1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicsPowerPC.h" 40 #include "llvm/IR/MatrixBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include <cstdarg> 43 44 using namespace clang; 45 using namespace CodeGen; 46 using llvm::Value; 47 48 //===----------------------------------------------------------------------===// 49 // Scalar Expression Emitter 50 //===----------------------------------------------------------------------===// 51 52 namespace { 53 54 /// Determine whether the given binary operation may overflow. 55 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 56 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 57 /// the returned overflow check is precise. The returned value is 'true' for 58 /// all other opcodes, to be conservative. 59 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 60 BinaryOperator::Opcode Opcode, bool Signed, 61 llvm::APInt &Result) { 62 // Assume overflow is possible, unless we can prove otherwise. 63 bool Overflow = true; 64 const auto &LHSAP = LHS->getValue(); 65 const auto &RHSAP = RHS->getValue(); 66 if (Opcode == BO_Add) { 67 if (Signed) 68 Result = LHSAP.sadd_ov(RHSAP, Overflow); 69 else 70 Result = LHSAP.uadd_ov(RHSAP, Overflow); 71 } else if (Opcode == BO_Sub) { 72 if (Signed) 73 Result = LHSAP.ssub_ov(RHSAP, Overflow); 74 else 75 Result = LHSAP.usub_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Mul) { 77 if (Signed) 78 Result = LHSAP.smul_ov(RHSAP, Overflow); 79 else 80 Result = LHSAP.umul_ov(RHSAP, Overflow); 81 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 82 if (Signed && !RHS->isZero()) 83 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 84 else 85 return false; 86 } 87 return Overflow; 88 } 89 90 struct BinOpInfo { 91 Value *LHS; 92 Value *RHS; 93 QualType Ty; // Computation Type. 94 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 95 FPOptions FPFeatures; 96 const Expr *E; // Entire expr, for error unsupported. May not be binop. 97 98 /// Check if the binop can result in integer overflow. 99 bool mayHaveIntegerOverflow() const { 100 // Without constant input, we can't rule out overflow. 101 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 102 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 103 if (!LHSCI || !RHSCI) 104 return true; 105 106 llvm::APInt Result; 107 return ::mayHaveIntegerOverflow( 108 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 109 } 110 111 /// Check if the binop computes a division or a remainder. 112 bool isDivremOp() const { 113 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 114 Opcode == BO_RemAssign; 115 } 116 117 /// Check if the binop can result in an integer division by zero. 118 bool mayHaveIntegerDivisionByZero() const { 119 if (isDivremOp()) 120 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 121 return CI->isZero(); 122 return true; 123 } 124 125 /// Check if the binop can result in a float division by zero. 126 bool mayHaveFloatDivisionByZero() const { 127 if (isDivremOp()) 128 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 129 return CFP->isZero(); 130 return true; 131 } 132 133 /// Check if at least one operand is a fixed point type. In such cases, this 134 /// operation did not follow usual arithmetic conversion and both operands 135 /// might not be of the same type. 136 bool isFixedPointOp() const { 137 // We cannot simply check the result type since comparison operations return 138 // an int. 139 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 140 QualType LHSType = BinOp->getLHS()->getType(); 141 QualType RHSType = BinOp->getRHS()->getType(); 142 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 143 } 144 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 145 return UnOp->getSubExpr()->getType()->isFixedPointType(); 146 return false; 147 } 148 }; 149 150 static bool MustVisitNullValue(const Expr *E) { 151 // If a null pointer expression's type is the C++0x nullptr_t, then 152 // it's not necessarily a simple constant and it must be evaluated 153 // for its potential side effects. 154 return E->getType()->isNullPtrType(); 155 } 156 157 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 158 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 159 const Expr *E) { 160 const Expr *Base = E->IgnoreImpCasts(); 161 if (E == Base) 162 return llvm::None; 163 164 QualType BaseTy = Base->getType(); 165 if (!BaseTy->isPromotableIntegerType() || 166 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 167 return llvm::None; 168 169 return BaseTy; 170 } 171 172 /// Check if \p E is a widened promoted integer. 173 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 174 return getUnwidenedIntegerType(Ctx, E).hasValue(); 175 } 176 177 /// Check if we can skip the overflow check for \p Op. 178 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 179 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 180 "Expected a unary or binary operator"); 181 182 // If the binop has constant inputs and we can prove there is no overflow, 183 // we can elide the overflow check. 184 if (!Op.mayHaveIntegerOverflow()) 185 return true; 186 187 // If a unary op has a widened operand, the op cannot overflow. 188 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 189 return !UO->canOverflow(); 190 191 // We usually don't need overflow checks for binops with widened operands. 192 // Multiplication with promoted unsigned operands is a special case. 193 const auto *BO = cast<BinaryOperator>(Op.E); 194 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 195 if (!OptionalLHSTy) 196 return false; 197 198 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 199 if (!OptionalRHSTy) 200 return false; 201 202 QualType LHSTy = *OptionalLHSTy; 203 QualType RHSTy = *OptionalRHSTy; 204 205 // This is the simple case: binops without unsigned multiplication, and with 206 // widened operands. No overflow check is needed here. 207 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 208 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 209 return true; 210 211 // For unsigned multiplication the overflow check can be elided if either one 212 // of the unpromoted types are less than half the size of the promoted type. 213 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 214 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 215 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 216 } 217 218 class ScalarExprEmitter 219 : public StmtVisitor<ScalarExprEmitter, Value*> { 220 CodeGenFunction &CGF; 221 CGBuilderTy &Builder; 222 bool IgnoreResultAssign; 223 llvm::LLVMContext &VMContext; 224 public: 225 226 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 227 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 228 VMContext(cgf.getLLVMContext()) { 229 } 230 231 //===--------------------------------------------------------------------===// 232 // Utilities 233 //===--------------------------------------------------------------------===// 234 235 bool TestAndClearIgnoreResultAssign() { 236 bool I = IgnoreResultAssign; 237 IgnoreResultAssign = false; 238 return I; 239 } 240 241 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 242 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 243 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 244 return CGF.EmitCheckedLValue(E, TCK); 245 } 246 247 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 248 const BinOpInfo &Info); 249 250 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 251 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 252 } 253 254 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 255 const AlignValueAttr *AVAttr = nullptr; 256 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 257 const ValueDecl *VD = DRE->getDecl(); 258 259 if (VD->getType()->isReferenceType()) { 260 if (const auto *TTy = 261 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 262 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 263 } else { 264 // Assumptions for function parameters are emitted at the start of the 265 // function, so there is no need to repeat that here, 266 // unless the alignment-assumption sanitizer is enabled, 267 // then we prefer the assumption over alignment attribute 268 // on IR function param. 269 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 270 return; 271 272 AVAttr = VD->getAttr<AlignValueAttr>(); 273 } 274 } 275 276 if (!AVAttr) 277 if (const auto *TTy = 278 dyn_cast<TypedefType>(E->getType())) 279 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 280 281 if (!AVAttr) 282 return; 283 284 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 285 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 286 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 287 } 288 289 /// EmitLoadOfLValue - Given an expression with complex type that represents a 290 /// value l-value, this method emits the address of the l-value, then loads 291 /// and returns the result. 292 Value *EmitLoadOfLValue(const Expr *E) { 293 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 294 E->getExprLoc()); 295 296 EmitLValueAlignmentAssumption(E, V); 297 return V; 298 } 299 300 /// EmitConversionToBool - Convert the specified expression value to a 301 /// boolean (i1) truth value. This is equivalent to "Val != 0". 302 Value *EmitConversionToBool(Value *Src, QualType DstTy); 303 304 /// Emit a check that a conversion from a floating-point type does not 305 /// overflow. 306 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 307 Value *Src, QualType SrcType, QualType DstType, 308 llvm::Type *DstTy, SourceLocation Loc); 309 310 /// Known implicit conversion check kinds. 311 /// Keep in sync with the enum of the same name in ubsan_handlers.h 312 enum ImplicitConversionCheckKind : unsigned char { 313 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 314 ICCK_UnsignedIntegerTruncation = 1, 315 ICCK_SignedIntegerTruncation = 2, 316 ICCK_IntegerSignChange = 3, 317 ICCK_SignedIntegerTruncationOrSignChange = 4, 318 }; 319 320 /// Emit a check that an [implicit] truncation of an integer does not 321 /// discard any bits. It is not UB, so we use the value after truncation. 322 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 323 QualType DstType, SourceLocation Loc); 324 325 /// Emit a check that an [implicit] conversion of an integer does not change 326 /// the sign of the value. It is not UB, so we use the value after conversion. 327 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 328 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 329 QualType DstType, SourceLocation Loc); 330 331 /// Emit a conversion from the specified type to the specified destination 332 /// type, both of which are LLVM scalar types. 333 struct ScalarConversionOpts { 334 bool TreatBooleanAsSigned; 335 bool EmitImplicitIntegerTruncationChecks; 336 bool EmitImplicitIntegerSignChangeChecks; 337 338 ScalarConversionOpts() 339 : TreatBooleanAsSigned(false), 340 EmitImplicitIntegerTruncationChecks(false), 341 EmitImplicitIntegerSignChangeChecks(false) {} 342 343 ScalarConversionOpts(clang::SanitizerSet SanOpts) 344 : TreatBooleanAsSigned(false), 345 EmitImplicitIntegerTruncationChecks( 346 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 347 EmitImplicitIntegerSignChangeChecks( 348 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 349 }; 350 Value * 351 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 352 SourceLocation Loc, 353 ScalarConversionOpts Opts = ScalarConversionOpts()); 354 355 /// Convert between either a fixed point and other fixed point or fixed point 356 /// and an integer. 357 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 358 SourceLocation Loc); 359 Value *EmitFixedPointConversion(Value *Src, 360 llvm::FixedPointSemantics &SrcFixedSema, 361 llvm::FixedPointSemantics &DstFixedSema, 362 SourceLocation Loc, 363 bool DstIsInteger = false); 364 365 /// Emit a conversion from the specified complex type to the specified 366 /// destination type, where the destination type is an LLVM scalar type. 367 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 368 QualType SrcTy, QualType DstTy, 369 SourceLocation Loc); 370 371 /// EmitNullValue - Emit a value that corresponds to null for the given type. 372 Value *EmitNullValue(QualType Ty); 373 374 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 375 Value *EmitFloatToBoolConversion(Value *V) { 376 // Compare against 0.0 for fp scalars. 377 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 378 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 379 } 380 381 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 382 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 383 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 384 385 return Builder.CreateICmpNE(V, Zero, "tobool"); 386 } 387 388 Value *EmitIntToBoolConversion(Value *V) { 389 // Because of the type rules of C, we often end up computing a 390 // logical value, then zero extending it to int, then wanting it 391 // as a logical value again. Optimize this common case. 392 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 393 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 394 Value *Result = ZI->getOperand(0); 395 // If there aren't any more uses, zap the instruction to save space. 396 // Note that there can be more uses, for example if this 397 // is the result of an assignment. 398 if (ZI->use_empty()) 399 ZI->eraseFromParent(); 400 return Result; 401 } 402 } 403 404 return Builder.CreateIsNotNull(V, "tobool"); 405 } 406 407 //===--------------------------------------------------------------------===// 408 // Visitor Methods 409 //===--------------------------------------------------------------------===// 410 411 Value *Visit(Expr *E) { 412 ApplyDebugLocation DL(CGF, E); 413 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 414 } 415 416 Value *VisitStmt(Stmt *S) { 417 S->dump(llvm::errs(), CGF.getContext()); 418 llvm_unreachable("Stmt can't have complex result type!"); 419 } 420 Value *VisitExpr(Expr *S); 421 422 Value *VisitConstantExpr(ConstantExpr *E) { 423 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 424 if (E->isGLValue()) 425 return CGF.Builder.CreateLoad(Address( 426 Result, CGF.getContext().getTypeAlignInChars(E->getType()))); 427 return Result; 428 } 429 return Visit(E->getSubExpr()); 430 } 431 Value *VisitParenExpr(ParenExpr *PE) { 432 return Visit(PE->getSubExpr()); 433 } 434 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 435 return Visit(E->getReplacement()); 436 } 437 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 438 return Visit(GE->getResultExpr()); 439 } 440 Value *VisitCoawaitExpr(CoawaitExpr *S) { 441 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 442 } 443 Value *VisitCoyieldExpr(CoyieldExpr *S) { 444 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 445 } 446 Value *VisitUnaryCoawait(const UnaryOperator *E) { 447 return Visit(E->getSubExpr()); 448 } 449 450 // Leaves. 451 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 452 return Builder.getInt(E->getValue()); 453 } 454 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 455 return Builder.getInt(E->getValue()); 456 } 457 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 458 return llvm::ConstantFP::get(VMContext, E->getValue()); 459 } 460 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 461 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 462 } 463 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 464 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 465 } 466 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 467 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 468 } 469 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 470 return EmitNullValue(E->getType()); 471 } 472 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 473 return EmitNullValue(E->getType()); 474 } 475 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 476 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 477 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 478 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 479 return Builder.CreateBitCast(V, ConvertType(E->getType())); 480 } 481 482 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 483 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 484 } 485 486 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 487 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 488 } 489 490 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 491 if (E->isGLValue()) 492 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 493 E->getExprLoc()); 494 495 // Otherwise, assume the mapping is the scalar directly. 496 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 497 } 498 499 // l-values. 500 Value *VisitDeclRefExpr(DeclRefExpr *E) { 501 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 502 return CGF.emitScalarConstant(Constant, E); 503 return EmitLoadOfLValue(E); 504 } 505 506 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 507 return CGF.EmitObjCSelectorExpr(E); 508 } 509 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 510 return CGF.EmitObjCProtocolExpr(E); 511 } 512 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 513 return EmitLoadOfLValue(E); 514 } 515 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 516 if (E->getMethodDecl() && 517 E->getMethodDecl()->getReturnType()->isReferenceType()) 518 return EmitLoadOfLValue(E); 519 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 520 } 521 522 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 523 LValue LV = CGF.EmitObjCIsaExpr(E); 524 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 525 return V; 526 } 527 528 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 529 VersionTuple Version = E->getVersion(); 530 531 // If we're checking for a platform older than our minimum deployment 532 // target, we can fold the check away. 533 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 534 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 535 536 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 537 llvm::Value *Args[] = { 538 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 539 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 540 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 541 }; 542 543 return CGF.EmitBuiltinAvailable(Args); 544 } 545 546 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 547 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 548 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 549 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 550 Value *VisitMemberExpr(MemberExpr *E); 551 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 552 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 553 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 554 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 555 // literals aren't l-values in C++. We do so simply because that's the 556 // cleanest way to handle compound literals in C++. 557 // See the discussion here: https://reviews.llvm.org/D64464 558 return EmitLoadOfLValue(E); 559 } 560 561 Value *VisitInitListExpr(InitListExpr *E); 562 563 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 564 assert(CGF.getArrayInitIndex() && 565 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 566 return CGF.getArrayInitIndex(); 567 } 568 569 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 570 return EmitNullValue(E->getType()); 571 } 572 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 573 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 574 return VisitCastExpr(E); 575 } 576 Value *VisitCastExpr(CastExpr *E); 577 578 Value *VisitCallExpr(const CallExpr *E) { 579 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 580 return EmitLoadOfLValue(E); 581 582 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 583 584 EmitLValueAlignmentAssumption(E, V); 585 return V; 586 } 587 588 Value *VisitStmtExpr(const StmtExpr *E); 589 590 // Unary Operators. 591 Value *VisitUnaryPostDec(const UnaryOperator *E) { 592 LValue LV = EmitLValue(E->getSubExpr()); 593 return EmitScalarPrePostIncDec(E, LV, false, false); 594 } 595 Value *VisitUnaryPostInc(const UnaryOperator *E) { 596 LValue LV = EmitLValue(E->getSubExpr()); 597 return EmitScalarPrePostIncDec(E, LV, true, false); 598 } 599 Value *VisitUnaryPreDec(const UnaryOperator *E) { 600 LValue LV = EmitLValue(E->getSubExpr()); 601 return EmitScalarPrePostIncDec(E, LV, false, true); 602 } 603 Value *VisitUnaryPreInc(const UnaryOperator *E) { 604 LValue LV = EmitLValue(E->getSubExpr()); 605 return EmitScalarPrePostIncDec(E, LV, true, true); 606 } 607 608 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 609 llvm::Value *InVal, 610 bool IsInc); 611 612 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 613 bool isInc, bool isPre); 614 615 616 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 617 if (isa<MemberPointerType>(E->getType())) // never sugared 618 return CGF.CGM.getMemberPointerConstant(E); 619 620 return EmitLValue(E->getSubExpr()).getPointer(CGF); 621 } 622 Value *VisitUnaryDeref(const UnaryOperator *E) { 623 if (E->getType()->isVoidType()) 624 return Visit(E->getSubExpr()); // the actual value should be unused 625 return EmitLoadOfLValue(E); 626 } 627 Value *VisitUnaryPlus(const UnaryOperator *E) { 628 // This differs from gcc, though, most likely due to a bug in gcc. 629 TestAndClearIgnoreResultAssign(); 630 return Visit(E->getSubExpr()); 631 } 632 Value *VisitUnaryMinus (const UnaryOperator *E); 633 Value *VisitUnaryNot (const UnaryOperator *E); 634 Value *VisitUnaryLNot (const UnaryOperator *E); 635 Value *VisitUnaryReal (const UnaryOperator *E); 636 Value *VisitUnaryImag (const UnaryOperator *E); 637 Value *VisitUnaryExtension(const UnaryOperator *E) { 638 return Visit(E->getSubExpr()); 639 } 640 641 // C++ 642 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 643 return EmitLoadOfLValue(E); 644 } 645 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 646 auto &Ctx = CGF.getContext(); 647 APValue Evaluated = 648 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 649 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 650 SLE->getType()); 651 } 652 653 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 654 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 655 return Visit(DAE->getExpr()); 656 } 657 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 658 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 659 return Visit(DIE->getExpr()); 660 } 661 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 662 return CGF.LoadCXXThis(); 663 } 664 665 Value *VisitExprWithCleanups(ExprWithCleanups *E); 666 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 667 return CGF.EmitCXXNewExpr(E); 668 } 669 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 670 CGF.EmitCXXDeleteExpr(E); 671 return nullptr; 672 } 673 674 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 675 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 676 } 677 678 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 679 return Builder.getInt1(E->isSatisfied()); 680 } 681 682 Value *VisitRequiresExpr(const RequiresExpr *E) { 683 return Builder.getInt1(E->isSatisfied()); 684 } 685 686 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 687 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 688 } 689 690 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 691 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 692 } 693 694 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 695 // C++ [expr.pseudo]p1: 696 // The result shall only be used as the operand for the function call 697 // operator (), and the result of such a call has type void. The only 698 // effect is the evaluation of the postfix-expression before the dot or 699 // arrow. 700 CGF.EmitScalarExpr(E->getBase()); 701 return nullptr; 702 } 703 704 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 705 return EmitNullValue(E->getType()); 706 } 707 708 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 709 CGF.EmitCXXThrowExpr(E); 710 return nullptr; 711 } 712 713 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 714 return Builder.getInt1(E->getValue()); 715 } 716 717 // Binary Operators. 718 Value *EmitMul(const BinOpInfo &Ops) { 719 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 720 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 721 case LangOptions::SOB_Defined: 722 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 723 case LangOptions::SOB_Undefined: 724 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 725 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 726 LLVM_FALLTHROUGH; 727 case LangOptions::SOB_Trapping: 728 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 729 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 730 return EmitOverflowCheckedBinOp(Ops); 731 } 732 } 733 734 if (Ops.Ty->isConstantMatrixType()) { 735 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 736 // We need to check the types of the operands of the operator to get the 737 // correct matrix dimensions. 738 auto *BO = cast<BinaryOperator>(Ops.E); 739 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 740 BO->getLHS()->getType().getCanonicalType()); 741 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 742 BO->getRHS()->getType().getCanonicalType()); 743 if (LHSMatTy && RHSMatTy) 744 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 745 LHSMatTy->getNumColumns(), 746 RHSMatTy->getNumColumns()); 747 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 748 } 749 750 if (Ops.Ty->isUnsignedIntegerType() && 751 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 752 !CanElideOverflowCheck(CGF.getContext(), Ops)) 753 return EmitOverflowCheckedBinOp(Ops); 754 755 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 756 // Preserve the old values 757 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 758 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 759 } 760 if (Ops.isFixedPointOp()) 761 return EmitFixedPointBinOp(Ops); 762 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 763 } 764 /// Create a binary op that checks for overflow. 765 /// Currently only supports +, - and *. 766 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 767 768 // Check for undefined division and modulus behaviors. 769 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 770 llvm::Value *Zero,bool isDiv); 771 // Common helper for getting how wide LHS of shift is. 772 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 773 774 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 775 // non powers of two. 776 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 777 778 Value *EmitDiv(const BinOpInfo &Ops); 779 Value *EmitRem(const BinOpInfo &Ops); 780 Value *EmitAdd(const BinOpInfo &Ops); 781 Value *EmitSub(const BinOpInfo &Ops); 782 Value *EmitShl(const BinOpInfo &Ops); 783 Value *EmitShr(const BinOpInfo &Ops); 784 Value *EmitAnd(const BinOpInfo &Ops) { 785 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 786 } 787 Value *EmitXor(const BinOpInfo &Ops) { 788 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 789 } 790 Value *EmitOr (const BinOpInfo &Ops) { 791 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 792 } 793 794 // Helper functions for fixed point binary operations. 795 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 796 797 BinOpInfo EmitBinOps(const BinaryOperator *E); 798 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 799 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 800 Value *&Result); 801 802 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 803 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 804 805 // Binary operators and binary compound assignment operators. 806 #define HANDLEBINOP(OP) \ 807 Value *VisitBin ## OP(const BinaryOperator *E) { \ 808 return Emit ## OP(EmitBinOps(E)); \ 809 } \ 810 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 811 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 812 } 813 HANDLEBINOP(Mul) 814 HANDLEBINOP(Div) 815 HANDLEBINOP(Rem) 816 HANDLEBINOP(Add) 817 HANDLEBINOP(Sub) 818 HANDLEBINOP(Shl) 819 HANDLEBINOP(Shr) 820 HANDLEBINOP(And) 821 HANDLEBINOP(Xor) 822 HANDLEBINOP(Or) 823 #undef HANDLEBINOP 824 825 // Comparisons. 826 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 827 llvm::CmpInst::Predicate SICmpOpc, 828 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 829 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 830 Value *VisitBin##CODE(const BinaryOperator *E) { \ 831 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 832 llvm::FCmpInst::FP, SIG); } 833 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 834 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 835 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 836 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 837 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 838 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 839 #undef VISITCOMP 840 841 Value *VisitBinAssign (const BinaryOperator *E); 842 843 Value *VisitBinLAnd (const BinaryOperator *E); 844 Value *VisitBinLOr (const BinaryOperator *E); 845 Value *VisitBinComma (const BinaryOperator *E); 846 847 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 848 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 849 850 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 851 return Visit(E->getSemanticForm()); 852 } 853 854 // Other Operators. 855 Value *VisitBlockExpr(const BlockExpr *BE); 856 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 857 Value *VisitChooseExpr(ChooseExpr *CE); 858 Value *VisitVAArgExpr(VAArgExpr *VE); 859 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 860 return CGF.EmitObjCStringLiteral(E); 861 } 862 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 863 return CGF.EmitObjCBoxedExpr(E); 864 } 865 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 866 return CGF.EmitObjCArrayLiteral(E); 867 } 868 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 869 return CGF.EmitObjCDictionaryLiteral(E); 870 } 871 Value *VisitAsTypeExpr(AsTypeExpr *CE); 872 Value *VisitAtomicExpr(AtomicExpr *AE); 873 }; 874 } // end anonymous namespace. 875 876 //===----------------------------------------------------------------------===// 877 // Utilities 878 //===----------------------------------------------------------------------===// 879 880 /// EmitConversionToBool - Convert the specified expression value to a 881 /// boolean (i1) truth value. This is equivalent to "Val != 0". 882 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 883 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 884 885 if (SrcType->isRealFloatingType()) 886 return EmitFloatToBoolConversion(Src); 887 888 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 889 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 890 891 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 892 "Unknown scalar type to convert"); 893 894 if (isa<llvm::IntegerType>(Src->getType())) 895 return EmitIntToBoolConversion(Src); 896 897 assert(isa<llvm::PointerType>(Src->getType())); 898 return EmitPointerToBoolConversion(Src, SrcType); 899 } 900 901 void ScalarExprEmitter::EmitFloatConversionCheck( 902 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 903 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 904 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 905 if (!isa<llvm::IntegerType>(DstTy)) 906 return; 907 908 CodeGenFunction::SanitizerScope SanScope(&CGF); 909 using llvm::APFloat; 910 using llvm::APSInt; 911 912 llvm::Value *Check = nullptr; 913 const llvm::fltSemantics &SrcSema = 914 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 915 916 // Floating-point to integer. This has undefined behavior if the source is 917 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 918 // to an integer). 919 unsigned Width = CGF.getContext().getIntWidth(DstType); 920 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 921 922 APSInt Min = APSInt::getMinValue(Width, Unsigned); 923 APFloat MinSrc(SrcSema, APFloat::uninitialized); 924 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 925 APFloat::opOverflow) 926 // Don't need an overflow check for lower bound. Just check for 927 // -Inf/NaN. 928 MinSrc = APFloat::getInf(SrcSema, true); 929 else 930 // Find the largest value which is too small to represent (before 931 // truncation toward zero). 932 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 933 934 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 935 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 936 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 937 APFloat::opOverflow) 938 // Don't need an overflow check for upper bound. Just check for 939 // +Inf/NaN. 940 MaxSrc = APFloat::getInf(SrcSema, false); 941 else 942 // Find the smallest value which is too large to represent (before 943 // truncation toward zero). 944 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 945 946 // If we're converting from __half, convert the range to float to match 947 // the type of src. 948 if (OrigSrcType->isHalfType()) { 949 const llvm::fltSemantics &Sema = 950 CGF.getContext().getFloatTypeSemantics(SrcType); 951 bool IsInexact; 952 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 953 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 954 } 955 956 llvm::Value *GE = 957 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 958 llvm::Value *LE = 959 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 960 Check = Builder.CreateAnd(GE, LE); 961 962 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 963 CGF.EmitCheckTypeDescriptor(OrigSrcType), 964 CGF.EmitCheckTypeDescriptor(DstType)}; 965 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 966 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 967 } 968 969 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 970 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 971 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 972 std::pair<llvm::Value *, SanitizerMask>> 973 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 974 QualType DstType, CGBuilderTy &Builder) { 975 llvm::Type *SrcTy = Src->getType(); 976 llvm::Type *DstTy = Dst->getType(); 977 (void)DstTy; // Only used in assert() 978 979 // This should be truncation of integral types. 980 assert(Src != Dst); 981 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 982 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 983 "non-integer llvm type"); 984 985 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 986 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 987 988 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 989 // Else, it is a signed truncation. 990 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 991 SanitizerMask Mask; 992 if (!SrcSigned && !DstSigned) { 993 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 994 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 995 } else { 996 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 997 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 998 } 999 1000 llvm::Value *Check = nullptr; 1001 // 1. Extend the truncated value back to the same width as the Src. 1002 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 1003 // 2. Equality-compare with the original source value 1004 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 1005 // If the comparison result is 'i1 false', then the truncation was lossy. 1006 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1007 } 1008 1009 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 1010 QualType SrcType, QualType DstType) { 1011 return SrcType->isIntegerType() && DstType->isIntegerType(); 1012 } 1013 1014 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1015 Value *Dst, QualType DstType, 1016 SourceLocation Loc) { 1017 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1018 return; 1019 1020 // We only care about int->int conversions here. 1021 // We ignore conversions to/from pointer and/or bool. 1022 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1023 DstType)) 1024 return; 1025 1026 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1027 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1028 // This must be truncation. Else we do not care. 1029 if (SrcBits <= DstBits) 1030 return; 1031 1032 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1033 1034 // If the integer sign change sanitizer is enabled, 1035 // and we are truncating from larger unsigned type to smaller signed type, 1036 // let that next sanitizer deal with it. 1037 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1038 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1039 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1040 (!SrcSigned && DstSigned)) 1041 return; 1042 1043 CodeGenFunction::SanitizerScope SanScope(&CGF); 1044 1045 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1046 std::pair<llvm::Value *, SanitizerMask>> 1047 Check = 1048 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1049 // If the comparison result is 'i1 false', then the truncation was lossy. 1050 1051 // Do we care about this type of truncation? 1052 if (!CGF.SanOpts.has(Check.second.second)) 1053 return; 1054 1055 llvm::Constant *StaticArgs[] = { 1056 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1057 CGF.EmitCheckTypeDescriptor(DstType), 1058 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1059 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1060 {Src, Dst}); 1061 } 1062 1063 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1064 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1065 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1066 std::pair<llvm::Value *, SanitizerMask>> 1067 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1068 QualType DstType, CGBuilderTy &Builder) { 1069 llvm::Type *SrcTy = Src->getType(); 1070 llvm::Type *DstTy = Dst->getType(); 1071 1072 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1073 "non-integer llvm type"); 1074 1075 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1076 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1077 (void)SrcSigned; // Only used in assert() 1078 (void)DstSigned; // Only used in assert() 1079 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1080 unsigned DstBits = DstTy->getScalarSizeInBits(); 1081 (void)SrcBits; // Only used in assert() 1082 (void)DstBits; // Only used in assert() 1083 1084 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1085 "either the widths should be different, or the signednesses."); 1086 1087 // NOTE: zero value is considered to be non-negative. 1088 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1089 const char *Name) -> Value * { 1090 // Is this value a signed type? 1091 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1092 llvm::Type *VTy = V->getType(); 1093 if (!VSigned) { 1094 // If the value is unsigned, then it is never negative. 1095 // FIXME: can we encounter non-scalar VTy here? 1096 return llvm::ConstantInt::getFalse(VTy->getContext()); 1097 } 1098 // Get the zero of the same type with which we will be comparing. 1099 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1100 // %V.isnegative = icmp slt %V, 0 1101 // I.e is %V *strictly* less than zero, does it have negative value? 1102 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1103 llvm::Twine(Name) + "." + V->getName() + 1104 ".negativitycheck"); 1105 }; 1106 1107 // 1. Was the old Value negative? 1108 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1109 // 2. Is the new Value negative? 1110 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1111 // 3. Now, was the 'negativity status' preserved during the conversion? 1112 // NOTE: conversion from negative to zero is considered to change the sign. 1113 // (We want to get 'false' when the conversion changed the sign) 1114 // So we should just equality-compare the negativity statuses. 1115 llvm::Value *Check = nullptr; 1116 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1117 // If the comparison result is 'false', then the conversion changed the sign. 1118 return std::make_pair( 1119 ScalarExprEmitter::ICCK_IntegerSignChange, 1120 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1121 } 1122 1123 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1124 Value *Dst, QualType DstType, 1125 SourceLocation Loc) { 1126 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1127 return; 1128 1129 llvm::Type *SrcTy = Src->getType(); 1130 llvm::Type *DstTy = Dst->getType(); 1131 1132 // We only care about int->int conversions here. 1133 // We ignore conversions to/from pointer and/or bool. 1134 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1135 DstType)) 1136 return; 1137 1138 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1139 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1140 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1141 unsigned DstBits = DstTy->getScalarSizeInBits(); 1142 1143 // Now, we do not need to emit the check in *all* of the cases. 1144 // We can avoid emitting it in some obvious cases where it would have been 1145 // dropped by the opt passes (instcombine) always anyways. 1146 // If it's a cast between effectively the same type, no check. 1147 // NOTE: this is *not* equivalent to checking the canonical types. 1148 if (SrcSigned == DstSigned && SrcBits == DstBits) 1149 return; 1150 // At least one of the values needs to have signed type. 1151 // If both are unsigned, then obviously, neither of them can be negative. 1152 if (!SrcSigned && !DstSigned) 1153 return; 1154 // If the conversion is to *larger* *signed* type, then no check is needed. 1155 // Because either sign-extension happens (so the sign will remain), 1156 // or zero-extension will happen (the sign bit will be zero.) 1157 if ((DstBits > SrcBits) && DstSigned) 1158 return; 1159 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1160 (SrcBits > DstBits) && SrcSigned) { 1161 // If the signed integer truncation sanitizer is enabled, 1162 // and this is a truncation from signed type, then no check is needed. 1163 // Because here sign change check is interchangeable with truncation check. 1164 return; 1165 } 1166 // That's it. We can't rule out any more cases with the data we have. 1167 1168 CodeGenFunction::SanitizerScope SanScope(&CGF); 1169 1170 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1171 std::pair<llvm::Value *, SanitizerMask>> 1172 Check; 1173 1174 // Each of these checks needs to return 'false' when an issue was detected. 1175 ImplicitConversionCheckKind CheckKind; 1176 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1177 // So we can 'and' all the checks together, and still get 'false', 1178 // if at least one of the checks detected an issue. 1179 1180 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1181 CheckKind = Check.first; 1182 Checks.emplace_back(Check.second); 1183 1184 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1185 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1186 // If the signed integer truncation sanitizer was enabled, 1187 // and we are truncating from larger unsigned type to smaller signed type, 1188 // let's handle the case we skipped in that check. 1189 Check = 1190 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1191 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1192 Checks.emplace_back(Check.second); 1193 // If the comparison result is 'i1 false', then the truncation was lossy. 1194 } 1195 1196 llvm::Constant *StaticArgs[] = { 1197 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1198 CGF.EmitCheckTypeDescriptor(DstType), 1199 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1200 // EmitCheck() will 'and' all the checks together. 1201 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1202 {Src, Dst}); 1203 } 1204 1205 /// Emit a conversion from the specified type to the specified destination type, 1206 /// both of which are LLVM scalar types. 1207 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1208 QualType DstType, 1209 SourceLocation Loc, 1210 ScalarConversionOpts Opts) { 1211 // All conversions involving fixed point types should be handled by the 1212 // EmitFixedPoint family functions. This is done to prevent bloating up this 1213 // function more, and although fixed point numbers are represented by 1214 // integers, we do not want to follow any logic that assumes they should be 1215 // treated as integers. 1216 // TODO(leonardchan): When necessary, add another if statement checking for 1217 // conversions to fixed point types from other types. 1218 if (SrcType->isFixedPointType()) { 1219 if (DstType->isBooleanType()) 1220 // It is important that we check this before checking if the dest type is 1221 // an integer because booleans are technically integer types. 1222 // We do not need to check the padding bit on unsigned types if unsigned 1223 // padding is enabled because overflow into this bit is undefined 1224 // behavior. 1225 return Builder.CreateIsNotNull(Src, "tobool"); 1226 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1227 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1228 1229 llvm_unreachable( 1230 "Unhandled scalar conversion from a fixed point type to another type."); 1231 } else if (DstType->isFixedPointType()) { 1232 if (SrcType->isIntegerType()) 1233 // This also includes converting booleans and enums to fixed point types. 1234 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1235 1236 llvm_unreachable( 1237 "Unhandled scalar conversion to a fixed point type from another type."); 1238 } 1239 1240 QualType NoncanonicalSrcType = SrcType; 1241 QualType NoncanonicalDstType = DstType; 1242 1243 SrcType = CGF.getContext().getCanonicalType(SrcType); 1244 DstType = CGF.getContext().getCanonicalType(DstType); 1245 if (SrcType == DstType) return Src; 1246 1247 if (DstType->isVoidType()) return nullptr; 1248 1249 llvm::Value *OrigSrc = Src; 1250 QualType OrigSrcType = SrcType; 1251 llvm::Type *SrcTy = Src->getType(); 1252 1253 // Handle conversions to bool first, they are special: comparisons against 0. 1254 if (DstType->isBooleanType()) 1255 return EmitConversionToBool(Src, SrcType); 1256 1257 llvm::Type *DstTy = ConvertType(DstType); 1258 1259 // Cast from half through float if half isn't a native type. 1260 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1261 // Cast to FP using the intrinsic if the half type itself isn't supported. 1262 if (DstTy->isFloatingPointTy()) { 1263 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1264 return Builder.CreateCall( 1265 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1266 Src); 1267 } else { 1268 // Cast to other types through float, using either the intrinsic or FPExt, 1269 // depending on whether the half type itself is supported 1270 // (as opposed to operations on half, available with NativeHalfType). 1271 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1272 Src = Builder.CreateCall( 1273 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1274 CGF.CGM.FloatTy), 1275 Src); 1276 } else { 1277 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1278 } 1279 SrcType = CGF.getContext().FloatTy; 1280 SrcTy = CGF.FloatTy; 1281 } 1282 } 1283 1284 // Ignore conversions like int -> uint. 1285 if (SrcTy == DstTy) { 1286 if (Opts.EmitImplicitIntegerSignChangeChecks) 1287 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1288 NoncanonicalDstType, Loc); 1289 1290 return Src; 1291 } 1292 1293 // Handle pointer conversions next: pointers can only be converted to/from 1294 // other pointers and integers. Check for pointer types in terms of LLVM, as 1295 // some native types (like Obj-C id) may map to a pointer type. 1296 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1297 // The source value may be an integer, or a pointer. 1298 if (isa<llvm::PointerType>(SrcTy)) 1299 return Builder.CreateBitCast(Src, DstTy, "conv"); 1300 1301 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1302 // First, convert to the correct width so that we control the kind of 1303 // extension. 1304 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1305 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1306 llvm::Value* IntResult = 1307 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1308 // Then, cast to pointer. 1309 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1310 } 1311 1312 if (isa<llvm::PointerType>(SrcTy)) { 1313 // Must be an ptr to int cast. 1314 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1315 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1316 } 1317 1318 // A scalar can be splatted to an extended vector of the same element type 1319 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1320 // Sema should add casts to make sure that the source expression's type is 1321 // the same as the vector's element type (sans qualifiers) 1322 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1323 SrcType.getTypePtr() && 1324 "Splatted expr doesn't match with vector element type?"); 1325 1326 // Splat the element across to all elements 1327 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1328 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1329 } 1330 1331 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1332 // Allow bitcast from vector to integer/fp of the same size. 1333 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1334 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1335 if (SrcSize == DstSize) 1336 return Builder.CreateBitCast(Src, DstTy, "conv"); 1337 1338 // Conversions between vectors of different sizes are not allowed except 1339 // when vectors of half are involved. Operations on storage-only half 1340 // vectors require promoting half vector operands to float vectors and 1341 // truncating the result, which is either an int or float vector, to a 1342 // short or half vector. 1343 1344 // Source and destination are both expected to be vectors. 1345 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1346 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1347 (void)DstElementTy; 1348 1349 assert(((SrcElementTy->isIntegerTy() && 1350 DstElementTy->isIntegerTy()) || 1351 (SrcElementTy->isFloatingPointTy() && 1352 DstElementTy->isFloatingPointTy())) && 1353 "unexpected conversion between a floating-point vector and an " 1354 "integer vector"); 1355 1356 // Truncate an i32 vector to an i16 vector. 1357 if (SrcElementTy->isIntegerTy()) 1358 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1359 1360 // Truncate a float vector to a half vector. 1361 if (SrcSize > DstSize) 1362 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1363 1364 // Promote a half vector to a float vector. 1365 return Builder.CreateFPExt(Src, DstTy, "conv"); 1366 } 1367 1368 // Finally, we have the arithmetic types: real int/float. 1369 Value *Res = nullptr; 1370 llvm::Type *ResTy = DstTy; 1371 1372 // An overflowing conversion has undefined behavior if either the source type 1373 // or the destination type is a floating-point type. However, we consider the 1374 // range of representable values for all floating-point types to be 1375 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1376 // floating-point type. 1377 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1378 OrigSrcType->isFloatingType()) 1379 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1380 Loc); 1381 1382 // Cast to half through float if half isn't a native type. 1383 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1384 // Make sure we cast in a single step if from another FP type. 1385 if (SrcTy->isFloatingPointTy()) { 1386 // Use the intrinsic if the half type itself isn't supported 1387 // (as opposed to operations on half, available with NativeHalfType). 1388 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1389 return Builder.CreateCall( 1390 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1391 // If the half type is supported, just use an fptrunc. 1392 return Builder.CreateFPTrunc(Src, DstTy); 1393 } 1394 DstTy = CGF.FloatTy; 1395 } 1396 1397 if (isa<llvm::IntegerType>(SrcTy)) { 1398 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1399 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1400 InputSigned = true; 1401 } 1402 if (isa<llvm::IntegerType>(DstTy)) 1403 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1404 else if (InputSigned) 1405 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1406 else 1407 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1408 } else if (isa<llvm::IntegerType>(DstTy)) { 1409 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1410 if (DstType->isSignedIntegerOrEnumerationType()) 1411 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1412 else 1413 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1414 } else { 1415 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1416 "Unknown real conversion"); 1417 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1418 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1419 else 1420 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1421 } 1422 1423 if (DstTy != ResTy) { 1424 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1425 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1426 Res = Builder.CreateCall( 1427 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1428 Res); 1429 } else { 1430 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1431 } 1432 } 1433 1434 if (Opts.EmitImplicitIntegerTruncationChecks) 1435 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1436 NoncanonicalDstType, Loc); 1437 1438 if (Opts.EmitImplicitIntegerSignChangeChecks) 1439 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1440 NoncanonicalDstType, Loc); 1441 1442 return Res; 1443 } 1444 1445 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1446 QualType DstTy, 1447 SourceLocation Loc) { 1448 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1449 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1450 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1451 DstTy->isIntegerType()); 1452 } 1453 1454 Value *ScalarExprEmitter::EmitFixedPointConversion( 1455 Value *Src, llvm::FixedPointSemantics &SrcFPSema, 1456 llvm::FixedPointSemantics &DstFPSema, 1457 SourceLocation Loc, bool DstIsInteger) { 1458 using llvm::APFixedPoint; 1459 using llvm::APInt; 1460 using llvm::ConstantInt; 1461 using llvm::Value; 1462 1463 unsigned SrcWidth = SrcFPSema.getWidth(); 1464 unsigned DstWidth = DstFPSema.getWidth(); 1465 unsigned SrcScale = SrcFPSema.getScale(); 1466 unsigned DstScale = DstFPSema.getScale(); 1467 bool SrcIsSigned = SrcFPSema.isSigned(); 1468 bool DstIsSigned = DstFPSema.isSigned(); 1469 1470 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1471 1472 Value *Result = Src; 1473 unsigned ResultWidth = SrcWidth; 1474 1475 // Downscale. 1476 if (DstScale < SrcScale) { 1477 // When converting to integers, we round towards zero. For negative numbers, 1478 // right shifting rounds towards negative infinity. In this case, we can 1479 // just round up before shifting. 1480 if (DstIsInteger && SrcIsSigned) { 1481 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1482 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1483 Value *LowBits = ConstantInt::get( 1484 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1485 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1486 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1487 } 1488 1489 Result = SrcIsSigned 1490 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1491 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1492 } 1493 1494 if (!DstFPSema.isSaturated()) { 1495 // Resize. 1496 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1497 1498 // Upscale. 1499 if (DstScale > SrcScale) 1500 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1501 } else { 1502 // Adjust the number of fractional bits. 1503 if (DstScale > SrcScale) { 1504 // Compare to DstWidth to prevent resizing twice. 1505 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1506 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1507 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1508 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1509 } 1510 1511 // Handle saturation. 1512 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1513 if (LessIntBits) { 1514 Value *Max = ConstantInt::get( 1515 CGF.getLLVMContext(), 1516 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1517 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1518 : Builder.CreateICmpUGT(Result, Max); 1519 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1520 } 1521 // Cannot overflow min to dest type if src is unsigned since all fixed 1522 // point types can cover the unsigned min of 0. 1523 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1524 Value *Min = ConstantInt::get( 1525 CGF.getLLVMContext(), 1526 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1527 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1528 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1529 } 1530 1531 // Resize the integer part to get the final destination size. 1532 if (ResultWidth != DstWidth) 1533 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1534 } 1535 return Result; 1536 } 1537 1538 /// Emit a conversion from the specified complex type to the specified 1539 /// destination type, where the destination type is an LLVM scalar type. 1540 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1541 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1542 SourceLocation Loc) { 1543 // Get the source element type. 1544 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1545 1546 // Handle conversions to bool first, they are special: comparisons against 0. 1547 if (DstTy->isBooleanType()) { 1548 // Complex != 0 -> (Real != 0) | (Imag != 0) 1549 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1550 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1551 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1552 } 1553 1554 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1555 // the imaginary part of the complex value is discarded and the value of the 1556 // real part is converted according to the conversion rules for the 1557 // corresponding real type. 1558 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1559 } 1560 1561 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1562 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1563 } 1564 1565 /// Emit a sanitization check for the given "binary" operation (which 1566 /// might actually be a unary increment which has been lowered to a binary 1567 /// operation). The check passes if all values in \p Checks (which are \c i1), 1568 /// are \c true. 1569 void ScalarExprEmitter::EmitBinOpCheck( 1570 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1571 assert(CGF.IsSanitizerScope); 1572 SanitizerHandler Check; 1573 SmallVector<llvm::Constant *, 4> StaticData; 1574 SmallVector<llvm::Value *, 2> DynamicData; 1575 1576 BinaryOperatorKind Opcode = Info.Opcode; 1577 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1578 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1579 1580 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1581 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1582 if (UO && UO->getOpcode() == UO_Minus) { 1583 Check = SanitizerHandler::NegateOverflow; 1584 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1585 DynamicData.push_back(Info.RHS); 1586 } else { 1587 if (BinaryOperator::isShiftOp(Opcode)) { 1588 // Shift LHS negative or too large, or RHS out of bounds. 1589 Check = SanitizerHandler::ShiftOutOfBounds; 1590 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1591 StaticData.push_back( 1592 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1593 StaticData.push_back( 1594 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1595 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1596 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1597 Check = SanitizerHandler::DivremOverflow; 1598 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1599 } else { 1600 // Arithmetic overflow (+, -, *). 1601 switch (Opcode) { 1602 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1603 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1604 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1605 default: llvm_unreachable("unexpected opcode for bin op check"); 1606 } 1607 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1608 } 1609 DynamicData.push_back(Info.LHS); 1610 DynamicData.push_back(Info.RHS); 1611 } 1612 1613 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1614 } 1615 1616 //===----------------------------------------------------------------------===// 1617 // Visitor Methods 1618 //===----------------------------------------------------------------------===// 1619 1620 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1621 CGF.ErrorUnsupported(E, "scalar expression"); 1622 if (E->getType()->isVoidType()) 1623 return nullptr; 1624 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1625 } 1626 1627 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1628 // Vector Mask Case 1629 if (E->getNumSubExprs() == 2) { 1630 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1631 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1632 Value *Mask; 1633 1634 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1635 unsigned LHSElts = LTy->getNumElements(); 1636 1637 Mask = RHS; 1638 1639 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1640 1641 // Mask off the high bits of each shuffle index. 1642 Value *MaskBits = 1643 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1644 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1645 1646 // newv = undef 1647 // mask = mask & maskbits 1648 // for each elt 1649 // n = extract mask i 1650 // x = extract val n 1651 // newv = insert newv, x, i 1652 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1653 MTy->getNumElements()); 1654 Value* NewV = llvm::UndefValue::get(RTy); 1655 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1656 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1657 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1658 1659 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1660 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1661 } 1662 return NewV; 1663 } 1664 1665 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1666 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1667 1668 SmallVector<int, 32> Indices; 1669 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1670 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1671 // Check for -1 and output it as undef in the IR. 1672 if (Idx.isSigned() && Idx.isAllOnesValue()) 1673 Indices.push_back(-1); 1674 else 1675 Indices.push_back(Idx.getZExtValue()); 1676 } 1677 1678 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1679 } 1680 1681 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1682 QualType SrcType = E->getSrcExpr()->getType(), 1683 DstType = E->getType(); 1684 1685 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1686 1687 SrcType = CGF.getContext().getCanonicalType(SrcType); 1688 DstType = CGF.getContext().getCanonicalType(DstType); 1689 if (SrcType == DstType) return Src; 1690 1691 assert(SrcType->isVectorType() && 1692 "ConvertVector source type must be a vector"); 1693 assert(DstType->isVectorType() && 1694 "ConvertVector destination type must be a vector"); 1695 1696 llvm::Type *SrcTy = Src->getType(); 1697 llvm::Type *DstTy = ConvertType(DstType); 1698 1699 // Ignore conversions like int -> uint. 1700 if (SrcTy == DstTy) 1701 return Src; 1702 1703 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1704 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1705 1706 assert(SrcTy->isVectorTy() && 1707 "ConvertVector source IR type must be a vector"); 1708 assert(DstTy->isVectorTy() && 1709 "ConvertVector destination IR type must be a vector"); 1710 1711 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1712 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1713 1714 if (DstEltType->isBooleanType()) { 1715 assert((SrcEltTy->isFloatingPointTy() || 1716 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1717 1718 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1719 if (SrcEltTy->isFloatingPointTy()) { 1720 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1721 } else { 1722 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1723 } 1724 } 1725 1726 // We have the arithmetic types: real int/float. 1727 Value *Res = nullptr; 1728 1729 if (isa<llvm::IntegerType>(SrcEltTy)) { 1730 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1731 if (isa<llvm::IntegerType>(DstEltTy)) 1732 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1733 else if (InputSigned) 1734 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1735 else 1736 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1737 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1738 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1739 if (DstEltType->isSignedIntegerOrEnumerationType()) 1740 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1741 else 1742 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1743 } else { 1744 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1745 "Unknown real conversion"); 1746 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1747 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1748 else 1749 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1750 } 1751 1752 return Res; 1753 } 1754 1755 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1756 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1757 CGF.EmitIgnoredExpr(E->getBase()); 1758 return CGF.emitScalarConstant(Constant, E); 1759 } else { 1760 Expr::EvalResult Result; 1761 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1762 llvm::APSInt Value = Result.Val.getInt(); 1763 CGF.EmitIgnoredExpr(E->getBase()); 1764 return Builder.getInt(Value); 1765 } 1766 } 1767 1768 return EmitLoadOfLValue(E); 1769 } 1770 1771 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1772 TestAndClearIgnoreResultAssign(); 1773 1774 // Emit subscript expressions in rvalue context's. For most cases, this just 1775 // loads the lvalue formed by the subscript expr. However, we have to be 1776 // careful, because the base of a vector subscript is occasionally an rvalue, 1777 // so we can't get it as an lvalue. 1778 if (!E->getBase()->getType()->isVectorType()) 1779 return EmitLoadOfLValue(E); 1780 1781 // Handle the vector case. The base must be a vector, the index must be an 1782 // integer value. 1783 Value *Base = Visit(E->getBase()); 1784 Value *Idx = Visit(E->getIdx()); 1785 QualType IdxTy = E->getIdx()->getType(); 1786 1787 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1788 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1789 1790 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1791 } 1792 1793 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1794 TestAndClearIgnoreResultAssign(); 1795 1796 // Handle the vector case. The base must be a vector, the index must be an 1797 // integer value. 1798 Value *RowIdx = Visit(E->getRowIdx()); 1799 Value *ColumnIdx = Visit(E->getColumnIdx()); 1800 Value *Matrix = Visit(E->getBase()); 1801 1802 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1803 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1804 return MB.CreateExtractElement( 1805 Matrix, RowIdx, ColumnIdx, 1806 E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows()); 1807 } 1808 1809 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1810 unsigned Off) { 1811 int MV = SVI->getMaskValue(Idx); 1812 if (MV == -1) 1813 return -1; 1814 return Off + MV; 1815 } 1816 1817 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1818 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1819 "Index operand too large for shufflevector mask!"); 1820 return C->getZExtValue(); 1821 } 1822 1823 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1824 bool Ignore = TestAndClearIgnoreResultAssign(); 1825 (void)Ignore; 1826 assert (Ignore == false && "init list ignored"); 1827 unsigned NumInitElements = E->getNumInits(); 1828 1829 if (E->hadArrayRangeDesignator()) 1830 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1831 1832 llvm::VectorType *VType = 1833 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1834 1835 if (!VType) { 1836 if (NumInitElements == 0) { 1837 // C++11 value-initialization for the scalar. 1838 return EmitNullValue(E->getType()); 1839 } 1840 // We have a scalar in braces. Just use the first element. 1841 return Visit(E->getInit(0)); 1842 } 1843 1844 unsigned ResElts = VType->getNumElements(); 1845 1846 // Loop over initializers collecting the Value for each, and remembering 1847 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1848 // us to fold the shuffle for the swizzle into the shuffle for the vector 1849 // initializer, since LLVM optimizers generally do not want to touch 1850 // shuffles. 1851 unsigned CurIdx = 0; 1852 bool VIsUndefShuffle = false; 1853 llvm::Value *V = llvm::UndefValue::get(VType); 1854 for (unsigned i = 0; i != NumInitElements; ++i) { 1855 Expr *IE = E->getInit(i); 1856 Value *Init = Visit(IE); 1857 SmallVector<int, 16> Args; 1858 1859 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1860 1861 // Handle scalar elements. If the scalar initializer is actually one 1862 // element of a different vector of the same width, use shuffle instead of 1863 // extract+insert. 1864 if (!VVT) { 1865 if (isa<ExtVectorElementExpr>(IE)) { 1866 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1867 1868 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1869 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1870 Value *LHS = nullptr, *RHS = nullptr; 1871 if (CurIdx == 0) { 1872 // insert into undef -> shuffle (src, undef) 1873 // shufflemask must use an i32 1874 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1875 Args.resize(ResElts, -1); 1876 1877 LHS = EI->getVectorOperand(); 1878 RHS = V; 1879 VIsUndefShuffle = true; 1880 } else if (VIsUndefShuffle) { 1881 // insert into undefshuffle && size match -> shuffle (v, src) 1882 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1883 for (unsigned j = 0; j != CurIdx; ++j) 1884 Args.push_back(getMaskElt(SVV, j, 0)); 1885 Args.push_back(ResElts + C->getZExtValue()); 1886 Args.resize(ResElts, -1); 1887 1888 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1889 RHS = EI->getVectorOperand(); 1890 VIsUndefShuffle = false; 1891 } 1892 if (!Args.empty()) { 1893 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1894 ++CurIdx; 1895 continue; 1896 } 1897 } 1898 } 1899 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1900 "vecinit"); 1901 VIsUndefShuffle = false; 1902 ++CurIdx; 1903 continue; 1904 } 1905 1906 unsigned InitElts = VVT->getNumElements(); 1907 1908 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1909 // input is the same width as the vector being constructed, generate an 1910 // optimized shuffle of the swizzle input into the result. 1911 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1912 if (isa<ExtVectorElementExpr>(IE)) { 1913 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1914 Value *SVOp = SVI->getOperand(0); 1915 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1916 1917 if (OpTy->getNumElements() == ResElts) { 1918 for (unsigned j = 0; j != CurIdx; ++j) { 1919 // If the current vector initializer is a shuffle with undef, merge 1920 // this shuffle directly into it. 1921 if (VIsUndefShuffle) { 1922 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1923 } else { 1924 Args.push_back(j); 1925 } 1926 } 1927 for (unsigned j = 0, je = InitElts; j != je; ++j) 1928 Args.push_back(getMaskElt(SVI, j, Offset)); 1929 Args.resize(ResElts, -1); 1930 1931 if (VIsUndefShuffle) 1932 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1933 1934 Init = SVOp; 1935 } 1936 } 1937 1938 // Extend init to result vector length, and then shuffle its contribution 1939 // to the vector initializer into V. 1940 if (Args.empty()) { 1941 for (unsigned j = 0; j != InitElts; ++j) 1942 Args.push_back(j); 1943 Args.resize(ResElts, -1); 1944 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args, 1945 "vext"); 1946 1947 Args.clear(); 1948 for (unsigned j = 0; j != CurIdx; ++j) 1949 Args.push_back(j); 1950 for (unsigned j = 0; j != InitElts; ++j) 1951 Args.push_back(j + Offset); 1952 Args.resize(ResElts, -1); 1953 } 1954 1955 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1956 // merging subsequent shuffles into this one. 1957 if (CurIdx == 0) 1958 std::swap(V, Init); 1959 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 1960 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1961 CurIdx += InitElts; 1962 } 1963 1964 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1965 // Emit remaining default initializers. 1966 llvm::Type *EltTy = VType->getElementType(); 1967 1968 // Emit remaining default initializers 1969 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1970 Value *Idx = Builder.getInt32(CurIdx); 1971 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1972 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1973 } 1974 return V; 1975 } 1976 1977 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1978 const Expr *E = CE->getSubExpr(); 1979 1980 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1981 return false; 1982 1983 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1984 // We always assume that 'this' is never null. 1985 return false; 1986 } 1987 1988 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1989 // And that glvalue casts are never null. 1990 if (ICE->getValueKind() != VK_RValue) 1991 return false; 1992 } 1993 1994 return true; 1995 } 1996 1997 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1998 // have to handle a more broad range of conversions than explicit casts, as they 1999 // handle things like function to ptr-to-function decay etc. 2000 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 2001 Expr *E = CE->getSubExpr(); 2002 QualType DestTy = CE->getType(); 2003 CastKind Kind = CE->getCastKind(); 2004 2005 // These cases are generally not written to ignore the result of 2006 // evaluating their sub-expressions, so we clear this now. 2007 bool Ignored = TestAndClearIgnoreResultAssign(); 2008 2009 // Since almost all cast kinds apply to scalars, this switch doesn't have 2010 // a default case, so the compiler will warn on a missing case. The cases 2011 // are in the same order as in the CastKind enum. 2012 switch (Kind) { 2013 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 2014 case CK_BuiltinFnToFnPtr: 2015 llvm_unreachable("builtin functions are handled elsewhere"); 2016 2017 case CK_LValueBitCast: 2018 case CK_ObjCObjectLValueCast: { 2019 Address Addr = EmitLValue(E).getAddress(CGF); 2020 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2021 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 2022 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2023 } 2024 2025 case CK_LValueToRValueBitCast: { 2026 LValue SourceLVal = CGF.EmitLValue(E); 2027 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 2028 CGF.ConvertTypeForMem(DestTy)); 2029 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2030 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2031 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2032 } 2033 2034 case CK_CPointerToObjCPointerCast: 2035 case CK_BlockPointerToObjCPointerCast: 2036 case CK_AnyPointerToBlockPointerCast: 2037 case CK_BitCast: { 2038 Value *Src = Visit(const_cast<Expr*>(E)); 2039 llvm::Type *SrcTy = Src->getType(); 2040 llvm::Type *DstTy = ConvertType(DestTy); 2041 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2042 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2043 llvm_unreachable("wrong cast for pointers in different address spaces" 2044 "(must be an address space cast)!"); 2045 } 2046 2047 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2048 if (auto PT = DestTy->getAs<PointerType>()) 2049 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2050 /*MayBeNull=*/true, 2051 CodeGenFunction::CFITCK_UnrelatedCast, 2052 CE->getBeginLoc()); 2053 } 2054 2055 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2056 const QualType SrcType = E->getType(); 2057 2058 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2059 // Casting to pointer that could carry dynamic information (provided by 2060 // invariant.group) requires launder. 2061 Src = Builder.CreateLaunderInvariantGroup(Src); 2062 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2063 // Casting to pointer that does not carry dynamic information (provided 2064 // by invariant.group) requires stripping it. Note that we don't do it 2065 // if the source could not be dynamic type and destination could be 2066 // dynamic because dynamic information is already laundered. It is 2067 // because launder(strip(src)) == launder(src), so there is no need to 2068 // add extra strip before launder. 2069 Src = Builder.CreateStripInvariantGroup(Src); 2070 } 2071 } 2072 2073 // Update heapallocsite metadata when there is an explicit pointer cast. 2074 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 2075 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { 2076 QualType PointeeType = DestTy->getPointeeType(); 2077 if (!PointeeType.isNull()) 2078 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 2079 CE->getExprLoc()); 2080 } 2081 } 2082 2083 return Builder.CreateBitCast(Src, DstTy); 2084 } 2085 case CK_AddressSpaceConversion: { 2086 Expr::EvalResult Result; 2087 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2088 Result.Val.isNullPointer()) { 2089 // If E has side effect, it is emitted even if its final result is a 2090 // null pointer. In that case, a DCE pass should be able to 2091 // eliminate the useless instructions emitted during translating E. 2092 if (Result.HasSideEffects) 2093 Visit(E); 2094 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2095 ConvertType(DestTy)), DestTy); 2096 } 2097 // Since target may map different address spaces in AST to the same address 2098 // space, an address space conversion may end up as a bitcast. 2099 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2100 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2101 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2102 } 2103 case CK_AtomicToNonAtomic: 2104 case CK_NonAtomicToAtomic: 2105 case CK_NoOp: 2106 case CK_UserDefinedConversion: 2107 return Visit(const_cast<Expr*>(E)); 2108 2109 case CK_BaseToDerived: { 2110 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2111 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2112 2113 Address Base = CGF.EmitPointerWithAlignment(E); 2114 Address Derived = 2115 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2116 CE->path_begin(), CE->path_end(), 2117 CGF.ShouldNullCheckClassCastValue(CE)); 2118 2119 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2120 // performed and the object is not of the derived type. 2121 if (CGF.sanitizePerformTypeCheck()) 2122 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2123 Derived.getPointer(), DestTy->getPointeeType()); 2124 2125 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2126 CGF.EmitVTablePtrCheckForCast( 2127 DestTy->getPointeeType(), Derived.getPointer(), 2128 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2129 CE->getBeginLoc()); 2130 2131 return Derived.getPointer(); 2132 } 2133 case CK_UncheckedDerivedToBase: 2134 case CK_DerivedToBase: { 2135 // The EmitPointerWithAlignment path does this fine; just discard 2136 // the alignment. 2137 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2138 } 2139 2140 case CK_Dynamic: { 2141 Address V = CGF.EmitPointerWithAlignment(E); 2142 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2143 return CGF.EmitDynamicCast(V, DCE); 2144 } 2145 2146 case CK_ArrayToPointerDecay: 2147 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2148 case CK_FunctionToPointerDecay: 2149 return EmitLValue(E).getPointer(CGF); 2150 2151 case CK_NullToPointer: 2152 if (MustVisitNullValue(E)) 2153 CGF.EmitIgnoredExpr(E); 2154 2155 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2156 DestTy); 2157 2158 case CK_NullToMemberPointer: { 2159 if (MustVisitNullValue(E)) 2160 CGF.EmitIgnoredExpr(E); 2161 2162 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2163 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2164 } 2165 2166 case CK_ReinterpretMemberPointer: 2167 case CK_BaseToDerivedMemberPointer: 2168 case CK_DerivedToBaseMemberPointer: { 2169 Value *Src = Visit(E); 2170 2171 // Note that the AST doesn't distinguish between checked and 2172 // unchecked member pointer conversions, so we always have to 2173 // implement checked conversions here. This is inefficient when 2174 // actual control flow may be required in order to perform the 2175 // check, which it is for data member pointers (but not member 2176 // function pointers on Itanium and ARM). 2177 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2178 } 2179 2180 case CK_ARCProduceObject: 2181 return CGF.EmitARCRetainScalarExpr(E); 2182 case CK_ARCConsumeObject: 2183 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2184 case CK_ARCReclaimReturnedObject: 2185 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2186 case CK_ARCExtendBlockObject: 2187 return CGF.EmitARCExtendBlockObject(E); 2188 2189 case CK_CopyAndAutoreleaseBlockObject: 2190 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2191 2192 case CK_FloatingRealToComplex: 2193 case CK_FloatingComplexCast: 2194 case CK_IntegralRealToComplex: 2195 case CK_IntegralComplexCast: 2196 case CK_IntegralComplexToFloatingComplex: 2197 case CK_FloatingComplexToIntegralComplex: 2198 case CK_ConstructorConversion: 2199 case CK_ToUnion: 2200 llvm_unreachable("scalar cast to non-scalar value"); 2201 2202 case CK_LValueToRValue: 2203 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2204 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2205 return Visit(const_cast<Expr*>(E)); 2206 2207 case CK_IntegralToPointer: { 2208 Value *Src = Visit(const_cast<Expr*>(E)); 2209 2210 // First, convert to the correct width so that we control the kind of 2211 // extension. 2212 auto DestLLVMTy = ConvertType(DestTy); 2213 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2214 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2215 llvm::Value* IntResult = 2216 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2217 2218 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2219 2220 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2221 // Going from integer to pointer that could be dynamic requires reloading 2222 // dynamic information from invariant.group. 2223 if (DestTy.mayBeDynamicClass()) 2224 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2225 } 2226 return IntToPtr; 2227 } 2228 case CK_PointerToIntegral: { 2229 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2230 auto *PtrExpr = Visit(E); 2231 2232 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2233 const QualType SrcType = E->getType(); 2234 2235 // Casting to integer requires stripping dynamic information as it does 2236 // not carries it. 2237 if (SrcType.mayBeDynamicClass()) 2238 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2239 } 2240 2241 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2242 } 2243 case CK_ToVoid: { 2244 CGF.EmitIgnoredExpr(E); 2245 return nullptr; 2246 } 2247 case CK_VectorSplat: { 2248 llvm::Type *DstTy = ConvertType(DestTy); 2249 Value *Elt = Visit(const_cast<Expr*>(E)); 2250 // Splat the element across to all elements 2251 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 2252 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2253 } 2254 2255 case CK_FixedPointCast: 2256 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2257 CE->getExprLoc()); 2258 2259 case CK_FixedPointToBoolean: 2260 assert(E->getType()->isFixedPointType() && 2261 "Expected src type to be fixed point type"); 2262 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2263 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2264 CE->getExprLoc()); 2265 2266 case CK_FixedPointToIntegral: 2267 assert(E->getType()->isFixedPointType() && 2268 "Expected src type to be fixed point type"); 2269 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2270 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2271 CE->getExprLoc()); 2272 2273 case CK_IntegralToFixedPoint: 2274 assert(E->getType()->isIntegerType() && 2275 "Expected src type to be an integer"); 2276 assert(DestTy->isFixedPointType() && 2277 "Expected dest type to be fixed point type"); 2278 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2279 CE->getExprLoc()); 2280 2281 case CK_IntegralCast: { 2282 ScalarConversionOpts Opts; 2283 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2284 if (!ICE->isPartOfExplicitCast()) 2285 Opts = ScalarConversionOpts(CGF.SanOpts); 2286 } 2287 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2288 CE->getExprLoc(), Opts); 2289 } 2290 case CK_IntegralToFloating: 2291 case CK_FloatingToIntegral: 2292 case CK_FloatingCast: 2293 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2294 CE->getExprLoc()); 2295 case CK_BooleanToSignedIntegral: { 2296 ScalarConversionOpts Opts; 2297 Opts.TreatBooleanAsSigned = true; 2298 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2299 CE->getExprLoc(), Opts); 2300 } 2301 case CK_IntegralToBoolean: 2302 return EmitIntToBoolConversion(Visit(E)); 2303 case CK_PointerToBoolean: 2304 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2305 case CK_FloatingToBoolean: 2306 return EmitFloatToBoolConversion(Visit(E)); 2307 case CK_MemberPointerToBoolean: { 2308 llvm::Value *MemPtr = Visit(E); 2309 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2310 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2311 } 2312 2313 case CK_FloatingComplexToReal: 2314 case CK_IntegralComplexToReal: 2315 return CGF.EmitComplexExpr(E, false, true).first; 2316 2317 case CK_FloatingComplexToBoolean: 2318 case CK_IntegralComplexToBoolean: { 2319 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2320 2321 // TODO: kill this function off, inline appropriate case here 2322 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2323 CE->getExprLoc()); 2324 } 2325 2326 case CK_ZeroToOCLOpaqueType: { 2327 assert((DestTy->isEventT() || DestTy->isQueueT() || 2328 DestTy->isOCLIntelSubgroupAVCType()) && 2329 "CK_ZeroToOCLEvent cast on non-event type"); 2330 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2331 } 2332 2333 case CK_IntToOCLSampler: 2334 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2335 2336 } // end of switch 2337 2338 llvm_unreachable("unknown scalar cast"); 2339 } 2340 2341 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2342 CodeGenFunction::StmtExprEvaluation eval(CGF); 2343 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2344 !E->getType()->isVoidType()); 2345 if (!RetAlloca.isValid()) 2346 return nullptr; 2347 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2348 E->getExprLoc()); 2349 } 2350 2351 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2352 CodeGenFunction::RunCleanupsScope Scope(CGF); 2353 Value *V = Visit(E->getSubExpr()); 2354 // Defend against dominance problems caused by jumps out of expression 2355 // evaluation through the shared cleanup block. 2356 Scope.ForceCleanup({&V}); 2357 return V; 2358 } 2359 2360 //===----------------------------------------------------------------------===// 2361 // Unary Operators 2362 //===----------------------------------------------------------------------===// 2363 2364 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2365 llvm::Value *InVal, bool IsInc, 2366 FPOptions FPFeatures) { 2367 BinOpInfo BinOp; 2368 BinOp.LHS = InVal; 2369 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2370 BinOp.Ty = E->getType(); 2371 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2372 BinOp.FPFeatures = FPFeatures; 2373 BinOp.E = E; 2374 return BinOp; 2375 } 2376 2377 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2378 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2379 llvm::Value *Amount = 2380 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2381 StringRef Name = IsInc ? "inc" : "dec"; 2382 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2383 case LangOptions::SOB_Defined: 2384 return Builder.CreateAdd(InVal, Amount, Name); 2385 case LangOptions::SOB_Undefined: 2386 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2387 return Builder.CreateNSWAdd(InVal, Amount, Name); 2388 LLVM_FALLTHROUGH; 2389 case LangOptions::SOB_Trapping: 2390 if (!E->canOverflow()) 2391 return Builder.CreateNSWAdd(InVal, Amount, Name); 2392 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2393 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2394 } 2395 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2396 } 2397 2398 namespace { 2399 /// Handles check and update for lastprivate conditional variables. 2400 class OMPLastprivateConditionalUpdateRAII { 2401 private: 2402 CodeGenFunction &CGF; 2403 const UnaryOperator *E; 2404 2405 public: 2406 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2407 const UnaryOperator *E) 2408 : CGF(CGF), E(E) {} 2409 ~OMPLastprivateConditionalUpdateRAII() { 2410 if (CGF.getLangOpts().OpenMP) 2411 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2412 CGF, E->getSubExpr()); 2413 } 2414 }; 2415 } // namespace 2416 2417 llvm::Value * 2418 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2419 bool isInc, bool isPre) { 2420 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2421 QualType type = E->getSubExpr()->getType(); 2422 llvm::PHINode *atomicPHI = nullptr; 2423 llvm::Value *value; 2424 llvm::Value *input; 2425 2426 int amount = (isInc ? 1 : -1); 2427 bool isSubtraction = !isInc; 2428 2429 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2430 type = atomicTy->getValueType(); 2431 if (isInc && type->isBooleanType()) { 2432 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2433 if (isPre) { 2434 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2435 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2436 return Builder.getTrue(); 2437 } 2438 // For atomic bool increment, we just store true and return it for 2439 // preincrement, do an atomic swap with true for postincrement 2440 return Builder.CreateAtomicRMW( 2441 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2442 llvm::AtomicOrdering::SequentiallyConsistent); 2443 } 2444 // Special case for atomic increment / decrement on integers, emit 2445 // atomicrmw instructions. We skip this if we want to be doing overflow 2446 // checking, and fall into the slow path with the atomic cmpxchg loop. 2447 if (!type->isBooleanType() && type->isIntegerType() && 2448 !(type->isUnsignedIntegerType() && 2449 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2450 CGF.getLangOpts().getSignedOverflowBehavior() != 2451 LangOptions::SOB_Trapping) { 2452 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2453 llvm::AtomicRMWInst::Sub; 2454 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2455 llvm::Instruction::Sub; 2456 llvm::Value *amt = CGF.EmitToMemory( 2457 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2458 llvm::Value *old = 2459 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2460 llvm::AtomicOrdering::SequentiallyConsistent); 2461 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2462 } 2463 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2464 input = value; 2465 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2466 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2467 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2468 value = CGF.EmitToMemory(value, type); 2469 Builder.CreateBr(opBB); 2470 Builder.SetInsertPoint(opBB); 2471 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2472 atomicPHI->addIncoming(value, startBB); 2473 value = atomicPHI; 2474 } else { 2475 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2476 input = value; 2477 } 2478 2479 // Special case of integer increment that we have to check first: bool++. 2480 // Due to promotion rules, we get: 2481 // bool++ -> bool = bool + 1 2482 // -> bool = (int)bool + 1 2483 // -> bool = ((int)bool + 1 != 0) 2484 // An interesting aspect of this is that increment is always true. 2485 // Decrement does not have this property. 2486 if (isInc && type->isBooleanType()) { 2487 value = Builder.getTrue(); 2488 2489 // Most common case by far: integer increment. 2490 } else if (type->isIntegerType()) { 2491 QualType promotedType; 2492 bool canPerformLossyDemotionCheck = false; 2493 if (type->isPromotableIntegerType()) { 2494 promotedType = CGF.getContext().getPromotedIntegerType(type); 2495 assert(promotedType != type && "Shouldn't promote to the same type."); 2496 canPerformLossyDemotionCheck = true; 2497 canPerformLossyDemotionCheck &= 2498 CGF.getContext().getCanonicalType(type) != 2499 CGF.getContext().getCanonicalType(promotedType); 2500 canPerformLossyDemotionCheck &= 2501 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2502 type, promotedType); 2503 assert((!canPerformLossyDemotionCheck || 2504 type->isSignedIntegerOrEnumerationType() || 2505 promotedType->isSignedIntegerOrEnumerationType() || 2506 ConvertType(type)->getScalarSizeInBits() == 2507 ConvertType(promotedType)->getScalarSizeInBits()) && 2508 "The following check expects that if we do promotion to different " 2509 "underlying canonical type, at least one of the types (either " 2510 "base or promoted) will be signed, or the bitwidths will match."); 2511 } 2512 if (CGF.SanOpts.hasOneOf( 2513 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2514 canPerformLossyDemotionCheck) { 2515 // While `x += 1` (for `x` with width less than int) is modeled as 2516 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2517 // ease; inc/dec with width less than int can't overflow because of 2518 // promotion rules, so we omit promotion+demotion, which means that we can 2519 // not catch lossy "demotion". Because we still want to catch these cases 2520 // when the sanitizer is enabled, we perform the promotion, then perform 2521 // the increment/decrement in the wider type, and finally 2522 // perform the demotion. This will catch lossy demotions. 2523 2524 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2525 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2526 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2527 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2528 // emitted. 2529 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2530 ScalarConversionOpts(CGF.SanOpts)); 2531 2532 // Note that signed integer inc/dec with width less than int can't 2533 // overflow because of promotion rules; we're just eliding a few steps 2534 // here. 2535 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2536 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2537 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2538 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2539 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2540 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2541 } else { 2542 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2543 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2544 } 2545 2546 // Next most common: pointer increment. 2547 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2548 QualType type = ptr->getPointeeType(); 2549 2550 // VLA types don't have constant size. 2551 if (const VariableArrayType *vla 2552 = CGF.getContext().getAsVariableArrayType(type)) { 2553 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2554 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2555 if (CGF.getLangOpts().isSignedOverflowDefined()) 2556 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2557 else 2558 value = CGF.EmitCheckedInBoundsGEP( 2559 value, numElts, /*SignedIndices=*/false, isSubtraction, 2560 E->getExprLoc(), "vla.inc"); 2561 2562 // Arithmetic on function pointers (!) is just +-1. 2563 } else if (type->isFunctionType()) { 2564 llvm::Value *amt = Builder.getInt32(amount); 2565 2566 value = CGF.EmitCastToVoidPtr(value); 2567 if (CGF.getLangOpts().isSignedOverflowDefined()) 2568 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2569 else 2570 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2571 isSubtraction, E->getExprLoc(), 2572 "incdec.funcptr"); 2573 value = Builder.CreateBitCast(value, input->getType()); 2574 2575 // For everything else, we can just do a simple increment. 2576 } else { 2577 llvm::Value *amt = Builder.getInt32(amount); 2578 if (CGF.getLangOpts().isSignedOverflowDefined()) 2579 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2580 else 2581 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2582 isSubtraction, E->getExprLoc(), 2583 "incdec.ptr"); 2584 } 2585 2586 // Vector increment/decrement. 2587 } else if (type->isVectorType()) { 2588 if (type->hasIntegerRepresentation()) { 2589 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2590 2591 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2592 } else { 2593 value = Builder.CreateFAdd( 2594 value, 2595 llvm::ConstantFP::get(value->getType(), amount), 2596 isInc ? "inc" : "dec"); 2597 } 2598 2599 // Floating point. 2600 } else if (type->isRealFloatingType()) { 2601 // Add the inc/dec to the real part. 2602 llvm::Value *amt; 2603 2604 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2605 // Another special case: half FP increment should be done via float 2606 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2607 value = Builder.CreateCall( 2608 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2609 CGF.CGM.FloatTy), 2610 input, "incdec.conv"); 2611 } else { 2612 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2613 } 2614 } 2615 2616 if (value->getType()->isFloatTy()) 2617 amt = llvm::ConstantFP::get(VMContext, 2618 llvm::APFloat(static_cast<float>(amount))); 2619 else if (value->getType()->isDoubleTy()) 2620 amt = llvm::ConstantFP::get(VMContext, 2621 llvm::APFloat(static_cast<double>(amount))); 2622 else { 2623 // Remaining types are Half, LongDouble or __float128. Convert from float. 2624 llvm::APFloat F(static_cast<float>(amount)); 2625 bool ignored; 2626 const llvm::fltSemantics *FS; 2627 // Don't use getFloatTypeSemantics because Half isn't 2628 // necessarily represented using the "half" LLVM type. 2629 if (value->getType()->isFP128Ty()) 2630 FS = &CGF.getTarget().getFloat128Format(); 2631 else if (value->getType()->isHalfTy()) 2632 FS = &CGF.getTarget().getHalfFormat(); 2633 else 2634 FS = &CGF.getTarget().getLongDoubleFormat(); 2635 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2636 amt = llvm::ConstantFP::get(VMContext, F); 2637 } 2638 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2639 2640 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2641 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2642 value = Builder.CreateCall( 2643 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2644 CGF.CGM.FloatTy), 2645 value, "incdec.conv"); 2646 } else { 2647 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2648 } 2649 } 2650 2651 // Fixed-point types. 2652 } else if (type->isFixedPointType()) { 2653 // Fixed-point types are tricky. In some cases, it isn't possible to 2654 // represent a 1 or a -1 in the type at all. Piggyback off of 2655 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2656 BinOpInfo Info; 2657 Info.E = E; 2658 Info.Ty = E->getType(); 2659 Info.Opcode = isInc ? BO_Add : BO_Sub; 2660 Info.LHS = value; 2661 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2662 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2663 // since -1 is guaranteed to be representable. 2664 if (type->isSignedFixedPointType()) { 2665 Info.Opcode = isInc ? BO_Sub : BO_Add; 2666 Info.RHS = Builder.CreateNeg(Info.RHS); 2667 } 2668 // Now, convert from our invented integer literal to the type of the unary 2669 // op. This will upscale and saturate if necessary. This value can become 2670 // undef in some cases. 2671 auto SrcSema = 2672 llvm::FixedPointSemantics::GetIntegerSemantics( 2673 value->getType()->getScalarSizeInBits(), /*IsSigned=*/true); 2674 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2675 Info.RHS = EmitFixedPointConversion(Info.RHS, SrcSema, DstSema, 2676 E->getExprLoc()); 2677 value = EmitFixedPointBinOp(Info); 2678 2679 // Objective-C pointer types. 2680 } else { 2681 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2682 value = CGF.EmitCastToVoidPtr(value); 2683 2684 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2685 if (!isInc) size = -size; 2686 llvm::Value *sizeValue = 2687 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2688 2689 if (CGF.getLangOpts().isSignedOverflowDefined()) 2690 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2691 else 2692 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2693 /*SignedIndices=*/false, isSubtraction, 2694 E->getExprLoc(), "incdec.objptr"); 2695 value = Builder.CreateBitCast(value, input->getType()); 2696 } 2697 2698 if (atomicPHI) { 2699 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2700 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2701 auto Pair = CGF.EmitAtomicCompareExchange( 2702 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2703 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2704 llvm::Value *success = Pair.second; 2705 atomicPHI->addIncoming(old, curBlock); 2706 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2707 Builder.SetInsertPoint(contBB); 2708 return isPre ? value : input; 2709 } 2710 2711 // Store the updated result through the lvalue. 2712 if (LV.isBitField()) 2713 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2714 else 2715 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2716 2717 // If this is a postinc, return the value read from memory, otherwise use the 2718 // updated value. 2719 return isPre ? value : input; 2720 } 2721 2722 2723 2724 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2725 TestAndClearIgnoreResultAssign(); 2726 Value *Op = Visit(E->getSubExpr()); 2727 2728 // Generate a unary FNeg for FP ops. 2729 if (Op->getType()->isFPOrFPVectorTy()) 2730 return Builder.CreateFNeg(Op, "fneg"); 2731 2732 // Emit unary minus with EmitSub so we handle overflow cases etc. 2733 BinOpInfo BinOp; 2734 BinOp.RHS = Op; 2735 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2736 BinOp.Ty = E->getType(); 2737 BinOp.Opcode = BO_Sub; 2738 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2739 BinOp.E = E; 2740 return EmitSub(BinOp); 2741 } 2742 2743 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2744 TestAndClearIgnoreResultAssign(); 2745 Value *Op = Visit(E->getSubExpr()); 2746 return Builder.CreateNot(Op, "neg"); 2747 } 2748 2749 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2750 // Perform vector logical not on comparison with zero vector. 2751 if (E->getType()->isVectorType() && 2752 E->getType()->castAs<VectorType>()->getVectorKind() == 2753 VectorType::GenericVector) { 2754 Value *Oper = Visit(E->getSubExpr()); 2755 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2756 Value *Result; 2757 if (Oper->getType()->isFPOrFPVectorTy()) { 2758 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2759 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2760 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2761 } else 2762 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2763 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2764 } 2765 2766 // Compare operand to zero. 2767 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2768 2769 // Invert value. 2770 // TODO: Could dynamically modify easy computations here. For example, if 2771 // the operand is an icmp ne, turn into icmp eq. 2772 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2773 2774 // ZExt result to the expr type. 2775 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2776 } 2777 2778 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2779 // Try folding the offsetof to a constant. 2780 Expr::EvalResult EVResult; 2781 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2782 llvm::APSInt Value = EVResult.Val.getInt(); 2783 return Builder.getInt(Value); 2784 } 2785 2786 // Loop over the components of the offsetof to compute the value. 2787 unsigned n = E->getNumComponents(); 2788 llvm::Type* ResultType = ConvertType(E->getType()); 2789 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2790 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2791 for (unsigned i = 0; i != n; ++i) { 2792 OffsetOfNode ON = E->getComponent(i); 2793 llvm::Value *Offset = nullptr; 2794 switch (ON.getKind()) { 2795 case OffsetOfNode::Array: { 2796 // Compute the index 2797 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2798 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2799 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2800 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2801 2802 // Save the element type 2803 CurrentType = 2804 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2805 2806 // Compute the element size 2807 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2808 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2809 2810 // Multiply out to compute the result 2811 Offset = Builder.CreateMul(Idx, ElemSize); 2812 break; 2813 } 2814 2815 case OffsetOfNode::Field: { 2816 FieldDecl *MemberDecl = ON.getField(); 2817 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2818 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2819 2820 // Compute the index of the field in its parent. 2821 unsigned i = 0; 2822 // FIXME: It would be nice if we didn't have to loop here! 2823 for (RecordDecl::field_iterator Field = RD->field_begin(), 2824 FieldEnd = RD->field_end(); 2825 Field != FieldEnd; ++Field, ++i) { 2826 if (*Field == MemberDecl) 2827 break; 2828 } 2829 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2830 2831 // Compute the offset to the field 2832 int64_t OffsetInt = RL.getFieldOffset(i) / 2833 CGF.getContext().getCharWidth(); 2834 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2835 2836 // Save the element type. 2837 CurrentType = MemberDecl->getType(); 2838 break; 2839 } 2840 2841 case OffsetOfNode::Identifier: 2842 llvm_unreachable("dependent __builtin_offsetof"); 2843 2844 case OffsetOfNode::Base: { 2845 if (ON.getBase()->isVirtual()) { 2846 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2847 continue; 2848 } 2849 2850 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2851 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2852 2853 // Save the element type. 2854 CurrentType = ON.getBase()->getType(); 2855 2856 // Compute the offset to the base. 2857 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2858 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2859 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2860 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2861 break; 2862 } 2863 } 2864 Result = Builder.CreateAdd(Result, Offset); 2865 } 2866 return Result; 2867 } 2868 2869 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2870 /// argument of the sizeof expression as an integer. 2871 Value * 2872 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2873 const UnaryExprOrTypeTraitExpr *E) { 2874 QualType TypeToSize = E->getTypeOfArgument(); 2875 if (E->getKind() == UETT_SizeOf) { 2876 if (const VariableArrayType *VAT = 2877 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2878 if (E->isArgumentType()) { 2879 // sizeof(type) - make sure to emit the VLA size. 2880 CGF.EmitVariablyModifiedType(TypeToSize); 2881 } else { 2882 // C99 6.5.3.4p2: If the argument is an expression of type 2883 // VLA, it is evaluated. 2884 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2885 } 2886 2887 auto VlaSize = CGF.getVLASize(VAT); 2888 llvm::Value *size = VlaSize.NumElts; 2889 2890 // Scale the number of non-VLA elements by the non-VLA element size. 2891 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2892 if (!eltSize.isOne()) 2893 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2894 2895 return size; 2896 } 2897 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2898 auto Alignment = 2899 CGF.getContext() 2900 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2901 E->getTypeOfArgument()->getPointeeType())) 2902 .getQuantity(); 2903 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2904 } 2905 2906 // If this isn't sizeof(vla), the result must be constant; use the constant 2907 // folding logic so we don't have to duplicate it here. 2908 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2909 } 2910 2911 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2912 Expr *Op = E->getSubExpr(); 2913 if (Op->getType()->isAnyComplexType()) { 2914 // If it's an l-value, load through the appropriate subobject l-value. 2915 // Note that we have to ask E because Op might be an l-value that 2916 // this won't work for, e.g. an Obj-C property. 2917 if (E->isGLValue()) 2918 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2919 E->getExprLoc()).getScalarVal(); 2920 2921 // Otherwise, calculate and project. 2922 return CGF.EmitComplexExpr(Op, false, true).first; 2923 } 2924 2925 return Visit(Op); 2926 } 2927 2928 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2929 Expr *Op = E->getSubExpr(); 2930 if (Op->getType()->isAnyComplexType()) { 2931 // If it's an l-value, load through the appropriate subobject l-value. 2932 // Note that we have to ask E because Op might be an l-value that 2933 // this won't work for, e.g. an Obj-C property. 2934 if (Op->isGLValue()) 2935 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2936 E->getExprLoc()).getScalarVal(); 2937 2938 // Otherwise, calculate and project. 2939 return CGF.EmitComplexExpr(Op, true, false).second; 2940 } 2941 2942 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2943 // effects are evaluated, but not the actual value. 2944 if (Op->isGLValue()) 2945 CGF.EmitLValue(Op); 2946 else 2947 CGF.EmitScalarExpr(Op, true); 2948 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2949 } 2950 2951 //===----------------------------------------------------------------------===// 2952 // Binary Operators 2953 //===----------------------------------------------------------------------===// 2954 2955 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2956 TestAndClearIgnoreResultAssign(); 2957 BinOpInfo Result; 2958 Result.LHS = Visit(E->getLHS()); 2959 Result.RHS = Visit(E->getRHS()); 2960 Result.Ty = E->getType(); 2961 Result.Opcode = E->getOpcode(); 2962 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2963 Result.E = E; 2964 return Result; 2965 } 2966 2967 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2968 const CompoundAssignOperator *E, 2969 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2970 Value *&Result) { 2971 QualType LHSTy = E->getLHS()->getType(); 2972 BinOpInfo OpInfo; 2973 2974 if (E->getComputationResultType()->isAnyComplexType()) 2975 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2976 2977 // Emit the RHS first. __block variables need to have the rhs evaluated 2978 // first, plus this should improve codegen a little. 2979 OpInfo.RHS = Visit(E->getRHS()); 2980 OpInfo.Ty = E->getComputationResultType(); 2981 OpInfo.Opcode = E->getOpcode(); 2982 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2983 OpInfo.E = E; 2984 // Load/convert the LHS. 2985 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2986 2987 llvm::PHINode *atomicPHI = nullptr; 2988 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2989 QualType type = atomicTy->getValueType(); 2990 if (!type->isBooleanType() && type->isIntegerType() && 2991 !(type->isUnsignedIntegerType() && 2992 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2993 CGF.getLangOpts().getSignedOverflowBehavior() != 2994 LangOptions::SOB_Trapping) { 2995 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 2996 llvm::Instruction::BinaryOps Op; 2997 switch (OpInfo.Opcode) { 2998 // We don't have atomicrmw operands for *, %, /, <<, >> 2999 case BO_MulAssign: case BO_DivAssign: 3000 case BO_RemAssign: 3001 case BO_ShlAssign: 3002 case BO_ShrAssign: 3003 break; 3004 case BO_AddAssign: 3005 AtomicOp = llvm::AtomicRMWInst::Add; 3006 Op = llvm::Instruction::Add; 3007 break; 3008 case BO_SubAssign: 3009 AtomicOp = llvm::AtomicRMWInst::Sub; 3010 Op = llvm::Instruction::Sub; 3011 break; 3012 case BO_AndAssign: 3013 AtomicOp = llvm::AtomicRMWInst::And; 3014 Op = llvm::Instruction::And; 3015 break; 3016 case BO_XorAssign: 3017 AtomicOp = llvm::AtomicRMWInst::Xor; 3018 Op = llvm::Instruction::Xor; 3019 break; 3020 case BO_OrAssign: 3021 AtomicOp = llvm::AtomicRMWInst::Or; 3022 Op = llvm::Instruction::Or; 3023 break; 3024 default: 3025 llvm_unreachable("Invalid compound assignment type"); 3026 } 3027 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 3028 llvm::Value *Amt = CGF.EmitToMemory( 3029 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 3030 E->getExprLoc()), 3031 LHSTy); 3032 Value *OldVal = Builder.CreateAtomicRMW( 3033 AtomicOp, LHSLV.getPointer(CGF), Amt, 3034 llvm::AtomicOrdering::SequentiallyConsistent); 3035 3036 // Since operation is atomic, the result type is guaranteed to be the 3037 // same as the input in LLVM terms. 3038 Result = Builder.CreateBinOp(Op, OldVal, Amt); 3039 return LHSLV; 3040 } 3041 } 3042 // FIXME: For floating point types, we should be saving and restoring the 3043 // floating point environment in the loop. 3044 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 3045 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 3046 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3047 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 3048 Builder.CreateBr(opBB); 3049 Builder.SetInsertPoint(opBB); 3050 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 3051 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3052 OpInfo.LHS = atomicPHI; 3053 } 3054 else 3055 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3056 3057 SourceLocation Loc = E->getExprLoc(); 3058 OpInfo.LHS = 3059 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3060 3061 // Expand the binary operator. 3062 Result = (this->*Func)(OpInfo); 3063 3064 // Convert the result back to the LHS type, 3065 // potentially with Implicit Conversion sanitizer check. 3066 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3067 Loc, ScalarConversionOpts(CGF.SanOpts)); 3068 3069 if (atomicPHI) { 3070 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3071 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3072 auto Pair = CGF.EmitAtomicCompareExchange( 3073 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3074 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3075 llvm::Value *success = Pair.second; 3076 atomicPHI->addIncoming(old, curBlock); 3077 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3078 Builder.SetInsertPoint(contBB); 3079 return LHSLV; 3080 } 3081 3082 // Store the result value into the LHS lvalue. Bit-fields are handled 3083 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3084 // 'An assignment expression has the value of the left operand after the 3085 // assignment...'. 3086 if (LHSLV.isBitField()) 3087 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3088 else 3089 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3090 3091 if (CGF.getLangOpts().OpenMP) 3092 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3093 E->getLHS()); 3094 return LHSLV; 3095 } 3096 3097 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3098 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3099 bool Ignore = TestAndClearIgnoreResultAssign(); 3100 Value *RHS = nullptr; 3101 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3102 3103 // If the result is clearly ignored, return now. 3104 if (Ignore) 3105 return nullptr; 3106 3107 // The result of an assignment in C is the assigned r-value. 3108 if (!CGF.getLangOpts().CPlusPlus) 3109 return RHS; 3110 3111 // If the lvalue is non-volatile, return the computed value of the assignment. 3112 if (!LHS.isVolatileQualified()) 3113 return RHS; 3114 3115 // Otherwise, reload the value. 3116 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3117 } 3118 3119 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3120 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3121 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3122 3123 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3124 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3125 SanitizerKind::IntegerDivideByZero)); 3126 } 3127 3128 const auto *BO = cast<BinaryOperator>(Ops.E); 3129 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3130 Ops.Ty->hasSignedIntegerRepresentation() && 3131 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3132 Ops.mayHaveIntegerOverflow()) { 3133 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3134 3135 llvm::Value *IntMin = 3136 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3137 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 3138 3139 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3140 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3141 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3142 Checks.push_back( 3143 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3144 } 3145 3146 if (Checks.size() > 0) 3147 EmitBinOpCheck(Checks, Ops); 3148 } 3149 3150 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3151 { 3152 CodeGenFunction::SanitizerScope SanScope(&CGF); 3153 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3154 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3155 Ops.Ty->isIntegerType() && 3156 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3157 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3158 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3159 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3160 Ops.Ty->isRealFloatingType() && 3161 Ops.mayHaveFloatDivisionByZero()) { 3162 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3163 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3164 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3165 Ops); 3166 } 3167 } 3168 3169 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3170 llvm::Value *Val; 3171 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3172 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3173 if (CGF.getLangOpts().OpenCL && 3174 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3175 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3176 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3177 // build option allows an application to specify that single precision 3178 // floating-point divide (x/y and 1/x) and sqrt used in the program 3179 // source are correctly rounded. 3180 llvm::Type *ValTy = Val->getType(); 3181 if (ValTy->isFloatTy() || 3182 (isa<llvm::VectorType>(ValTy) && 3183 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3184 CGF.SetFPAccuracy(Val, 2.5); 3185 } 3186 return Val; 3187 } 3188 else if (Ops.isFixedPointOp()) 3189 return EmitFixedPointBinOp(Ops); 3190 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3191 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3192 else 3193 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3194 } 3195 3196 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3197 // Rem in C can't be a floating point type: C99 6.5.5p2. 3198 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3199 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3200 Ops.Ty->isIntegerType() && 3201 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3202 CodeGenFunction::SanitizerScope SanScope(&CGF); 3203 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3204 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3205 } 3206 3207 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3208 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3209 else 3210 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3211 } 3212 3213 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3214 unsigned IID; 3215 unsigned OpID = 0; 3216 3217 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3218 switch (Ops.Opcode) { 3219 case BO_Add: 3220 case BO_AddAssign: 3221 OpID = 1; 3222 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3223 llvm::Intrinsic::uadd_with_overflow; 3224 break; 3225 case BO_Sub: 3226 case BO_SubAssign: 3227 OpID = 2; 3228 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3229 llvm::Intrinsic::usub_with_overflow; 3230 break; 3231 case BO_Mul: 3232 case BO_MulAssign: 3233 OpID = 3; 3234 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3235 llvm::Intrinsic::umul_with_overflow; 3236 break; 3237 default: 3238 llvm_unreachable("Unsupported operation for overflow detection"); 3239 } 3240 OpID <<= 1; 3241 if (isSigned) 3242 OpID |= 1; 3243 3244 CodeGenFunction::SanitizerScope SanScope(&CGF); 3245 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3246 3247 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3248 3249 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3250 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3251 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3252 3253 // Handle overflow with llvm.trap if no custom handler has been specified. 3254 const std::string *handlerName = 3255 &CGF.getLangOpts().OverflowHandler; 3256 if (handlerName->empty()) { 3257 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3258 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3259 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3260 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3261 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3262 : SanitizerKind::UnsignedIntegerOverflow; 3263 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3264 } else 3265 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3266 return result; 3267 } 3268 3269 // Branch in case of overflow. 3270 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3271 llvm::BasicBlock *continueBB = 3272 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3273 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3274 3275 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3276 3277 // If an overflow handler is set, then we want to call it and then use its 3278 // result, if it returns. 3279 Builder.SetInsertPoint(overflowBB); 3280 3281 // Get the overflow handler. 3282 llvm::Type *Int8Ty = CGF.Int8Ty; 3283 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3284 llvm::FunctionType *handlerTy = 3285 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3286 llvm::FunctionCallee handler = 3287 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3288 3289 // Sign extend the args to 64-bit, so that we can use the same handler for 3290 // all types of overflow. 3291 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3292 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3293 3294 // Call the handler with the two arguments, the operation, and the size of 3295 // the result. 3296 llvm::Value *handlerArgs[] = { 3297 lhs, 3298 rhs, 3299 Builder.getInt8(OpID), 3300 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3301 }; 3302 llvm::Value *handlerResult = 3303 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3304 3305 // Truncate the result back to the desired size. 3306 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3307 Builder.CreateBr(continueBB); 3308 3309 Builder.SetInsertPoint(continueBB); 3310 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3311 phi->addIncoming(result, initialBB); 3312 phi->addIncoming(handlerResult, overflowBB); 3313 3314 return phi; 3315 } 3316 3317 /// Emit pointer + index arithmetic. 3318 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3319 const BinOpInfo &op, 3320 bool isSubtraction) { 3321 // Must have binary (not unary) expr here. Unary pointer 3322 // increment/decrement doesn't use this path. 3323 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3324 3325 Value *pointer = op.LHS; 3326 Expr *pointerOperand = expr->getLHS(); 3327 Value *index = op.RHS; 3328 Expr *indexOperand = expr->getRHS(); 3329 3330 // In a subtraction, the LHS is always the pointer. 3331 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3332 std::swap(pointer, index); 3333 std::swap(pointerOperand, indexOperand); 3334 } 3335 3336 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3337 3338 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3339 auto &DL = CGF.CGM.getDataLayout(); 3340 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3341 3342 // Some versions of glibc and gcc use idioms (particularly in their malloc 3343 // routines) that add a pointer-sized integer (known to be a pointer value) 3344 // to a null pointer in order to cast the value back to an integer or as 3345 // part of a pointer alignment algorithm. This is undefined behavior, but 3346 // we'd like to be able to compile programs that use it. 3347 // 3348 // Normally, we'd generate a GEP with a null-pointer base here in response 3349 // to that code, but it's also UB to dereference a pointer created that 3350 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3351 // generate a direct cast of the integer value to a pointer. 3352 // 3353 // The idiom (p = nullptr + N) is not met if any of the following are true: 3354 // 3355 // The operation is subtraction. 3356 // The index is not pointer-sized. 3357 // The pointer type is not byte-sized. 3358 // 3359 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3360 op.Opcode, 3361 expr->getLHS(), 3362 expr->getRHS())) 3363 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3364 3365 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3366 // Zero-extend or sign-extend the pointer value according to 3367 // whether the index is signed or not. 3368 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3369 "idx.ext"); 3370 } 3371 3372 // If this is subtraction, negate the index. 3373 if (isSubtraction) 3374 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3375 3376 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3377 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3378 /*Accessed*/ false); 3379 3380 const PointerType *pointerType 3381 = pointerOperand->getType()->getAs<PointerType>(); 3382 if (!pointerType) { 3383 QualType objectType = pointerOperand->getType() 3384 ->castAs<ObjCObjectPointerType>() 3385 ->getPointeeType(); 3386 llvm::Value *objectSize 3387 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3388 3389 index = CGF.Builder.CreateMul(index, objectSize); 3390 3391 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3392 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3393 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3394 } 3395 3396 QualType elementType = pointerType->getPointeeType(); 3397 if (const VariableArrayType *vla 3398 = CGF.getContext().getAsVariableArrayType(elementType)) { 3399 // The element count here is the total number of non-VLA elements. 3400 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3401 3402 // Effectively, the multiply by the VLA size is part of the GEP. 3403 // GEP indexes are signed, and scaling an index isn't permitted to 3404 // signed-overflow, so we use the same semantics for our explicit 3405 // multiply. We suppress this if overflow is not undefined behavior. 3406 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3407 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3408 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3409 } else { 3410 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3411 pointer = 3412 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3413 op.E->getExprLoc(), "add.ptr"); 3414 } 3415 return pointer; 3416 } 3417 3418 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3419 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3420 // future proof. 3421 if (elementType->isVoidType() || elementType->isFunctionType()) { 3422 Value *result = CGF.EmitCastToVoidPtr(pointer); 3423 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3424 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3425 } 3426 3427 if (CGF.getLangOpts().isSignedOverflowDefined()) 3428 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3429 3430 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3431 op.E->getExprLoc(), "add.ptr"); 3432 } 3433 3434 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3435 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3436 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3437 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3438 // efficient operations. 3439 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3440 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3441 bool negMul, bool negAdd) { 3442 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3443 3444 Value *MulOp0 = MulOp->getOperand(0); 3445 Value *MulOp1 = MulOp->getOperand(1); 3446 if (negMul) 3447 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3448 if (negAdd) 3449 Addend = Builder.CreateFNeg(Addend, "neg"); 3450 3451 Value *FMulAdd = nullptr; 3452 if (Builder.getIsFPConstrained()) { 3453 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3454 "Only constrained operation should be created when Builder is in FP " 3455 "constrained mode"); 3456 FMulAdd = Builder.CreateConstrainedFPCall( 3457 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3458 Addend->getType()), 3459 {MulOp0, MulOp1, Addend}); 3460 } else { 3461 FMulAdd = Builder.CreateCall( 3462 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3463 {MulOp0, MulOp1, Addend}); 3464 } 3465 MulOp->eraseFromParent(); 3466 3467 return FMulAdd; 3468 } 3469 3470 // Check whether it would be legal to emit an fmuladd intrinsic call to 3471 // represent op and if so, build the fmuladd. 3472 // 3473 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3474 // Does NOT check the type of the operation - it's assumed that this function 3475 // will be called from contexts where it's known that the type is contractable. 3476 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3477 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3478 bool isSub=false) { 3479 3480 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3481 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3482 "Only fadd/fsub can be the root of an fmuladd."); 3483 3484 // Check whether this op is marked as fusable. 3485 if (!op.FPFeatures.allowFPContractWithinStatement()) 3486 return nullptr; 3487 3488 // We have a potentially fusable op. Look for a mul on one of the operands. 3489 // Also, make sure that the mul result isn't used directly. In that case, 3490 // there's no point creating a muladd operation. 3491 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3492 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3493 LHSBinOp->use_empty()) 3494 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3495 } 3496 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3497 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3498 RHSBinOp->use_empty()) 3499 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3500 } 3501 3502 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3503 if (LHSBinOp->getIntrinsicID() == 3504 llvm::Intrinsic::experimental_constrained_fmul && 3505 LHSBinOp->use_empty()) 3506 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3507 } 3508 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3509 if (RHSBinOp->getIntrinsicID() == 3510 llvm::Intrinsic::experimental_constrained_fmul && 3511 RHSBinOp->use_empty()) 3512 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3513 } 3514 3515 return nullptr; 3516 } 3517 3518 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3519 if (op.LHS->getType()->isPointerTy() || 3520 op.RHS->getType()->isPointerTy()) 3521 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3522 3523 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3524 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3525 case LangOptions::SOB_Defined: 3526 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3527 case LangOptions::SOB_Undefined: 3528 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3529 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3530 LLVM_FALLTHROUGH; 3531 case LangOptions::SOB_Trapping: 3532 if (CanElideOverflowCheck(CGF.getContext(), op)) 3533 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3534 return EmitOverflowCheckedBinOp(op); 3535 } 3536 } 3537 3538 if (op.Ty->isConstantMatrixType()) { 3539 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3540 return MB.CreateAdd(op.LHS, op.RHS); 3541 } 3542 3543 if (op.Ty->isUnsignedIntegerType() && 3544 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3545 !CanElideOverflowCheck(CGF.getContext(), op)) 3546 return EmitOverflowCheckedBinOp(op); 3547 3548 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3549 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3550 // Try to form an fmuladd. 3551 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3552 return FMulAdd; 3553 3554 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3555 } 3556 3557 if (op.isFixedPointOp()) 3558 return EmitFixedPointBinOp(op); 3559 3560 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3561 } 3562 3563 /// The resulting value must be calculated with exact precision, so the operands 3564 /// may not be the same type. 3565 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3566 using llvm::APSInt; 3567 using llvm::ConstantInt; 3568 3569 // This is either a binary operation where at least one of the operands is 3570 // a fixed-point type, or a unary operation where the operand is a fixed-point 3571 // type. The result type of a binary operation is determined by 3572 // Sema::handleFixedPointConversions(). 3573 QualType ResultTy = op.Ty; 3574 QualType LHSTy, RHSTy; 3575 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3576 RHSTy = BinOp->getRHS()->getType(); 3577 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3578 // For compound assignment, the effective type of the LHS at this point 3579 // is the computation LHS type, not the actual LHS type, and the final 3580 // result type is not the type of the expression but rather the 3581 // computation result type. 3582 LHSTy = CAO->getComputationLHSType(); 3583 ResultTy = CAO->getComputationResultType(); 3584 } else 3585 LHSTy = BinOp->getLHS()->getType(); 3586 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3587 LHSTy = UnOp->getSubExpr()->getType(); 3588 RHSTy = UnOp->getSubExpr()->getType(); 3589 } 3590 ASTContext &Ctx = CGF.getContext(); 3591 Value *LHS = op.LHS; 3592 Value *RHS = op.RHS; 3593 3594 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3595 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3596 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3597 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3598 3599 // Convert the operands to the full precision type. 3600 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3601 op.E->getExprLoc()); 3602 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3603 op.E->getExprLoc()); 3604 3605 // Perform the actual operation. 3606 Value *Result; 3607 switch (op.Opcode) { 3608 case BO_AddAssign: 3609 case BO_Add: { 3610 if (CommonFixedSema.isSaturated()) { 3611 llvm::Intrinsic::ID IID = CommonFixedSema.isSigned() 3612 ? llvm::Intrinsic::sadd_sat 3613 : llvm::Intrinsic::uadd_sat; 3614 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3615 } else { 3616 Result = Builder.CreateAdd(FullLHS, FullRHS); 3617 } 3618 break; 3619 } 3620 case BO_SubAssign: 3621 case BO_Sub: { 3622 if (CommonFixedSema.isSaturated()) { 3623 llvm::Intrinsic::ID IID = CommonFixedSema.isSigned() 3624 ? llvm::Intrinsic::ssub_sat 3625 : llvm::Intrinsic::usub_sat; 3626 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3627 } else { 3628 Result = Builder.CreateSub(FullLHS, FullRHS); 3629 } 3630 break; 3631 } 3632 case BO_MulAssign: 3633 case BO_Mul: { 3634 llvm::Intrinsic::ID IID; 3635 if (CommonFixedSema.isSaturated()) 3636 IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::smul_fix_sat 3637 : llvm::Intrinsic::umul_fix_sat; 3638 else 3639 IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::smul_fix 3640 : llvm::Intrinsic::umul_fix; 3641 Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()}, 3642 {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())}); 3643 break; 3644 } 3645 case BO_DivAssign: 3646 case BO_Div: { 3647 llvm::Intrinsic::ID IID; 3648 if (CommonFixedSema.isSaturated()) 3649 IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix_sat 3650 : llvm::Intrinsic::udiv_fix_sat; 3651 else 3652 IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix 3653 : llvm::Intrinsic::udiv_fix; 3654 Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()}, 3655 {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())}); 3656 break; 3657 } 3658 case BO_LT: 3659 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3660 : Builder.CreateICmpULT(FullLHS, FullRHS); 3661 case BO_GT: 3662 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3663 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3664 case BO_LE: 3665 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3666 : Builder.CreateICmpULE(FullLHS, FullRHS); 3667 case BO_GE: 3668 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3669 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3670 case BO_EQ: 3671 // For equality operations, we assume any padding bits on unsigned types are 3672 // zero'd out. They could be overwritten through non-saturating operations 3673 // that cause overflow, but this leads to undefined behavior. 3674 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3675 case BO_NE: 3676 return Builder.CreateICmpNE(FullLHS, FullRHS); 3677 case BO_Shl: 3678 case BO_Shr: 3679 case BO_Cmp: 3680 case BO_LAnd: 3681 case BO_LOr: 3682 case BO_ShlAssign: 3683 case BO_ShrAssign: 3684 llvm_unreachable("Found unimplemented fixed point binary operation"); 3685 case BO_PtrMemD: 3686 case BO_PtrMemI: 3687 case BO_Rem: 3688 case BO_Xor: 3689 case BO_And: 3690 case BO_Or: 3691 case BO_Assign: 3692 case BO_RemAssign: 3693 case BO_AndAssign: 3694 case BO_XorAssign: 3695 case BO_OrAssign: 3696 case BO_Comma: 3697 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3698 } 3699 3700 // Convert to the result type. 3701 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3702 op.E->getExprLoc()); 3703 } 3704 3705 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3706 // The LHS is always a pointer if either side is. 3707 if (!op.LHS->getType()->isPointerTy()) { 3708 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3709 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3710 case LangOptions::SOB_Defined: 3711 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3712 case LangOptions::SOB_Undefined: 3713 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3714 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3715 LLVM_FALLTHROUGH; 3716 case LangOptions::SOB_Trapping: 3717 if (CanElideOverflowCheck(CGF.getContext(), op)) 3718 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3719 return EmitOverflowCheckedBinOp(op); 3720 } 3721 } 3722 3723 if (op.Ty->isConstantMatrixType()) { 3724 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3725 return MB.CreateSub(op.LHS, op.RHS); 3726 } 3727 3728 if (op.Ty->isUnsignedIntegerType() && 3729 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3730 !CanElideOverflowCheck(CGF.getContext(), op)) 3731 return EmitOverflowCheckedBinOp(op); 3732 3733 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3734 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3735 // Try to form an fmuladd. 3736 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3737 return FMulAdd; 3738 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3739 } 3740 3741 if (op.isFixedPointOp()) 3742 return EmitFixedPointBinOp(op); 3743 3744 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3745 } 3746 3747 // If the RHS is not a pointer, then we have normal pointer 3748 // arithmetic. 3749 if (!op.RHS->getType()->isPointerTy()) 3750 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3751 3752 // Otherwise, this is a pointer subtraction. 3753 3754 // Do the raw subtraction part. 3755 llvm::Value *LHS 3756 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3757 llvm::Value *RHS 3758 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3759 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3760 3761 // Okay, figure out the element size. 3762 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3763 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3764 3765 llvm::Value *divisor = nullptr; 3766 3767 // For a variable-length array, this is going to be non-constant. 3768 if (const VariableArrayType *vla 3769 = CGF.getContext().getAsVariableArrayType(elementType)) { 3770 auto VlaSize = CGF.getVLASize(vla); 3771 elementType = VlaSize.Type; 3772 divisor = VlaSize.NumElts; 3773 3774 // Scale the number of non-VLA elements by the non-VLA element size. 3775 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3776 if (!eltSize.isOne()) 3777 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3778 3779 // For everything elese, we can just compute it, safe in the 3780 // assumption that Sema won't let anything through that we can't 3781 // safely compute the size of. 3782 } else { 3783 CharUnits elementSize; 3784 // Handle GCC extension for pointer arithmetic on void* and 3785 // function pointer types. 3786 if (elementType->isVoidType() || elementType->isFunctionType()) 3787 elementSize = CharUnits::One(); 3788 else 3789 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3790 3791 // Don't even emit the divide for element size of 1. 3792 if (elementSize.isOne()) 3793 return diffInChars; 3794 3795 divisor = CGF.CGM.getSize(elementSize); 3796 } 3797 3798 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3799 // pointer difference in C is only defined in the case where both operands 3800 // are pointing to elements of an array. 3801 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3802 } 3803 3804 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3805 llvm::IntegerType *Ty; 3806 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3807 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3808 else 3809 Ty = cast<llvm::IntegerType>(LHS->getType()); 3810 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3811 } 3812 3813 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 3814 const Twine &Name) { 3815 llvm::IntegerType *Ty; 3816 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3817 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3818 else 3819 Ty = cast<llvm::IntegerType>(LHS->getType()); 3820 3821 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 3822 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 3823 3824 return Builder.CreateURem( 3825 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 3826 } 3827 3828 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3829 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3830 // RHS to the same size as the LHS. 3831 Value *RHS = Ops.RHS; 3832 if (Ops.LHS->getType() != RHS->getType()) 3833 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3834 3835 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3836 Ops.Ty->hasSignedIntegerRepresentation() && 3837 !CGF.getLangOpts().isSignedOverflowDefined() && 3838 !CGF.getLangOpts().CPlusPlus20; 3839 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3840 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3841 if (CGF.getLangOpts().OpenCL) 3842 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 3843 else if ((SanitizeBase || SanitizeExponent) && 3844 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3845 CodeGenFunction::SanitizerScope SanScope(&CGF); 3846 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3847 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3848 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3849 3850 if (SanitizeExponent) { 3851 Checks.push_back( 3852 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3853 } 3854 3855 if (SanitizeBase) { 3856 // Check whether we are shifting any non-zero bits off the top of the 3857 // integer. We only emit this check if exponent is valid - otherwise 3858 // instructions below will have undefined behavior themselves. 3859 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3860 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3861 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3862 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3863 llvm::Value *PromotedWidthMinusOne = 3864 (RHS == Ops.RHS) ? WidthMinusOne 3865 : GetWidthMinusOneValue(Ops.LHS, RHS); 3866 CGF.EmitBlock(CheckShiftBase); 3867 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3868 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3869 /*NUW*/ true, /*NSW*/ true), 3870 "shl.check"); 3871 if (CGF.getLangOpts().CPlusPlus) { 3872 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3873 // Under C++11's rules, shifting a 1 bit into the sign bit is 3874 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3875 // define signed left shifts, so we use the C99 and C++11 rules there). 3876 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3877 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3878 } 3879 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3880 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3881 CGF.EmitBlock(Cont); 3882 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3883 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3884 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3885 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3886 } 3887 3888 assert(!Checks.empty()); 3889 EmitBinOpCheck(Checks, Ops); 3890 } 3891 3892 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3893 } 3894 3895 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3896 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3897 // RHS to the same size as the LHS. 3898 Value *RHS = Ops.RHS; 3899 if (Ops.LHS->getType() != RHS->getType()) 3900 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3901 3902 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3903 if (CGF.getLangOpts().OpenCL) 3904 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 3905 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3906 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3907 CodeGenFunction::SanitizerScope SanScope(&CGF); 3908 llvm::Value *Valid = 3909 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3910 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3911 } 3912 3913 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3914 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3915 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3916 } 3917 3918 enum IntrinsicType { VCMPEQ, VCMPGT }; 3919 // return corresponding comparison intrinsic for given vector type 3920 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3921 BuiltinType::Kind ElemKind) { 3922 switch (ElemKind) { 3923 default: llvm_unreachable("unexpected element type"); 3924 case BuiltinType::Char_U: 3925 case BuiltinType::UChar: 3926 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3927 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3928 case BuiltinType::Char_S: 3929 case BuiltinType::SChar: 3930 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3931 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3932 case BuiltinType::UShort: 3933 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3934 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3935 case BuiltinType::Short: 3936 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3937 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3938 case BuiltinType::UInt: 3939 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3940 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3941 case BuiltinType::Int: 3942 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3943 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3944 case BuiltinType::ULong: 3945 case BuiltinType::ULongLong: 3946 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3947 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3948 case BuiltinType::Long: 3949 case BuiltinType::LongLong: 3950 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3951 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3952 case BuiltinType::Float: 3953 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3954 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3955 case BuiltinType::Double: 3956 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3957 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3958 } 3959 } 3960 3961 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3962 llvm::CmpInst::Predicate UICmpOpc, 3963 llvm::CmpInst::Predicate SICmpOpc, 3964 llvm::CmpInst::Predicate FCmpOpc, 3965 bool IsSignaling) { 3966 TestAndClearIgnoreResultAssign(); 3967 Value *Result; 3968 QualType LHSTy = E->getLHS()->getType(); 3969 QualType RHSTy = E->getRHS()->getType(); 3970 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3971 assert(E->getOpcode() == BO_EQ || 3972 E->getOpcode() == BO_NE); 3973 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3974 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3975 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3976 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3977 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3978 BinOpInfo BOInfo = EmitBinOps(E); 3979 Value *LHS = BOInfo.LHS; 3980 Value *RHS = BOInfo.RHS; 3981 3982 // If AltiVec, the comparison results in a numeric type, so we use 3983 // intrinsics comparing vectors and giving 0 or 1 as a result 3984 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3985 // constants for mapping CR6 register bits to predicate result 3986 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3987 3988 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3989 3990 // in several cases vector arguments order will be reversed 3991 Value *FirstVecArg = LHS, 3992 *SecondVecArg = RHS; 3993 3994 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3995 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 3996 3997 switch(E->getOpcode()) { 3998 default: llvm_unreachable("is not a comparison operation"); 3999 case BO_EQ: 4000 CR6 = CR6_LT; 4001 ID = GetIntrinsic(VCMPEQ, ElementKind); 4002 break; 4003 case BO_NE: 4004 CR6 = CR6_EQ; 4005 ID = GetIntrinsic(VCMPEQ, ElementKind); 4006 break; 4007 case BO_LT: 4008 CR6 = CR6_LT; 4009 ID = GetIntrinsic(VCMPGT, ElementKind); 4010 std::swap(FirstVecArg, SecondVecArg); 4011 break; 4012 case BO_GT: 4013 CR6 = CR6_LT; 4014 ID = GetIntrinsic(VCMPGT, ElementKind); 4015 break; 4016 case BO_LE: 4017 if (ElementKind == BuiltinType::Float) { 4018 CR6 = CR6_LT; 4019 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4020 std::swap(FirstVecArg, SecondVecArg); 4021 } 4022 else { 4023 CR6 = CR6_EQ; 4024 ID = GetIntrinsic(VCMPGT, ElementKind); 4025 } 4026 break; 4027 case BO_GE: 4028 if (ElementKind == BuiltinType::Float) { 4029 CR6 = CR6_LT; 4030 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4031 } 4032 else { 4033 CR6 = CR6_EQ; 4034 ID = GetIntrinsic(VCMPGT, ElementKind); 4035 std::swap(FirstVecArg, SecondVecArg); 4036 } 4037 break; 4038 } 4039 4040 Value *CR6Param = Builder.getInt32(CR6); 4041 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 4042 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 4043 4044 // The result type of intrinsic may not be same as E->getType(). 4045 // If E->getType() is not BoolTy, EmitScalarConversion will do the 4046 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 4047 // do nothing, if ResultTy is not i1 at the same time, it will cause 4048 // crash later. 4049 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 4050 if (ResultTy->getBitWidth() > 1 && 4051 E->getType() == CGF.getContext().BoolTy) 4052 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 4053 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4054 E->getExprLoc()); 4055 } 4056 4057 if (BOInfo.isFixedPointOp()) { 4058 Result = EmitFixedPointBinOp(BOInfo); 4059 } else if (LHS->getType()->isFPOrFPVectorTy()) { 4060 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 4061 if (!IsSignaling) 4062 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 4063 else 4064 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 4065 } else if (LHSTy->hasSignedIntegerRepresentation()) { 4066 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4067 } else { 4068 // Unsigned integers and pointers. 4069 4070 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4071 !isa<llvm::ConstantPointerNull>(LHS) && 4072 !isa<llvm::ConstantPointerNull>(RHS)) { 4073 4074 // Dynamic information is required to be stripped for comparisons, 4075 // because it could leak the dynamic information. Based on comparisons 4076 // of pointers to dynamic objects, the optimizer can replace one pointer 4077 // with another, which might be incorrect in presence of invariant 4078 // groups. Comparison with null is safe because null does not carry any 4079 // dynamic information. 4080 if (LHSTy.mayBeDynamicClass()) 4081 LHS = Builder.CreateStripInvariantGroup(LHS); 4082 if (RHSTy.mayBeDynamicClass()) 4083 RHS = Builder.CreateStripInvariantGroup(RHS); 4084 } 4085 4086 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4087 } 4088 4089 // If this is a vector comparison, sign extend the result to the appropriate 4090 // vector integer type and return it (don't convert to bool). 4091 if (LHSTy->isVectorType()) 4092 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4093 4094 } else { 4095 // Complex Comparison: can only be an equality comparison. 4096 CodeGenFunction::ComplexPairTy LHS, RHS; 4097 QualType CETy; 4098 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4099 LHS = CGF.EmitComplexExpr(E->getLHS()); 4100 CETy = CTy->getElementType(); 4101 } else { 4102 LHS.first = Visit(E->getLHS()); 4103 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4104 CETy = LHSTy; 4105 } 4106 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4107 RHS = CGF.EmitComplexExpr(E->getRHS()); 4108 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4109 CTy->getElementType()) && 4110 "The element types must always match."); 4111 (void)CTy; 4112 } else { 4113 RHS.first = Visit(E->getRHS()); 4114 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4115 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4116 "The element types must always match."); 4117 } 4118 4119 Value *ResultR, *ResultI; 4120 if (CETy->isRealFloatingType()) { 4121 // As complex comparisons can only be equality comparisons, they 4122 // are never signaling comparisons. 4123 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4124 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4125 } else { 4126 // Complex comparisons can only be equality comparisons. As such, signed 4127 // and unsigned opcodes are the same. 4128 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4129 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4130 } 4131 4132 if (E->getOpcode() == BO_EQ) { 4133 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4134 } else { 4135 assert(E->getOpcode() == BO_NE && 4136 "Complex comparison other than == or != ?"); 4137 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4138 } 4139 } 4140 4141 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4142 E->getExprLoc()); 4143 } 4144 4145 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4146 bool Ignore = TestAndClearIgnoreResultAssign(); 4147 4148 Value *RHS; 4149 LValue LHS; 4150 4151 switch (E->getLHS()->getType().getObjCLifetime()) { 4152 case Qualifiers::OCL_Strong: 4153 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4154 break; 4155 4156 case Qualifiers::OCL_Autoreleasing: 4157 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4158 break; 4159 4160 case Qualifiers::OCL_ExplicitNone: 4161 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4162 break; 4163 4164 case Qualifiers::OCL_Weak: 4165 RHS = Visit(E->getRHS()); 4166 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4167 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4168 break; 4169 4170 case Qualifiers::OCL_None: 4171 // __block variables need to have the rhs evaluated first, plus 4172 // this should improve codegen just a little. 4173 RHS = Visit(E->getRHS()); 4174 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4175 4176 // Store the value into the LHS. Bit-fields are handled specially 4177 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4178 // 'An assignment expression has the value of the left operand after 4179 // the assignment...'. 4180 if (LHS.isBitField()) { 4181 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4182 } else { 4183 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4184 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4185 } 4186 } 4187 4188 // If the result is clearly ignored, return now. 4189 if (Ignore) 4190 return nullptr; 4191 4192 // The result of an assignment in C is the assigned r-value. 4193 if (!CGF.getLangOpts().CPlusPlus) 4194 return RHS; 4195 4196 // If the lvalue is non-volatile, return the computed value of the assignment. 4197 if (!LHS.isVolatileQualified()) 4198 return RHS; 4199 4200 // Otherwise, reload the value. 4201 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4202 } 4203 4204 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4205 // Perform vector logical and on comparisons with zero vectors. 4206 if (E->getType()->isVectorType()) { 4207 CGF.incrementProfileCounter(E); 4208 4209 Value *LHS = Visit(E->getLHS()); 4210 Value *RHS = Visit(E->getRHS()); 4211 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4212 if (LHS->getType()->isFPOrFPVectorTy()) { 4213 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4214 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4215 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4216 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4217 } else { 4218 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4219 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4220 } 4221 Value *And = Builder.CreateAnd(LHS, RHS); 4222 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4223 } 4224 4225 llvm::Type *ResTy = ConvertType(E->getType()); 4226 4227 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4228 // If we have 1 && X, just emit X without inserting the control flow. 4229 bool LHSCondVal; 4230 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4231 if (LHSCondVal) { // If we have 1 && X, just emit X. 4232 CGF.incrementProfileCounter(E); 4233 4234 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4235 // ZExt result to int or bool. 4236 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4237 } 4238 4239 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4240 if (!CGF.ContainsLabel(E->getRHS())) 4241 return llvm::Constant::getNullValue(ResTy); 4242 } 4243 4244 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4245 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4246 4247 CodeGenFunction::ConditionalEvaluation eval(CGF); 4248 4249 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4250 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4251 CGF.getProfileCount(E->getRHS())); 4252 4253 // Any edges into the ContBlock are now from an (indeterminate number of) 4254 // edges from this first condition. All of these values will be false. Start 4255 // setting up the PHI node in the Cont Block for this. 4256 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4257 "", ContBlock); 4258 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4259 PI != PE; ++PI) 4260 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4261 4262 eval.begin(CGF); 4263 CGF.EmitBlock(RHSBlock); 4264 CGF.incrementProfileCounter(E); 4265 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4266 eval.end(CGF); 4267 4268 // Reaquire the RHS block, as there may be subblocks inserted. 4269 RHSBlock = Builder.GetInsertBlock(); 4270 4271 // Emit an unconditional branch from this block to ContBlock. 4272 { 4273 // There is no need to emit line number for unconditional branch. 4274 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4275 CGF.EmitBlock(ContBlock); 4276 } 4277 // Insert an entry into the phi node for the edge with the value of RHSCond. 4278 PN->addIncoming(RHSCond, RHSBlock); 4279 4280 // Artificial location to preserve the scope information 4281 { 4282 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4283 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4284 } 4285 4286 // ZExt result to int. 4287 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4288 } 4289 4290 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4291 // Perform vector logical or on comparisons with zero vectors. 4292 if (E->getType()->isVectorType()) { 4293 CGF.incrementProfileCounter(E); 4294 4295 Value *LHS = Visit(E->getLHS()); 4296 Value *RHS = Visit(E->getRHS()); 4297 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4298 if (LHS->getType()->isFPOrFPVectorTy()) { 4299 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4300 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4301 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4302 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4303 } else { 4304 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4305 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4306 } 4307 Value *Or = Builder.CreateOr(LHS, RHS); 4308 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4309 } 4310 4311 llvm::Type *ResTy = ConvertType(E->getType()); 4312 4313 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4314 // If we have 0 || X, just emit X without inserting the control flow. 4315 bool LHSCondVal; 4316 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4317 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4318 CGF.incrementProfileCounter(E); 4319 4320 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4321 // ZExt result to int or bool. 4322 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4323 } 4324 4325 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4326 if (!CGF.ContainsLabel(E->getRHS())) 4327 return llvm::ConstantInt::get(ResTy, 1); 4328 } 4329 4330 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4331 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4332 4333 CodeGenFunction::ConditionalEvaluation eval(CGF); 4334 4335 // Branch on the LHS first. If it is true, go to the success (cont) block. 4336 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4337 CGF.getCurrentProfileCount() - 4338 CGF.getProfileCount(E->getRHS())); 4339 4340 // Any edges into the ContBlock are now from an (indeterminate number of) 4341 // edges from this first condition. All of these values will be true. Start 4342 // setting up the PHI node in the Cont Block for this. 4343 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4344 "", ContBlock); 4345 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4346 PI != PE; ++PI) 4347 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4348 4349 eval.begin(CGF); 4350 4351 // Emit the RHS condition as a bool value. 4352 CGF.EmitBlock(RHSBlock); 4353 CGF.incrementProfileCounter(E); 4354 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4355 4356 eval.end(CGF); 4357 4358 // Reaquire the RHS block, as there may be subblocks inserted. 4359 RHSBlock = Builder.GetInsertBlock(); 4360 4361 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4362 // into the phi node for the edge with the value of RHSCond. 4363 CGF.EmitBlock(ContBlock); 4364 PN->addIncoming(RHSCond, RHSBlock); 4365 4366 // ZExt result to int. 4367 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4368 } 4369 4370 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4371 CGF.EmitIgnoredExpr(E->getLHS()); 4372 CGF.EnsureInsertPoint(); 4373 return Visit(E->getRHS()); 4374 } 4375 4376 //===----------------------------------------------------------------------===// 4377 // Other Operators 4378 //===----------------------------------------------------------------------===// 4379 4380 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4381 /// expression is cheap enough and side-effect-free enough to evaluate 4382 /// unconditionally instead of conditionally. This is used to convert control 4383 /// flow into selects in some cases. 4384 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4385 CodeGenFunction &CGF) { 4386 // Anything that is an integer or floating point constant is fine. 4387 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4388 4389 // Even non-volatile automatic variables can't be evaluated unconditionally. 4390 // Referencing a thread_local may cause non-trivial initialization work to 4391 // occur. If we're inside a lambda and one of the variables is from the scope 4392 // outside the lambda, that function may have returned already. Reading its 4393 // locals is a bad idea. Also, these reads may introduce races there didn't 4394 // exist in the source-level program. 4395 } 4396 4397 4398 Value *ScalarExprEmitter:: 4399 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4400 TestAndClearIgnoreResultAssign(); 4401 4402 // Bind the common expression if necessary. 4403 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4404 4405 Expr *condExpr = E->getCond(); 4406 Expr *lhsExpr = E->getTrueExpr(); 4407 Expr *rhsExpr = E->getFalseExpr(); 4408 4409 // If the condition constant folds and can be elided, try to avoid emitting 4410 // the condition and the dead arm. 4411 bool CondExprBool; 4412 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4413 Expr *live = lhsExpr, *dead = rhsExpr; 4414 if (!CondExprBool) std::swap(live, dead); 4415 4416 // If the dead side doesn't have labels we need, just emit the Live part. 4417 if (!CGF.ContainsLabel(dead)) { 4418 if (CondExprBool) 4419 CGF.incrementProfileCounter(E); 4420 Value *Result = Visit(live); 4421 4422 // If the live part is a throw expression, it acts like it has a void 4423 // type, so evaluating it returns a null Value*. However, a conditional 4424 // with non-void type must return a non-null Value*. 4425 if (!Result && !E->getType()->isVoidType()) 4426 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4427 4428 return Result; 4429 } 4430 } 4431 4432 // OpenCL: If the condition is a vector, we can treat this condition like 4433 // the select function. 4434 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4435 condExpr->getType()->isExtVectorType()) { 4436 CGF.incrementProfileCounter(E); 4437 4438 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4439 llvm::Value *LHS = Visit(lhsExpr); 4440 llvm::Value *RHS = Visit(rhsExpr); 4441 4442 llvm::Type *condType = ConvertType(condExpr->getType()); 4443 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4444 4445 unsigned numElem = vecTy->getNumElements(); 4446 llvm::Type *elemType = vecTy->getElementType(); 4447 4448 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4449 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4450 llvm::Value *tmp = Builder.CreateSExt( 4451 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4452 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4453 4454 // Cast float to int to perform ANDs if necessary. 4455 llvm::Value *RHSTmp = RHS; 4456 llvm::Value *LHSTmp = LHS; 4457 bool wasCast = false; 4458 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4459 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4460 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4461 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4462 wasCast = true; 4463 } 4464 4465 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4466 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4467 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4468 if (wasCast) 4469 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4470 4471 return tmp5; 4472 } 4473 4474 if (condExpr->getType()->isVectorType()) { 4475 CGF.incrementProfileCounter(E); 4476 4477 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4478 llvm::Value *LHS = Visit(lhsExpr); 4479 llvm::Value *RHS = Visit(rhsExpr); 4480 4481 llvm::Type *CondType = ConvertType(condExpr->getType()); 4482 auto *VecTy = cast<llvm::VectorType>(CondType); 4483 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4484 4485 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4486 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4487 } 4488 4489 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4490 // select instead of as control flow. We can only do this if it is cheap and 4491 // safe to evaluate the LHS and RHS unconditionally. 4492 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4493 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4494 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4495 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4496 4497 CGF.incrementProfileCounter(E, StepV); 4498 4499 llvm::Value *LHS = Visit(lhsExpr); 4500 llvm::Value *RHS = Visit(rhsExpr); 4501 if (!LHS) { 4502 // If the conditional has void type, make sure we return a null Value*. 4503 assert(!RHS && "LHS and RHS types must match"); 4504 return nullptr; 4505 } 4506 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4507 } 4508 4509 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4510 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4511 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4512 4513 CodeGenFunction::ConditionalEvaluation eval(CGF); 4514 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4515 CGF.getProfileCount(lhsExpr)); 4516 4517 CGF.EmitBlock(LHSBlock); 4518 CGF.incrementProfileCounter(E); 4519 eval.begin(CGF); 4520 Value *LHS = Visit(lhsExpr); 4521 eval.end(CGF); 4522 4523 LHSBlock = Builder.GetInsertBlock(); 4524 Builder.CreateBr(ContBlock); 4525 4526 CGF.EmitBlock(RHSBlock); 4527 eval.begin(CGF); 4528 Value *RHS = Visit(rhsExpr); 4529 eval.end(CGF); 4530 4531 RHSBlock = Builder.GetInsertBlock(); 4532 CGF.EmitBlock(ContBlock); 4533 4534 // If the LHS or RHS is a throw expression, it will be legitimately null. 4535 if (!LHS) 4536 return RHS; 4537 if (!RHS) 4538 return LHS; 4539 4540 // Create a PHI node for the real part. 4541 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4542 PN->addIncoming(LHS, LHSBlock); 4543 PN->addIncoming(RHS, RHSBlock); 4544 return PN; 4545 } 4546 4547 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4548 return Visit(E->getChosenSubExpr()); 4549 } 4550 4551 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4552 QualType Ty = VE->getType(); 4553 4554 if (Ty->isVariablyModifiedType()) 4555 CGF.EmitVariablyModifiedType(Ty); 4556 4557 Address ArgValue = Address::invalid(); 4558 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4559 4560 llvm::Type *ArgTy = ConvertType(VE->getType()); 4561 4562 // If EmitVAArg fails, emit an error. 4563 if (!ArgPtr.isValid()) { 4564 CGF.ErrorUnsupported(VE, "va_arg expression"); 4565 return llvm::UndefValue::get(ArgTy); 4566 } 4567 4568 // FIXME Volatility. 4569 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4570 4571 // If EmitVAArg promoted the type, we must truncate it. 4572 if (ArgTy != Val->getType()) { 4573 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4574 Val = Builder.CreateIntToPtr(Val, ArgTy); 4575 else 4576 Val = Builder.CreateTrunc(Val, ArgTy); 4577 } 4578 4579 return Val; 4580 } 4581 4582 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4583 return CGF.EmitBlockLiteral(block); 4584 } 4585 4586 // Convert a vec3 to vec4, or vice versa. 4587 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4588 Value *Src, unsigned NumElementsDst) { 4589 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4590 static constexpr int Mask[] = {0, 1, 2, -1}; 4591 return Builder.CreateShuffleVector(Src, UnV, 4592 llvm::makeArrayRef(Mask, NumElementsDst)); 4593 } 4594 4595 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4596 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4597 // but could be scalar or vectors of different lengths, and either can be 4598 // pointer. 4599 // There are 4 cases: 4600 // 1. non-pointer -> non-pointer : needs 1 bitcast 4601 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4602 // 3. pointer -> non-pointer 4603 // a) pointer -> intptr_t : needs 1 ptrtoint 4604 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4605 // 4. non-pointer -> pointer 4606 // a) intptr_t -> pointer : needs 1 inttoptr 4607 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4608 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4609 // allow casting directly between pointer types and non-integer non-pointer 4610 // types. 4611 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4612 const llvm::DataLayout &DL, 4613 Value *Src, llvm::Type *DstTy, 4614 StringRef Name = "") { 4615 auto SrcTy = Src->getType(); 4616 4617 // Case 1. 4618 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4619 return Builder.CreateBitCast(Src, DstTy, Name); 4620 4621 // Case 2. 4622 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4623 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4624 4625 // Case 3. 4626 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4627 // Case 3b. 4628 if (!DstTy->isIntegerTy()) 4629 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4630 // Cases 3a and 3b. 4631 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4632 } 4633 4634 // Case 4b. 4635 if (!SrcTy->isIntegerTy()) 4636 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4637 // Cases 4a and 4b. 4638 return Builder.CreateIntToPtr(Src, DstTy, Name); 4639 } 4640 4641 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4642 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4643 llvm::Type *DstTy = ConvertType(E->getType()); 4644 4645 llvm::Type *SrcTy = Src->getType(); 4646 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4647 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4648 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4649 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4650 4651 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4652 // vector to get a vec4, then a bitcast if the target type is different. 4653 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4654 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4655 4656 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4657 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4658 DstTy); 4659 } 4660 4661 Src->setName("astype"); 4662 return Src; 4663 } 4664 4665 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4666 // to vec4 if the original type is not vec4, then a shuffle vector to 4667 // get a vec3. 4668 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4669 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4670 auto *Vec4Ty = llvm::FixedVectorType::get( 4671 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4672 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4673 Vec4Ty); 4674 } 4675 4676 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4677 Src->setName("astype"); 4678 return Src; 4679 } 4680 4681 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4682 Src, DstTy, "astype"); 4683 } 4684 4685 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4686 return CGF.EmitAtomicExpr(E).getScalarVal(); 4687 } 4688 4689 //===----------------------------------------------------------------------===// 4690 // Entry Point into this File 4691 //===----------------------------------------------------------------------===// 4692 4693 /// Emit the computation of the specified expression of scalar type, ignoring 4694 /// the result. 4695 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4696 assert(E && hasScalarEvaluationKind(E->getType()) && 4697 "Invalid scalar expression to emit"); 4698 4699 return ScalarExprEmitter(*this, IgnoreResultAssign) 4700 .Visit(const_cast<Expr *>(E)); 4701 } 4702 4703 /// Emit a conversion from the specified type to the specified destination type, 4704 /// both of which are LLVM scalar types. 4705 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4706 QualType DstTy, 4707 SourceLocation Loc) { 4708 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4709 "Invalid scalar expression to emit"); 4710 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4711 } 4712 4713 /// Emit a conversion from the specified complex type to the specified 4714 /// destination type, where the destination type is an LLVM scalar type. 4715 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4716 QualType SrcTy, 4717 QualType DstTy, 4718 SourceLocation Loc) { 4719 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4720 "Invalid complex -> scalar conversion"); 4721 return ScalarExprEmitter(*this) 4722 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4723 } 4724 4725 4726 llvm::Value *CodeGenFunction:: 4727 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4728 bool isInc, bool isPre) { 4729 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4730 } 4731 4732 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4733 // object->isa or (*object).isa 4734 // Generate code as for: *(Class*)object 4735 4736 Expr *BaseExpr = E->getBase(); 4737 Address Addr = Address::invalid(); 4738 if (BaseExpr->isRValue()) { 4739 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4740 } else { 4741 Addr = EmitLValue(BaseExpr).getAddress(*this); 4742 } 4743 4744 // Cast the address to Class*. 4745 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4746 return MakeAddrLValue(Addr, E->getType()); 4747 } 4748 4749 4750 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4751 const CompoundAssignOperator *E) { 4752 ScalarExprEmitter Scalar(*this); 4753 Value *Result = nullptr; 4754 switch (E->getOpcode()) { 4755 #define COMPOUND_OP(Op) \ 4756 case BO_##Op##Assign: \ 4757 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4758 Result) 4759 COMPOUND_OP(Mul); 4760 COMPOUND_OP(Div); 4761 COMPOUND_OP(Rem); 4762 COMPOUND_OP(Add); 4763 COMPOUND_OP(Sub); 4764 COMPOUND_OP(Shl); 4765 COMPOUND_OP(Shr); 4766 COMPOUND_OP(And); 4767 COMPOUND_OP(Xor); 4768 COMPOUND_OP(Or); 4769 #undef COMPOUND_OP 4770 4771 case BO_PtrMemD: 4772 case BO_PtrMemI: 4773 case BO_Mul: 4774 case BO_Div: 4775 case BO_Rem: 4776 case BO_Add: 4777 case BO_Sub: 4778 case BO_Shl: 4779 case BO_Shr: 4780 case BO_LT: 4781 case BO_GT: 4782 case BO_LE: 4783 case BO_GE: 4784 case BO_EQ: 4785 case BO_NE: 4786 case BO_Cmp: 4787 case BO_And: 4788 case BO_Xor: 4789 case BO_Or: 4790 case BO_LAnd: 4791 case BO_LOr: 4792 case BO_Assign: 4793 case BO_Comma: 4794 llvm_unreachable("Not valid compound assignment operators"); 4795 } 4796 4797 llvm_unreachable("Unhandled compound assignment operator"); 4798 } 4799 4800 struct GEPOffsetAndOverflow { 4801 // The total (signed) byte offset for the GEP. 4802 llvm::Value *TotalOffset; 4803 // The offset overflow flag - true if the total offset overflows. 4804 llvm::Value *OffsetOverflows; 4805 }; 4806 4807 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4808 /// and compute the total offset it applies from it's base pointer BasePtr. 4809 /// Returns offset in bytes and a boolean flag whether an overflow happened 4810 /// during evaluation. 4811 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4812 llvm::LLVMContext &VMContext, 4813 CodeGenModule &CGM, 4814 CGBuilderTy &Builder) { 4815 const auto &DL = CGM.getDataLayout(); 4816 4817 // The total (signed) byte offset for the GEP. 4818 llvm::Value *TotalOffset = nullptr; 4819 4820 // Was the GEP already reduced to a constant? 4821 if (isa<llvm::Constant>(GEPVal)) { 4822 // Compute the offset by casting both pointers to integers and subtracting: 4823 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4824 Value *BasePtr_int = 4825 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4826 Value *GEPVal_int = 4827 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4828 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4829 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4830 } 4831 4832 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4833 assert(GEP->getPointerOperand() == BasePtr && 4834 "BasePtr must be the the base of the GEP."); 4835 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4836 4837 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4838 4839 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4840 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4841 auto *SAddIntrinsic = 4842 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4843 auto *SMulIntrinsic = 4844 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4845 4846 // The offset overflow flag - true if the total offset overflows. 4847 llvm::Value *OffsetOverflows = Builder.getFalse(); 4848 4849 /// Return the result of the given binary operation. 4850 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4851 llvm::Value *RHS) -> llvm::Value * { 4852 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4853 4854 // If the operands are constants, return a constant result. 4855 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4856 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4857 llvm::APInt N; 4858 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4859 /*Signed=*/true, N); 4860 if (HasOverflow) 4861 OffsetOverflows = Builder.getTrue(); 4862 return llvm::ConstantInt::get(VMContext, N); 4863 } 4864 } 4865 4866 // Otherwise, compute the result with checked arithmetic. 4867 auto *ResultAndOverflow = Builder.CreateCall( 4868 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4869 OffsetOverflows = Builder.CreateOr( 4870 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4871 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4872 }; 4873 4874 // Determine the total byte offset by looking at each GEP operand. 4875 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4876 GTI != GTE; ++GTI) { 4877 llvm::Value *LocalOffset; 4878 auto *Index = GTI.getOperand(); 4879 // Compute the local offset contributed by this indexing step: 4880 if (auto *STy = GTI.getStructTypeOrNull()) { 4881 // For struct indexing, the local offset is the byte position of the 4882 // specified field. 4883 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4884 LocalOffset = llvm::ConstantInt::get( 4885 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4886 } else { 4887 // Otherwise this is array-like indexing. The local offset is the index 4888 // multiplied by the element size. 4889 auto *ElementSize = llvm::ConstantInt::get( 4890 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4891 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4892 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4893 } 4894 4895 // If this is the first offset, set it as the total offset. Otherwise, add 4896 // the local offset into the running total. 4897 if (!TotalOffset || TotalOffset == Zero) 4898 TotalOffset = LocalOffset; 4899 else 4900 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4901 } 4902 4903 return {TotalOffset, OffsetOverflows}; 4904 } 4905 4906 Value * 4907 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4908 bool SignedIndices, bool IsSubtraction, 4909 SourceLocation Loc, const Twine &Name) { 4910 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4911 4912 // If the pointer overflow sanitizer isn't enabled, do nothing. 4913 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4914 return GEPVal; 4915 4916 llvm::Type *PtrTy = Ptr->getType(); 4917 4918 // Perform nullptr-and-offset check unless the nullptr is defined. 4919 bool PerformNullCheck = !NullPointerIsDefined( 4920 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4921 // Check for overflows unless the GEP got constant-folded, 4922 // and only in the default address space 4923 bool PerformOverflowCheck = 4924 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4925 4926 if (!(PerformNullCheck || PerformOverflowCheck)) 4927 return GEPVal; 4928 4929 const auto &DL = CGM.getDataLayout(); 4930 4931 SanitizerScope SanScope(this); 4932 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4933 4934 GEPOffsetAndOverflow EvaluatedGEP = 4935 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4936 4937 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4938 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4939 "If the offset got constant-folded, we don't expect that there was an " 4940 "overflow."); 4941 4942 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4943 4944 // Common case: if the total offset is zero, and we are using C++ semantics, 4945 // where nullptr+0 is defined, don't emit a check. 4946 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4947 return GEPVal; 4948 4949 // Now that we've computed the total offset, add it to the base pointer (with 4950 // wrapping semantics). 4951 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4952 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4953 4954 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4955 4956 if (PerformNullCheck) { 4957 // In C++, if the base pointer evaluates to a null pointer value, 4958 // the only valid pointer this inbounds GEP can produce is also 4959 // a null pointer, so the offset must also evaluate to zero. 4960 // Likewise, if we have non-zero base pointer, we can not get null pointer 4961 // as a result, so the offset can not be -intptr_t(BasePtr). 4962 // In other words, both pointers are either null, or both are non-null, 4963 // or the behaviour is undefined. 4964 // 4965 // C, however, is more strict in this regard, and gives more 4966 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4967 // So both the input to the 'gep inbounds' AND the output must not be null. 4968 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4969 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4970 auto *Valid = 4971 CGM.getLangOpts().CPlusPlus 4972 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4973 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4974 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4975 } 4976 4977 if (PerformOverflowCheck) { 4978 // The GEP is valid if: 4979 // 1) The total offset doesn't overflow, and 4980 // 2) The sign of the difference between the computed address and the base 4981 // pointer matches the sign of the total offset. 4982 llvm::Value *ValidGEP; 4983 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4984 if (SignedIndices) { 4985 // GEP is computed as `unsigned base + signed offset`, therefore: 4986 // * If offset was positive, then the computed pointer can not be 4987 // [unsigned] less than the base pointer, unless it overflowed. 4988 // * If offset was negative, then the computed pointer can not be 4989 // [unsigned] greater than the bas pointere, unless it overflowed. 4990 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4991 auto *PosOrZeroOffset = 4992 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4993 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4994 ValidGEP = 4995 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4996 } else if (!IsSubtraction) { 4997 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4998 // computed pointer can not be [unsigned] less than base pointer, 4999 // unless there was an overflow. 5000 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 5001 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5002 } else { 5003 // GEP is computed as `unsigned base - unsigned offset`, therefore the 5004 // computed pointer can not be [unsigned] greater than base pointer, 5005 // unless there was an overflow. 5006 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 5007 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 5008 } 5009 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 5010 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 5011 } 5012 5013 assert(!Checks.empty() && "Should have produced some checks."); 5014 5015 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 5016 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 5017 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 5018 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 5019 5020 return GEPVal; 5021 } 5022