1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/FixedPointBuilder.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsPowerPC.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include <cstdarg> 44 45 using namespace clang; 46 using namespace CodeGen; 47 using llvm::Value; 48 49 //===----------------------------------------------------------------------===// 50 // Scalar Expression Emitter 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 55 /// Determine whether the given binary operation may overflow. 56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 58 /// the returned overflow check is precise. The returned value is 'true' for 59 /// all other opcodes, to be conservative. 60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 61 BinaryOperator::Opcode Opcode, bool Signed, 62 llvm::APInt &Result) { 63 // Assume overflow is possible, unless we can prove otherwise. 64 bool Overflow = true; 65 const auto &LHSAP = LHS->getValue(); 66 const auto &RHSAP = RHS->getValue(); 67 if (Opcode == BO_Add) { 68 if (Signed) 69 Result = LHSAP.sadd_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.uadd_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Sub) { 73 if (Signed) 74 Result = LHSAP.ssub_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.usub_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Mul) { 78 if (Signed) 79 Result = LHSAP.smul_ov(RHSAP, Overflow); 80 else 81 Result = LHSAP.umul_ov(RHSAP, Overflow); 82 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 83 if (Signed && !RHS->isZero()) 84 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 85 else 86 return false; 87 } 88 return Overflow; 89 } 90 91 struct BinOpInfo { 92 Value *LHS; 93 Value *RHS; 94 QualType Ty; // Computation Type. 95 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 96 FPOptions FPFeatures; 97 const Expr *E; // Entire expr, for error unsupported. May not be binop. 98 99 /// Check if the binop can result in integer overflow. 100 bool mayHaveIntegerOverflow() const { 101 // Without constant input, we can't rule out overflow. 102 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 103 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 104 if (!LHSCI || !RHSCI) 105 return true; 106 107 llvm::APInt Result; 108 return ::mayHaveIntegerOverflow( 109 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 110 } 111 112 /// Check if the binop computes a division or a remainder. 113 bool isDivremOp() const { 114 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 115 Opcode == BO_RemAssign; 116 } 117 118 /// Check if the binop can result in an integer division by zero. 119 bool mayHaveIntegerDivisionByZero() const { 120 if (isDivremOp()) 121 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 122 return CI->isZero(); 123 return true; 124 } 125 126 /// Check if the binop can result in a float division by zero. 127 bool mayHaveFloatDivisionByZero() const { 128 if (isDivremOp()) 129 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 130 return CFP->isZero(); 131 return true; 132 } 133 134 /// Check if at least one operand is a fixed point type. In such cases, this 135 /// operation did not follow usual arithmetic conversion and both operands 136 /// might not be of the same type. 137 bool isFixedPointOp() const { 138 // We cannot simply check the result type since comparison operations return 139 // an int. 140 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 141 QualType LHSType = BinOp->getLHS()->getType(); 142 QualType RHSType = BinOp->getRHS()->getType(); 143 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 144 } 145 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 146 return UnOp->getSubExpr()->getType()->isFixedPointType(); 147 return false; 148 } 149 }; 150 151 static bool MustVisitNullValue(const Expr *E) { 152 // If a null pointer expression's type is the C++0x nullptr_t, then 153 // it's not necessarily a simple constant and it must be evaluated 154 // for its potential side effects. 155 return E->getType()->isNullPtrType(); 156 } 157 158 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 160 const Expr *E) { 161 const Expr *Base = E->IgnoreImpCasts(); 162 if (E == Base) 163 return llvm::None; 164 165 QualType BaseTy = Base->getType(); 166 if (!BaseTy->isPromotableIntegerType() || 167 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 168 return llvm::None; 169 170 return BaseTy; 171 } 172 173 /// Check if \p E is a widened promoted integer. 174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 175 return getUnwidenedIntegerType(Ctx, E).hasValue(); 176 } 177 178 /// Check if we can skip the overflow check for \p Op. 179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 180 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 181 "Expected a unary or binary operator"); 182 183 // If the binop has constant inputs and we can prove there is no overflow, 184 // we can elide the overflow check. 185 if (!Op.mayHaveIntegerOverflow()) 186 return true; 187 188 // If a unary op has a widened operand, the op cannot overflow. 189 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 190 return !UO->canOverflow(); 191 192 // We usually don't need overflow checks for binops with widened operands. 193 // Multiplication with promoted unsigned operands is a special case. 194 const auto *BO = cast<BinaryOperator>(Op.E); 195 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 196 if (!OptionalLHSTy) 197 return false; 198 199 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 200 if (!OptionalRHSTy) 201 return false; 202 203 QualType LHSTy = *OptionalLHSTy; 204 QualType RHSTy = *OptionalRHSTy; 205 206 // This is the simple case: binops without unsigned multiplication, and with 207 // widened operands. No overflow check is needed here. 208 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 209 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 210 return true; 211 212 // For unsigned multiplication the overflow check can be elided if either one 213 // of the unpromoted types are less than half the size of the promoted type. 214 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 215 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 216 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 217 } 218 219 class ScalarExprEmitter 220 : public StmtVisitor<ScalarExprEmitter, Value*> { 221 CodeGenFunction &CGF; 222 CGBuilderTy &Builder; 223 bool IgnoreResultAssign; 224 llvm::LLVMContext &VMContext; 225 public: 226 227 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 228 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 229 VMContext(cgf.getLLVMContext()) { 230 } 231 232 //===--------------------------------------------------------------------===// 233 // Utilities 234 //===--------------------------------------------------------------------===// 235 236 bool TestAndClearIgnoreResultAssign() { 237 bool I = IgnoreResultAssign; 238 IgnoreResultAssign = false; 239 return I; 240 } 241 242 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 243 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 244 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 245 return CGF.EmitCheckedLValue(E, TCK); 246 } 247 248 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 249 const BinOpInfo &Info); 250 251 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 252 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 253 } 254 255 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 256 const AlignValueAttr *AVAttr = nullptr; 257 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 258 const ValueDecl *VD = DRE->getDecl(); 259 260 if (VD->getType()->isReferenceType()) { 261 if (const auto *TTy = 262 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 263 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 264 } else { 265 // Assumptions for function parameters are emitted at the start of the 266 // function, so there is no need to repeat that here, 267 // unless the alignment-assumption sanitizer is enabled, 268 // then we prefer the assumption over alignment attribute 269 // on IR function param. 270 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 271 return; 272 273 AVAttr = VD->getAttr<AlignValueAttr>(); 274 } 275 } 276 277 if (!AVAttr) 278 if (const auto *TTy = 279 dyn_cast<TypedefType>(E->getType())) 280 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 281 282 if (!AVAttr) 283 return; 284 285 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 286 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 287 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 288 } 289 290 /// EmitLoadOfLValue - Given an expression with complex type that represents a 291 /// value l-value, this method emits the address of the l-value, then loads 292 /// and returns the result. 293 Value *EmitLoadOfLValue(const Expr *E) { 294 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 295 E->getExprLoc()); 296 297 EmitLValueAlignmentAssumption(E, V); 298 return V; 299 } 300 301 /// EmitConversionToBool - Convert the specified expression value to a 302 /// boolean (i1) truth value. This is equivalent to "Val != 0". 303 Value *EmitConversionToBool(Value *Src, QualType DstTy); 304 305 /// Emit a check that a conversion from a floating-point type does not 306 /// overflow. 307 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 308 Value *Src, QualType SrcType, QualType DstType, 309 llvm::Type *DstTy, SourceLocation Loc); 310 311 /// Known implicit conversion check kinds. 312 /// Keep in sync with the enum of the same name in ubsan_handlers.h 313 enum ImplicitConversionCheckKind : unsigned char { 314 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 315 ICCK_UnsignedIntegerTruncation = 1, 316 ICCK_SignedIntegerTruncation = 2, 317 ICCK_IntegerSignChange = 3, 318 ICCK_SignedIntegerTruncationOrSignChange = 4, 319 }; 320 321 /// Emit a check that an [implicit] truncation of an integer does not 322 /// discard any bits. It is not UB, so we use the value after truncation. 323 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 324 QualType DstType, SourceLocation Loc); 325 326 /// Emit a check that an [implicit] conversion of an integer does not change 327 /// the sign of the value. It is not UB, so we use the value after conversion. 328 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 329 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 330 QualType DstType, SourceLocation Loc); 331 332 /// Emit a conversion from the specified type to the specified destination 333 /// type, both of which are LLVM scalar types. 334 struct ScalarConversionOpts { 335 bool TreatBooleanAsSigned; 336 bool EmitImplicitIntegerTruncationChecks; 337 bool EmitImplicitIntegerSignChangeChecks; 338 339 ScalarConversionOpts() 340 : TreatBooleanAsSigned(false), 341 EmitImplicitIntegerTruncationChecks(false), 342 EmitImplicitIntegerSignChangeChecks(false) {} 343 344 ScalarConversionOpts(clang::SanitizerSet SanOpts) 345 : TreatBooleanAsSigned(false), 346 EmitImplicitIntegerTruncationChecks( 347 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 348 EmitImplicitIntegerSignChangeChecks( 349 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 350 }; 351 Value * 352 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 353 SourceLocation Loc, 354 ScalarConversionOpts Opts = ScalarConversionOpts()); 355 356 /// Convert between either a fixed point and other fixed point or fixed point 357 /// and an integer. 358 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 359 SourceLocation Loc); 360 361 /// Emit a conversion from the specified complex type to the specified 362 /// destination type, where the destination type is an LLVM scalar type. 363 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 364 QualType SrcTy, QualType DstTy, 365 SourceLocation Loc); 366 367 /// EmitNullValue - Emit a value that corresponds to null for the given type. 368 Value *EmitNullValue(QualType Ty); 369 370 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 371 Value *EmitFloatToBoolConversion(Value *V) { 372 // Compare against 0.0 for fp scalars. 373 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 374 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 375 } 376 377 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 378 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 379 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 380 381 return Builder.CreateICmpNE(V, Zero, "tobool"); 382 } 383 384 Value *EmitIntToBoolConversion(Value *V) { 385 // Because of the type rules of C, we often end up computing a 386 // logical value, then zero extending it to int, then wanting it 387 // as a logical value again. Optimize this common case. 388 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 389 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 390 Value *Result = ZI->getOperand(0); 391 // If there aren't any more uses, zap the instruction to save space. 392 // Note that there can be more uses, for example if this 393 // is the result of an assignment. 394 if (ZI->use_empty()) 395 ZI->eraseFromParent(); 396 return Result; 397 } 398 } 399 400 return Builder.CreateIsNotNull(V, "tobool"); 401 } 402 403 //===--------------------------------------------------------------------===// 404 // Visitor Methods 405 //===--------------------------------------------------------------------===// 406 407 Value *Visit(Expr *E) { 408 ApplyDebugLocation DL(CGF, E); 409 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 410 } 411 412 Value *VisitStmt(Stmt *S) { 413 S->dump(llvm::errs(), CGF.getContext()); 414 llvm_unreachable("Stmt can't have complex result type!"); 415 } 416 Value *VisitExpr(Expr *S); 417 418 Value *VisitConstantExpr(ConstantExpr *E) { 419 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 420 if (E->isGLValue()) 421 return CGF.Builder.CreateLoad(Address( 422 Result, CGF.getContext().getTypeAlignInChars(E->getType()))); 423 return Result; 424 } 425 return Visit(E->getSubExpr()); 426 } 427 Value *VisitParenExpr(ParenExpr *PE) { 428 return Visit(PE->getSubExpr()); 429 } 430 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 431 return Visit(E->getReplacement()); 432 } 433 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 434 return Visit(GE->getResultExpr()); 435 } 436 Value *VisitCoawaitExpr(CoawaitExpr *S) { 437 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 438 } 439 Value *VisitCoyieldExpr(CoyieldExpr *S) { 440 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 441 } 442 Value *VisitUnaryCoawait(const UnaryOperator *E) { 443 return Visit(E->getSubExpr()); 444 } 445 446 // Leaves. 447 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 448 return Builder.getInt(E->getValue()); 449 } 450 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 451 return Builder.getInt(E->getValue()); 452 } 453 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 454 return llvm::ConstantFP::get(VMContext, E->getValue()); 455 } 456 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 457 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 458 } 459 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 460 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 461 } 462 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 463 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 464 } 465 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 466 return EmitNullValue(E->getType()); 467 } 468 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 469 return EmitNullValue(E->getType()); 470 } 471 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 472 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 473 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 474 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 475 return Builder.CreateBitCast(V, ConvertType(E->getType())); 476 } 477 478 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 479 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 480 } 481 482 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 483 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 484 } 485 486 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 487 if (E->isGLValue()) 488 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 489 E->getExprLoc()); 490 491 // Otherwise, assume the mapping is the scalar directly. 492 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 493 } 494 495 // l-values. 496 Value *VisitDeclRefExpr(DeclRefExpr *E) { 497 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 498 return CGF.emitScalarConstant(Constant, E); 499 return EmitLoadOfLValue(E); 500 } 501 502 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 503 return CGF.EmitObjCSelectorExpr(E); 504 } 505 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 506 return CGF.EmitObjCProtocolExpr(E); 507 } 508 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 509 return EmitLoadOfLValue(E); 510 } 511 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 512 if (E->getMethodDecl() && 513 E->getMethodDecl()->getReturnType()->isReferenceType()) 514 return EmitLoadOfLValue(E); 515 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 516 } 517 518 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 519 LValue LV = CGF.EmitObjCIsaExpr(E); 520 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 521 return V; 522 } 523 524 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 525 VersionTuple Version = E->getVersion(); 526 527 // If we're checking for a platform older than our minimum deployment 528 // target, we can fold the check away. 529 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 530 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 531 532 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 533 llvm::Value *Args[] = { 534 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 535 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 536 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 537 }; 538 539 return CGF.EmitBuiltinAvailable(Args); 540 } 541 542 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 543 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 544 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 545 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 546 Value *VisitMemberExpr(MemberExpr *E); 547 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 548 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 549 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 550 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 551 // literals aren't l-values in C++. We do so simply because that's the 552 // cleanest way to handle compound literals in C++. 553 // See the discussion here: https://reviews.llvm.org/D64464 554 return EmitLoadOfLValue(E); 555 } 556 557 Value *VisitInitListExpr(InitListExpr *E); 558 559 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 560 assert(CGF.getArrayInitIndex() && 561 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 562 return CGF.getArrayInitIndex(); 563 } 564 565 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 566 return EmitNullValue(E->getType()); 567 } 568 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 569 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 570 return VisitCastExpr(E); 571 } 572 Value *VisitCastExpr(CastExpr *E); 573 574 Value *VisitCallExpr(const CallExpr *E) { 575 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 576 return EmitLoadOfLValue(E); 577 578 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 579 580 EmitLValueAlignmentAssumption(E, V); 581 return V; 582 } 583 584 Value *VisitStmtExpr(const StmtExpr *E); 585 586 // Unary Operators. 587 Value *VisitUnaryPostDec(const UnaryOperator *E) { 588 LValue LV = EmitLValue(E->getSubExpr()); 589 return EmitScalarPrePostIncDec(E, LV, false, false); 590 } 591 Value *VisitUnaryPostInc(const UnaryOperator *E) { 592 LValue LV = EmitLValue(E->getSubExpr()); 593 return EmitScalarPrePostIncDec(E, LV, true, false); 594 } 595 Value *VisitUnaryPreDec(const UnaryOperator *E) { 596 LValue LV = EmitLValue(E->getSubExpr()); 597 return EmitScalarPrePostIncDec(E, LV, false, true); 598 } 599 Value *VisitUnaryPreInc(const UnaryOperator *E) { 600 LValue LV = EmitLValue(E->getSubExpr()); 601 return EmitScalarPrePostIncDec(E, LV, true, true); 602 } 603 604 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 605 llvm::Value *InVal, 606 bool IsInc); 607 608 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 609 bool isInc, bool isPre); 610 611 612 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 613 if (isa<MemberPointerType>(E->getType())) // never sugared 614 return CGF.CGM.getMemberPointerConstant(E); 615 616 return EmitLValue(E->getSubExpr()).getPointer(CGF); 617 } 618 Value *VisitUnaryDeref(const UnaryOperator *E) { 619 if (E->getType()->isVoidType()) 620 return Visit(E->getSubExpr()); // the actual value should be unused 621 return EmitLoadOfLValue(E); 622 } 623 Value *VisitUnaryPlus(const UnaryOperator *E) { 624 // This differs from gcc, though, most likely due to a bug in gcc. 625 TestAndClearIgnoreResultAssign(); 626 return Visit(E->getSubExpr()); 627 } 628 Value *VisitUnaryMinus (const UnaryOperator *E); 629 Value *VisitUnaryNot (const UnaryOperator *E); 630 Value *VisitUnaryLNot (const UnaryOperator *E); 631 Value *VisitUnaryReal (const UnaryOperator *E); 632 Value *VisitUnaryImag (const UnaryOperator *E); 633 Value *VisitUnaryExtension(const UnaryOperator *E) { 634 return Visit(E->getSubExpr()); 635 } 636 637 // C++ 638 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 639 return EmitLoadOfLValue(E); 640 } 641 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 642 auto &Ctx = CGF.getContext(); 643 APValue Evaluated = 644 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 645 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 646 SLE->getType()); 647 } 648 649 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 650 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 651 return Visit(DAE->getExpr()); 652 } 653 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 654 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 655 return Visit(DIE->getExpr()); 656 } 657 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 658 return CGF.LoadCXXThis(); 659 } 660 661 Value *VisitExprWithCleanups(ExprWithCleanups *E); 662 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 663 return CGF.EmitCXXNewExpr(E); 664 } 665 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 666 CGF.EmitCXXDeleteExpr(E); 667 return nullptr; 668 } 669 670 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 671 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 672 } 673 674 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 675 return Builder.getInt1(E->isSatisfied()); 676 } 677 678 Value *VisitRequiresExpr(const RequiresExpr *E) { 679 return Builder.getInt1(E->isSatisfied()); 680 } 681 682 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 683 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 684 } 685 686 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 687 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 688 } 689 690 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 691 // C++ [expr.pseudo]p1: 692 // The result shall only be used as the operand for the function call 693 // operator (), and the result of such a call has type void. The only 694 // effect is the evaluation of the postfix-expression before the dot or 695 // arrow. 696 CGF.EmitScalarExpr(E->getBase()); 697 return nullptr; 698 } 699 700 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 701 return EmitNullValue(E->getType()); 702 } 703 704 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 705 CGF.EmitCXXThrowExpr(E); 706 return nullptr; 707 } 708 709 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 710 return Builder.getInt1(E->getValue()); 711 } 712 713 // Binary Operators. 714 Value *EmitMul(const BinOpInfo &Ops) { 715 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 716 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 717 case LangOptions::SOB_Defined: 718 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 719 case LangOptions::SOB_Undefined: 720 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 721 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 722 LLVM_FALLTHROUGH; 723 case LangOptions::SOB_Trapping: 724 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 725 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 726 return EmitOverflowCheckedBinOp(Ops); 727 } 728 } 729 730 if (Ops.Ty->isConstantMatrixType()) { 731 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 732 // We need to check the types of the operands of the operator to get the 733 // correct matrix dimensions. 734 auto *BO = cast<BinaryOperator>(Ops.E); 735 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 736 BO->getLHS()->getType().getCanonicalType()); 737 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 738 BO->getRHS()->getType().getCanonicalType()); 739 if (LHSMatTy && RHSMatTy) 740 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 741 LHSMatTy->getNumColumns(), 742 RHSMatTy->getNumColumns()); 743 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 744 } 745 746 if (Ops.Ty->isUnsignedIntegerType() && 747 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 748 !CanElideOverflowCheck(CGF.getContext(), Ops)) 749 return EmitOverflowCheckedBinOp(Ops); 750 751 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 752 // Preserve the old values 753 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 754 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 755 } 756 if (Ops.isFixedPointOp()) 757 return EmitFixedPointBinOp(Ops); 758 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 759 } 760 /// Create a binary op that checks for overflow. 761 /// Currently only supports +, - and *. 762 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 763 764 // Check for undefined division and modulus behaviors. 765 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 766 llvm::Value *Zero,bool isDiv); 767 // Common helper for getting how wide LHS of shift is. 768 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 769 770 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 771 // non powers of two. 772 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 773 774 Value *EmitDiv(const BinOpInfo &Ops); 775 Value *EmitRem(const BinOpInfo &Ops); 776 Value *EmitAdd(const BinOpInfo &Ops); 777 Value *EmitSub(const BinOpInfo &Ops); 778 Value *EmitShl(const BinOpInfo &Ops); 779 Value *EmitShr(const BinOpInfo &Ops); 780 Value *EmitAnd(const BinOpInfo &Ops) { 781 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 782 } 783 Value *EmitXor(const BinOpInfo &Ops) { 784 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 785 } 786 Value *EmitOr (const BinOpInfo &Ops) { 787 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 788 } 789 790 // Helper functions for fixed point binary operations. 791 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 792 793 BinOpInfo EmitBinOps(const BinaryOperator *E); 794 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 795 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 796 Value *&Result); 797 798 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 799 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 800 801 // Binary operators and binary compound assignment operators. 802 #define HANDLEBINOP(OP) \ 803 Value *VisitBin ## OP(const BinaryOperator *E) { \ 804 return Emit ## OP(EmitBinOps(E)); \ 805 } \ 806 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 807 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 808 } 809 HANDLEBINOP(Mul) 810 HANDLEBINOP(Div) 811 HANDLEBINOP(Rem) 812 HANDLEBINOP(Add) 813 HANDLEBINOP(Sub) 814 HANDLEBINOP(Shl) 815 HANDLEBINOP(Shr) 816 HANDLEBINOP(And) 817 HANDLEBINOP(Xor) 818 HANDLEBINOP(Or) 819 #undef HANDLEBINOP 820 821 // Comparisons. 822 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 823 llvm::CmpInst::Predicate SICmpOpc, 824 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 825 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 826 Value *VisitBin##CODE(const BinaryOperator *E) { \ 827 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 828 llvm::FCmpInst::FP, SIG); } 829 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 830 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 831 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 832 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 833 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 834 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 835 #undef VISITCOMP 836 837 Value *VisitBinAssign (const BinaryOperator *E); 838 839 Value *VisitBinLAnd (const BinaryOperator *E); 840 Value *VisitBinLOr (const BinaryOperator *E); 841 Value *VisitBinComma (const BinaryOperator *E); 842 843 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 844 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 845 846 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 847 return Visit(E->getSemanticForm()); 848 } 849 850 // Other Operators. 851 Value *VisitBlockExpr(const BlockExpr *BE); 852 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 853 Value *VisitChooseExpr(ChooseExpr *CE); 854 Value *VisitVAArgExpr(VAArgExpr *VE); 855 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 856 return CGF.EmitObjCStringLiteral(E); 857 } 858 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 859 return CGF.EmitObjCBoxedExpr(E); 860 } 861 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 862 return CGF.EmitObjCArrayLiteral(E); 863 } 864 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 865 return CGF.EmitObjCDictionaryLiteral(E); 866 } 867 Value *VisitAsTypeExpr(AsTypeExpr *CE); 868 Value *VisitAtomicExpr(AtomicExpr *AE); 869 }; 870 } // end anonymous namespace. 871 872 //===----------------------------------------------------------------------===// 873 // Utilities 874 //===----------------------------------------------------------------------===// 875 876 /// EmitConversionToBool - Convert the specified expression value to a 877 /// boolean (i1) truth value. This is equivalent to "Val != 0". 878 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 879 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 880 881 if (SrcType->isRealFloatingType()) 882 return EmitFloatToBoolConversion(Src); 883 884 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 885 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 886 887 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 888 "Unknown scalar type to convert"); 889 890 if (isa<llvm::IntegerType>(Src->getType())) 891 return EmitIntToBoolConversion(Src); 892 893 assert(isa<llvm::PointerType>(Src->getType())); 894 return EmitPointerToBoolConversion(Src, SrcType); 895 } 896 897 void ScalarExprEmitter::EmitFloatConversionCheck( 898 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 899 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 900 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 901 if (!isa<llvm::IntegerType>(DstTy)) 902 return; 903 904 CodeGenFunction::SanitizerScope SanScope(&CGF); 905 using llvm::APFloat; 906 using llvm::APSInt; 907 908 llvm::Value *Check = nullptr; 909 const llvm::fltSemantics &SrcSema = 910 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 911 912 // Floating-point to integer. This has undefined behavior if the source is 913 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 914 // to an integer). 915 unsigned Width = CGF.getContext().getIntWidth(DstType); 916 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 917 918 APSInt Min = APSInt::getMinValue(Width, Unsigned); 919 APFloat MinSrc(SrcSema, APFloat::uninitialized); 920 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 921 APFloat::opOverflow) 922 // Don't need an overflow check for lower bound. Just check for 923 // -Inf/NaN. 924 MinSrc = APFloat::getInf(SrcSema, true); 925 else 926 // Find the largest value which is too small to represent (before 927 // truncation toward zero). 928 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 929 930 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 931 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 932 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 933 APFloat::opOverflow) 934 // Don't need an overflow check for upper bound. Just check for 935 // +Inf/NaN. 936 MaxSrc = APFloat::getInf(SrcSema, false); 937 else 938 // Find the smallest value which is too large to represent (before 939 // truncation toward zero). 940 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 941 942 // If we're converting from __half, convert the range to float to match 943 // the type of src. 944 if (OrigSrcType->isHalfType()) { 945 const llvm::fltSemantics &Sema = 946 CGF.getContext().getFloatTypeSemantics(SrcType); 947 bool IsInexact; 948 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 949 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 950 } 951 952 llvm::Value *GE = 953 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 954 llvm::Value *LE = 955 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 956 Check = Builder.CreateAnd(GE, LE); 957 958 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 959 CGF.EmitCheckTypeDescriptor(OrigSrcType), 960 CGF.EmitCheckTypeDescriptor(DstType)}; 961 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 962 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 963 } 964 965 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 966 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 967 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 968 std::pair<llvm::Value *, SanitizerMask>> 969 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 970 QualType DstType, CGBuilderTy &Builder) { 971 llvm::Type *SrcTy = Src->getType(); 972 llvm::Type *DstTy = Dst->getType(); 973 (void)DstTy; // Only used in assert() 974 975 // This should be truncation of integral types. 976 assert(Src != Dst); 977 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 978 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 979 "non-integer llvm type"); 980 981 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 982 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 983 984 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 985 // Else, it is a signed truncation. 986 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 987 SanitizerMask Mask; 988 if (!SrcSigned && !DstSigned) { 989 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 990 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 991 } else { 992 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 993 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 994 } 995 996 llvm::Value *Check = nullptr; 997 // 1. Extend the truncated value back to the same width as the Src. 998 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 999 // 2. Equality-compare with the original source value 1000 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 1001 // If the comparison result is 'i1 false', then the truncation was lossy. 1002 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1003 } 1004 1005 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 1006 QualType SrcType, QualType DstType) { 1007 return SrcType->isIntegerType() && DstType->isIntegerType(); 1008 } 1009 1010 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1011 Value *Dst, QualType DstType, 1012 SourceLocation Loc) { 1013 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1014 return; 1015 1016 // We only care about int->int conversions here. 1017 // We ignore conversions to/from pointer and/or bool. 1018 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1019 DstType)) 1020 return; 1021 1022 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1023 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1024 // This must be truncation. Else we do not care. 1025 if (SrcBits <= DstBits) 1026 return; 1027 1028 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1029 1030 // If the integer sign change sanitizer is enabled, 1031 // and we are truncating from larger unsigned type to smaller signed type, 1032 // let that next sanitizer deal with it. 1033 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1034 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1035 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1036 (!SrcSigned && DstSigned)) 1037 return; 1038 1039 CodeGenFunction::SanitizerScope SanScope(&CGF); 1040 1041 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1042 std::pair<llvm::Value *, SanitizerMask>> 1043 Check = 1044 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1045 // If the comparison result is 'i1 false', then the truncation was lossy. 1046 1047 // Do we care about this type of truncation? 1048 if (!CGF.SanOpts.has(Check.second.second)) 1049 return; 1050 1051 llvm::Constant *StaticArgs[] = { 1052 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1053 CGF.EmitCheckTypeDescriptor(DstType), 1054 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1055 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1056 {Src, Dst}); 1057 } 1058 1059 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1060 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1061 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1062 std::pair<llvm::Value *, SanitizerMask>> 1063 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1064 QualType DstType, CGBuilderTy &Builder) { 1065 llvm::Type *SrcTy = Src->getType(); 1066 llvm::Type *DstTy = Dst->getType(); 1067 1068 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1069 "non-integer llvm type"); 1070 1071 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1072 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1073 (void)SrcSigned; // Only used in assert() 1074 (void)DstSigned; // Only used in assert() 1075 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1076 unsigned DstBits = DstTy->getScalarSizeInBits(); 1077 (void)SrcBits; // Only used in assert() 1078 (void)DstBits; // Only used in assert() 1079 1080 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1081 "either the widths should be different, or the signednesses."); 1082 1083 // NOTE: zero value is considered to be non-negative. 1084 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1085 const char *Name) -> Value * { 1086 // Is this value a signed type? 1087 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1088 llvm::Type *VTy = V->getType(); 1089 if (!VSigned) { 1090 // If the value is unsigned, then it is never negative. 1091 // FIXME: can we encounter non-scalar VTy here? 1092 return llvm::ConstantInt::getFalse(VTy->getContext()); 1093 } 1094 // Get the zero of the same type with which we will be comparing. 1095 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1096 // %V.isnegative = icmp slt %V, 0 1097 // I.e is %V *strictly* less than zero, does it have negative value? 1098 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1099 llvm::Twine(Name) + "." + V->getName() + 1100 ".negativitycheck"); 1101 }; 1102 1103 // 1. Was the old Value negative? 1104 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1105 // 2. Is the new Value negative? 1106 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1107 // 3. Now, was the 'negativity status' preserved during the conversion? 1108 // NOTE: conversion from negative to zero is considered to change the sign. 1109 // (We want to get 'false' when the conversion changed the sign) 1110 // So we should just equality-compare the negativity statuses. 1111 llvm::Value *Check = nullptr; 1112 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1113 // If the comparison result is 'false', then the conversion changed the sign. 1114 return std::make_pair( 1115 ScalarExprEmitter::ICCK_IntegerSignChange, 1116 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1117 } 1118 1119 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1120 Value *Dst, QualType DstType, 1121 SourceLocation Loc) { 1122 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1123 return; 1124 1125 llvm::Type *SrcTy = Src->getType(); 1126 llvm::Type *DstTy = Dst->getType(); 1127 1128 // We only care about int->int conversions here. 1129 // We ignore conversions to/from pointer and/or bool. 1130 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1131 DstType)) 1132 return; 1133 1134 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1135 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1136 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1137 unsigned DstBits = DstTy->getScalarSizeInBits(); 1138 1139 // Now, we do not need to emit the check in *all* of the cases. 1140 // We can avoid emitting it in some obvious cases where it would have been 1141 // dropped by the opt passes (instcombine) always anyways. 1142 // If it's a cast between effectively the same type, no check. 1143 // NOTE: this is *not* equivalent to checking the canonical types. 1144 if (SrcSigned == DstSigned && SrcBits == DstBits) 1145 return; 1146 // At least one of the values needs to have signed type. 1147 // If both are unsigned, then obviously, neither of them can be negative. 1148 if (!SrcSigned && !DstSigned) 1149 return; 1150 // If the conversion is to *larger* *signed* type, then no check is needed. 1151 // Because either sign-extension happens (so the sign will remain), 1152 // or zero-extension will happen (the sign bit will be zero.) 1153 if ((DstBits > SrcBits) && DstSigned) 1154 return; 1155 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1156 (SrcBits > DstBits) && SrcSigned) { 1157 // If the signed integer truncation sanitizer is enabled, 1158 // and this is a truncation from signed type, then no check is needed. 1159 // Because here sign change check is interchangeable with truncation check. 1160 return; 1161 } 1162 // That's it. We can't rule out any more cases with the data we have. 1163 1164 CodeGenFunction::SanitizerScope SanScope(&CGF); 1165 1166 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1167 std::pair<llvm::Value *, SanitizerMask>> 1168 Check; 1169 1170 // Each of these checks needs to return 'false' when an issue was detected. 1171 ImplicitConversionCheckKind CheckKind; 1172 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1173 // So we can 'and' all the checks together, and still get 'false', 1174 // if at least one of the checks detected an issue. 1175 1176 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1177 CheckKind = Check.first; 1178 Checks.emplace_back(Check.second); 1179 1180 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1181 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1182 // If the signed integer truncation sanitizer was enabled, 1183 // and we are truncating from larger unsigned type to smaller signed type, 1184 // let's handle the case we skipped in that check. 1185 Check = 1186 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1187 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1188 Checks.emplace_back(Check.second); 1189 // If the comparison result is 'i1 false', then the truncation was lossy. 1190 } 1191 1192 llvm::Constant *StaticArgs[] = { 1193 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1194 CGF.EmitCheckTypeDescriptor(DstType), 1195 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1196 // EmitCheck() will 'and' all the checks together. 1197 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1198 {Src, Dst}); 1199 } 1200 1201 /// Emit a conversion from the specified type to the specified destination type, 1202 /// both of which are LLVM scalar types. 1203 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1204 QualType DstType, 1205 SourceLocation Loc, 1206 ScalarConversionOpts Opts) { 1207 // All conversions involving fixed point types should be handled by the 1208 // EmitFixedPoint family functions. This is done to prevent bloating up this 1209 // function more, and although fixed point numbers are represented by 1210 // integers, we do not want to follow any logic that assumes they should be 1211 // treated as integers. 1212 // TODO(leonardchan): When necessary, add another if statement checking for 1213 // conversions to fixed point types from other types. 1214 if (SrcType->isFixedPointType()) { 1215 if (DstType->isBooleanType()) 1216 // It is important that we check this before checking if the dest type is 1217 // an integer because booleans are technically integer types. 1218 // We do not need to check the padding bit on unsigned types if unsigned 1219 // padding is enabled because overflow into this bit is undefined 1220 // behavior. 1221 return Builder.CreateIsNotNull(Src, "tobool"); 1222 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1223 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1224 1225 llvm_unreachable( 1226 "Unhandled scalar conversion from a fixed point type to another type."); 1227 } else if (DstType->isFixedPointType()) { 1228 if (SrcType->isIntegerType()) 1229 // This also includes converting booleans and enums to fixed point types. 1230 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1231 1232 llvm_unreachable( 1233 "Unhandled scalar conversion to a fixed point type from another type."); 1234 } 1235 1236 QualType NoncanonicalSrcType = SrcType; 1237 QualType NoncanonicalDstType = DstType; 1238 1239 SrcType = CGF.getContext().getCanonicalType(SrcType); 1240 DstType = CGF.getContext().getCanonicalType(DstType); 1241 if (SrcType == DstType) return Src; 1242 1243 if (DstType->isVoidType()) return nullptr; 1244 1245 llvm::Value *OrigSrc = Src; 1246 QualType OrigSrcType = SrcType; 1247 llvm::Type *SrcTy = Src->getType(); 1248 1249 // Handle conversions to bool first, they are special: comparisons against 0. 1250 if (DstType->isBooleanType()) 1251 return EmitConversionToBool(Src, SrcType); 1252 1253 llvm::Type *DstTy = ConvertType(DstType); 1254 1255 // Cast from half through float if half isn't a native type. 1256 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1257 // Cast to FP using the intrinsic if the half type itself isn't supported. 1258 if (DstTy->isFloatingPointTy()) { 1259 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1260 return Builder.CreateCall( 1261 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1262 Src); 1263 } else { 1264 // Cast to other types through float, using either the intrinsic or FPExt, 1265 // depending on whether the half type itself is supported 1266 // (as opposed to operations on half, available with NativeHalfType). 1267 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1268 Src = Builder.CreateCall( 1269 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1270 CGF.CGM.FloatTy), 1271 Src); 1272 } else { 1273 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1274 } 1275 SrcType = CGF.getContext().FloatTy; 1276 SrcTy = CGF.FloatTy; 1277 } 1278 } 1279 1280 // Ignore conversions like int -> uint. 1281 if (SrcTy == DstTy) { 1282 if (Opts.EmitImplicitIntegerSignChangeChecks) 1283 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1284 NoncanonicalDstType, Loc); 1285 1286 return Src; 1287 } 1288 1289 // Handle pointer conversions next: pointers can only be converted to/from 1290 // other pointers and integers. Check for pointer types in terms of LLVM, as 1291 // some native types (like Obj-C id) may map to a pointer type. 1292 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1293 // The source value may be an integer, or a pointer. 1294 if (isa<llvm::PointerType>(SrcTy)) 1295 return Builder.CreateBitCast(Src, DstTy, "conv"); 1296 1297 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1298 // First, convert to the correct width so that we control the kind of 1299 // extension. 1300 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1301 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1302 llvm::Value* IntResult = 1303 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1304 // Then, cast to pointer. 1305 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1306 } 1307 1308 if (isa<llvm::PointerType>(SrcTy)) { 1309 // Must be an ptr to int cast. 1310 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1311 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1312 } 1313 1314 // A scalar can be splatted to an extended vector of the same element type 1315 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1316 // Sema should add casts to make sure that the source expression's type is 1317 // the same as the vector's element type (sans qualifiers) 1318 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1319 SrcType.getTypePtr() && 1320 "Splatted expr doesn't match with vector element type?"); 1321 1322 // Splat the element across to all elements 1323 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 1324 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1325 } 1326 1327 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1328 // Allow bitcast from vector to integer/fp of the same size. 1329 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1330 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1331 if (SrcSize == DstSize) 1332 return Builder.CreateBitCast(Src, DstTy, "conv"); 1333 1334 // Conversions between vectors of different sizes are not allowed except 1335 // when vectors of half are involved. Operations on storage-only half 1336 // vectors require promoting half vector operands to float vectors and 1337 // truncating the result, which is either an int or float vector, to a 1338 // short or half vector. 1339 1340 // Source and destination are both expected to be vectors. 1341 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1342 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1343 (void)DstElementTy; 1344 1345 assert(((SrcElementTy->isIntegerTy() && 1346 DstElementTy->isIntegerTy()) || 1347 (SrcElementTy->isFloatingPointTy() && 1348 DstElementTy->isFloatingPointTy())) && 1349 "unexpected conversion between a floating-point vector and an " 1350 "integer vector"); 1351 1352 // Truncate an i32 vector to an i16 vector. 1353 if (SrcElementTy->isIntegerTy()) 1354 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1355 1356 // Truncate a float vector to a half vector. 1357 if (SrcSize > DstSize) 1358 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1359 1360 // Promote a half vector to a float vector. 1361 return Builder.CreateFPExt(Src, DstTy, "conv"); 1362 } 1363 1364 // Finally, we have the arithmetic types: real int/float. 1365 Value *Res = nullptr; 1366 llvm::Type *ResTy = DstTy; 1367 1368 // An overflowing conversion has undefined behavior if either the source type 1369 // or the destination type is a floating-point type. However, we consider the 1370 // range of representable values for all floating-point types to be 1371 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1372 // floating-point type. 1373 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1374 OrigSrcType->isFloatingType()) 1375 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1376 Loc); 1377 1378 // Cast to half through float if half isn't a native type. 1379 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1380 // Make sure we cast in a single step if from another FP type. 1381 if (SrcTy->isFloatingPointTy()) { 1382 // Use the intrinsic if the half type itself isn't supported 1383 // (as opposed to operations on half, available with NativeHalfType). 1384 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1385 return Builder.CreateCall( 1386 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1387 // If the half type is supported, just use an fptrunc. 1388 return Builder.CreateFPTrunc(Src, DstTy); 1389 } 1390 DstTy = CGF.FloatTy; 1391 } 1392 1393 if (isa<llvm::IntegerType>(SrcTy)) { 1394 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1395 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1396 InputSigned = true; 1397 } 1398 if (isa<llvm::IntegerType>(DstTy)) 1399 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1400 else if (InputSigned) 1401 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1402 else 1403 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1404 } else if (isa<llvm::IntegerType>(DstTy)) { 1405 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1406 if (DstType->isSignedIntegerOrEnumerationType()) 1407 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1408 else 1409 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1410 } else { 1411 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1412 "Unknown real conversion"); 1413 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1414 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1415 else 1416 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1417 } 1418 1419 if (DstTy != ResTy) { 1420 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1421 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1422 Res = Builder.CreateCall( 1423 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1424 Res); 1425 } else { 1426 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1427 } 1428 } 1429 1430 if (Opts.EmitImplicitIntegerTruncationChecks) 1431 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1432 NoncanonicalDstType, Loc); 1433 1434 if (Opts.EmitImplicitIntegerSignChangeChecks) 1435 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1436 NoncanonicalDstType, Loc); 1437 1438 return Res; 1439 } 1440 1441 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1442 QualType DstTy, 1443 SourceLocation Loc) { 1444 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1445 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1446 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 1447 llvm::Value *Result; 1448 if (DstTy->isIntegerType()) 1449 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, 1450 DstFPSema.getWidth(), 1451 DstFPSema.isSigned()); 1452 else if (SrcTy->isIntegerType()) 1453 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), 1454 DstFPSema); 1455 else 1456 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); 1457 return Result; 1458 } 1459 1460 /// Emit a conversion from the specified complex type to the specified 1461 /// destination type, where the destination type is an LLVM scalar type. 1462 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1463 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1464 SourceLocation Loc) { 1465 // Get the source element type. 1466 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1467 1468 // Handle conversions to bool first, they are special: comparisons against 0. 1469 if (DstTy->isBooleanType()) { 1470 // Complex != 0 -> (Real != 0) | (Imag != 0) 1471 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1472 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1473 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1474 } 1475 1476 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1477 // the imaginary part of the complex value is discarded and the value of the 1478 // real part is converted according to the conversion rules for the 1479 // corresponding real type. 1480 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1481 } 1482 1483 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1484 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1485 } 1486 1487 /// Emit a sanitization check for the given "binary" operation (which 1488 /// might actually be a unary increment which has been lowered to a binary 1489 /// operation). The check passes if all values in \p Checks (which are \c i1), 1490 /// are \c true. 1491 void ScalarExprEmitter::EmitBinOpCheck( 1492 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1493 assert(CGF.IsSanitizerScope); 1494 SanitizerHandler Check; 1495 SmallVector<llvm::Constant *, 4> StaticData; 1496 SmallVector<llvm::Value *, 2> DynamicData; 1497 1498 BinaryOperatorKind Opcode = Info.Opcode; 1499 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1500 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1501 1502 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1503 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1504 if (UO && UO->getOpcode() == UO_Minus) { 1505 Check = SanitizerHandler::NegateOverflow; 1506 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1507 DynamicData.push_back(Info.RHS); 1508 } else { 1509 if (BinaryOperator::isShiftOp(Opcode)) { 1510 // Shift LHS negative or too large, or RHS out of bounds. 1511 Check = SanitizerHandler::ShiftOutOfBounds; 1512 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1513 StaticData.push_back( 1514 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1515 StaticData.push_back( 1516 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1517 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1518 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1519 Check = SanitizerHandler::DivremOverflow; 1520 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1521 } else { 1522 // Arithmetic overflow (+, -, *). 1523 switch (Opcode) { 1524 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1525 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1526 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1527 default: llvm_unreachable("unexpected opcode for bin op check"); 1528 } 1529 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1530 } 1531 DynamicData.push_back(Info.LHS); 1532 DynamicData.push_back(Info.RHS); 1533 } 1534 1535 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1536 } 1537 1538 //===----------------------------------------------------------------------===// 1539 // Visitor Methods 1540 //===----------------------------------------------------------------------===// 1541 1542 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1543 CGF.ErrorUnsupported(E, "scalar expression"); 1544 if (E->getType()->isVoidType()) 1545 return nullptr; 1546 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1547 } 1548 1549 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1550 // Vector Mask Case 1551 if (E->getNumSubExprs() == 2) { 1552 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1553 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1554 Value *Mask; 1555 1556 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); 1557 unsigned LHSElts = LTy->getNumElements(); 1558 1559 Mask = RHS; 1560 1561 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); 1562 1563 // Mask off the high bits of each shuffle index. 1564 Value *MaskBits = 1565 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1566 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1567 1568 // newv = undef 1569 // mask = mask & maskbits 1570 // for each elt 1571 // n = extract mask i 1572 // x = extract val n 1573 // newv = insert newv, x, i 1574 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1575 MTy->getNumElements()); 1576 Value* NewV = llvm::UndefValue::get(RTy); 1577 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1578 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1579 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1580 1581 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1582 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1583 } 1584 return NewV; 1585 } 1586 1587 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1588 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1589 1590 SmallVector<int, 32> Indices; 1591 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1592 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1593 // Check for -1 and output it as undef in the IR. 1594 if (Idx.isSigned() && Idx.isAllOnesValue()) 1595 Indices.push_back(-1); 1596 else 1597 Indices.push_back(Idx.getZExtValue()); 1598 } 1599 1600 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1601 } 1602 1603 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1604 QualType SrcType = E->getSrcExpr()->getType(), 1605 DstType = E->getType(); 1606 1607 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1608 1609 SrcType = CGF.getContext().getCanonicalType(SrcType); 1610 DstType = CGF.getContext().getCanonicalType(DstType); 1611 if (SrcType == DstType) return Src; 1612 1613 assert(SrcType->isVectorType() && 1614 "ConvertVector source type must be a vector"); 1615 assert(DstType->isVectorType() && 1616 "ConvertVector destination type must be a vector"); 1617 1618 llvm::Type *SrcTy = Src->getType(); 1619 llvm::Type *DstTy = ConvertType(DstType); 1620 1621 // Ignore conversions like int -> uint. 1622 if (SrcTy == DstTy) 1623 return Src; 1624 1625 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1626 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1627 1628 assert(SrcTy->isVectorTy() && 1629 "ConvertVector source IR type must be a vector"); 1630 assert(DstTy->isVectorTy() && 1631 "ConvertVector destination IR type must be a vector"); 1632 1633 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1634 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1635 1636 if (DstEltType->isBooleanType()) { 1637 assert((SrcEltTy->isFloatingPointTy() || 1638 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1639 1640 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1641 if (SrcEltTy->isFloatingPointTy()) { 1642 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1643 } else { 1644 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1645 } 1646 } 1647 1648 // We have the arithmetic types: real int/float. 1649 Value *Res = nullptr; 1650 1651 if (isa<llvm::IntegerType>(SrcEltTy)) { 1652 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1653 if (isa<llvm::IntegerType>(DstEltTy)) 1654 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1655 else if (InputSigned) 1656 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1657 else 1658 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1659 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1660 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1661 if (DstEltType->isSignedIntegerOrEnumerationType()) 1662 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1663 else 1664 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1665 } else { 1666 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1667 "Unknown real conversion"); 1668 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1669 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1670 else 1671 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1672 } 1673 1674 return Res; 1675 } 1676 1677 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1678 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1679 CGF.EmitIgnoredExpr(E->getBase()); 1680 return CGF.emitScalarConstant(Constant, E); 1681 } else { 1682 Expr::EvalResult Result; 1683 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1684 llvm::APSInt Value = Result.Val.getInt(); 1685 CGF.EmitIgnoredExpr(E->getBase()); 1686 return Builder.getInt(Value); 1687 } 1688 } 1689 1690 return EmitLoadOfLValue(E); 1691 } 1692 1693 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1694 TestAndClearIgnoreResultAssign(); 1695 1696 // Emit subscript expressions in rvalue context's. For most cases, this just 1697 // loads the lvalue formed by the subscript expr. However, we have to be 1698 // careful, because the base of a vector subscript is occasionally an rvalue, 1699 // so we can't get it as an lvalue. 1700 if (!E->getBase()->getType()->isVectorType()) 1701 return EmitLoadOfLValue(E); 1702 1703 // Handle the vector case. The base must be a vector, the index must be an 1704 // integer value. 1705 Value *Base = Visit(E->getBase()); 1706 Value *Idx = Visit(E->getIdx()); 1707 QualType IdxTy = E->getIdx()->getType(); 1708 1709 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1710 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1711 1712 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1713 } 1714 1715 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1716 TestAndClearIgnoreResultAssign(); 1717 1718 // Handle the vector case. The base must be a vector, the index must be an 1719 // integer value. 1720 Value *RowIdx = Visit(E->getRowIdx()); 1721 Value *ColumnIdx = Visit(E->getColumnIdx()); 1722 Value *Matrix = Visit(E->getBase()); 1723 1724 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1725 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1726 return MB.CreateExtractElement( 1727 Matrix, RowIdx, ColumnIdx, 1728 E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows()); 1729 } 1730 1731 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1732 unsigned Off) { 1733 int MV = SVI->getMaskValue(Idx); 1734 if (MV == -1) 1735 return -1; 1736 return Off + MV; 1737 } 1738 1739 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1740 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1741 "Index operand too large for shufflevector mask!"); 1742 return C->getZExtValue(); 1743 } 1744 1745 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1746 bool Ignore = TestAndClearIgnoreResultAssign(); 1747 (void)Ignore; 1748 assert (Ignore == false && "init list ignored"); 1749 unsigned NumInitElements = E->getNumInits(); 1750 1751 if (E->hadArrayRangeDesignator()) 1752 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1753 1754 llvm::VectorType *VType = 1755 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1756 1757 if (!VType) { 1758 if (NumInitElements == 0) { 1759 // C++11 value-initialization for the scalar. 1760 return EmitNullValue(E->getType()); 1761 } 1762 // We have a scalar in braces. Just use the first element. 1763 return Visit(E->getInit(0)); 1764 } 1765 1766 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); 1767 1768 // Loop over initializers collecting the Value for each, and remembering 1769 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1770 // us to fold the shuffle for the swizzle into the shuffle for the vector 1771 // initializer, since LLVM optimizers generally do not want to touch 1772 // shuffles. 1773 unsigned CurIdx = 0; 1774 bool VIsUndefShuffle = false; 1775 llvm::Value *V = llvm::UndefValue::get(VType); 1776 for (unsigned i = 0; i != NumInitElements; ++i) { 1777 Expr *IE = E->getInit(i); 1778 Value *Init = Visit(IE); 1779 SmallVector<int, 16> Args; 1780 1781 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1782 1783 // Handle scalar elements. If the scalar initializer is actually one 1784 // element of a different vector of the same width, use shuffle instead of 1785 // extract+insert. 1786 if (!VVT) { 1787 if (isa<ExtVectorElementExpr>(IE)) { 1788 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1789 1790 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) 1791 ->getNumElements() == ResElts) { 1792 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1793 Value *LHS = nullptr, *RHS = nullptr; 1794 if (CurIdx == 0) { 1795 // insert into undef -> shuffle (src, undef) 1796 // shufflemask must use an i32 1797 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1798 Args.resize(ResElts, -1); 1799 1800 LHS = EI->getVectorOperand(); 1801 RHS = V; 1802 VIsUndefShuffle = true; 1803 } else if (VIsUndefShuffle) { 1804 // insert into undefshuffle && size match -> shuffle (v, src) 1805 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1806 for (unsigned j = 0; j != CurIdx; ++j) 1807 Args.push_back(getMaskElt(SVV, j, 0)); 1808 Args.push_back(ResElts + C->getZExtValue()); 1809 Args.resize(ResElts, -1); 1810 1811 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1812 RHS = EI->getVectorOperand(); 1813 VIsUndefShuffle = false; 1814 } 1815 if (!Args.empty()) { 1816 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1817 ++CurIdx; 1818 continue; 1819 } 1820 } 1821 } 1822 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1823 "vecinit"); 1824 VIsUndefShuffle = false; 1825 ++CurIdx; 1826 continue; 1827 } 1828 1829 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); 1830 1831 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1832 // input is the same width as the vector being constructed, generate an 1833 // optimized shuffle of the swizzle input into the result. 1834 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1835 if (isa<ExtVectorElementExpr>(IE)) { 1836 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1837 Value *SVOp = SVI->getOperand(0); 1838 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); 1839 1840 if (OpTy->getNumElements() == ResElts) { 1841 for (unsigned j = 0; j != CurIdx; ++j) { 1842 // If the current vector initializer is a shuffle with undef, merge 1843 // this shuffle directly into it. 1844 if (VIsUndefShuffle) { 1845 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1846 } else { 1847 Args.push_back(j); 1848 } 1849 } 1850 for (unsigned j = 0, je = InitElts; j != je; ++j) 1851 Args.push_back(getMaskElt(SVI, j, Offset)); 1852 Args.resize(ResElts, -1); 1853 1854 if (VIsUndefShuffle) 1855 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1856 1857 Init = SVOp; 1858 } 1859 } 1860 1861 // Extend init to result vector length, and then shuffle its contribution 1862 // to the vector initializer into V. 1863 if (Args.empty()) { 1864 for (unsigned j = 0; j != InitElts; ++j) 1865 Args.push_back(j); 1866 Args.resize(ResElts, -1); 1867 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args, 1868 "vext"); 1869 1870 Args.clear(); 1871 for (unsigned j = 0; j != CurIdx; ++j) 1872 Args.push_back(j); 1873 for (unsigned j = 0; j != InitElts; ++j) 1874 Args.push_back(j + Offset); 1875 Args.resize(ResElts, -1); 1876 } 1877 1878 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1879 // merging subsequent shuffles into this one. 1880 if (CurIdx == 0) 1881 std::swap(V, Init); 1882 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 1883 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1884 CurIdx += InitElts; 1885 } 1886 1887 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1888 // Emit remaining default initializers. 1889 llvm::Type *EltTy = VType->getElementType(); 1890 1891 // Emit remaining default initializers 1892 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1893 Value *Idx = Builder.getInt32(CurIdx); 1894 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1895 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1896 } 1897 return V; 1898 } 1899 1900 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1901 const Expr *E = CE->getSubExpr(); 1902 1903 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1904 return false; 1905 1906 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1907 // We always assume that 'this' is never null. 1908 return false; 1909 } 1910 1911 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1912 // And that glvalue casts are never null. 1913 if (ICE->getValueKind() != VK_RValue) 1914 return false; 1915 } 1916 1917 return true; 1918 } 1919 1920 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1921 // have to handle a more broad range of conversions than explicit casts, as they 1922 // handle things like function to ptr-to-function decay etc. 1923 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1924 Expr *E = CE->getSubExpr(); 1925 QualType DestTy = CE->getType(); 1926 CastKind Kind = CE->getCastKind(); 1927 1928 // These cases are generally not written to ignore the result of 1929 // evaluating their sub-expressions, so we clear this now. 1930 bool Ignored = TestAndClearIgnoreResultAssign(); 1931 1932 // Since almost all cast kinds apply to scalars, this switch doesn't have 1933 // a default case, so the compiler will warn on a missing case. The cases 1934 // are in the same order as in the CastKind enum. 1935 switch (Kind) { 1936 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1937 case CK_BuiltinFnToFnPtr: 1938 llvm_unreachable("builtin functions are handled elsewhere"); 1939 1940 case CK_LValueBitCast: 1941 case CK_ObjCObjectLValueCast: { 1942 Address Addr = EmitLValue(E).getAddress(CGF); 1943 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1944 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1945 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1946 } 1947 1948 case CK_LValueToRValueBitCast: { 1949 LValue SourceLVal = CGF.EmitLValue(E); 1950 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 1951 CGF.ConvertTypeForMem(DestTy)); 1952 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 1953 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 1954 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 1955 } 1956 1957 case CK_CPointerToObjCPointerCast: 1958 case CK_BlockPointerToObjCPointerCast: 1959 case CK_AnyPointerToBlockPointerCast: 1960 case CK_BitCast: { 1961 Value *Src = Visit(const_cast<Expr*>(E)); 1962 llvm::Type *SrcTy = Src->getType(); 1963 llvm::Type *DstTy = ConvertType(DestTy); 1964 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1965 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1966 llvm_unreachable("wrong cast for pointers in different address spaces" 1967 "(must be an address space cast)!"); 1968 } 1969 1970 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1971 if (auto PT = DestTy->getAs<PointerType>()) 1972 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1973 /*MayBeNull=*/true, 1974 CodeGenFunction::CFITCK_UnrelatedCast, 1975 CE->getBeginLoc()); 1976 } 1977 1978 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1979 const QualType SrcType = E->getType(); 1980 1981 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 1982 // Casting to pointer that could carry dynamic information (provided by 1983 // invariant.group) requires launder. 1984 Src = Builder.CreateLaunderInvariantGroup(Src); 1985 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 1986 // Casting to pointer that does not carry dynamic information (provided 1987 // by invariant.group) requires stripping it. Note that we don't do it 1988 // if the source could not be dynamic type and destination could be 1989 // dynamic because dynamic information is already laundered. It is 1990 // because launder(strip(src)) == launder(src), so there is no need to 1991 // add extra strip before launder. 1992 Src = Builder.CreateStripInvariantGroup(Src); 1993 } 1994 } 1995 1996 // Update heapallocsite metadata when there is an explicit pointer cast. 1997 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 1998 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { 1999 QualType PointeeType = DestTy->getPointeeType(); 2000 if (!PointeeType.isNull()) 2001 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 2002 CE->getExprLoc()); 2003 } 2004 } 2005 2006 // Perform VLAT <-> VLST bitcast through memory. 2007 if ((isa<llvm::FixedVectorType>(SrcTy) && 2008 isa<llvm::ScalableVectorType>(DstTy)) || 2009 (isa<llvm::ScalableVectorType>(SrcTy) && 2010 isa<llvm::FixedVectorType>(DstTy))) { 2011 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 2012 // Call expressions can't have a scalar return unless the return type 2013 // is a reference type so an lvalue can't be emitted. Create a temp 2014 // alloca to store the call, bitcast the address then load. 2015 QualType RetTy = CE->getCallReturnType(CGF.getContext()); 2016 Address Addr = 2017 CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue"); 2018 LValue LV = CGF.MakeAddrLValue(Addr, RetTy); 2019 CGF.EmitStoreOfScalar(Src, LV); 2020 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy), 2021 "castFixedSve"); 2022 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2023 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2024 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2025 } 2026 2027 Address Addr = EmitLValue(E).getAddress(CGF); 2028 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2029 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2030 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2031 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2032 } 2033 2034 return Builder.CreateBitCast(Src, DstTy); 2035 } 2036 case CK_AddressSpaceConversion: { 2037 Expr::EvalResult Result; 2038 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2039 Result.Val.isNullPointer()) { 2040 // If E has side effect, it is emitted even if its final result is a 2041 // null pointer. In that case, a DCE pass should be able to 2042 // eliminate the useless instructions emitted during translating E. 2043 if (Result.HasSideEffects) 2044 Visit(E); 2045 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2046 ConvertType(DestTy)), DestTy); 2047 } 2048 // Since target may map different address spaces in AST to the same address 2049 // space, an address space conversion may end up as a bitcast. 2050 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2051 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2052 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2053 } 2054 case CK_AtomicToNonAtomic: 2055 case CK_NonAtomicToAtomic: 2056 case CK_NoOp: 2057 case CK_UserDefinedConversion: 2058 return Visit(const_cast<Expr*>(E)); 2059 2060 case CK_BaseToDerived: { 2061 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2062 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2063 2064 Address Base = CGF.EmitPointerWithAlignment(E); 2065 Address Derived = 2066 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2067 CE->path_begin(), CE->path_end(), 2068 CGF.ShouldNullCheckClassCastValue(CE)); 2069 2070 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2071 // performed and the object is not of the derived type. 2072 if (CGF.sanitizePerformTypeCheck()) 2073 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2074 Derived.getPointer(), DestTy->getPointeeType()); 2075 2076 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2077 CGF.EmitVTablePtrCheckForCast( 2078 DestTy->getPointeeType(), Derived.getPointer(), 2079 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2080 CE->getBeginLoc()); 2081 2082 return Derived.getPointer(); 2083 } 2084 case CK_UncheckedDerivedToBase: 2085 case CK_DerivedToBase: { 2086 // The EmitPointerWithAlignment path does this fine; just discard 2087 // the alignment. 2088 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2089 } 2090 2091 case CK_Dynamic: { 2092 Address V = CGF.EmitPointerWithAlignment(E); 2093 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2094 return CGF.EmitDynamicCast(V, DCE); 2095 } 2096 2097 case CK_ArrayToPointerDecay: 2098 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2099 case CK_FunctionToPointerDecay: 2100 return EmitLValue(E).getPointer(CGF); 2101 2102 case CK_NullToPointer: 2103 if (MustVisitNullValue(E)) 2104 CGF.EmitIgnoredExpr(E); 2105 2106 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2107 DestTy); 2108 2109 case CK_NullToMemberPointer: { 2110 if (MustVisitNullValue(E)) 2111 CGF.EmitIgnoredExpr(E); 2112 2113 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2114 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2115 } 2116 2117 case CK_ReinterpretMemberPointer: 2118 case CK_BaseToDerivedMemberPointer: 2119 case CK_DerivedToBaseMemberPointer: { 2120 Value *Src = Visit(E); 2121 2122 // Note that the AST doesn't distinguish between checked and 2123 // unchecked member pointer conversions, so we always have to 2124 // implement checked conversions here. This is inefficient when 2125 // actual control flow may be required in order to perform the 2126 // check, which it is for data member pointers (but not member 2127 // function pointers on Itanium and ARM). 2128 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2129 } 2130 2131 case CK_ARCProduceObject: 2132 return CGF.EmitARCRetainScalarExpr(E); 2133 case CK_ARCConsumeObject: 2134 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2135 case CK_ARCReclaimReturnedObject: 2136 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2137 case CK_ARCExtendBlockObject: 2138 return CGF.EmitARCExtendBlockObject(E); 2139 2140 case CK_CopyAndAutoreleaseBlockObject: 2141 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2142 2143 case CK_FloatingRealToComplex: 2144 case CK_FloatingComplexCast: 2145 case CK_IntegralRealToComplex: 2146 case CK_IntegralComplexCast: 2147 case CK_IntegralComplexToFloatingComplex: 2148 case CK_FloatingComplexToIntegralComplex: 2149 case CK_ConstructorConversion: 2150 case CK_ToUnion: 2151 llvm_unreachable("scalar cast to non-scalar value"); 2152 2153 case CK_LValueToRValue: 2154 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2155 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2156 return Visit(const_cast<Expr*>(E)); 2157 2158 case CK_IntegralToPointer: { 2159 Value *Src = Visit(const_cast<Expr*>(E)); 2160 2161 // First, convert to the correct width so that we control the kind of 2162 // extension. 2163 auto DestLLVMTy = ConvertType(DestTy); 2164 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2165 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2166 llvm::Value* IntResult = 2167 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2168 2169 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2170 2171 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2172 // Going from integer to pointer that could be dynamic requires reloading 2173 // dynamic information from invariant.group. 2174 if (DestTy.mayBeDynamicClass()) 2175 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2176 } 2177 return IntToPtr; 2178 } 2179 case CK_PointerToIntegral: { 2180 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2181 auto *PtrExpr = Visit(E); 2182 2183 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2184 const QualType SrcType = E->getType(); 2185 2186 // Casting to integer requires stripping dynamic information as it does 2187 // not carries it. 2188 if (SrcType.mayBeDynamicClass()) 2189 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2190 } 2191 2192 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2193 } 2194 case CK_ToVoid: { 2195 CGF.EmitIgnoredExpr(E); 2196 return nullptr; 2197 } 2198 case CK_VectorSplat: { 2199 llvm::Type *DstTy = ConvertType(DestTy); 2200 Value *Elt = Visit(const_cast<Expr*>(E)); 2201 // Splat the element across to all elements 2202 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 2203 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2204 } 2205 2206 case CK_FixedPointCast: 2207 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2208 CE->getExprLoc()); 2209 2210 case CK_FixedPointToBoolean: 2211 assert(E->getType()->isFixedPointType() && 2212 "Expected src type to be fixed point type"); 2213 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2214 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2215 CE->getExprLoc()); 2216 2217 case CK_FixedPointToIntegral: 2218 assert(E->getType()->isFixedPointType() && 2219 "Expected src type to be fixed point type"); 2220 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2221 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2222 CE->getExprLoc()); 2223 2224 case CK_IntegralToFixedPoint: 2225 assert(E->getType()->isIntegerType() && 2226 "Expected src type to be an integer"); 2227 assert(DestTy->isFixedPointType() && 2228 "Expected dest type to be fixed point type"); 2229 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2230 CE->getExprLoc()); 2231 2232 case CK_IntegralCast: { 2233 ScalarConversionOpts Opts; 2234 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2235 if (!ICE->isPartOfExplicitCast()) 2236 Opts = ScalarConversionOpts(CGF.SanOpts); 2237 } 2238 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2239 CE->getExprLoc(), Opts); 2240 } 2241 case CK_IntegralToFloating: 2242 case CK_FloatingToIntegral: 2243 case CK_FloatingCast: 2244 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2245 CE->getExprLoc()); 2246 case CK_BooleanToSignedIntegral: { 2247 ScalarConversionOpts Opts; 2248 Opts.TreatBooleanAsSigned = true; 2249 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2250 CE->getExprLoc(), Opts); 2251 } 2252 case CK_IntegralToBoolean: 2253 return EmitIntToBoolConversion(Visit(E)); 2254 case CK_PointerToBoolean: 2255 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2256 case CK_FloatingToBoolean: 2257 return EmitFloatToBoolConversion(Visit(E)); 2258 case CK_MemberPointerToBoolean: { 2259 llvm::Value *MemPtr = Visit(E); 2260 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2261 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2262 } 2263 2264 case CK_FloatingComplexToReal: 2265 case CK_IntegralComplexToReal: 2266 return CGF.EmitComplexExpr(E, false, true).first; 2267 2268 case CK_FloatingComplexToBoolean: 2269 case CK_IntegralComplexToBoolean: { 2270 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2271 2272 // TODO: kill this function off, inline appropriate case here 2273 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2274 CE->getExprLoc()); 2275 } 2276 2277 case CK_ZeroToOCLOpaqueType: { 2278 assert((DestTy->isEventT() || DestTy->isQueueT() || 2279 DestTy->isOCLIntelSubgroupAVCType()) && 2280 "CK_ZeroToOCLEvent cast on non-event type"); 2281 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2282 } 2283 2284 case CK_IntToOCLSampler: 2285 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2286 2287 } // end of switch 2288 2289 llvm_unreachable("unknown scalar cast"); 2290 } 2291 2292 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2293 CodeGenFunction::StmtExprEvaluation eval(CGF); 2294 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2295 !E->getType()->isVoidType()); 2296 if (!RetAlloca.isValid()) 2297 return nullptr; 2298 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2299 E->getExprLoc()); 2300 } 2301 2302 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2303 CodeGenFunction::RunCleanupsScope Scope(CGF); 2304 Value *V = Visit(E->getSubExpr()); 2305 // Defend against dominance problems caused by jumps out of expression 2306 // evaluation through the shared cleanup block. 2307 Scope.ForceCleanup({&V}); 2308 return V; 2309 } 2310 2311 //===----------------------------------------------------------------------===// 2312 // Unary Operators 2313 //===----------------------------------------------------------------------===// 2314 2315 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2316 llvm::Value *InVal, bool IsInc, 2317 FPOptions FPFeatures) { 2318 BinOpInfo BinOp; 2319 BinOp.LHS = InVal; 2320 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2321 BinOp.Ty = E->getType(); 2322 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2323 BinOp.FPFeatures = FPFeatures; 2324 BinOp.E = E; 2325 return BinOp; 2326 } 2327 2328 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2329 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2330 llvm::Value *Amount = 2331 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2332 StringRef Name = IsInc ? "inc" : "dec"; 2333 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2334 case LangOptions::SOB_Defined: 2335 return Builder.CreateAdd(InVal, Amount, Name); 2336 case LangOptions::SOB_Undefined: 2337 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2338 return Builder.CreateNSWAdd(InVal, Amount, Name); 2339 LLVM_FALLTHROUGH; 2340 case LangOptions::SOB_Trapping: 2341 if (!E->canOverflow()) 2342 return Builder.CreateNSWAdd(InVal, Amount, Name); 2343 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2344 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2345 } 2346 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2347 } 2348 2349 namespace { 2350 /// Handles check and update for lastprivate conditional variables. 2351 class OMPLastprivateConditionalUpdateRAII { 2352 private: 2353 CodeGenFunction &CGF; 2354 const UnaryOperator *E; 2355 2356 public: 2357 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2358 const UnaryOperator *E) 2359 : CGF(CGF), E(E) {} 2360 ~OMPLastprivateConditionalUpdateRAII() { 2361 if (CGF.getLangOpts().OpenMP) 2362 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2363 CGF, E->getSubExpr()); 2364 } 2365 }; 2366 } // namespace 2367 2368 llvm::Value * 2369 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2370 bool isInc, bool isPre) { 2371 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2372 QualType type = E->getSubExpr()->getType(); 2373 llvm::PHINode *atomicPHI = nullptr; 2374 llvm::Value *value; 2375 llvm::Value *input; 2376 2377 int amount = (isInc ? 1 : -1); 2378 bool isSubtraction = !isInc; 2379 2380 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2381 type = atomicTy->getValueType(); 2382 if (isInc && type->isBooleanType()) { 2383 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2384 if (isPre) { 2385 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2386 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2387 return Builder.getTrue(); 2388 } 2389 // For atomic bool increment, we just store true and return it for 2390 // preincrement, do an atomic swap with true for postincrement 2391 return Builder.CreateAtomicRMW( 2392 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2393 llvm::AtomicOrdering::SequentiallyConsistent); 2394 } 2395 // Special case for atomic increment / decrement on integers, emit 2396 // atomicrmw instructions. We skip this if we want to be doing overflow 2397 // checking, and fall into the slow path with the atomic cmpxchg loop. 2398 if (!type->isBooleanType() && type->isIntegerType() && 2399 !(type->isUnsignedIntegerType() && 2400 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2401 CGF.getLangOpts().getSignedOverflowBehavior() != 2402 LangOptions::SOB_Trapping) { 2403 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2404 llvm::AtomicRMWInst::Sub; 2405 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2406 llvm::Instruction::Sub; 2407 llvm::Value *amt = CGF.EmitToMemory( 2408 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2409 llvm::Value *old = 2410 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2411 llvm::AtomicOrdering::SequentiallyConsistent); 2412 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2413 } 2414 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2415 input = value; 2416 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2417 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2418 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2419 value = CGF.EmitToMemory(value, type); 2420 Builder.CreateBr(opBB); 2421 Builder.SetInsertPoint(opBB); 2422 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2423 atomicPHI->addIncoming(value, startBB); 2424 value = atomicPHI; 2425 } else { 2426 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2427 input = value; 2428 } 2429 2430 // Special case of integer increment that we have to check first: bool++. 2431 // Due to promotion rules, we get: 2432 // bool++ -> bool = bool + 1 2433 // -> bool = (int)bool + 1 2434 // -> bool = ((int)bool + 1 != 0) 2435 // An interesting aspect of this is that increment is always true. 2436 // Decrement does not have this property. 2437 if (isInc && type->isBooleanType()) { 2438 value = Builder.getTrue(); 2439 2440 // Most common case by far: integer increment. 2441 } else if (type->isIntegerType()) { 2442 QualType promotedType; 2443 bool canPerformLossyDemotionCheck = false; 2444 if (type->isPromotableIntegerType()) { 2445 promotedType = CGF.getContext().getPromotedIntegerType(type); 2446 assert(promotedType != type && "Shouldn't promote to the same type."); 2447 canPerformLossyDemotionCheck = true; 2448 canPerformLossyDemotionCheck &= 2449 CGF.getContext().getCanonicalType(type) != 2450 CGF.getContext().getCanonicalType(promotedType); 2451 canPerformLossyDemotionCheck &= 2452 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2453 type, promotedType); 2454 assert((!canPerformLossyDemotionCheck || 2455 type->isSignedIntegerOrEnumerationType() || 2456 promotedType->isSignedIntegerOrEnumerationType() || 2457 ConvertType(type)->getScalarSizeInBits() == 2458 ConvertType(promotedType)->getScalarSizeInBits()) && 2459 "The following check expects that if we do promotion to different " 2460 "underlying canonical type, at least one of the types (either " 2461 "base or promoted) will be signed, or the bitwidths will match."); 2462 } 2463 if (CGF.SanOpts.hasOneOf( 2464 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2465 canPerformLossyDemotionCheck) { 2466 // While `x += 1` (for `x` with width less than int) is modeled as 2467 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2468 // ease; inc/dec with width less than int can't overflow because of 2469 // promotion rules, so we omit promotion+demotion, which means that we can 2470 // not catch lossy "demotion". Because we still want to catch these cases 2471 // when the sanitizer is enabled, we perform the promotion, then perform 2472 // the increment/decrement in the wider type, and finally 2473 // perform the demotion. This will catch lossy demotions. 2474 2475 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2476 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2477 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2478 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2479 // emitted. 2480 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2481 ScalarConversionOpts(CGF.SanOpts)); 2482 2483 // Note that signed integer inc/dec with width less than int can't 2484 // overflow because of promotion rules; we're just eliding a few steps 2485 // here. 2486 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2487 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2488 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2489 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2490 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2491 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2492 } else { 2493 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2494 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2495 } 2496 2497 // Next most common: pointer increment. 2498 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2499 QualType type = ptr->getPointeeType(); 2500 2501 // VLA types don't have constant size. 2502 if (const VariableArrayType *vla 2503 = CGF.getContext().getAsVariableArrayType(type)) { 2504 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2505 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2506 if (CGF.getLangOpts().isSignedOverflowDefined()) 2507 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2508 else 2509 value = CGF.EmitCheckedInBoundsGEP( 2510 value, numElts, /*SignedIndices=*/false, isSubtraction, 2511 E->getExprLoc(), "vla.inc"); 2512 2513 // Arithmetic on function pointers (!) is just +-1. 2514 } else if (type->isFunctionType()) { 2515 llvm::Value *amt = Builder.getInt32(amount); 2516 2517 value = CGF.EmitCastToVoidPtr(value); 2518 if (CGF.getLangOpts().isSignedOverflowDefined()) 2519 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2520 else 2521 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2522 isSubtraction, E->getExprLoc(), 2523 "incdec.funcptr"); 2524 value = Builder.CreateBitCast(value, input->getType()); 2525 2526 // For everything else, we can just do a simple increment. 2527 } else { 2528 llvm::Value *amt = Builder.getInt32(amount); 2529 if (CGF.getLangOpts().isSignedOverflowDefined()) 2530 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2531 else 2532 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2533 isSubtraction, E->getExprLoc(), 2534 "incdec.ptr"); 2535 } 2536 2537 // Vector increment/decrement. 2538 } else if (type->isVectorType()) { 2539 if (type->hasIntegerRepresentation()) { 2540 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2541 2542 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2543 } else { 2544 value = Builder.CreateFAdd( 2545 value, 2546 llvm::ConstantFP::get(value->getType(), amount), 2547 isInc ? "inc" : "dec"); 2548 } 2549 2550 // Floating point. 2551 } else if (type->isRealFloatingType()) { 2552 // Add the inc/dec to the real part. 2553 llvm::Value *amt; 2554 2555 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2556 // Another special case: half FP increment should be done via float 2557 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2558 value = Builder.CreateCall( 2559 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2560 CGF.CGM.FloatTy), 2561 input, "incdec.conv"); 2562 } else { 2563 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2564 } 2565 } 2566 2567 if (value->getType()->isFloatTy()) 2568 amt = llvm::ConstantFP::get(VMContext, 2569 llvm::APFloat(static_cast<float>(amount))); 2570 else if (value->getType()->isDoubleTy()) 2571 amt = llvm::ConstantFP::get(VMContext, 2572 llvm::APFloat(static_cast<double>(amount))); 2573 else { 2574 // Remaining types are Half, LongDouble or __float128. Convert from float. 2575 llvm::APFloat F(static_cast<float>(amount)); 2576 bool ignored; 2577 const llvm::fltSemantics *FS; 2578 // Don't use getFloatTypeSemantics because Half isn't 2579 // necessarily represented using the "half" LLVM type. 2580 if (value->getType()->isFP128Ty()) 2581 FS = &CGF.getTarget().getFloat128Format(); 2582 else if (value->getType()->isHalfTy()) 2583 FS = &CGF.getTarget().getHalfFormat(); 2584 else 2585 FS = &CGF.getTarget().getLongDoubleFormat(); 2586 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2587 amt = llvm::ConstantFP::get(VMContext, F); 2588 } 2589 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2590 2591 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2592 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2593 value = Builder.CreateCall( 2594 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2595 CGF.CGM.FloatTy), 2596 value, "incdec.conv"); 2597 } else { 2598 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2599 } 2600 } 2601 2602 // Fixed-point types. 2603 } else if (type->isFixedPointType()) { 2604 // Fixed-point types are tricky. In some cases, it isn't possible to 2605 // represent a 1 or a -1 in the type at all. Piggyback off of 2606 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2607 BinOpInfo Info; 2608 Info.E = E; 2609 Info.Ty = E->getType(); 2610 Info.Opcode = isInc ? BO_Add : BO_Sub; 2611 Info.LHS = value; 2612 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2613 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2614 // since -1 is guaranteed to be representable. 2615 if (type->isSignedFixedPointType()) { 2616 Info.Opcode = isInc ? BO_Sub : BO_Add; 2617 Info.RHS = Builder.CreateNeg(Info.RHS); 2618 } 2619 // Now, convert from our invented integer literal to the type of the unary 2620 // op. This will upscale and saturate if necessary. This value can become 2621 // undef in some cases. 2622 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 2623 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2624 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); 2625 value = EmitFixedPointBinOp(Info); 2626 2627 // Objective-C pointer types. 2628 } else { 2629 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2630 value = CGF.EmitCastToVoidPtr(value); 2631 2632 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2633 if (!isInc) size = -size; 2634 llvm::Value *sizeValue = 2635 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2636 2637 if (CGF.getLangOpts().isSignedOverflowDefined()) 2638 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2639 else 2640 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2641 /*SignedIndices=*/false, isSubtraction, 2642 E->getExprLoc(), "incdec.objptr"); 2643 value = Builder.CreateBitCast(value, input->getType()); 2644 } 2645 2646 if (atomicPHI) { 2647 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2648 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2649 auto Pair = CGF.EmitAtomicCompareExchange( 2650 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2651 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2652 llvm::Value *success = Pair.second; 2653 atomicPHI->addIncoming(old, curBlock); 2654 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2655 Builder.SetInsertPoint(contBB); 2656 return isPre ? value : input; 2657 } 2658 2659 // Store the updated result through the lvalue. 2660 if (LV.isBitField()) 2661 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2662 else 2663 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2664 2665 // If this is a postinc, return the value read from memory, otherwise use the 2666 // updated value. 2667 return isPre ? value : input; 2668 } 2669 2670 2671 2672 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2673 TestAndClearIgnoreResultAssign(); 2674 Value *Op = Visit(E->getSubExpr()); 2675 2676 // Generate a unary FNeg for FP ops. 2677 if (Op->getType()->isFPOrFPVectorTy()) 2678 return Builder.CreateFNeg(Op, "fneg"); 2679 2680 // Emit unary minus with EmitSub so we handle overflow cases etc. 2681 BinOpInfo BinOp; 2682 BinOp.RHS = Op; 2683 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2684 BinOp.Ty = E->getType(); 2685 BinOp.Opcode = BO_Sub; 2686 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2687 BinOp.E = E; 2688 return EmitSub(BinOp); 2689 } 2690 2691 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2692 TestAndClearIgnoreResultAssign(); 2693 Value *Op = Visit(E->getSubExpr()); 2694 return Builder.CreateNot(Op, "neg"); 2695 } 2696 2697 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2698 // Perform vector logical not on comparison with zero vector. 2699 if (E->getType()->isVectorType() && 2700 E->getType()->castAs<VectorType>()->getVectorKind() == 2701 VectorType::GenericVector) { 2702 Value *Oper = Visit(E->getSubExpr()); 2703 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2704 Value *Result; 2705 if (Oper->getType()->isFPOrFPVectorTy()) { 2706 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2707 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2708 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2709 } else 2710 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2711 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2712 } 2713 2714 // Compare operand to zero. 2715 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2716 2717 // Invert value. 2718 // TODO: Could dynamically modify easy computations here. For example, if 2719 // the operand is an icmp ne, turn into icmp eq. 2720 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2721 2722 // ZExt result to the expr type. 2723 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2724 } 2725 2726 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2727 // Try folding the offsetof to a constant. 2728 Expr::EvalResult EVResult; 2729 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2730 llvm::APSInt Value = EVResult.Val.getInt(); 2731 return Builder.getInt(Value); 2732 } 2733 2734 // Loop over the components of the offsetof to compute the value. 2735 unsigned n = E->getNumComponents(); 2736 llvm::Type* ResultType = ConvertType(E->getType()); 2737 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2738 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2739 for (unsigned i = 0; i != n; ++i) { 2740 OffsetOfNode ON = E->getComponent(i); 2741 llvm::Value *Offset = nullptr; 2742 switch (ON.getKind()) { 2743 case OffsetOfNode::Array: { 2744 // Compute the index 2745 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2746 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2747 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2748 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2749 2750 // Save the element type 2751 CurrentType = 2752 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2753 2754 // Compute the element size 2755 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2756 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2757 2758 // Multiply out to compute the result 2759 Offset = Builder.CreateMul(Idx, ElemSize); 2760 break; 2761 } 2762 2763 case OffsetOfNode::Field: { 2764 FieldDecl *MemberDecl = ON.getField(); 2765 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2766 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2767 2768 // Compute the index of the field in its parent. 2769 unsigned i = 0; 2770 // FIXME: It would be nice if we didn't have to loop here! 2771 for (RecordDecl::field_iterator Field = RD->field_begin(), 2772 FieldEnd = RD->field_end(); 2773 Field != FieldEnd; ++Field, ++i) { 2774 if (*Field == MemberDecl) 2775 break; 2776 } 2777 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2778 2779 // Compute the offset to the field 2780 int64_t OffsetInt = RL.getFieldOffset(i) / 2781 CGF.getContext().getCharWidth(); 2782 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2783 2784 // Save the element type. 2785 CurrentType = MemberDecl->getType(); 2786 break; 2787 } 2788 2789 case OffsetOfNode::Identifier: 2790 llvm_unreachable("dependent __builtin_offsetof"); 2791 2792 case OffsetOfNode::Base: { 2793 if (ON.getBase()->isVirtual()) { 2794 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2795 continue; 2796 } 2797 2798 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2799 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2800 2801 // Save the element type. 2802 CurrentType = ON.getBase()->getType(); 2803 2804 // Compute the offset to the base. 2805 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2806 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2807 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2808 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2809 break; 2810 } 2811 } 2812 Result = Builder.CreateAdd(Result, Offset); 2813 } 2814 return Result; 2815 } 2816 2817 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2818 /// argument of the sizeof expression as an integer. 2819 Value * 2820 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2821 const UnaryExprOrTypeTraitExpr *E) { 2822 QualType TypeToSize = E->getTypeOfArgument(); 2823 if (E->getKind() == UETT_SizeOf) { 2824 if (const VariableArrayType *VAT = 2825 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2826 if (E->isArgumentType()) { 2827 // sizeof(type) - make sure to emit the VLA size. 2828 CGF.EmitVariablyModifiedType(TypeToSize); 2829 } else { 2830 // C99 6.5.3.4p2: If the argument is an expression of type 2831 // VLA, it is evaluated. 2832 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2833 } 2834 2835 auto VlaSize = CGF.getVLASize(VAT); 2836 llvm::Value *size = VlaSize.NumElts; 2837 2838 // Scale the number of non-VLA elements by the non-VLA element size. 2839 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2840 if (!eltSize.isOne()) 2841 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2842 2843 return size; 2844 } 2845 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2846 auto Alignment = 2847 CGF.getContext() 2848 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2849 E->getTypeOfArgument()->getPointeeType())) 2850 .getQuantity(); 2851 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2852 } 2853 2854 // If this isn't sizeof(vla), the result must be constant; use the constant 2855 // folding logic so we don't have to duplicate it here. 2856 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2857 } 2858 2859 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2860 Expr *Op = E->getSubExpr(); 2861 if (Op->getType()->isAnyComplexType()) { 2862 // If it's an l-value, load through the appropriate subobject l-value. 2863 // Note that we have to ask E because Op might be an l-value that 2864 // this won't work for, e.g. an Obj-C property. 2865 if (E->isGLValue()) 2866 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2867 E->getExprLoc()).getScalarVal(); 2868 2869 // Otherwise, calculate and project. 2870 return CGF.EmitComplexExpr(Op, false, true).first; 2871 } 2872 2873 return Visit(Op); 2874 } 2875 2876 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2877 Expr *Op = E->getSubExpr(); 2878 if (Op->getType()->isAnyComplexType()) { 2879 // If it's an l-value, load through the appropriate subobject l-value. 2880 // Note that we have to ask E because Op might be an l-value that 2881 // this won't work for, e.g. an Obj-C property. 2882 if (Op->isGLValue()) 2883 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2884 E->getExprLoc()).getScalarVal(); 2885 2886 // Otherwise, calculate and project. 2887 return CGF.EmitComplexExpr(Op, true, false).second; 2888 } 2889 2890 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2891 // effects are evaluated, but not the actual value. 2892 if (Op->isGLValue()) 2893 CGF.EmitLValue(Op); 2894 else 2895 CGF.EmitScalarExpr(Op, true); 2896 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2897 } 2898 2899 //===----------------------------------------------------------------------===// 2900 // Binary Operators 2901 //===----------------------------------------------------------------------===// 2902 2903 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2904 TestAndClearIgnoreResultAssign(); 2905 BinOpInfo Result; 2906 Result.LHS = Visit(E->getLHS()); 2907 Result.RHS = Visit(E->getRHS()); 2908 Result.Ty = E->getType(); 2909 Result.Opcode = E->getOpcode(); 2910 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2911 Result.E = E; 2912 return Result; 2913 } 2914 2915 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2916 const CompoundAssignOperator *E, 2917 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2918 Value *&Result) { 2919 QualType LHSTy = E->getLHS()->getType(); 2920 BinOpInfo OpInfo; 2921 2922 if (E->getComputationResultType()->isAnyComplexType()) 2923 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2924 2925 // Emit the RHS first. __block variables need to have the rhs evaluated 2926 // first, plus this should improve codegen a little. 2927 OpInfo.RHS = Visit(E->getRHS()); 2928 OpInfo.Ty = E->getComputationResultType(); 2929 OpInfo.Opcode = E->getOpcode(); 2930 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2931 OpInfo.E = E; 2932 // Load/convert the LHS. 2933 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2934 2935 llvm::PHINode *atomicPHI = nullptr; 2936 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2937 QualType type = atomicTy->getValueType(); 2938 if (!type->isBooleanType() && type->isIntegerType() && 2939 !(type->isUnsignedIntegerType() && 2940 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2941 CGF.getLangOpts().getSignedOverflowBehavior() != 2942 LangOptions::SOB_Trapping) { 2943 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 2944 llvm::Instruction::BinaryOps Op; 2945 switch (OpInfo.Opcode) { 2946 // We don't have atomicrmw operands for *, %, /, <<, >> 2947 case BO_MulAssign: case BO_DivAssign: 2948 case BO_RemAssign: 2949 case BO_ShlAssign: 2950 case BO_ShrAssign: 2951 break; 2952 case BO_AddAssign: 2953 AtomicOp = llvm::AtomicRMWInst::Add; 2954 Op = llvm::Instruction::Add; 2955 break; 2956 case BO_SubAssign: 2957 AtomicOp = llvm::AtomicRMWInst::Sub; 2958 Op = llvm::Instruction::Sub; 2959 break; 2960 case BO_AndAssign: 2961 AtomicOp = llvm::AtomicRMWInst::And; 2962 Op = llvm::Instruction::And; 2963 break; 2964 case BO_XorAssign: 2965 AtomicOp = llvm::AtomicRMWInst::Xor; 2966 Op = llvm::Instruction::Xor; 2967 break; 2968 case BO_OrAssign: 2969 AtomicOp = llvm::AtomicRMWInst::Or; 2970 Op = llvm::Instruction::Or; 2971 break; 2972 default: 2973 llvm_unreachable("Invalid compound assignment type"); 2974 } 2975 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 2976 llvm::Value *Amt = CGF.EmitToMemory( 2977 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2978 E->getExprLoc()), 2979 LHSTy); 2980 Value *OldVal = Builder.CreateAtomicRMW( 2981 AtomicOp, LHSLV.getPointer(CGF), Amt, 2982 llvm::AtomicOrdering::SequentiallyConsistent); 2983 2984 // Since operation is atomic, the result type is guaranteed to be the 2985 // same as the input in LLVM terms. 2986 Result = Builder.CreateBinOp(Op, OldVal, Amt); 2987 return LHSLV; 2988 } 2989 } 2990 // FIXME: For floating point types, we should be saving and restoring the 2991 // floating point environment in the loop. 2992 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2993 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2994 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2995 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2996 Builder.CreateBr(opBB); 2997 Builder.SetInsertPoint(opBB); 2998 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2999 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3000 OpInfo.LHS = atomicPHI; 3001 } 3002 else 3003 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3004 3005 SourceLocation Loc = E->getExprLoc(); 3006 OpInfo.LHS = 3007 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3008 3009 // Expand the binary operator. 3010 Result = (this->*Func)(OpInfo); 3011 3012 // Convert the result back to the LHS type, 3013 // potentially with Implicit Conversion sanitizer check. 3014 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3015 Loc, ScalarConversionOpts(CGF.SanOpts)); 3016 3017 if (atomicPHI) { 3018 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3019 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3020 auto Pair = CGF.EmitAtomicCompareExchange( 3021 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3022 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3023 llvm::Value *success = Pair.second; 3024 atomicPHI->addIncoming(old, curBlock); 3025 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3026 Builder.SetInsertPoint(contBB); 3027 return LHSLV; 3028 } 3029 3030 // Store the result value into the LHS lvalue. Bit-fields are handled 3031 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3032 // 'An assignment expression has the value of the left operand after the 3033 // assignment...'. 3034 if (LHSLV.isBitField()) 3035 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3036 else 3037 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3038 3039 if (CGF.getLangOpts().OpenMP) 3040 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3041 E->getLHS()); 3042 return LHSLV; 3043 } 3044 3045 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3046 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3047 bool Ignore = TestAndClearIgnoreResultAssign(); 3048 Value *RHS = nullptr; 3049 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3050 3051 // If the result is clearly ignored, return now. 3052 if (Ignore) 3053 return nullptr; 3054 3055 // The result of an assignment in C is the assigned r-value. 3056 if (!CGF.getLangOpts().CPlusPlus) 3057 return RHS; 3058 3059 // If the lvalue is non-volatile, return the computed value of the assignment. 3060 if (!LHS.isVolatileQualified()) 3061 return RHS; 3062 3063 // Otherwise, reload the value. 3064 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3065 } 3066 3067 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3068 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3069 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3070 3071 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3072 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3073 SanitizerKind::IntegerDivideByZero)); 3074 } 3075 3076 const auto *BO = cast<BinaryOperator>(Ops.E); 3077 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3078 Ops.Ty->hasSignedIntegerRepresentation() && 3079 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3080 Ops.mayHaveIntegerOverflow()) { 3081 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3082 3083 llvm::Value *IntMin = 3084 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3085 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 3086 3087 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3088 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3089 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3090 Checks.push_back( 3091 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3092 } 3093 3094 if (Checks.size() > 0) 3095 EmitBinOpCheck(Checks, Ops); 3096 } 3097 3098 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3099 { 3100 CodeGenFunction::SanitizerScope SanScope(&CGF); 3101 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3102 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3103 Ops.Ty->isIntegerType() && 3104 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3105 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3106 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3107 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3108 Ops.Ty->isRealFloatingType() && 3109 Ops.mayHaveFloatDivisionByZero()) { 3110 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3111 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3112 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3113 Ops); 3114 } 3115 } 3116 3117 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3118 llvm::Value *Val; 3119 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3120 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3121 if (CGF.getLangOpts().OpenCL && 3122 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3123 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3124 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3125 // build option allows an application to specify that single precision 3126 // floating-point divide (x/y and 1/x) and sqrt used in the program 3127 // source are correctly rounded. 3128 llvm::Type *ValTy = Val->getType(); 3129 if (ValTy->isFloatTy() || 3130 (isa<llvm::VectorType>(ValTy) && 3131 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3132 CGF.SetFPAccuracy(Val, 2.5); 3133 } 3134 return Val; 3135 } 3136 else if (Ops.isFixedPointOp()) 3137 return EmitFixedPointBinOp(Ops); 3138 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3139 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3140 else 3141 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3142 } 3143 3144 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3145 // Rem in C can't be a floating point type: C99 6.5.5p2. 3146 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3147 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3148 Ops.Ty->isIntegerType() && 3149 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3150 CodeGenFunction::SanitizerScope SanScope(&CGF); 3151 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3152 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3153 } 3154 3155 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3156 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3157 else 3158 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3159 } 3160 3161 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3162 unsigned IID; 3163 unsigned OpID = 0; 3164 3165 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3166 switch (Ops.Opcode) { 3167 case BO_Add: 3168 case BO_AddAssign: 3169 OpID = 1; 3170 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3171 llvm::Intrinsic::uadd_with_overflow; 3172 break; 3173 case BO_Sub: 3174 case BO_SubAssign: 3175 OpID = 2; 3176 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3177 llvm::Intrinsic::usub_with_overflow; 3178 break; 3179 case BO_Mul: 3180 case BO_MulAssign: 3181 OpID = 3; 3182 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3183 llvm::Intrinsic::umul_with_overflow; 3184 break; 3185 default: 3186 llvm_unreachable("Unsupported operation for overflow detection"); 3187 } 3188 OpID <<= 1; 3189 if (isSigned) 3190 OpID |= 1; 3191 3192 CodeGenFunction::SanitizerScope SanScope(&CGF); 3193 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3194 3195 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3196 3197 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3198 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3199 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3200 3201 // Handle overflow with llvm.trap if no custom handler has been specified. 3202 const std::string *handlerName = 3203 &CGF.getLangOpts().OverflowHandler; 3204 if (handlerName->empty()) { 3205 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3206 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3207 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3208 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3209 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3210 : SanitizerKind::UnsignedIntegerOverflow; 3211 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3212 } else 3213 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3214 return result; 3215 } 3216 3217 // Branch in case of overflow. 3218 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3219 llvm::BasicBlock *continueBB = 3220 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3221 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3222 3223 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3224 3225 // If an overflow handler is set, then we want to call it and then use its 3226 // result, if it returns. 3227 Builder.SetInsertPoint(overflowBB); 3228 3229 // Get the overflow handler. 3230 llvm::Type *Int8Ty = CGF.Int8Ty; 3231 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3232 llvm::FunctionType *handlerTy = 3233 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3234 llvm::FunctionCallee handler = 3235 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3236 3237 // Sign extend the args to 64-bit, so that we can use the same handler for 3238 // all types of overflow. 3239 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3240 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3241 3242 // Call the handler with the two arguments, the operation, and the size of 3243 // the result. 3244 llvm::Value *handlerArgs[] = { 3245 lhs, 3246 rhs, 3247 Builder.getInt8(OpID), 3248 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3249 }; 3250 llvm::Value *handlerResult = 3251 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3252 3253 // Truncate the result back to the desired size. 3254 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3255 Builder.CreateBr(continueBB); 3256 3257 Builder.SetInsertPoint(continueBB); 3258 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3259 phi->addIncoming(result, initialBB); 3260 phi->addIncoming(handlerResult, overflowBB); 3261 3262 return phi; 3263 } 3264 3265 /// Emit pointer + index arithmetic. 3266 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3267 const BinOpInfo &op, 3268 bool isSubtraction) { 3269 // Must have binary (not unary) expr here. Unary pointer 3270 // increment/decrement doesn't use this path. 3271 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3272 3273 Value *pointer = op.LHS; 3274 Expr *pointerOperand = expr->getLHS(); 3275 Value *index = op.RHS; 3276 Expr *indexOperand = expr->getRHS(); 3277 3278 // In a subtraction, the LHS is always the pointer. 3279 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3280 std::swap(pointer, index); 3281 std::swap(pointerOperand, indexOperand); 3282 } 3283 3284 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3285 3286 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3287 auto &DL = CGF.CGM.getDataLayout(); 3288 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3289 3290 // Some versions of glibc and gcc use idioms (particularly in their malloc 3291 // routines) that add a pointer-sized integer (known to be a pointer value) 3292 // to a null pointer in order to cast the value back to an integer or as 3293 // part of a pointer alignment algorithm. This is undefined behavior, but 3294 // we'd like to be able to compile programs that use it. 3295 // 3296 // Normally, we'd generate a GEP with a null-pointer base here in response 3297 // to that code, but it's also UB to dereference a pointer created that 3298 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3299 // generate a direct cast of the integer value to a pointer. 3300 // 3301 // The idiom (p = nullptr + N) is not met if any of the following are true: 3302 // 3303 // The operation is subtraction. 3304 // The index is not pointer-sized. 3305 // The pointer type is not byte-sized. 3306 // 3307 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3308 op.Opcode, 3309 expr->getLHS(), 3310 expr->getRHS())) 3311 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3312 3313 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3314 // Zero-extend or sign-extend the pointer value according to 3315 // whether the index is signed or not. 3316 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3317 "idx.ext"); 3318 } 3319 3320 // If this is subtraction, negate the index. 3321 if (isSubtraction) 3322 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3323 3324 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3325 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3326 /*Accessed*/ false); 3327 3328 const PointerType *pointerType 3329 = pointerOperand->getType()->getAs<PointerType>(); 3330 if (!pointerType) { 3331 QualType objectType = pointerOperand->getType() 3332 ->castAs<ObjCObjectPointerType>() 3333 ->getPointeeType(); 3334 llvm::Value *objectSize 3335 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3336 3337 index = CGF.Builder.CreateMul(index, objectSize); 3338 3339 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3340 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3341 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3342 } 3343 3344 QualType elementType = pointerType->getPointeeType(); 3345 if (const VariableArrayType *vla 3346 = CGF.getContext().getAsVariableArrayType(elementType)) { 3347 // The element count here is the total number of non-VLA elements. 3348 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3349 3350 // Effectively, the multiply by the VLA size is part of the GEP. 3351 // GEP indexes are signed, and scaling an index isn't permitted to 3352 // signed-overflow, so we use the same semantics for our explicit 3353 // multiply. We suppress this if overflow is not undefined behavior. 3354 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3355 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3356 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3357 } else { 3358 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3359 pointer = 3360 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3361 op.E->getExprLoc(), "add.ptr"); 3362 } 3363 return pointer; 3364 } 3365 3366 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3367 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3368 // future proof. 3369 if (elementType->isVoidType() || elementType->isFunctionType()) { 3370 Value *result = CGF.EmitCastToVoidPtr(pointer); 3371 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3372 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3373 } 3374 3375 if (CGF.getLangOpts().isSignedOverflowDefined()) 3376 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3377 3378 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3379 op.E->getExprLoc(), "add.ptr"); 3380 } 3381 3382 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3383 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3384 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3385 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3386 // efficient operations. 3387 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3388 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3389 bool negMul, bool negAdd) { 3390 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3391 3392 Value *MulOp0 = MulOp->getOperand(0); 3393 Value *MulOp1 = MulOp->getOperand(1); 3394 if (negMul) 3395 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3396 if (negAdd) 3397 Addend = Builder.CreateFNeg(Addend, "neg"); 3398 3399 Value *FMulAdd = nullptr; 3400 if (Builder.getIsFPConstrained()) { 3401 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3402 "Only constrained operation should be created when Builder is in FP " 3403 "constrained mode"); 3404 FMulAdd = Builder.CreateConstrainedFPCall( 3405 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3406 Addend->getType()), 3407 {MulOp0, MulOp1, Addend}); 3408 } else { 3409 FMulAdd = Builder.CreateCall( 3410 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3411 {MulOp0, MulOp1, Addend}); 3412 } 3413 MulOp->eraseFromParent(); 3414 3415 return FMulAdd; 3416 } 3417 3418 // Check whether it would be legal to emit an fmuladd intrinsic call to 3419 // represent op and if so, build the fmuladd. 3420 // 3421 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3422 // Does NOT check the type of the operation - it's assumed that this function 3423 // will be called from contexts where it's known that the type is contractable. 3424 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3425 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3426 bool isSub=false) { 3427 3428 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3429 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3430 "Only fadd/fsub can be the root of an fmuladd."); 3431 3432 // Check whether this op is marked as fusable. 3433 if (!op.FPFeatures.allowFPContractWithinStatement()) 3434 return nullptr; 3435 3436 // We have a potentially fusable op. Look for a mul on one of the operands. 3437 // Also, make sure that the mul result isn't used directly. In that case, 3438 // there's no point creating a muladd operation. 3439 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3440 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3441 LHSBinOp->use_empty()) 3442 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3443 } 3444 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3445 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3446 RHSBinOp->use_empty()) 3447 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3448 } 3449 3450 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3451 if (LHSBinOp->getIntrinsicID() == 3452 llvm::Intrinsic::experimental_constrained_fmul && 3453 LHSBinOp->use_empty()) 3454 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3455 } 3456 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3457 if (RHSBinOp->getIntrinsicID() == 3458 llvm::Intrinsic::experimental_constrained_fmul && 3459 RHSBinOp->use_empty()) 3460 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3461 } 3462 3463 return nullptr; 3464 } 3465 3466 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3467 if (op.LHS->getType()->isPointerTy() || 3468 op.RHS->getType()->isPointerTy()) 3469 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3470 3471 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3472 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3473 case LangOptions::SOB_Defined: 3474 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3475 case LangOptions::SOB_Undefined: 3476 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3477 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3478 LLVM_FALLTHROUGH; 3479 case LangOptions::SOB_Trapping: 3480 if (CanElideOverflowCheck(CGF.getContext(), op)) 3481 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3482 return EmitOverflowCheckedBinOp(op); 3483 } 3484 } 3485 3486 if (op.Ty->isConstantMatrixType()) { 3487 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3488 return MB.CreateAdd(op.LHS, op.RHS); 3489 } 3490 3491 if (op.Ty->isUnsignedIntegerType() && 3492 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3493 !CanElideOverflowCheck(CGF.getContext(), op)) 3494 return EmitOverflowCheckedBinOp(op); 3495 3496 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3497 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3498 // Try to form an fmuladd. 3499 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3500 return FMulAdd; 3501 3502 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3503 } 3504 3505 if (op.isFixedPointOp()) 3506 return EmitFixedPointBinOp(op); 3507 3508 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3509 } 3510 3511 /// The resulting value must be calculated with exact precision, so the operands 3512 /// may not be the same type. 3513 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3514 using llvm::APSInt; 3515 using llvm::ConstantInt; 3516 3517 // This is either a binary operation where at least one of the operands is 3518 // a fixed-point type, or a unary operation where the operand is a fixed-point 3519 // type. The result type of a binary operation is determined by 3520 // Sema::handleFixedPointConversions(). 3521 QualType ResultTy = op.Ty; 3522 QualType LHSTy, RHSTy; 3523 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3524 RHSTy = BinOp->getRHS()->getType(); 3525 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3526 // For compound assignment, the effective type of the LHS at this point 3527 // is the computation LHS type, not the actual LHS type, and the final 3528 // result type is not the type of the expression but rather the 3529 // computation result type. 3530 LHSTy = CAO->getComputationLHSType(); 3531 ResultTy = CAO->getComputationResultType(); 3532 } else 3533 LHSTy = BinOp->getLHS()->getType(); 3534 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3535 LHSTy = UnOp->getSubExpr()->getType(); 3536 RHSTy = UnOp->getSubExpr()->getType(); 3537 } 3538 ASTContext &Ctx = CGF.getContext(); 3539 Value *LHS = op.LHS; 3540 Value *RHS = op.RHS; 3541 3542 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3543 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3544 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3545 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3546 3547 // Perform the actual operation. 3548 Value *Result; 3549 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 3550 switch (op.Opcode) { 3551 case BO_AddAssign: 3552 case BO_Add: 3553 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); 3554 break; 3555 case BO_SubAssign: 3556 case BO_Sub: 3557 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); 3558 break; 3559 case BO_MulAssign: 3560 case BO_Mul: 3561 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); 3562 break; 3563 case BO_DivAssign: 3564 case BO_Div: 3565 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); 3566 break; 3567 case BO_ShlAssign: 3568 case BO_Shl: 3569 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); 3570 break; 3571 case BO_ShrAssign: 3572 case BO_Shr: 3573 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); 3574 break; 3575 case BO_LT: 3576 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3577 case BO_GT: 3578 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3579 case BO_LE: 3580 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3581 case BO_GE: 3582 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3583 case BO_EQ: 3584 // For equality operations, we assume any padding bits on unsigned types are 3585 // zero'd out. They could be overwritten through non-saturating operations 3586 // that cause overflow, but this leads to undefined behavior. 3587 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); 3588 case BO_NE: 3589 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3590 case BO_Cmp: 3591 case BO_LAnd: 3592 case BO_LOr: 3593 llvm_unreachable("Found unimplemented fixed point binary operation"); 3594 case BO_PtrMemD: 3595 case BO_PtrMemI: 3596 case BO_Rem: 3597 case BO_Xor: 3598 case BO_And: 3599 case BO_Or: 3600 case BO_Assign: 3601 case BO_RemAssign: 3602 case BO_AndAssign: 3603 case BO_XorAssign: 3604 case BO_OrAssign: 3605 case BO_Comma: 3606 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3607 } 3608 3609 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || 3610 BinaryOperator::isShiftAssignOp(op.Opcode); 3611 // Convert to the result type. 3612 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema 3613 : CommonFixedSema, 3614 ResultFixedSema); 3615 } 3616 3617 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3618 // The LHS is always a pointer if either side is. 3619 if (!op.LHS->getType()->isPointerTy()) { 3620 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3621 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3622 case LangOptions::SOB_Defined: 3623 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3624 case LangOptions::SOB_Undefined: 3625 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3626 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3627 LLVM_FALLTHROUGH; 3628 case LangOptions::SOB_Trapping: 3629 if (CanElideOverflowCheck(CGF.getContext(), op)) 3630 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3631 return EmitOverflowCheckedBinOp(op); 3632 } 3633 } 3634 3635 if (op.Ty->isConstantMatrixType()) { 3636 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3637 return MB.CreateSub(op.LHS, op.RHS); 3638 } 3639 3640 if (op.Ty->isUnsignedIntegerType() && 3641 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3642 !CanElideOverflowCheck(CGF.getContext(), op)) 3643 return EmitOverflowCheckedBinOp(op); 3644 3645 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3646 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3647 // Try to form an fmuladd. 3648 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3649 return FMulAdd; 3650 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3651 } 3652 3653 if (op.isFixedPointOp()) 3654 return EmitFixedPointBinOp(op); 3655 3656 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3657 } 3658 3659 // If the RHS is not a pointer, then we have normal pointer 3660 // arithmetic. 3661 if (!op.RHS->getType()->isPointerTy()) 3662 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3663 3664 // Otherwise, this is a pointer subtraction. 3665 3666 // Do the raw subtraction part. 3667 llvm::Value *LHS 3668 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3669 llvm::Value *RHS 3670 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3671 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3672 3673 // Okay, figure out the element size. 3674 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3675 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3676 3677 llvm::Value *divisor = nullptr; 3678 3679 // For a variable-length array, this is going to be non-constant. 3680 if (const VariableArrayType *vla 3681 = CGF.getContext().getAsVariableArrayType(elementType)) { 3682 auto VlaSize = CGF.getVLASize(vla); 3683 elementType = VlaSize.Type; 3684 divisor = VlaSize.NumElts; 3685 3686 // Scale the number of non-VLA elements by the non-VLA element size. 3687 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3688 if (!eltSize.isOne()) 3689 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3690 3691 // For everything elese, we can just compute it, safe in the 3692 // assumption that Sema won't let anything through that we can't 3693 // safely compute the size of. 3694 } else { 3695 CharUnits elementSize; 3696 // Handle GCC extension for pointer arithmetic on void* and 3697 // function pointer types. 3698 if (elementType->isVoidType() || elementType->isFunctionType()) 3699 elementSize = CharUnits::One(); 3700 else 3701 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3702 3703 // Don't even emit the divide for element size of 1. 3704 if (elementSize.isOne()) 3705 return diffInChars; 3706 3707 divisor = CGF.CGM.getSize(elementSize); 3708 } 3709 3710 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3711 // pointer difference in C is only defined in the case where both operands 3712 // are pointing to elements of an array. 3713 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3714 } 3715 3716 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3717 llvm::IntegerType *Ty; 3718 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3719 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3720 else 3721 Ty = cast<llvm::IntegerType>(LHS->getType()); 3722 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3723 } 3724 3725 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 3726 const Twine &Name) { 3727 llvm::IntegerType *Ty; 3728 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3729 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3730 else 3731 Ty = cast<llvm::IntegerType>(LHS->getType()); 3732 3733 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 3734 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 3735 3736 return Builder.CreateURem( 3737 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 3738 } 3739 3740 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3741 // TODO: This misses out on the sanitizer check below. 3742 if (Ops.isFixedPointOp()) 3743 return EmitFixedPointBinOp(Ops); 3744 3745 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3746 // RHS to the same size as the LHS. 3747 Value *RHS = Ops.RHS; 3748 if (Ops.LHS->getType() != RHS->getType()) 3749 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3750 3751 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3752 Ops.Ty->hasSignedIntegerRepresentation() && 3753 !CGF.getLangOpts().isSignedOverflowDefined() && 3754 !CGF.getLangOpts().CPlusPlus20; 3755 bool SanitizeUnsignedBase = 3756 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && 3757 Ops.Ty->hasUnsignedIntegerRepresentation(); 3758 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; 3759 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3760 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3761 if (CGF.getLangOpts().OpenCL) 3762 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 3763 else if ((SanitizeBase || SanitizeExponent) && 3764 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3765 CodeGenFunction::SanitizerScope SanScope(&CGF); 3766 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3767 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3768 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3769 3770 if (SanitizeExponent) { 3771 Checks.push_back( 3772 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3773 } 3774 3775 if (SanitizeBase) { 3776 // Check whether we are shifting any non-zero bits off the top of the 3777 // integer. We only emit this check if exponent is valid - otherwise 3778 // instructions below will have undefined behavior themselves. 3779 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3780 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3781 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3782 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3783 llvm::Value *PromotedWidthMinusOne = 3784 (RHS == Ops.RHS) ? WidthMinusOne 3785 : GetWidthMinusOneValue(Ops.LHS, RHS); 3786 CGF.EmitBlock(CheckShiftBase); 3787 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3788 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3789 /*NUW*/ true, /*NSW*/ true), 3790 "shl.check"); 3791 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { 3792 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3793 // Under C++11's rules, shifting a 1 bit into the sign bit is 3794 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3795 // define signed left shifts, so we use the C99 and C++11 rules there). 3796 // Unsigned shifts can always shift into the top bit. 3797 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3798 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3799 } 3800 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3801 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3802 CGF.EmitBlock(Cont); 3803 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3804 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3805 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3806 Checks.push_back(std::make_pair( 3807 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase 3808 : SanitizerKind::UnsignedShiftBase)); 3809 } 3810 3811 assert(!Checks.empty()); 3812 EmitBinOpCheck(Checks, Ops); 3813 } 3814 3815 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3816 } 3817 3818 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3819 // TODO: This misses out on the sanitizer check below. 3820 if (Ops.isFixedPointOp()) 3821 return EmitFixedPointBinOp(Ops); 3822 3823 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3824 // RHS to the same size as the LHS. 3825 Value *RHS = Ops.RHS; 3826 if (Ops.LHS->getType() != RHS->getType()) 3827 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3828 3829 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3830 if (CGF.getLangOpts().OpenCL) 3831 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 3832 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3833 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3834 CodeGenFunction::SanitizerScope SanScope(&CGF); 3835 llvm::Value *Valid = 3836 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3837 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3838 } 3839 3840 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3841 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3842 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3843 } 3844 3845 enum IntrinsicType { VCMPEQ, VCMPGT }; 3846 // return corresponding comparison intrinsic for given vector type 3847 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3848 BuiltinType::Kind ElemKind) { 3849 switch (ElemKind) { 3850 default: llvm_unreachable("unexpected element type"); 3851 case BuiltinType::Char_U: 3852 case BuiltinType::UChar: 3853 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3854 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3855 case BuiltinType::Char_S: 3856 case BuiltinType::SChar: 3857 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3858 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3859 case BuiltinType::UShort: 3860 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3861 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3862 case BuiltinType::Short: 3863 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3864 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3865 case BuiltinType::UInt: 3866 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3867 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3868 case BuiltinType::Int: 3869 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3870 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3871 case BuiltinType::ULong: 3872 case BuiltinType::ULongLong: 3873 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3874 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3875 case BuiltinType::Long: 3876 case BuiltinType::LongLong: 3877 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3878 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3879 case BuiltinType::Float: 3880 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3881 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3882 case BuiltinType::Double: 3883 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3884 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3885 case BuiltinType::UInt128: 3886 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 3887 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; 3888 case BuiltinType::Int128: 3889 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 3890 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; 3891 } 3892 } 3893 3894 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3895 llvm::CmpInst::Predicate UICmpOpc, 3896 llvm::CmpInst::Predicate SICmpOpc, 3897 llvm::CmpInst::Predicate FCmpOpc, 3898 bool IsSignaling) { 3899 TestAndClearIgnoreResultAssign(); 3900 Value *Result; 3901 QualType LHSTy = E->getLHS()->getType(); 3902 QualType RHSTy = E->getRHS()->getType(); 3903 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3904 assert(E->getOpcode() == BO_EQ || 3905 E->getOpcode() == BO_NE); 3906 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3907 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3908 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3909 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3910 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3911 BinOpInfo BOInfo = EmitBinOps(E); 3912 Value *LHS = BOInfo.LHS; 3913 Value *RHS = BOInfo.RHS; 3914 3915 // If AltiVec, the comparison results in a numeric type, so we use 3916 // intrinsics comparing vectors and giving 0 or 1 as a result 3917 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3918 // constants for mapping CR6 register bits to predicate result 3919 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3920 3921 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3922 3923 // in several cases vector arguments order will be reversed 3924 Value *FirstVecArg = LHS, 3925 *SecondVecArg = RHS; 3926 3927 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3928 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 3929 3930 switch(E->getOpcode()) { 3931 default: llvm_unreachable("is not a comparison operation"); 3932 case BO_EQ: 3933 CR6 = CR6_LT; 3934 ID = GetIntrinsic(VCMPEQ, ElementKind); 3935 break; 3936 case BO_NE: 3937 CR6 = CR6_EQ; 3938 ID = GetIntrinsic(VCMPEQ, ElementKind); 3939 break; 3940 case BO_LT: 3941 CR6 = CR6_LT; 3942 ID = GetIntrinsic(VCMPGT, ElementKind); 3943 std::swap(FirstVecArg, SecondVecArg); 3944 break; 3945 case BO_GT: 3946 CR6 = CR6_LT; 3947 ID = GetIntrinsic(VCMPGT, ElementKind); 3948 break; 3949 case BO_LE: 3950 if (ElementKind == BuiltinType::Float) { 3951 CR6 = CR6_LT; 3952 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3953 std::swap(FirstVecArg, SecondVecArg); 3954 } 3955 else { 3956 CR6 = CR6_EQ; 3957 ID = GetIntrinsic(VCMPGT, ElementKind); 3958 } 3959 break; 3960 case BO_GE: 3961 if (ElementKind == BuiltinType::Float) { 3962 CR6 = CR6_LT; 3963 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3964 } 3965 else { 3966 CR6 = CR6_EQ; 3967 ID = GetIntrinsic(VCMPGT, ElementKind); 3968 std::swap(FirstVecArg, SecondVecArg); 3969 } 3970 break; 3971 } 3972 3973 Value *CR6Param = Builder.getInt32(CR6); 3974 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3975 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3976 3977 // The result type of intrinsic may not be same as E->getType(). 3978 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3979 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3980 // do nothing, if ResultTy is not i1 at the same time, it will cause 3981 // crash later. 3982 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3983 if (ResultTy->getBitWidth() > 1 && 3984 E->getType() == CGF.getContext().BoolTy) 3985 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3986 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3987 E->getExprLoc()); 3988 } 3989 3990 if (BOInfo.isFixedPointOp()) { 3991 Result = EmitFixedPointBinOp(BOInfo); 3992 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3993 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 3994 if (!IsSignaling) 3995 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3996 else 3997 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 3998 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3999 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4000 } else { 4001 // Unsigned integers and pointers. 4002 4003 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4004 !isa<llvm::ConstantPointerNull>(LHS) && 4005 !isa<llvm::ConstantPointerNull>(RHS)) { 4006 4007 // Dynamic information is required to be stripped for comparisons, 4008 // because it could leak the dynamic information. Based on comparisons 4009 // of pointers to dynamic objects, the optimizer can replace one pointer 4010 // with another, which might be incorrect in presence of invariant 4011 // groups. Comparison with null is safe because null does not carry any 4012 // dynamic information. 4013 if (LHSTy.mayBeDynamicClass()) 4014 LHS = Builder.CreateStripInvariantGroup(LHS); 4015 if (RHSTy.mayBeDynamicClass()) 4016 RHS = Builder.CreateStripInvariantGroup(RHS); 4017 } 4018 4019 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4020 } 4021 4022 // If this is a vector comparison, sign extend the result to the appropriate 4023 // vector integer type and return it (don't convert to bool). 4024 if (LHSTy->isVectorType()) 4025 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4026 4027 } else { 4028 // Complex Comparison: can only be an equality comparison. 4029 CodeGenFunction::ComplexPairTy LHS, RHS; 4030 QualType CETy; 4031 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4032 LHS = CGF.EmitComplexExpr(E->getLHS()); 4033 CETy = CTy->getElementType(); 4034 } else { 4035 LHS.first = Visit(E->getLHS()); 4036 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4037 CETy = LHSTy; 4038 } 4039 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4040 RHS = CGF.EmitComplexExpr(E->getRHS()); 4041 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4042 CTy->getElementType()) && 4043 "The element types must always match."); 4044 (void)CTy; 4045 } else { 4046 RHS.first = Visit(E->getRHS()); 4047 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4048 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4049 "The element types must always match."); 4050 } 4051 4052 Value *ResultR, *ResultI; 4053 if (CETy->isRealFloatingType()) { 4054 // As complex comparisons can only be equality comparisons, they 4055 // are never signaling comparisons. 4056 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4057 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4058 } else { 4059 // Complex comparisons can only be equality comparisons. As such, signed 4060 // and unsigned opcodes are the same. 4061 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4062 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4063 } 4064 4065 if (E->getOpcode() == BO_EQ) { 4066 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4067 } else { 4068 assert(E->getOpcode() == BO_NE && 4069 "Complex comparison other than == or != ?"); 4070 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4071 } 4072 } 4073 4074 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4075 E->getExprLoc()); 4076 } 4077 4078 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4079 bool Ignore = TestAndClearIgnoreResultAssign(); 4080 4081 Value *RHS; 4082 LValue LHS; 4083 4084 switch (E->getLHS()->getType().getObjCLifetime()) { 4085 case Qualifiers::OCL_Strong: 4086 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4087 break; 4088 4089 case Qualifiers::OCL_Autoreleasing: 4090 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4091 break; 4092 4093 case Qualifiers::OCL_ExplicitNone: 4094 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4095 break; 4096 4097 case Qualifiers::OCL_Weak: 4098 RHS = Visit(E->getRHS()); 4099 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4100 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4101 break; 4102 4103 case Qualifiers::OCL_None: 4104 // __block variables need to have the rhs evaluated first, plus 4105 // this should improve codegen just a little. 4106 RHS = Visit(E->getRHS()); 4107 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4108 4109 // Store the value into the LHS. Bit-fields are handled specially 4110 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4111 // 'An assignment expression has the value of the left operand after 4112 // the assignment...'. 4113 if (LHS.isBitField()) { 4114 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4115 } else { 4116 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4117 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4118 } 4119 } 4120 4121 // If the result is clearly ignored, return now. 4122 if (Ignore) 4123 return nullptr; 4124 4125 // The result of an assignment in C is the assigned r-value. 4126 if (!CGF.getLangOpts().CPlusPlus) 4127 return RHS; 4128 4129 // If the lvalue is non-volatile, return the computed value of the assignment. 4130 if (!LHS.isVolatileQualified()) 4131 return RHS; 4132 4133 // Otherwise, reload the value. 4134 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4135 } 4136 4137 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4138 // Perform vector logical and on comparisons with zero vectors. 4139 if (E->getType()->isVectorType()) { 4140 CGF.incrementProfileCounter(E); 4141 4142 Value *LHS = Visit(E->getLHS()); 4143 Value *RHS = Visit(E->getRHS()); 4144 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4145 if (LHS->getType()->isFPOrFPVectorTy()) { 4146 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4147 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4148 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4149 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4150 } else { 4151 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4152 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4153 } 4154 Value *And = Builder.CreateAnd(LHS, RHS); 4155 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4156 } 4157 4158 llvm::Type *ResTy = ConvertType(E->getType()); 4159 4160 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4161 // If we have 1 && X, just emit X without inserting the control flow. 4162 bool LHSCondVal; 4163 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4164 if (LHSCondVal) { // If we have 1 && X, just emit X. 4165 CGF.incrementProfileCounter(E); 4166 4167 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4168 // ZExt result to int or bool. 4169 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4170 } 4171 4172 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4173 if (!CGF.ContainsLabel(E->getRHS())) 4174 return llvm::Constant::getNullValue(ResTy); 4175 } 4176 4177 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4178 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4179 4180 CodeGenFunction::ConditionalEvaluation eval(CGF); 4181 4182 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4183 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4184 CGF.getProfileCount(E->getRHS())); 4185 4186 // Any edges into the ContBlock are now from an (indeterminate number of) 4187 // edges from this first condition. All of these values will be false. Start 4188 // setting up the PHI node in the Cont Block for this. 4189 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4190 "", ContBlock); 4191 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4192 PI != PE; ++PI) 4193 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4194 4195 eval.begin(CGF); 4196 CGF.EmitBlock(RHSBlock); 4197 CGF.incrementProfileCounter(E); 4198 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4199 eval.end(CGF); 4200 4201 // Reaquire the RHS block, as there may be subblocks inserted. 4202 RHSBlock = Builder.GetInsertBlock(); 4203 4204 // Emit an unconditional branch from this block to ContBlock. 4205 { 4206 // There is no need to emit line number for unconditional branch. 4207 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4208 CGF.EmitBlock(ContBlock); 4209 } 4210 // Insert an entry into the phi node for the edge with the value of RHSCond. 4211 PN->addIncoming(RHSCond, RHSBlock); 4212 4213 // Artificial location to preserve the scope information 4214 { 4215 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4216 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4217 } 4218 4219 // ZExt result to int. 4220 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4221 } 4222 4223 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4224 // Perform vector logical or on comparisons with zero vectors. 4225 if (E->getType()->isVectorType()) { 4226 CGF.incrementProfileCounter(E); 4227 4228 Value *LHS = Visit(E->getLHS()); 4229 Value *RHS = Visit(E->getRHS()); 4230 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4231 if (LHS->getType()->isFPOrFPVectorTy()) { 4232 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4233 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4234 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4235 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4236 } else { 4237 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4238 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4239 } 4240 Value *Or = Builder.CreateOr(LHS, RHS); 4241 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4242 } 4243 4244 llvm::Type *ResTy = ConvertType(E->getType()); 4245 4246 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4247 // If we have 0 || X, just emit X without inserting the control flow. 4248 bool LHSCondVal; 4249 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4250 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4251 CGF.incrementProfileCounter(E); 4252 4253 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4254 // ZExt result to int or bool. 4255 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4256 } 4257 4258 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4259 if (!CGF.ContainsLabel(E->getRHS())) 4260 return llvm::ConstantInt::get(ResTy, 1); 4261 } 4262 4263 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4264 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4265 4266 CodeGenFunction::ConditionalEvaluation eval(CGF); 4267 4268 // Branch on the LHS first. If it is true, go to the success (cont) block. 4269 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4270 CGF.getCurrentProfileCount() - 4271 CGF.getProfileCount(E->getRHS())); 4272 4273 // Any edges into the ContBlock are now from an (indeterminate number of) 4274 // edges from this first condition. All of these values will be true. Start 4275 // setting up the PHI node in the Cont Block for this. 4276 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4277 "", ContBlock); 4278 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4279 PI != PE; ++PI) 4280 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4281 4282 eval.begin(CGF); 4283 4284 // Emit the RHS condition as a bool value. 4285 CGF.EmitBlock(RHSBlock); 4286 CGF.incrementProfileCounter(E); 4287 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4288 4289 eval.end(CGF); 4290 4291 // Reaquire the RHS block, as there may be subblocks inserted. 4292 RHSBlock = Builder.GetInsertBlock(); 4293 4294 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4295 // into the phi node for the edge with the value of RHSCond. 4296 CGF.EmitBlock(ContBlock); 4297 PN->addIncoming(RHSCond, RHSBlock); 4298 4299 // ZExt result to int. 4300 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4301 } 4302 4303 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4304 CGF.EmitIgnoredExpr(E->getLHS()); 4305 CGF.EnsureInsertPoint(); 4306 return Visit(E->getRHS()); 4307 } 4308 4309 //===----------------------------------------------------------------------===// 4310 // Other Operators 4311 //===----------------------------------------------------------------------===// 4312 4313 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4314 /// expression is cheap enough and side-effect-free enough to evaluate 4315 /// unconditionally instead of conditionally. This is used to convert control 4316 /// flow into selects in some cases. 4317 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4318 CodeGenFunction &CGF) { 4319 // Anything that is an integer or floating point constant is fine. 4320 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4321 4322 // Even non-volatile automatic variables can't be evaluated unconditionally. 4323 // Referencing a thread_local may cause non-trivial initialization work to 4324 // occur. If we're inside a lambda and one of the variables is from the scope 4325 // outside the lambda, that function may have returned already. Reading its 4326 // locals is a bad idea. Also, these reads may introduce races there didn't 4327 // exist in the source-level program. 4328 } 4329 4330 4331 Value *ScalarExprEmitter:: 4332 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4333 TestAndClearIgnoreResultAssign(); 4334 4335 // Bind the common expression if necessary. 4336 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4337 4338 Expr *condExpr = E->getCond(); 4339 Expr *lhsExpr = E->getTrueExpr(); 4340 Expr *rhsExpr = E->getFalseExpr(); 4341 4342 // If the condition constant folds and can be elided, try to avoid emitting 4343 // the condition and the dead arm. 4344 bool CondExprBool; 4345 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4346 Expr *live = lhsExpr, *dead = rhsExpr; 4347 if (!CondExprBool) std::swap(live, dead); 4348 4349 // If the dead side doesn't have labels we need, just emit the Live part. 4350 if (!CGF.ContainsLabel(dead)) { 4351 if (CondExprBool) 4352 CGF.incrementProfileCounter(E); 4353 Value *Result = Visit(live); 4354 4355 // If the live part is a throw expression, it acts like it has a void 4356 // type, so evaluating it returns a null Value*. However, a conditional 4357 // with non-void type must return a non-null Value*. 4358 if (!Result && !E->getType()->isVoidType()) 4359 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4360 4361 return Result; 4362 } 4363 } 4364 4365 // OpenCL: If the condition is a vector, we can treat this condition like 4366 // the select function. 4367 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4368 condExpr->getType()->isExtVectorType()) { 4369 CGF.incrementProfileCounter(E); 4370 4371 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4372 llvm::Value *LHS = Visit(lhsExpr); 4373 llvm::Value *RHS = Visit(rhsExpr); 4374 4375 llvm::Type *condType = ConvertType(condExpr->getType()); 4376 auto *vecTy = cast<llvm::FixedVectorType>(condType); 4377 4378 unsigned numElem = vecTy->getNumElements(); 4379 llvm::Type *elemType = vecTy->getElementType(); 4380 4381 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4382 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4383 llvm::Value *tmp = Builder.CreateSExt( 4384 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4385 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4386 4387 // Cast float to int to perform ANDs if necessary. 4388 llvm::Value *RHSTmp = RHS; 4389 llvm::Value *LHSTmp = LHS; 4390 bool wasCast = false; 4391 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4392 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4393 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4394 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4395 wasCast = true; 4396 } 4397 4398 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4399 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4400 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4401 if (wasCast) 4402 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4403 4404 return tmp5; 4405 } 4406 4407 if (condExpr->getType()->isVectorType()) { 4408 CGF.incrementProfileCounter(E); 4409 4410 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4411 llvm::Value *LHS = Visit(lhsExpr); 4412 llvm::Value *RHS = Visit(rhsExpr); 4413 4414 llvm::Type *CondType = ConvertType(condExpr->getType()); 4415 auto *VecTy = cast<llvm::VectorType>(CondType); 4416 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4417 4418 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4419 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4420 } 4421 4422 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4423 // select instead of as control flow. We can only do this if it is cheap and 4424 // safe to evaluate the LHS and RHS unconditionally. 4425 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4426 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4427 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4428 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4429 4430 CGF.incrementProfileCounter(E, StepV); 4431 4432 llvm::Value *LHS = Visit(lhsExpr); 4433 llvm::Value *RHS = Visit(rhsExpr); 4434 if (!LHS) { 4435 // If the conditional has void type, make sure we return a null Value*. 4436 assert(!RHS && "LHS and RHS types must match"); 4437 return nullptr; 4438 } 4439 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4440 } 4441 4442 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4443 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4444 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4445 4446 CodeGenFunction::ConditionalEvaluation eval(CGF); 4447 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4448 CGF.getProfileCount(lhsExpr)); 4449 4450 CGF.EmitBlock(LHSBlock); 4451 CGF.incrementProfileCounter(E); 4452 eval.begin(CGF); 4453 Value *LHS = Visit(lhsExpr); 4454 eval.end(CGF); 4455 4456 LHSBlock = Builder.GetInsertBlock(); 4457 Builder.CreateBr(ContBlock); 4458 4459 CGF.EmitBlock(RHSBlock); 4460 eval.begin(CGF); 4461 Value *RHS = Visit(rhsExpr); 4462 eval.end(CGF); 4463 4464 RHSBlock = Builder.GetInsertBlock(); 4465 CGF.EmitBlock(ContBlock); 4466 4467 // If the LHS or RHS is a throw expression, it will be legitimately null. 4468 if (!LHS) 4469 return RHS; 4470 if (!RHS) 4471 return LHS; 4472 4473 // Create a PHI node for the real part. 4474 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4475 PN->addIncoming(LHS, LHSBlock); 4476 PN->addIncoming(RHS, RHSBlock); 4477 return PN; 4478 } 4479 4480 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4481 return Visit(E->getChosenSubExpr()); 4482 } 4483 4484 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4485 QualType Ty = VE->getType(); 4486 4487 if (Ty->isVariablyModifiedType()) 4488 CGF.EmitVariablyModifiedType(Ty); 4489 4490 Address ArgValue = Address::invalid(); 4491 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4492 4493 llvm::Type *ArgTy = ConvertType(VE->getType()); 4494 4495 // If EmitVAArg fails, emit an error. 4496 if (!ArgPtr.isValid()) { 4497 CGF.ErrorUnsupported(VE, "va_arg expression"); 4498 return llvm::UndefValue::get(ArgTy); 4499 } 4500 4501 // FIXME Volatility. 4502 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4503 4504 // If EmitVAArg promoted the type, we must truncate it. 4505 if (ArgTy != Val->getType()) { 4506 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4507 Val = Builder.CreateIntToPtr(Val, ArgTy); 4508 else 4509 Val = Builder.CreateTrunc(Val, ArgTy); 4510 } 4511 4512 return Val; 4513 } 4514 4515 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4516 return CGF.EmitBlockLiteral(block); 4517 } 4518 4519 // Convert a vec3 to vec4, or vice versa. 4520 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4521 Value *Src, unsigned NumElementsDst) { 4522 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4523 static constexpr int Mask[] = {0, 1, 2, -1}; 4524 return Builder.CreateShuffleVector(Src, UnV, 4525 llvm::makeArrayRef(Mask, NumElementsDst)); 4526 } 4527 4528 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4529 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4530 // but could be scalar or vectors of different lengths, and either can be 4531 // pointer. 4532 // There are 4 cases: 4533 // 1. non-pointer -> non-pointer : needs 1 bitcast 4534 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4535 // 3. pointer -> non-pointer 4536 // a) pointer -> intptr_t : needs 1 ptrtoint 4537 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4538 // 4. non-pointer -> pointer 4539 // a) intptr_t -> pointer : needs 1 inttoptr 4540 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4541 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4542 // allow casting directly between pointer types and non-integer non-pointer 4543 // types. 4544 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4545 const llvm::DataLayout &DL, 4546 Value *Src, llvm::Type *DstTy, 4547 StringRef Name = "") { 4548 auto SrcTy = Src->getType(); 4549 4550 // Case 1. 4551 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4552 return Builder.CreateBitCast(Src, DstTy, Name); 4553 4554 // Case 2. 4555 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4556 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4557 4558 // Case 3. 4559 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4560 // Case 3b. 4561 if (!DstTy->isIntegerTy()) 4562 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4563 // Cases 3a and 3b. 4564 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4565 } 4566 4567 // Case 4b. 4568 if (!SrcTy->isIntegerTy()) 4569 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4570 // Cases 4a and 4b. 4571 return Builder.CreateIntToPtr(Src, DstTy, Name); 4572 } 4573 4574 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4575 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4576 llvm::Type *DstTy = ConvertType(E->getType()); 4577 4578 llvm::Type *SrcTy = Src->getType(); 4579 unsigned NumElementsSrc = 4580 isa<llvm::VectorType>(SrcTy) 4581 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() 4582 : 0; 4583 unsigned NumElementsDst = 4584 isa<llvm::VectorType>(DstTy) 4585 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() 4586 : 0; 4587 4588 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4589 // vector to get a vec4, then a bitcast if the target type is different. 4590 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4591 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4592 4593 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4594 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4595 DstTy); 4596 } 4597 4598 Src->setName("astype"); 4599 return Src; 4600 } 4601 4602 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4603 // to vec4 if the original type is not vec4, then a shuffle vector to 4604 // get a vec3. 4605 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4606 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4607 auto *Vec4Ty = llvm::FixedVectorType::get( 4608 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4609 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4610 Vec4Ty); 4611 } 4612 4613 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4614 Src->setName("astype"); 4615 return Src; 4616 } 4617 4618 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4619 Src, DstTy, "astype"); 4620 } 4621 4622 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4623 return CGF.EmitAtomicExpr(E).getScalarVal(); 4624 } 4625 4626 //===----------------------------------------------------------------------===// 4627 // Entry Point into this File 4628 //===----------------------------------------------------------------------===// 4629 4630 /// Emit the computation of the specified expression of scalar type, ignoring 4631 /// the result. 4632 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4633 assert(E && hasScalarEvaluationKind(E->getType()) && 4634 "Invalid scalar expression to emit"); 4635 4636 return ScalarExprEmitter(*this, IgnoreResultAssign) 4637 .Visit(const_cast<Expr *>(E)); 4638 } 4639 4640 /// Emit a conversion from the specified type to the specified destination type, 4641 /// both of which are LLVM scalar types. 4642 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4643 QualType DstTy, 4644 SourceLocation Loc) { 4645 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4646 "Invalid scalar expression to emit"); 4647 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4648 } 4649 4650 /// Emit a conversion from the specified complex type to the specified 4651 /// destination type, where the destination type is an LLVM scalar type. 4652 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4653 QualType SrcTy, 4654 QualType DstTy, 4655 SourceLocation Loc) { 4656 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4657 "Invalid complex -> scalar conversion"); 4658 return ScalarExprEmitter(*this) 4659 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4660 } 4661 4662 4663 llvm::Value *CodeGenFunction:: 4664 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4665 bool isInc, bool isPre) { 4666 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4667 } 4668 4669 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4670 // object->isa or (*object).isa 4671 // Generate code as for: *(Class*)object 4672 4673 Expr *BaseExpr = E->getBase(); 4674 Address Addr = Address::invalid(); 4675 if (BaseExpr->isRValue()) { 4676 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4677 } else { 4678 Addr = EmitLValue(BaseExpr).getAddress(*this); 4679 } 4680 4681 // Cast the address to Class*. 4682 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4683 return MakeAddrLValue(Addr, E->getType()); 4684 } 4685 4686 4687 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4688 const CompoundAssignOperator *E) { 4689 ScalarExprEmitter Scalar(*this); 4690 Value *Result = nullptr; 4691 switch (E->getOpcode()) { 4692 #define COMPOUND_OP(Op) \ 4693 case BO_##Op##Assign: \ 4694 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4695 Result) 4696 COMPOUND_OP(Mul); 4697 COMPOUND_OP(Div); 4698 COMPOUND_OP(Rem); 4699 COMPOUND_OP(Add); 4700 COMPOUND_OP(Sub); 4701 COMPOUND_OP(Shl); 4702 COMPOUND_OP(Shr); 4703 COMPOUND_OP(And); 4704 COMPOUND_OP(Xor); 4705 COMPOUND_OP(Or); 4706 #undef COMPOUND_OP 4707 4708 case BO_PtrMemD: 4709 case BO_PtrMemI: 4710 case BO_Mul: 4711 case BO_Div: 4712 case BO_Rem: 4713 case BO_Add: 4714 case BO_Sub: 4715 case BO_Shl: 4716 case BO_Shr: 4717 case BO_LT: 4718 case BO_GT: 4719 case BO_LE: 4720 case BO_GE: 4721 case BO_EQ: 4722 case BO_NE: 4723 case BO_Cmp: 4724 case BO_And: 4725 case BO_Xor: 4726 case BO_Or: 4727 case BO_LAnd: 4728 case BO_LOr: 4729 case BO_Assign: 4730 case BO_Comma: 4731 llvm_unreachable("Not valid compound assignment operators"); 4732 } 4733 4734 llvm_unreachable("Unhandled compound assignment operator"); 4735 } 4736 4737 struct GEPOffsetAndOverflow { 4738 // The total (signed) byte offset for the GEP. 4739 llvm::Value *TotalOffset; 4740 // The offset overflow flag - true if the total offset overflows. 4741 llvm::Value *OffsetOverflows; 4742 }; 4743 4744 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4745 /// and compute the total offset it applies from it's base pointer BasePtr. 4746 /// Returns offset in bytes and a boolean flag whether an overflow happened 4747 /// during evaluation. 4748 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4749 llvm::LLVMContext &VMContext, 4750 CodeGenModule &CGM, 4751 CGBuilderTy &Builder) { 4752 const auto &DL = CGM.getDataLayout(); 4753 4754 // The total (signed) byte offset for the GEP. 4755 llvm::Value *TotalOffset = nullptr; 4756 4757 // Was the GEP already reduced to a constant? 4758 if (isa<llvm::Constant>(GEPVal)) { 4759 // Compute the offset by casting both pointers to integers and subtracting: 4760 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4761 Value *BasePtr_int = 4762 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4763 Value *GEPVal_int = 4764 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4765 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4766 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4767 } 4768 4769 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4770 assert(GEP->getPointerOperand() == BasePtr && 4771 "BasePtr must be the the base of the GEP."); 4772 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4773 4774 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4775 4776 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4777 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4778 auto *SAddIntrinsic = 4779 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4780 auto *SMulIntrinsic = 4781 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4782 4783 // The offset overflow flag - true if the total offset overflows. 4784 llvm::Value *OffsetOverflows = Builder.getFalse(); 4785 4786 /// Return the result of the given binary operation. 4787 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4788 llvm::Value *RHS) -> llvm::Value * { 4789 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4790 4791 // If the operands are constants, return a constant result. 4792 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4793 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4794 llvm::APInt N; 4795 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4796 /*Signed=*/true, N); 4797 if (HasOverflow) 4798 OffsetOverflows = Builder.getTrue(); 4799 return llvm::ConstantInt::get(VMContext, N); 4800 } 4801 } 4802 4803 // Otherwise, compute the result with checked arithmetic. 4804 auto *ResultAndOverflow = Builder.CreateCall( 4805 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4806 OffsetOverflows = Builder.CreateOr( 4807 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4808 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4809 }; 4810 4811 // Determine the total byte offset by looking at each GEP operand. 4812 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4813 GTI != GTE; ++GTI) { 4814 llvm::Value *LocalOffset; 4815 auto *Index = GTI.getOperand(); 4816 // Compute the local offset contributed by this indexing step: 4817 if (auto *STy = GTI.getStructTypeOrNull()) { 4818 // For struct indexing, the local offset is the byte position of the 4819 // specified field. 4820 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4821 LocalOffset = llvm::ConstantInt::get( 4822 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4823 } else { 4824 // Otherwise this is array-like indexing. The local offset is the index 4825 // multiplied by the element size. 4826 auto *ElementSize = llvm::ConstantInt::get( 4827 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4828 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4829 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4830 } 4831 4832 // If this is the first offset, set it as the total offset. Otherwise, add 4833 // the local offset into the running total. 4834 if (!TotalOffset || TotalOffset == Zero) 4835 TotalOffset = LocalOffset; 4836 else 4837 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4838 } 4839 4840 return {TotalOffset, OffsetOverflows}; 4841 } 4842 4843 Value * 4844 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4845 bool SignedIndices, bool IsSubtraction, 4846 SourceLocation Loc, const Twine &Name) { 4847 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4848 4849 // If the pointer overflow sanitizer isn't enabled, do nothing. 4850 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4851 return GEPVal; 4852 4853 llvm::Type *PtrTy = Ptr->getType(); 4854 4855 // Perform nullptr-and-offset check unless the nullptr is defined. 4856 bool PerformNullCheck = !NullPointerIsDefined( 4857 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4858 // Check for overflows unless the GEP got constant-folded, 4859 // and only in the default address space 4860 bool PerformOverflowCheck = 4861 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4862 4863 if (!(PerformNullCheck || PerformOverflowCheck)) 4864 return GEPVal; 4865 4866 const auto &DL = CGM.getDataLayout(); 4867 4868 SanitizerScope SanScope(this); 4869 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4870 4871 GEPOffsetAndOverflow EvaluatedGEP = 4872 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4873 4874 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4875 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4876 "If the offset got constant-folded, we don't expect that there was an " 4877 "overflow."); 4878 4879 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4880 4881 // Common case: if the total offset is zero, and we are using C++ semantics, 4882 // where nullptr+0 is defined, don't emit a check. 4883 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4884 return GEPVal; 4885 4886 // Now that we've computed the total offset, add it to the base pointer (with 4887 // wrapping semantics). 4888 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4889 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4890 4891 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4892 4893 if (PerformNullCheck) { 4894 // In C++, if the base pointer evaluates to a null pointer value, 4895 // the only valid pointer this inbounds GEP can produce is also 4896 // a null pointer, so the offset must also evaluate to zero. 4897 // Likewise, if we have non-zero base pointer, we can not get null pointer 4898 // as a result, so the offset can not be -intptr_t(BasePtr). 4899 // In other words, both pointers are either null, or both are non-null, 4900 // or the behaviour is undefined. 4901 // 4902 // C, however, is more strict in this regard, and gives more 4903 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4904 // So both the input to the 'gep inbounds' AND the output must not be null. 4905 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4906 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4907 auto *Valid = 4908 CGM.getLangOpts().CPlusPlus 4909 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4910 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4911 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4912 } 4913 4914 if (PerformOverflowCheck) { 4915 // The GEP is valid if: 4916 // 1) The total offset doesn't overflow, and 4917 // 2) The sign of the difference between the computed address and the base 4918 // pointer matches the sign of the total offset. 4919 llvm::Value *ValidGEP; 4920 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4921 if (SignedIndices) { 4922 // GEP is computed as `unsigned base + signed offset`, therefore: 4923 // * If offset was positive, then the computed pointer can not be 4924 // [unsigned] less than the base pointer, unless it overflowed. 4925 // * If offset was negative, then the computed pointer can not be 4926 // [unsigned] greater than the bas pointere, unless it overflowed. 4927 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4928 auto *PosOrZeroOffset = 4929 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4930 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4931 ValidGEP = 4932 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4933 } else if (!IsSubtraction) { 4934 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4935 // computed pointer can not be [unsigned] less than base pointer, 4936 // unless there was an overflow. 4937 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4938 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4939 } else { 4940 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4941 // computed pointer can not be [unsigned] greater than base pointer, 4942 // unless there was an overflow. 4943 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4944 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4945 } 4946 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4947 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4948 } 4949 4950 assert(!Checks.empty() && "Should have produced some checks."); 4951 4952 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4953 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4954 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4955 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4956 4957 return GEPVal; 4958 } 4959