal;
4806 
4807   llvm::Type *PtrTy = Ptr->getType();
4808 
4809   // Perform nullptr-and-offset check unless the nullptr is defined.
4810   bool PerformNullCheck = !NullPointerIsDefined(
4811       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4812   // Check for overflows unless the GEP got constant-folded,
4813   // and only in the default address space
4814   bool PerformOverflowCheck =
4815       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4816 
4817   if (!(PerformNullCheck || PerformOverflowCheck))
4818     return GEPVal;
4819 
4820   const auto &DL = CGM.getDataLayout();
4821 
4822   SanitizerScope SanScope(this);
4823   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4824 
4825   GEPOffsetAndOverflow EvaluatedGEP =
4826       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4827 
4828   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4829           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4830          "If the offset got constant-folded, we don't expect that there was an "
4831          "overflow.");
4832 
4833   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4834 
4835   // Common case: if the total offset is zero, and we are using C++ semantics,
4836   // where nullptr+0 is defined, don't emit a check.
4837   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4838     return GEPVal;
4839 
4840   // Now that we've computed the total offset, add it to the base pointer (with
4841   // wrapping semantics).
4842   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4843   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4844 
4845   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4846 
4847   if (PerformNullCheck) {
4848     // In C++, if the base pointer evaluates to a null pointer value,
4849     // the only valid  pointer this inbounds GEP can produce is also
4850     // a null pointer, so the offset must also evaluate to zero.
4851     // Likewise, if we have non-zero base pointer, we can not get null pointer
4852     // as a result, so the offset can not be -intptr_t(BasePtr).
4853     // In other words, both pointers are either null, or both are non-null,
4854     // or the behaviour is undefined.
4855     //
4856     // C, however, is more strict in this regard, and gives more
4857     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4858     // So both the input to the 'gep inbounds' AND the output must not be null.
4859     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4860     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4861     auto *Valid =
4862         CGM.getLangOpts().CPlusPlus
4863             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4864             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4865     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4866   }
4867 
4868   if (PerformOverflowCheck) {
4869     // The GEP is valid if:
4870     // 1) The total offset doesn't overflow, and
4871     // 2) The sign of the difference between the computed address and the base
4872     // pointer matches the sign of the total offset.
4873     llvm::Value *ValidGEP;
4874     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4875     if (SignedIndices) {
4876       // GEP is computed as `unsigned base + signed offset`, therefore:
4877       // * If offset was positive, then the computed pointer can not be
4878       //   [unsigned] less than the base pointer, unless it overflowed.
4879       // * If offset was negative, then the computed pointer can not be
4880       //   [unsigned] greater than the bas pointere, unless it overflowed.
4881       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4882       auto *PosOrZeroOffset =
4883           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4884       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4885       ValidGEP =
4886           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4887     } else if (!IsSubtraction) {
4888       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4889       // computed pointer can not be [unsigned] less than base pointer,
4890       // unless there was an overflow.
4891       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4892       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4893     } else {
4894       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4895       // computed pointer can not be [unsigned] greater than base pointer,
4896       // unless there was an overflow.
4897       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4898       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4899     }
4900     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4901     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4902   }
4903 
4904   assert(!Checks.empty() && "Should have produced some checks.");
4905 
4906   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4907   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4908   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4909   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4910 
4911   return GEPVal;
4912 }
4913