1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 //                         Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45   Value *LHS;
46   Value *RHS;
47   QualType Ty;  // Computation Type.
48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49   bool FPContractable;
50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54   // If a null pointer expression's type is the C++0x nullptr_t, then
55   // it's not necessarily a simple constant and it must be evaluated
56   // for its potential side effects.
57   return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61   : public StmtVisitor<ScalarExprEmitter, Value*> {
62   CodeGenFunction &CGF;
63   CGBuilderTy &Builder;
64   bool IgnoreResultAssign;
65   llvm::LLVMContext &VMContext;
66 public:
67 
68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70       VMContext(cgf.getLLVMContext()) {
71   }
72 
73   //===--------------------------------------------------------------------===//
74   //                               Utilities
75   //===--------------------------------------------------------------------===//
76 
77   bool TestAndClearIgnoreResultAssign() {
78     bool I = IgnoreResultAssign;
79     IgnoreResultAssign = false;
80     return I;
81   }
82 
83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86     return CGF.EmitCheckedLValue(E, TCK);
87   }
88 
89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                       const BinOpInfo &Info);
91 
92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94   }
95 
96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97     const AlignValueAttr *AVAttr = nullptr;
98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99       const ValueDecl *VD = DRE->getDecl();
100 
101       if (VD->getType()->isReferenceType()) {
102         if (const auto *TTy =
103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105       } else {
106         // Assumptions for function parameters are emitted at the start of the
107         // function, so there is no need to repeat that here.
108         if (isa<ParmVarDecl>(VD))
109           return;
110 
111         AVAttr = VD->getAttr<AlignValueAttr>();
112       }
113     }
114 
115     if (!AVAttr)
116       if (const auto *TTy =
117           dyn_cast<TypedefType>(E->getType()))
118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120     if (!AVAttr)
121       return;
122 
123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126   }
127 
128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129   /// value l-value, this method emits the address of the l-value, then loads
130   /// and returns the result.
131   Value *EmitLoadOfLValue(const Expr *E) {
132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                 E->getExprLoc());
134 
135     EmitLValueAlignmentAssumption(E, V);
136     return V;
137   }
138 
139   /// EmitConversionToBool - Convert the specified expression value to a
140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143   /// Emit a check that a conversion to or from a floating-point type does not
144   /// overflow.
145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                 Value *Src, QualType SrcType, QualType DstType,
147                                 llvm::Type *DstTy, SourceLocation Loc);
148 
149   /// Emit a conversion from the specified type to the specified destination
150   /// type, both of which are LLVM scalar types.
151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152                               SourceLocation Loc);
153 
154   /// Emit a conversion from the specified complex type to the specified
155   /// destination type, where the destination type is an LLVM scalar type.
156   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
157                                        QualType SrcTy, QualType DstTy,
158                                        SourceLocation Loc);
159 
160   /// EmitNullValue - Emit a value that corresponds to null for the given type.
161   Value *EmitNullValue(QualType Ty);
162 
163   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
164   Value *EmitFloatToBoolConversion(Value *V) {
165     // Compare against 0.0 for fp scalars.
166     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
167     return Builder.CreateFCmpUNE(V, Zero, "tobool");
168   }
169 
170   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
171   Value *EmitPointerToBoolConversion(Value *V) {
172     Value *Zero = llvm::ConstantPointerNull::get(
173                                       cast<llvm::PointerType>(V->getType()));
174     return Builder.CreateICmpNE(V, Zero, "tobool");
175   }
176 
177   Value *EmitIntToBoolConversion(Value *V) {
178     // Because of the type rules of C, we often end up computing a
179     // logical value, then zero extending it to int, then wanting it
180     // as a logical value again.  Optimize this common case.
181     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
182       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
183         Value *Result = ZI->getOperand(0);
184         // If there aren't any more uses, zap the instruction to save space.
185         // Note that there can be more uses, for example if this
186         // is the result of an assignment.
187         if (ZI->use_empty())
188           ZI->eraseFromParent();
189         return Result;
190       }
191     }
192 
193     return Builder.CreateIsNotNull(V, "tobool");
194   }
195 
196   //===--------------------------------------------------------------------===//
197   //                            Visitor Methods
198   //===--------------------------------------------------------------------===//
199 
200   Value *Visit(Expr *E) {
201     ApplyDebugLocation DL(CGF, E);
202     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
203   }
204 
205   Value *VisitStmt(Stmt *S) {
206     S->dump(CGF.getContext().getSourceManager());
207     llvm_unreachable("Stmt can't have complex result type!");
208   }
209   Value *VisitExpr(Expr *S);
210 
211   Value *VisitParenExpr(ParenExpr *PE) {
212     return Visit(PE->getSubExpr());
213   }
214   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
215     return Visit(E->getReplacement());
216   }
217   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
218     return Visit(GE->getResultExpr());
219   }
220 
221   // Leaves.
222   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
223     return Builder.getInt(E->getValue());
224   }
225   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
226     return llvm::ConstantFP::get(VMContext, E->getValue());
227   }
228   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
229     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
230   }
231   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233   }
234   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
235     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236   }
237   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
238     return EmitNullValue(E->getType());
239   }
240   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
241     return EmitNullValue(E->getType());
242   }
243   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
244   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
245   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
246     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
247     return Builder.CreateBitCast(V, ConvertType(E->getType()));
248   }
249 
250   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
251     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
252   }
253 
254   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
255     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
256   }
257 
258   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
259     if (E->isGLValue())
260       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
261 
262     // Otherwise, assume the mapping is the scalar directly.
263     return CGF.getOpaqueRValueMapping(E).getScalarVal();
264   }
265 
266   // l-values.
267   Value *VisitDeclRefExpr(DeclRefExpr *E) {
268     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
269       if (result.isReference())
270         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
271                                 E->getExprLoc());
272       return result.getValue();
273     }
274     return EmitLoadOfLValue(E);
275   }
276 
277   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
278     return CGF.EmitObjCSelectorExpr(E);
279   }
280   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
281     return CGF.EmitObjCProtocolExpr(E);
282   }
283   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
284     return EmitLoadOfLValue(E);
285   }
286   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
287     if (E->getMethodDecl() &&
288         E->getMethodDecl()->getReturnType()->isReferenceType())
289       return EmitLoadOfLValue(E);
290     return CGF.EmitObjCMessageExpr(E).getScalarVal();
291   }
292 
293   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
294     LValue LV = CGF.EmitObjCIsaExpr(E);
295     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
296     return V;
297   }
298 
299   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
300   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
301   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
302   Value *VisitMemberExpr(MemberExpr *E);
303   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
304   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
305     return EmitLoadOfLValue(E);
306   }
307 
308   Value *VisitInitListExpr(InitListExpr *E);
309 
310   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
311     return EmitNullValue(E->getType());
312   }
313   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
314     if (E->getType()->isVariablyModifiedType())
315       CGF.EmitVariablyModifiedType(E->getType());
316 
317     if (CGDebugInfo *DI = CGF.getDebugInfo())
318       DI->EmitExplicitCastType(E->getType());
319 
320     return VisitCastExpr(E);
321   }
322   Value *VisitCastExpr(CastExpr *E);
323 
324   Value *VisitCallExpr(const CallExpr *E) {
325     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
326       return EmitLoadOfLValue(E);
327 
328     Value *V = CGF.EmitCallExpr(E).getScalarVal();
329 
330     EmitLValueAlignmentAssumption(E, V);
331     return V;
332   }
333 
334   Value *VisitStmtExpr(const StmtExpr *E);
335 
336   // Unary Operators.
337   Value *VisitUnaryPostDec(const UnaryOperator *E) {
338     LValue LV = EmitLValue(E->getSubExpr());
339     return EmitScalarPrePostIncDec(E, LV, false, false);
340   }
341   Value *VisitUnaryPostInc(const UnaryOperator *E) {
342     LValue LV = EmitLValue(E->getSubExpr());
343     return EmitScalarPrePostIncDec(E, LV, true, false);
344   }
345   Value *VisitUnaryPreDec(const UnaryOperator *E) {
346     LValue LV = EmitLValue(E->getSubExpr());
347     return EmitScalarPrePostIncDec(E, LV, false, true);
348   }
349   Value *VisitUnaryPreInc(const UnaryOperator *E) {
350     LValue LV = EmitLValue(E->getSubExpr());
351     return EmitScalarPrePostIncDec(E, LV, true, true);
352   }
353 
354   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
355                                                   llvm::Value *InVal,
356                                                   bool IsInc);
357 
358   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
359                                        bool isInc, bool isPre);
360 
361 
362   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
363     if (isa<MemberPointerType>(E->getType())) // never sugared
364       return CGF.CGM.getMemberPointerConstant(E);
365 
366     return EmitLValue(E->getSubExpr()).getPointer();
367   }
368   Value *VisitUnaryDeref(const UnaryOperator *E) {
369     if (E->getType()->isVoidType())
370       return Visit(E->getSubExpr()); // the actual value should be unused
371     return EmitLoadOfLValue(E);
372   }
373   Value *VisitUnaryPlus(const UnaryOperator *E) {
374     // This differs from gcc, though, most likely due to a bug in gcc.
375     TestAndClearIgnoreResultAssign();
376     return Visit(E->getSubExpr());
377   }
378   Value *VisitUnaryMinus    (const UnaryOperator *E);
379   Value *VisitUnaryNot      (const UnaryOperator *E);
380   Value *VisitUnaryLNot     (const UnaryOperator *E);
381   Value *VisitUnaryReal     (const UnaryOperator *E);
382   Value *VisitUnaryImag     (const UnaryOperator *E);
383   Value *VisitUnaryExtension(const UnaryOperator *E) {
384     return Visit(E->getSubExpr());
385   }
386 
387   // C++
388   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
389     return EmitLoadOfLValue(E);
390   }
391 
392   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
393     return Visit(DAE->getExpr());
394   }
395   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
396     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
397     return Visit(DIE->getExpr());
398   }
399   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
400     return CGF.LoadCXXThis();
401   }
402 
403   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
404     CGF.enterFullExpression(E);
405     CodeGenFunction::RunCleanupsScope Scope(CGF);
406     return Visit(E->getSubExpr());
407   }
408   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
409     return CGF.EmitCXXNewExpr(E);
410   }
411   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
412     CGF.EmitCXXDeleteExpr(E);
413     return nullptr;
414   }
415 
416   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
417     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
418   }
419 
420   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
421     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
422   }
423 
424   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
425     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
426   }
427 
428   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
429     // C++ [expr.pseudo]p1:
430     //   The result shall only be used as the operand for the function call
431     //   operator (), and the result of such a call has type void. The only
432     //   effect is the evaluation of the postfix-expression before the dot or
433     //   arrow.
434     CGF.EmitScalarExpr(E->getBase());
435     return nullptr;
436   }
437 
438   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
439     return EmitNullValue(E->getType());
440   }
441 
442   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
443     CGF.EmitCXXThrowExpr(E);
444     return nullptr;
445   }
446 
447   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
448     return Builder.getInt1(E->getValue());
449   }
450 
451   // Binary Operators.
452   Value *EmitMul(const BinOpInfo &Ops) {
453     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
454       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
455       case LangOptions::SOB_Defined:
456         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
457       case LangOptions::SOB_Undefined:
458         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
459           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
460         // Fall through.
461       case LangOptions::SOB_Trapping:
462         return EmitOverflowCheckedBinOp(Ops);
463       }
464     }
465 
466     if (Ops.Ty->isUnsignedIntegerType() &&
467         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
468       return EmitOverflowCheckedBinOp(Ops);
469 
470     if (Ops.LHS->getType()->isFPOrFPVectorTy())
471       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
472     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
473   }
474   /// Create a binary op that checks for overflow.
475   /// Currently only supports +, - and *.
476   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
477 
478   // Check for undefined division and modulus behaviors.
479   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
480                                                   llvm::Value *Zero,bool isDiv);
481   // Common helper for getting how wide LHS of shift is.
482   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
483   Value *EmitDiv(const BinOpInfo &Ops);
484   Value *EmitRem(const BinOpInfo &Ops);
485   Value *EmitAdd(const BinOpInfo &Ops);
486   Value *EmitSub(const BinOpInfo &Ops);
487   Value *EmitShl(const BinOpInfo &Ops);
488   Value *EmitShr(const BinOpInfo &Ops);
489   Value *EmitAnd(const BinOpInfo &Ops) {
490     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
491   }
492   Value *EmitXor(const BinOpInfo &Ops) {
493     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
494   }
495   Value *EmitOr (const BinOpInfo &Ops) {
496     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
497   }
498 
499   BinOpInfo EmitBinOps(const BinaryOperator *E);
500   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
501                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
502                                   Value *&Result);
503 
504   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
505                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
506 
507   // Binary operators and binary compound assignment operators.
508 #define HANDLEBINOP(OP) \
509   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
510     return Emit ## OP(EmitBinOps(E));                                      \
511   }                                                                        \
512   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
513     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
514   }
515   HANDLEBINOP(Mul)
516   HANDLEBINOP(Div)
517   HANDLEBINOP(Rem)
518   HANDLEBINOP(Add)
519   HANDLEBINOP(Sub)
520   HANDLEBINOP(Shl)
521   HANDLEBINOP(Shr)
522   HANDLEBINOP(And)
523   HANDLEBINOP(Xor)
524   HANDLEBINOP(Or)
525 #undef HANDLEBINOP
526 
527   // Comparisons.
528   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
529                      unsigned SICmpOpc, unsigned FCmpOpc);
530 #define VISITCOMP(CODE, UI, SI, FP) \
531     Value *VisitBin##CODE(const BinaryOperator *E) { \
532       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
533                          llvm::FCmpInst::FP); }
534   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
535   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
536   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
537   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
538   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
539   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
540 #undef VISITCOMP
541 
542   Value *VisitBinAssign     (const BinaryOperator *E);
543 
544   Value *VisitBinLAnd       (const BinaryOperator *E);
545   Value *VisitBinLOr        (const BinaryOperator *E);
546   Value *VisitBinComma      (const BinaryOperator *E);
547 
548   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
549   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
550 
551   // Other Operators.
552   Value *VisitBlockExpr(const BlockExpr *BE);
553   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
554   Value *VisitChooseExpr(ChooseExpr *CE);
555   Value *VisitVAArgExpr(VAArgExpr *VE);
556   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
557     return CGF.EmitObjCStringLiteral(E);
558   }
559   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
560     return CGF.EmitObjCBoxedExpr(E);
561   }
562   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
563     return CGF.EmitObjCArrayLiteral(E);
564   }
565   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
566     return CGF.EmitObjCDictionaryLiteral(E);
567   }
568   Value *VisitAsTypeExpr(AsTypeExpr *CE);
569   Value *VisitAtomicExpr(AtomicExpr *AE);
570 };
571 }  // end anonymous namespace.
572 
573 //===----------------------------------------------------------------------===//
574 //                                Utilities
575 //===----------------------------------------------------------------------===//
576 
577 /// EmitConversionToBool - Convert the specified expression value to a
578 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
579 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
580   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
581 
582   if (SrcType->isRealFloatingType())
583     return EmitFloatToBoolConversion(Src);
584 
585   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
586     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
587 
588   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
589          "Unknown scalar type to convert");
590 
591   if (isa<llvm::IntegerType>(Src->getType()))
592     return EmitIntToBoolConversion(Src);
593 
594   assert(isa<llvm::PointerType>(Src->getType()));
595   return EmitPointerToBoolConversion(Src);
596 }
597 
598 void ScalarExprEmitter::EmitFloatConversionCheck(
599     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
600     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
601   CodeGenFunction::SanitizerScope SanScope(&CGF);
602   using llvm::APFloat;
603   using llvm::APSInt;
604 
605   llvm::Type *SrcTy = Src->getType();
606 
607   llvm::Value *Check = nullptr;
608   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
609     // Integer to floating-point. This can fail for unsigned short -> __half
610     // or unsigned __int128 -> float.
611     assert(DstType->isFloatingType());
612     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
613 
614     APFloat LargestFloat =
615       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
616     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
617 
618     bool IsExact;
619     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
620                                       &IsExact) != APFloat::opOK)
621       // The range of representable values of this floating point type includes
622       // all values of this integer type. Don't need an overflow check.
623       return;
624 
625     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
626     if (SrcIsUnsigned)
627       Check = Builder.CreateICmpULE(Src, Max);
628     else {
629       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
630       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
631       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
632       Check = Builder.CreateAnd(GE, LE);
633     }
634   } else {
635     const llvm::fltSemantics &SrcSema =
636       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
637     if (isa<llvm::IntegerType>(DstTy)) {
638       // Floating-point to integer. This has undefined behavior if the source is
639       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
640       // to an integer).
641       unsigned Width = CGF.getContext().getIntWidth(DstType);
642       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
643 
644       APSInt Min = APSInt::getMinValue(Width, Unsigned);
645       APFloat MinSrc(SrcSema, APFloat::uninitialized);
646       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
647           APFloat::opOverflow)
648         // Don't need an overflow check for lower bound. Just check for
649         // -Inf/NaN.
650         MinSrc = APFloat::getInf(SrcSema, true);
651       else
652         // Find the largest value which is too small to represent (before
653         // truncation toward zero).
654         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
655 
656       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
657       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
658       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
659           APFloat::opOverflow)
660         // Don't need an overflow check for upper bound. Just check for
661         // +Inf/NaN.
662         MaxSrc = APFloat::getInf(SrcSema, false);
663       else
664         // Find the smallest value which is too large to represent (before
665         // truncation toward zero).
666         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
667 
668       // If we're converting from __half, convert the range to float to match
669       // the type of src.
670       if (OrigSrcType->isHalfType()) {
671         const llvm::fltSemantics &Sema =
672           CGF.getContext().getFloatTypeSemantics(SrcType);
673         bool IsInexact;
674         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
676       }
677 
678       llvm::Value *GE =
679         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
680       llvm::Value *LE =
681         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
682       Check = Builder.CreateAnd(GE, LE);
683     } else {
684       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
685       //
686       // Floating-point to floating-point. This has undefined behavior if the
687       // source is not in the range of representable values of the destination
688       // type. The C and C++ standards are spectacularly unclear here. We
689       // diagnose finite out-of-range conversions, but allow infinities and NaNs
690       // to convert to the corresponding value in the smaller type.
691       //
692       // C11 Annex F gives all such conversions defined behavior for IEC 60559
693       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
694       // does not.
695 
696       // Converting from a lower rank to a higher rank can never have
697       // undefined behavior, since higher-rank types must have a superset
698       // of values of lower-rank types.
699       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
700         return;
701 
702       assert(!OrigSrcType->isHalfType() &&
703              "should not check conversion from __half, it has the lowest rank");
704 
705       const llvm::fltSemantics &DstSema =
706         CGF.getContext().getFloatTypeSemantics(DstType);
707       APFloat MinBad = APFloat::getLargest(DstSema, false);
708       APFloat MaxBad = APFloat::getInf(DstSema, false);
709 
710       bool IsInexact;
711       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
713 
714       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
715         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
716       llvm::Value *GE =
717         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
718       llvm::Value *LE =
719         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
720       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
721     }
722   }
723 
724   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
725                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
726                                   CGF.EmitCheckTypeDescriptor(DstType)};
727   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
728                 "float_cast_overflow", StaticArgs, OrigSrc);
729 }
730 
731 /// Emit a conversion from the specified type to the specified destination type,
732 /// both of which are LLVM scalar types.
733 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
734                                                QualType DstType,
735                                                SourceLocation Loc) {
736   SrcType = CGF.getContext().getCanonicalType(SrcType);
737   DstType = CGF.getContext().getCanonicalType(DstType);
738   if (SrcType == DstType) return Src;
739 
740   if (DstType->isVoidType()) return nullptr;
741 
742   llvm::Value *OrigSrc = Src;
743   QualType OrigSrcType = SrcType;
744   llvm::Type *SrcTy = Src->getType();
745 
746   // Handle conversions to bool first, they are special: comparisons against 0.
747   if (DstType->isBooleanType())
748     return EmitConversionToBool(Src, SrcType);
749 
750   llvm::Type *DstTy = ConvertType(DstType);
751 
752   // Cast from half through float if half isn't a native type.
753   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
754     // Cast to FP using the intrinsic if the half type itself isn't supported.
755     if (DstTy->isFloatingPointTy()) {
756       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
757         return Builder.CreateCall(
758             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
759             Src);
760     } else {
761       // Cast to other types through float, using either the intrinsic or FPExt,
762       // depending on whether the half type itself is supported
763       // (as opposed to operations on half, available with NativeHalfType).
764       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
765         Src = Builder.CreateCall(
766             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
767                                  CGF.CGM.FloatTy),
768             Src);
769       } else {
770         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
771       }
772       SrcType = CGF.getContext().FloatTy;
773       SrcTy = CGF.FloatTy;
774     }
775   }
776 
777   // Ignore conversions like int -> uint.
778   if (SrcTy == DstTy)
779     return Src;
780 
781   // Handle pointer conversions next: pointers can only be converted to/from
782   // other pointers and integers. Check for pointer types in terms of LLVM, as
783   // some native types (like Obj-C id) may map to a pointer type.
784   if (isa<llvm::PointerType>(DstTy)) {
785     // The source value may be an integer, or a pointer.
786     if (isa<llvm::PointerType>(SrcTy))
787       return Builder.CreateBitCast(Src, DstTy, "conv");
788 
789     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
790     // First, convert to the correct width so that we control the kind of
791     // extension.
792     llvm::Type *MiddleTy = CGF.IntPtrTy;
793     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
794     llvm::Value* IntResult =
795         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
796     // Then, cast to pointer.
797     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
798   }
799 
800   if (isa<llvm::PointerType>(SrcTy)) {
801     // Must be an ptr to int cast.
802     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
803     return Builder.CreatePtrToInt(Src, DstTy, "conv");
804   }
805 
806   // A scalar can be splatted to an extended vector of the same element type
807   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
808     // Cast the scalar to element type
809     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
810     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy, Loc);
811 
812     // Splat the element across to all elements
813     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
814     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
815   }
816 
817   // Allow bitcast from vector to integer/fp of the same size.
818   if (isa<llvm::VectorType>(SrcTy) ||
819       isa<llvm::VectorType>(DstTy))
820     return Builder.CreateBitCast(Src, DstTy, "conv");
821 
822   // Finally, we have the arithmetic types: real int/float.
823   Value *Res = nullptr;
824   llvm::Type *ResTy = DstTy;
825 
826   // An overflowing conversion has undefined behavior if either the source type
827   // or the destination type is a floating-point type.
828   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
829       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
830     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
831                              Loc);
832 
833   // Cast to half through float if half isn't a native type.
834   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
835     // Make sure we cast in a single step if from another FP type.
836     if (SrcTy->isFloatingPointTy()) {
837       // Use the intrinsic if the half type itself isn't supported
838       // (as opposed to operations on half, available with NativeHalfType).
839       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
840         return Builder.CreateCall(
841             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
842       // If the half type is supported, just use an fptrunc.
843       return Builder.CreateFPTrunc(Src, DstTy);
844     }
845     DstTy = CGF.FloatTy;
846   }
847 
848   if (isa<llvm::IntegerType>(SrcTy)) {
849     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
850     if (isa<llvm::IntegerType>(DstTy))
851       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
852     else if (InputSigned)
853       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
854     else
855       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
856   } else if (isa<llvm::IntegerType>(DstTy)) {
857     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
858     if (DstType->isSignedIntegerOrEnumerationType())
859       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
860     else
861       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
862   } else {
863     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
864            "Unknown real conversion");
865     if (DstTy->getTypeID() < SrcTy->getTypeID())
866       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
867     else
868       Res = Builder.CreateFPExt(Src, DstTy, "conv");
869   }
870 
871   if (DstTy != ResTy) {
872     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
873       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
874       Res = Builder.CreateCall(
875         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
876         Res);
877     } else {
878       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
879     }
880   }
881 
882   return Res;
883 }
884 
885 /// Emit a conversion from the specified complex type to the specified
886 /// destination type, where the destination type is an LLVM scalar type.
887 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
888     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
889     SourceLocation Loc) {
890   // Get the source element type.
891   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
892 
893   // Handle conversions to bool first, they are special: comparisons against 0.
894   if (DstTy->isBooleanType()) {
895     //  Complex != 0  -> (Real != 0) | (Imag != 0)
896     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
897     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
898     return Builder.CreateOr(Src.first, Src.second, "tobool");
899   }
900 
901   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
902   // the imaginary part of the complex value is discarded and the value of the
903   // real part is converted according to the conversion rules for the
904   // corresponding real type.
905   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
906 }
907 
908 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
909   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
910 }
911 
912 /// \brief Emit a sanitization check for the given "binary" operation (which
913 /// might actually be a unary increment which has been lowered to a binary
914 /// operation). The check passes if all values in \p Checks (which are \c i1),
915 /// are \c true.
916 void ScalarExprEmitter::EmitBinOpCheck(
917     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
918   assert(CGF.IsSanitizerScope);
919   StringRef CheckName;
920   SmallVector<llvm::Constant *, 4> StaticData;
921   SmallVector<llvm::Value *, 2> DynamicData;
922 
923   BinaryOperatorKind Opcode = Info.Opcode;
924   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
925     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
926 
927   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
928   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
929   if (UO && UO->getOpcode() == UO_Minus) {
930     CheckName = "negate_overflow";
931     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
932     DynamicData.push_back(Info.RHS);
933   } else {
934     if (BinaryOperator::isShiftOp(Opcode)) {
935       // Shift LHS negative or too large, or RHS out of bounds.
936       CheckName = "shift_out_of_bounds";
937       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
938       StaticData.push_back(
939         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
940       StaticData.push_back(
941         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
942     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
943       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
944       CheckName = "divrem_overflow";
945       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
946     } else {
947       // Arithmetic overflow (+, -, *).
948       switch (Opcode) {
949       case BO_Add: CheckName = "add_overflow"; break;
950       case BO_Sub: CheckName = "sub_overflow"; break;
951       case BO_Mul: CheckName = "mul_overflow"; break;
952       default: llvm_unreachable("unexpected opcode for bin op check");
953       }
954       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
955     }
956     DynamicData.push_back(Info.LHS);
957     DynamicData.push_back(Info.RHS);
958   }
959 
960   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
961 }
962 
963 //===----------------------------------------------------------------------===//
964 //                            Visitor Methods
965 //===----------------------------------------------------------------------===//
966 
967 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
968   CGF.ErrorUnsupported(E, "scalar expression");
969   if (E->getType()->isVoidType())
970     return nullptr;
971   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
972 }
973 
974 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
975   // Vector Mask Case
976   if (E->getNumSubExprs() == 2 ||
977       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
978     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
979     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
980     Value *Mask;
981 
982     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
983     unsigned LHSElts = LTy->getNumElements();
984 
985     if (E->getNumSubExprs() == 3) {
986       Mask = CGF.EmitScalarExpr(E->getExpr(2));
987 
988       // Shuffle LHS & RHS into one input vector.
989       SmallVector<llvm::Constant*, 32> concat;
990       for (unsigned i = 0; i != LHSElts; ++i) {
991         concat.push_back(Builder.getInt32(2*i));
992         concat.push_back(Builder.getInt32(2*i+1));
993       }
994 
995       Value* CV = llvm::ConstantVector::get(concat);
996       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
997       LHSElts *= 2;
998     } else {
999       Mask = RHS;
1000     }
1001 
1002     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1003 
1004     // Mask off the high bits of each shuffle index.
1005     Value *MaskBits =
1006         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1007     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1008 
1009     // newv = undef
1010     // mask = mask & maskbits
1011     // for each elt
1012     //   n = extract mask i
1013     //   x = extract val n
1014     //   newv = insert newv, x, i
1015     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1016                                                   MTy->getNumElements());
1017     Value* NewV = llvm::UndefValue::get(RTy);
1018     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1019       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1020       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1021 
1022       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1023       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1024     }
1025     return NewV;
1026   }
1027 
1028   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1029   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1030 
1031   SmallVector<llvm::Constant*, 32> indices;
1032   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1033     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1034     // Check for -1 and output it as undef in the IR.
1035     if (Idx.isSigned() && Idx.isAllOnesValue())
1036       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1037     else
1038       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1039   }
1040 
1041   Value *SV = llvm::ConstantVector::get(indices);
1042   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1043 }
1044 
1045 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1046   QualType SrcType = E->getSrcExpr()->getType(),
1047            DstType = E->getType();
1048 
1049   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1050 
1051   SrcType = CGF.getContext().getCanonicalType(SrcType);
1052   DstType = CGF.getContext().getCanonicalType(DstType);
1053   if (SrcType == DstType) return Src;
1054 
1055   assert(SrcType->isVectorType() &&
1056          "ConvertVector source type must be a vector");
1057   assert(DstType->isVectorType() &&
1058          "ConvertVector destination type must be a vector");
1059 
1060   llvm::Type *SrcTy = Src->getType();
1061   llvm::Type *DstTy = ConvertType(DstType);
1062 
1063   // Ignore conversions like int -> uint.
1064   if (SrcTy == DstTy)
1065     return Src;
1066 
1067   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1068            DstEltType = DstType->getAs<VectorType>()->getElementType();
1069 
1070   assert(SrcTy->isVectorTy() &&
1071          "ConvertVector source IR type must be a vector");
1072   assert(DstTy->isVectorTy() &&
1073          "ConvertVector destination IR type must be a vector");
1074 
1075   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1076              *DstEltTy = DstTy->getVectorElementType();
1077 
1078   if (DstEltType->isBooleanType()) {
1079     assert((SrcEltTy->isFloatingPointTy() ||
1080             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1081 
1082     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1083     if (SrcEltTy->isFloatingPointTy()) {
1084       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1085     } else {
1086       return Builder.CreateICmpNE(Src, Zero, "tobool");
1087     }
1088   }
1089 
1090   // We have the arithmetic types: real int/float.
1091   Value *Res = nullptr;
1092 
1093   if (isa<llvm::IntegerType>(SrcEltTy)) {
1094     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1095     if (isa<llvm::IntegerType>(DstEltTy))
1096       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1097     else if (InputSigned)
1098       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1099     else
1100       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1101   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1102     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1103     if (DstEltType->isSignedIntegerOrEnumerationType())
1104       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1105     else
1106       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1107   } else {
1108     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1109            "Unknown real conversion");
1110     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1111       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1112     else
1113       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1114   }
1115 
1116   return Res;
1117 }
1118 
1119 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1120   llvm::APSInt Value;
1121   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1122     if (E->isArrow())
1123       CGF.EmitScalarExpr(E->getBase());
1124     else
1125       EmitLValue(E->getBase());
1126     return Builder.getInt(Value);
1127   }
1128 
1129   return EmitLoadOfLValue(E);
1130 }
1131 
1132 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1133   TestAndClearIgnoreResultAssign();
1134 
1135   // Emit subscript expressions in rvalue context's.  For most cases, this just
1136   // loads the lvalue formed by the subscript expr.  However, we have to be
1137   // careful, because the base of a vector subscript is occasionally an rvalue,
1138   // so we can't get it as an lvalue.
1139   if (!E->getBase()->getType()->isVectorType())
1140     return EmitLoadOfLValue(E);
1141 
1142   // Handle the vector case.  The base must be a vector, the index must be an
1143   // integer value.
1144   Value *Base = Visit(E->getBase());
1145   Value *Idx  = Visit(E->getIdx());
1146   QualType IdxTy = E->getIdx()->getType();
1147 
1148   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1149     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1150 
1151   return Builder.CreateExtractElement(Base, Idx, "vecext");
1152 }
1153 
1154 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1155                                   unsigned Off, llvm::Type *I32Ty) {
1156   int MV = SVI->getMaskValue(Idx);
1157   if (MV == -1)
1158     return llvm::UndefValue::get(I32Ty);
1159   return llvm::ConstantInt::get(I32Ty, Off+MV);
1160 }
1161 
1162 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1163   if (C->getBitWidth() != 32) {
1164       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1165                                                     C->getZExtValue()) &&
1166              "Index operand too large for shufflevector mask!");
1167       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1168   }
1169   return C;
1170 }
1171 
1172 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1173   bool Ignore = TestAndClearIgnoreResultAssign();
1174   (void)Ignore;
1175   assert (Ignore == false && "init list ignored");
1176   unsigned NumInitElements = E->getNumInits();
1177 
1178   if (E->hadArrayRangeDesignator())
1179     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1180 
1181   llvm::VectorType *VType =
1182     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1183 
1184   if (!VType) {
1185     if (NumInitElements == 0) {
1186       // C++11 value-initialization for the scalar.
1187       return EmitNullValue(E->getType());
1188     }
1189     // We have a scalar in braces. Just use the first element.
1190     return Visit(E->getInit(0));
1191   }
1192 
1193   unsigned ResElts = VType->getNumElements();
1194 
1195   // Loop over initializers collecting the Value for each, and remembering
1196   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1197   // us to fold the shuffle for the swizzle into the shuffle for the vector
1198   // initializer, since LLVM optimizers generally do not want to touch
1199   // shuffles.
1200   unsigned CurIdx = 0;
1201   bool VIsUndefShuffle = false;
1202   llvm::Value *V = llvm::UndefValue::get(VType);
1203   for (unsigned i = 0; i != NumInitElements; ++i) {
1204     Expr *IE = E->getInit(i);
1205     Value *Init = Visit(IE);
1206     SmallVector<llvm::Constant*, 16> Args;
1207 
1208     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1209 
1210     // Handle scalar elements.  If the scalar initializer is actually one
1211     // element of a different vector of the same width, use shuffle instead of
1212     // extract+insert.
1213     if (!VVT) {
1214       if (isa<ExtVectorElementExpr>(IE)) {
1215         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1216 
1217         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1218           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1219           Value *LHS = nullptr, *RHS = nullptr;
1220           if (CurIdx == 0) {
1221             // insert into undef -> shuffle (src, undef)
1222             // shufflemask must use an i32
1223             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1224             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1225 
1226             LHS = EI->getVectorOperand();
1227             RHS = V;
1228             VIsUndefShuffle = true;
1229           } else if (VIsUndefShuffle) {
1230             // insert into undefshuffle && size match -> shuffle (v, src)
1231             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1232             for (unsigned j = 0; j != CurIdx; ++j)
1233               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1234             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1235             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1236 
1237             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1238             RHS = EI->getVectorOperand();
1239             VIsUndefShuffle = false;
1240           }
1241           if (!Args.empty()) {
1242             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1243             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1244             ++CurIdx;
1245             continue;
1246           }
1247         }
1248       }
1249       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1250                                       "vecinit");
1251       VIsUndefShuffle = false;
1252       ++CurIdx;
1253       continue;
1254     }
1255 
1256     unsigned InitElts = VVT->getNumElements();
1257 
1258     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1259     // input is the same width as the vector being constructed, generate an
1260     // optimized shuffle of the swizzle input into the result.
1261     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1262     if (isa<ExtVectorElementExpr>(IE)) {
1263       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1264       Value *SVOp = SVI->getOperand(0);
1265       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1266 
1267       if (OpTy->getNumElements() == ResElts) {
1268         for (unsigned j = 0; j != CurIdx; ++j) {
1269           // If the current vector initializer is a shuffle with undef, merge
1270           // this shuffle directly into it.
1271           if (VIsUndefShuffle) {
1272             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1273                                       CGF.Int32Ty));
1274           } else {
1275             Args.push_back(Builder.getInt32(j));
1276           }
1277         }
1278         for (unsigned j = 0, je = InitElts; j != je; ++j)
1279           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1280         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1281 
1282         if (VIsUndefShuffle)
1283           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1284 
1285         Init = SVOp;
1286       }
1287     }
1288 
1289     // Extend init to result vector length, and then shuffle its contribution
1290     // to the vector initializer into V.
1291     if (Args.empty()) {
1292       for (unsigned j = 0; j != InitElts; ++j)
1293         Args.push_back(Builder.getInt32(j));
1294       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1295       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1296       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1297                                          Mask, "vext");
1298 
1299       Args.clear();
1300       for (unsigned j = 0; j != CurIdx; ++j)
1301         Args.push_back(Builder.getInt32(j));
1302       for (unsigned j = 0; j != InitElts; ++j)
1303         Args.push_back(Builder.getInt32(j+Offset));
1304       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1305     }
1306 
1307     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1308     // merging subsequent shuffles into this one.
1309     if (CurIdx == 0)
1310       std::swap(V, Init);
1311     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1312     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1313     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1314     CurIdx += InitElts;
1315   }
1316 
1317   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1318   // Emit remaining default initializers.
1319   llvm::Type *EltTy = VType->getElementType();
1320 
1321   // Emit remaining default initializers
1322   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1323     Value *Idx = Builder.getInt32(CurIdx);
1324     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1325     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1326   }
1327   return V;
1328 }
1329 
1330 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1331   const Expr *E = CE->getSubExpr();
1332 
1333   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1334     return false;
1335 
1336   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1337     // We always assume that 'this' is never null.
1338     return false;
1339   }
1340 
1341   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1342     // And that glvalue casts are never null.
1343     if (ICE->getValueKind() != VK_RValue)
1344       return false;
1345   }
1346 
1347   return true;
1348 }
1349 
1350 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1351 // have to handle a more broad range of conversions than explicit casts, as they
1352 // handle things like function to ptr-to-function decay etc.
1353 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1354   Expr *E = CE->getSubExpr();
1355   QualType DestTy = CE->getType();
1356   CastKind Kind = CE->getCastKind();
1357 
1358   if (!DestTy->isVoidType())
1359     TestAndClearIgnoreResultAssign();
1360 
1361   // Since almost all cast kinds apply to scalars, this switch doesn't have
1362   // a default case, so the compiler will warn on a missing case.  The cases
1363   // are in the same order as in the CastKind enum.
1364   switch (Kind) {
1365   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1366   case CK_BuiltinFnToFnPtr:
1367     llvm_unreachable("builtin functions are handled elsewhere");
1368 
1369   case CK_LValueBitCast:
1370   case CK_ObjCObjectLValueCast: {
1371     Address Addr = EmitLValue(E).getAddress();
1372     Addr = Builder.CreateElementBitCast(Addr, ConvertType(DestTy));
1373     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1374     return EmitLoadOfLValue(LV, CE->getExprLoc());
1375   }
1376 
1377   case CK_CPointerToObjCPointerCast:
1378   case CK_BlockPointerToObjCPointerCast:
1379   case CK_AnyPointerToBlockPointerCast:
1380   case CK_BitCast: {
1381     Value *Src = Visit(const_cast<Expr*>(E));
1382     llvm::Type *SrcTy = Src->getType();
1383     llvm::Type *DstTy = ConvertType(DestTy);
1384     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1385         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1386       llvm_unreachable("wrong cast for pointers in different address spaces"
1387                        "(must be an address space cast)!");
1388     }
1389 
1390     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1391       if (auto PT = DestTy->getAs<PointerType>())
1392         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1393                                       /*MayBeNull=*/true,
1394                                       CodeGenFunction::CFITCK_UnrelatedCast,
1395                                       CE->getLocStart());
1396     }
1397 
1398     return Builder.CreateBitCast(Src, DstTy);
1399   }
1400   case CK_AddressSpaceConversion: {
1401     Value *Src = Visit(const_cast<Expr*>(E));
1402     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1403   }
1404   case CK_AtomicToNonAtomic:
1405   case CK_NonAtomicToAtomic:
1406   case CK_NoOp:
1407   case CK_UserDefinedConversion:
1408     return Visit(const_cast<Expr*>(E));
1409 
1410   case CK_BaseToDerived: {
1411     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1412     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1413 
1414     Address Base = CGF.EmitPointerWithAlignment(E);
1415     Address Derived =
1416       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1417                                    CE->path_begin(), CE->path_end(),
1418                                    CGF.ShouldNullCheckClassCastValue(CE));
1419 
1420     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1421     // performed and the object is not of the derived type.
1422     if (CGF.sanitizePerformTypeCheck())
1423       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1424                         Derived.getPointer(), DestTy->getPointeeType());
1425 
1426     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1427       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1428                                     Derived.getPointer(),
1429                                     /*MayBeNull=*/true,
1430                                     CodeGenFunction::CFITCK_DerivedCast,
1431                                     CE->getLocStart());
1432 
1433     return Derived.getPointer();
1434   }
1435   case CK_UncheckedDerivedToBase:
1436   case CK_DerivedToBase: {
1437     // The EmitPointerWithAlignment path does this fine; just discard
1438     // the alignment.
1439     return CGF.EmitPointerWithAlignment(CE).getPointer();
1440   }
1441 
1442   case CK_Dynamic: {
1443     Address V = CGF.EmitPointerWithAlignment(E);
1444     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1445     return CGF.EmitDynamicCast(V, DCE);
1446   }
1447 
1448   case CK_ArrayToPointerDecay:
1449     return CGF.EmitArrayToPointerDecay(E).getPointer();
1450   case CK_FunctionToPointerDecay:
1451     return EmitLValue(E).getPointer();
1452 
1453   case CK_NullToPointer:
1454     if (MustVisitNullValue(E))
1455       (void) Visit(E);
1456 
1457     return llvm::ConstantPointerNull::get(
1458                                cast<llvm::PointerType>(ConvertType(DestTy)));
1459 
1460   case CK_NullToMemberPointer: {
1461     if (MustVisitNullValue(E))
1462       (void) Visit(E);
1463 
1464     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1465     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1466   }
1467 
1468   case CK_ReinterpretMemberPointer:
1469   case CK_BaseToDerivedMemberPointer:
1470   case CK_DerivedToBaseMemberPointer: {
1471     Value *Src = Visit(E);
1472 
1473     // Note that the AST doesn't distinguish between checked and
1474     // unchecked member pointer conversions, so we always have to
1475     // implement checked conversions here.  This is inefficient when
1476     // actual control flow may be required in order to perform the
1477     // check, which it is for data member pointers (but not member
1478     // function pointers on Itanium and ARM).
1479     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1480   }
1481 
1482   case CK_ARCProduceObject:
1483     return CGF.EmitARCRetainScalarExpr(E);
1484   case CK_ARCConsumeObject:
1485     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1486   case CK_ARCReclaimReturnedObject: {
1487     llvm::Value *value = Visit(E);
1488     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1489     return CGF.EmitObjCConsumeObject(E->getType(), value);
1490   }
1491   case CK_ARCExtendBlockObject:
1492     return CGF.EmitARCExtendBlockObject(E);
1493 
1494   case CK_CopyAndAutoreleaseBlockObject:
1495     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1496 
1497   case CK_FloatingRealToComplex:
1498   case CK_FloatingComplexCast:
1499   case CK_IntegralRealToComplex:
1500   case CK_IntegralComplexCast:
1501   case CK_IntegralComplexToFloatingComplex:
1502   case CK_FloatingComplexToIntegralComplex:
1503   case CK_ConstructorConversion:
1504   case CK_ToUnion:
1505     llvm_unreachable("scalar cast to non-scalar value");
1506 
1507   case CK_LValueToRValue:
1508     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1509     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1510     return Visit(const_cast<Expr*>(E));
1511 
1512   case CK_IntegralToPointer: {
1513     Value *Src = Visit(const_cast<Expr*>(E));
1514 
1515     // First, convert to the correct width so that we control the kind of
1516     // extension.
1517     llvm::Type *MiddleTy = CGF.IntPtrTy;
1518     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1519     llvm::Value* IntResult =
1520       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1521 
1522     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1523   }
1524   case CK_PointerToIntegral:
1525     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1526     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1527 
1528   case CK_ToVoid: {
1529     CGF.EmitIgnoredExpr(E);
1530     return nullptr;
1531   }
1532   case CK_VectorSplat: {
1533     llvm::Type *DstTy = ConvertType(DestTy);
1534     Value *Elt = Visit(const_cast<Expr*>(E));
1535     Elt = EmitScalarConversion(Elt, E->getType(),
1536                                DestTy->getAs<VectorType>()->getElementType(),
1537                                CE->getExprLoc());
1538 
1539     // Splat the element across to all elements
1540     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1541     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1542   }
1543 
1544   case CK_IntegralCast:
1545   case CK_IntegralToFloating:
1546   case CK_FloatingToIntegral:
1547   case CK_FloatingCast:
1548     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1549                                 CE->getExprLoc());
1550   case CK_IntegralToBoolean:
1551     return EmitIntToBoolConversion(Visit(E));
1552   case CK_PointerToBoolean:
1553     return EmitPointerToBoolConversion(Visit(E));
1554   case CK_FloatingToBoolean:
1555     return EmitFloatToBoolConversion(Visit(E));
1556   case CK_MemberPointerToBoolean: {
1557     llvm::Value *MemPtr = Visit(E);
1558     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1559     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1560   }
1561 
1562   case CK_FloatingComplexToReal:
1563   case CK_IntegralComplexToReal:
1564     return CGF.EmitComplexExpr(E, false, true).first;
1565 
1566   case CK_FloatingComplexToBoolean:
1567   case CK_IntegralComplexToBoolean: {
1568     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1569 
1570     // TODO: kill this function off, inline appropriate case here
1571     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1572                                          CE->getExprLoc());
1573   }
1574 
1575   case CK_ZeroToOCLEvent: {
1576     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1577     return llvm::Constant::getNullValue(ConvertType(DestTy));
1578   }
1579 
1580   }
1581 
1582   llvm_unreachable("unknown scalar cast");
1583 }
1584 
1585 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1586   CodeGenFunction::StmtExprEvaluation eval(CGF);
1587   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1588                                            !E->getType()->isVoidType());
1589   if (!RetAlloca.isValid())
1590     return nullptr;
1591   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1592                               E->getExprLoc());
1593 }
1594 
1595 //===----------------------------------------------------------------------===//
1596 //                             Unary Operators
1597 //===----------------------------------------------------------------------===//
1598 
1599 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1600                                            llvm::Value *InVal, bool IsInc) {
1601   BinOpInfo BinOp;
1602   BinOp.LHS = InVal;
1603   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1604   BinOp.Ty = E->getType();
1605   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1606   BinOp.FPContractable = false;
1607   BinOp.E = E;
1608   return BinOp;
1609 }
1610 
1611 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1612     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1613   llvm::Value *Amount =
1614       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1615   StringRef Name = IsInc ? "inc" : "dec";
1616   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1617   case LangOptions::SOB_Defined:
1618     return Builder.CreateAdd(InVal, Amount, Name);
1619   case LangOptions::SOB_Undefined:
1620     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1621       return Builder.CreateNSWAdd(InVal, Amount, Name);
1622     // Fall through.
1623   case LangOptions::SOB_Trapping:
1624     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1625   }
1626   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1627 }
1628 
1629 llvm::Value *
1630 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1631                                            bool isInc, bool isPre) {
1632 
1633   QualType type = E->getSubExpr()->getType();
1634   llvm::PHINode *atomicPHI = nullptr;
1635   llvm::Value *value;
1636   llvm::Value *input;
1637 
1638   int amount = (isInc ? 1 : -1);
1639 
1640   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1641     type = atomicTy->getValueType();
1642     if (isInc && type->isBooleanType()) {
1643       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1644       if (isPre) {
1645         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1646           ->setAtomic(llvm::SequentiallyConsistent);
1647         return Builder.getTrue();
1648       }
1649       // For atomic bool increment, we just store true and return it for
1650       // preincrement, do an atomic swap with true for postincrement
1651         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1652             LV.getPointer(), True, llvm::SequentiallyConsistent);
1653     }
1654     // Special case for atomic increment / decrement on integers, emit
1655     // atomicrmw instructions.  We skip this if we want to be doing overflow
1656     // checking, and fall into the slow path with the atomic cmpxchg loop.
1657     if (!type->isBooleanType() && type->isIntegerType() &&
1658         !(type->isUnsignedIntegerType() &&
1659           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1660         CGF.getLangOpts().getSignedOverflowBehavior() !=
1661             LangOptions::SOB_Trapping) {
1662       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1663         llvm::AtomicRMWInst::Sub;
1664       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1665         llvm::Instruction::Sub;
1666       llvm::Value *amt = CGF.EmitToMemory(
1667           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1668       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1669           LV.getPointer(), amt, llvm::SequentiallyConsistent);
1670       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1671     }
1672     value = EmitLoadOfLValue(LV, E->getExprLoc());
1673     input = value;
1674     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1675     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1676     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1677     value = CGF.EmitToMemory(value, type);
1678     Builder.CreateBr(opBB);
1679     Builder.SetInsertPoint(opBB);
1680     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1681     atomicPHI->addIncoming(value, startBB);
1682     value = atomicPHI;
1683   } else {
1684     value = EmitLoadOfLValue(LV, E->getExprLoc());
1685     input = value;
1686   }
1687 
1688   // Special case of integer increment that we have to check first: bool++.
1689   // Due to promotion rules, we get:
1690   //   bool++ -> bool = bool + 1
1691   //          -> bool = (int)bool + 1
1692   //          -> bool = ((int)bool + 1 != 0)
1693   // An interesting aspect of this is that increment is always true.
1694   // Decrement does not have this property.
1695   if (isInc && type->isBooleanType()) {
1696     value = Builder.getTrue();
1697 
1698   // Most common case by far: integer increment.
1699   } else if (type->isIntegerType()) {
1700     // Note that signed integer inc/dec with width less than int can't
1701     // overflow because of promotion rules; we're just eliding a few steps here.
1702     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1703                        CGF.IntTy->getIntegerBitWidth();
1704     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1705       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1706     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1707                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1708       value =
1709           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1710     } else {
1711       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1712       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1713     }
1714 
1715   // Next most common: pointer increment.
1716   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1717     QualType type = ptr->getPointeeType();
1718 
1719     // VLA types don't have constant size.
1720     if (const VariableArrayType *vla
1721           = CGF.getContext().getAsVariableArrayType(type)) {
1722       llvm::Value *numElts = CGF.getVLASize(vla).first;
1723       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1724       if (CGF.getLangOpts().isSignedOverflowDefined())
1725         value = Builder.CreateGEP(value, numElts, "vla.inc");
1726       else
1727         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1728 
1729     // Arithmetic on function pointers (!) is just +-1.
1730     } else if (type->isFunctionType()) {
1731       llvm::Value *amt = Builder.getInt32(amount);
1732 
1733       value = CGF.EmitCastToVoidPtr(value);
1734       if (CGF.getLangOpts().isSignedOverflowDefined())
1735         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1736       else
1737         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1738       value = Builder.CreateBitCast(value, input->getType());
1739 
1740     // For everything else, we can just do a simple increment.
1741     } else {
1742       llvm::Value *amt = Builder.getInt32(amount);
1743       if (CGF.getLangOpts().isSignedOverflowDefined())
1744         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1745       else
1746         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1747     }
1748 
1749   // Vector increment/decrement.
1750   } else if (type->isVectorType()) {
1751     if (type->hasIntegerRepresentation()) {
1752       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1753 
1754       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1755     } else {
1756       value = Builder.CreateFAdd(
1757                   value,
1758                   llvm::ConstantFP::get(value->getType(), amount),
1759                   isInc ? "inc" : "dec");
1760     }
1761 
1762   // Floating point.
1763   } else if (type->isRealFloatingType()) {
1764     // Add the inc/dec to the real part.
1765     llvm::Value *amt;
1766 
1767     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1768       // Another special case: half FP increment should be done via float
1769       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1770         value = Builder.CreateCall(
1771             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1772                                  CGF.CGM.FloatTy),
1773             input, "incdec.conv");
1774       } else {
1775         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1776       }
1777     }
1778 
1779     if (value->getType()->isFloatTy())
1780       amt = llvm::ConstantFP::get(VMContext,
1781                                   llvm::APFloat(static_cast<float>(amount)));
1782     else if (value->getType()->isDoubleTy())
1783       amt = llvm::ConstantFP::get(VMContext,
1784                                   llvm::APFloat(static_cast<double>(amount)));
1785     else {
1786       // Remaining types are either Half or LongDouble.  Convert from float.
1787       llvm::APFloat F(static_cast<float>(amount));
1788       bool ignored;
1789       // Don't use getFloatTypeSemantics because Half isn't
1790       // necessarily represented using the "half" LLVM type.
1791       F.convert(value->getType()->isHalfTy()
1792                     ? CGF.getTarget().getHalfFormat()
1793                     : CGF.getTarget().getLongDoubleFormat(),
1794                 llvm::APFloat::rmTowardZero, &ignored);
1795       amt = llvm::ConstantFP::get(VMContext, F);
1796     }
1797     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1798 
1799     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1800       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1801         value = Builder.CreateCall(
1802             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1803                                  CGF.CGM.FloatTy),
1804             value, "incdec.conv");
1805       } else {
1806         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1807       }
1808     }
1809 
1810   // Objective-C pointer types.
1811   } else {
1812     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1813     value = CGF.EmitCastToVoidPtr(value);
1814 
1815     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1816     if (!isInc) size = -size;
1817     llvm::Value *sizeValue =
1818       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1819 
1820     if (CGF.getLangOpts().isSignedOverflowDefined())
1821       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1822     else
1823       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1824     value = Builder.CreateBitCast(value, input->getType());
1825   }
1826 
1827   if (atomicPHI) {
1828     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1829     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1830     auto Pair = CGF.EmitAtomicCompareExchange(
1831         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1832     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1833     llvm::Value *success = Pair.second;
1834     atomicPHI->addIncoming(old, opBB);
1835     Builder.CreateCondBr(success, contBB, opBB);
1836     Builder.SetInsertPoint(contBB);
1837     return isPre ? value : input;
1838   }
1839 
1840   // Store the updated result through the lvalue.
1841   if (LV.isBitField())
1842     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1843   else
1844     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1845 
1846   // If this is a postinc, return the value read from memory, otherwise use the
1847   // updated value.
1848   return isPre ? value : input;
1849 }
1850 
1851 
1852 
1853 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1854   TestAndClearIgnoreResultAssign();
1855   // Emit unary minus with EmitSub so we handle overflow cases etc.
1856   BinOpInfo BinOp;
1857   BinOp.RHS = Visit(E->getSubExpr());
1858 
1859   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1860     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1861   else
1862     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1863   BinOp.Ty = E->getType();
1864   BinOp.Opcode = BO_Sub;
1865   BinOp.FPContractable = false;
1866   BinOp.E = E;
1867   return EmitSub(BinOp);
1868 }
1869 
1870 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1871   TestAndClearIgnoreResultAssign();
1872   Value *Op = Visit(E->getSubExpr());
1873   return Builder.CreateNot(Op, "neg");
1874 }
1875 
1876 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1877   // Perform vector logical not on comparison with zero vector.
1878   if (E->getType()->isExtVectorType()) {
1879     Value *Oper = Visit(E->getSubExpr());
1880     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1881     Value *Result;
1882     if (Oper->getType()->isFPOrFPVectorTy())
1883       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1884     else
1885       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1886     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1887   }
1888 
1889   // Compare operand to zero.
1890   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1891 
1892   // Invert value.
1893   // TODO: Could dynamically modify easy computations here.  For example, if
1894   // the operand is an icmp ne, turn into icmp eq.
1895   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1896 
1897   // ZExt result to the expr type.
1898   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1899 }
1900 
1901 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1902   // Try folding the offsetof to a constant.
1903   llvm::APSInt Value;
1904   if (E->EvaluateAsInt(Value, CGF.getContext()))
1905     return Builder.getInt(Value);
1906 
1907   // Loop over the components of the offsetof to compute the value.
1908   unsigned n = E->getNumComponents();
1909   llvm::Type* ResultType = ConvertType(E->getType());
1910   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1911   QualType CurrentType = E->getTypeSourceInfo()->getType();
1912   for (unsigned i = 0; i != n; ++i) {
1913     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1914     llvm::Value *Offset = nullptr;
1915     switch (ON.getKind()) {
1916     case OffsetOfExpr::OffsetOfNode::Array: {
1917       // Compute the index
1918       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1919       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1920       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1921       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1922 
1923       // Save the element type
1924       CurrentType =
1925           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1926 
1927       // Compute the element size
1928       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1929           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1930 
1931       // Multiply out to compute the result
1932       Offset = Builder.CreateMul(Idx, ElemSize);
1933       break;
1934     }
1935 
1936     case OffsetOfExpr::OffsetOfNode::Field: {
1937       FieldDecl *MemberDecl = ON.getField();
1938       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1939       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1940 
1941       // Compute the index of the field in its parent.
1942       unsigned i = 0;
1943       // FIXME: It would be nice if we didn't have to loop here!
1944       for (RecordDecl::field_iterator Field = RD->field_begin(),
1945                                       FieldEnd = RD->field_end();
1946            Field != FieldEnd; ++Field, ++i) {
1947         if (*Field == MemberDecl)
1948           break;
1949       }
1950       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1951 
1952       // Compute the offset to the field
1953       int64_t OffsetInt = RL.getFieldOffset(i) /
1954                           CGF.getContext().getCharWidth();
1955       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1956 
1957       // Save the element type.
1958       CurrentType = MemberDecl->getType();
1959       break;
1960     }
1961 
1962     case OffsetOfExpr::OffsetOfNode::Identifier:
1963       llvm_unreachable("dependent __builtin_offsetof");
1964 
1965     case OffsetOfExpr::OffsetOfNode::Base: {
1966       if (ON.getBase()->isVirtual()) {
1967         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1968         continue;
1969       }
1970 
1971       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1972       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1973 
1974       // Save the element type.
1975       CurrentType = ON.getBase()->getType();
1976 
1977       // Compute the offset to the base.
1978       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1979       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1980       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1981       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1982       break;
1983     }
1984     }
1985     Result = Builder.CreateAdd(Result, Offset);
1986   }
1987   return Result;
1988 }
1989 
1990 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1991 /// argument of the sizeof expression as an integer.
1992 Value *
1993 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1994                               const UnaryExprOrTypeTraitExpr *E) {
1995   QualType TypeToSize = E->getTypeOfArgument();
1996   if (E->getKind() == UETT_SizeOf) {
1997     if (const VariableArrayType *VAT =
1998           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1999       if (E->isArgumentType()) {
2000         // sizeof(type) - make sure to emit the VLA size.
2001         CGF.EmitVariablyModifiedType(TypeToSize);
2002       } else {
2003         // C99 6.5.3.4p2: If the argument is an expression of type
2004         // VLA, it is evaluated.
2005         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2006       }
2007 
2008       QualType eltType;
2009       llvm::Value *numElts;
2010       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2011 
2012       llvm::Value *size = numElts;
2013 
2014       // Scale the number of non-VLA elements by the non-VLA element size.
2015       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2016       if (!eltSize.isOne())
2017         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2018 
2019       return size;
2020     }
2021   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2022     auto Alignment =
2023         CGF.getContext()
2024             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2025                 E->getTypeOfArgument()->getPointeeType()))
2026             .getQuantity();
2027     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2028   }
2029 
2030   // If this isn't sizeof(vla), the result must be constant; use the constant
2031   // folding logic so we don't have to duplicate it here.
2032   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2033 }
2034 
2035 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2036   Expr *Op = E->getSubExpr();
2037   if (Op->getType()->isAnyComplexType()) {
2038     // If it's an l-value, load through the appropriate subobject l-value.
2039     // Note that we have to ask E because Op might be an l-value that
2040     // this won't work for, e.g. an Obj-C property.
2041     if (E->isGLValue())
2042       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2043                                   E->getExprLoc()).getScalarVal();
2044 
2045     // Otherwise, calculate and project.
2046     return CGF.EmitComplexExpr(Op, false, true).first;
2047   }
2048 
2049   return Visit(Op);
2050 }
2051 
2052 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2053   Expr *Op = E->getSubExpr();
2054   if (Op->getType()->isAnyComplexType()) {
2055     // If it's an l-value, load through the appropriate subobject l-value.
2056     // Note that we have to ask E because Op might be an l-value that
2057     // this won't work for, e.g. an Obj-C property.
2058     if (Op->isGLValue())
2059       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2060                                   E->getExprLoc()).getScalarVal();
2061 
2062     // Otherwise, calculate and project.
2063     return CGF.EmitComplexExpr(Op, true, false).second;
2064   }
2065 
2066   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2067   // effects are evaluated, but not the actual value.
2068   if (Op->isGLValue())
2069     CGF.EmitLValue(Op);
2070   else
2071     CGF.EmitScalarExpr(Op, true);
2072   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2073 }
2074 
2075 //===----------------------------------------------------------------------===//
2076 //                           Binary Operators
2077 //===----------------------------------------------------------------------===//
2078 
2079 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2080   TestAndClearIgnoreResultAssign();
2081   BinOpInfo Result;
2082   Result.LHS = Visit(E->getLHS());
2083   Result.RHS = Visit(E->getRHS());
2084   Result.Ty  = E->getType();
2085   Result.Opcode = E->getOpcode();
2086   Result.FPContractable = E->isFPContractable();
2087   Result.E = E;
2088   return Result;
2089 }
2090 
2091 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2092                                               const CompoundAssignOperator *E,
2093                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2094                                                    Value *&Result) {
2095   QualType LHSTy = E->getLHS()->getType();
2096   BinOpInfo OpInfo;
2097 
2098   if (E->getComputationResultType()->isAnyComplexType())
2099     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2100 
2101   // Emit the RHS first.  __block variables need to have the rhs evaluated
2102   // first, plus this should improve codegen a little.
2103   OpInfo.RHS = Visit(E->getRHS());
2104   OpInfo.Ty = E->getComputationResultType();
2105   OpInfo.Opcode = E->getOpcode();
2106   OpInfo.FPContractable = false;
2107   OpInfo.E = E;
2108   // Load/convert the LHS.
2109   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2110 
2111   llvm::PHINode *atomicPHI = nullptr;
2112   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2113     QualType type = atomicTy->getValueType();
2114     if (!type->isBooleanType() && type->isIntegerType() &&
2115         !(type->isUnsignedIntegerType() &&
2116           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2117         CGF.getLangOpts().getSignedOverflowBehavior() !=
2118             LangOptions::SOB_Trapping) {
2119       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2120       switch (OpInfo.Opcode) {
2121         // We don't have atomicrmw operands for *, %, /, <<, >>
2122         case BO_MulAssign: case BO_DivAssign:
2123         case BO_RemAssign:
2124         case BO_ShlAssign:
2125         case BO_ShrAssign:
2126           break;
2127         case BO_AddAssign:
2128           aop = llvm::AtomicRMWInst::Add;
2129           break;
2130         case BO_SubAssign:
2131           aop = llvm::AtomicRMWInst::Sub;
2132           break;
2133         case BO_AndAssign:
2134           aop = llvm::AtomicRMWInst::And;
2135           break;
2136         case BO_XorAssign:
2137           aop = llvm::AtomicRMWInst::Xor;
2138           break;
2139         case BO_OrAssign:
2140           aop = llvm::AtomicRMWInst::Or;
2141           break;
2142         default:
2143           llvm_unreachable("Invalid compound assignment type");
2144       }
2145       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2146         llvm::Value *amt = CGF.EmitToMemory(
2147             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2148                                  E->getExprLoc()),
2149             LHSTy);
2150         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2151             llvm::SequentiallyConsistent);
2152         return LHSLV;
2153       }
2154     }
2155     // FIXME: For floating point types, we should be saving and restoring the
2156     // floating point environment in the loop.
2157     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2158     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2159     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2160     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2161     Builder.CreateBr(opBB);
2162     Builder.SetInsertPoint(opBB);
2163     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2164     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2165     OpInfo.LHS = atomicPHI;
2166   }
2167   else
2168     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2169 
2170   SourceLocation Loc = E->getExprLoc();
2171   OpInfo.LHS =
2172       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2173 
2174   // Expand the binary operator.
2175   Result = (this->*Func)(OpInfo);
2176 
2177   // Convert the result back to the LHS type.
2178   Result =
2179       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2180 
2181   if (atomicPHI) {
2182     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2183     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2184     auto Pair = CGF.EmitAtomicCompareExchange(
2185         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2186     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2187     llvm::Value *success = Pair.second;
2188     atomicPHI->addIncoming(old, opBB);
2189     Builder.CreateCondBr(success, contBB, opBB);
2190     Builder.SetInsertPoint(contBB);
2191     return LHSLV;
2192   }
2193 
2194   // Store the result value into the LHS lvalue. Bit-fields are handled
2195   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2196   // 'An assignment expression has the value of the left operand after the
2197   // assignment...'.
2198   if (LHSLV.isBitField())
2199     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2200   else
2201     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2202 
2203   return LHSLV;
2204 }
2205 
2206 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2207                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2208   bool Ignore = TestAndClearIgnoreResultAssign();
2209   Value *RHS;
2210   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2211 
2212   // If the result is clearly ignored, return now.
2213   if (Ignore)
2214     return nullptr;
2215 
2216   // The result of an assignment in C is the assigned r-value.
2217   if (!CGF.getLangOpts().CPlusPlus)
2218     return RHS;
2219 
2220   // If the lvalue is non-volatile, return the computed value of the assignment.
2221   if (!LHS.isVolatileQualified())
2222     return RHS;
2223 
2224   // Otherwise, reload the value.
2225   return EmitLoadOfLValue(LHS, E->getExprLoc());
2226 }
2227 
2228 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2229     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2230   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2231 
2232   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2233     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2234                                     SanitizerKind::IntegerDivideByZero));
2235   }
2236 
2237   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2238       Ops.Ty->hasSignedIntegerRepresentation()) {
2239     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2240 
2241     llvm::Value *IntMin =
2242       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2243     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2244 
2245     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2246     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2247     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2248     Checks.push_back(
2249         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2250   }
2251 
2252   if (Checks.size() > 0)
2253     EmitBinOpCheck(Checks, Ops);
2254 }
2255 
2256 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2257   {
2258     CodeGenFunction::SanitizerScope SanScope(&CGF);
2259     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2260          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2261         Ops.Ty->isIntegerType()) {
2262       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2263       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2264     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2265                Ops.Ty->isRealFloatingType()) {
2266       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2267       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2268       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2269                      Ops);
2270     }
2271   }
2272 
2273   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2274     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2275     if (CGF.getLangOpts().OpenCL) {
2276       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2277       llvm::Type *ValTy = Val->getType();
2278       if (ValTy->isFloatTy() ||
2279           (isa<llvm::VectorType>(ValTy) &&
2280            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2281         CGF.SetFPAccuracy(Val, 2.5);
2282     }
2283     return Val;
2284   }
2285   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2286     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2287   else
2288     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2289 }
2290 
2291 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2292   // Rem in C can't be a floating point type: C99 6.5.5p2.
2293   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2294     CodeGenFunction::SanitizerScope SanScope(&CGF);
2295     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2296 
2297     if (Ops.Ty->isIntegerType())
2298       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2299   }
2300 
2301   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2302     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2303   else
2304     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2305 }
2306 
2307 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2308   unsigned IID;
2309   unsigned OpID = 0;
2310 
2311   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2312   switch (Ops.Opcode) {
2313   case BO_Add:
2314   case BO_AddAssign:
2315     OpID = 1;
2316     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2317                      llvm::Intrinsic::uadd_with_overflow;
2318     break;
2319   case BO_Sub:
2320   case BO_SubAssign:
2321     OpID = 2;
2322     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2323                      llvm::Intrinsic::usub_with_overflow;
2324     break;
2325   case BO_Mul:
2326   case BO_MulAssign:
2327     OpID = 3;
2328     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2329                      llvm::Intrinsic::umul_with_overflow;
2330     break;
2331   default:
2332     llvm_unreachable("Unsupported operation for overflow detection");
2333   }
2334   OpID <<= 1;
2335   if (isSigned)
2336     OpID |= 1;
2337 
2338   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2339 
2340   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2341 
2342   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2343   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2344   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2345 
2346   // Handle overflow with llvm.trap if no custom handler has been specified.
2347   const std::string *handlerName =
2348     &CGF.getLangOpts().OverflowHandler;
2349   if (handlerName->empty()) {
2350     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2351     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2352     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2353       CodeGenFunction::SanitizerScope SanScope(&CGF);
2354       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2355       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2356                               : SanitizerKind::UnsignedIntegerOverflow;
2357       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2358     } else
2359       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2360     return result;
2361   }
2362 
2363   // Branch in case of overflow.
2364   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2365   llvm::Function::iterator insertPt = initialBB;
2366   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2367                                                       std::next(insertPt));
2368   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2369 
2370   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2371 
2372   // If an overflow handler is set, then we want to call it and then use its
2373   // result, if it returns.
2374   Builder.SetInsertPoint(overflowBB);
2375 
2376   // Get the overflow handler.
2377   llvm::Type *Int8Ty = CGF.Int8Ty;
2378   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2379   llvm::FunctionType *handlerTy =
2380       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2381   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2382 
2383   // Sign extend the args to 64-bit, so that we can use the same handler for
2384   // all types of overflow.
2385   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2386   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2387 
2388   // Call the handler with the two arguments, the operation, and the size of
2389   // the result.
2390   llvm::Value *handlerArgs[] = {
2391     lhs,
2392     rhs,
2393     Builder.getInt8(OpID),
2394     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2395   };
2396   llvm::Value *handlerResult =
2397     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2398 
2399   // Truncate the result back to the desired size.
2400   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2401   Builder.CreateBr(continueBB);
2402 
2403   Builder.SetInsertPoint(continueBB);
2404   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2405   phi->addIncoming(result, initialBB);
2406   phi->addIncoming(handlerResult, overflowBB);
2407 
2408   return phi;
2409 }
2410 
2411 /// Emit pointer + index arithmetic.
2412 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2413                                     const BinOpInfo &op,
2414                                     bool isSubtraction) {
2415   // Must have binary (not unary) expr here.  Unary pointer
2416   // increment/decrement doesn't use this path.
2417   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2418 
2419   Value *pointer = op.LHS;
2420   Expr *pointerOperand = expr->getLHS();
2421   Value *index = op.RHS;
2422   Expr *indexOperand = expr->getRHS();
2423 
2424   // In a subtraction, the LHS is always the pointer.
2425   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2426     std::swap(pointer, index);
2427     std::swap(pointerOperand, indexOperand);
2428   }
2429 
2430   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2431   if (width != CGF.PointerWidthInBits) {
2432     // Zero-extend or sign-extend the pointer value according to
2433     // whether the index is signed or not.
2434     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2435     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2436                                       "idx.ext");
2437   }
2438 
2439   // If this is subtraction, negate the index.
2440   if (isSubtraction)
2441     index = CGF.Builder.CreateNeg(index, "idx.neg");
2442 
2443   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2444     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2445                         /*Accessed*/ false);
2446 
2447   const PointerType *pointerType
2448     = pointerOperand->getType()->getAs<PointerType>();
2449   if (!pointerType) {
2450     QualType objectType = pointerOperand->getType()
2451                                         ->castAs<ObjCObjectPointerType>()
2452                                         ->getPointeeType();
2453     llvm::Value *objectSize
2454       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2455 
2456     index = CGF.Builder.CreateMul(index, objectSize);
2457 
2458     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2459     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2460     return CGF.Builder.CreateBitCast(result, pointer->getType());
2461   }
2462 
2463   QualType elementType = pointerType->getPointeeType();
2464   if (const VariableArrayType *vla
2465         = CGF.getContext().getAsVariableArrayType(elementType)) {
2466     // The element count here is the total number of non-VLA elements.
2467     llvm::Value *numElements = CGF.getVLASize(vla).first;
2468 
2469     // Effectively, the multiply by the VLA size is part of the GEP.
2470     // GEP indexes are signed, and scaling an index isn't permitted to
2471     // signed-overflow, so we use the same semantics for our explicit
2472     // multiply.  We suppress this if overflow is not undefined behavior.
2473     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2474       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2475       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2476     } else {
2477       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2478       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2479     }
2480     return pointer;
2481   }
2482 
2483   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2484   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2485   // future proof.
2486   if (elementType->isVoidType() || elementType->isFunctionType()) {
2487     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2488     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2489     return CGF.Builder.CreateBitCast(result, pointer->getType());
2490   }
2491 
2492   if (CGF.getLangOpts().isSignedOverflowDefined())
2493     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2494 
2495   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2496 }
2497 
2498 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2499 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2500 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2501 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2502 // efficient operations.
2503 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2504                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2505                            bool negMul, bool negAdd) {
2506   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2507 
2508   Value *MulOp0 = MulOp->getOperand(0);
2509   Value *MulOp1 = MulOp->getOperand(1);
2510   if (negMul) {
2511     MulOp0 =
2512       Builder.CreateFSub(
2513         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2514         "neg");
2515   } else if (negAdd) {
2516     Addend =
2517       Builder.CreateFSub(
2518         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2519         "neg");
2520   }
2521 
2522   Value *FMulAdd = Builder.CreateCall(
2523       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2524       {MulOp0, MulOp1, Addend});
2525    MulOp->eraseFromParent();
2526 
2527    return FMulAdd;
2528 }
2529 
2530 // Check whether it would be legal to emit an fmuladd intrinsic call to
2531 // represent op and if so, build the fmuladd.
2532 //
2533 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2534 // Does NOT check the type of the operation - it's assumed that this function
2535 // will be called from contexts where it's known that the type is contractable.
2536 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2537                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2538                          bool isSub=false) {
2539 
2540   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2541           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2542          "Only fadd/fsub can be the root of an fmuladd.");
2543 
2544   // Check whether this op is marked as fusable.
2545   if (!op.FPContractable)
2546     return nullptr;
2547 
2548   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2549   // either disabled, or handled entirely by the LLVM backend).
2550   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2551     return nullptr;
2552 
2553   // We have a potentially fusable op. Look for a mul on one of the operands.
2554   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2555     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2556       assert(LHSBinOp->getNumUses() == 0 &&
2557              "Operations with multiple uses shouldn't be contracted.");
2558       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2559     }
2560   } else if (llvm::BinaryOperator* RHSBinOp =
2561                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2562     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2563       assert(RHSBinOp->getNumUses() == 0 &&
2564              "Operations with multiple uses shouldn't be contracted.");
2565       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2566     }
2567   }
2568 
2569   return nullptr;
2570 }
2571 
2572 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2573   if (op.LHS->getType()->isPointerTy() ||
2574       op.RHS->getType()->isPointerTy())
2575     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2576 
2577   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2578     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2579     case LangOptions::SOB_Defined:
2580       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2581     case LangOptions::SOB_Undefined:
2582       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2583         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2584       // Fall through.
2585     case LangOptions::SOB_Trapping:
2586       return EmitOverflowCheckedBinOp(op);
2587     }
2588   }
2589 
2590   if (op.Ty->isUnsignedIntegerType() &&
2591       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2592     return EmitOverflowCheckedBinOp(op);
2593 
2594   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2595     // Try to form an fmuladd.
2596     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2597       return FMulAdd;
2598 
2599     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2600   }
2601 
2602   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2603 }
2604 
2605 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2606   // The LHS is always a pointer if either side is.
2607   if (!op.LHS->getType()->isPointerTy()) {
2608     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2609       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2610       case LangOptions::SOB_Defined:
2611         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2612       case LangOptions::SOB_Undefined:
2613         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2614           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2615         // Fall through.
2616       case LangOptions::SOB_Trapping:
2617         return EmitOverflowCheckedBinOp(op);
2618       }
2619     }
2620 
2621     if (op.Ty->isUnsignedIntegerType() &&
2622         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2623       return EmitOverflowCheckedBinOp(op);
2624 
2625     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2626       // Try to form an fmuladd.
2627       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2628         return FMulAdd;
2629       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2630     }
2631 
2632     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2633   }
2634 
2635   // If the RHS is not a pointer, then we have normal pointer
2636   // arithmetic.
2637   if (!op.RHS->getType()->isPointerTy())
2638     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2639 
2640   // Otherwise, this is a pointer subtraction.
2641 
2642   // Do the raw subtraction part.
2643   llvm::Value *LHS
2644     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2645   llvm::Value *RHS
2646     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2647   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2648 
2649   // Okay, figure out the element size.
2650   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2651   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2652 
2653   llvm::Value *divisor = nullptr;
2654 
2655   // For a variable-length array, this is going to be non-constant.
2656   if (const VariableArrayType *vla
2657         = CGF.getContext().getAsVariableArrayType(elementType)) {
2658     llvm::Value *numElements;
2659     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2660 
2661     divisor = numElements;
2662 
2663     // Scale the number of non-VLA elements by the non-VLA element size.
2664     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2665     if (!eltSize.isOne())
2666       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2667 
2668   // For everything elese, we can just compute it, safe in the
2669   // assumption that Sema won't let anything through that we can't
2670   // safely compute the size of.
2671   } else {
2672     CharUnits elementSize;
2673     // Handle GCC extension for pointer arithmetic on void* and
2674     // function pointer types.
2675     if (elementType->isVoidType() || elementType->isFunctionType())
2676       elementSize = CharUnits::One();
2677     else
2678       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2679 
2680     // Don't even emit the divide for element size of 1.
2681     if (elementSize.isOne())
2682       return diffInChars;
2683 
2684     divisor = CGF.CGM.getSize(elementSize);
2685   }
2686 
2687   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2688   // pointer difference in C is only defined in the case where both operands
2689   // are pointing to elements of an array.
2690   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2691 }
2692 
2693 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2694   llvm::IntegerType *Ty;
2695   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2696     Ty = cast<llvm::IntegerType>(VT->getElementType());
2697   else
2698     Ty = cast<llvm::IntegerType>(LHS->getType());
2699   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2700 }
2701 
2702 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2703   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2704   // RHS to the same size as the LHS.
2705   Value *RHS = Ops.RHS;
2706   if (Ops.LHS->getType() != RHS->getType())
2707     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2708 
2709   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2710                       Ops.Ty->hasSignedIntegerRepresentation();
2711   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2712   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2713   if (CGF.getLangOpts().OpenCL)
2714     RHS =
2715         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2716   else if ((SanitizeBase || SanitizeExponent) &&
2717            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2718     CodeGenFunction::SanitizerScope SanScope(&CGF);
2719     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2720     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2721     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2722 
2723     if (SanitizeExponent) {
2724       Checks.push_back(
2725           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2726     }
2727 
2728     if (SanitizeBase) {
2729       // Check whether we are shifting any non-zero bits off the top of the
2730       // integer. We only emit this check if exponent is valid - otherwise
2731       // instructions below will have undefined behavior themselves.
2732       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2733       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2734       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2735       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2736       CGF.EmitBlock(CheckShiftBase);
2737       llvm::Value *BitsShiftedOff =
2738         Builder.CreateLShr(Ops.LHS,
2739                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2740                                              /*NUW*/true, /*NSW*/true),
2741                            "shl.check");
2742       if (CGF.getLangOpts().CPlusPlus) {
2743         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2744         // Under C++11's rules, shifting a 1 bit into the sign bit is
2745         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2746         // define signed left shifts, so we use the C99 and C++11 rules there).
2747         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2748         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2749       }
2750       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2751       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2752       CGF.EmitBlock(Cont);
2753       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2754       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2755       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2756       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2757     }
2758 
2759     assert(!Checks.empty());
2760     EmitBinOpCheck(Checks, Ops);
2761   }
2762 
2763   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2764 }
2765 
2766 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2767   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2768   // RHS to the same size as the LHS.
2769   Value *RHS = Ops.RHS;
2770   if (Ops.LHS->getType() != RHS->getType())
2771     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2772 
2773   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2774   if (CGF.getLangOpts().OpenCL)
2775     RHS =
2776         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2777   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2778            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2779     CodeGenFunction::SanitizerScope SanScope(&CGF);
2780     llvm::Value *Valid =
2781         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2782     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2783   }
2784 
2785   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2786     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2787   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2788 }
2789 
2790 enum IntrinsicType { VCMPEQ, VCMPGT };
2791 // return corresponding comparison intrinsic for given vector type
2792 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2793                                         BuiltinType::Kind ElemKind) {
2794   switch (ElemKind) {
2795   default: llvm_unreachable("unexpected element type");
2796   case BuiltinType::Char_U:
2797   case BuiltinType::UChar:
2798     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2799                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2800   case BuiltinType::Char_S:
2801   case BuiltinType::SChar:
2802     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2803                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2804   case BuiltinType::UShort:
2805     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2806                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2807   case BuiltinType::Short:
2808     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2809                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2810   case BuiltinType::UInt:
2811   case BuiltinType::ULong:
2812     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2813                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2814   case BuiltinType::Int:
2815   case BuiltinType::Long:
2816     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2817                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2818   case BuiltinType::Float:
2819     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2820                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2821   }
2822 }
2823 
2824 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2825                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2826   TestAndClearIgnoreResultAssign();
2827   Value *Result;
2828   QualType LHSTy = E->getLHS()->getType();
2829   QualType RHSTy = E->getRHS()->getType();
2830   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2831     assert(E->getOpcode() == BO_EQ ||
2832            E->getOpcode() == BO_NE);
2833     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2834     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2835     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2836                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2837   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2838     Value *LHS = Visit(E->getLHS());
2839     Value *RHS = Visit(E->getRHS());
2840 
2841     // If AltiVec, the comparison results in a numeric type, so we use
2842     // intrinsics comparing vectors and giving 0 or 1 as a result
2843     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2844       // constants for mapping CR6 register bits to predicate result
2845       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2846 
2847       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2848 
2849       // in several cases vector arguments order will be reversed
2850       Value *FirstVecArg = LHS,
2851             *SecondVecArg = RHS;
2852 
2853       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2854       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2855       BuiltinType::Kind ElementKind = BTy->getKind();
2856 
2857       switch(E->getOpcode()) {
2858       default: llvm_unreachable("is not a comparison operation");
2859       case BO_EQ:
2860         CR6 = CR6_LT;
2861         ID = GetIntrinsic(VCMPEQ, ElementKind);
2862         break;
2863       case BO_NE:
2864         CR6 = CR6_EQ;
2865         ID = GetIntrinsic(VCMPEQ, ElementKind);
2866         break;
2867       case BO_LT:
2868         CR6 = CR6_LT;
2869         ID = GetIntrinsic(VCMPGT, ElementKind);
2870         std::swap(FirstVecArg, SecondVecArg);
2871         break;
2872       case BO_GT:
2873         CR6 = CR6_LT;
2874         ID = GetIntrinsic(VCMPGT, ElementKind);
2875         break;
2876       case BO_LE:
2877         if (ElementKind == BuiltinType::Float) {
2878           CR6 = CR6_LT;
2879           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2880           std::swap(FirstVecArg, SecondVecArg);
2881         }
2882         else {
2883           CR6 = CR6_EQ;
2884           ID = GetIntrinsic(VCMPGT, ElementKind);
2885         }
2886         break;
2887       case BO_GE:
2888         if (ElementKind == BuiltinType::Float) {
2889           CR6 = CR6_LT;
2890           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2891         }
2892         else {
2893           CR6 = CR6_EQ;
2894           ID = GetIntrinsic(VCMPGT, ElementKind);
2895           std::swap(FirstVecArg, SecondVecArg);
2896         }
2897         break;
2898       }
2899 
2900       Value *CR6Param = Builder.getInt32(CR6);
2901       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2902       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2903       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2904                                   E->getExprLoc());
2905     }
2906 
2907     if (LHS->getType()->isFPOrFPVectorTy()) {
2908       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2909                                   LHS, RHS, "cmp");
2910     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2911       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2912                                   LHS, RHS, "cmp");
2913     } else {
2914       // Unsigned integers and pointers.
2915       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2916                                   LHS, RHS, "cmp");
2917     }
2918 
2919     // If this is a vector comparison, sign extend the result to the appropriate
2920     // vector integer type and return it (don't convert to bool).
2921     if (LHSTy->isVectorType())
2922       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2923 
2924   } else {
2925     // Complex Comparison: can only be an equality comparison.
2926     CodeGenFunction::ComplexPairTy LHS, RHS;
2927     QualType CETy;
2928     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2929       LHS = CGF.EmitComplexExpr(E->getLHS());
2930       CETy = CTy->getElementType();
2931     } else {
2932       LHS.first = Visit(E->getLHS());
2933       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2934       CETy = LHSTy;
2935     }
2936     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2937       RHS = CGF.EmitComplexExpr(E->getRHS());
2938       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2939                                                      CTy->getElementType()) &&
2940              "The element types must always match.");
2941       (void)CTy;
2942     } else {
2943       RHS.first = Visit(E->getRHS());
2944       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2945       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2946              "The element types must always match.");
2947     }
2948 
2949     Value *ResultR, *ResultI;
2950     if (CETy->isRealFloatingType()) {
2951       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2952                                    LHS.first, RHS.first, "cmp.r");
2953       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2954                                    LHS.second, RHS.second, "cmp.i");
2955     } else {
2956       // Complex comparisons can only be equality comparisons.  As such, signed
2957       // and unsigned opcodes are the same.
2958       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2959                                    LHS.first, RHS.first, "cmp.r");
2960       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2961                                    LHS.second, RHS.second, "cmp.i");
2962     }
2963 
2964     if (E->getOpcode() == BO_EQ) {
2965       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2966     } else {
2967       assert(E->getOpcode() == BO_NE &&
2968              "Complex comparison other than == or != ?");
2969       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2970     }
2971   }
2972 
2973   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2974                               E->getExprLoc());
2975 }
2976 
2977 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2978   bool Ignore = TestAndClearIgnoreResultAssign();
2979 
2980   Value *RHS;
2981   LValue LHS;
2982 
2983   switch (E->getLHS()->getType().getObjCLifetime()) {
2984   case Qualifiers::OCL_Strong:
2985     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2986     break;
2987 
2988   case Qualifiers::OCL_Autoreleasing:
2989     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2990     break;
2991 
2992   case Qualifiers::OCL_Weak:
2993     RHS = Visit(E->getRHS());
2994     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2995     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2996     break;
2997 
2998   // No reason to do any of these differently.
2999   case Qualifiers::OCL_None:
3000   case Qualifiers::OCL_ExplicitNone:
3001     // __block variables need to have the rhs evaluated first, plus
3002     // this should improve codegen just a little.
3003     RHS = Visit(E->getRHS());
3004     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3005 
3006     // Store the value into the LHS.  Bit-fields are handled specially
3007     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3008     // 'An assignment expression has the value of the left operand after
3009     // the assignment...'.
3010     if (LHS.isBitField())
3011       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3012     else
3013       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3014   }
3015 
3016   // If the result is clearly ignored, return now.
3017   if (Ignore)
3018     return nullptr;
3019 
3020   // The result of an assignment in C is the assigned r-value.
3021   if (!CGF.getLangOpts().CPlusPlus)
3022     return RHS;
3023 
3024   // If the lvalue is non-volatile, return the computed value of the assignment.
3025   if (!LHS.isVolatileQualified())
3026     return RHS;
3027 
3028   // Otherwise, reload the value.
3029   return EmitLoadOfLValue(LHS, E->getExprLoc());
3030 }
3031 
3032 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3033   // Perform vector logical and on comparisons with zero vectors.
3034   if (E->getType()->isVectorType()) {
3035     CGF.incrementProfileCounter(E);
3036 
3037     Value *LHS = Visit(E->getLHS());
3038     Value *RHS = Visit(E->getRHS());
3039     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3040     if (LHS->getType()->isFPOrFPVectorTy()) {
3041       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3042       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3043     } else {
3044       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3045       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3046     }
3047     Value *And = Builder.CreateAnd(LHS, RHS);
3048     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3049   }
3050 
3051   llvm::Type *ResTy = ConvertType(E->getType());
3052 
3053   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3054   // If we have 1 && X, just emit X without inserting the control flow.
3055   bool LHSCondVal;
3056   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3057     if (LHSCondVal) { // If we have 1 && X, just emit X.
3058       CGF.incrementProfileCounter(E);
3059 
3060       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3061       // ZExt result to int or bool.
3062       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3063     }
3064 
3065     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3066     if (!CGF.ContainsLabel(E->getRHS()))
3067       return llvm::Constant::getNullValue(ResTy);
3068   }
3069 
3070   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3071   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3072 
3073   CodeGenFunction::ConditionalEvaluation eval(CGF);
3074 
3075   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3076   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3077                            CGF.getProfileCount(E->getRHS()));
3078 
3079   // Any edges into the ContBlock are now from an (indeterminate number of)
3080   // edges from this first condition.  All of these values will be false.  Start
3081   // setting up the PHI node in the Cont Block for this.
3082   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3083                                             "", ContBlock);
3084   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3085        PI != PE; ++PI)
3086     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3087 
3088   eval.begin(CGF);
3089   CGF.EmitBlock(RHSBlock);
3090   CGF.incrementProfileCounter(E);
3091   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3092   eval.end(CGF);
3093 
3094   // Reaquire the RHS block, as there may be subblocks inserted.
3095   RHSBlock = Builder.GetInsertBlock();
3096 
3097   // Emit an unconditional branch from this block to ContBlock.
3098   {
3099     // There is no need to emit line number for unconditional branch.
3100     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3101     CGF.EmitBlock(ContBlock);
3102   }
3103   // Insert an entry into the phi node for the edge with the value of RHSCond.
3104   PN->addIncoming(RHSCond, RHSBlock);
3105 
3106   // ZExt result to int.
3107   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3108 }
3109 
3110 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3111   // Perform vector logical or on comparisons with zero vectors.
3112   if (E->getType()->isVectorType()) {
3113     CGF.incrementProfileCounter(E);
3114 
3115     Value *LHS = Visit(E->getLHS());
3116     Value *RHS = Visit(E->getRHS());
3117     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3118     if (LHS->getType()->isFPOrFPVectorTy()) {
3119       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3120       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3121     } else {
3122       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3123       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3124     }
3125     Value *Or = Builder.CreateOr(LHS, RHS);
3126     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3127   }
3128 
3129   llvm::Type *ResTy = ConvertType(E->getType());
3130 
3131   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3132   // If we have 0 || X, just emit X without inserting the control flow.
3133   bool LHSCondVal;
3134   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3135     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3136       CGF.incrementProfileCounter(E);
3137 
3138       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3139       // ZExt result to int or bool.
3140       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3141     }
3142 
3143     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3144     if (!CGF.ContainsLabel(E->getRHS()))
3145       return llvm::ConstantInt::get(ResTy, 1);
3146   }
3147 
3148   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3149   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3150 
3151   CodeGenFunction::ConditionalEvaluation eval(CGF);
3152 
3153   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3154   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3155                            CGF.getCurrentProfileCount() -
3156                                CGF.getProfileCount(E->getRHS()));
3157 
3158   // Any edges into the ContBlock are now from an (indeterminate number of)
3159   // edges from this first condition.  All of these values will be true.  Start
3160   // setting up the PHI node in the Cont Block for this.
3161   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3162                                             "", ContBlock);
3163   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3164        PI != PE; ++PI)
3165     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3166 
3167   eval.begin(CGF);
3168 
3169   // Emit the RHS condition as a bool value.
3170   CGF.EmitBlock(RHSBlock);
3171   CGF.incrementProfileCounter(E);
3172   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3173 
3174   eval.end(CGF);
3175 
3176   // Reaquire the RHS block, as there may be subblocks inserted.
3177   RHSBlock = Builder.GetInsertBlock();
3178 
3179   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3180   // into the phi node for the edge with the value of RHSCond.
3181   CGF.EmitBlock(ContBlock);
3182   PN->addIncoming(RHSCond, RHSBlock);
3183 
3184   // ZExt result to int.
3185   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3186 }
3187 
3188 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3189   CGF.EmitIgnoredExpr(E->getLHS());
3190   CGF.EnsureInsertPoint();
3191   return Visit(E->getRHS());
3192 }
3193 
3194 //===----------------------------------------------------------------------===//
3195 //                             Other Operators
3196 //===----------------------------------------------------------------------===//
3197 
3198 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3199 /// expression is cheap enough and side-effect-free enough to evaluate
3200 /// unconditionally instead of conditionally.  This is used to convert control
3201 /// flow into selects in some cases.
3202 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3203                                                    CodeGenFunction &CGF) {
3204   // Anything that is an integer or floating point constant is fine.
3205   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3206 
3207   // Even non-volatile automatic variables can't be evaluated unconditionally.
3208   // Referencing a thread_local may cause non-trivial initialization work to
3209   // occur. If we're inside a lambda and one of the variables is from the scope
3210   // outside the lambda, that function may have returned already. Reading its
3211   // locals is a bad idea. Also, these reads may introduce races there didn't
3212   // exist in the source-level program.
3213 }
3214 
3215 
3216 Value *ScalarExprEmitter::
3217 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3218   TestAndClearIgnoreResultAssign();
3219 
3220   // Bind the common expression if necessary.
3221   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3222 
3223   Expr *condExpr = E->getCond();
3224   Expr *lhsExpr = E->getTrueExpr();
3225   Expr *rhsExpr = E->getFalseExpr();
3226 
3227   // If the condition constant folds and can be elided, try to avoid emitting
3228   // the condition and the dead arm.
3229   bool CondExprBool;
3230   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3231     Expr *live = lhsExpr, *dead = rhsExpr;
3232     if (!CondExprBool) std::swap(live, dead);
3233 
3234     // If the dead side doesn't have labels we need, just emit the Live part.
3235     if (!CGF.ContainsLabel(dead)) {
3236       if (CondExprBool)
3237         CGF.incrementProfileCounter(E);
3238       Value *Result = Visit(live);
3239 
3240       // If the live part is a throw expression, it acts like it has a void
3241       // type, so evaluating it returns a null Value*.  However, a conditional
3242       // with non-void type must return a non-null Value*.
3243       if (!Result && !E->getType()->isVoidType())
3244         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3245 
3246       return Result;
3247     }
3248   }
3249 
3250   // OpenCL: If the condition is a vector, we can treat this condition like
3251   // the select function.
3252   if (CGF.getLangOpts().OpenCL
3253       && condExpr->getType()->isVectorType()) {
3254     CGF.incrementProfileCounter(E);
3255 
3256     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3257     llvm::Value *LHS = Visit(lhsExpr);
3258     llvm::Value *RHS = Visit(rhsExpr);
3259 
3260     llvm::Type *condType = ConvertType(condExpr->getType());
3261     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3262 
3263     unsigned numElem = vecTy->getNumElements();
3264     llvm::Type *elemType = vecTy->getElementType();
3265 
3266     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3267     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3268     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3269                                           llvm::VectorType::get(elemType,
3270                                                                 numElem),
3271                                           "sext");
3272     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3273 
3274     // Cast float to int to perform ANDs if necessary.
3275     llvm::Value *RHSTmp = RHS;
3276     llvm::Value *LHSTmp = LHS;
3277     bool wasCast = false;
3278     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3279     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3280       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3281       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3282       wasCast = true;
3283     }
3284 
3285     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3286     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3287     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3288     if (wasCast)
3289       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3290 
3291     return tmp5;
3292   }
3293 
3294   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3295   // select instead of as control flow.  We can only do this if it is cheap and
3296   // safe to evaluate the LHS and RHS unconditionally.
3297   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3298       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3299     CGF.incrementProfileCounter(E);
3300 
3301     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3302     llvm::Value *LHS = Visit(lhsExpr);
3303     llvm::Value *RHS = Visit(rhsExpr);
3304     if (!LHS) {
3305       // If the conditional has void type, make sure we return a null Value*.
3306       assert(!RHS && "LHS and RHS types must match");
3307       return nullptr;
3308     }
3309     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3310   }
3311 
3312   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3313   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3314   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3315 
3316   CodeGenFunction::ConditionalEvaluation eval(CGF);
3317   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3318                            CGF.getProfileCount(lhsExpr));
3319 
3320   CGF.EmitBlock(LHSBlock);
3321   CGF.incrementProfileCounter(E);
3322   eval.begin(CGF);
3323   Value *LHS = Visit(lhsExpr);
3324   eval.end(CGF);
3325 
3326   LHSBlock = Builder.GetInsertBlock();
3327   Builder.CreateBr(ContBlock);
3328 
3329   CGF.EmitBlock(RHSBlock);
3330   eval.begin(CGF);
3331   Value *RHS = Visit(rhsExpr);
3332   eval.end(CGF);
3333 
3334   RHSBlock = Builder.GetInsertBlock();
3335   CGF.EmitBlock(ContBlock);
3336 
3337   // If the LHS or RHS is a throw expression, it will be legitimately null.
3338   if (!LHS)
3339     return RHS;
3340   if (!RHS)
3341     return LHS;
3342 
3343   // Create a PHI node for the real part.
3344   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3345   PN->addIncoming(LHS, LHSBlock);
3346   PN->addIncoming(RHS, RHSBlock);
3347   return PN;
3348 }
3349 
3350 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3351   return Visit(E->getChosenSubExpr());
3352 }
3353 
3354 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3355   QualType Ty = VE->getType();
3356 
3357   if (Ty->isVariablyModifiedType())
3358     CGF.EmitVariablyModifiedType(Ty);
3359 
3360   Address ArgValue = Address::invalid();
3361   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3362 
3363   llvm::Type *ArgTy = ConvertType(VE->getType());
3364 
3365   // If EmitVAArg fails, we fall back to the LLVM instruction.
3366   if (!ArgPtr.isValid())
3367     return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy);
3368 
3369   // FIXME Volatility.
3370   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3371 
3372   // If EmitVAArg promoted the type, we must truncate it.
3373   if (ArgTy != Val->getType()) {
3374     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3375       Val = Builder.CreateIntToPtr(Val, ArgTy);
3376     else
3377       Val = Builder.CreateTrunc(Val, ArgTy);
3378   }
3379 
3380   return Val;
3381 }
3382 
3383 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3384   return CGF.EmitBlockLiteral(block);
3385 }
3386 
3387 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3388   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3389   llvm::Type *DstTy = ConvertType(E->getType());
3390 
3391   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3392   // a shuffle vector instead of a bitcast.
3393   llvm::Type *SrcTy = Src->getType();
3394   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3395     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3396     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3397     if ((numElementsDst == 3 && numElementsSrc == 4)
3398         || (numElementsDst == 4 && numElementsSrc == 3)) {
3399 
3400 
3401       // In the case of going from int4->float3, a bitcast is needed before
3402       // doing a shuffle.
3403       llvm::Type *srcElemTy =
3404       cast<llvm::VectorType>(SrcTy)->getElementType();
3405       llvm::Type *dstElemTy =
3406       cast<llvm::VectorType>(DstTy)->getElementType();
3407 
3408       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3409           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3410         // Create a float type of the same size as the source or destination.
3411         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3412                                                                  numElementsSrc);
3413 
3414         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3415       }
3416 
3417       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3418 
3419       SmallVector<llvm::Constant*, 3> Args;
3420       Args.push_back(Builder.getInt32(0));
3421       Args.push_back(Builder.getInt32(1));
3422       Args.push_back(Builder.getInt32(2));
3423 
3424       if (numElementsDst == 4)
3425         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3426 
3427       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3428 
3429       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3430     }
3431   }
3432 
3433   return Builder.CreateBitCast(Src, DstTy, "astype");
3434 }
3435 
3436 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3437   return CGF.EmitAtomicExpr(E).getScalarVal();
3438 }
3439 
3440 //===----------------------------------------------------------------------===//
3441 //                         Entry Point into this File
3442 //===----------------------------------------------------------------------===//
3443 
3444 /// Emit the computation of the specified expression of scalar type, ignoring
3445 /// the result.
3446 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3447   assert(E && hasScalarEvaluationKind(E->getType()) &&
3448          "Invalid scalar expression to emit");
3449 
3450   return ScalarExprEmitter(*this, IgnoreResultAssign)
3451       .Visit(const_cast<Expr *>(E));
3452 }
3453 
3454 /// Emit a conversion from the specified type to the specified destination type,
3455 /// both of which are LLVM scalar types.
3456 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3457                                              QualType DstTy,
3458                                              SourceLocation Loc) {
3459   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3460          "Invalid scalar expression to emit");
3461   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3462 }
3463 
3464 /// Emit a conversion from the specified complex type to the specified
3465 /// destination type, where the destination type is an LLVM scalar type.
3466 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3467                                                       QualType SrcTy,
3468                                                       QualType DstTy,
3469                                                       SourceLocation Loc) {
3470   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3471          "Invalid complex -> scalar conversion");
3472   return ScalarExprEmitter(*this)
3473       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3474 }
3475 
3476 
3477 llvm::Value *CodeGenFunction::
3478 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3479                         bool isInc, bool isPre) {
3480   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3481 }
3482 
3483 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3484   // object->isa or (*object).isa
3485   // Generate code as for: *(Class*)object
3486 
3487   Expr *BaseExpr = E->getBase();
3488   Address Addr = Address::invalid();
3489   if (BaseExpr->isRValue()) {
3490     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3491   } else {
3492     Addr = EmitLValue(BaseExpr).getAddress();
3493   }
3494 
3495   // Cast the address to Class*.
3496   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3497   return MakeAddrLValue(Addr, E->getType());
3498 }
3499 
3500 
3501 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3502                                             const CompoundAssignOperator *E) {
3503   ScalarExprEmitter Scalar(*this);
3504   Value *Result = nullptr;
3505   switch (E->getOpcode()) {
3506 #define COMPOUND_OP(Op)                                                       \
3507     case BO_##Op##Assign:                                                     \
3508       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3509                                              Result)
3510   COMPOUND_OP(Mul);
3511   COMPOUND_OP(Div);
3512   COMPOUND_OP(Rem);
3513   COMPOUND_OP(Add);
3514   COMPOUND_OP(Sub);
3515   COMPOUND_OP(Shl);
3516   COMPOUND_OP(Shr);
3517   COMPOUND_OP(And);
3518   COMPOUND_OP(Xor);
3519   COMPOUND_OP(Or);
3520 #undef COMPOUND_OP
3521 
3522   case BO_PtrMemD:
3523   case BO_PtrMemI:
3524   case BO_Mul:
3525   case BO_Div:
3526   case BO_Rem:
3527   case BO_Add:
3528   case BO_Sub:
3529   case BO_Shl:
3530   case BO_Shr:
3531   case BO_LT:
3532   case BO_GT:
3533   case BO_LE:
3534   case BO_GE:
3535   case BO_EQ:
3536   case BO_NE:
3537   case BO_And:
3538   case BO_Xor:
3539   case BO_Or:
3540   case BO_LAnd:
3541   case BO_LOr:
3542   case BO_Assign:
3543   case BO_Comma:
3544     llvm_unreachable("Not valid compound assignment operators");
3545   }
3546 
3547   llvm_unreachable("Unhandled compound assignment operator");
3548 }
3549