1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/FixedPoint.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicsPowerPC.h"
40 #include "llvm/IR/Module.h"
41 #include <cstdarg>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 using llvm::Value;
46 
47 //===----------------------------------------------------------------------===//
48 //                         Scalar Expression Emitter
49 //===----------------------------------------------------------------------===//
50 
51 namespace {
52 
53 /// Determine whether the given binary operation may overflow.
54 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
55 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
56 /// the returned overflow check is precise. The returned value is 'true' for
57 /// all other opcodes, to be conservative.
58 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
59                              BinaryOperator::Opcode Opcode, bool Signed,
60                              llvm::APInt &Result) {
61   // Assume overflow is possible, unless we can prove otherwise.
62   bool Overflow = true;
63   const auto &LHSAP = LHS->getValue();
64   const auto &RHSAP = RHS->getValue();
65   if (Opcode == BO_Add) {
66     if (Signed)
67       Result = LHSAP.sadd_ov(RHSAP, Overflow);
68     else
69       Result = LHSAP.uadd_ov(RHSAP, Overflow);
70   } else if (Opcode == BO_Sub) {
71     if (Signed)
72       Result = LHSAP.ssub_ov(RHSAP, Overflow);
73     else
74       Result = LHSAP.usub_ov(RHSAP, Overflow);
75   } else if (Opcode == BO_Mul) {
76     if (Signed)
77       Result = LHSAP.smul_ov(RHSAP, Overflow);
78     else
79       Result = LHSAP.umul_ov(RHSAP, Overflow);
80   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
81     if (Signed && !RHS->isZero())
82       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
83     else
84       return false;
85   }
86   return Overflow;
87 }
88 
89 struct BinOpInfo {
90   Value *LHS;
91   Value *RHS;
92   QualType Ty;  // Computation Type.
93   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
94   FPOptions FPFeatures;
95   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
96 
97   /// Check if the binop can result in integer overflow.
98   bool mayHaveIntegerOverflow() const {
99     // Without constant input, we can't rule out overflow.
100     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
101     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
102     if (!LHSCI || !RHSCI)
103       return true;
104 
105     llvm::APInt Result;
106     return ::mayHaveIntegerOverflow(
107         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
108   }
109 
110   /// Check if the binop computes a division or a remainder.
111   bool isDivremOp() const {
112     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
113            Opcode == BO_RemAssign;
114   }
115 
116   /// Check if the binop can result in an integer division by zero.
117   bool mayHaveIntegerDivisionByZero() const {
118     if (isDivremOp())
119       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
120         return CI->isZero();
121     return true;
122   }
123 
124   /// Check if the binop can result in a float division by zero.
125   bool mayHaveFloatDivisionByZero() const {
126     if (isDivremOp())
127       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
128         return CFP->isZero();
129     return true;
130   }
131 
132   /// Check if at least one operand is a fixed point type. In such cases, this
133   /// operation did not follow usual arithmetic conversion and both operands
134   /// might not be of the same type.
135   bool isFixedPointOp() const {
136     // We cannot simply check the result type since comparison operations return
137     // an int.
138     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
139       QualType LHSType = BinOp->getLHS()->getType();
140       QualType RHSType = BinOp->getRHS()->getType();
141       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
142     }
143     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
144       return UnOp->getSubExpr()->getType()->isFixedPointType();
145     return false;
146   }
147 };
148 
149 static bool MustVisitNullValue(const Expr *E) {
150   // If a null pointer expression's type is the C++0x nullptr_t, then
151   // it's not necessarily a simple constant and it must be evaluated
152   // for its potential side effects.
153   return E->getType()->isNullPtrType();
154 }
155 
156 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
157 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
158                                                         const Expr *E) {
159   const Expr *Base = E->IgnoreImpCasts();
160   if (E == Base)
161     return llvm::None;
162 
163   QualType BaseTy = Base->getType();
164   if (!BaseTy->isPromotableIntegerType() ||
165       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
166     return llvm::None;
167 
168   return BaseTy;
169 }
170 
171 /// Check if \p E is a widened promoted integer.
172 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
173   return getUnwidenedIntegerType(Ctx, E).hasValue();
174 }
175 
176 /// Check if we can skip the overflow check for \p Op.
177 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
178   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
179          "Expected a unary or binary operator");
180 
181   // If the binop has constant inputs and we can prove there is no overflow,
182   // we can elide the overflow check.
183   if (!Op.mayHaveIntegerOverflow())
184     return true;
185 
186   // If a unary op has a widened operand, the op cannot overflow.
187   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
188     return !UO->canOverflow();
189 
190   // We usually don't need overflow checks for binops with widened operands.
191   // Multiplication with promoted unsigned operands is a special case.
192   const auto *BO = cast<BinaryOperator>(Op.E);
193   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
194   if (!OptionalLHSTy)
195     return false;
196 
197   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
198   if (!OptionalRHSTy)
199     return false;
200 
201   QualType LHSTy = *OptionalLHSTy;
202   QualType RHSTy = *OptionalRHSTy;
203 
204   // This is the simple case: binops without unsigned multiplication, and with
205   // widened operands. No overflow check is needed here.
206   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
207       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
208     return true;
209 
210   // For unsigned multiplication the overflow check can be elided if either one
211   // of the unpromoted types are less than half the size of the promoted type.
212   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
213   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
214          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
215 }
216 
217 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
218 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
219                                 FPOptions FPFeatures) {
220   FMF.setAllowReassoc(FPFeatures.allowAssociativeMath());
221   FMF.setNoNaNs(FPFeatures.noHonorNaNs());
222   FMF.setNoInfs(FPFeatures.noHonorInfs());
223   FMF.setNoSignedZeros(FPFeatures.noSignedZeros());
224   FMF.setAllowReciprocal(FPFeatures.allowReciprocalMath());
225   FMF.setApproxFunc(FPFeatures.allowApproximateFunctions());
226   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
227 }
228 
229 /// Propagate fast-math flags from \p Op to the instruction in \p V.
230 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
231   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
232     llvm::FastMathFlags FMF = I->getFastMathFlags();
233     updateFastMathFlags(FMF, Op.FPFeatures);
234     I->setFastMathFlags(FMF);
235   }
236   return V;
237 }
238 
239 static void setBuilderFlagsFromFPFeatures(CGBuilderTy &Builder,
240                                           CodeGenFunction &CGF,
241                                           FPOptions FPFeatures) {
242   auto NewRoundingBehavior = FPFeatures.getRoundingMode();
243   Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
244   auto NewExceptionBehavior =
245       ToConstrainedExceptMD(FPFeatures.getExceptionMode());
246   Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
247   auto FMF = Builder.getFastMathFlags();
248   updateFastMathFlags(FMF, FPFeatures);
249   Builder.setFastMathFlags(FMF);
250   assert((CGF.CurFuncDecl == nullptr || Builder.getIsFPConstrained() ||
251           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
252           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
253           (NewExceptionBehavior == llvm::fp::ebIgnore &&
254            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
255          "FPConstrained should be enabled on entire function");
256 }
257 
258 class ScalarExprEmitter
259   : public StmtVisitor<ScalarExprEmitter, Value*> {
260   CodeGenFunction &CGF;
261   CGBuilderTy &Builder;
262   bool IgnoreResultAssign;
263   llvm::LLVMContext &VMContext;
264 public:
265 
266   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
267     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
268       VMContext(cgf.getLLVMContext()) {
269   }
270 
271   //===--------------------------------------------------------------------===//
272   //                               Utilities
273   //===--------------------------------------------------------------------===//
274 
275   bool TestAndClearIgnoreResultAssign() {
276     bool I = IgnoreResultAssign;
277     IgnoreResultAssign = false;
278     return I;
279   }
280 
281   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
282   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
283   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
284     return CGF.EmitCheckedLValue(E, TCK);
285   }
286 
287   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
288                       const BinOpInfo &Info);
289 
290   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
291     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
292   }
293 
294   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
295     const AlignValueAttr *AVAttr = nullptr;
296     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
297       const ValueDecl *VD = DRE->getDecl();
298 
299       if (VD->getType()->isReferenceType()) {
300         if (const auto *TTy =
301             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
302           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
303       } else {
304         // Assumptions for function parameters are emitted at the start of the
305         // function, so there is no need to repeat that here,
306         // unless the alignment-assumption sanitizer is enabled,
307         // then we prefer the assumption over alignment attribute
308         // on IR function param.
309         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
310           return;
311 
312         AVAttr = VD->getAttr<AlignValueAttr>();
313       }
314     }
315 
316     if (!AVAttr)
317       if (const auto *TTy =
318           dyn_cast<TypedefType>(E->getType()))
319         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
320 
321     if (!AVAttr)
322       return;
323 
324     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
325     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
326     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
327   }
328 
329   /// EmitLoadOfLValue - Given an expression with complex type that represents a
330   /// value l-value, this method emits the address of the l-value, then loads
331   /// and returns the result.
332   Value *EmitLoadOfLValue(const Expr *E) {
333     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
334                                 E->getExprLoc());
335 
336     EmitLValueAlignmentAssumption(E, V);
337     return V;
338   }
339 
340   /// EmitConversionToBool - Convert the specified expression value to a
341   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
342   Value *EmitConversionToBool(Value *Src, QualType DstTy);
343 
344   /// Emit a check that a conversion from a floating-point type does not
345   /// overflow.
346   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
347                                 Value *Src, QualType SrcType, QualType DstType,
348                                 llvm::Type *DstTy, SourceLocation Loc);
349 
350   /// Known implicit conversion check kinds.
351   /// Keep in sync with the enum of the same name in ubsan_handlers.h
352   enum ImplicitConversionCheckKind : unsigned char {
353     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
354     ICCK_UnsignedIntegerTruncation = 1,
355     ICCK_SignedIntegerTruncation = 2,
356     ICCK_IntegerSignChange = 3,
357     ICCK_SignedIntegerTruncationOrSignChange = 4,
358   };
359 
360   /// Emit a check that an [implicit] truncation of an integer  does not
361   /// discard any bits. It is not UB, so we use the value after truncation.
362   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
363                                   QualType DstType, SourceLocation Loc);
364 
365   /// Emit a check that an [implicit] conversion of an integer does not change
366   /// the sign of the value. It is not UB, so we use the value after conversion.
367   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
368   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
369                                   QualType DstType, SourceLocation Loc);
370 
371   /// Emit a conversion from the specified type to the specified destination
372   /// type, both of which are LLVM scalar types.
373   struct ScalarConversionOpts {
374     bool TreatBooleanAsSigned;
375     bool EmitImplicitIntegerTruncationChecks;
376     bool EmitImplicitIntegerSignChangeChecks;
377 
378     ScalarConversionOpts()
379         : TreatBooleanAsSigned(false),
380           EmitImplicitIntegerTruncationChecks(false),
381           EmitImplicitIntegerSignChangeChecks(false) {}
382 
383     ScalarConversionOpts(clang::SanitizerSet SanOpts)
384         : TreatBooleanAsSigned(false),
385           EmitImplicitIntegerTruncationChecks(
386               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
387           EmitImplicitIntegerSignChangeChecks(
388               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
389   };
390   Value *
391   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
392                        SourceLocation Loc,
393                        ScalarConversionOpts Opts = ScalarConversionOpts());
394 
395   /// Convert between either a fixed point and other fixed point or fixed point
396   /// and an integer.
397   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
398                                   SourceLocation Loc);
399   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
400                                   FixedPointSemantics &DstFixedSema,
401                                   SourceLocation Loc,
402                                   bool DstIsInteger = false);
403 
404   /// Emit a conversion from the specified complex type to the specified
405   /// destination type, where the destination type is an LLVM scalar type.
406   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
407                                        QualType SrcTy, QualType DstTy,
408                                        SourceLocation Loc);
409 
410   /// EmitNullValue - Emit a value that corresponds to null for the given type.
411   Value *EmitNullValue(QualType Ty);
412 
413   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
414   Value *EmitFloatToBoolConversion(Value *V) {
415     // Compare against 0.0 for fp scalars.
416     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
417     return Builder.CreateFCmpUNE(V, Zero, "tobool");
418   }
419 
420   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
421   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
422     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
423 
424     return Builder.CreateICmpNE(V, Zero, "tobool");
425   }
426 
427   Value *EmitIntToBoolConversion(Value *V) {
428     // Because of the type rules of C, we often end up computing a
429     // logical value, then zero extending it to int, then wanting it
430     // as a logical value again.  Optimize this common case.
431     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
432       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
433         Value *Result = ZI->getOperand(0);
434         // If there aren't any more uses, zap the instruction to save space.
435         // Note that there can be more uses, for example if this
436         // is the result of an assignment.
437         if (ZI->use_empty())
438           ZI->eraseFromParent();
439         return Result;
440       }
441     }
442 
443     return Builder.CreateIsNotNull(V, "tobool");
444   }
445 
446   //===--------------------------------------------------------------------===//
447   //                            Visitor Methods
448   //===--------------------------------------------------------------------===//
449 
450   Value *Visit(Expr *E) {
451     ApplyDebugLocation DL(CGF, E);
452     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
453   }
454 
455   Value *VisitStmt(Stmt *S) {
456     S->dump(CGF.getContext().getSourceManager());
457     llvm_unreachable("Stmt can't have complex result type!");
458   }
459   Value *VisitExpr(Expr *S);
460 
461   Value *VisitConstantExpr(ConstantExpr *E) {
462     return Visit(E->getSubExpr());
463   }
464   Value *VisitParenExpr(ParenExpr *PE) {
465     return Visit(PE->getSubExpr());
466   }
467   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
468     return Visit(E->getReplacement());
469   }
470   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
471     return Visit(GE->getResultExpr());
472   }
473   Value *VisitCoawaitExpr(CoawaitExpr *S) {
474     return CGF.EmitCoawaitExpr(*S).getScalarVal();
475   }
476   Value *VisitCoyieldExpr(CoyieldExpr *S) {
477     return CGF.EmitCoyieldExpr(*S).getScalarVal();
478   }
479   Value *VisitUnaryCoawait(const UnaryOperator *E) {
480     return Visit(E->getSubExpr());
481   }
482 
483   // Leaves.
484   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
485     return Builder.getInt(E->getValue());
486   }
487   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
488     return Builder.getInt(E->getValue());
489   }
490   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
491     return llvm::ConstantFP::get(VMContext, E->getValue());
492   }
493   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
494     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
495   }
496   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
497     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
498   }
499   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
500     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
501   }
502   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
503     return EmitNullValue(E->getType());
504   }
505   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
506     return EmitNullValue(E->getType());
507   }
508   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
509   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
510   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
511     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
512     return Builder.CreateBitCast(V, ConvertType(E->getType()));
513   }
514 
515   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
516     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
517   }
518 
519   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
520     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
521   }
522 
523   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
524     if (E->isGLValue())
525       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
526                               E->getExprLoc());
527 
528     // Otherwise, assume the mapping is the scalar directly.
529     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
530   }
531 
532   // l-values.
533   Value *VisitDeclRefExpr(DeclRefExpr *E) {
534     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
535       return CGF.emitScalarConstant(Constant, E);
536     return EmitLoadOfLValue(E);
537   }
538 
539   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
540     return CGF.EmitObjCSelectorExpr(E);
541   }
542   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
543     return CGF.EmitObjCProtocolExpr(E);
544   }
545   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
546     return EmitLoadOfLValue(E);
547   }
548   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
549     if (E->getMethodDecl() &&
550         E->getMethodDecl()->getReturnType()->isReferenceType())
551       return EmitLoadOfLValue(E);
552     return CGF.EmitObjCMessageExpr(E).getScalarVal();
553   }
554 
555   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
556     LValue LV = CGF.EmitObjCIsaExpr(E);
557     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
558     return V;
559   }
560 
561   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
562     VersionTuple Version = E->getVersion();
563 
564     // If we're checking for a platform older than our minimum deployment
565     // target, we can fold the check away.
566     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
567       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
568 
569     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
570     llvm::Value *Args[] = {
571         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
572         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
573         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
574     };
575 
576     return CGF.EmitBuiltinAvailable(Args);
577   }
578 
579   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
580   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
581   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
582   Value *VisitMemberExpr(MemberExpr *E);
583   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
584   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
585     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
586     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
587     // literals aren't l-values in C++. We do so simply because that's the
588     // cleanest way to handle compound literals in C++.
589     // See the discussion here: https://reviews.llvm.org/D64464
590     return EmitLoadOfLValue(E);
591   }
592 
593   Value *VisitInitListExpr(InitListExpr *E);
594 
595   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
596     assert(CGF.getArrayInitIndex() &&
597            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
598     return CGF.getArrayInitIndex();
599   }
600 
601   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
602     return EmitNullValue(E->getType());
603   }
604   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
605     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
606     return VisitCastExpr(E);
607   }
608   Value *VisitCastExpr(CastExpr *E);
609 
610   Value *VisitCallExpr(const CallExpr *E) {
611     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
612       return EmitLoadOfLValue(E);
613 
614     Value *V = CGF.EmitCallExpr(E).getScalarVal();
615 
616     EmitLValueAlignmentAssumption(E, V);
617     return V;
618   }
619 
620   Value *VisitStmtExpr(const StmtExpr *E);
621 
622   // Unary Operators.
623   Value *VisitUnaryPostDec(const UnaryOperator *E) {
624     LValue LV = EmitLValue(E->getSubExpr());
625     return EmitScalarPrePostIncDec(E, LV, false, false);
626   }
627   Value *VisitUnaryPostInc(const UnaryOperator *E) {
628     LValue LV = EmitLValue(E->getSubExpr());
629     return EmitScalarPrePostIncDec(E, LV, true, false);
630   }
631   Value *VisitUnaryPreDec(const UnaryOperator *E) {
632     LValue LV = EmitLValue(E->getSubExpr());
633     return EmitScalarPrePostIncDec(E, LV, false, true);
634   }
635   Value *VisitUnaryPreInc(const UnaryOperator *E) {
636     LValue LV = EmitLValue(E->getSubExpr());
637     return EmitScalarPrePostIncDec(E, LV, true, true);
638   }
639 
640   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
641                                                   llvm::Value *InVal,
642                                                   bool IsInc);
643 
644   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
645                                        bool isInc, bool isPre);
646 
647 
648   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
649     if (isa<MemberPointerType>(E->getType())) // never sugared
650       return CGF.CGM.getMemberPointerConstant(E);
651 
652     return EmitLValue(E->getSubExpr()).getPointer(CGF);
653   }
654   Value *VisitUnaryDeref(const UnaryOperator *E) {
655     if (E->getType()->isVoidType())
656       return Visit(E->getSubExpr()); // the actual value should be unused
657     return EmitLoadOfLValue(E);
658   }
659   Value *VisitUnaryPlus(const UnaryOperator *E) {
660     // This differs from gcc, though, most likely due to a bug in gcc.
661     TestAndClearIgnoreResultAssign();
662     return Visit(E->getSubExpr());
663   }
664   Value *VisitUnaryMinus    (const UnaryOperator *E);
665   Value *VisitUnaryNot      (const UnaryOperator *E);
666   Value *VisitUnaryLNot     (const UnaryOperator *E);
667   Value *VisitUnaryReal     (const UnaryOperator *E);
668   Value *VisitUnaryImag     (const UnaryOperator *E);
669   Value *VisitUnaryExtension(const UnaryOperator *E) {
670     return Visit(E->getSubExpr());
671   }
672 
673   // C++
674   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
675     return EmitLoadOfLValue(E);
676   }
677   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
678     auto &Ctx = CGF.getContext();
679     APValue Evaluated =
680         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
681     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
682                                              SLE->getType());
683   }
684 
685   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
686     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
687     return Visit(DAE->getExpr());
688   }
689   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
690     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
691     return Visit(DIE->getExpr());
692   }
693   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
694     return CGF.LoadCXXThis();
695   }
696 
697   Value *VisitExprWithCleanups(ExprWithCleanups *E);
698   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
699     return CGF.EmitCXXNewExpr(E);
700   }
701   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
702     CGF.EmitCXXDeleteExpr(E);
703     return nullptr;
704   }
705 
706   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
707     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
708   }
709 
710   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
711     return Builder.getInt1(E->isSatisfied());
712   }
713 
714   Value *VisitRequiresExpr(const RequiresExpr *E) {
715     return Builder.getInt1(E->isSatisfied());
716   }
717 
718   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
719     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
720   }
721 
722   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
723     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
724   }
725 
726   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
727     // C++ [expr.pseudo]p1:
728     //   The result shall only be used as the operand for the function call
729     //   operator (), and the result of such a call has type void. The only
730     //   effect is the evaluation of the postfix-expression before the dot or
731     //   arrow.
732     CGF.EmitScalarExpr(E->getBase());
733     return nullptr;
734   }
735 
736   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
737     return EmitNullValue(E->getType());
738   }
739 
740   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
741     CGF.EmitCXXThrowExpr(E);
742     return nullptr;
743   }
744 
745   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
746     return Builder.getInt1(E->getValue());
747   }
748 
749   // Binary Operators.
750   Value *EmitMul(const BinOpInfo &Ops) {
751     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
752       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
753       case LangOptions::SOB_Defined:
754         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
755       case LangOptions::SOB_Undefined:
756         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
757           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
758         LLVM_FALLTHROUGH;
759       case LangOptions::SOB_Trapping:
760         if (CanElideOverflowCheck(CGF.getContext(), Ops))
761           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
762         return EmitOverflowCheckedBinOp(Ops);
763       }
764     }
765 
766     if (Ops.Ty->isUnsignedIntegerType() &&
767         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
768         !CanElideOverflowCheck(CGF.getContext(), Ops))
769       return EmitOverflowCheckedBinOp(Ops);
770 
771     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
772       //  Preserve the old values
773       llvm::IRBuilder<>::FastMathFlagGuard FMFG(Builder);
774       setBuilderFlagsFromFPFeatures(Builder, CGF, Ops.FPFeatures);
775       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
776       return propagateFMFlags(V, Ops);
777     }
778     if (Ops.isFixedPointOp())
779       return EmitFixedPointBinOp(Ops);
780     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
781   }
782   /// Create a binary op that checks for overflow.
783   /// Currently only supports +, - and *.
784   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
785 
786   // Check for undefined division and modulus behaviors.
787   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
788                                                   llvm::Value *Zero,bool isDiv);
789   // Common helper for getting how wide LHS of shift is.
790   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
791 
792   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
793   // non powers of two.
794   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
795 
796   Value *EmitDiv(const BinOpInfo &Ops);
797   Value *EmitRem(const BinOpInfo &Ops);
798   Value *EmitAdd(const BinOpInfo &Ops);
799   Value *EmitSub(const BinOpInfo &Ops);
800   Value *EmitShl(const BinOpInfo &Ops);
801   Value *EmitShr(const BinOpInfo &Ops);
802   Value *EmitAnd(const BinOpInfo &Ops) {
803     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
804   }
805   Value *EmitXor(const BinOpInfo &Ops) {
806     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
807   }
808   Value *EmitOr (const BinOpInfo &Ops) {
809     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
810   }
811 
812   // Helper functions for fixed point binary operations.
813   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
814 
815   BinOpInfo EmitBinOps(const BinaryOperator *E);
816   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
817                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
818                                   Value *&Result);
819 
820   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
821                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
822 
823   // Binary operators and binary compound assignment operators.
824 #define HANDLEBINOP(OP) \
825   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
826     return Emit ## OP(EmitBinOps(E));                                      \
827   }                                                                        \
828   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
829     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
830   }
831   HANDLEBINOP(Mul)
832   HANDLEBINOP(Div)
833   HANDLEBINOP(Rem)
834   HANDLEBINOP(Add)
835   HANDLEBINOP(Sub)
836   HANDLEBINOP(Shl)
837   HANDLEBINOP(Shr)
838   HANDLEBINOP(And)
839   HANDLEBINOP(Xor)
840   HANDLEBINOP(Or)
841 #undef HANDLEBINOP
842 
843   // Comparisons.
844   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
845                      llvm::CmpInst::Predicate SICmpOpc,
846                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
847 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
848     Value *VisitBin##CODE(const BinaryOperator *E) { \
849       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
850                          llvm::FCmpInst::FP, SIG); }
851   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
852   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
853   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
854   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
855   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
856   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
857 #undef VISITCOMP
858 
859   Value *VisitBinAssign     (const BinaryOperator *E);
860 
861   Value *VisitBinLAnd       (const BinaryOperator *E);
862   Value *VisitBinLOr        (const BinaryOperator *E);
863   Value *VisitBinComma      (const BinaryOperator *E);
864 
865   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
866   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
867 
868   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
869     return Visit(E->getSemanticForm());
870   }
871 
872   // Other Operators.
873   Value *VisitBlockExpr(const BlockExpr *BE);
874   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
875   Value *VisitChooseExpr(ChooseExpr *CE);
876   Value *VisitVAArgExpr(VAArgExpr *VE);
877   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
878     return CGF.EmitObjCStringLiteral(E);
879   }
880   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
881     return CGF.EmitObjCBoxedExpr(E);
882   }
883   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
884     return CGF.EmitObjCArrayLiteral(E);
885   }
886   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
887     return CGF.EmitObjCDictionaryLiteral(E);
888   }
889   Value *VisitAsTypeExpr(AsTypeExpr *CE);
890   Value *VisitAtomicExpr(AtomicExpr *AE);
891 };
892 }  // end anonymous namespace.
893 
894 //===----------------------------------------------------------------------===//
895 //                                Utilities
896 //===----------------------------------------------------------------------===//
897 
898 /// EmitConversionToBool - Convert the specified expression value to a
899 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
900 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
901   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
902 
903   if (SrcType->isRealFloatingType())
904     return EmitFloatToBoolConversion(Src);
905 
906   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
907     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
908 
909   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
910          "Unknown scalar type to convert");
911 
912   if (isa<llvm::IntegerType>(Src->getType()))
913     return EmitIntToBoolConversion(Src);
914 
915   assert(isa<llvm::PointerType>(Src->getType()));
916   return EmitPointerToBoolConversion(Src, SrcType);
917 }
918 
919 void ScalarExprEmitter::EmitFloatConversionCheck(
920     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
921     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
922   assert(SrcType->isFloatingType() && "not a conversion from floating point");
923   if (!isa<llvm::IntegerType>(DstTy))
924     return;
925 
926   CodeGenFunction::SanitizerScope SanScope(&CGF);
927   using llvm::APFloat;
928   using llvm::APSInt;
929 
930   llvm::Value *Check = nullptr;
931   const llvm::fltSemantics &SrcSema =
932     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
933 
934   // Floating-point to integer. This has undefined behavior if the source is
935   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
936   // to an integer).
937   unsigned Width = CGF.getContext().getIntWidth(DstType);
938   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
939 
940   APSInt Min = APSInt::getMinValue(Width, Unsigned);
941   APFloat MinSrc(SrcSema, APFloat::uninitialized);
942   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
943       APFloat::opOverflow)
944     // Don't need an overflow check for lower bound. Just check for
945     // -Inf/NaN.
946     MinSrc = APFloat::getInf(SrcSema, true);
947   else
948     // Find the largest value which is too small to represent (before
949     // truncation toward zero).
950     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
951 
952   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
953   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
954   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
955       APFloat::opOverflow)
956     // Don't need an overflow check for upper bound. Just check for
957     // +Inf/NaN.
958     MaxSrc = APFloat::getInf(SrcSema, false);
959   else
960     // Find the smallest value which is too large to represent (before
961     // truncation toward zero).
962     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
963 
964   // If we're converting from __half, convert the range to float to match
965   // the type of src.
966   if (OrigSrcType->isHalfType()) {
967     const llvm::fltSemantics &Sema =
968       CGF.getContext().getFloatTypeSemantics(SrcType);
969     bool IsInexact;
970     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
971     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
972   }
973 
974   llvm::Value *GE =
975     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
976   llvm::Value *LE =
977     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
978   Check = Builder.CreateAnd(GE, LE);
979 
980   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
981                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
982                                   CGF.EmitCheckTypeDescriptor(DstType)};
983   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
984                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
985 }
986 
987 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
988 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
989 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
990                  std::pair<llvm::Value *, SanitizerMask>>
991 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
992                                  QualType DstType, CGBuilderTy &Builder) {
993   llvm::Type *SrcTy = Src->getType();
994   llvm::Type *DstTy = Dst->getType();
995   (void)DstTy; // Only used in assert()
996 
997   // This should be truncation of integral types.
998   assert(Src != Dst);
999   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1000   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1001          "non-integer llvm type");
1002 
1003   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1004   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1005 
1006   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1007   // Else, it is a signed truncation.
1008   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1009   SanitizerMask Mask;
1010   if (!SrcSigned && !DstSigned) {
1011     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1012     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1013   } else {
1014     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1015     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1016   }
1017 
1018   llvm::Value *Check = nullptr;
1019   // 1. Extend the truncated value back to the same width as the Src.
1020   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1021   // 2. Equality-compare with the original source value
1022   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1023   // If the comparison result is 'i1 false', then the truncation was lossy.
1024   return std::make_pair(Kind, std::make_pair(Check, Mask));
1025 }
1026 
1027 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1028     QualType SrcType, QualType DstType) {
1029   return SrcType->isIntegerType() && DstType->isIntegerType();
1030 }
1031 
1032 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1033                                                    Value *Dst, QualType DstType,
1034                                                    SourceLocation Loc) {
1035   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1036     return;
1037 
1038   // We only care about int->int conversions here.
1039   // We ignore conversions to/from pointer and/or bool.
1040   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1041                                                                        DstType))
1042     return;
1043 
1044   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1045   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1046   // This must be truncation. Else we do not care.
1047   if (SrcBits <= DstBits)
1048     return;
1049 
1050   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1051 
1052   // If the integer sign change sanitizer is enabled,
1053   // and we are truncating from larger unsigned type to smaller signed type,
1054   // let that next sanitizer deal with it.
1055   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1056   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1057   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1058       (!SrcSigned && DstSigned))
1059     return;
1060 
1061   CodeGenFunction::SanitizerScope SanScope(&CGF);
1062 
1063   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1064             std::pair<llvm::Value *, SanitizerMask>>
1065       Check =
1066           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1067   // If the comparison result is 'i1 false', then the truncation was lossy.
1068 
1069   // Do we care about this type of truncation?
1070   if (!CGF.SanOpts.has(Check.second.second))
1071     return;
1072 
1073   llvm::Constant *StaticArgs[] = {
1074       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1075       CGF.EmitCheckTypeDescriptor(DstType),
1076       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1077   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1078                 {Src, Dst});
1079 }
1080 
1081 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1082 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1083 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1084                  std::pair<llvm::Value *, SanitizerMask>>
1085 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1086                                  QualType DstType, CGBuilderTy &Builder) {
1087   llvm::Type *SrcTy = Src->getType();
1088   llvm::Type *DstTy = Dst->getType();
1089 
1090   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1091          "non-integer llvm type");
1092 
1093   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1094   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1095   (void)SrcSigned; // Only used in assert()
1096   (void)DstSigned; // Only used in assert()
1097   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1098   unsigned DstBits = DstTy->getScalarSizeInBits();
1099   (void)SrcBits; // Only used in assert()
1100   (void)DstBits; // Only used in assert()
1101 
1102   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1103          "either the widths should be different, or the signednesses.");
1104 
1105   // NOTE: zero value is considered to be non-negative.
1106   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1107                                        const char *Name) -> Value * {
1108     // Is this value a signed type?
1109     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1110     llvm::Type *VTy = V->getType();
1111     if (!VSigned) {
1112       // If the value is unsigned, then it is never negative.
1113       // FIXME: can we encounter non-scalar VTy here?
1114       return llvm::ConstantInt::getFalse(VTy->getContext());
1115     }
1116     // Get the zero of the same type with which we will be comparing.
1117     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1118     // %V.isnegative = icmp slt %V, 0
1119     // I.e is %V *strictly* less than zero, does it have negative value?
1120     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1121                               llvm::Twine(Name) + "." + V->getName() +
1122                                   ".negativitycheck");
1123   };
1124 
1125   // 1. Was the old Value negative?
1126   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1127   // 2. Is the new Value negative?
1128   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1129   // 3. Now, was the 'negativity status' preserved during the conversion?
1130   //    NOTE: conversion from negative to zero is considered to change the sign.
1131   //    (We want to get 'false' when the conversion changed the sign)
1132   //    So we should just equality-compare the negativity statuses.
1133   llvm::Value *Check = nullptr;
1134   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1135   // If the comparison result is 'false', then the conversion changed the sign.
1136   return std::make_pair(
1137       ScalarExprEmitter::ICCK_IntegerSignChange,
1138       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1139 }
1140 
1141 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1142                                                    Value *Dst, QualType DstType,
1143                                                    SourceLocation Loc) {
1144   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1145     return;
1146 
1147   llvm::Type *SrcTy = Src->getType();
1148   llvm::Type *DstTy = Dst->getType();
1149 
1150   // We only care about int->int conversions here.
1151   // We ignore conversions to/from pointer and/or bool.
1152   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1153                                                                        DstType))
1154     return;
1155 
1156   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1157   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1158   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1159   unsigned DstBits = DstTy->getScalarSizeInBits();
1160 
1161   // Now, we do not need to emit the check in *all* of the cases.
1162   // We can avoid emitting it in some obvious cases where it would have been
1163   // dropped by the opt passes (instcombine) always anyways.
1164   // If it's a cast between effectively the same type, no check.
1165   // NOTE: this is *not* equivalent to checking the canonical types.
1166   if (SrcSigned == DstSigned && SrcBits == DstBits)
1167     return;
1168   // At least one of the values needs to have signed type.
1169   // If both are unsigned, then obviously, neither of them can be negative.
1170   if (!SrcSigned && !DstSigned)
1171     return;
1172   // If the conversion is to *larger* *signed* type, then no check is needed.
1173   // Because either sign-extension happens (so the sign will remain),
1174   // or zero-extension will happen (the sign bit will be zero.)
1175   if ((DstBits > SrcBits) && DstSigned)
1176     return;
1177   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1178       (SrcBits > DstBits) && SrcSigned) {
1179     // If the signed integer truncation sanitizer is enabled,
1180     // and this is a truncation from signed type, then no check is needed.
1181     // Because here sign change check is interchangeable with truncation check.
1182     return;
1183   }
1184   // That's it. We can't rule out any more cases with the data we have.
1185 
1186   CodeGenFunction::SanitizerScope SanScope(&CGF);
1187 
1188   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1189             std::pair<llvm::Value *, SanitizerMask>>
1190       Check;
1191 
1192   // Each of these checks needs to return 'false' when an issue was detected.
1193   ImplicitConversionCheckKind CheckKind;
1194   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1195   // So we can 'and' all the checks together, and still get 'false',
1196   // if at least one of the checks detected an issue.
1197 
1198   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1199   CheckKind = Check.first;
1200   Checks.emplace_back(Check.second);
1201 
1202   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1203       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1204     // If the signed integer truncation sanitizer was enabled,
1205     // and we are truncating from larger unsigned type to smaller signed type,
1206     // let's handle the case we skipped in that check.
1207     Check =
1208         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1209     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1210     Checks.emplace_back(Check.second);
1211     // If the comparison result is 'i1 false', then the truncation was lossy.
1212   }
1213 
1214   llvm::Constant *StaticArgs[] = {
1215       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1216       CGF.EmitCheckTypeDescriptor(DstType),
1217       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1218   // EmitCheck() will 'and' all the checks together.
1219   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1220                 {Src, Dst});
1221 }
1222 
1223 /// Emit a conversion from the specified type to the specified destination type,
1224 /// both of which are LLVM scalar types.
1225 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1226                                                QualType DstType,
1227                                                SourceLocation Loc,
1228                                                ScalarConversionOpts Opts) {
1229   // All conversions involving fixed point types should be handled by the
1230   // EmitFixedPoint family functions. This is done to prevent bloating up this
1231   // function more, and although fixed point numbers are represented by
1232   // integers, we do not want to follow any logic that assumes they should be
1233   // treated as integers.
1234   // TODO(leonardchan): When necessary, add another if statement checking for
1235   // conversions to fixed point types from other types.
1236   if (SrcType->isFixedPointType()) {
1237     if (DstType->isBooleanType())
1238       // It is important that we check this before checking if the dest type is
1239       // an integer because booleans are technically integer types.
1240       // We do not need to check the padding bit on unsigned types if unsigned
1241       // padding is enabled because overflow into this bit is undefined
1242       // behavior.
1243       return Builder.CreateIsNotNull(Src, "tobool");
1244     if (DstType->isFixedPointType() || DstType->isIntegerType())
1245       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1246 
1247     llvm_unreachable(
1248         "Unhandled scalar conversion from a fixed point type to another type.");
1249   } else if (DstType->isFixedPointType()) {
1250     if (SrcType->isIntegerType())
1251       // This also includes converting booleans and enums to fixed point types.
1252       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1253 
1254     llvm_unreachable(
1255         "Unhandled scalar conversion to a fixed point type from another type.");
1256   }
1257 
1258   QualType NoncanonicalSrcType = SrcType;
1259   QualType NoncanonicalDstType = DstType;
1260 
1261   SrcType = CGF.getContext().getCanonicalType(SrcType);
1262   DstType = CGF.getContext().getCanonicalType(DstType);
1263   if (SrcType == DstType) return Src;
1264 
1265   if (DstType->isVoidType()) return nullptr;
1266 
1267   llvm::Value *OrigSrc = Src;
1268   QualType OrigSrcType = SrcType;
1269   llvm::Type *SrcTy = Src->getType();
1270 
1271   // Handle conversions to bool first, they are special: comparisons against 0.
1272   if (DstType->isBooleanType())
1273     return EmitConversionToBool(Src, SrcType);
1274 
1275   llvm::Type *DstTy = ConvertType(DstType);
1276 
1277   // Cast from half through float if half isn't a native type.
1278   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1279     // Cast to FP using the intrinsic if the half type itself isn't supported.
1280     if (DstTy->isFloatingPointTy()) {
1281       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1282         return Builder.CreateCall(
1283             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1284             Src);
1285     } else {
1286       // Cast to other types through float, using either the intrinsic or FPExt,
1287       // depending on whether the half type itself is supported
1288       // (as opposed to operations on half, available with NativeHalfType).
1289       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1290         Src = Builder.CreateCall(
1291             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1292                                  CGF.CGM.FloatTy),
1293             Src);
1294       } else {
1295         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1296       }
1297       SrcType = CGF.getContext().FloatTy;
1298       SrcTy = CGF.FloatTy;
1299     }
1300   }
1301 
1302   // Ignore conversions like int -> uint.
1303   if (SrcTy == DstTy) {
1304     if (Opts.EmitImplicitIntegerSignChangeChecks)
1305       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1306                                  NoncanonicalDstType, Loc);
1307 
1308     return Src;
1309   }
1310 
1311   // Handle pointer conversions next: pointers can only be converted to/from
1312   // other pointers and integers. Check for pointer types in terms of LLVM, as
1313   // some native types (like Obj-C id) may map to a pointer type.
1314   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1315     // The source value may be an integer, or a pointer.
1316     if (isa<llvm::PointerType>(SrcTy))
1317       return Builder.CreateBitCast(Src, DstTy, "conv");
1318 
1319     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1320     // First, convert to the correct width so that we control the kind of
1321     // extension.
1322     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1323     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1324     llvm::Value* IntResult =
1325         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1326     // Then, cast to pointer.
1327     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1328   }
1329 
1330   if (isa<llvm::PointerType>(SrcTy)) {
1331     // Must be an ptr to int cast.
1332     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1333     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1334   }
1335 
1336   // A scalar can be splatted to an extended vector of the same element type
1337   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1338     // Sema should add casts to make sure that the source expression's type is
1339     // the same as the vector's element type (sans qualifiers)
1340     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1341                SrcType.getTypePtr() &&
1342            "Splatted expr doesn't match with vector element type?");
1343 
1344     // Splat the element across to all elements
1345     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1346     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1347   }
1348 
1349   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1350     // Allow bitcast from vector to integer/fp of the same size.
1351     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1352     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1353     if (SrcSize == DstSize)
1354       return Builder.CreateBitCast(Src, DstTy, "conv");
1355 
1356     // Conversions between vectors of different sizes are not allowed except
1357     // when vectors of half are involved. Operations on storage-only half
1358     // vectors require promoting half vector operands to float vectors and
1359     // truncating the result, which is either an int or float vector, to a
1360     // short or half vector.
1361 
1362     // Source and destination are both expected to be vectors.
1363     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1364     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1365     (void)DstElementTy;
1366 
1367     assert(((SrcElementTy->isIntegerTy() &&
1368              DstElementTy->isIntegerTy()) ||
1369             (SrcElementTy->isFloatingPointTy() &&
1370              DstElementTy->isFloatingPointTy())) &&
1371            "unexpected conversion between a floating-point vector and an "
1372            "integer vector");
1373 
1374     // Truncate an i32 vector to an i16 vector.
1375     if (SrcElementTy->isIntegerTy())
1376       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1377 
1378     // Truncate a float vector to a half vector.
1379     if (SrcSize > DstSize)
1380       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1381 
1382     // Promote a half vector to a float vector.
1383     return Builder.CreateFPExt(Src, DstTy, "conv");
1384   }
1385 
1386   // Finally, we have the arithmetic types: real int/float.
1387   Value *Res = nullptr;
1388   llvm::Type *ResTy = DstTy;
1389 
1390   // An overflowing conversion has undefined behavior if either the source type
1391   // or the destination type is a floating-point type. However, we consider the
1392   // range of representable values for all floating-point types to be
1393   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1394   // floating-point type.
1395   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1396       OrigSrcType->isFloatingType())
1397     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1398                              Loc);
1399 
1400   // Cast to half through float if half isn't a native type.
1401   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1402     // Make sure we cast in a single step if from another FP type.
1403     if (SrcTy->isFloatingPointTy()) {
1404       // Use the intrinsic if the half type itself isn't supported
1405       // (as opposed to operations on half, available with NativeHalfType).
1406       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1407         return Builder.CreateCall(
1408             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1409       // If the half type is supported, just use an fptrunc.
1410       return Builder.CreateFPTrunc(Src, DstTy);
1411     }
1412     DstTy = CGF.FloatTy;
1413   }
1414 
1415   if (isa<llvm::IntegerType>(SrcTy)) {
1416     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1417     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1418       InputSigned = true;
1419     }
1420     if (isa<llvm::IntegerType>(DstTy))
1421       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1422     else if (InputSigned)
1423       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1424     else
1425       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1426   } else if (isa<llvm::IntegerType>(DstTy)) {
1427     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1428     if (DstType->isSignedIntegerOrEnumerationType())
1429       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1430     else
1431       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1432   } else {
1433     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1434            "Unknown real conversion");
1435     if (DstTy->getTypeID() < SrcTy->getTypeID())
1436       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1437     else
1438       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1439   }
1440 
1441   if (DstTy != ResTy) {
1442     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1443       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1444       Res = Builder.CreateCall(
1445         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1446         Res);
1447     } else {
1448       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1449     }
1450   }
1451 
1452   if (Opts.EmitImplicitIntegerTruncationChecks)
1453     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1454                                NoncanonicalDstType, Loc);
1455 
1456   if (Opts.EmitImplicitIntegerSignChangeChecks)
1457     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1458                                NoncanonicalDstType, Loc);
1459 
1460   return Res;
1461 }
1462 
1463 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1464                                                    QualType DstTy,
1465                                                    SourceLocation Loc) {
1466   FixedPointSemantics SrcFPSema =
1467       CGF.getContext().getFixedPointSemantics(SrcTy);
1468   FixedPointSemantics DstFPSema =
1469       CGF.getContext().getFixedPointSemantics(DstTy);
1470   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1471                                   DstTy->isIntegerType());
1472 }
1473 
1474 Value *ScalarExprEmitter::EmitFixedPointConversion(
1475     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1476     SourceLocation Loc, bool DstIsInteger) {
1477   using llvm::APInt;
1478   using llvm::ConstantInt;
1479   using llvm::Value;
1480 
1481   unsigned SrcWidth = SrcFPSema.getWidth();
1482   unsigned DstWidth = DstFPSema.getWidth();
1483   unsigned SrcScale = SrcFPSema.getScale();
1484   unsigned DstScale = DstFPSema.getScale();
1485   bool SrcIsSigned = SrcFPSema.isSigned();
1486   bool DstIsSigned = DstFPSema.isSigned();
1487 
1488   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1489 
1490   Value *Result = Src;
1491   unsigned ResultWidth = SrcWidth;
1492 
1493   // Downscale.
1494   if (DstScale < SrcScale) {
1495     // When converting to integers, we round towards zero. For negative numbers,
1496     // right shifting rounds towards negative infinity. In this case, we can
1497     // just round up before shifting.
1498     if (DstIsInteger && SrcIsSigned) {
1499       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1500       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1501       Value *LowBits = ConstantInt::get(
1502           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1503       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1504       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1505     }
1506 
1507     Result = SrcIsSigned
1508                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1509                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1510   }
1511 
1512   if (!DstFPSema.isSaturated()) {
1513     // Resize.
1514     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1515 
1516     // Upscale.
1517     if (DstScale > SrcScale)
1518       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1519   } else {
1520     // Adjust the number of fractional bits.
1521     if (DstScale > SrcScale) {
1522       // Compare to DstWidth to prevent resizing twice.
1523       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1524       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1525       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1526       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1527     }
1528 
1529     // Handle saturation.
1530     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1531     if (LessIntBits) {
1532       Value *Max = ConstantInt::get(
1533           CGF.getLLVMContext(),
1534           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1535       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1536                                    : Builder.CreateICmpUGT(Result, Max);
1537       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1538     }
1539     // Cannot overflow min to dest type if src is unsigned since all fixed
1540     // point types can cover the unsigned min of 0.
1541     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1542       Value *Min = ConstantInt::get(
1543           CGF.getLLVMContext(),
1544           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1545       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1546       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1547     }
1548 
1549     // Resize the integer part to get the final destination size.
1550     if (ResultWidth != DstWidth)
1551       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1552   }
1553   return Result;
1554 }
1555 
1556 /// Emit a conversion from the specified complex type to the specified
1557 /// destination type, where the destination type is an LLVM scalar type.
1558 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1559     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1560     SourceLocation Loc) {
1561   // Get the source element type.
1562   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1563 
1564   // Handle conversions to bool first, they are special: comparisons against 0.
1565   if (DstTy->isBooleanType()) {
1566     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1567     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1568     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1569     return Builder.CreateOr(Src.first, Src.second, "tobool");
1570   }
1571 
1572   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1573   // the imaginary part of the complex value is discarded and the value of the
1574   // real part is converted according to the conversion rules for the
1575   // corresponding real type.
1576   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1577 }
1578 
1579 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1580   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1581 }
1582 
1583 /// Emit a sanitization check for the given "binary" operation (which
1584 /// might actually be a unary increment which has been lowered to a binary
1585 /// operation). The check passes if all values in \p Checks (which are \c i1),
1586 /// are \c true.
1587 void ScalarExprEmitter::EmitBinOpCheck(
1588     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1589   assert(CGF.IsSanitizerScope);
1590   SanitizerHandler Check;
1591   SmallVector<llvm::Constant *, 4> StaticData;
1592   SmallVector<llvm::Value *, 2> DynamicData;
1593 
1594   BinaryOperatorKind Opcode = Info.Opcode;
1595   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1596     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1597 
1598   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1599   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1600   if (UO && UO->getOpcode() == UO_Minus) {
1601     Check = SanitizerHandler::NegateOverflow;
1602     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1603     DynamicData.push_back(Info.RHS);
1604   } else {
1605     if (BinaryOperator::isShiftOp(Opcode)) {
1606       // Shift LHS negative or too large, or RHS out of bounds.
1607       Check = SanitizerHandler::ShiftOutOfBounds;
1608       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1609       StaticData.push_back(
1610         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1611       StaticData.push_back(
1612         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1613     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1614       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1615       Check = SanitizerHandler::DivremOverflow;
1616       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1617     } else {
1618       // Arithmetic overflow (+, -, *).
1619       switch (Opcode) {
1620       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1621       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1622       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1623       default: llvm_unreachable("unexpected opcode for bin op check");
1624       }
1625       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1626     }
1627     DynamicData.push_back(Info.LHS);
1628     DynamicData.push_back(Info.RHS);
1629   }
1630 
1631   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1632 }
1633 
1634 //===----------------------------------------------------------------------===//
1635 //                            Visitor Methods
1636 //===----------------------------------------------------------------------===//
1637 
1638 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1639   CGF.ErrorUnsupported(E, "scalar expression");
1640   if (E->getType()->isVoidType())
1641     return nullptr;
1642   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1643 }
1644 
1645 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1646   // Vector Mask Case
1647   if (E->getNumSubExprs() == 2) {
1648     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1649     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1650     Value *Mask;
1651 
1652     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1653     unsigned LHSElts = LTy->getNumElements();
1654 
1655     Mask = RHS;
1656 
1657     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1658 
1659     // Mask off the high bits of each shuffle index.
1660     Value *MaskBits =
1661         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1662     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1663 
1664     // newv = undef
1665     // mask = mask & maskbits
1666     // for each elt
1667     //   n = extract mask i
1668     //   x = extract val n
1669     //   newv = insert newv, x, i
1670     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1671                                                   MTy->getNumElements());
1672     Value* NewV = llvm::UndefValue::get(RTy);
1673     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1674       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1675       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1676 
1677       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1678       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1679     }
1680     return NewV;
1681   }
1682 
1683   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1684   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1685 
1686   SmallVector<int, 32> Indices;
1687   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1688     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1689     // Check for -1 and output it as undef in the IR.
1690     if (Idx.isSigned() && Idx.isAllOnesValue())
1691       Indices.push_back(-1);
1692     else
1693       Indices.push_back(Idx.getZExtValue());
1694   }
1695 
1696   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1697 }
1698 
1699 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1700   QualType SrcType = E->getSrcExpr()->getType(),
1701            DstType = E->getType();
1702 
1703   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1704 
1705   SrcType = CGF.getContext().getCanonicalType(SrcType);
1706   DstType = CGF.getContext().getCanonicalType(DstType);
1707   if (SrcType == DstType) return Src;
1708 
1709   assert(SrcType->isVectorType() &&
1710          "ConvertVector source type must be a vector");
1711   assert(DstType->isVectorType() &&
1712          "ConvertVector destination type must be a vector");
1713 
1714   llvm::Type *SrcTy = Src->getType();
1715   llvm::Type *DstTy = ConvertType(DstType);
1716 
1717   // Ignore conversions like int -> uint.
1718   if (SrcTy == DstTy)
1719     return Src;
1720 
1721   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1722            DstEltType = DstType->castAs<VectorType>()->getElementType();
1723 
1724   assert(SrcTy->isVectorTy() &&
1725          "ConvertVector source IR type must be a vector");
1726   assert(DstTy->isVectorTy() &&
1727          "ConvertVector destination IR type must be a vector");
1728 
1729   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1730              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1731 
1732   if (DstEltType->isBooleanType()) {
1733     assert((SrcEltTy->isFloatingPointTy() ||
1734             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1735 
1736     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1737     if (SrcEltTy->isFloatingPointTy()) {
1738       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1739     } else {
1740       return Builder.CreateICmpNE(Src, Zero, "tobool");
1741     }
1742   }
1743 
1744   // We have the arithmetic types: real int/float.
1745   Value *Res = nullptr;
1746 
1747   if (isa<llvm::IntegerType>(SrcEltTy)) {
1748     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1749     if (isa<llvm::IntegerType>(DstEltTy))
1750       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1751     else if (InputSigned)
1752       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1753     else
1754       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1755   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1756     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1757     if (DstEltType->isSignedIntegerOrEnumerationType())
1758       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1759     else
1760       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1761   } else {
1762     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1763            "Unknown real conversion");
1764     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1765       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1766     else
1767       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1768   }
1769 
1770   return Res;
1771 }
1772 
1773 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1774   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1775     CGF.EmitIgnoredExpr(E->getBase());
1776     return CGF.emitScalarConstant(Constant, E);
1777   } else {
1778     Expr::EvalResult Result;
1779     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1780       llvm::APSInt Value = Result.Val.getInt();
1781       CGF.EmitIgnoredExpr(E->getBase());
1782       return Builder.getInt(Value);
1783     }
1784   }
1785 
1786   return EmitLoadOfLValue(E);
1787 }
1788 
1789 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1790   TestAndClearIgnoreResultAssign();
1791 
1792   // Emit subscript expressions in rvalue context's.  For most cases, this just
1793   // loads the lvalue formed by the subscript expr.  However, we have to be
1794   // careful, because the base of a vector subscript is occasionally an rvalue,
1795   // so we can't get it as an lvalue.
1796   if (!E->getBase()->getType()->isVectorType())
1797     return EmitLoadOfLValue(E);
1798 
1799   // Handle the vector case.  The base must be a vector, the index must be an
1800   // integer value.
1801   Value *Base = Visit(E->getBase());
1802   Value *Idx  = Visit(E->getIdx());
1803   QualType IdxTy = E->getIdx()->getType();
1804 
1805   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1806     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1807 
1808   return Builder.CreateExtractElement(Base, Idx, "vecext");
1809 }
1810 
1811 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1812                       unsigned Off) {
1813   int MV = SVI->getMaskValue(Idx);
1814   if (MV == -1)
1815     return -1;
1816   return Off + MV;
1817 }
1818 
1819 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1820   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1821          "Index operand too large for shufflevector mask!");
1822   return C->getZExtValue();
1823 }
1824 
1825 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1826   bool Ignore = TestAndClearIgnoreResultAssign();
1827   (void)Ignore;
1828   assert (Ignore == false && "init list ignored");
1829   unsigned NumInitElements = E->getNumInits();
1830 
1831   if (E->hadArrayRangeDesignator())
1832     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1833 
1834   llvm::VectorType *VType =
1835     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1836 
1837   if (!VType) {
1838     if (NumInitElements == 0) {
1839       // C++11 value-initialization for the scalar.
1840       return EmitNullValue(E->getType());
1841     }
1842     // We have a scalar in braces. Just use the first element.
1843     return Visit(E->getInit(0));
1844   }
1845 
1846   unsigned ResElts = VType->getNumElements();
1847 
1848   // Loop over initializers collecting the Value for each, and remembering
1849   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1850   // us to fold the shuffle for the swizzle into the shuffle for the vector
1851   // initializer, since LLVM optimizers generally do not want to touch
1852   // shuffles.
1853   unsigned CurIdx = 0;
1854   bool VIsUndefShuffle = false;
1855   llvm::Value *V = llvm::UndefValue::get(VType);
1856   for (unsigned i = 0; i != NumInitElements; ++i) {
1857     Expr *IE = E->getInit(i);
1858     Value *Init = Visit(IE);
1859     SmallVector<int, 16> Args;
1860 
1861     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1862 
1863     // Handle scalar elements.  If the scalar initializer is actually one
1864     // element of a different vector of the same width, use shuffle instead of
1865     // extract+insert.
1866     if (!VVT) {
1867       if (isa<ExtVectorElementExpr>(IE)) {
1868         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1869 
1870         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1871           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1872           Value *LHS = nullptr, *RHS = nullptr;
1873           if (CurIdx == 0) {
1874             // insert into undef -> shuffle (src, undef)
1875             // shufflemask must use an i32
1876             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1877             Args.resize(ResElts, -1);
1878 
1879             LHS = EI->getVectorOperand();
1880             RHS = V;
1881             VIsUndefShuffle = true;
1882           } else if (VIsUndefShuffle) {
1883             // insert into undefshuffle && size match -> shuffle (v, src)
1884             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1885             for (unsigned j = 0; j != CurIdx; ++j)
1886               Args.push_back(getMaskElt(SVV, j, 0));
1887             Args.push_back(ResElts + C->getZExtValue());
1888             Args.resize(ResElts, -1);
1889 
1890             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1891             RHS = EI->getVectorOperand();
1892             VIsUndefShuffle = false;
1893           }
1894           if (!Args.empty()) {
1895             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1896             ++CurIdx;
1897             continue;
1898           }
1899         }
1900       }
1901       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1902                                       "vecinit");
1903       VIsUndefShuffle = false;
1904       ++CurIdx;
1905       continue;
1906     }
1907 
1908     unsigned InitElts = VVT->getNumElements();
1909 
1910     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1911     // input is the same width as the vector being constructed, generate an
1912     // optimized shuffle of the swizzle input into the result.
1913     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1914     if (isa<ExtVectorElementExpr>(IE)) {
1915       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1916       Value *SVOp = SVI->getOperand(0);
1917       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1918 
1919       if (OpTy->getNumElements() == ResElts) {
1920         for (unsigned j = 0; j != CurIdx; ++j) {
1921           // If the current vector initializer is a shuffle with undef, merge
1922           // this shuffle directly into it.
1923           if (VIsUndefShuffle) {
1924             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1925           } else {
1926             Args.push_back(j);
1927           }
1928         }
1929         for (unsigned j = 0, je = InitElts; j != je; ++j)
1930           Args.push_back(getMaskElt(SVI, j, Offset));
1931         Args.resize(ResElts, -1);
1932 
1933         if (VIsUndefShuffle)
1934           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1935 
1936         Init = SVOp;
1937       }
1938     }
1939 
1940     // Extend init to result vector length, and then shuffle its contribution
1941     // to the vector initializer into V.
1942     if (Args.empty()) {
1943       for (unsigned j = 0; j != InitElts; ++j)
1944         Args.push_back(j);
1945       Args.resize(ResElts, -1);
1946       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args,
1947                                          "vext");
1948 
1949       Args.clear();
1950       for (unsigned j = 0; j != CurIdx; ++j)
1951         Args.push_back(j);
1952       for (unsigned j = 0; j != InitElts; ++j)
1953         Args.push_back(j + Offset);
1954       Args.resize(ResElts, -1);
1955     }
1956 
1957     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1958     // merging subsequent shuffles into this one.
1959     if (CurIdx == 0)
1960       std::swap(V, Init);
1961     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1962     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1963     CurIdx += InitElts;
1964   }
1965 
1966   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1967   // Emit remaining default initializers.
1968   llvm::Type *EltTy = VType->getElementType();
1969 
1970   // Emit remaining default initializers
1971   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1972     Value *Idx = Builder.getInt32(CurIdx);
1973     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1974     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1975   }
1976   return V;
1977 }
1978 
1979 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1980   const Expr *E = CE->getSubExpr();
1981 
1982   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1983     return false;
1984 
1985   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1986     // We always assume that 'this' is never null.
1987     return false;
1988   }
1989 
1990   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1991     // And that glvalue casts are never null.
1992     if (ICE->getValueKind() != VK_RValue)
1993       return false;
1994   }
1995 
1996   return true;
1997 }
1998 
1999 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
2000 // have to handle a more broad range of conversions than explicit casts, as they
2001 // handle things like function to ptr-to-function decay etc.
2002 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2003   Expr *E = CE->getSubExpr();
2004   QualType DestTy = CE->getType();
2005   CastKind Kind = CE->getCastKind();
2006 
2007   // These cases are generally not written to ignore the result of
2008   // evaluating their sub-expressions, so we clear this now.
2009   bool Ignored = TestAndClearIgnoreResultAssign();
2010 
2011   // Since almost all cast kinds apply to scalars, this switch doesn't have
2012   // a default case, so the compiler will warn on a missing case.  The cases
2013   // are in the same order as in the CastKind enum.
2014   switch (Kind) {
2015   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2016   case CK_BuiltinFnToFnPtr:
2017     llvm_unreachable("builtin functions are handled elsewhere");
2018 
2019   case CK_LValueBitCast:
2020   case CK_ObjCObjectLValueCast: {
2021     Address Addr = EmitLValue(E).getAddress(CGF);
2022     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2023     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2024     return EmitLoadOfLValue(LV, CE->getExprLoc());
2025   }
2026 
2027   case CK_LValueToRValueBitCast: {
2028     LValue SourceLVal = CGF.EmitLValue(E);
2029     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2030                                                 CGF.ConvertTypeForMem(DestTy));
2031     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2032     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2033     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2034   }
2035 
2036   case CK_CPointerToObjCPointerCast:
2037   case CK_BlockPointerToObjCPointerCast:
2038   case CK_AnyPointerToBlockPointerCast:
2039   case CK_BitCast: {
2040     Value *Src = Visit(const_cast<Expr*>(E));
2041     llvm::Type *SrcTy = Src->getType();
2042     llvm::Type *DstTy = ConvertType(DestTy);
2043     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2044         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2045       llvm_unreachable("wrong cast for pointers in different address spaces"
2046                        "(must be an address space cast)!");
2047     }
2048 
2049     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2050       if (auto PT = DestTy->getAs<PointerType>())
2051         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2052                                       /*MayBeNull=*/true,
2053                                       CodeGenFunction::CFITCK_UnrelatedCast,
2054                                       CE->getBeginLoc());
2055     }
2056 
2057     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2058       const QualType SrcType = E->getType();
2059 
2060       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2061         // Casting to pointer that could carry dynamic information (provided by
2062         // invariant.group) requires launder.
2063         Src = Builder.CreateLaunderInvariantGroup(Src);
2064       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2065         // Casting to pointer that does not carry dynamic information (provided
2066         // by invariant.group) requires stripping it.  Note that we don't do it
2067         // if the source could not be dynamic type and destination could be
2068         // dynamic because dynamic information is already laundered.  It is
2069         // because launder(strip(src)) == launder(src), so there is no need to
2070         // add extra strip before launder.
2071         Src = Builder.CreateStripInvariantGroup(Src);
2072       }
2073     }
2074 
2075     // Update heapallocsite metadata when there is an explicit cast.
2076     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2077       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2078           CGF.getDebugInfo()->
2079               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2080 
2081     return Builder.CreateBitCast(Src, DstTy);
2082   }
2083   case CK_AddressSpaceConversion: {
2084     Expr::EvalResult Result;
2085     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2086         Result.Val.isNullPointer()) {
2087       // If E has side effect, it is emitted even if its final result is a
2088       // null pointer. In that case, a DCE pass should be able to
2089       // eliminate the useless instructions emitted during translating E.
2090       if (Result.HasSideEffects)
2091         Visit(E);
2092       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2093           ConvertType(DestTy)), DestTy);
2094     }
2095     // Since target may map different address spaces in AST to the same address
2096     // space, an address space conversion may end up as a bitcast.
2097     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2098         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2099         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2100   }
2101   case CK_AtomicToNonAtomic:
2102   case CK_NonAtomicToAtomic:
2103   case CK_NoOp:
2104   case CK_UserDefinedConversion:
2105     return Visit(const_cast<Expr*>(E));
2106 
2107   case CK_BaseToDerived: {
2108     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2109     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2110 
2111     Address Base = CGF.EmitPointerWithAlignment(E);
2112     Address Derived =
2113       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2114                                    CE->path_begin(), CE->path_end(),
2115                                    CGF.ShouldNullCheckClassCastValue(CE));
2116 
2117     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2118     // performed and the object is not of the derived type.
2119     if (CGF.sanitizePerformTypeCheck())
2120       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2121                         Derived.getPointer(), DestTy->getPointeeType());
2122 
2123     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2124       CGF.EmitVTablePtrCheckForCast(
2125           DestTy->getPointeeType(), Derived.getPointer(),
2126           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2127           CE->getBeginLoc());
2128 
2129     return Derived.getPointer();
2130   }
2131   case CK_UncheckedDerivedToBase:
2132   case CK_DerivedToBase: {
2133     // The EmitPointerWithAlignment path does this fine; just discard
2134     // the alignment.
2135     return CGF.EmitPointerWithAlignment(CE).getPointer();
2136   }
2137 
2138   case CK_Dynamic: {
2139     Address V = CGF.EmitPointerWithAlignment(E);
2140     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2141     return CGF.EmitDynamicCast(V, DCE);
2142   }
2143 
2144   case CK_ArrayToPointerDecay:
2145     return CGF.EmitArrayToPointerDecay(E).getPointer();
2146   case CK_FunctionToPointerDecay:
2147     return EmitLValue(E).getPointer(CGF);
2148 
2149   case CK_NullToPointer:
2150     if (MustVisitNullValue(E))
2151       CGF.EmitIgnoredExpr(E);
2152 
2153     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2154                               DestTy);
2155 
2156   case CK_NullToMemberPointer: {
2157     if (MustVisitNullValue(E))
2158       CGF.EmitIgnoredExpr(E);
2159 
2160     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2161     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2162   }
2163 
2164   case CK_ReinterpretMemberPointer:
2165   case CK_BaseToDerivedMemberPointer:
2166   case CK_DerivedToBaseMemberPointer: {
2167     Value *Src = Visit(E);
2168 
2169     // Note that the AST doesn't distinguish between checked and
2170     // unchecked member pointer conversions, so we always have to
2171     // implement checked conversions here.  This is inefficient when
2172     // actual control flow may be required in order to perform the
2173     // check, which it is for data member pointers (but not member
2174     // function pointers on Itanium and ARM).
2175     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2176   }
2177 
2178   case CK_ARCProduceObject:
2179     return CGF.EmitARCRetainScalarExpr(E);
2180   case CK_ARCConsumeObject:
2181     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2182   case CK_ARCReclaimReturnedObject:
2183     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2184   case CK_ARCExtendBlockObject:
2185     return CGF.EmitARCExtendBlockObject(E);
2186 
2187   case CK_CopyAndAutoreleaseBlockObject:
2188     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2189 
2190   case CK_FloatingRealToComplex:
2191   case CK_FloatingComplexCast:
2192   case CK_IntegralRealToComplex:
2193   case CK_IntegralComplexCast:
2194   case CK_IntegralComplexToFloatingComplex:
2195   case CK_FloatingComplexToIntegralComplex:
2196   case CK_ConstructorConversion:
2197   case CK_ToUnion:
2198     llvm_unreachable("scalar cast to non-scalar value");
2199 
2200   case CK_LValueToRValue:
2201     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2202     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2203     return Visit(const_cast<Expr*>(E));
2204 
2205   case CK_IntegralToPointer: {
2206     Value *Src = Visit(const_cast<Expr*>(E));
2207 
2208     // First, convert to the correct width so that we control the kind of
2209     // extension.
2210     auto DestLLVMTy = ConvertType(DestTy);
2211     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2212     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2213     llvm::Value* IntResult =
2214       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2215 
2216     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2217 
2218     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2219       // Going from integer to pointer that could be dynamic requires reloading
2220       // dynamic information from invariant.group.
2221       if (DestTy.mayBeDynamicClass())
2222         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2223     }
2224     return IntToPtr;
2225   }
2226   case CK_PointerToIntegral: {
2227     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2228     auto *PtrExpr = Visit(E);
2229 
2230     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2231       const QualType SrcType = E->getType();
2232 
2233       // Casting to integer requires stripping dynamic information as it does
2234       // not carries it.
2235       if (SrcType.mayBeDynamicClass())
2236         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2237     }
2238 
2239     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2240   }
2241   case CK_ToVoid: {
2242     CGF.EmitIgnoredExpr(E);
2243     return nullptr;
2244   }
2245   case CK_VectorSplat: {
2246     llvm::Type *DstTy = ConvertType(DestTy);
2247     Value *Elt = Visit(const_cast<Expr*>(E));
2248     // Splat the element across to all elements
2249     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
2250     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2251   }
2252 
2253   case CK_FixedPointCast:
2254     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2255                                 CE->getExprLoc());
2256 
2257   case CK_FixedPointToBoolean:
2258     assert(E->getType()->isFixedPointType() &&
2259            "Expected src type to be fixed point type");
2260     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2261     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2262                                 CE->getExprLoc());
2263 
2264   case CK_FixedPointToIntegral:
2265     assert(E->getType()->isFixedPointType() &&
2266            "Expected src type to be fixed point type");
2267     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2268     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2269                                 CE->getExprLoc());
2270 
2271   case CK_IntegralToFixedPoint:
2272     assert(E->getType()->isIntegerType() &&
2273            "Expected src type to be an integer");
2274     assert(DestTy->isFixedPointType() &&
2275            "Expected dest type to be fixed point type");
2276     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2277                                 CE->getExprLoc());
2278 
2279   case CK_IntegralCast: {
2280     ScalarConversionOpts Opts;
2281     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2282       if (!ICE->isPartOfExplicitCast())
2283         Opts = ScalarConversionOpts(CGF.SanOpts);
2284     }
2285     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2286                                 CE->getExprLoc(), Opts);
2287   }
2288   case CK_IntegralToFloating:
2289   case CK_FloatingToIntegral:
2290   case CK_FloatingCast:
2291     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2292                                 CE->getExprLoc());
2293   case CK_BooleanToSignedIntegral: {
2294     ScalarConversionOpts Opts;
2295     Opts.TreatBooleanAsSigned = true;
2296     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2297                                 CE->getExprLoc(), Opts);
2298   }
2299   case CK_IntegralToBoolean:
2300     return EmitIntToBoolConversion(Visit(E));
2301   case CK_PointerToBoolean:
2302     return EmitPointerToBoolConversion(Visit(E), E->getType());
2303   case CK_FloatingToBoolean:
2304     return EmitFloatToBoolConversion(Visit(E));
2305   case CK_MemberPointerToBoolean: {
2306     llvm::Value *MemPtr = Visit(E);
2307     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2308     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2309   }
2310 
2311   case CK_FloatingComplexToReal:
2312   case CK_IntegralComplexToReal:
2313     return CGF.EmitComplexExpr(E, false, true).first;
2314 
2315   case CK_FloatingComplexToBoolean:
2316   case CK_IntegralComplexToBoolean: {
2317     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2318 
2319     // TODO: kill this function off, inline appropriate case here
2320     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2321                                          CE->getExprLoc());
2322   }
2323 
2324   case CK_ZeroToOCLOpaqueType: {
2325     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2326             DestTy->isOCLIntelSubgroupAVCType()) &&
2327            "CK_ZeroToOCLEvent cast on non-event type");
2328     return llvm::Constant::getNullValue(ConvertType(DestTy));
2329   }
2330 
2331   case CK_IntToOCLSampler:
2332     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2333 
2334   } // end of switch
2335 
2336   llvm_unreachable("unknown scalar cast");
2337 }
2338 
2339 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2340   CodeGenFunction::StmtExprEvaluation eval(CGF);
2341   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2342                                            !E->getType()->isVoidType());
2343   if (!RetAlloca.isValid())
2344     return nullptr;
2345   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2346                               E->getExprLoc());
2347 }
2348 
2349 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2350   CGF.enterFullExpression(E);
2351   CodeGenFunction::RunCleanupsScope Scope(CGF);
2352   Value *V = Visit(E->getSubExpr());
2353   // Defend against dominance problems caused by jumps out of expression
2354   // evaluation through the shared cleanup block.
2355   Scope.ForceCleanup({&V});
2356   return V;
2357 }
2358 
2359 //===----------------------------------------------------------------------===//
2360 //                             Unary Operators
2361 //===----------------------------------------------------------------------===//
2362 
2363 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2364                                            llvm::Value *InVal, bool IsInc,
2365                                            FPOptions FPFeatures) {
2366   BinOpInfo BinOp;
2367   BinOp.LHS = InVal;
2368   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2369   BinOp.Ty = E->getType();
2370   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2371   BinOp.FPFeatures = FPFeatures;
2372   BinOp.E = E;
2373   return BinOp;
2374 }
2375 
2376 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2377     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2378   llvm::Value *Amount =
2379       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2380   StringRef Name = IsInc ? "inc" : "dec";
2381   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2382   case LangOptions::SOB_Defined:
2383     return Builder.CreateAdd(InVal, Amount, Name);
2384   case LangOptions::SOB_Undefined:
2385     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2386       return Builder.CreateNSWAdd(InVal, Amount, Name);
2387     LLVM_FALLTHROUGH;
2388   case LangOptions::SOB_Trapping:
2389     if (!E->canOverflow())
2390       return Builder.CreateNSWAdd(InVal, Amount, Name);
2391     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2392         E, InVal, IsInc, E->getFPFeatures(CGF.getLangOpts())));
2393   }
2394   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2395 }
2396 
2397 namespace {
2398 /// Handles check and update for lastprivate conditional variables.
2399 class OMPLastprivateConditionalUpdateRAII {
2400 private:
2401   CodeGenFunction &CGF;
2402   const UnaryOperator *E;
2403 
2404 public:
2405   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2406                                       const UnaryOperator *E)
2407       : CGF(CGF), E(E) {}
2408   ~OMPLastprivateConditionalUpdateRAII() {
2409     if (CGF.getLangOpts().OpenMP)
2410       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2411           CGF, E->getSubExpr());
2412   }
2413 };
2414 } // namespace
2415 
2416 llvm::Value *
2417 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2418                                            bool isInc, bool isPre) {
2419   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2420   QualType type = E->getSubExpr()->getType();
2421   llvm::PHINode *atomicPHI = nullptr;
2422   llvm::Value *value;
2423   llvm::Value *input;
2424 
2425   int amount = (isInc ? 1 : -1);
2426   bool isSubtraction = !isInc;
2427 
2428   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2429     type = atomicTy->getValueType();
2430     if (isInc && type->isBooleanType()) {
2431       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2432       if (isPre) {
2433         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2434             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2435         return Builder.getTrue();
2436       }
2437       // For atomic bool increment, we just store true and return it for
2438       // preincrement, do an atomic swap with true for postincrement
2439       return Builder.CreateAtomicRMW(
2440           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2441           llvm::AtomicOrdering::SequentiallyConsistent);
2442     }
2443     // Special case for atomic increment / decrement on integers, emit
2444     // atomicrmw instructions.  We skip this if we want to be doing overflow
2445     // checking, and fall into the slow path with the atomic cmpxchg loop.
2446     if (!type->isBooleanType() && type->isIntegerType() &&
2447         !(type->isUnsignedIntegerType() &&
2448           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2449         CGF.getLangOpts().getSignedOverflowBehavior() !=
2450             LangOptions::SOB_Trapping) {
2451       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2452         llvm::AtomicRMWInst::Sub;
2453       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2454         llvm::Instruction::Sub;
2455       llvm::Value *amt = CGF.EmitToMemory(
2456           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2457       llvm::Value *old =
2458           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2459                                   llvm::AtomicOrdering::SequentiallyConsistent);
2460       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2461     }
2462     value = EmitLoadOfLValue(LV, E->getExprLoc());
2463     input = value;
2464     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2465     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2466     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2467     value = CGF.EmitToMemory(value, type);
2468     Builder.CreateBr(opBB);
2469     Builder.SetInsertPoint(opBB);
2470     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2471     atomicPHI->addIncoming(value, startBB);
2472     value = atomicPHI;
2473   } else {
2474     value = EmitLoadOfLValue(LV, E->getExprLoc());
2475     input = value;
2476   }
2477 
2478   // Special case of integer increment that we have to check first: bool++.
2479   // Due to promotion rules, we get:
2480   //   bool++ -> bool = bool + 1
2481   //          -> bool = (int)bool + 1
2482   //          -> bool = ((int)bool + 1 != 0)
2483   // An interesting aspect of this is that increment is always true.
2484   // Decrement does not have this property.
2485   if (isInc && type->isBooleanType()) {
2486     value = Builder.getTrue();
2487 
2488   // Most common case by far: integer increment.
2489   } else if (type->isIntegerType()) {
2490     QualType promotedType;
2491     bool canPerformLossyDemotionCheck = false;
2492     if (type->isPromotableIntegerType()) {
2493       promotedType = CGF.getContext().getPromotedIntegerType(type);
2494       assert(promotedType != type && "Shouldn't promote to the same type.");
2495       canPerformLossyDemotionCheck = true;
2496       canPerformLossyDemotionCheck &=
2497           CGF.getContext().getCanonicalType(type) !=
2498           CGF.getContext().getCanonicalType(promotedType);
2499       canPerformLossyDemotionCheck &=
2500           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2501               type, promotedType);
2502       assert((!canPerformLossyDemotionCheck ||
2503               type->isSignedIntegerOrEnumerationType() ||
2504               promotedType->isSignedIntegerOrEnumerationType() ||
2505               ConvertType(type)->getScalarSizeInBits() ==
2506                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2507              "The following check expects that if we do promotion to different "
2508              "underlying canonical type, at least one of the types (either "
2509              "base or promoted) will be signed, or the bitwidths will match.");
2510     }
2511     if (CGF.SanOpts.hasOneOf(
2512             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2513         canPerformLossyDemotionCheck) {
2514       // While `x += 1` (for `x` with width less than int) is modeled as
2515       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2516       // ease; inc/dec with width less than int can't overflow because of
2517       // promotion rules, so we omit promotion+demotion, which means that we can
2518       // not catch lossy "demotion". Because we still want to catch these cases
2519       // when the sanitizer is enabled, we perform the promotion, then perform
2520       // the increment/decrement in the wider type, and finally
2521       // perform the demotion. This will catch lossy demotions.
2522 
2523       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2524       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2525       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2526       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2527       // emitted.
2528       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2529                                    ScalarConversionOpts(CGF.SanOpts));
2530 
2531       // Note that signed integer inc/dec with width less than int can't
2532       // overflow because of promotion rules; we're just eliding a few steps
2533       // here.
2534     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2535       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2536     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2537                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2538       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2539           E, value, isInc, E->getFPFeatures(CGF.getLangOpts())));
2540     } else {
2541       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2542       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2543     }
2544 
2545   // Next most common: pointer increment.
2546   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2547     QualType type = ptr->getPointeeType();
2548 
2549     // VLA types don't have constant size.
2550     if (const VariableArrayType *vla
2551           = CGF.getContext().getAsVariableArrayType(type)) {
2552       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2553       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2554       if (CGF.getLangOpts().isSignedOverflowDefined())
2555         value = Builder.CreateGEP(value, numElts, "vla.inc");
2556       else
2557         value = CGF.EmitCheckedInBoundsGEP(
2558             value, numElts, /*SignedIndices=*/false, isSubtraction,
2559             E->getExprLoc(), "vla.inc");
2560 
2561     // Arithmetic on function pointers (!) is just +-1.
2562     } else if (type->isFunctionType()) {
2563       llvm::Value *amt = Builder.getInt32(amount);
2564 
2565       value = CGF.EmitCastToVoidPtr(value);
2566       if (CGF.getLangOpts().isSignedOverflowDefined())
2567         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2568       else
2569         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2570                                            isSubtraction, E->getExprLoc(),
2571                                            "incdec.funcptr");
2572       value = Builder.CreateBitCast(value, input->getType());
2573 
2574     // For everything else, we can just do a simple increment.
2575     } else {
2576       llvm::Value *amt = Builder.getInt32(amount);
2577       if (CGF.getLangOpts().isSignedOverflowDefined())
2578         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2579       else
2580         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2581                                            isSubtraction, E->getExprLoc(),
2582                                            "incdec.ptr");
2583     }
2584 
2585   // Vector increment/decrement.
2586   } else if (type->isVectorType()) {
2587     if (type->hasIntegerRepresentation()) {
2588       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2589 
2590       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2591     } else {
2592       value = Builder.CreateFAdd(
2593                   value,
2594                   llvm::ConstantFP::get(value->getType(), amount),
2595                   isInc ? "inc" : "dec");
2596     }
2597 
2598   // Floating point.
2599   } else if (type->isRealFloatingType()) {
2600     // Add the inc/dec to the real part.
2601     llvm::Value *amt;
2602 
2603     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2604       // Another special case: half FP increment should be done via float
2605       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2606         value = Builder.CreateCall(
2607             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2608                                  CGF.CGM.FloatTy),
2609             input, "incdec.conv");
2610       } else {
2611         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2612       }
2613     }
2614 
2615     if (value->getType()->isFloatTy())
2616       amt = llvm::ConstantFP::get(VMContext,
2617                                   llvm::APFloat(static_cast<float>(amount)));
2618     else if (value->getType()->isDoubleTy())
2619       amt = llvm::ConstantFP::get(VMContext,
2620                                   llvm::APFloat(static_cast<double>(amount)));
2621     else {
2622       // Remaining types are Half, LongDouble or __float128. Convert from float.
2623       llvm::APFloat F(static_cast<float>(amount));
2624       bool ignored;
2625       const llvm::fltSemantics *FS;
2626       // Don't use getFloatTypeSemantics because Half isn't
2627       // necessarily represented using the "half" LLVM type.
2628       if (value->getType()->isFP128Ty())
2629         FS = &CGF.getTarget().getFloat128Format();
2630       else if (value->getType()->isHalfTy())
2631         FS = &CGF.getTarget().getHalfFormat();
2632       else
2633         FS = &CGF.getTarget().getLongDoubleFormat();
2634       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2635       amt = llvm::ConstantFP::get(VMContext, F);
2636     }
2637     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2638 
2639     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2640       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2641         value = Builder.CreateCall(
2642             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2643                                  CGF.CGM.FloatTy),
2644             value, "incdec.conv");
2645       } else {
2646         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2647       }
2648     }
2649 
2650   // Fixed-point types.
2651   } else if (type->isFixedPointType()) {
2652     // Fixed-point types are tricky. In some cases, it isn't possible to
2653     // represent a 1 or a -1 in the type at all. Piggyback off of
2654     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2655     BinOpInfo Info;
2656     Info.E = E;
2657     Info.Ty = E->getType();
2658     Info.Opcode = isInc ? BO_Add : BO_Sub;
2659     Info.LHS = value;
2660     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2661     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2662     // since -1 is guaranteed to be representable.
2663     if (type->isSignedFixedPointType()) {
2664       Info.Opcode = isInc ? BO_Sub : BO_Add;
2665       Info.RHS = Builder.CreateNeg(Info.RHS);
2666     }
2667     // Now, convert from our invented integer literal to the type of the unary
2668     // op. This will upscale and saturate if necessary. This value can become
2669     // undef in some cases.
2670     FixedPointSemantics SrcSema =
2671         FixedPointSemantics::GetIntegerSemantics(value->getType()
2672                                                       ->getScalarSizeInBits(),
2673                                                  /*IsSigned=*/true);
2674     FixedPointSemantics DstSema =
2675         CGF.getContext().getFixedPointSemantics(Info.Ty);
2676     Info.RHS = EmitFixedPointConversion(Info.RHS, SrcSema, DstSema,
2677                                         E->getExprLoc());
2678     value = EmitFixedPointBinOp(Info);
2679 
2680   // Objective-C pointer types.
2681   } else {
2682     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2683     value = CGF.EmitCastToVoidPtr(value);
2684 
2685     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2686     if (!isInc) size = -size;
2687     llvm::Value *sizeValue =
2688       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2689 
2690     if (CGF.getLangOpts().isSignedOverflowDefined())
2691       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2692     else
2693       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2694                                          /*SignedIndices=*/false, isSubtraction,
2695                                          E->getExprLoc(), "incdec.objptr");
2696     value = Builder.CreateBitCast(value, input->getType());
2697   }
2698 
2699   if (atomicPHI) {
2700     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2701     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2702     auto Pair = CGF.EmitAtomicCompareExchange(
2703         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2704     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2705     llvm::Value *success = Pair.second;
2706     atomicPHI->addIncoming(old, curBlock);
2707     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2708     Builder.SetInsertPoint(contBB);
2709     return isPre ? value : input;
2710   }
2711 
2712   // Store the updated result through the lvalue.
2713   if (LV.isBitField())
2714     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2715   else
2716     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2717 
2718   // If this is a postinc, return the value read from memory, otherwise use the
2719   // updated value.
2720   return isPre ? value : input;
2721 }
2722 
2723 
2724 
2725 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2726   TestAndClearIgnoreResultAssign();
2727   Value *Op = Visit(E->getSubExpr());
2728 
2729   // Generate a unary FNeg for FP ops.
2730   if (Op->getType()->isFPOrFPVectorTy())
2731     return Builder.CreateFNeg(Op, "fneg");
2732 
2733   // Emit unary minus with EmitSub so we handle overflow cases etc.
2734   BinOpInfo BinOp;
2735   BinOp.RHS = Op;
2736   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2737   BinOp.Ty = E->getType();
2738   BinOp.Opcode = BO_Sub;
2739   BinOp.FPFeatures = E->getFPFeatures(CGF.getLangOpts());
2740   BinOp.E = E;
2741   return EmitSub(BinOp);
2742 }
2743 
2744 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2745   TestAndClearIgnoreResultAssign();
2746   Value *Op = Visit(E->getSubExpr());
2747   return Builder.CreateNot(Op, "neg");
2748 }
2749 
2750 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2751   // Perform vector logical not on comparison with zero vector.
2752   if (E->getType()->isExtVectorType()) {
2753     Value *Oper = Visit(E->getSubExpr());
2754     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2755     Value *Result;
2756     if (Oper->getType()->isFPOrFPVectorTy()) {
2757       llvm::IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2758       setBuilderFlagsFromFPFeatures(Builder, CGF,
2759                                     E->getFPFeatures(CGF.getLangOpts()));
2760       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2761     } else
2762       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2763     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2764   }
2765 
2766   // Compare operand to zero.
2767   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2768 
2769   // Invert value.
2770   // TODO: Could dynamically modify easy computations here.  For example, if
2771   // the operand is an icmp ne, turn into icmp eq.
2772   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2773 
2774   // ZExt result to the expr type.
2775   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2776 }
2777 
2778 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2779   // Try folding the offsetof to a constant.
2780   Expr::EvalResult EVResult;
2781   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2782     llvm::APSInt Value = EVResult.Val.getInt();
2783     return Builder.getInt(Value);
2784   }
2785 
2786   // Loop over the components of the offsetof to compute the value.
2787   unsigned n = E->getNumComponents();
2788   llvm::Type* ResultType = ConvertType(E->getType());
2789   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2790   QualType CurrentType = E->getTypeSourceInfo()->getType();
2791   for (unsigned i = 0; i != n; ++i) {
2792     OffsetOfNode ON = E->getComponent(i);
2793     llvm::Value *Offset = nullptr;
2794     switch (ON.getKind()) {
2795     case OffsetOfNode::Array: {
2796       // Compute the index
2797       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2798       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2799       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2800       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2801 
2802       // Save the element type
2803       CurrentType =
2804           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2805 
2806       // Compute the element size
2807       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2808           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2809 
2810       // Multiply out to compute the result
2811       Offset = Builder.CreateMul(Idx, ElemSize);
2812       break;
2813     }
2814 
2815     case OffsetOfNode::Field: {
2816       FieldDecl *MemberDecl = ON.getField();
2817       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2818       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2819 
2820       // Compute the index of the field in its parent.
2821       unsigned i = 0;
2822       // FIXME: It would be nice if we didn't have to loop here!
2823       for (RecordDecl::field_iterator Field = RD->field_begin(),
2824                                       FieldEnd = RD->field_end();
2825            Field != FieldEnd; ++Field, ++i) {
2826         if (*Field == MemberDecl)
2827           break;
2828       }
2829       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2830 
2831       // Compute the offset to the field
2832       int64_t OffsetInt = RL.getFieldOffset(i) /
2833                           CGF.getContext().getCharWidth();
2834       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2835 
2836       // Save the element type.
2837       CurrentType = MemberDecl->getType();
2838       break;
2839     }
2840 
2841     case OffsetOfNode::Identifier:
2842       llvm_unreachable("dependent __builtin_offsetof");
2843 
2844     case OffsetOfNode::Base: {
2845       if (ON.getBase()->isVirtual()) {
2846         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2847         continue;
2848       }
2849 
2850       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2851       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2852 
2853       // Save the element type.
2854       CurrentType = ON.getBase()->getType();
2855 
2856       // Compute the offset to the base.
2857       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2858       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2859       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2860       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2861       break;
2862     }
2863     }
2864     Result = Builder.CreateAdd(Result, Offset);
2865   }
2866   return Result;
2867 }
2868 
2869 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2870 /// argument of the sizeof expression as an integer.
2871 Value *
2872 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2873                               const UnaryExprOrTypeTraitExpr *E) {
2874   QualType TypeToSize = E->getTypeOfArgument();
2875   if (E->getKind() == UETT_SizeOf) {
2876     if (const VariableArrayType *VAT =
2877           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2878       if (E->isArgumentType()) {
2879         // sizeof(type) - make sure to emit the VLA size.
2880         CGF.EmitVariablyModifiedType(TypeToSize);
2881       } else {
2882         // C99 6.5.3.4p2: If the argument is an expression of type
2883         // VLA, it is evaluated.
2884         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2885       }
2886 
2887       auto VlaSize = CGF.getVLASize(VAT);
2888       llvm::Value *size = VlaSize.NumElts;
2889 
2890       // Scale the number of non-VLA elements by the non-VLA element size.
2891       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2892       if (!eltSize.isOne())
2893         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2894 
2895       return size;
2896     }
2897   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2898     auto Alignment =
2899         CGF.getContext()
2900             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2901                 E->getTypeOfArgument()->getPointeeType()))
2902             .getQuantity();
2903     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2904   }
2905 
2906   // If this isn't sizeof(vla), the result must be constant; use the constant
2907   // folding logic so we don't have to duplicate it here.
2908   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2909 }
2910 
2911 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2912   Expr *Op = E->getSubExpr();
2913   if (Op->getType()->isAnyComplexType()) {
2914     // If it's an l-value, load through the appropriate subobject l-value.
2915     // Note that we have to ask E because Op might be an l-value that
2916     // this won't work for, e.g. an Obj-C property.
2917     if (E->isGLValue())
2918       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2919                                   E->getExprLoc()).getScalarVal();
2920 
2921     // Otherwise, calculate and project.
2922     return CGF.EmitComplexExpr(Op, false, true).first;
2923   }
2924 
2925   return Visit(Op);
2926 }
2927 
2928 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2929   Expr *Op = E->getSubExpr();
2930   if (Op->getType()->isAnyComplexType()) {
2931     // If it's an l-value, load through the appropriate subobject l-value.
2932     // Note that we have to ask E because Op might be an l-value that
2933     // this won't work for, e.g. an Obj-C property.
2934     if (Op->isGLValue())
2935       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2936                                   E->getExprLoc()).getScalarVal();
2937 
2938     // Otherwise, calculate and project.
2939     return CGF.EmitComplexExpr(Op, true, false).second;
2940   }
2941 
2942   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2943   // effects are evaluated, but not the actual value.
2944   if (Op->isGLValue())
2945     CGF.EmitLValue(Op);
2946   else
2947     CGF.EmitScalarExpr(Op, true);
2948   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2949 }
2950 
2951 //===----------------------------------------------------------------------===//
2952 //                           Binary Operators
2953 //===----------------------------------------------------------------------===//
2954 
2955 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2956   TestAndClearIgnoreResultAssign();
2957   BinOpInfo Result;
2958   Result.LHS = Visit(E->getLHS());
2959   Result.RHS = Visit(E->getRHS());
2960   Result.Ty  = E->getType();
2961   Result.Opcode = E->getOpcode();
2962   Result.FPFeatures = E->getFPFeatures(CGF.getLangOpts());
2963   Result.E = E;
2964   return Result;
2965 }
2966 
2967 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2968                                               const CompoundAssignOperator *E,
2969                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2970                                                    Value *&Result) {
2971   QualType LHSTy = E->getLHS()->getType();
2972   BinOpInfo OpInfo;
2973 
2974   if (E->getComputationResultType()->isAnyComplexType())
2975     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2976 
2977   // Emit the RHS first.  __block variables need to have the rhs evaluated
2978   // first, plus this should improve codegen a little.
2979   OpInfo.RHS = Visit(E->getRHS());
2980   OpInfo.Ty = E->getComputationResultType();
2981   OpInfo.Opcode = E->getOpcode();
2982   OpInfo.FPFeatures = E->getFPFeatures(CGF.getLangOpts());
2983   OpInfo.E = E;
2984   // Load/convert the LHS.
2985   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2986 
2987   llvm::PHINode *atomicPHI = nullptr;
2988   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2989     QualType type = atomicTy->getValueType();
2990     if (!type->isBooleanType() && type->isIntegerType() &&
2991         !(type->isUnsignedIntegerType() &&
2992           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2993         CGF.getLangOpts().getSignedOverflowBehavior() !=
2994             LangOptions::SOB_Trapping) {
2995       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2996       llvm::Instruction::BinaryOps Op;
2997       switch (OpInfo.Opcode) {
2998         // We don't have atomicrmw operands for *, %, /, <<, >>
2999         case BO_MulAssign: case BO_DivAssign:
3000         case BO_RemAssign:
3001         case BO_ShlAssign:
3002         case BO_ShrAssign:
3003           break;
3004         case BO_AddAssign:
3005           AtomicOp = llvm::AtomicRMWInst::Add;
3006           Op = llvm::Instruction::Add;
3007           break;
3008         case BO_SubAssign:
3009           AtomicOp = llvm::AtomicRMWInst::Sub;
3010           Op = llvm::Instruction::Sub;
3011           break;
3012         case BO_AndAssign:
3013           AtomicOp = llvm::AtomicRMWInst::And;
3014           Op = llvm::Instruction::And;
3015           break;
3016         case BO_XorAssign:
3017           AtomicOp = llvm::AtomicRMWInst::Xor;
3018           Op = llvm::Instruction::Xor;
3019           break;
3020         case BO_OrAssign:
3021           AtomicOp = llvm::AtomicRMWInst::Or;
3022           Op = llvm::Instruction::Or;
3023           break;
3024         default:
3025           llvm_unreachable("Invalid compound assignment type");
3026       }
3027       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3028         llvm::Value *Amt = CGF.EmitToMemory(
3029             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3030                                  E->getExprLoc()),
3031             LHSTy);
3032         Value *OldVal = Builder.CreateAtomicRMW(
3033             AtomicOp, LHSLV.getPointer(CGF), Amt,
3034             llvm::AtomicOrdering::SequentiallyConsistent);
3035 
3036         // Since operation is atomic, the result type is guaranteed to be the
3037         // same as the input in LLVM terms.
3038         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3039         return LHSLV;
3040       }
3041     }
3042     // FIXME: For floating point types, we should be saving and restoring the
3043     // floating point environment in the loop.
3044     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3045     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3046     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3047     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3048     Builder.CreateBr(opBB);
3049     Builder.SetInsertPoint(opBB);
3050     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3051     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3052     OpInfo.LHS = atomicPHI;
3053   }
3054   else
3055     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3056 
3057   SourceLocation Loc = E->getExprLoc();
3058   OpInfo.LHS =
3059       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3060 
3061   // Expand the binary operator.
3062   Result = (this->*Func)(OpInfo);
3063 
3064   // Convert the result back to the LHS type,
3065   // potentially with Implicit Conversion sanitizer check.
3066   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3067                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3068 
3069   if (atomicPHI) {
3070     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3071     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3072     auto Pair = CGF.EmitAtomicCompareExchange(
3073         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3074     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3075     llvm::Value *success = Pair.second;
3076     atomicPHI->addIncoming(old, curBlock);
3077     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3078     Builder.SetInsertPoint(contBB);
3079     return LHSLV;
3080   }
3081 
3082   // Store the result value into the LHS lvalue. Bit-fields are handled
3083   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3084   // 'An assignment expression has the value of the left operand after the
3085   // assignment...'.
3086   if (LHSLV.isBitField())
3087     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3088   else
3089     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3090 
3091   if (CGF.getLangOpts().OpenMP)
3092     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3093                                                                   E->getLHS());
3094   return LHSLV;
3095 }
3096 
3097 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3098                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3099   bool Ignore = TestAndClearIgnoreResultAssign();
3100   Value *RHS = nullptr;
3101   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3102 
3103   // If the result is clearly ignored, return now.
3104   if (Ignore)
3105     return nullptr;
3106 
3107   // The result of an assignment in C is the assigned r-value.
3108   if (!CGF.getLangOpts().CPlusPlus)
3109     return RHS;
3110 
3111   // If the lvalue is non-volatile, return the computed value of the assignment.
3112   if (!LHS.isVolatileQualified())
3113     return RHS;
3114 
3115   // Otherwise, reload the value.
3116   return EmitLoadOfLValue(LHS, E->getExprLoc());
3117 }
3118 
3119 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3120     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3121   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3122 
3123   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3124     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3125                                     SanitizerKind::IntegerDivideByZero));
3126   }
3127 
3128   const auto *BO = cast<BinaryOperator>(Ops.E);
3129   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3130       Ops.Ty->hasSignedIntegerRepresentation() &&
3131       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3132       Ops.mayHaveIntegerOverflow()) {
3133     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3134 
3135     llvm::Value *IntMin =
3136       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3137     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3138 
3139     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3140     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3141     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3142     Checks.push_back(
3143         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3144   }
3145 
3146   if (Checks.size() > 0)
3147     EmitBinOpCheck(Checks, Ops);
3148 }
3149 
3150 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3151   {
3152     CodeGenFunction::SanitizerScope SanScope(&CGF);
3153     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3154          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3155         Ops.Ty->isIntegerType() &&
3156         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3157       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3158       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3159     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3160                Ops.Ty->isRealFloatingType() &&
3161                Ops.mayHaveFloatDivisionByZero()) {
3162       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3163       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3164       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3165                      Ops);
3166     }
3167   }
3168 
3169   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3170     llvm::Value *Val;
3171     llvm::IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3172     setBuilderFlagsFromFPFeatures(Builder, CGF, Ops.FPFeatures);
3173     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3174     if (CGF.getLangOpts().OpenCL &&
3175         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3176       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3177       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3178       // build option allows an application to specify that single precision
3179       // floating-point divide (x/y and 1/x) and sqrt used in the program
3180       // source are correctly rounded.
3181       llvm::Type *ValTy = Val->getType();
3182       if (ValTy->isFloatTy() ||
3183           (isa<llvm::VectorType>(ValTy) &&
3184            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3185         CGF.SetFPAccuracy(Val, 2.5);
3186     }
3187     return Val;
3188   }
3189   else if (Ops.isFixedPointOp())
3190     return EmitFixedPointBinOp(Ops);
3191   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3192     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3193   else
3194     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3195 }
3196 
3197 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3198   // Rem in C can't be a floating point type: C99 6.5.5p2.
3199   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3200        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3201       Ops.Ty->isIntegerType() &&
3202       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3203     CodeGenFunction::SanitizerScope SanScope(&CGF);
3204     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3205     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3206   }
3207 
3208   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3209     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3210   else
3211     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3212 }
3213 
3214 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3215   unsigned IID;
3216   unsigned OpID = 0;
3217 
3218   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3219   switch (Ops.Opcode) {
3220   case BO_Add:
3221   case BO_AddAssign:
3222     OpID = 1;
3223     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3224                      llvm::Intrinsic::uadd_with_overflow;
3225     break;
3226   case BO_Sub:
3227   case BO_SubAssign:
3228     OpID = 2;
3229     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3230                      llvm::Intrinsic::usub_with_overflow;
3231     break;
3232   case BO_Mul:
3233   case BO_MulAssign:
3234     OpID = 3;
3235     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3236                      llvm::Intrinsic::umul_with_overflow;
3237     break;
3238   default:
3239     llvm_unreachable("Unsupported operation for overflow detection");
3240   }
3241   OpID <<= 1;
3242   if (isSigned)
3243     OpID |= 1;
3244 
3245   CodeGenFunction::SanitizerScope SanScope(&CGF);
3246   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3247 
3248   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3249 
3250   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3251   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3252   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3253 
3254   // Handle overflow with llvm.trap if no custom handler has been specified.
3255   const std::string *handlerName =
3256     &CGF.getLangOpts().OverflowHandler;
3257   if (handlerName->empty()) {
3258     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3259     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3260     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3261       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3262       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3263                               : SanitizerKind::UnsignedIntegerOverflow;
3264       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3265     } else
3266       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3267     return result;
3268   }
3269 
3270   // Branch in case of overflow.
3271   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3272   llvm::BasicBlock *continueBB =
3273       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3274   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3275 
3276   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3277 
3278   // If an overflow handler is set, then we want to call it and then use its
3279   // result, if it returns.
3280   Builder.SetInsertPoint(overflowBB);
3281 
3282   // Get the overflow handler.
3283   llvm::Type *Int8Ty = CGF.Int8Ty;
3284   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3285   llvm::FunctionType *handlerTy =
3286       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3287   llvm::FunctionCallee handler =
3288       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3289 
3290   // Sign extend the args to 64-bit, so that we can use the same handler for
3291   // all types of overflow.
3292   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3293   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3294 
3295   // Call the handler with the two arguments, the operation, and the size of
3296   // the result.
3297   llvm::Value *handlerArgs[] = {
3298     lhs,
3299     rhs,
3300     Builder.getInt8(OpID),
3301     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3302   };
3303   llvm::Value *handlerResult =
3304     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3305 
3306   // Truncate the result back to the desired size.
3307   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3308   Builder.CreateBr(continueBB);
3309 
3310   Builder.SetInsertPoint(continueBB);
3311   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3312   phi->addIncoming(result, initialBB);
3313   phi->addIncoming(handlerResult, overflowBB);
3314 
3315   return phi;
3316 }
3317 
3318 /// Emit pointer + index arithmetic.
3319 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3320                                     const BinOpInfo &op,
3321                                     bool isSubtraction) {
3322   // Must have binary (not unary) expr here.  Unary pointer
3323   // increment/decrement doesn't use this path.
3324   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3325 
3326   Value *pointer = op.LHS;
3327   Expr *pointerOperand = expr->getLHS();
3328   Value *index = op.RHS;
3329   Expr *indexOperand = expr->getRHS();
3330 
3331   // In a subtraction, the LHS is always the pointer.
3332   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3333     std::swap(pointer, index);
3334     std::swap(pointerOperand, indexOperand);
3335   }
3336 
3337   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3338 
3339   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3340   auto &DL = CGF.CGM.getDataLayout();
3341   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3342 
3343   // Some versions of glibc and gcc use idioms (particularly in their malloc
3344   // routines) that add a pointer-sized integer (known to be a pointer value)
3345   // to a null pointer in order to cast the value back to an integer or as
3346   // part of a pointer alignment algorithm.  This is undefined behavior, but
3347   // we'd like to be able to compile programs that use it.
3348   //
3349   // Normally, we'd generate a GEP with a null-pointer base here in response
3350   // to that code, but it's also UB to dereference a pointer created that
3351   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3352   // generate a direct cast of the integer value to a pointer.
3353   //
3354   // The idiom (p = nullptr + N) is not met if any of the following are true:
3355   //
3356   //   The operation is subtraction.
3357   //   The index is not pointer-sized.
3358   //   The pointer type is not byte-sized.
3359   //
3360   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3361                                                        op.Opcode,
3362                                                        expr->getLHS(),
3363                                                        expr->getRHS()))
3364     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3365 
3366   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3367     // Zero-extend or sign-extend the pointer value according to
3368     // whether the index is signed or not.
3369     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3370                                       "idx.ext");
3371   }
3372 
3373   // If this is subtraction, negate the index.
3374   if (isSubtraction)
3375     index = CGF.Builder.CreateNeg(index, "idx.neg");
3376 
3377   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3378     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3379                         /*Accessed*/ false);
3380 
3381   const PointerType *pointerType
3382     = pointerOperand->getType()->getAs<PointerType>();
3383   if (!pointerType) {
3384     QualType objectType = pointerOperand->getType()
3385                                         ->castAs<ObjCObjectPointerType>()
3386                                         ->getPointeeType();
3387     llvm::Value *objectSize
3388       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3389 
3390     index = CGF.Builder.CreateMul(index, objectSize);
3391 
3392     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3393     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3394     return CGF.Builder.CreateBitCast(result, pointer->getType());
3395   }
3396 
3397   QualType elementType = pointerType->getPointeeType();
3398   if (const VariableArrayType *vla
3399         = CGF.getContext().getAsVariableArrayType(elementType)) {
3400     // The element count here is the total number of non-VLA elements.
3401     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3402 
3403     // Effectively, the multiply by the VLA size is part of the GEP.
3404     // GEP indexes are signed, and scaling an index isn't permitted to
3405     // signed-overflow, so we use the same semantics for our explicit
3406     // multiply.  We suppress this if overflow is not undefined behavior.
3407     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3408       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3409       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3410     } else {
3411       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3412       pointer =
3413           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3414                                      op.E->getExprLoc(), "add.ptr");
3415     }
3416     return pointer;
3417   }
3418 
3419   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3420   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3421   // future proof.
3422   if (elementType->isVoidType() || elementType->isFunctionType()) {
3423     Value *result = CGF.EmitCastToVoidPtr(pointer);
3424     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3425     return CGF.Builder.CreateBitCast(result, pointer->getType());
3426   }
3427 
3428   if (CGF.getLangOpts().isSignedOverflowDefined())
3429     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3430 
3431   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3432                                     op.E->getExprLoc(), "add.ptr");
3433 }
3434 
3435 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3436 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3437 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3438 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3439 // efficient operations.
3440 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3441                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3442                            bool negMul, bool negAdd) {
3443   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3444 
3445   Value *MulOp0 = MulOp->getOperand(0);
3446   Value *MulOp1 = MulOp->getOperand(1);
3447   if (negMul)
3448     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3449   if (negAdd)
3450     Addend = Builder.CreateFNeg(Addend, "neg");
3451 
3452   Value *FMulAdd = nullptr;
3453   if (Builder.getIsFPConstrained()) {
3454     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3455            "Only constrained operation should be created when Builder is in FP "
3456            "constrained mode");
3457     FMulAdd = Builder.CreateConstrainedFPCall(
3458         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3459                              Addend->getType()),
3460         {MulOp0, MulOp1, Addend});
3461   } else {
3462     FMulAdd = Builder.CreateCall(
3463         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3464         {MulOp0, MulOp1, Addend});
3465   }
3466   MulOp->eraseFromParent();
3467 
3468   return FMulAdd;
3469 }
3470 
3471 // Check whether it would be legal to emit an fmuladd intrinsic call to
3472 // represent op and if so, build the fmuladd.
3473 //
3474 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3475 // Does NOT check the type of the operation - it's assumed that this function
3476 // will be called from contexts where it's known that the type is contractable.
3477 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3478                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3479                          bool isSub=false) {
3480 
3481   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3482           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3483          "Only fadd/fsub can be the root of an fmuladd.");
3484 
3485   // Check whether this op is marked as fusable.
3486   if (!op.FPFeatures.allowFPContractWithinStatement())
3487     return nullptr;
3488 
3489   // We have a potentially fusable op. Look for a mul on one of the operands.
3490   // Also, make sure that the mul result isn't used directly. In that case,
3491   // there's no point creating a muladd operation.
3492   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3493     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3494         LHSBinOp->use_empty())
3495       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3496   }
3497   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3498     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3499         RHSBinOp->use_empty())
3500       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3501   }
3502 
3503   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3504     if (LHSBinOp->getIntrinsicID() ==
3505             llvm::Intrinsic::experimental_constrained_fmul &&
3506         LHSBinOp->use_empty())
3507       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3508   }
3509   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3510     if (RHSBinOp->getIntrinsicID() ==
3511             llvm::Intrinsic::experimental_constrained_fmul &&
3512         RHSBinOp->use_empty())
3513       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3514   }
3515 
3516   return nullptr;
3517 }
3518 
3519 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3520   if (op.LHS->getType()->isPointerTy() ||
3521       op.RHS->getType()->isPointerTy())
3522     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3523 
3524   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3525     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3526     case LangOptions::SOB_Defined:
3527       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3528     case LangOptions::SOB_Undefined:
3529       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3530         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3531       LLVM_FALLTHROUGH;
3532     case LangOptions::SOB_Trapping:
3533       if (CanElideOverflowCheck(CGF.getContext(), op))
3534         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3535       return EmitOverflowCheckedBinOp(op);
3536     }
3537   }
3538 
3539   if (op.Ty->isUnsignedIntegerType() &&
3540       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3541       !CanElideOverflowCheck(CGF.getContext(), op))
3542     return EmitOverflowCheckedBinOp(op);
3543 
3544   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3545     llvm::IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3546     setBuilderFlagsFromFPFeatures(Builder, CGF, op.FPFeatures);
3547     // Try to form an fmuladd.
3548     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3549       return FMulAdd;
3550 
3551     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3552     return propagateFMFlags(V, op);
3553   }
3554 
3555   if (op.isFixedPointOp())
3556     return EmitFixedPointBinOp(op);
3557 
3558   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3559 }
3560 
3561 /// The resulting value must be calculated with exact precision, so the operands
3562 /// may not be the same type.
3563 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3564   using llvm::APSInt;
3565   using llvm::ConstantInt;
3566 
3567   // This is either a binary operation where at least one of the operands is
3568   // a fixed-point type, or a unary operation where the operand is a fixed-point
3569   // type. The result type of a binary operation is determined by
3570   // Sema::handleFixedPointConversions().
3571   QualType ResultTy = op.Ty;
3572   QualType LHSTy, RHSTy;
3573   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3574     RHSTy = BinOp->getRHS()->getType();
3575     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3576       // For compound assignment, the effective type of the LHS at this point
3577       // is the computation LHS type, not the actual LHS type, and the final
3578       // result type is not the type of the expression but rather the
3579       // computation result type.
3580       LHSTy = CAO->getComputationLHSType();
3581       ResultTy = CAO->getComputationResultType();
3582     } else
3583       LHSTy = BinOp->getLHS()->getType();
3584   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3585     LHSTy = UnOp->getSubExpr()->getType();
3586     RHSTy = UnOp->getSubExpr()->getType();
3587   }
3588   ASTContext &Ctx = CGF.getContext();
3589   Value *LHS = op.LHS;
3590   Value *RHS = op.RHS;
3591 
3592   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3593   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3594   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3595   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3596 
3597   // Convert the operands to the full precision type.
3598   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3599                                             op.E->getExprLoc());
3600   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3601                                             op.E->getExprLoc());
3602 
3603   // Perform the actual operation.
3604   Value *Result;
3605   switch (op.Opcode) {
3606   case BO_AddAssign:
3607   case BO_Add: {
3608     if (ResultFixedSema.isSaturated()) {
3609       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3610                                     ? llvm::Intrinsic::sadd_sat
3611                                     : llvm::Intrinsic::uadd_sat;
3612       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3613     } else {
3614       Result = Builder.CreateAdd(FullLHS, FullRHS);
3615     }
3616     break;
3617   }
3618   case BO_SubAssign:
3619   case BO_Sub: {
3620     if (ResultFixedSema.isSaturated()) {
3621       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3622                                     ? llvm::Intrinsic::ssub_sat
3623                                     : llvm::Intrinsic::usub_sat;
3624       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3625     } else {
3626       Result = Builder.CreateSub(FullLHS, FullRHS);
3627     }
3628     break;
3629   }
3630   case BO_MulAssign:
3631   case BO_Mul: {
3632     llvm::Intrinsic::ID IID;
3633     if (ResultFixedSema.isSaturated())
3634       IID = ResultFixedSema.isSigned()
3635                 ? llvm::Intrinsic::smul_fix_sat
3636                 : llvm::Intrinsic::umul_fix_sat;
3637     else
3638       IID = ResultFixedSema.isSigned()
3639                 ? llvm::Intrinsic::smul_fix
3640                 : llvm::Intrinsic::umul_fix;
3641     Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()},
3642         {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())});
3643     break;
3644   }
3645   case BO_DivAssign:
3646   case BO_Div: {
3647     llvm::Intrinsic::ID IID;
3648     if (ResultFixedSema.isSaturated())
3649       IID = ResultFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix_sat
3650                                        : llvm::Intrinsic::udiv_fix_sat;
3651     else
3652       IID = ResultFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix
3653                                        : llvm::Intrinsic::udiv_fix;
3654     Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()},
3655         {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())});
3656     break;
3657   }
3658   case BO_LT:
3659     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3660                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3661   case BO_GT:
3662     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3663                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3664   case BO_LE:
3665     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3666                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3667   case BO_GE:
3668     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3669                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3670   case BO_EQ:
3671     // For equality operations, we assume any padding bits on unsigned types are
3672     // zero'd out. They could be overwritten through non-saturating operations
3673     // that cause overflow, but this leads to undefined behavior.
3674     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3675   case BO_NE:
3676     return Builder.CreateICmpNE(FullLHS, FullRHS);
3677   case BO_Shl:
3678   case BO_Shr:
3679   case BO_Cmp:
3680   case BO_LAnd:
3681   case BO_LOr:
3682   case BO_ShlAssign:
3683   case BO_ShrAssign:
3684     llvm_unreachable("Found unimplemented fixed point binary operation");
3685   case BO_PtrMemD:
3686   case BO_PtrMemI:
3687   case BO_Rem:
3688   case BO_Xor:
3689   case BO_And:
3690   case BO_Or:
3691   case BO_Assign:
3692   case BO_RemAssign:
3693   case BO_AndAssign:
3694   case BO_XorAssign:
3695   case BO_OrAssign:
3696   case BO_Comma:
3697     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3698   }
3699 
3700   // Convert to the result type.
3701   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3702                                   op.E->getExprLoc());
3703 }
3704 
3705 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3706   // The LHS is always a pointer if either side is.
3707   if (!op.LHS->getType()->isPointerTy()) {
3708     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3709       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3710       case LangOptions::SOB_Defined:
3711         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3712       case LangOptions::SOB_Undefined:
3713         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3714           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3715         LLVM_FALLTHROUGH;
3716       case LangOptions::SOB_Trapping:
3717         if (CanElideOverflowCheck(CGF.getContext(), op))
3718           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3719         return EmitOverflowCheckedBinOp(op);
3720       }
3721     }
3722 
3723     if (op.Ty->isUnsignedIntegerType() &&
3724         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3725         !CanElideOverflowCheck(CGF.getContext(), op))
3726       return EmitOverflowCheckedBinOp(op);
3727 
3728     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3729       llvm::IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3730       setBuilderFlagsFromFPFeatures(Builder, CGF, op.FPFeatures);
3731       // Try to form an fmuladd.
3732       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3733         return FMulAdd;
3734       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3735       return propagateFMFlags(V, op);
3736     }
3737 
3738     if (op.isFixedPointOp())
3739       return EmitFixedPointBinOp(op);
3740 
3741     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3742   }
3743 
3744   // If the RHS is not a pointer, then we have normal pointer
3745   // arithmetic.
3746   if (!op.RHS->getType()->isPointerTy())
3747     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3748 
3749   // Otherwise, this is a pointer subtraction.
3750 
3751   // Do the raw subtraction part.
3752   llvm::Value *LHS
3753     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3754   llvm::Value *RHS
3755     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3756   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3757 
3758   // Okay, figure out the element size.
3759   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3760   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3761 
3762   llvm::Value *divisor = nullptr;
3763 
3764   // For a variable-length array, this is going to be non-constant.
3765   if (const VariableArrayType *vla
3766         = CGF.getContext().getAsVariableArrayType(elementType)) {
3767     auto VlaSize = CGF.getVLASize(vla);
3768     elementType = VlaSize.Type;
3769     divisor = VlaSize.NumElts;
3770 
3771     // Scale the number of non-VLA elements by the non-VLA element size.
3772     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3773     if (!eltSize.isOne())
3774       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3775 
3776   // For everything elese, we can just compute it, safe in the
3777   // assumption that Sema won't let anything through that we can't
3778   // safely compute the size of.
3779   } else {
3780     CharUnits elementSize;
3781     // Handle GCC extension for pointer arithmetic on void* and
3782     // function pointer types.
3783     if (elementType->isVoidType() || elementType->isFunctionType())
3784       elementSize = CharUnits::One();
3785     else
3786       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3787 
3788     // Don't even emit the divide for element size of 1.
3789     if (elementSize.isOne())
3790       return diffInChars;
3791 
3792     divisor = CGF.CGM.getSize(elementSize);
3793   }
3794 
3795   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3796   // pointer difference in C is only defined in the case where both operands
3797   // are pointing to elements of an array.
3798   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3799 }
3800 
3801 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3802   llvm::IntegerType *Ty;
3803   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3804     Ty = cast<llvm::IntegerType>(VT->getElementType());
3805   else
3806     Ty = cast<llvm::IntegerType>(LHS->getType());
3807   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3808 }
3809 
3810 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3811                                               const Twine &Name) {
3812   llvm::IntegerType *Ty;
3813   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3814     Ty = cast<llvm::IntegerType>(VT->getElementType());
3815   else
3816     Ty = cast<llvm::IntegerType>(LHS->getType());
3817 
3818   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3819         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3820 
3821   return Builder.CreateURem(
3822       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3823 }
3824 
3825 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3826   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3827   // RHS to the same size as the LHS.
3828   Value *RHS = Ops.RHS;
3829   if (Ops.LHS->getType() != RHS->getType())
3830     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3831 
3832   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3833                       Ops.Ty->hasSignedIntegerRepresentation() &&
3834                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3835                       !CGF.getLangOpts().CPlusPlus20;
3836   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3837   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3838   if (CGF.getLangOpts().OpenCL)
3839     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3840   else if ((SanitizeBase || SanitizeExponent) &&
3841            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3842     CodeGenFunction::SanitizerScope SanScope(&CGF);
3843     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3844     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3845     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3846 
3847     if (SanitizeExponent) {
3848       Checks.push_back(
3849           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3850     }
3851 
3852     if (SanitizeBase) {
3853       // Check whether we are shifting any non-zero bits off the top of the
3854       // integer. We only emit this check if exponent is valid - otherwise
3855       // instructions below will have undefined behavior themselves.
3856       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3857       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3858       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3859       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3860       llvm::Value *PromotedWidthMinusOne =
3861           (RHS == Ops.RHS) ? WidthMinusOne
3862                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3863       CGF.EmitBlock(CheckShiftBase);
3864       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3865           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3866                                      /*NUW*/ true, /*NSW*/ true),
3867           "shl.check");
3868       if (CGF.getLangOpts().CPlusPlus) {
3869         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3870         // Under C++11's rules, shifting a 1 bit into the sign bit is
3871         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3872         // define signed left shifts, so we use the C99 and C++11 rules there).
3873         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3874         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3875       }
3876       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3877       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3878       CGF.EmitBlock(Cont);
3879       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3880       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3881       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3882       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3883     }
3884 
3885     assert(!Checks.empty());
3886     EmitBinOpCheck(Checks, Ops);
3887   }
3888 
3889   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3890 }
3891 
3892 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3893   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3894   // RHS to the same size as the LHS.
3895   Value *RHS = Ops.RHS;
3896   if (Ops.LHS->getType() != RHS->getType())
3897     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3898 
3899   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3900   if (CGF.getLangOpts().OpenCL)
3901     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3902   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3903            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3904     CodeGenFunction::SanitizerScope SanScope(&CGF);
3905     llvm::Value *Valid =
3906         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3907     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3908   }
3909 
3910   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3911     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3912   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3913 }
3914 
3915 enum IntrinsicType { VCMPEQ, VCMPGT };
3916 // return corresponding comparison intrinsic for given vector type
3917 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3918                                         BuiltinType::Kind ElemKind) {
3919   switch (ElemKind) {
3920   default: llvm_unreachable("unexpected element type");
3921   case BuiltinType::Char_U:
3922   case BuiltinType::UChar:
3923     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3924                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3925   case BuiltinType::Char_S:
3926   case BuiltinType::SChar:
3927     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3928                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3929   case BuiltinType::UShort:
3930     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3931                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3932   case BuiltinType::Short:
3933     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3934                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3935   case BuiltinType::UInt:
3936     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3937                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3938   case BuiltinType::Int:
3939     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3940                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3941   case BuiltinType::ULong:
3942   case BuiltinType::ULongLong:
3943     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3944                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3945   case BuiltinType::Long:
3946   case BuiltinType::LongLong:
3947     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3948                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3949   case BuiltinType::Float:
3950     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3951                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3952   case BuiltinType::Double:
3953     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3954                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3955   }
3956 }
3957 
3958 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3959                                       llvm::CmpInst::Predicate UICmpOpc,
3960                                       llvm::CmpInst::Predicate SICmpOpc,
3961                                       llvm::CmpInst::Predicate FCmpOpc,
3962                                       bool IsSignaling) {
3963   TestAndClearIgnoreResultAssign();
3964   Value *Result;
3965   QualType LHSTy = E->getLHS()->getType();
3966   QualType RHSTy = E->getRHS()->getType();
3967   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3968     assert(E->getOpcode() == BO_EQ ||
3969            E->getOpcode() == BO_NE);
3970     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3971     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3972     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3973                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3974   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3975     BinOpInfo BOInfo = EmitBinOps(E);
3976     Value *LHS = BOInfo.LHS;
3977     Value *RHS = BOInfo.RHS;
3978 
3979     // If AltiVec, the comparison results in a numeric type, so we use
3980     // intrinsics comparing vectors and giving 0 or 1 as a result
3981     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3982       // constants for mapping CR6 register bits to predicate result
3983       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3984 
3985       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3986 
3987       // in several cases vector arguments order will be reversed
3988       Value *FirstVecArg = LHS,
3989             *SecondVecArg = RHS;
3990 
3991       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3992       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3993 
3994       switch(E->getOpcode()) {
3995       default: llvm_unreachable("is not a comparison operation");
3996       case BO_EQ:
3997         CR6 = CR6_LT;
3998         ID = GetIntrinsic(VCMPEQ, ElementKind);
3999         break;
4000       case BO_NE:
4001         CR6 = CR6_EQ;
4002         ID = GetIntrinsic(VCMPEQ, ElementKind);
4003         break;
4004       case BO_LT:
4005         CR6 = CR6_LT;
4006         ID = GetIntrinsic(VCMPGT, ElementKind);
4007         std::swap(FirstVecArg, SecondVecArg);
4008         break;
4009       case BO_GT:
4010         CR6 = CR6_LT;
4011         ID = GetIntrinsic(VCMPGT, ElementKind);
4012         break;
4013       case BO_LE:
4014         if (ElementKind == BuiltinType::Float) {
4015           CR6 = CR6_LT;
4016           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4017           std::swap(FirstVecArg, SecondVecArg);
4018         }
4019         else {
4020           CR6 = CR6_EQ;
4021           ID = GetIntrinsic(VCMPGT, ElementKind);
4022         }
4023         break;
4024       case BO_GE:
4025         if (ElementKind == BuiltinType::Float) {
4026           CR6 = CR6_LT;
4027           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4028         }
4029         else {
4030           CR6 = CR6_EQ;
4031           ID = GetIntrinsic(VCMPGT, ElementKind);
4032           std::swap(FirstVecArg, SecondVecArg);
4033         }
4034         break;
4035       }
4036 
4037       Value *CR6Param = Builder.getInt32(CR6);
4038       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4039       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4040 
4041       // The result type of intrinsic may not be same as E->getType().
4042       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4043       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4044       // do nothing, if ResultTy is not i1 at the same time, it will cause
4045       // crash later.
4046       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4047       if (ResultTy->getBitWidth() > 1 &&
4048           E->getType() == CGF.getContext().BoolTy)
4049         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4050       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4051                                   E->getExprLoc());
4052     }
4053 
4054     if (BOInfo.isFixedPointOp()) {
4055       Result = EmitFixedPointBinOp(BOInfo);
4056     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4057       llvm::IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4058       setBuilderFlagsFromFPFeatures(Builder, CGF, BOInfo.FPFeatures);
4059       if (!IsSignaling)
4060         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4061       else
4062         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4063     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4064       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4065     } else {
4066       // Unsigned integers and pointers.
4067 
4068       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4069           !isa<llvm::ConstantPointerNull>(LHS) &&
4070           !isa<llvm::ConstantPointerNull>(RHS)) {
4071 
4072         // Dynamic information is required to be stripped for comparisons,
4073         // because it could leak the dynamic information.  Based on comparisons
4074         // of pointers to dynamic objects, the optimizer can replace one pointer
4075         // with another, which might be incorrect in presence of invariant
4076         // groups. Comparison with null is safe because null does not carry any
4077         // dynamic information.
4078         if (LHSTy.mayBeDynamicClass())
4079           LHS = Builder.CreateStripInvariantGroup(LHS);
4080         if (RHSTy.mayBeDynamicClass())
4081           RHS = Builder.CreateStripInvariantGroup(RHS);
4082       }
4083 
4084       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4085     }
4086 
4087     // If this is a vector comparison, sign extend the result to the appropriate
4088     // vector integer type and return it (don't convert to bool).
4089     if (LHSTy->isVectorType())
4090       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4091 
4092   } else {
4093     // Complex Comparison: can only be an equality comparison.
4094     CodeGenFunction::ComplexPairTy LHS, RHS;
4095     QualType CETy;
4096     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4097       LHS = CGF.EmitComplexExpr(E->getLHS());
4098       CETy = CTy->getElementType();
4099     } else {
4100       LHS.first = Visit(E->getLHS());
4101       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4102       CETy = LHSTy;
4103     }
4104     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4105       RHS = CGF.EmitComplexExpr(E->getRHS());
4106       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4107                                                      CTy->getElementType()) &&
4108              "The element types must always match.");
4109       (void)CTy;
4110     } else {
4111       RHS.first = Visit(E->getRHS());
4112       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4113       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4114              "The element types must always match.");
4115     }
4116 
4117     Value *ResultR, *ResultI;
4118     if (CETy->isRealFloatingType()) {
4119       // As complex comparisons can only be equality comparisons, they
4120       // are never signaling comparisons.
4121       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4122       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4123     } else {
4124       // Complex comparisons can only be equality comparisons.  As such, signed
4125       // and unsigned opcodes are the same.
4126       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4127       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4128     }
4129 
4130     if (E->getOpcode() == BO_EQ) {
4131       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4132     } else {
4133       assert(E->getOpcode() == BO_NE &&
4134              "Complex comparison other than == or != ?");
4135       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4136     }
4137   }
4138 
4139   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4140                               E->getExprLoc());
4141 }
4142 
4143 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4144   bool Ignore = TestAndClearIgnoreResultAssign();
4145 
4146   Value *RHS;
4147   LValue LHS;
4148 
4149   switch (E->getLHS()->getType().getObjCLifetime()) {
4150   case Qualifiers::OCL_Strong:
4151     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4152     break;
4153 
4154   case Qualifiers::OCL_Autoreleasing:
4155     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4156     break;
4157 
4158   case Qualifiers::OCL_ExplicitNone:
4159     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4160     break;
4161 
4162   case Qualifiers::OCL_Weak:
4163     RHS = Visit(E->getRHS());
4164     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4165     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4166     break;
4167 
4168   case Qualifiers::OCL_None:
4169     // __block variables need to have the rhs evaluated first, plus
4170     // this should improve codegen just a little.
4171     RHS = Visit(E->getRHS());
4172     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4173 
4174     // Store the value into the LHS.  Bit-fields are handled specially
4175     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4176     // 'An assignment expression has the value of the left operand after
4177     // the assignment...'.
4178     if (LHS.isBitField()) {
4179       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4180     } else {
4181       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4182       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4183     }
4184   }
4185 
4186   // If the result is clearly ignored, return now.
4187   if (Ignore)
4188     return nullptr;
4189 
4190   // The result of an assignment in C is the assigned r-value.
4191   if (!CGF.getLangOpts().CPlusPlus)
4192     return RHS;
4193 
4194   // If the lvalue is non-volatile, return the computed value of the assignment.
4195   if (!LHS.isVolatileQualified())
4196     return RHS;
4197 
4198   // Otherwise, reload the value.
4199   return EmitLoadOfLValue(LHS, E->getExprLoc());
4200 }
4201 
4202 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4203   // Perform vector logical and on comparisons with zero vectors.
4204   if (E->getType()->isVectorType()) {
4205     CGF.incrementProfileCounter(E);
4206 
4207     Value *LHS = Visit(E->getLHS());
4208     Value *RHS = Visit(E->getRHS());
4209     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4210     if (LHS->getType()->isFPOrFPVectorTy()) {
4211       llvm::IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4212       setBuilderFlagsFromFPFeatures(Builder, CGF,
4213                                     E->getFPFeatures(CGF.getLangOpts()));
4214       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4215       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4216     } else {
4217       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4218       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4219     }
4220     Value *And = Builder.CreateAnd(LHS, RHS);
4221     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4222   }
4223 
4224   llvm::Type *ResTy = ConvertType(E->getType());
4225 
4226   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4227   // If we have 1 && X, just emit X without inserting the control flow.
4228   bool LHSCondVal;
4229   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4230     if (LHSCondVal) { // If we have 1 && X, just emit X.
4231       CGF.incrementProfileCounter(E);
4232 
4233       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4234       // ZExt result to int or bool.
4235       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4236     }
4237 
4238     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4239     if (!CGF.ContainsLabel(E->getRHS()))
4240       return llvm::Constant::getNullValue(ResTy);
4241   }
4242 
4243   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4244   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4245 
4246   CodeGenFunction::ConditionalEvaluation eval(CGF);
4247 
4248   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4249   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4250                            CGF.getProfileCount(E->getRHS()));
4251 
4252   // Any edges into the ContBlock are now from an (indeterminate number of)
4253   // edges from this first condition.  All of these values will be false.  Start
4254   // setting up the PHI node in the Cont Block for this.
4255   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4256                                             "", ContBlock);
4257   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4258        PI != PE; ++PI)
4259     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4260 
4261   eval.begin(CGF);
4262   CGF.EmitBlock(RHSBlock);
4263   CGF.incrementProfileCounter(E);
4264   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4265   eval.end(CGF);
4266 
4267   // Reaquire the RHS block, as there may be subblocks inserted.
4268   RHSBlock = Builder.GetInsertBlock();
4269 
4270   // Emit an unconditional branch from this block to ContBlock.
4271   {
4272     // There is no need to emit line number for unconditional branch.
4273     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4274     CGF.EmitBlock(ContBlock);
4275   }
4276   // Insert an entry into the phi node for the edge with the value of RHSCond.
4277   PN->addIncoming(RHSCond, RHSBlock);
4278 
4279   // Artificial location to preserve the scope information
4280   {
4281     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4282     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4283   }
4284 
4285   // ZExt result to int.
4286   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4287 }
4288 
4289 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4290   // Perform vector logical or on comparisons with zero vectors.
4291   if (E->getType()->isVectorType()) {
4292     CGF.incrementProfileCounter(E);
4293 
4294     Value *LHS = Visit(E->getLHS());
4295     Value *RHS = Visit(E->getRHS());
4296     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4297     if (LHS->getType()->isFPOrFPVectorTy()) {
4298       llvm::IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4299       setBuilderFlagsFromFPFeatures(Builder, CGF,
4300                                     E->getFPFeatures(CGF.getLangOpts()));
4301       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4302       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4303     } else {
4304       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4305       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4306     }
4307     Value *Or = Builder.CreateOr(LHS, RHS);
4308     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4309   }
4310 
4311   llvm::Type *ResTy = ConvertType(E->getType());
4312 
4313   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4314   // If we have 0 || X, just emit X without inserting the control flow.
4315   bool LHSCondVal;
4316   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4317     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4318       CGF.incrementProfileCounter(E);
4319 
4320       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4321       // ZExt result to int or bool.
4322       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4323     }
4324 
4325     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4326     if (!CGF.ContainsLabel(E->getRHS()))
4327       return llvm::ConstantInt::get(ResTy, 1);
4328   }
4329 
4330   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4331   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4332 
4333   CodeGenFunction::ConditionalEvaluation eval(CGF);
4334 
4335   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4336   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4337                            CGF.getCurrentProfileCount() -
4338                                CGF.getProfileCount(E->getRHS()));
4339 
4340   // Any edges into the ContBlock are now from an (indeterminate number of)
4341   // edges from this first condition.  All of these values will be true.  Start
4342   // setting up the PHI node in the Cont Block for this.
4343   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4344                                             "", ContBlock);
4345   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4346        PI != PE; ++PI)
4347     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4348 
4349   eval.begin(CGF);
4350 
4351   // Emit the RHS condition as a bool value.
4352   CGF.EmitBlock(RHSBlock);
4353   CGF.incrementProfileCounter(E);
4354   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4355 
4356   eval.end(CGF);
4357 
4358   // Reaquire the RHS block, as there may be subblocks inserted.
4359   RHSBlock = Builder.GetInsertBlock();
4360 
4361   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4362   // into the phi node for the edge with the value of RHSCond.
4363   CGF.EmitBlock(ContBlock);
4364   PN->addIncoming(RHSCond, RHSBlock);
4365 
4366   // ZExt result to int.
4367   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4368 }
4369 
4370 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4371   CGF.EmitIgnoredExpr(E->getLHS());
4372   CGF.EnsureInsertPoint();
4373   return Visit(E->getRHS());
4374 }
4375 
4376 //===----------------------------------------------------------------------===//
4377 //                             Other Operators
4378 //===----------------------------------------------------------------------===//
4379 
4380 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4381 /// expression is cheap enough and side-effect-free enough to evaluate
4382 /// unconditionally instead of conditionally.  This is used to convert control
4383 /// flow into selects in some cases.
4384 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4385                                                    CodeGenFunction &CGF) {
4386   // Anything that is an integer or floating point constant is fine.
4387   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4388 
4389   // Even non-volatile automatic variables can't be evaluated unconditionally.
4390   // Referencing a thread_local may cause non-trivial initialization work to
4391   // occur. If we're inside a lambda and one of the variables is from the scope
4392   // outside the lambda, that function may have returned already. Reading its
4393   // locals is a bad idea. Also, these reads may introduce races there didn't
4394   // exist in the source-level program.
4395 }
4396 
4397 
4398 Value *ScalarExprEmitter::
4399 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4400   TestAndClearIgnoreResultAssign();
4401 
4402   // Bind the common expression if necessary.
4403   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4404 
4405   Expr *condExpr = E->getCond();
4406   Expr *lhsExpr = E->getTrueExpr();
4407   Expr *rhsExpr = E->getFalseExpr();
4408 
4409   // If the condition constant folds and can be elided, try to avoid emitting
4410   // the condition and the dead arm.
4411   bool CondExprBool;
4412   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4413     Expr *live = lhsExpr, *dead = rhsExpr;
4414     if (!CondExprBool) std::swap(live, dead);
4415 
4416     // If the dead side doesn't have labels we need, just emit the Live part.
4417     if (!CGF.ContainsLabel(dead)) {
4418       if (CondExprBool)
4419         CGF.incrementProfileCounter(E);
4420       Value *Result = Visit(live);
4421 
4422       // If the live part is a throw expression, it acts like it has a void
4423       // type, so evaluating it returns a null Value*.  However, a conditional
4424       // with non-void type must return a non-null Value*.
4425       if (!Result && !E->getType()->isVoidType())
4426         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4427 
4428       return Result;
4429     }
4430   }
4431 
4432   // OpenCL: If the condition is a vector, we can treat this condition like
4433   // the select function.
4434   if (CGF.getLangOpts().OpenCL
4435       && condExpr->getType()->isVectorType()) {
4436     CGF.incrementProfileCounter(E);
4437 
4438     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4439     llvm::Value *LHS = Visit(lhsExpr);
4440     llvm::Value *RHS = Visit(rhsExpr);
4441 
4442     llvm::Type *condType = ConvertType(condExpr->getType());
4443     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4444 
4445     unsigned numElem = vecTy->getNumElements();
4446     llvm::Type *elemType = vecTy->getElementType();
4447 
4448     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4449     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4450     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4451                                           llvm::VectorType::get(elemType,
4452                                                                 numElem),
4453                                           "sext");
4454     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4455 
4456     // Cast float to int to perform ANDs if necessary.
4457     llvm::Value *RHSTmp = RHS;
4458     llvm::Value *LHSTmp = LHS;
4459     bool wasCast = false;
4460     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4461     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4462       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4463       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4464       wasCast = true;
4465     }
4466 
4467     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4468     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4469     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4470     if (wasCast)
4471       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4472 
4473     return tmp5;
4474   }
4475 
4476   if (condExpr->getType()->isVectorType()) {
4477     CGF.incrementProfileCounter(E);
4478 
4479     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4480     llvm::Value *LHS = Visit(lhsExpr);
4481     llvm::Value *RHS = Visit(rhsExpr);
4482 
4483     llvm::Type *CondType = ConvertType(condExpr->getType());
4484     auto *VecTy = cast<llvm::VectorType>(CondType);
4485     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4486 
4487     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4488     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4489   }
4490 
4491   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4492   // select instead of as control flow.  We can only do this if it is cheap and
4493   // safe to evaluate the LHS and RHS unconditionally.
4494   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4495       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4496     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4497     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4498 
4499     CGF.incrementProfileCounter(E, StepV);
4500 
4501     llvm::Value *LHS = Visit(lhsExpr);
4502     llvm::Value *RHS = Visit(rhsExpr);
4503     if (!LHS) {
4504       // If the conditional has void type, make sure we return a null Value*.
4505       assert(!RHS && "LHS and RHS types must match");
4506       return nullptr;
4507     }
4508     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4509   }
4510 
4511   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4512   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4513   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4514 
4515   CodeGenFunction::ConditionalEvaluation eval(CGF);
4516   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4517                            CGF.getProfileCount(lhsExpr));
4518 
4519   CGF.EmitBlock(LHSBlock);
4520   CGF.incrementProfileCounter(E);
4521   eval.begin(CGF);
4522   Value *LHS = Visit(lhsExpr);
4523   eval.end(CGF);
4524 
4525   LHSBlock = Builder.GetInsertBlock();
4526   Builder.CreateBr(ContBlock);
4527 
4528   CGF.EmitBlock(RHSBlock);
4529   eval.begin(CGF);
4530   Value *RHS = Visit(rhsExpr);
4531   eval.end(CGF);
4532 
4533   RHSBlock = Builder.GetInsertBlock();
4534   CGF.EmitBlock(ContBlock);
4535 
4536   // If the LHS or RHS is a throw expression, it will be legitimately null.
4537   if (!LHS)
4538     return RHS;
4539   if (!RHS)
4540     return LHS;
4541 
4542   // Create a PHI node for the real part.
4543   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4544   PN->addIncoming(LHS, LHSBlock);
4545   PN->addIncoming(RHS, RHSBlock);
4546   return PN;
4547 }
4548 
4549 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4550   return Visit(E->getChosenSubExpr());
4551 }
4552 
4553 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4554   QualType Ty = VE->getType();
4555 
4556   if (Ty->isVariablyModifiedType())
4557     CGF.EmitVariablyModifiedType(Ty);
4558 
4559   Address ArgValue = Address::invalid();
4560   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4561 
4562   llvm::Type *ArgTy = ConvertType(VE->getType());
4563 
4564   // If EmitVAArg fails, emit an error.
4565   if (!ArgPtr.isValid()) {
4566     CGF.ErrorUnsupported(VE, "va_arg expression");
4567     return llvm::UndefValue::get(ArgTy);
4568   }
4569 
4570   // FIXME Volatility.
4571   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4572 
4573   // If EmitVAArg promoted the type, we must truncate it.
4574   if (ArgTy != Val->getType()) {
4575     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4576       Val = Builder.CreateIntToPtr(Val, ArgTy);
4577     else
4578       Val = Builder.CreateTrunc(Val, ArgTy);
4579   }
4580 
4581   return Val;
4582 }
4583 
4584 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4585   return CGF.EmitBlockLiteral(block);
4586 }
4587 
4588 // Convert a vec3 to vec4, or vice versa.
4589 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4590                                  Value *Src, unsigned NumElementsDst) {
4591   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4592   static constexpr int Mask[] = {0, 1, 2, -1};
4593   return Builder.CreateShuffleVector(Src, UnV,
4594                                      llvm::makeArrayRef(Mask, NumElementsDst));
4595 }
4596 
4597 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4598 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4599 // but could be scalar or vectors of different lengths, and either can be
4600 // pointer.
4601 // There are 4 cases:
4602 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4603 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4604 // 3. pointer -> non-pointer
4605 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4606 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4607 // 4. non-pointer -> pointer
4608 //   a) intptr_t -> pointer       : needs 1 inttoptr
4609 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4610 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4611 // allow casting directly between pointer types and non-integer non-pointer
4612 // types.
4613 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4614                                            const llvm::DataLayout &DL,
4615                                            Value *Src, llvm::Type *DstTy,
4616                                            StringRef Name = "") {
4617   auto SrcTy = Src->getType();
4618 
4619   // Case 1.
4620   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4621     return Builder.CreateBitCast(Src, DstTy, Name);
4622 
4623   // Case 2.
4624   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4625     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4626 
4627   // Case 3.
4628   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4629     // Case 3b.
4630     if (!DstTy->isIntegerTy())
4631       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4632     // Cases 3a and 3b.
4633     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4634   }
4635 
4636   // Case 4b.
4637   if (!SrcTy->isIntegerTy())
4638     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4639   // Cases 4a and 4b.
4640   return Builder.CreateIntToPtr(Src, DstTy, Name);
4641 }
4642 
4643 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4644   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4645   llvm::Type *DstTy = ConvertType(E->getType());
4646 
4647   llvm::Type *SrcTy = Src->getType();
4648   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4649     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4650   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4651     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4652 
4653   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4654   // vector to get a vec4, then a bitcast if the target type is different.
4655   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4656     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4657 
4658     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4659       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4660                                          DstTy);
4661     }
4662 
4663     Src->setName("astype");
4664     return Src;
4665   }
4666 
4667   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4668   // to vec4 if the original type is not vec4, then a shuffle vector to
4669   // get a vec3.
4670   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4671     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4672       auto Vec4Ty = llvm::VectorType::get(
4673           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4674       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4675                                          Vec4Ty);
4676     }
4677 
4678     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4679     Src->setName("astype");
4680     return Src;
4681   }
4682 
4683   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4684                                       Src, DstTy, "astype");
4685 }
4686 
4687 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4688   return CGF.EmitAtomicExpr(E).getScalarVal();
4689 }
4690 
4691 //===----------------------------------------------------------------------===//
4692 //                         Entry Point into this File
4693 //===----------------------------------------------------------------------===//
4694 
4695 /// Emit the computation of the specified expression of scalar type, ignoring
4696 /// the result.
4697 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4698   assert(E && hasScalarEvaluationKind(E->getType()) &&
4699          "Invalid scalar expression to emit");
4700 
4701   return ScalarExprEmitter(*this, IgnoreResultAssign)
4702       .Visit(const_cast<Expr *>(E));
4703 }
4704 
4705 /// Emit a conversion from the specified type to the specified destination type,
4706 /// both of which are LLVM scalar types.
4707 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4708                                              QualType DstTy,
4709                                              SourceLocation Loc) {
4710   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4711          "Invalid scalar expression to emit");
4712   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4713 }
4714 
4715 /// Emit a conversion from the specified complex type to the specified
4716 /// destination type, where the destination type is an LLVM scalar type.
4717 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4718                                                       QualType SrcTy,
4719                                                       QualType DstTy,
4720                                                       SourceLocation Loc) {
4721   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4722          "Invalid complex -> scalar conversion");
4723   return ScalarExprEmitter(*this)
4724       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4725 }
4726 
4727 
4728 llvm::Value *CodeGenFunction::
4729 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4730                         bool isInc, bool isPre) {
4731   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4732 }
4733 
4734 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4735   // object->isa or (*object).isa
4736   // Generate code as for: *(Class*)object
4737 
4738   Expr *BaseExpr = E->getBase();
4739   Address Addr = Address::invalid();
4740   if (BaseExpr->isRValue()) {
4741     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4742   } else {
4743     Addr = EmitLValue(BaseExpr).getAddress(*this);
4744   }
4745 
4746   // Cast the address to Class*.
4747   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4748   return MakeAddrLValue(Addr, E->getType());
4749 }
4750 
4751 
4752 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4753                                             const CompoundAssignOperator *E) {
4754   ScalarExprEmitter Scalar(*this);
4755   Value *Result = nullptr;
4756   switch (E->getOpcode()) {
4757 #define COMPOUND_OP(Op)                                                       \
4758     case BO_##Op##Assign:                                                     \
4759       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4760                                              Result)
4761   COMPOUND_OP(Mul);
4762   COMPOUND_OP(Div);
4763   COMPOUND_OP(Rem);
4764   COMPOUND_OP(Add);
4765   COMPOUND_OP(Sub);
4766   COMPOUND_OP(Shl);
4767   COMPOUND_OP(Shr);
4768   COMPOUND_OP(And);
4769   COMPOUND_OP(Xor);
4770   COMPOUND_OP(Or);
4771 #undef COMPOUND_OP
4772 
4773   case BO_PtrMemD:
4774   case BO_PtrMemI:
4775   case BO_Mul:
4776   case BO_Div:
4777   case BO_Rem:
4778   case BO_Add:
4779   case BO_Sub:
4780   case BO_Shl:
4781   case BO_Shr:
4782   case BO_LT:
4783   case BO_GT:
4784   case BO_LE:
4785   case BO_GE:
4786   case BO_EQ:
4787   case BO_NE:
4788   case BO_Cmp:
4789   case BO_And:
4790   case BO_Xor:
4791   case BO_Or:
4792   case BO_LAnd:
4793   case BO_LOr:
4794   case BO_Assign:
4795   case BO_Comma:
4796     llvm_unreachable("Not valid compound assignment operators");
4797   }
4798 
4799   llvm_unreachable("Unhandled compound assignment operator");
4800 }
4801 
4802 struct GEPOffsetAndOverflow {
4803   // The total (signed) byte offset for the GEP.
4804   llvm::Value *TotalOffset;
4805   // The offset overflow flag - true if the total offset overflows.
4806   llvm::Value *OffsetOverflows;
4807 };
4808 
4809 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4810 /// and compute the total offset it applies from it's base pointer BasePtr.
4811 /// Returns offset in bytes and a boolean flag whether an overflow happened
4812 /// during evaluation.
4813 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4814                                                  llvm::LLVMContext &VMContext,
4815                                                  CodeGenModule &CGM,
4816                                                  CGBuilderTy &Builder) {
4817   const auto &DL = CGM.getDataLayout();
4818 
4819   // The total (signed) byte offset for the GEP.
4820   llvm::Value *TotalOffset = nullptr;
4821 
4822   // Was the GEP already reduced to a constant?
4823   if (isa<llvm::Constant>(GEPVal)) {
4824     // Compute the offset by casting both pointers to integers and subtracting:
4825     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4826     Value *BasePtr_int =
4827         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4828     Value *GEPVal_int =
4829         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4830     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4831     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4832   }
4833 
4834   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4835   assert(GEP->getPointerOperand() == BasePtr &&
4836          "BasePtr must be the the base of the GEP.");
4837   assert(GEP->isInBounds() && "Expected inbounds GEP");
4838 
4839   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4840 
4841   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4842   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4843   auto *SAddIntrinsic =
4844       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4845   auto *SMulIntrinsic =
4846       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4847 
4848   // The offset overflow flag - true if the total offset overflows.
4849   llvm::Value *OffsetOverflows = Builder.getFalse();
4850 
4851   /// Return the result of the given binary operation.
4852   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4853                   llvm::Value *RHS) -> llvm::Value * {
4854     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4855 
4856     // If the operands are constants, return a constant result.
4857     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4858       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4859         llvm::APInt N;
4860         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4861                                                   /*Signed=*/true, N);
4862         if (HasOverflow)
4863           OffsetOverflows = Builder.getTrue();
4864         return llvm::ConstantInt::get(VMContext, N);
4865       }
4866     }
4867 
4868     // Otherwise, compute the result with checked arithmetic.
4869     auto *ResultAndOverflow = Builder.CreateCall(
4870         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4871     OffsetOverflows = Builder.CreateOr(
4872         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4873     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4874   };
4875 
4876   // Determine the total byte offset by looking at each GEP operand.
4877   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4878        GTI != GTE; ++GTI) {
4879     llvm::Value *LocalOffset;
4880     auto *Index = GTI.getOperand();
4881     // Compute the local offset contributed by this indexing step:
4882     if (auto *STy = GTI.getStructTypeOrNull()) {
4883       // For struct indexing, the local offset is the byte position of the
4884       // specified field.
4885       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4886       LocalOffset = llvm::ConstantInt::get(
4887           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4888     } else {
4889       // Otherwise this is array-like indexing. The local offset is the index
4890       // multiplied by the element size.
4891       auto *ElementSize = llvm::ConstantInt::get(
4892           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4893       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4894       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4895     }
4896 
4897     // If this is the first offset, set it as the total offset. Otherwise, add
4898     // the local offset into the running total.
4899     if (!TotalOffset || TotalOffset == Zero)
4900       TotalOffset = LocalOffset;
4901     else
4902       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4903   }
4904 
4905   return {TotalOffset, OffsetOverflows};
4906 }
4907 
4908 Value *
4909 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4910                                         bool SignedIndices, bool IsSubtraction,
4911                                         SourceLocation Loc, const Twine &Name) {
4912   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4913 
4914   // If the pointer overflow sanitizer isn't enabled, do nothing.
4915   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4916     return GEPVal;
4917 
4918   llvm::Type *PtrTy = Ptr->getType();
4919 
4920   // Perform nullptr-and-offset check unless the nullptr is defined.
4921   bool PerformNullCheck = !NullPointerIsDefined(
4922       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4923   // Check for overflows unless the GEP got constant-folded,
4924   // and only in the default address space
4925   bool PerformOverflowCheck =
4926       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4927 
4928   if (!(PerformNullCheck || PerformOverflowCheck))
4929     return GEPVal;
4930 
4931   const auto &DL = CGM.getDataLayout();
4932 
4933   SanitizerScope SanScope(this);
4934   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4935 
4936   GEPOffsetAndOverflow EvaluatedGEP =
4937       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4938 
4939   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4940           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4941          "If the offset got constant-folded, we don't expect that there was an "
4942          "overflow.");
4943 
4944   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4945 
4946   // Common case: if the total offset is zero, and we are using C++ semantics,
4947   // where nullptr+0 is defined, don't emit a check.
4948   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4949     return GEPVal;
4950 
4951   // Now that we've computed the total offset, add it to the base pointer (with
4952   // wrapping semantics).
4953   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4954   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4955 
4956   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4957 
4958   if (PerformNullCheck) {
4959     // In C++, if the base pointer evaluates to a null pointer value,
4960     // the only valid  pointer this inbounds GEP can produce is also
4961     // a null pointer, so the offset must also evaluate to zero.
4962     // Likewise, if we have non-zero base pointer, we can not get null pointer
4963     // as a result, so the offset can not be -intptr_t(BasePtr).
4964     // In other words, both pointers are either null, or both are non-null,
4965     // or the behaviour is undefined.
4966     //
4967     // C, however, is more strict in this regard, and gives more
4968     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4969     // So both the input to the 'gep inbounds' AND the output must not be null.
4970     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4971     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4972     auto *Valid =
4973         CGM.getLangOpts().CPlusPlus
4974             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4975             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4976     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4977   }
4978 
4979   if (PerformOverflowCheck) {
4980     // The GEP is valid if:
4981     // 1) The total offset doesn't overflow, and
4982     // 2) The sign of the difference between the computed address and the base
4983     // pointer matches the sign of the total offset.
4984     llvm::Value *ValidGEP;
4985     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4986     if (SignedIndices) {
4987       // GEP is computed as `unsigned base + signed offset`, therefore:
4988       // * If offset was positive, then the computed pointer can not be
4989       //   [unsigned] less than the base pointer, unless it overflowed.
4990       // * If offset was negative, then the computed pointer can not be
4991       //   [unsigned] greater than the bas pointere, unless it overflowed.
4992       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4993       auto *PosOrZeroOffset =
4994           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4995       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4996       ValidGEP =
4997           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4998     } else if (!IsSubtraction) {
4999       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5000       // computed pointer can not be [unsigned] less than base pointer,
5001       // unless there was an overflow.
5002       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5003       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5004     } else {
5005       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5006       // computed pointer can not be [unsigned] greater than base pointer,
5007       // unless there was an overflow.
5008       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5009       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5010     }
5011     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5012     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5013   }
5014 
5015   assert(!Checks.empty() && "Should have produced some checks.");
5016 
5017   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5018   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5019   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5020   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5021 
5022   return GEPVal;
5023 }
5024