1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Module.h" 33 #include <cstdarg> 34 35 using namespace clang; 36 using namespace CodeGen; 37 using llvm::Value; 38 39 //===----------------------------------------------------------------------===// 40 // Scalar Expression Emitter 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 struct BinOpInfo { 45 Value *LHS; 46 Value *RHS; 47 QualType Ty; // Computation Type. 48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 49 bool FPContractable; 50 const Expr *E; // Entire expr, for error unsupported. May not be binop. 51 }; 52 53 static bool MustVisitNullValue(const Expr *E) { 54 // If a null pointer expression's type is the C++0x nullptr_t, then 55 // it's not necessarily a simple constant and it must be evaluated 56 // for its potential side effects. 57 return E->getType()->isNullPtrType(); 58 } 59 60 class ScalarExprEmitter 61 : public StmtVisitor<ScalarExprEmitter, Value*> { 62 CodeGenFunction &CGF; 63 CGBuilderTy &Builder; 64 bool IgnoreResultAssign; 65 llvm::LLVMContext &VMContext; 66 public: 67 68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 70 VMContext(cgf.getLLVMContext()) { 71 } 72 73 //===--------------------------------------------------------------------===// 74 // Utilities 75 //===--------------------------------------------------------------------===// 76 77 bool TestAndClearIgnoreResultAssign() { 78 bool I = IgnoreResultAssign; 79 IgnoreResultAssign = false; 80 return I; 81 } 82 83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 86 return CGF.EmitCheckedLValue(E, TCK); 87 } 88 89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 90 const BinOpInfo &Info); 91 92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 94 } 95 96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 97 const AlignValueAttr *AVAttr = nullptr; 98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 99 const ValueDecl *VD = DRE->getDecl(); 100 101 if (VD->getType()->isReferenceType()) { 102 if (const auto *TTy = 103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 105 } else { 106 // Assumptions for function parameters are emitted at the start of the 107 // function, so there is no need to repeat that here. 108 if (isa<ParmVarDecl>(VD)) 109 return; 110 111 AVAttr = VD->getAttr<AlignValueAttr>(); 112 } 113 } 114 115 if (!AVAttr) 116 if (const auto *TTy = 117 dyn_cast<TypedefType>(E->getType())) 118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 119 120 if (!AVAttr) 121 return; 122 123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 126 } 127 128 /// EmitLoadOfLValue - Given an expression with complex type that represents a 129 /// value l-value, this method emits the address of the l-value, then loads 130 /// and returns the result. 131 Value *EmitLoadOfLValue(const Expr *E) { 132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 133 E->getExprLoc()); 134 135 EmitLValueAlignmentAssumption(E, V); 136 return V; 137 } 138 139 /// EmitConversionToBool - Convert the specified expression value to a 140 /// boolean (i1) truth value. This is equivalent to "Val != 0". 141 Value *EmitConversionToBool(Value *Src, QualType DstTy); 142 143 /// Emit a check that a conversion to or from a floating-point type does not 144 /// overflow. 145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 146 Value *Src, QualType SrcType, QualType DstType, 147 llvm::Type *DstTy, SourceLocation Loc); 148 149 /// Emit a conversion from the specified type to the specified destination 150 /// type, both of which are LLVM scalar types. 151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 152 SourceLocation Loc); 153 154 /// Emit a conversion from the specified complex type to the specified 155 /// destination type, where the destination type is an LLVM scalar type. 156 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 157 QualType SrcTy, QualType DstTy, 158 SourceLocation Loc); 159 160 /// EmitNullValue - Emit a value that corresponds to null for the given type. 161 Value *EmitNullValue(QualType Ty); 162 163 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 164 Value *EmitFloatToBoolConversion(Value *V) { 165 // Compare against 0.0 for fp scalars. 166 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 167 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 168 } 169 170 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 171 Value *EmitPointerToBoolConversion(Value *V) { 172 Value *Zero = llvm::ConstantPointerNull::get( 173 cast<llvm::PointerType>(V->getType())); 174 return Builder.CreateICmpNE(V, Zero, "tobool"); 175 } 176 177 Value *EmitIntToBoolConversion(Value *V) { 178 // Because of the type rules of C, we often end up computing a 179 // logical value, then zero extending it to int, then wanting it 180 // as a logical value again. Optimize this common case. 181 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 182 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 183 Value *Result = ZI->getOperand(0); 184 // If there aren't any more uses, zap the instruction to save space. 185 // Note that there can be more uses, for example if this 186 // is the result of an assignment. 187 if (ZI->use_empty()) 188 ZI->eraseFromParent(); 189 return Result; 190 } 191 } 192 193 return Builder.CreateIsNotNull(V, "tobool"); 194 } 195 196 //===--------------------------------------------------------------------===// 197 // Visitor Methods 198 //===--------------------------------------------------------------------===// 199 200 Value *Visit(Expr *E) { 201 ApplyDebugLocation DL(CGF, E); 202 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 203 } 204 205 Value *VisitStmt(Stmt *S) { 206 S->dump(CGF.getContext().getSourceManager()); 207 llvm_unreachable("Stmt can't have complex result type!"); 208 } 209 Value *VisitExpr(Expr *S); 210 211 Value *VisitParenExpr(ParenExpr *PE) { 212 return Visit(PE->getSubExpr()); 213 } 214 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 215 return Visit(E->getReplacement()); 216 } 217 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 218 return Visit(GE->getResultExpr()); 219 } 220 221 // Leaves. 222 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 223 return Builder.getInt(E->getValue()); 224 } 225 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 226 return llvm::ConstantFP::get(VMContext, E->getValue()); 227 } 228 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 229 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 230 } 231 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 232 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 233 } 234 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 235 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 236 } 237 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 238 return EmitNullValue(E->getType()); 239 } 240 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 241 return EmitNullValue(E->getType()); 242 } 243 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 244 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 245 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 246 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 247 return Builder.CreateBitCast(V, ConvertType(E->getType())); 248 } 249 250 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 251 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 252 } 253 254 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 255 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 256 } 257 258 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 259 if (E->isGLValue()) 260 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 261 262 // Otherwise, assume the mapping is the scalar directly. 263 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 264 } 265 266 // l-values. 267 Value *VisitDeclRefExpr(DeclRefExpr *E) { 268 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 269 if (result.isReference()) 270 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 271 E->getExprLoc()); 272 return result.getValue(); 273 } 274 return EmitLoadOfLValue(E); 275 } 276 277 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 278 return CGF.EmitObjCSelectorExpr(E); 279 } 280 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 281 return CGF.EmitObjCProtocolExpr(E); 282 } 283 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 284 return EmitLoadOfLValue(E); 285 } 286 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 287 if (E->getMethodDecl() && 288 E->getMethodDecl()->getReturnType()->isReferenceType()) 289 return EmitLoadOfLValue(E); 290 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 291 } 292 293 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 294 LValue LV = CGF.EmitObjCIsaExpr(E); 295 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 296 return V; 297 } 298 299 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 300 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 301 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 302 Value *VisitMemberExpr(MemberExpr *E); 303 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 304 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 305 return EmitLoadOfLValue(E); 306 } 307 308 Value *VisitInitListExpr(InitListExpr *E); 309 310 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 311 return EmitNullValue(E->getType()); 312 } 313 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 314 if (E->getType()->isVariablyModifiedType()) 315 CGF.EmitVariablyModifiedType(E->getType()); 316 317 if (CGDebugInfo *DI = CGF.getDebugInfo()) 318 DI->EmitExplicitCastType(E->getType()); 319 320 return VisitCastExpr(E); 321 } 322 Value *VisitCastExpr(CastExpr *E); 323 324 Value *VisitCallExpr(const CallExpr *E) { 325 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 326 return EmitLoadOfLValue(E); 327 328 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 329 330 EmitLValueAlignmentAssumption(E, V); 331 return V; 332 } 333 334 Value *VisitStmtExpr(const StmtExpr *E); 335 336 // Unary Operators. 337 Value *VisitUnaryPostDec(const UnaryOperator *E) { 338 LValue LV = EmitLValue(E->getSubExpr()); 339 return EmitScalarPrePostIncDec(E, LV, false, false); 340 } 341 Value *VisitUnaryPostInc(const UnaryOperator *E) { 342 LValue LV = EmitLValue(E->getSubExpr()); 343 return EmitScalarPrePostIncDec(E, LV, true, false); 344 } 345 Value *VisitUnaryPreDec(const UnaryOperator *E) { 346 LValue LV = EmitLValue(E->getSubExpr()); 347 return EmitScalarPrePostIncDec(E, LV, false, true); 348 } 349 Value *VisitUnaryPreInc(const UnaryOperator *E) { 350 LValue LV = EmitLValue(E->getSubExpr()); 351 return EmitScalarPrePostIncDec(E, LV, true, true); 352 } 353 354 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 355 llvm::Value *InVal, 356 bool IsInc); 357 358 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 359 bool isInc, bool isPre); 360 361 362 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 363 if (isa<MemberPointerType>(E->getType())) // never sugared 364 return CGF.CGM.getMemberPointerConstant(E); 365 366 return EmitLValue(E->getSubExpr()).getPointer(); 367 } 368 Value *VisitUnaryDeref(const UnaryOperator *E) { 369 if (E->getType()->isVoidType()) 370 return Visit(E->getSubExpr()); // the actual value should be unused 371 return EmitLoadOfLValue(E); 372 } 373 Value *VisitUnaryPlus(const UnaryOperator *E) { 374 // This differs from gcc, though, most likely due to a bug in gcc. 375 TestAndClearIgnoreResultAssign(); 376 return Visit(E->getSubExpr()); 377 } 378 Value *VisitUnaryMinus (const UnaryOperator *E); 379 Value *VisitUnaryNot (const UnaryOperator *E); 380 Value *VisitUnaryLNot (const UnaryOperator *E); 381 Value *VisitUnaryReal (const UnaryOperator *E); 382 Value *VisitUnaryImag (const UnaryOperator *E); 383 Value *VisitUnaryExtension(const UnaryOperator *E) { 384 return Visit(E->getSubExpr()); 385 } 386 387 // C++ 388 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 389 return EmitLoadOfLValue(E); 390 } 391 392 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 393 return Visit(DAE->getExpr()); 394 } 395 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 396 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 397 return Visit(DIE->getExpr()); 398 } 399 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 400 return CGF.LoadCXXThis(); 401 } 402 403 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 404 CGF.enterFullExpression(E); 405 CodeGenFunction::RunCleanupsScope Scope(CGF); 406 return Visit(E->getSubExpr()); 407 } 408 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 409 return CGF.EmitCXXNewExpr(E); 410 } 411 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 412 CGF.EmitCXXDeleteExpr(E); 413 return nullptr; 414 } 415 416 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 417 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 418 } 419 420 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 421 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 422 } 423 424 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 425 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 426 } 427 428 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 429 // C++ [expr.pseudo]p1: 430 // The result shall only be used as the operand for the function call 431 // operator (), and the result of such a call has type void. The only 432 // effect is the evaluation of the postfix-expression before the dot or 433 // arrow. 434 CGF.EmitScalarExpr(E->getBase()); 435 return nullptr; 436 } 437 438 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 439 return EmitNullValue(E->getType()); 440 } 441 442 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 443 CGF.EmitCXXThrowExpr(E); 444 return nullptr; 445 } 446 447 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 448 return Builder.getInt1(E->getValue()); 449 } 450 451 // Binary Operators. 452 Value *EmitMul(const BinOpInfo &Ops) { 453 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 454 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 455 case LangOptions::SOB_Defined: 456 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 457 case LangOptions::SOB_Undefined: 458 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 459 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 460 // Fall through. 461 case LangOptions::SOB_Trapping: 462 return EmitOverflowCheckedBinOp(Ops); 463 } 464 } 465 466 if (Ops.Ty->isUnsignedIntegerType() && 467 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 468 return EmitOverflowCheckedBinOp(Ops); 469 470 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 471 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 472 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 473 } 474 /// Create a binary op that checks for overflow. 475 /// Currently only supports +, - and *. 476 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 477 478 // Check for undefined division and modulus behaviors. 479 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 480 llvm::Value *Zero,bool isDiv); 481 // Common helper for getting how wide LHS of shift is. 482 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 483 Value *EmitDiv(const BinOpInfo &Ops); 484 Value *EmitRem(const BinOpInfo &Ops); 485 Value *EmitAdd(const BinOpInfo &Ops); 486 Value *EmitSub(const BinOpInfo &Ops); 487 Value *EmitShl(const BinOpInfo &Ops); 488 Value *EmitShr(const BinOpInfo &Ops); 489 Value *EmitAnd(const BinOpInfo &Ops) { 490 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 491 } 492 Value *EmitXor(const BinOpInfo &Ops) { 493 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 494 } 495 Value *EmitOr (const BinOpInfo &Ops) { 496 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 497 } 498 499 BinOpInfo EmitBinOps(const BinaryOperator *E); 500 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 501 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 502 Value *&Result); 503 504 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 505 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 506 507 // Binary operators and binary compound assignment operators. 508 #define HANDLEBINOP(OP) \ 509 Value *VisitBin ## OP(const BinaryOperator *E) { \ 510 return Emit ## OP(EmitBinOps(E)); \ 511 } \ 512 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 513 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 514 } 515 HANDLEBINOP(Mul) 516 HANDLEBINOP(Div) 517 HANDLEBINOP(Rem) 518 HANDLEBINOP(Add) 519 HANDLEBINOP(Sub) 520 HANDLEBINOP(Shl) 521 HANDLEBINOP(Shr) 522 HANDLEBINOP(And) 523 HANDLEBINOP(Xor) 524 HANDLEBINOP(Or) 525 #undef HANDLEBINOP 526 527 // Comparisons. 528 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 529 unsigned SICmpOpc, unsigned FCmpOpc); 530 #define VISITCOMP(CODE, UI, SI, FP) \ 531 Value *VisitBin##CODE(const BinaryOperator *E) { \ 532 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 533 llvm::FCmpInst::FP); } 534 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 535 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 536 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 537 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 538 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 539 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 540 #undef VISITCOMP 541 542 Value *VisitBinAssign (const BinaryOperator *E); 543 544 Value *VisitBinLAnd (const BinaryOperator *E); 545 Value *VisitBinLOr (const BinaryOperator *E); 546 Value *VisitBinComma (const BinaryOperator *E); 547 548 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 549 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 550 551 // Other Operators. 552 Value *VisitBlockExpr(const BlockExpr *BE); 553 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 554 Value *VisitChooseExpr(ChooseExpr *CE); 555 Value *VisitVAArgExpr(VAArgExpr *VE); 556 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 557 return CGF.EmitObjCStringLiteral(E); 558 } 559 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 560 return CGF.EmitObjCBoxedExpr(E); 561 } 562 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 563 return CGF.EmitObjCArrayLiteral(E); 564 } 565 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 566 return CGF.EmitObjCDictionaryLiteral(E); 567 } 568 Value *VisitAsTypeExpr(AsTypeExpr *CE); 569 Value *VisitAtomicExpr(AtomicExpr *AE); 570 }; 571 } // end anonymous namespace. 572 573 //===----------------------------------------------------------------------===// 574 // Utilities 575 //===----------------------------------------------------------------------===// 576 577 /// EmitConversionToBool - Convert the specified expression value to a 578 /// boolean (i1) truth value. This is equivalent to "Val != 0". 579 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 580 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 581 582 if (SrcType->isRealFloatingType()) 583 return EmitFloatToBoolConversion(Src); 584 585 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 586 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 587 588 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 589 "Unknown scalar type to convert"); 590 591 if (isa<llvm::IntegerType>(Src->getType())) 592 return EmitIntToBoolConversion(Src); 593 594 assert(isa<llvm::PointerType>(Src->getType())); 595 return EmitPointerToBoolConversion(Src); 596 } 597 598 void ScalarExprEmitter::EmitFloatConversionCheck( 599 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 600 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 601 CodeGenFunction::SanitizerScope SanScope(&CGF); 602 using llvm::APFloat; 603 using llvm::APSInt; 604 605 llvm::Type *SrcTy = Src->getType(); 606 607 llvm::Value *Check = nullptr; 608 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 609 // Integer to floating-point. This can fail for unsigned short -> __half 610 // or unsigned __int128 -> float. 611 assert(DstType->isFloatingType()); 612 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 613 614 APFloat LargestFloat = 615 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 616 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 617 618 bool IsExact; 619 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 620 &IsExact) != APFloat::opOK) 621 // The range of representable values of this floating point type includes 622 // all values of this integer type. Don't need an overflow check. 623 return; 624 625 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 626 if (SrcIsUnsigned) 627 Check = Builder.CreateICmpULE(Src, Max); 628 else { 629 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 630 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 631 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 632 Check = Builder.CreateAnd(GE, LE); 633 } 634 } else { 635 const llvm::fltSemantics &SrcSema = 636 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 637 if (isa<llvm::IntegerType>(DstTy)) { 638 // Floating-point to integer. This has undefined behavior if the source is 639 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 640 // to an integer). 641 unsigned Width = CGF.getContext().getIntWidth(DstType); 642 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 643 644 APSInt Min = APSInt::getMinValue(Width, Unsigned); 645 APFloat MinSrc(SrcSema, APFloat::uninitialized); 646 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 647 APFloat::opOverflow) 648 // Don't need an overflow check for lower bound. Just check for 649 // -Inf/NaN. 650 MinSrc = APFloat::getInf(SrcSema, true); 651 else 652 // Find the largest value which is too small to represent (before 653 // truncation toward zero). 654 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 655 656 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 657 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 658 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 659 APFloat::opOverflow) 660 // Don't need an overflow check for upper bound. Just check for 661 // +Inf/NaN. 662 MaxSrc = APFloat::getInf(SrcSema, false); 663 else 664 // Find the smallest value which is too large to represent (before 665 // truncation toward zero). 666 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 667 668 // If we're converting from __half, convert the range to float to match 669 // the type of src. 670 if (OrigSrcType->isHalfType()) { 671 const llvm::fltSemantics &Sema = 672 CGF.getContext().getFloatTypeSemantics(SrcType); 673 bool IsInexact; 674 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 675 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 676 } 677 678 llvm::Value *GE = 679 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 680 llvm::Value *LE = 681 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 682 Check = Builder.CreateAnd(GE, LE); 683 } else { 684 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 685 // 686 // Floating-point to floating-point. This has undefined behavior if the 687 // source is not in the range of representable values of the destination 688 // type. The C and C++ standards are spectacularly unclear here. We 689 // diagnose finite out-of-range conversions, but allow infinities and NaNs 690 // to convert to the corresponding value in the smaller type. 691 // 692 // C11 Annex F gives all such conversions defined behavior for IEC 60559 693 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 694 // does not. 695 696 // Converting from a lower rank to a higher rank can never have 697 // undefined behavior, since higher-rank types must have a superset 698 // of values of lower-rank types. 699 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 700 return; 701 702 assert(!OrigSrcType->isHalfType() && 703 "should not check conversion from __half, it has the lowest rank"); 704 705 const llvm::fltSemantics &DstSema = 706 CGF.getContext().getFloatTypeSemantics(DstType); 707 APFloat MinBad = APFloat::getLargest(DstSema, false); 708 APFloat MaxBad = APFloat::getInf(DstSema, false); 709 710 bool IsInexact; 711 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 712 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 713 714 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 715 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 716 llvm::Value *GE = 717 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 718 llvm::Value *LE = 719 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 720 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 721 } 722 } 723 724 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 725 CGF.EmitCheckTypeDescriptor(OrigSrcType), 726 CGF.EmitCheckTypeDescriptor(DstType)}; 727 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 728 "float_cast_overflow", StaticArgs, OrigSrc); 729 } 730 731 /// Emit a conversion from the specified type to the specified destination type, 732 /// both of which are LLVM scalar types. 733 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 734 QualType DstType, 735 SourceLocation Loc) { 736 SrcType = CGF.getContext().getCanonicalType(SrcType); 737 DstType = CGF.getContext().getCanonicalType(DstType); 738 if (SrcType == DstType) return Src; 739 740 if (DstType->isVoidType()) return nullptr; 741 742 llvm::Value *OrigSrc = Src; 743 QualType OrigSrcType = SrcType; 744 llvm::Type *SrcTy = Src->getType(); 745 746 // Handle conversions to bool first, they are special: comparisons against 0. 747 if (DstType->isBooleanType()) 748 return EmitConversionToBool(Src, SrcType); 749 750 llvm::Type *DstTy = ConvertType(DstType); 751 752 // Cast from half through float if half isn't a native type. 753 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 754 // Cast to FP using the intrinsic if the half type itself isn't supported. 755 if (DstTy->isFloatingPointTy()) { 756 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 757 return Builder.CreateCall( 758 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 759 Src); 760 } else { 761 // Cast to other types through float, using either the intrinsic or FPExt, 762 // depending on whether the half type itself is supported 763 // (as opposed to operations on half, available with NativeHalfType). 764 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 765 Src = Builder.CreateCall( 766 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 767 CGF.CGM.FloatTy), 768 Src); 769 } else { 770 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 771 } 772 SrcType = CGF.getContext().FloatTy; 773 SrcTy = CGF.FloatTy; 774 } 775 } 776 777 // Ignore conversions like int -> uint. 778 if (SrcTy == DstTy) 779 return Src; 780 781 // Handle pointer conversions next: pointers can only be converted to/from 782 // other pointers and integers. Check for pointer types in terms of LLVM, as 783 // some native types (like Obj-C id) may map to a pointer type. 784 if (isa<llvm::PointerType>(DstTy)) { 785 // The source value may be an integer, or a pointer. 786 if (isa<llvm::PointerType>(SrcTy)) 787 return Builder.CreateBitCast(Src, DstTy, "conv"); 788 789 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 790 // First, convert to the correct width so that we control the kind of 791 // extension. 792 llvm::Type *MiddleTy = CGF.IntPtrTy; 793 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 794 llvm::Value* IntResult = 795 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 796 // Then, cast to pointer. 797 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 798 } 799 800 if (isa<llvm::PointerType>(SrcTy)) { 801 // Must be an ptr to int cast. 802 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 803 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 804 } 805 806 // A scalar can be splatted to an extended vector of the same element type 807 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 808 // Cast the scalar to element type 809 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 810 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy, Loc); 811 812 // Splat the element across to all elements 813 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 814 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 815 } 816 817 // Allow bitcast from vector to integer/fp of the same size. 818 if (isa<llvm::VectorType>(SrcTy) || 819 isa<llvm::VectorType>(DstTy)) 820 return Builder.CreateBitCast(Src, DstTy, "conv"); 821 822 // Finally, we have the arithmetic types: real int/float. 823 Value *Res = nullptr; 824 llvm::Type *ResTy = DstTy; 825 826 // An overflowing conversion has undefined behavior if either the source type 827 // or the destination type is a floating-point type. 828 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 829 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 830 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 831 Loc); 832 833 // Cast to half through float if half isn't a native type. 834 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 835 // Make sure we cast in a single step if from another FP type. 836 if (SrcTy->isFloatingPointTy()) { 837 // Use the intrinsic if the half type itself isn't supported 838 // (as opposed to operations on half, available with NativeHalfType). 839 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 840 return Builder.CreateCall( 841 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 842 // If the half type is supported, just use an fptrunc. 843 return Builder.CreateFPTrunc(Src, DstTy); 844 } 845 DstTy = CGF.FloatTy; 846 } 847 848 if (isa<llvm::IntegerType>(SrcTy)) { 849 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 850 if (isa<llvm::IntegerType>(DstTy)) 851 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 852 else if (InputSigned) 853 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 854 else 855 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 856 } else if (isa<llvm::IntegerType>(DstTy)) { 857 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 858 if (DstType->isSignedIntegerOrEnumerationType()) 859 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 860 else 861 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 862 } else { 863 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 864 "Unknown real conversion"); 865 if (DstTy->getTypeID() < SrcTy->getTypeID()) 866 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 867 else 868 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 869 } 870 871 if (DstTy != ResTy) { 872 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 873 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 874 Res = Builder.CreateCall( 875 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 876 Res); 877 } else { 878 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 879 } 880 } 881 882 return Res; 883 } 884 885 /// Emit a conversion from the specified complex type to the specified 886 /// destination type, where the destination type is an LLVM scalar type. 887 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 888 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 889 SourceLocation Loc) { 890 // Get the source element type. 891 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 892 893 // Handle conversions to bool first, they are special: comparisons against 0. 894 if (DstTy->isBooleanType()) { 895 // Complex != 0 -> (Real != 0) | (Imag != 0) 896 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 897 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 898 return Builder.CreateOr(Src.first, Src.second, "tobool"); 899 } 900 901 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 902 // the imaginary part of the complex value is discarded and the value of the 903 // real part is converted according to the conversion rules for the 904 // corresponding real type. 905 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 906 } 907 908 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 909 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 910 } 911 912 /// \brief Emit a sanitization check for the given "binary" operation (which 913 /// might actually be a unary increment which has been lowered to a binary 914 /// operation). The check passes if all values in \p Checks (which are \c i1), 915 /// are \c true. 916 void ScalarExprEmitter::EmitBinOpCheck( 917 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 918 assert(CGF.IsSanitizerScope); 919 StringRef CheckName; 920 SmallVector<llvm::Constant *, 4> StaticData; 921 SmallVector<llvm::Value *, 2> DynamicData; 922 923 BinaryOperatorKind Opcode = Info.Opcode; 924 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 925 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 926 927 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 928 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 929 if (UO && UO->getOpcode() == UO_Minus) { 930 CheckName = "negate_overflow"; 931 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 932 DynamicData.push_back(Info.RHS); 933 } else { 934 if (BinaryOperator::isShiftOp(Opcode)) { 935 // Shift LHS negative or too large, or RHS out of bounds. 936 CheckName = "shift_out_of_bounds"; 937 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 938 StaticData.push_back( 939 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 940 StaticData.push_back( 941 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 942 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 943 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 944 CheckName = "divrem_overflow"; 945 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 946 } else { 947 // Arithmetic overflow (+, -, *). 948 switch (Opcode) { 949 case BO_Add: CheckName = "add_overflow"; break; 950 case BO_Sub: CheckName = "sub_overflow"; break; 951 case BO_Mul: CheckName = "mul_overflow"; break; 952 default: llvm_unreachable("unexpected opcode for bin op check"); 953 } 954 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 955 } 956 DynamicData.push_back(Info.LHS); 957 DynamicData.push_back(Info.RHS); 958 } 959 960 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 961 } 962 963 //===----------------------------------------------------------------------===// 964 // Visitor Methods 965 //===----------------------------------------------------------------------===// 966 967 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 968 CGF.ErrorUnsupported(E, "scalar expression"); 969 if (E->getType()->isVoidType()) 970 return nullptr; 971 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 972 } 973 974 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 975 // Vector Mask Case 976 if (E->getNumSubExprs() == 2 || 977 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 978 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 979 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 980 Value *Mask; 981 982 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 983 unsigned LHSElts = LTy->getNumElements(); 984 985 if (E->getNumSubExprs() == 3) { 986 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 987 988 // Shuffle LHS & RHS into one input vector. 989 SmallVector<llvm::Constant*, 32> concat; 990 for (unsigned i = 0; i != LHSElts; ++i) { 991 concat.push_back(Builder.getInt32(2*i)); 992 concat.push_back(Builder.getInt32(2*i+1)); 993 } 994 995 Value* CV = llvm::ConstantVector::get(concat); 996 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 997 LHSElts *= 2; 998 } else { 999 Mask = RHS; 1000 } 1001 1002 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1003 1004 // Mask off the high bits of each shuffle index. 1005 Value *MaskBits = 1006 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1007 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1008 1009 // newv = undef 1010 // mask = mask & maskbits 1011 // for each elt 1012 // n = extract mask i 1013 // x = extract val n 1014 // newv = insert newv, x, i 1015 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1016 MTy->getNumElements()); 1017 Value* NewV = llvm::UndefValue::get(RTy); 1018 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1019 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1020 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1021 1022 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1023 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1024 } 1025 return NewV; 1026 } 1027 1028 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1029 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1030 1031 SmallVector<llvm::Constant*, 32> indices; 1032 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1033 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1034 // Check for -1 and output it as undef in the IR. 1035 if (Idx.isSigned() && Idx.isAllOnesValue()) 1036 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1037 else 1038 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1039 } 1040 1041 Value *SV = llvm::ConstantVector::get(indices); 1042 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1043 } 1044 1045 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1046 QualType SrcType = E->getSrcExpr()->getType(), 1047 DstType = E->getType(); 1048 1049 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1050 1051 SrcType = CGF.getContext().getCanonicalType(SrcType); 1052 DstType = CGF.getContext().getCanonicalType(DstType); 1053 if (SrcType == DstType) return Src; 1054 1055 assert(SrcType->isVectorType() && 1056 "ConvertVector source type must be a vector"); 1057 assert(DstType->isVectorType() && 1058 "ConvertVector destination type must be a vector"); 1059 1060 llvm::Type *SrcTy = Src->getType(); 1061 llvm::Type *DstTy = ConvertType(DstType); 1062 1063 // Ignore conversions like int -> uint. 1064 if (SrcTy == DstTy) 1065 return Src; 1066 1067 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1068 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1069 1070 assert(SrcTy->isVectorTy() && 1071 "ConvertVector source IR type must be a vector"); 1072 assert(DstTy->isVectorTy() && 1073 "ConvertVector destination IR type must be a vector"); 1074 1075 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1076 *DstEltTy = DstTy->getVectorElementType(); 1077 1078 if (DstEltType->isBooleanType()) { 1079 assert((SrcEltTy->isFloatingPointTy() || 1080 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1081 1082 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1083 if (SrcEltTy->isFloatingPointTy()) { 1084 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1085 } else { 1086 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1087 } 1088 } 1089 1090 // We have the arithmetic types: real int/float. 1091 Value *Res = nullptr; 1092 1093 if (isa<llvm::IntegerType>(SrcEltTy)) { 1094 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1095 if (isa<llvm::IntegerType>(DstEltTy)) 1096 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1097 else if (InputSigned) 1098 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1099 else 1100 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1101 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1102 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1103 if (DstEltType->isSignedIntegerOrEnumerationType()) 1104 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1105 else 1106 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1107 } else { 1108 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1109 "Unknown real conversion"); 1110 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1111 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1112 else 1113 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1114 } 1115 1116 return Res; 1117 } 1118 1119 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1120 llvm::APSInt Value; 1121 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1122 if (E->isArrow()) 1123 CGF.EmitScalarExpr(E->getBase()); 1124 else 1125 EmitLValue(E->getBase()); 1126 return Builder.getInt(Value); 1127 } 1128 1129 return EmitLoadOfLValue(E); 1130 } 1131 1132 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1133 TestAndClearIgnoreResultAssign(); 1134 1135 // Emit subscript expressions in rvalue context's. For most cases, this just 1136 // loads the lvalue formed by the subscript expr. However, we have to be 1137 // careful, because the base of a vector subscript is occasionally an rvalue, 1138 // so we can't get it as an lvalue. 1139 if (!E->getBase()->getType()->isVectorType()) 1140 return EmitLoadOfLValue(E); 1141 1142 // Handle the vector case. The base must be a vector, the index must be an 1143 // integer value. 1144 Value *Base = Visit(E->getBase()); 1145 Value *Idx = Visit(E->getIdx()); 1146 QualType IdxTy = E->getIdx()->getType(); 1147 1148 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1149 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1150 1151 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1152 } 1153 1154 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1155 unsigned Off, llvm::Type *I32Ty) { 1156 int MV = SVI->getMaskValue(Idx); 1157 if (MV == -1) 1158 return llvm::UndefValue::get(I32Ty); 1159 return llvm::ConstantInt::get(I32Ty, Off+MV); 1160 } 1161 1162 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1163 if (C->getBitWidth() != 32) { 1164 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1165 C->getZExtValue()) && 1166 "Index operand too large for shufflevector mask!"); 1167 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1168 } 1169 return C; 1170 } 1171 1172 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1173 bool Ignore = TestAndClearIgnoreResultAssign(); 1174 (void)Ignore; 1175 assert (Ignore == false && "init list ignored"); 1176 unsigned NumInitElements = E->getNumInits(); 1177 1178 if (E->hadArrayRangeDesignator()) 1179 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1180 1181 llvm::VectorType *VType = 1182 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1183 1184 if (!VType) { 1185 if (NumInitElements == 0) { 1186 // C++11 value-initialization for the scalar. 1187 return EmitNullValue(E->getType()); 1188 } 1189 // We have a scalar in braces. Just use the first element. 1190 return Visit(E->getInit(0)); 1191 } 1192 1193 unsigned ResElts = VType->getNumElements(); 1194 1195 // Loop over initializers collecting the Value for each, and remembering 1196 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1197 // us to fold the shuffle for the swizzle into the shuffle for the vector 1198 // initializer, since LLVM optimizers generally do not want to touch 1199 // shuffles. 1200 unsigned CurIdx = 0; 1201 bool VIsUndefShuffle = false; 1202 llvm::Value *V = llvm::UndefValue::get(VType); 1203 for (unsigned i = 0; i != NumInitElements; ++i) { 1204 Expr *IE = E->getInit(i); 1205 Value *Init = Visit(IE); 1206 SmallVector<llvm::Constant*, 16> Args; 1207 1208 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1209 1210 // Handle scalar elements. If the scalar initializer is actually one 1211 // element of a different vector of the same width, use shuffle instead of 1212 // extract+insert. 1213 if (!VVT) { 1214 if (isa<ExtVectorElementExpr>(IE)) { 1215 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1216 1217 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1218 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1219 Value *LHS = nullptr, *RHS = nullptr; 1220 if (CurIdx == 0) { 1221 // insert into undef -> shuffle (src, undef) 1222 // shufflemask must use an i32 1223 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1224 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1225 1226 LHS = EI->getVectorOperand(); 1227 RHS = V; 1228 VIsUndefShuffle = true; 1229 } else if (VIsUndefShuffle) { 1230 // insert into undefshuffle && size match -> shuffle (v, src) 1231 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1232 for (unsigned j = 0; j != CurIdx; ++j) 1233 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1234 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1235 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1236 1237 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1238 RHS = EI->getVectorOperand(); 1239 VIsUndefShuffle = false; 1240 } 1241 if (!Args.empty()) { 1242 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1243 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1244 ++CurIdx; 1245 continue; 1246 } 1247 } 1248 } 1249 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1250 "vecinit"); 1251 VIsUndefShuffle = false; 1252 ++CurIdx; 1253 continue; 1254 } 1255 1256 unsigned InitElts = VVT->getNumElements(); 1257 1258 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1259 // input is the same width as the vector being constructed, generate an 1260 // optimized shuffle of the swizzle input into the result. 1261 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1262 if (isa<ExtVectorElementExpr>(IE)) { 1263 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1264 Value *SVOp = SVI->getOperand(0); 1265 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1266 1267 if (OpTy->getNumElements() == ResElts) { 1268 for (unsigned j = 0; j != CurIdx; ++j) { 1269 // If the current vector initializer is a shuffle with undef, merge 1270 // this shuffle directly into it. 1271 if (VIsUndefShuffle) { 1272 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1273 CGF.Int32Ty)); 1274 } else { 1275 Args.push_back(Builder.getInt32(j)); 1276 } 1277 } 1278 for (unsigned j = 0, je = InitElts; j != je; ++j) 1279 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1280 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1281 1282 if (VIsUndefShuffle) 1283 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1284 1285 Init = SVOp; 1286 } 1287 } 1288 1289 // Extend init to result vector length, and then shuffle its contribution 1290 // to the vector initializer into V. 1291 if (Args.empty()) { 1292 for (unsigned j = 0; j != InitElts; ++j) 1293 Args.push_back(Builder.getInt32(j)); 1294 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1295 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1296 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1297 Mask, "vext"); 1298 1299 Args.clear(); 1300 for (unsigned j = 0; j != CurIdx; ++j) 1301 Args.push_back(Builder.getInt32(j)); 1302 for (unsigned j = 0; j != InitElts; ++j) 1303 Args.push_back(Builder.getInt32(j+Offset)); 1304 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1305 } 1306 1307 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1308 // merging subsequent shuffles into this one. 1309 if (CurIdx == 0) 1310 std::swap(V, Init); 1311 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1312 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1313 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1314 CurIdx += InitElts; 1315 } 1316 1317 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1318 // Emit remaining default initializers. 1319 llvm::Type *EltTy = VType->getElementType(); 1320 1321 // Emit remaining default initializers 1322 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1323 Value *Idx = Builder.getInt32(CurIdx); 1324 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1325 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1326 } 1327 return V; 1328 } 1329 1330 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1331 const Expr *E = CE->getSubExpr(); 1332 1333 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1334 return false; 1335 1336 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1337 // We always assume that 'this' is never null. 1338 return false; 1339 } 1340 1341 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1342 // And that glvalue casts are never null. 1343 if (ICE->getValueKind() != VK_RValue) 1344 return false; 1345 } 1346 1347 return true; 1348 } 1349 1350 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1351 // have to handle a more broad range of conversions than explicit casts, as they 1352 // handle things like function to ptr-to-function decay etc. 1353 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1354 Expr *E = CE->getSubExpr(); 1355 QualType DestTy = CE->getType(); 1356 CastKind Kind = CE->getCastKind(); 1357 1358 if (!DestTy->isVoidType()) 1359 TestAndClearIgnoreResultAssign(); 1360 1361 // Since almost all cast kinds apply to scalars, this switch doesn't have 1362 // a default case, so the compiler will warn on a missing case. The cases 1363 // are in the same order as in the CastKind enum. 1364 switch (Kind) { 1365 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1366 case CK_BuiltinFnToFnPtr: 1367 llvm_unreachable("builtin functions are handled elsewhere"); 1368 1369 case CK_LValueBitCast: 1370 case CK_ObjCObjectLValueCast: { 1371 Address Addr = EmitLValue(E).getAddress(); 1372 Addr = Builder.CreateElementBitCast(Addr, ConvertType(DestTy)); 1373 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1374 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1375 } 1376 1377 case CK_CPointerToObjCPointerCast: 1378 case CK_BlockPointerToObjCPointerCast: 1379 case CK_AnyPointerToBlockPointerCast: 1380 case CK_BitCast: { 1381 Value *Src = Visit(const_cast<Expr*>(E)); 1382 llvm::Type *SrcTy = Src->getType(); 1383 llvm::Type *DstTy = ConvertType(DestTy); 1384 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1385 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1386 llvm_unreachable("wrong cast for pointers in different address spaces" 1387 "(must be an address space cast)!"); 1388 } 1389 1390 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1391 if (auto PT = DestTy->getAs<PointerType>()) 1392 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1393 /*MayBeNull=*/true, 1394 CodeGenFunction::CFITCK_UnrelatedCast, 1395 CE->getLocStart()); 1396 } 1397 1398 return Builder.CreateBitCast(Src, DstTy); 1399 } 1400 case CK_AddressSpaceConversion: { 1401 Value *Src = Visit(const_cast<Expr*>(E)); 1402 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1403 } 1404 case CK_AtomicToNonAtomic: 1405 case CK_NonAtomicToAtomic: 1406 case CK_NoOp: 1407 case CK_UserDefinedConversion: 1408 return Visit(const_cast<Expr*>(E)); 1409 1410 case CK_BaseToDerived: { 1411 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1412 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1413 1414 Address Base = CGF.EmitPointerWithAlignment(E); 1415 Address Derived = 1416 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1417 CE->path_begin(), CE->path_end(), 1418 CGF.ShouldNullCheckClassCastValue(CE)); 1419 1420 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1421 // performed and the object is not of the derived type. 1422 if (CGF.sanitizePerformTypeCheck()) 1423 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1424 Derived.getPointer(), DestTy->getPointeeType()); 1425 1426 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1427 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1428 Derived.getPointer(), 1429 /*MayBeNull=*/true, 1430 CodeGenFunction::CFITCK_DerivedCast, 1431 CE->getLocStart()); 1432 1433 return Derived.getPointer(); 1434 } 1435 case CK_UncheckedDerivedToBase: 1436 case CK_DerivedToBase: { 1437 // The EmitPointerWithAlignment path does this fine; just discard 1438 // the alignment. 1439 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1440 } 1441 1442 case CK_Dynamic: { 1443 Address V = CGF.EmitPointerWithAlignment(E); 1444 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1445 return CGF.EmitDynamicCast(V, DCE); 1446 } 1447 1448 case CK_ArrayToPointerDecay: 1449 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1450 case CK_FunctionToPointerDecay: 1451 return EmitLValue(E).getPointer(); 1452 1453 case CK_NullToPointer: 1454 if (MustVisitNullValue(E)) 1455 (void) Visit(E); 1456 1457 return llvm::ConstantPointerNull::get( 1458 cast<llvm::PointerType>(ConvertType(DestTy))); 1459 1460 case CK_NullToMemberPointer: { 1461 if (MustVisitNullValue(E)) 1462 (void) Visit(E); 1463 1464 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1465 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1466 } 1467 1468 case CK_ReinterpretMemberPointer: 1469 case CK_BaseToDerivedMemberPointer: 1470 case CK_DerivedToBaseMemberPointer: { 1471 Value *Src = Visit(E); 1472 1473 // Note that the AST doesn't distinguish between checked and 1474 // unchecked member pointer conversions, so we always have to 1475 // implement checked conversions here. This is inefficient when 1476 // actual control flow may be required in order to perform the 1477 // check, which it is for data member pointers (but not member 1478 // function pointers on Itanium and ARM). 1479 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1480 } 1481 1482 case CK_ARCProduceObject: 1483 return CGF.EmitARCRetainScalarExpr(E); 1484 case CK_ARCConsumeObject: 1485 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1486 case CK_ARCReclaimReturnedObject: { 1487 llvm::Value *value = Visit(E); 1488 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1489 return CGF.EmitObjCConsumeObject(E->getType(), value); 1490 } 1491 case CK_ARCExtendBlockObject: 1492 return CGF.EmitARCExtendBlockObject(E); 1493 1494 case CK_CopyAndAutoreleaseBlockObject: 1495 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1496 1497 case CK_FloatingRealToComplex: 1498 case CK_FloatingComplexCast: 1499 case CK_IntegralRealToComplex: 1500 case CK_IntegralComplexCast: 1501 case CK_IntegralComplexToFloatingComplex: 1502 case CK_FloatingComplexToIntegralComplex: 1503 case CK_ConstructorConversion: 1504 case CK_ToUnion: 1505 llvm_unreachable("scalar cast to non-scalar value"); 1506 1507 case CK_LValueToRValue: 1508 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1509 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1510 return Visit(const_cast<Expr*>(E)); 1511 1512 case CK_IntegralToPointer: { 1513 Value *Src = Visit(const_cast<Expr*>(E)); 1514 1515 // First, convert to the correct width so that we control the kind of 1516 // extension. 1517 llvm::Type *MiddleTy = CGF.IntPtrTy; 1518 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1519 llvm::Value* IntResult = 1520 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1521 1522 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1523 } 1524 case CK_PointerToIntegral: 1525 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1526 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1527 1528 case CK_ToVoid: { 1529 CGF.EmitIgnoredExpr(E); 1530 return nullptr; 1531 } 1532 case CK_VectorSplat: { 1533 llvm::Type *DstTy = ConvertType(DestTy); 1534 Value *Elt = Visit(const_cast<Expr*>(E)); 1535 Elt = EmitScalarConversion(Elt, E->getType(), 1536 DestTy->getAs<VectorType>()->getElementType(), 1537 CE->getExprLoc()); 1538 1539 // Splat the element across to all elements 1540 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1541 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1542 } 1543 1544 case CK_IntegralCast: 1545 case CK_IntegralToFloating: 1546 case CK_FloatingToIntegral: 1547 case CK_FloatingCast: 1548 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1549 CE->getExprLoc()); 1550 case CK_IntegralToBoolean: 1551 return EmitIntToBoolConversion(Visit(E)); 1552 case CK_PointerToBoolean: 1553 return EmitPointerToBoolConversion(Visit(E)); 1554 case CK_FloatingToBoolean: 1555 return EmitFloatToBoolConversion(Visit(E)); 1556 case CK_MemberPointerToBoolean: { 1557 llvm::Value *MemPtr = Visit(E); 1558 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1559 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1560 } 1561 1562 case CK_FloatingComplexToReal: 1563 case CK_IntegralComplexToReal: 1564 return CGF.EmitComplexExpr(E, false, true).first; 1565 1566 case CK_FloatingComplexToBoolean: 1567 case CK_IntegralComplexToBoolean: { 1568 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1569 1570 // TODO: kill this function off, inline appropriate case here 1571 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1572 CE->getExprLoc()); 1573 } 1574 1575 case CK_ZeroToOCLEvent: { 1576 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1577 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1578 } 1579 1580 } 1581 1582 llvm_unreachable("unknown scalar cast"); 1583 } 1584 1585 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1586 CodeGenFunction::StmtExprEvaluation eval(CGF); 1587 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1588 !E->getType()->isVoidType()); 1589 if (!RetAlloca.isValid()) 1590 return nullptr; 1591 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1592 E->getExprLoc()); 1593 } 1594 1595 //===----------------------------------------------------------------------===// 1596 // Unary Operators 1597 //===----------------------------------------------------------------------===// 1598 1599 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1600 llvm::Value *InVal, bool IsInc) { 1601 BinOpInfo BinOp; 1602 BinOp.LHS = InVal; 1603 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1604 BinOp.Ty = E->getType(); 1605 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1606 BinOp.FPContractable = false; 1607 BinOp.E = E; 1608 return BinOp; 1609 } 1610 1611 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1612 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1613 llvm::Value *Amount = 1614 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1615 StringRef Name = IsInc ? "inc" : "dec"; 1616 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1617 case LangOptions::SOB_Defined: 1618 return Builder.CreateAdd(InVal, Amount, Name); 1619 case LangOptions::SOB_Undefined: 1620 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1621 return Builder.CreateNSWAdd(InVal, Amount, Name); 1622 // Fall through. 1623 case LangOptions::SOB_Trapping: 1624 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1625 } 1626 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1627 } 1628 1629 llvm::Value * 1630 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1631 bool isInc, bool isPre) { 1632 1633 QualType type = E->getSubExpr()->getType(); 1634 llvm::PHINode *atomicPHI = nullptr; 1635 llvm::Value *value; 1636 llvm::Value *input; 1637 1638 int amount = (isInc ? 1 : -1); 1639 1640 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1641 type = atomicTy->getValueType(); 1642 if (isInc && type->isBooleanType()) { 1643 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1644 if (isPre) { 1645 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1646 ->setAtomic(llvm::SequentiallyConsistent); 1647 return Builder.getTrue(); 1648 } 1649 // For atomic bool increment, we just store true and return it for 1650 // preincrement, do an atomic swap with true for postincrement 1651 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1652 LV.getPointer(), True, llvm::SequentiallyConsistent); 1653 } 1654 // Special case for atomic increment / decrement on integers, emit 1655 // atomicrmw instructions. We skip this if we want to be doing overflow 1656 // checking, and fall into the slow path with the atomic cmpxchg loop. 1657 if (!type->isBooleanType() && type->isIntegerType() && 1658 !(type->isUnsignedIntegerType() && 1659 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1660 CGF.getLangOpts().getSignedOverflowBehavior() != 1661 LangOptions::SOB_Trapping) { 1662 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1663 llvm::AtomicRMWInst::Sub; 1664 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1665 llvm::Instruction::Sub; 1666 llvm::Value *amt = CGF.EmitToMemory( 1667 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1668 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1669 LV.getPointer(), amt, llvm::SequentiallyConsistent); 1670 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1671 } 1672 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1673 input = value; 1674 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1675 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1676 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1677 value = CGF.EmitToMemory(value, type); 1678 Builder.CreateBr(opBB); 1679 Builder.SetInsertPoint(opBB); 1680 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1681 atomicPHI->addIncoming(value, startBB); 1682 value = atomicPHI; 1683 } else { 1684 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1685 input = value; 1686 } 1687 1688 // Special case of integer increment that we have to check first: bool++. 1689 // Due to promotion rules, we get: 1690 // bool++ -> bool = bool + 1 1691 // -> bool = (int)bool + 1 1692 // -> bool = ((int)bool + 1 != 0) 1693 // An interesting aspect of this is that increment is always true. 1694 // Decrement does not have this property. 1695 if (isInc && type->isBooleanType()) { 1696 value = Builder.getTrue(); 1697 1698 // Most common case by far: integer increment. 1699 } else if (type->isIntegerType()) { 1700 // Note that signed integer inc/dec with width less than int can't 1701 // overflow because of promotion rules; we're just eliding a few steps here. 1702 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1703 CGF.IntTy->getIntegerBitWidth(); 1704 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1705 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1706 } else if (CanOverflow && type->isUnsignedIntegerType() && 1707 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1708 value = 1709 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1710 } else { 1711 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1712 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1713 } 1714 1715 // Next most common: pointer increment. 1716 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1717 QualType type = ptr->getPointeeType(); 1718 1719 // VLA types don't have constant size. 1720 if (const VariableArrayType *vla 1721 = CGF.getContext().getAsVariableArrayType(type)) { 1722 llvm::Value *numElts = CGF.getVLASize(vla).first; 1723 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1724 if (CGF.getLangOpts().isSignedOverflowDefined()) 1725 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1726 else 1727 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1728 1729 // Arithmetic on function pointers (!) is just +-1. 1730 } else if (type->isFunctionType()) { 1731 llvm::Value *amt = Builder.getInt32(amount); 1732 1733 value = CGF.EmitCastToVoidPtr(value); 1734 if (CGF.getLangOpts().isSignedOverflowDefined()) 1735 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1736 else 1737 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1738 value = Builder.CreateBitCast(value, input->getType()); 1739 1740 // For everything else, we can just do a simple increment. 1741 } else { 1742 llvm::Value *amt = Builder.getInt32(amount); 1743 if (CGF.getLangOpts().isSignedOverflowDefined()) 1744 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1745 else 1746 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1747 } 1748 1749 // Vector increment/decrement. 1750 } else if (type->isVectorType()) { 1751 if (type->hasIntegerRepresentation()) { 1752 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1753 1754 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1755 } else { 1756 value = Builder.CreateFAdd( 1757 value, 1758 llvm::ConstantFP::get(value->getType(), amount), 1759 isInc ? "inc" : "dec"); 1760 } 1761 1762 // Floating point. 1763 } else if (type->isRealFloatingType()) { 1764 // Add the inc/dec to the real part. 1765 llvm::Value *amt; 1766 1767 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1768 // Another special case: half FP increment should be done via float 1769 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1770 value = Builder.CreateCall( 1771 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1772 CGF.CGM.FloatTy), 1773 input, "incdec.conv"); 1774 } else { 1775 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1776 } 1777 } 1778 1779 if (value->getType()->isFloatTy()) 1780 amt = llvm::ConstantFP::get(VMContext, 1781 llvm::APFloat(static_cast<float>(amount))); 1782 else if (value->getType()->isDoubleTy()) 1783 amt = llvm::ConstantFP::get(VMContext, 1784 llvm::APFloat(static_cast<double>(amount))); 1785 else { 1786 // Remaining types are either Half or LongDouble. Convert from float. 1787 llvm::APFloat F(static_cast<float>(amount)); 1788 bool ignored; 1789 // Don't use getFloatTypeSemantics because Half isn't 1790 // necessarily represented using the "half" LLVM type. 1791 F.convert(value->getType()->isHalfTy() 1792 ? CGF.getTarget().getHalfFormat() 1793 : CGF.getTarget().getLongDoubleFormat(), 1794 llvm::APFloat::rmTowardZero, &ignored); 1795 amt = llvm::ConstantFP::get(VMContext, F); 1796 } 1797 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1798 1799 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1800 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1801 value = Builder.CreateCall( 1802 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1803 CGF.CGM.FloatTy), 1804 value, "incdec.conv"); 1805 } else { 1806 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1807 } 1808 } 1809 1810 // Objective-C pointer types. 1811 } else { 1812 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1813 value = CGF.EmitCastToVoidPtr(value); 1814 1815 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1816 if (!isInc) size = -size; 1817 llvm::Value *sizeValue = 1818 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1819 1820 if (CGF.getLangOpts().isSignedOverflowDefined()) 1821 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1822 else 1823 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1824 value = Builder.CreateBitCast(value, input->getType()); 1825 } 1826 1827 if (atomicPHI) { 1828 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1829 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1830 auto Pair = CGF.EmitAtomicCompareExchange( 1831 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1832 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1833 llvm::Value *success = Pair.second; 1834 atomicPHI->addIncoming(old, opBB); 1835 Builder.CreateCondBr(success, contBB, opBB); 1836 Builder.SetInsertPoint(contBB); 1837 return isPre ? value : input; 1838 } 1839 1840 // Store the updated result through the lvalue. 1841 if (LV.isBitField()) 1842 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1843 else 1844 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1845 1846 // If this is a postinc, return the value read from memory, otherwise use the 1847 // updated value. 1848 return isPre ? value : input; 1849 } 1850 1851 1852 1853 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1854 TestAndClearIgnoreResultAssign(); 1855 // Emit unary minus with EmitSub so we handle overflow cases etc. 1856 BinOpInfo BinOp; 1857 BinOp.RHS = Visit(E->getSubExpr()); 1858 1859 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1860 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1861 else 1862 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1863 BinOp.Ty = E->getType(); 1864 BinOp.Opcode = BO_Sub; 1865 BinOp.FPContractable = false; 1866 BinOp.E = E; 1867 return EmitSub(BinOp); 1868 } 1869 1870 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1871 TestAndClearIgnoreResultAssign(); 1872 Value *Op = Visit(E->getSubExpr()); 1873 return Builder.CreateNot(Op, "neg"); 1874 } 1875 1876 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1877 // Perform vector logical not on comparison with zero vector. 1878 if (E->getType()->isExtVectorType()) { 1879 Value *Oper = Visit(E->getSubExpr()); 1880 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1881 Value *Result; 1882 if (Oper->getType()->isFPOrFPVectorTy()) 1883 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1884 else 1885 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1886 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1887 } 1888 1889 // Compare operand to zero. 1890 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1891 1892 // Invert value. 1893 // TODO: Could dynamically modify easy computations here. For example, if 1894 // the operand is an icmp ne, turn into icmp eq. 1895 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1896 1897 // ZExt result to the expr type. 1898 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1899 } 1900 1901 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1902 // Try folding the offsetof to a constant. 1903 llvm::APSInt Value; 1904 if (E->EvaluateAsInt(Value, CGF.getContext())) 1905 return Builder.getInt(Value); 1906 1907 // Loop over the components of the offsetof to compute the value. 1908 unsigned n = E->getNumComponents(); 1909 llvm::Type* ResultType = ConvertType(E->getType()); 1910 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1911 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1912 for (unsigned i = 0; i != n; ++i) { 1913 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1914 llvm::Value *Offset = nullptr; 1915 switch (ON.getKind()) { 1916 case OffsetOfExpr::OffsetOfNode::Array: { 1917 // Compute the index 1918 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1919 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1920 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1921 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1922 1923 // Save the element type 1924 CurrentType = 1925 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1926 1927 // Compute the element size 1928 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1929 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1930 1931 // Multiply out to compute the result 1932 Offset = Builder.CreateMul(Idx, ElemSize); 1933 break; 1934 } 1935 1936 case OffsetOfExpr::OffsetOfNode::Field: { 1937 FieldDecl *MemberDecl = ON.getField(); 1938 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1939 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1940 1941 // Compute the index of the field in its parent. 1942 unsigned i = 0; 1943 // FIXME: It would be nice if we didn't have to loop here! 1944 for (RecordDecl::field_iterator Field = RD->field_begin(), 1945 FieldEnd = RD->field_end(); 1946 Field != FieldEnd; ++Field, ++i) { 1947 if (*Field == MemberDecl) 1948 break; 1949 } 1950 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1951 1952 // Compute the offset to the field 1953 int64_t OffsetInt = RL.getFieldOffset(i) / 1954 CGF.getContext().getCharWidth(); 1955 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1956 1957 // Save the element type. 1958 CurrentType = MemberDecl->getType(); 1959 break; 1960 } 1961 1962 case OffsetOfExpr::OffsetOfNode::Identifier: 1963 llvm_unreachable("dependent __builtin_offsetof"); 1964 1965 case OffsetOfExpr::OffsetOfNode::Base: { 1966 if (ON.getBase()->isVirtual()) { 1967 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1968 continue; 1969 } 1970 1971 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1972 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1973 1974 // Save the element type. 1975 CurrentType = ON.getBase()->getType(); 1976 1977 // Compute the offset to the base. 1978 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1979 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1980 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1981 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1982 break; 1983 } 1984 } 1985 Result = Builder.CreateAdd(Result, Offset); 1986 } 1987 return Result; 1988 } 1989 1990 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1991 /// argument of the sizeof expression as an integer. 1992 Value * 1993 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1994 const UnaryExprOrTypeTraitExpr *E) { 1995 QualType TypeToSize = E->getTypeOfArgument(); 1996 if (E->getKind() == UETT_SizeOf) { 1997 if (const VariableArrayType *VAT = 1998 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1999 if (E->isArgumentType()) { 2000 // sizeof(type) - make sure to emit the VLA size. 2001 CGF.EmitVariablyModifiedType(TypeToSize); 2002 } else { 2003 // C99 6.5.3.4p2: If the argument is an expression of type 2004 // VLA, it is evaluated. 2005 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2006 } 2007 2008 QualType eltType; 2009 llvm::Value *numElts; 2010 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2011 2012 llvm::Value *size = numElts; 2013 2014 // Scale the number of non-VLA elements by the non-VLA element size. 2015 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2016 if (!eltSize.isOne()) 2017 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2018 2019 return size; 2020 } 2021 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2022 auto Alignment = 2023 CGF.getContext() 2024 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2025 E->getTypeOfArgument()->getPointeeType())) 2026 .getQuantity(); 2027 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2028 } 2029 2030 // If this isn't sizeof(vla), the result must be constant; use the constant 2031 // folding logic so we don't have to duplicate it here. 2032 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2033 } 2034 2035 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2036 Expr *Op = E->getSubExpr(); 2037 if (Op->getType()->isAnyComplexType()) { 2038 // If it's an l-value, load through the appropriate subobject l-value. 2039 // Note that we have to ask E because Op might be an l-value that 2040 // this won't work for, e.g. an Obj-C property. 2041 if (E->isGLValue()) 2042 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2043 E->getExprLoc()).getScalarVal(); 2044 2045 // Otherwise, calculate and project. 2046 return CGF.EmitComplexExpr(Op, false, true).first; 2047 } 2048 2049 return Visit(Op); 2050 } 2051 2052 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2053 Expr *Op = E->getSubExpr(); 2054 if (Op->getType()->isAnyComplexType()) { 2055 // If it's an l-value, load through the appropriate subobject l-value. 2056 // Note that we have to ask E because Op might be an l-value that 2057 // this won't work for, e.g. an Obj-C property. 2058 if (Op->isGLValue()) 2059 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2060 E->getExprLoc()).getScalarVal(); 2061 2062 // Otherwise, calculate and project. 2063 return CGF.EmitComplexExpr(Op, true, false).second; 2064 } 2065 2066 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2067 // effects are evaluated, but not the actual value. 2068 if (Op->isGLValue()) 2069 CGF.EmitLValue(Op); 2070 else 2071 CGF.EmitScalarExpr(Op, true); 2072 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2073 } 2074 2075 //===----------------------------------------------------------------------===// 2076 // Binary Operators 2077 //===----------------------------------------------------------------------===// 2078 2079 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2080 TestAndClearIgnoreResultAssign(); 2081 BinOpInfo Result; 2082 Result.LHS = Visit(E->getLHS()); 2083 Result.RHS = Visit(E->getRHS()); 2084 Result.Ty = E->getType(); 2085 Result.Opcode = E->getOpcode(); 2086 Result.FPContractable = E->isFPContractable(); 2087 Result.E = E; 2088 return Result; 2089 } 2090 2091 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2092 const CompoundAssignOperator *E, 2093 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2094 Value *&Result) { 2095 QualType LHSTy = E->getLHS()->getType(); 2096 BinOpInfo OpInfo; 2097 2098 if (E->getComputationResultType()->isAnyComplexType()) 2099 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2100 2101 // Emit the RHS first. __block variables need to have the rhs evaluated 2102 // first, plus this should improve codegen a little. 2103 OpInfo.RHS = Visit(E->getRHS()); 2104 OpInfo.Ty = E->getComputationResultType(); 2105 OpInfo.Opcode = E->getOpcode(); 2106 OpInfo.FPContractable = false; 2107 OpInfo.E = E; 2108 // Load/convert the LHS. 2109 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2110 2111 llvm::PHINode *atomicPHI = nullptr; 2112 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2113 QualType type = atomicTy->getValueType(); 2114 if (!type->isBooleanType() && type->isIntegerType() && 2115 !(type->isUnsignedIntegerType() && 2116 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2117 CGF.getLangOpts().getSignedOverflowBehavior() != 2118 LangOptions::SOB_Trapping) { 2119 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2120 switch (OpInfo.Opcode) { 2121 // We don't have atomicrmw operands for *, %, /, <<, >> 2122 case BO_MulAssign: case BO_DivAssign: 2123 case BO_RemAssign: 2124 case BO_ShlAssign: 2125 case BO_ShrAssign: 2126 break; 2127 case BO_AddAssign: 2128 aop = llvm::AtomicRMWInst::Add; 2129 break; 2130 case BO_SubAssign: 2131 aop = llvm::AtomicRMWInst::Sub; 2132 break; 2133 case BO_AndAssign: 2134 aop = llvm::AtomicRMWInst::And; 2135 break; 2136 case BO_XorAssign: 2137 aop = llvm::AtomicRMWInst::Xor; 2138 break; 2139 case BO_OrAssign: 2140 aop = llvm::AtomicRMWInst::Or; 2141 break; 2142 default: 2143 llvm_unreachable("Invalid compound assignment type"); 2144 } 2145 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2146 llvm::Value *amt = CGF.EmitToMemory( 2147 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2148 E->getExprLoc()), 2149 LHSTy); 2150 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2151 llvm::SequentiallyConsistent); 2152 return LHSLV; 2153 } 2154 } 2155 // FIXME: For floating point types, we should be saving and restoring the 2156 // floating point environment in the loop. 2157 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2158 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2159 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2160 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2161 Builder.CreateBr(opBB); 2162 Builder.SetInsertPoint(opBB); 2163 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2164 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2165 OpInfo.LHS = atomicPHI; 2166 } 2167 else 2168 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2169 2170 SourceLocation Loc = E->getExprLoc(); 2171 OpInfo.LHS = 2172 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2173 2174 // Expand the binary operator. 2175 Result = (this->*Func)(OpInfo); 2176 2177 // Convert the result back to the LHS type. 2178 Result = 2179 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2180 2181 if (atomicPHI) { 2182 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2183 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2184 auto Pair = CGF.EmitAtomicCompareExchange( 2185 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2186 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2187 llvm::Value *success = Pair.second; 2188 atomicPHI->addIncoming(old, opBB); 2189 Builder.CreateCondBr(success, contBB, opBB); 2190 Builder.SetInsertPoint(contBB); 2191 return LHSLV; 2192 } 2193 2194 // Store the result value into the LHS lvalue. Bit-fields are handled 2195 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2196 // 'An assignment expression has the value of the left operand after the 2197 // assignment...'. 2198 if (LHSLV.isBitField()) 2199 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2200 else 2201 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2202 2203 return LHSLV; 2204 } 2205 2206 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2207 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2208 bool Ignore = TestAndClearIgnoreResultAssign(); 2209 Value *RHS; 2210 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2211 2212 // If the result is clearly ignored, return now. 2213 if (Ignore) 2214 return nullptr; 2215 2216 // The result of an assignment in C is the assigned r-value. 2217 if (!CGF.getLangOpts().CPlusPlus) 2218 return RHS; 2219 2220 // If the lvalue is non-volatile, return the computed value of the assignment. 2221 if (!LHS.isVolatileQualified()) 2222 return RHS; 2223 2224 // Otherwise, reload the value. 2225 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2226 } 2227 2228 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2229 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2230 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2231 2232 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2233 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2234 SanitizerKind::IntegerDivideByZero)); 2235 } 2236 2237 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2238 Ops.Ty->hasSignedIntegerRepresentation()) { 2239 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2240 2241 llvm::Value *IntMin = 2242 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2243 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2244 2245 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2246 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2247 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2248 Checks.push_back( 2249 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2250 } 2251 2252 if (Checks.size() > 0) 2253 EmitBinOpCheck(Checks, Ops); 2254 } 2255 2256 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2257 { 2258 CodeGenFunction::SanitizerScope SanScope(&CGF); 2259 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2260 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2261 Ops.Ty->isIntegerType()) { 2262 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2263 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2264 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2265 Ops.Ty->isRealFloatingType()) { 2266 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2267 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2268 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2269 Ops); 2270 } 2271 } 2272 2273 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2274 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2275 if (CGF.getLangOpts().OpenCL) { 2276 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2277 llvm::Type *ValTy = Val->getType(); 2278 if (ValTy->isFloatTy() || 2279 (isa<llvm::VectorType>(ValTy) && 2280 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2281 CGF.SetFPAccuracy(Val, 2.5); 2282 } 2283 return Val; 2284 } 2285 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2286 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2287 else 2288 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2289 } 2290 2291 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2292 // Rem in C can't be a floating point type: C99 6.5.5p2. 2293 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2294 CodeGenFunction::SanitizerScope SanScope(&CGF); 2295 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2296 2297 if (Ops.Ty->isIntegerType()) 2298 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2299 } 2300 2301 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2302 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2303 else 2304 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2305 } 2306 2307 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2308 unsigned IID; 2309 unsigned OpID = 0; 2310 2311 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2312 switch (Ops.Opcode) { 2313 case BO_Add: 2314 case BO_AddAssign: 2315 OpID = 1; 2316 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2317 llvm::Intrinsic::uadd_with_overflow; 2318 break; 2319 case BO_Sub: 2320 case BO_SubAssign: 2321 OpID = 2; 2322 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2323 llvm::Intrinsic::usub_with_overflow; 2324 break; 2325 case BO_Mul: 2326 case BO_MulAssign: 2327 OpID = 3; 2328 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2329 llvm::Intrinsic::umul_with_overflow; 2330 break; 2331 default: 2332 llvm_unreachable("Unsupported operation for overflow detection"); 2333 } 2334 OpID <<= 1; 2335 if (isSigned) 2336 OpID |= 1; 2337 2338 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2339 2340 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2341 2342 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2343 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2344 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2345 2346 // Handle overflow with llvm.trap if no custom handler has been specified. 2347 const std::string *handlerName = 2348 &CGF.getLangOpts().OverflowHandler; 2349 if (handlerName->empty()) { 2350 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2351 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2352 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2353 CodeGenFunction::SanitizerScope SanScope(&CGF); 2354 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2355 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2356 : SanitizerKind::UnsignedIntegerOverflow; 2357 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2358 } else 2359 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2360 return result; 2361 } 2362 2363 // Branch in case of overflow. 2364 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2365 llvm::Function::iterator insertPt = initialBB; 2366 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2367 std::next(insertPt)); 2368 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2369 2370 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2371 2372 // If an overflow handler is set, then we want to call it and then use its 2373 // result, if it returns. 2374 Builder.SetInsertPoint(overflowBB); 2375 2376 // Get the overflow handler. 2377 llvm::Type *Int8Ty = CGF.Int8Ty; 2378 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2379 llvm::FunctionType *handlerTy = 2380 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2381 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2382 2383 // Sign extend the args to 64-bit, so that we can use the same handler for 2384 // all types of overflow. 2385 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2386 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2387 2388 // Call the handler with the two arguments, the operation, and the size of 2389 // the result. 2390 llvm::Value *handlerArgs[] = { 2391 lhs, 2392 rhs, 2393 Builder.getInt8(OpID), 2394 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2395 }; 2396 llvm::Value *handlerResult = 2397 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2398 2399 // Truncate the result back to the desired size. 2400 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2401 Builder.CreateBr(continueBB); 2402 2403 Builder.SetInsertPoint(continueBB); 2404 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2405 phi->addIncoming(result, initialBB); 2406 phi->addIncoming(handlerResult, overflowBB); 2407 2408 return phi; 2409 } 2410 2411 /// Emit pointer + index arithmetic. 2412 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2413 const BinOpInfo &op, 2414 bool isSubtraction) { 2415 // Must have binary (not unary) expr here. Unary pointer 2416 // increment/decrement doesn't use this path. 2417 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2418 2419 Value *pointer = op.LHS; 2420 Expr *pointerOperand = expr->getLHS(); 2421 Value *index = op.RHS; 2422 Expr *indexOperand = expr->getRHS(); 2423 2424 // In a subtraction, the LHS is always the pointer. 2425 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2426 std::swap(pointer, index); 2427 std::swap(pointerOperand, indexOperand); 2428 } 2429 2430 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2431 if (width != CGF.PointerWidthInBits) { 2432 // Zero-extend or sign-extend the pointer value according to 2433 // whether the index is signed or not. 2434 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2435 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2436 "idx.ext"); 2437 } 2438 2439 // If this is subtraction, negate the index. 2440 if (isSubtraction) 2441 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2442 2443 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2444 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2445 /*Accessed*/ false); 2446 2447 const PointerType *pointerType 2448 = pointerOperand->getType()->getAs<PointerType>(); 2449 if (!pointerType) { 2450 QualType objectType = pointerOperand->getType() 2451 ->castAs<ObjCObjectPointerType>() 2452 ->getPointeeType(); 2453 llvm::Value *objectSize 2454 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2455 2456 index = CGF.Builder.CreateMul(index, objectSize); 2457 2458 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2459 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2460 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2461 } 2462 2463 QualType elementType = pointerType->getPointeeType(); 2464 if (const VariableArrayType *vla 2465 = CGF.getContext().getAsVariableArrayType(elementType)) { 2466 // The element count here is the total number of non-VLA elements. 2467 llvm::Value *numElements = CGF.getVLASize(vla).first; 2468 2469 // Effectively, the multiply by the VLA size is part of the GEP. 2470 // GEP indexes are signed, and scaling an index isn't permitted to 2471 // signed-overflow, so we use the same semantics for our explicit 2472 // multiply. We suppress this if overflow is not undefined behavior. 2473 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2474 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2475 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2476 } else { 2477 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2478 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2479 } 2480 return pointer; 2481 } 2482 2483 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2484 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2485 // future proof. 2486 if (elementType->isVoidType() || elementType->isFunctionType()) { 2487 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2488 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2489 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2490 } 2491 2492 if (CGF.getLangOpts().isSignedOverflowDefined()) 2493 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2494 2495 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2496 } 2497 2498 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2499 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2500 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2501 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2502 // efficient operations. 2503 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2504 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2505 bool negMul, bool negAdd) { 2506 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2507 2508 Value *MulOp0 = MulOp->getOperand(0); 2509 Value *MulOp1 = MulOp->getOperand(1); 2510 if (negMul) { 2511 MulOp0 = 2512 Builder.CreateFSub( 2513 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2514 "neg"); 2515 } else if (negAdd) { 2516 Addend = 2517 Builder.CreateFSub( 2518 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2519 "neg"); 2520 } 2521 2522 Value *FMulAdd = Builder.CreateCall( 2523 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2524 {MulOp0, MulOp1, Addend}); 2525 MulOp->eraseFromParent(); 2526 2527 return FMulAdd; 2528 } 2529 2530 // Check whether it would be legal to emit an fmuladd intrinsic call to 2531 // represent op and if so, build the fmuladd. 2532 // 2533 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2534 // Does NOT check the type of the operation - it's assumed that this function 2535 // will be called from contexts where it's known that the type is contractable. 2536 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2537 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2538 bool isSub=false) { 2539 2540 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2541 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2542 "Only fadd/fsub can be the root of an fmuladd."); 2543 2544 // Check whether this op is marked as fusable. 2545 if (!op.FPContractable) 2546 return nullptr; 2547 2548 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2549 // either disabled, or handled entirely by the LLVM backend). 2550 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2551 return nullptr; 2552 2553 // We have a potentially fusable op. Look for a mul on one of the operands. 2554 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2555 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2556 assert(LHSBinOp->getNumUses() == 0 && 2557 "Operations with multiple uses shouldn't be contracted."); 2558 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2559 } 2560 } else if (llvm::BinaryOperator* RHSBinOp = 2561 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2562 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2563 assert(RHSBinOp->getNumUses() == 0 && 2564 "Operations with multiple uses shouldn't be contracted."); 2565 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2566 } 2567 } 2568 2569 return nullptr; 2570 } 2571 2572 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2573 if (op.LHS->getType()->isPointerTy() || 2574 op.RHS->getType()->isPointerTy()) 2575 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2576 2577 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2578 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2579 case LangOptions::SOB_Defined: 2580 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2581 case LangOptions::SOB_Undefined: 2582 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2583 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2584 // Fall through. 2585 case LangOptions::SOB_Trapping: 2586 return EmitOverflowCheckedBinOp(op); 2587 } 2588 } 2589 2590 if (op.Ty->isUnsignedIntegerType() && 2591 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2592 return EmitOverflowCheckedBinOp(op); 2593 2594 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2595 // Try to form an fmuladd. 2596 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2597 return FMulAdd; 2598 2599 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2600 } 2601 2602 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2603 } 2604 2605 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2606 // The LHS is always a pointer if either side is. 2607 if (!op.LHS->getType()->isPointerTy()) { 2608 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2609 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2610 case LangOptions::SOB_Defined: 2611 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2612 case LangOptions::SOB_Undefined: 2613 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2614 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2615 // Fall through. 2616 case LangOptions::SOB_Trapping: 2617 return EmitOverflowCheckedBinOp(op); 2618 } 2619 } 2620 2621 if (op.Ty->isUnsignedIntegerType() && 2622 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2623 return EmitOverflowCheckedBinOp(op); 2624 2625 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2626 // Try to form an fmuladd. 2627 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2628 return FMulAdd; 2629 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2630 } 2631 2632 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2633 } 2634 2635 // If the RHS is not a pointer, then we have normal pointer 2636 // arithmetic. 2637 if (!op.RHS->getType()->isPointerTy()) 2638 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2639 2640 // Otherwise, this is a pointer subtraction. 2641 2642 // Do the raw subtraction part. 2643 llvm::Value *LHS 2644 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2645 llvm::Value *RHS 2646 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2647 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2648 2649 // Okay, figure out the element size. 2650 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2651 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2652 2653 llvm::Value *divisor = nullptr; 2654 2655 // For a variable-length array, this is going to be non-constant. 2656 if (const VariableArrayType *vla 2657 = CGF.getContext().getAsVariableArrayType(elementType)) { 2658 llvm::Value *numElements; 2659 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2660 2661 divisor = numElements; 2662 2663 // Scale the number of non-VLA elements by the non-VLA element size. 2664 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2665 if (!eltSize.isOne()) 2666 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2667 2668 // For everything elese, we can just compute it, safe in the 2669 // assumption that Sema won't let anything through that we can't 2670 // safely compute the size of. 2671 } else { 2672 CharUnits elementSize; 2673 // Handle GCC extension for pointer arithmetic on void* and 2674 // function pointer types. 2675 if (elementType->isVoidType() || elementType->isFunctionType()) 2676 elementSize = CharUnits::One(); 2677 else 2678 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2679 2680 // Don't even emit the divide for element size of 1. 2681 if (elementSize.isOne()) 2682 return diffInChars; 2683 2684 divisor = CGF.CGM.getSize(elementSize); 2685 } 2686 2687 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2688 // pointer difference in C is only defined in the case where both operands 2689 // are pointing to elements of an array. 2690 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2691 } 2692 2693 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2694 llvm::IntegerType *Ty; 2695 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2696 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2697 else 2698 Ty = cast<llvm::IntegerType>(LHS->getType()); 2699 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2700 } 2701 2702 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2703 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2704 // RHS to the same size as the LHS. 2705 Value *RHS = Ops.RHS; 2706 if (Ops.LHS->getType() != RHS->getType()) 2707 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2708 2709 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2710 Ops.Ty->hasSignedIntegerRepresentation(); 2711 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2712 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2713 if (CGF.getLangOpts().OpenCL) 2714 RHS = 2715 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2716 else if ((SanitizeBase || SanitizeExponent) && 2717 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2718 CodeGenFunction::SanitizerScope SanScope(&CGF); 2719 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2720 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2721 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2722 2723 if (SanitizeExponent) { 2724 Checks.push_back( 2725 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2726 } 2727 2728 if (SanitizeBase) { 2729 // Check whether we are shifting any non-zero bits off the top of the 2730 // integer. We only emit this check if exponent is valid - otherwise 2731 // instructions below will have undefined behavior themselves. 2732 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2733 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2734 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2735 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2736 CGF.EmitBlock(CheckShiftBase); 2737 llvm::Value *BitsShiftedOff = 2738 Builder.CreateLShr(Ops.LHS, 2739 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2740 /*NUW*/true, /*NSW*/true), 2741 "shl.check"); 2742 if (CGF.getLangOpts().CPlusPlus) { 2743 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2744 // Under C++11's rules, shifting a 1 bit into the sign bit is 2745 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2746 // define signed left shifts, so we use the C99 and C++11 rules there). 2747 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2748 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2749 } 2750 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2751 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2752 CGF.EmitBlock(Cont); 2753 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2754 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2755 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2756 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2757 } 2758 2759 assert(!Checks.empty()); 2760 EmitBinOpCheck(Checks, Ops); 2761 } 2762 2763 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2764 } 2765 2766 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2767 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2768 // RHS to the same size as the LHS. 2769 Value *RHS = Ops.RHS; 2770 if (Ops.LHS->getType() != RHS->getType()) 2771 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2772 2773 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2774 if (CGF.getLangOpts().OpenCL) 2775 RHS = 2776 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2777 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2778 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2779 CodeGenFunction::SanitizerScope SanScope(&CGF); 2780 llvm::Value *Valid = 2781 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2782 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2783 } 2784 2785 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2786 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2787 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2788 } 2789 2790 enum IntrinsicType { VCMPEQ, VCMPGT }; 2791 // return corresponding comparison intrinsic for given vector type 2792 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2793 BuiltinType::Kind ElemKind) { 2794 switch (ElemKind) { 2795 default: llvm_unreachable("unexpected element type"); 2796 case BuiltinType::Char_U: 2797 case BuiltinType::UChar: 2798 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2799 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2800 case BuiltinType::Char_S: 2801 case BuiltinType::SChar: 2802 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2803 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2804 case BuiltinType::UShort: 2805 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2806 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2807 case BuiltinType::Short: 2808 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2809 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2810 case BuiltinType::UInt: 2811 case BuiltinType::ULong: 2812 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2813 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2814 case BuiltinType::Int: 2815 case BuiltinType::Long: 2816 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2817 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2818 case BuiltinType::Float: 2819 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2820 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2821 } 2822 } 2823 2824 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2825 unsigned SICmpOpc, unsigned FCmpOpc) { 2826 TestAndClearIgnoreResultAssign(); 2827 Value *Result; 2828 QualType LHSTy = E->getLHS()->getType(); 2829 QualType RHSTy = E->getRHS()->getType(); 2830 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2831 assert(E->getOpcode() == BO_EQ || 2832 E->getOpcode() == BO_NE); 2833 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2834 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2835 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2836 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2837 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2838 Value *LHS = Visit(E->getLHS()); 2839 Value *RHS = Visit(E->getRHS()); 2840 2841 // If AltiVec, the comparison results in a numeric type, so we use 2842 // intrinsics comparing vectors and giving 0 or 1 as a result 2843 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2844 // constants for mapping CR6 register bits to predicate result 2845 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2846 2847 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2848 2849 // in several cases vector arguments order will be reversed 2850 Value *FirstVecArg = LHS, 2851 *SecondVecArg = RHS; 2852 2853 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2854 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2855 BuiltinType::Kind ElementKind = BTy->getKind(); 2856 2857 switch(E->getOpcode()) { 2858 default: llvm_unreachable("is not a comparison operation"); 2859 case BO_EQ: 2860 CR6 = CR6_LT; 2861 ID = GetIntrinsic(VCMPEQ, ElementKind); 2862 break; 2863 case BO_NE: 2864 CR6 = CR6_EQ; 2865 ID = GetIntrinsic(VCMPEQ, ElementKind); 2866 break; 2867 case BO_LT: 2868 CR6 = CR6_LT; 2869 ID = GetIntrinsic(VCMPGT, ElementKind); 2870 std::swap(FirstVecArg, SecondVecArg); 2871 break; 2872 case BO_GT: 2873 CR6 = CR6_LT; 2874 ID = GetIntrinsic(VCMPGT, ElementKind); 2875 break; 2876 case BO_LE: 2877 if (ElementKind == BuiltinType::Float) { 2878 CR6 = CR6_LT; 2879 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2880 std::swap(FirstVecArg, SecondVecArg); 2881 } 2882 else { 2883 CR6 = CR6_EQ; 2884 ID = GetIntrinsic(VCMPGT, ElementKind); 2885 } 2886 break; 2887 case BO_GE: 2888 if (ElementKind == BuiltinType::Float) { 2889 CR6 = CR6_LT; 2890 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2891 } 2892 else { 2893 CR6 = CR6_EQ; 2894 ID = GetIntrinsic(VCMPGT, ElementKind); 2895 std::swap(FirstVecArg, SecondVecArg); 2896 } 2897 break; 2898 } 2899 2900 Value *CR6Param = Builder.getInt32(CR6); 2901 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2902 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2903 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2904 E->getExprLoc()); 2905 } 2906 2907 if (LHS->getType()->isFPOrFPVectorTy()) { 2908 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2909 LHS, RHS, "cmp"); 2910 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2911 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2912 LHS, RHS, "cmp"); 2913 } else { 2914 // Unsigned integers and pointers. 2915 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2916 LHS, RHS, "cmp"); 2917 } 2918 2919 // If this is a vector comparison, sign extend the result to the appropriate 2920 // vector integer type and return it (don't convert to bool). 2921 if (LHSTy->isVectorType()) 2922 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2923 2924 } else { 2925 // Complex Comparison: can only be an equality comparison. 2926 CodeGenFunction::ComplexPairTy LHS, RHS; 2927 QualType CETy; 2928 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2929 LHS = CGF.EmitComplexExpr(E->getLHS()); 2930 CETy = CTy->getElementType(); 2931 } else { 2932 LHS.first = Visit(E->getLHS()); 2933 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2934 CETy = LHSTy; 2935 } 2936 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2937 RHS = CGF.EmitComplexExpr(E->getRHS()); 2938 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2939 CTy->getElementType()) && 2940 "The element types must always match."); 2941 (void)CTy; 2942 } else { 2943 RHS.first = Visit(E->getRHS()); 2944 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2945 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2946 "The element types must always match."); 2947 } 2948 2949 Value *ResultR, *ResultI; 2950 if (CETy->isRealFloatingType()) { 2951 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2952 LHS.first, RHS.first, "cmp.r"); 2953 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2954 LHS.second, RHS.second, "cmp.i"); 2955 } else { 2956 // Complex comparisons can only be equality comparisons. As such, signed 2957 // and unsigned opcodes are the same. 2958 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2959 LHS.first, RHS.first, "cmp.r"); 2960 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2961 LHS.second, RHS.second, "cmp.i"); 2962 } 2963 2964 if (E->getOpcode() == BO_EQ) { 2965 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2966 } else { 2967 assert(E->getOpcode() == BO_NE && 2968 "Complex comparison other than == or != ?"); 2969 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2970 } 2971 } 2972 2973 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2974 E->getExprLoc()); 2975 } 2976 2977 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2978 bool Ignore = TestAndClearIgnoreResultAssign(); 2979 2980 Value *RHS; 2981 LValue LHS; 2982 2983 switch (E->getLHS()->getType().getObjCLifetime()) { 2984 case Qualifiers::OCL_Strong: 2985 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2986 break; 2987 2988 case Qualifiers::OCL_Autoreleasing: 2989 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2990 break; 2991 2992 case Qualifiers::OCL_Weak: 2993 RHS = Visit(E->getRHS()); 2994 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2995 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2996 break; 2997 2998 // No reason to do any of these differently. 2999 case Qualifiers::OCL_None: 3000 case Qualifiers::OCL_ExplicitNone: 3001 // __block variables need to have the rhs evaluated first, plus 3002 // this should improve codegen just a little. 3003 RHS = Visit(E->getRHS()); 3004 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3005 3006 // Store the value into the LHS. Bit-fields are handled specially 3007 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3008 // 'An assignment expression has the value of the left operand after 3009 // the assignment...'. 3010 if (LHS.isBitField()) 3011 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3012 else 3013 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3014 } 3015 3016 // If the result is clearly ignored, return now. 3017 if (Ignore) 3018 return nullptr; 3019 3020 // The result of an assignment in C is the assigned r-value. 3021 if (!CGF.getLangOpts().CPlusPlus) 3022 return RHS; 3023 3024 // If the lvalue is non-volatile, return the computed value of the assignment. 3025 if (!LHS.isVolatileQualified()) 3026 return RHS; 3027 3028 // Otherwise, reload the value. 3029 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3030 } 3031 3032 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3033 // Perform vector logical and on comparisons with zero vectors. 3034 if (E->getType()->isVectorType()) { 3035 CGF.incrementProfileCounter(E); 3036 3037 Value *LHS = Visit(E->getLHS()); 3038 Value *RHS = Visit(E->getRHS()); 3039 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3040 if (LHS->getType()->isFPOrFPVectorTy()) { 3041 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3042 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3043 } else { 3044 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3045 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3046 } 3047 Value *And = Builder.CreateAnd(LHS, RHS); 3048 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3049 } 3050 3051 llvm::Type *ResTy = ConvertType(E->getType()); 3052 3053 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3054 // If we have 1 && X, just emit X without inserting the control flow. 3055 bool LHSCondVal; 3056 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3057 if (LHSCondVal) { // If we have 1 && X, just emit X. 3058 CGF.incrementProfileCounter(E); 3059 3060 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3061 // ZExt result to int or bool. 3062 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3063 } 3064 3065 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3066 if (!CGF.ContainsLabel(E->getRHS())) 3067 return llvm::Constant::getNullValue(ResTy); 3068 } 3069 3070 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3071 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3072 3073 CodeGenFunction::ConditionalEvaluation eval(CGF); 3074 3075 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3076 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3077 CGF.getProfileCount(E->getRHS())); 3078 3079 // Any edges into the ContBlock are now from an (indeterminate number of) 3080 // edges from this first condition. All of these values will be false. Start 3081 // setting up the PHI node in the Cont Block for this. 3082 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3083 "", ContBlock); 3084 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3085 PI != PE; ++PI) 3086 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3087 3088 eval.begin(CGF); 3089 CGF.EmitBlock(RHSBlock); 3090 CGF.incrementProfileCounter(E); 3091 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3092 eval.end(CGF); 3093 3094 // Reaquire the RHS block, as there may be subblocks inserted. 3095 RHSBlock = Builder.GetInsertBlock(); 3096 3097 // Emit an unconditional branch from this block to ContBlock. 3098 { 3099 // There is no need to emit line number for unconditional branch. 3100 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3101 CGF.EmitBlock(ContBlock); 3102 } 3103 // Insert an entry into the phi node for the edge with the value of RHSCond. 3104 PN->addIncoming(RHSCond, RHSBlock); 3105 3106 // ZExt result to int. 3107 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3108 } 3109 3110 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3111 // Perform vector logical or on comparisons with zero vectors. 3112 if (E->getType()->isVectorType()) { 3113 CGF.incrementProfileCounter(E); 3114 3115 Value *LHS = Visit(E->getLHS()); 3116 Value *RHS = Visit(E->getRHS()); 3117 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3118 if (LHS->getType()->isFPOrFPVectorTy()) { 3119 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3120 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3121 } else { 3122 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3123 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3124 } 3125 Value *Or = Builder.CreateOr(LHS, RHS); 3126 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3127 } 3128 3129 llvm::Type *ResTy = ConvertType(E->getType()); 3130 3131 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3132 // If we have 0 || X, just emit X without inserting the control flow. 3133 bool LHSCondVal; 3134 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3135 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3136 CGF.incrementProfileCounter(E); 3137 3138 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3139 // ZExt result to int or bool. 3140 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3141 } 3142 3143 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3144 if (!CGF.ContainsLabel(E->getRHS())) 3145 return llvm::ConstantInt::get(ResTy, 1); 3146 } 3147 3148 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3149 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3150 3151 CodeGenFunction::ConditionalEvaluation eval(CGF); 3152 3153 // Branch on the LHS first. If it is true, go to the success (cont) block. 3154 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3155 CGF.getCurrentProfileCount() - 3156 CGF.getProfileCount(E->getRHS())); 3157 3158 // Any edges into the ContBlock are now from an (indeterminate number of) 3159 // edges from this first condition. All of these values will be true. Start 3160 // setting up the PHI node in the Cont Block for this. 3161 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3162 "", ContBlock); 3163 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3164 PI != PE; ++PI) 3165 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3166 3167 eval.begin(CGF); 3168 3169 // Emit the RHS condition as a bool value. 3170 CGF.EmitBlock(RHSBlock); 3171 CGF.incrementProfileCounter(E); 3172 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3173 3174 eval.end(CGF); 3175 3176 // Reaquire the RHS block, as there may be subblocks inserted. 3177 RHSBlock = Builder.GetInsertBlock(); 3178 3179 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3180 // into the phi node for the edge with the value of RHSCond. 3181 CGF.EmitBlock(ContBlock); 3182 PN->addIncoming(RHSCond, RHSBlock); 3183 3184 // ZExt result to int. 3185 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3186 } 3187 3188 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3189 CGF.EmitIgnoredExpr(E->getLHS()); 3190 CGF.EnsureInsertPoint(); 3191 return Visit(E->getRHS()); 3192 } 3193 3194 //===----------------------------------------------------------------------===// 3195 // Other Operators 3196 //===----------------------------------------------------------------------===// 3197 3198 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3199 /// expression is cheap enough and side-effect-free enough to evaluate 3200 /// unconditionally instead of conditionally. This is used to convert control 3201 /// flow into selects in some cases. 3202 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3203 CodeGenFunction &CGF) { 3204 // Anything that is an integer or floating point constant is fine. 3205 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3206 3207 // Even non-volatile automatic variables can't be evaluated unconditionally. 3208 // Referencing a thread_local may cause non-trivial initialization work to 3209 // occur. If we're inside a lambda and one of the variables is from the scope 3210 // outside the lambda, that function may have returned already. Reading its 3211 // locals is a bad idea. Also, these reads may introduce races there didn't 3212 // exist in the source-level program. 3213 } 3214 3215 3216 Value *ScalarExprEmitter:: 3217 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3218 TestAndClearIgnoreResultAssign(); 3219 3220 // Bind the common expression if necessary. 3221 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3222 3223 Expr *condExpr = E->getCond(); 3224 Expr *lhsExpr = E->getTrueExpr(); 3225 Expr *rhsExpr = E->getFalseExpr(); 3226 3227 // If the condition constant folds and can be elided, try to avoid emitting 3228 // the condition and the dead arm. 3229 bool CondExprBool; 3230 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3231 Expr *live = lhsExpr, *dead = rhsExpr; 3232 if (!CondExprBool) std::swap(live, dead); 3233 3234 // If the dead side doesn't have labels we need, just emit the Live part. 3235 if (!CGF.ContainsLabel(dead)) { 3236 if (CondExprBool) 3237 CGF.incrementProfileCounter(E); 3238 Value *Result = Visit(live); 3239 3240 // If the live part is a throw expression, it acts like it has a void 3241 // type, so evaluating it returns a null Value*. However, a conditional 3242 // with non-void type must return a non-null Value*. 3243 if (!Result && !E->getType()->isVoidType()) 3244 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3245 3246 return Result; 3247 } 3248 } 3249 3250 // OpenCL: If the condition is a vector, we can treat this condition like 3251 // the select function. 3252 if (CGF.getLangOpts().OpenCL 3253 && condExpr->getType()->isVectorType()) { 3254 CGF.incrementProfileCounter(E); 3255 3256 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3257 llvm::Value *LHS = Visit(lhsExpr); 3258 llvm::Value *RHS = Visit(rhsExpr); 3259 3260 llvm::Type *condType = ConvertType(condExpr->getType()); 3261 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3262 3263 unsigned numElem = vecTy->getNumElements(); 3264 llvm::Type *elemType = vecTy->getElementType(); 3265 3266 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3267 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3268 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3269 llvm::VectorType::get(elemType, 3270 numElem), 3271 "sext"); 3272 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3273 3274 // Cast float to int to perform ANDs if necessary. 3275 llvm::Value *RHSTmp = RHS; 3276 llvm::Value *LHSTmp = LHS; 3277 bool wasCast = false; 3278 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3279 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3280 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3281 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3282 wasCast = true; 3283 } 3284 3285 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3286 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3287 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3288 if (wasCast) 3289 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3290 3291 return tmp5; 3292 } 3293 3294 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3295 // select instead of as control flow. We can only do this if it is cheap and 3296 // safe to evaluate the LHS and RHS unconditionally. 3297 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3298 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3299 CGF.incrementProfileCounter(E); 3300 3301 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3302 llvm::Value *LHS = Visit(lhsExpr); 3303 llvm::Value *RHS = Visit(rhsExpr); 3304 if (!LHS) { 3305 // If the conditional has void type, make sure we return a null Value*. 3306 assert(!RHS && "LHS and RHS types must match"); 3307 return nullptr; 3308 } 3309 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3310 } 3311 3312 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3313 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3314 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3315 3316 CodeGenFunction::ConditionalEvaluation eval(CGF); 3317 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3318 CGF.getProfileCount(lhsExpr)); 3319 3320 CGF.EmitBlock(LHSBlock); 3321 CGF.incrementProfileCounter(E); 3322 eval.begin(CGF); 3323 Value *LHS = Visit(lhsExpr); 3324 eval.end(CGF); 3325 3326 LHSBlock = Builder.GetInsertBlock(); 3327 Builder.CreateBr(ContBlock); 3328 3329 CGF.EmitBlock(RHSBlock); 3330 eval.begin(CGF); 3331 Value *RHS = Visit(rhsExpr); 3332 eval.end(CGF); 3333 3334 RHSBlock = Builder.GetInsertBlock(); 3335 CGF.EmitBlock(ContBlock); 3336 3337 // If the LHS or RHS is a throw expression, it will be legitimately null. 3338 if (!LHS) 3339 return RHS; 3340 if (!RHS) 3341 return LHS; 3342 3343 // Create a PHI node for the real part. 3344 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3345 PN->addIncoming(LHS, LHSBlock); 3346 PN->addIncoming(RHS, RHSBlock); 3347 return PN; 3348 } 3349 3350 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3351 return Visit(E->getChosenSubExpr()); 3352 } 3353 3354 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3355 QualType Ty = VE->getType(); 3356 3357 if (Ty->isVariablyModifiedType()) 3358 CGF.EmitVariablyModifiedType(Ty); 3359 3360 Address ArgValue = Address::invalid(); 3361 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3362 3363 llvm::Type *ArgTy = ConvertType(VE->getType()); 3364 3365 // If EmitVAArg fails, we fall back to the LLVM instruction. 3366 if (!ArgPtr.isValid()) 3367 return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy); 3368 3369 // FIXME Volatility. 3370 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3371 3372 // If EmitVAArg promoted the type, we must truncate it. 3373 if (ArgTy != Val->getType()) { 3374 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3375 Val = Builder.CreateIntToPtr(Val, ArgTy); 3376 else 3377 Val = Builder.CreateTrunc(Val, ArgTy); 3378 } 3379 3380 return Val; 3381 } 3382 3383 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3384 return CGF.EmitBlockLiteral(block); 3385 } 3386 3387 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3388 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3389 llvm::Type *DstTy = ConvertType(E->getType()); 3390 3391 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3392 // a shuffle vector instead of a bitcast. 3393 llvm::Type *SrcTy = Src->getType(); 3394 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3395 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3396 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3397 if ((numElementsDst == 3 && numElementsSrc == 4) 3398 || (numElementsDst == 4 && numElementsSrc == 3)) { 3399 3400 3401 // In the case of going from int4->float3, a bitcast is needed before 3402 // doing a shuffle. 3403 llvm::Type *srcElemTy = 3404 cast<llvm::VectorType>(SrcTy)->getElementType(); 3405 llvm::Type *dstElemTy = 3406 cast<llvm::VectorType>(DstTy)->getElementType(); 3407 3408 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3409 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3410 // Create a float type of the same size as the source or destination. 3411 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3412 numElementsSrc); 3413 3414 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3415 } 3416 3417 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3418 3419 SmallVector<llvm::Constant*, 3> Args; 3420 Args.push_back(Builder.getInt32(0)); 3421 Args.push_back(Builder.getInt32(1)); 3422 Args.push_back(Builder.getInt32(2)); 3423 3424 if (numElementsDst == 4) 3425 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3426 3427 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3428 3429 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3430 } 3431 } 3432 3433 return Builder.CreateBitCast(Src, DstTy, "astype"); 3434 } 3435 3436 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3437 return CGF.EmitAtomicExpr(E).getScalarVal(); 3438 } 3439 3440 //===----------------------------------------------------------------------===// 3441 // Entry Point into this File 3442 //===----------------------------------------------------------------------===// 3443 3444 /// Emit the computation of the specified expression of scalar type, ignoring 3445 /// the result. 3446 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3447 assert(E && hasScalarEvaluationKind(E->getType()) && 3448 "Invalid scalar expression to emit"); 3449 3450 return ScalarExprEmitter(*this, IgnoreResultAssign) 3451 .Visit(const_cast<Expr *>(E)); 3452 } 3453 3454 /// Emit a conversion from the specified type to the specified destination type, 3455 /// both of which are LLVM scalar types. 3456 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3457 QualType DstTy, 3458 SourceLocation Loc) { 3459 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3460 "Invalid scalar expression to emit"); 3461 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3462 } 3463 3464 /// Emit a conversion from the specified complex type to the specified 3465 /// destination type, where the destination type is an LLVM scalar type. 3466 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3467 QualType SrcTy, 3468 QualType DstTy, 3469 SourceLocation Loc) { 3470 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3471 "Invalid complex -> scalar conversion"); 3472 return ScalarExprEmitter(*this) 3473 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3474 } 3475 3476 3477 llvm::Value *CodeGenFunction:: 3478 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3479 bool isInc, bool isPre) { 3480 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3481 } 3482 3483 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3484 // object->isa or (*object).isa 3485 // Generate code as for: *(Class*)object 3486 3487 Expr *BaseExpr = E->getBase(); 3488 Address Addr = Address::invalid(); 3489 if (BaseExpr->isRValue()) { 3490 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3491 } else { 3492 Addr = EmitLValue(BaseExpr).getAddress(); 3493 } 3494 3495 // Cast the address to Class*. 3496 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3497 return MakeAddrLValue(Addr, E->getType()); 3498 } 3499 3500 3501 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3502 const CompoundAssignOperator *E) { 3503 ScalarExprEmitter Scalar(*this); 3504 Value *Result = nullptr; 3505 switch (E->getOpcode()) { 3506 #define COMPOUND_OP(Op) \ 3507 case BO_##Op##Assign: \ 3508 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3509 Result) 3510 COMPOUND_OP(Mul); 3511 COMPOUND_OP(Div); 3512 COMPOUND_OP(Rem); 3513 COMPOUND_OP(Add); 3514 COMPOUND_OP(Sub); 3515 COMPOUND_OP(Shl); 3516 COMPOUND_OP(Shr); 3517 COMPOUND_OP(And); 3518 COMPOUND_OP(Xor); 3519 COMPOUND_OP(Or); 3520 #undef COMPOUND_OP 3521 3522 case BO_PtrMemD: 3523 case BO_PtrMemI: 3524 case BO_Mul: 3525 case BO_Div: 3526 case BO_Rem: 3527 case BO_Add: 3528 case BO_Sub: 3529 case BO_Shl: 3530 case BO_Shr: 3531 case BO_LT: 3532 case BO_GT: 3533 case BO_LE: 3534 case BO_GE: 3535 case BO_EQ: 3536 case BO_NE: 3537 case BO_And: 3538 case BO_Xor: 3539 case BO_Or: 3540 case BO_LAnd: 3541 case BO_LOr: 3542 case BO_Assign: 3543 case BO_Comma: 3544 llvm_unreachable("Not valid compound assignment operators"); 3545 } 3546 3547 llvm_unreachable("Unhandled compound assignment operator"); 3548 } 3549