1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Module.h" 33 #include <cstdarg> 34 35 using namespace clang; 36 using namespace CodeGen; 37 using llvm::Value; 38 39 //===----------------------------------------------------------------------===// 40 // Scalar Expression Emitter 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 struct BinOpInfo { 45 Value *LHS; 46 Value *RHS; 47 QualType Ty; // Computation Type. 48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 49 bool FPContractable; 50 const Expr *E; // Entire expr, for error unsupported. May not be binop. 51 }; 52 53 static bool MustVisitNullValue(const Expr *E) { 54 // If a null pointer expression's type is the C++0x nullptr_t, then 55 // it's not necessarily a simple constant and it must be evaluated 56 // for its potential side effects. 57 return E->getType()->isNullPtrType(); 58 } 59 60 class ScalarExprEmitter 61 : public StmtVisitor<ScalarExprEmitter, Value*> { 62 CodeGenFunction &CGF; 63 CGBuilderTy &Builder; 64 bool IgnoreResultAssign; 65 llvm::LLVMContext &VMContext; 66 public: 67 68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 70 VMContext(cgf.getLLVMContext()) { 71 } 72 73 //===--------------------------------------------------------------------===// 74 // Utilities 75 //===--------------------------------------------------------------------===// 76 77 bool TestAndClearIgnoreResultAssign() { 78 bool I = IgnoreResultAssign; 79 IgnoreResultAssign = false; 80 return I; 81 } 82 83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 86 return CGF.EmitCheckedLValue(E, TCK); 87 } 88 89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 90 const BinOpInfo &Info); 91 92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 94 } 95 96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 97 const AlignValueAttr *AVAttr = nullptr; 98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 99 const ValueDecl *VD = DRE->getDecl(); 100 101 if (VD->getType()->isReferenceType()) { 102 if (const auto *TTy = 103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 105 } else { 106 // Assumptions for function parameters are emitted at the start of the 107 // function, so there is no need to repeat that here. 108 if (isa<ParmVarDecl>(VD)) 109 return; 110 111 AVAttr = VD->getAttr<AlignValueAttr>(); 112 } 113 } 114 115 if (!AVAttr) 116 if (const auto *TTy = 117 dyn_cast<TypedefType>(E->getType())) 118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 119 120 if (!AVAttr) 121 return; 122 123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 126 } 127 128 /// EmitLoadOfLValue - Given an expression with complex type that represents a 129 /// value l-value, this method emits the address of the l-value, then loads 130 /// and returns the result. 131 Value *EmitLoadOfLValue(const Expr *E) { 132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 133 E->getExprLoc()); 134 135 EmitLValueAlignmentAssumption(E, V); 136 return V; 137 } 138 139 /// EmitConversionToBool - Convert the specified expression value to a 140 /// boolean (i1) truth value. This is equivalent to "Val != 0". 141 Value *EmitConversionToBool(Value *Src, QualType DstTy); 142 143 /// Emit a check that a conversion to or from a floating-point type does not 144 /// overflow. 145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 146 Value *Src, QualType SrcType, QualType DstType, 147 llvm::Type *DstTy, SourceLocation Loc); 148 149 /// Emit a conversion from the specified type to the specified destination 150 /// type, both of which are LLVM scalar types. 151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 152 SourceLocation Loc); 153 154 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 155 SourceLocation Loc, bool TreatBooleanAsSigned); 156 157 /// Emit a conversion from the specified complex type to the specified 158 /// destination type, where the destination type is an LLVM scalar type. 159 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 160 QualType SrcTy, QualType DstTy, 161 SourceLocation Loc); 162 163 /// EmitNullValue - Emit a value that corresponds to null for the given type. 164 Value *EmitNullValue(QualType Ty); 165 166 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 167 Value *EmitFloatToBoolConversion(Value *V) { 168 // Compare against 0.0 for fp scalars. 169 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 170 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 171 } 172 173 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 174 Value *EmitPointerToBoolConversion(Value *V) { 175 Value *Zero = llvm::ConstantPointerNull::get( 176 cast<llvm::PointerType>(V->getType())); 177 return Builder.CreateICmpNE(V, Zero, "tobool"); 178 } 179 180 Value *EmitIntToBoolConversion(Value *V) { 181 // Because of the type rules of C, we often end up computing a 182 // logical value, then zero extending it to int, then wanting it 183 // as a logical value again. Optimize this common case. 184 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 185 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 186 Value *Result = ZI->getOperand(0); 187 // If there aren't any more uses, zap the instruction to save space. 188 // Note that there can be more uses, for example if this 189 // is the result of an assignment. 190 if (ZI->use_empty()) 191 ZI->eraseFromParent(); 192 return Result; 193 } 194 } 195 196 return Builder.CreateIsNotNull(V, "tobool"); 197 } 198 199 //===--------------------------------------------------------------------===// 200 // Visitor Methods 201 //===--------------------------------------------------------------------===// 202 203 Value *Visit(Expr *E) { 204 ApplyDebugLocation DL(CGF, E); 205 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 206 } 207 208 Value *VisitStmt(Stmt *S) { 209 S->dump(CGF.getContext().getSourceManager()); 210 llvm_unreachable("Stmt can't have complex result type!"); 211 } 212 Value *VisitExpr(Expr *S); 213 214 Value *VisitParenExpr(ParenExpr *PE) { 215 return Visit(PE->getSubExpr()); 216 } 217 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 218 return Visit(E->getReplacement()); 219 } 220 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 221 return Visit(GE->getResultExpr()); 222 } 223 224 // Leaves. 225 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 226 return Builder.getInt(E->getValue()); 227 } 228 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 229 return llvm::ConstantFP::get(VMContext, E->getValue()); 230 } 231 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 232 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 233 } 234 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 235 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 236 } 237 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 238 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 239 } 240 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 241 return EmitNullValue(E->getType()); 242 } 243 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 244 return EmitNullValue(E->getType()); 245 } 246 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 247 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 248 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 249 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 250 return Builder.CreateBitCast(V, ConvertType(E->getType())); 251 } 252 253 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 254 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 255 } 256 257 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 258 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 259 } 260 261 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 262 if (E->isGLValue()) 263 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 264 265 // Otherwise, assume the mapping is the scalar directly. 266 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 267 } 268 269 // l-values. 270 Value *VisitDeclRefExpr(DeclRefExpr *E) { 271 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 272 if (result.isReference()) 273 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 274 E->getExprLoc()); 275 return result.getValue(); 276 } 277 return EmitLoadOfLValue(E); 278 } 279 280 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 281 return CGF.EmitObjCSelectorExpr(E); 282 } 283 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 284 return CGF.EmitObjCProtocolExpr(E); 285 } 286 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 287 return EmitLoadOfLValue(E); 288 } 289 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 290 if (E->getMethodDecl() && 291 E->getMethodDecl()->getReturnType()->isReferenceType()) 292 return EmitLoadOfLValue(E); 293 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 294 } 295 296 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 297 LValue LV = CGF.EmitObjCIsaExpr(E); 298 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 299 return V; 300 } 301 302 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 303 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 304 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 305 Value *VisitMemberExpr(MemberExpr *E); 306 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 307 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 308 return EmitLoadOfLValue(E); 309 } 310 311 Value *VisitInitListExpr(InitListExpr *E); 312 313 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 314 return EmitNullValue(E->getType()); 315 } 316 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 317 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 318 return VisitCastExpr(E); 319 } 320 Value *VisitCastExpr(CastExpr *E); 321 322 Value *VisitCallExpr(const CallExpr *E) { 323 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 324 return EmitLoadOfLValue(E); 325 326 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 327 328 EmitLValueAlignmentAssumption(E, V); 329 return V; 330 } 331 332 Value *VisitStmtExpr(const StmtExpr *E); 333 334 // Unary Operators. 335 Value *VisitUnaryPostDec(const UnaryOperator *E) { 336 LValue LV = EmitLValue(E->getSubExpr()); 337 return EmitScalarPrePostIncDec(E, LV, false, false); 338 } 339 Value *VisitUnaryPostInc(const UnaryOperator *E) { 340 LValue LV = EmitLValue(E->getSubExpr()); 341 return EmitScalarPrePostIncDec(E, LV, true, false); 342 } 343 Value *VisitUnaryPreDec(const UnaryOperator *E) { 344 LValue LV = EmitLValue(E->getSubExpr()); 345 return EmitScalarPrePostIncDec(E, LV, false, true); 346 } 347 Value *VisitUnaryPreInc(const UnaryOperator *E) { 348 LValue LV = EmitLValue(E->getSubExpr()); 349 return EmitScalarPrePostIncDec(E, LV, true, true); 350 } 351 352 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 353 llvm::Value *InVal, 354 bool IsInc); 355 356 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 357 bool isInc, bool isPre); 358 359 360 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 361 if (isa<MemberPointerType>(E->getType())) // never sugared 362 return CGF.CGM.getMemberPointerConstant(E); 363 364 return EmitLValue(E->getSubExpr()).getPointer(); 365 } 366 Value *VisitUnaryDeref(const UnaryOperator *E) { 367 if (E->getType()->isVoidType()) 368 return Visit(E->getSubExpr()); // the actual value should be unused 369 return EmitLoadOfLValue(E); 370 } 371 Value *VisitUnaryPlus(const UnaryOperator *E) { 372 // This differs from gcc, though, most likely due to a bug in gcc. 373 TestAndClearIgnoreResultAssign(); 374 return Visit(E->getSubExpr()); 375 } 376 Value *VisitUnaryMinus (const UnaryOperator *E); 377 Value *VisitUnaryNot (const UnaryOperator *E); 378 Value *VisitUnaryLNot (const UnaryOperator *E); 379 Value *VisitUnaryReal (const UnaryOperator *E); 380 Value *VisitUnaryImag (const UnaryOperator *E); 381 Value *VisitUnaryExtension(const UnaryOperator *E) { 382 return Visit(E->getSubExpr()); 383 } 384 385 // C++ 386 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 387 return EmitLoadOfLValue(E); 388 } 389 390 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 391 return Visit(DAE->getExpr()); 392 } 393 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 394 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 395 return Visit(DIE->getExpr()); 396 } 397 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 398 return CGF.LoadCXXThis(); 399 } 400 401 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 402 CGF.enterFullExpression(E); 403 CodeGenFunction::RunCleanupsScope Scope(CGF); 404 return Visit(E->getSubExpr()); 405 } 406 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 407 return CGF.EmitCXXNewExpr(E); 408 } 409 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 410 CGF.EmitCXXDeleteExpr(E); 411 return nullptr; 412 } 413 414 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 415 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 416 } 417 418 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 419 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 420 } 421 422 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 423 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 424 } 425 426 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 427 // C++ [expr.pseudo]p1: 428 // The result shall only be used as the operand for the function call 429 // operator (), and the result of such a call has type void. The only 430 // effect is the evaluation of the postfix-expression before the dot or 431 // arrow. 432 CGF.EmitScalarExpr(E->getBase()); 433 return nullptr; 434 } 435 436 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 437 return EmitNullValue(E->getType()); 438 } 439 440 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 441 CGF.EmitCXXThrowExpr(E); 442 return nullptr; 443 } 444 445 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 446 return Builder.getInt1(E->getValue()); 447 } 448 449 // Binary Operators. 450 Value *EmitMul(const BinOpInfo &Ops) { 451 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 452 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 453 case LangOptions::SOB_Defined: 454 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 455 case LangOptions::SOB_Undefined: 456 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 457 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 458 // Fall through. 459 case LangOptions::SOB_Trapping: 460 return EmitOverflowCheckedBinOp(Ops); 461 } 462 } 463 464 if (Ops.Ty->isUnsignedIntegerType() && 465 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 466 return EmitOverflowCheckedBinOp(Ops); 467 468 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 469 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 470 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 471 } 472 /// Create a binary op that checks for overflow. 473 /// Currently only supports +, - and *. 474 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 475 476 // Check for undefined division and modulus behaviors. 477 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 478 llvm::Value *Zero,bool isDiv); 479 // Common helper for getting how wide LHS of shift is. 480 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 481 Value *EmitDiv(const BinOpInfo &Ops); 482 Value *EmitRem(const BinOpInfo &Ops); 483 Value *EmitAdd(const BinOpInfo &Ops); 484 Value *EmitSub(const BinOpInfo &Ops); 485 Value *EmitShl(const BinOpInfo &Ops); 486 Value *EmitShr(const BinOpInfo &Ops); 487 Value *EmitAnd(const BinOpInfo &Ops) { 488 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 489 } 490 Value *EmitXor(const BinOpInfo &Ops) { 491 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 492 } 493 Value *EmitOr (const BinOpInfo &Ops) { 494 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 495 } 496 497 BinOpInfo EmitBinOps(const BinaryOperator *E); 498 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 499 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 500 Value *&Result); 501 502 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 503 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 504 505 // Binary operators and binary compound assignment operators. 506 #define HANDLEBINOP(OP) \ 507 Value *VisitBin ## OP(const BinaryOperator *E) { \ 508 return Emit ## OP(EmitBinOps(E)); \ 509 } \ 510 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 511 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 512 } 513 HANDLEBINOP(Mul) 514 HANDLEBINOP(Div) 515 HANDLEBINOP(Rem) 516 HANDLEBINOP(Add) 517 HANDLEBINOP(Sub) 518 HANDLEBINOP(Shl) 519 HANDLEBINOP(Shr) 520 HANDLEBINOP(And) 521 HANDLEBINOP(Xor) 522 HANDLEBINOP(Or) 523 #undef HANDLEBINOP 524 525 // Comparisons. 526 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 527 llvm::CmpInst::Predicate SICmpOpc, 528 llvm::CmpInst::Predicate FCmpOpc); 529 #define VISITCOMP(CODE, UI, SI, FP) \ 530 Value *VisitBin##CODE(const BinaryOperator *E) { \ 531 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 532 llvm::FCmpInst::FP); } 533 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 534 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 535 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 536 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 537 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 538 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 539 #undef VISITCOMP 540 541 Value *VisitBinAssign (const BinaryOperator *E); 542 543 Value *VisitBinLAnd (const BinaryOperator *E); 544 Value *VisitBinLOr (const BinaryOperator *E); 545 Value *VisitBinComma (const BinaryOperator *E); 546 547 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 548 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 549 550 // Other Operators. 551 Value *VisitBlockExpr(const BlockExpr *BE); 552 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 553 Value *VisitChooseExpr(ChooseExpr *CE); 554 Value *VisitVAArgExpr(VAArgExpr *VE); 555 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 556 return CGF.EmitObjCStringLiteral(E); 557 } 558 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 559 return CGF.EmitObjCBoxedExpr(E); 560 } 561 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 562 return CGF.EmitObjCArrayLiteral(E); 563 } 564 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 565 return CGF.EmitObjCDictionaryLiteral(E); 566 } 567 Value *VisitAsTypeExpr(AsTypeExpr *CE); 568 Value *VisitAtomicExpr(AtomicExpr *AE); 569 }; 570 } // end anonymous namespace. 571 572 //===----------------------------------------------------------------------===// 573 // Utilities 574 //===----------------------------------------------------------------------===// 575 576 /// EmitConversionToBool - Convert the specified expression value to a 577 /// boolean (i1) truth value. This is equivalent to "Val != 0". 578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 579 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 580 581 if (SrcType->isRealFloatingType()) 582 return EmitFloatToBoolConversion(Src); 583 584 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 585 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 586 587 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 588 "Unknown scalar type to convert"); 589 590 if (isa<llvm::IntegerType>(Src->getType())) 591 return EmitIntToBoolConversion(Src); 592 593 assert(isa<llvm::PointerType>(Src->getType())); 594 return EmitPointerToBoolConversion(Src); 595 } 596 597 void ScalarExprEmitter::EmitFloatConversionCheck( 598 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 599 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 600 CodeGenFunction::SanitizerScope SanScope(&CGF); 601 using llvm::APFloat; 602 using llvm::APSInt; 603 604 llvm::Type *SrcTy = Src->getType(); 605 606 llvm::Value *Check = nullptr; 607 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 608 // Integer to floating-point. This can fail for unsigned short -> __half 609 // or unsigned __int128 -> float. 610 assert(DstType->isFloatingType()); 611 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 612 613 APFloat LargestFloat = 614 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 615 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 616 617 bool IsExact; 618 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 619 &IsExact) != APFloat::opOK) 620 // The range of representable values of this floating point type includes 621 // all values of this integer type. Don't need an overflow check. 622 return; 623 624 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 625 if (SrcIsUnsigned) 626 Check = Builder.CreateICmpULE(Src, Max); 627 else { 628 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 629 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 630 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 631 Check = Builder.CreateAnd(GE, LE); 632 } 633 } else { 634 const llvm::fltSemantics &SrcSema = 635 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 636 if (isa<llvm::IntegerType>(DstTy)) { 637 // Floating-point to integer. This has undefined behavior if the source is 638 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 639 // to an integer). 640 unsigned Width = CGF.getContext().getIntWidth(DstType); 641 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 642 643 APSInt Min = APSInt::getMinValue(Width, Unsigned); 644 APFloat MinSrc(SrcSema, APFloat::uninitialized); 645 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 646 APFloat::opOverflow) 647 // Don't need an overflow check for lower bound. Just check for 648 // -Inf/NaN. 649 MinSrc = APFloat::getInf(SrcSema, true); 650 else 651 // Find the largest value which is too small to represent (before 652 // truncation toward zero). 653 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 654 655 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 656 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 657 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 658 APFloat::opOverflow) 659 // Don't need an overflow check for upper bound. Just check for 660 // +Inf/NaN. 661 MaxSrc = APFloat::getInf(SrcSema, false); 662 else 663 // Find the smallest value which is too large to represent (before 664 // truncation toward zero). 665 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 666 667 // If we're converting from __half, convert the range to float to match 668 // the type of src. 669 if (OrigSrcType->isHalfType()) { 670 const llvm::fltSemantics &Sema = 671 CGF.getContext().getFloatTypeSemantics(SrcType); 672 bool IsInexact; 673 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 674 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 675 } 676 677 llvm::Value *GE = 678 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 679 llvm::Value *LE = 680 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 681 Check = Builder.CreateAnd(GE, LE); 682 } else { 683 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 684 // 685 // Floating-point to floating-point. This has undefined behavior if the 686 // source is not in the range of representable values of the destination 687 // type. The C and C++ standards are spectacularly unclear here. We 688 // diagnose finite out-of-range conversions, but allow infinities and NaNs 689 // to convert to the corresponding value in the smaller type. 690 // 691 // C11 Annex F gives all such conversions defined behavior for IEC 60559 692 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 693 // does not. 694 695 // Converting from a lower rank to a higher rank can never have 696 // undefined behavior, since higher-rank types must have a superset 697 // of values of lower-rank types. 698 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 699 return; 700 701 assert(!OrigSrcType->isHalfType() && 702 "should not check conversion from __half, it has the lowest rank"); 703 704 const llvm::fltSemantics &DstSema = 705 CGF.getContext().getFloatTypeSemantics(DstType); 706 APFloat MinBad = APFloat::getLargest(DstSema, false); 707 APFloat MaxBad = APFloat::getInf(DstSema, false); 708 709 bool IsInexact; 710 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 711 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 712 713 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 714 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 715 llvm::Value *GE = 716 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 717 llvm::Value *LE = 718 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 719 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 720 } 721 } 722 723 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 724 CGF.EmitCheckTypeDescriptor(OrigSrcType), 725 CGF.EmitCheckTypeDescriptor(DstType)}; 726 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 727 "float_cast_overflow", StaticArgs, OrigSrc); 728 } 729 730 /// Emit a conversion from the specified type to the specified destination type, 731 /// both of which are LLVM scalar types. 732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 733 QualType DstType, 734 SourceLocation Loc) { 735 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 736 } 737 738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 739 QualType DstType, 740 SourceLocation Loc, 741 bool TreatBooleanAsSigned) { 742 SrcType = CGF.getContext().getCanonicalType(SrcType); 743 DstType = CGF.getContext().getCanonicalType(DstType); 744 if (SrcType == DstType) return Src; 745 746 if (DstType->isVoidType()) return nullptr; 747 748 llvm::Value *OrigSrc = Src; 749 QualType OrigSrcType = SrcType; 750 llvm::Type *SrcTy = Src->getType(); 751 752 // Handle conversions to bool first, they are special: comparisons against 0. 753 if (DstType->isBooleanType()) 754 return EmitConversionToBool(Src, SrcType); 755 756 llvm::Type *DstTy = ConvertType(DstType); 757 758 // Cast from half through float if half isn't a native type. 759 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 760 // Cast to FP using the intrinsic if the half type itself isn't supported. 761 if (DstTy->isFloatingPointTy()) { 762 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 763 return Builder.CreateCall( 764 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 765 Src); 766 } else { 767 // Cast to other types through float, using either the intrinsic or FPExt, 768 // depending on whether the half type itself is supported 769 // (as opposed to operations on half, available with NativeHalfType). 770 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 771 Src = Builder.CreateCall( 772 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 773 CGF.CGM.FloatTy), 774 Src); 775 } else { 776 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 777 } 778 SrcType = CGF.getContext().FloatTy; 779 SrcTy = CGF.FloatTy; 780 } 781 } 782 783 // Ignore conversions like int -> uint. 784 if (SrcTy == DstTy) 785 return Src; 786 787 // Handle pointer conversions next: pointers can only be converted to/from 788 // other pointers and integers. Check for pointer types in terms of LLVM, as 789 // some native types (like Obj-C id) may map to a pointer type. 790 if (isa<llvm::PointerType>(DstTy)) { 791 // The source value may be an integer, or a pointer. 792 if (isa<llvm::PointerType>(SrcTy)) 793 return Builder.CreateBitCast(Src, DstTy, "conv"); 794 795 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 796 // First, convert to the correct width so that we control the kind of 797 // extension. 798 llvm::Type *MiddleTy = CGF.IntPtrTy; 799 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 800 llvm::Value* IntResult = 801 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 802 // Then, cast to pointer. 803 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 804 } 805 806 if (isa<llvm::PointerType>(SrcTy)) { 807 // Must be an ptr to int cast. 808 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 809 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 810 } 811 812 // A scalar can be splatted to an extended vector of the same element type 813 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 814 // Sema should add casts to make sure that the source expression's type is 815 // the same as the vector's element type (sans qualifiers) 816 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 817 SrcType.getTypePtr() && 818 "Splatted expr doesn't match with vector element type?"); 819 820 // Splat the element across to all elements 821 unsigned NumElements = DstTy->getVectorNumElements(); 822 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 823 } 824 825 // Allow bitcast from vector to integer/fp of the same size. 826 if (isa<llvm::VectorType>(SrcTy) || 827 isa<llvm::VectorType>(DstTy)) 828 return Builder.CreateBitCast(Src, DstTy, "conv"); 829 830 // Finally, we have the arithmetic types: real int/float. 831 Value *Res = nullptr; 832 llvm::Type *ResTy = DstTy; 833 834 // An overflowing conversion has undefined behavior if either the source type 835 // or the destination type is a floating-point type. 836 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 837 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 838 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 839 Loc); 840 841 // Cast to half through float if half isn't a native type. 842 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 843 // Make sure we cast in a single step if from another FP type. 844 if (SrcTy->isFloatingPointTy()) { 845 // Use the intrinsic if the half type itself isn't supported 846 // (as opposed to operations on half, available with NativeHalfType). 847 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 848 return Builder.CreateCall( 849 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 850 // If the half type is supported, just use an fptrunc. 851 return Builder.CreateFPTrunc(Src, DstTy); 852 } 853 DstTy = CGF.FloatTy; 854 } 855 856 if (isa<llvm::IntegerType>(SrcTy)) { 857 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 858 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 859 InputSigned = true; 860 } 861 if (isa<llvm::IntegerType>(DstTy)) 862 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 863 else if (InputSigned) 864 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 865 else 866 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 867 } else if (isa<llvm::IntegerType>(DstTy)) { 868 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 869 if (DstType->isSignedIntegerOrEnumerationType()) 870 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 871 else 872 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 873 } else { 874 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 875 "Unknown real conversion"); 876 if (DstTy->getTypeID() < SrcTy->getTypeID()) 877 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 878 else 879 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 880 } 881 882 if (DstTy != ResTy) { 883 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 884 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 885 Res = Builder.CreateCall( 886 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 887 Res); 888 } else { 889 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 890 } 891 } 892 893 return Res; 894 } 895 896 /// Emit a conversion from the specified complex type to the specified 897 /// destination type, where the destination type is an LLVM scalar type. 898 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 899 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 900 SourceLocation Loc) { 901 // Get the source element type. 902 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 903 904 // Handle conversions to bool first, they are special: comparisons against 0. 905 if (DstTy->isBooleanType()) { 906 // Complex != 0 -> (Real != 0) | (Imag != 0) 907 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 908 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 909 return Builder.CreateOr(Src.first, Src.second, "tobool"); 910 } 911 912 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 913 // the imaginary part of the complex value is discarded and the value of the 914 // real part is converted according to the conversion rules for the 915 // corresponding real type. 916 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 917 } 918 919 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 920 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 921 } 922 923 /// \brief Emit a sanitization check for the given "binary" operation (which 924 /// might actually be a unary increment which has been lowered to a binary 925 /// operation). The check passes if all values in \p Checks (which are \c i1), 926 /// are \c true. 927 void ScalarExprEmitter::EmitBinOpCheck( 928 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 929 assert(CGF.IsSanitizerScope); 930 StringRef CheckName; 931 SmallVector<llvm::Constant *, 4> StaticData; 932 SmallVector<llvm::Value *, 2> DynamicData; 933 934 BinaryOperatorKind Opcode = Info.Opcode; 935 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 936 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 937 938 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 939 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 940 if (UO && UO->getOpcode() == UO_Minus) { 941 CheckName = "negate_overflow"; 942 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 943 DynamicData.push_back(Info.RHS); 944 } else { 945 if (BinaryOperator::isShiftOp(Opcode)) { 946 // Shift LHS negative or too large, or RHS out of bounds. 947 CheckName = "shift_out_of_bounds"; 948 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 949 StaticData.push_back( 950 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 951 StaticData.push_back( 952 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 953 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 954 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 955 CheckName = "divrem_overflow"; 956 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 957 } else { 958 // Arithmetic overflow (+, -, *). 959 switch (Opcode) { 960 case BO_Add: CheckName = "add_overflow"; break; 961 case BO_Sub: CheckName = "sub_overflow"; break; 962 case BO_Mul: CheckName = "mul_overflow"; break; 963 default: llvm_unreachable("unexpected opcode for bin op check"); 964 } 965 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 966 } 967 DynamicData.push_back(Info.LHS); 968 DynamicData.push_back(Info.RHS); 969 } 970 971 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 972 } 973 974 //===----------------------------------------------------------------------===// 975 // Visitor Methods 976 //===----------------------------------------------------------------------===// 977 978 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 979 CGF.ErrorUnsupported(E, "scalar expression"); 980 if (E->getType()->isVoidType()) 981 return nullptr; 982 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 983 } 984 985 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 986 // Vector Mask Case 987 if (E->getNumSubExprs() == 2) { 988 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 989 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 990 Value *Mask; 991 992 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 993 unsigned LHSElts = LTy->getNumElements(); 994 995 Mask = RHS; 996 997 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 998 999 // Mask off the high bits of each shuffle index. 1000 Value *MaskBits = 1001 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1002 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1003 1004 // newv = undef 1005 // mask = mask & maskbits 1006 // for each elt 1007 // n = extract mask i 1008 // x = extract val n 1009 // newv = insert newv, x, i 1010 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1011 MTy->getNumElements()); 1012 Value* NewV = llvm::UndefValue::get(RTy); 1013 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1014 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1015 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1016 1017 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1018 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1019 } 1020 return NewV; 1021 } 1022 1023 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1024 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1025 1026 SmallVector<llvm::Constant*, 32> indices; 1027 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1028 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1029 // Check for -1 and output it as undef in the IR. 1030 if (Idx.isSigned() && Idx.isAllOnesValue()) 1031 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1032 else 1033 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1034 } 1035 1036 Value *SV = llvm::ConstantVector::get(indices); 1037 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1038 } 1039 1040 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1041 QualType SrcType = E->getSrcExpr()->getType(), 1042 DstType = E->getType(); 1043 1044 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1045 1046 SrcType = CGF.getContext().getCanonicalType(SrcType); 1047 DstType = CGF.getContext().getCanonicalType(DstType); 1048 if (SrcType == DstType) return Src; 1049 1050 assert(SrcType->isVectorType() && 1051 "ConvertVector source type must be a vector"); 1052 assert(DstType->isVectorType() && 1053 "ConvertVector destination type must be a vector"); 1054 1055 llvm::Type *SrcTy = Src->getType(); 1056 llvm::Type *DstTy = ConvertType(DstType); 1057 1058 // Ignore conversions like int -> uint. 1059 if (SrcTy == DstTy) 1060 return Src; 1061 1062 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1063 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1064 1065 assert(SrcTy->isVectorTy() && 1066 "ConvertVector source IR type must be a vector"); 1067 assert(DstTy->isVectorTy() && 1068 "ConvertVector destination IR type must be a vector"); 1069 1070 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1071 *DstEltTy = DstTy->getVectorElementType(); 1072 1073 if (DstEltType->isBooleanType()) { 1074 assert((SrcEltTy->isFloatingPointTy() || 1075 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1076 1077 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1078 if (SrcEltTy->isFloatingPointTy()) { 1079 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1080 } else { 1081 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1082 } 1083 } 1084 1085 // We have the arithmetic types: real int/float. 1086 Value *Res = nullptr; 1087 1088 if (isa<llvm::IntegerType>(SrcEltTy)) { 1089 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1090 if (isa<llvm::IntegerType>(DstEltTy)) 1091 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1092 else if (InputSigned) 1093 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1094 else 1095 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1096 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1097 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1098 if (DstEltType->isSignedIntegerOrEnumerationType()) 1099 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1100 else 1101 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1102 } else { 1103 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1104 "Unknown real conversion"); 1105 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1106 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1107 else 1108 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1109 } 1110 1111 return Res; 1112 } 1113 1114 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1115 llvm::APSInt Value; 1116 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1117 if (E->isArrow()) 1118 CGF.EmitScalarExpr(E->getBase()); 1119 else 1120 EmitLValue(E->getBase()); 1121 return Builder.getInt(Value); 1122 } 1123 1124 return EmitLoadOfLValue(E); 1125 } 1126 1127 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1128 TestAndClearIgnoreResultAssign(); 1129 1130 // Emit subscript expressions in rvalue context's. For most cases, this just 1131 // loads the lvalue formed by the subscript expr. However, we have to be 1132 // careful, because the base of a vector subscript is occasionally an rvalue, 1133 // so we can't get it as an lvalue. 1134 if (!E->getBase()->getType()->isVectorType()) 1135 return EmitLoadOfLValue(E); 1136 1137 // Handle the vector case. The base must be a vector, the index must be an 1138 // integer value. 1139 Value *Base = Visit(E->getBase()); 1140 Value *Idx = Visit(E->getIdx()); 1141 QualType IdxTy = E->getIdx()->getType(); 1142 1143 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1144 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1145 1146 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1147 } 1148 1149 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1150 unsigned Off, llvm::Type *I32Ty) { 1151 int MV = SVI->getMaskValue(Idx); 1152 if (MV == -1) 1153 return llvm::UndefValue::get(I32Ty); 1154 return llvm::ConstantInt::get(I32Ty, Off+MV); 1155 } 1156 1157 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1158 if (C->getBitWidth() != 32) { 1159 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1160 C->getZExtValue()) && 1161 "Index operand too large for shufflevector mask!"); 1162 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1163 } 1164 return C; 1165 } 1166 1167 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1168 bool Ignore = TestAndClearIgnoreResultAssign(); 1169 (void)Ignore; 1170 assert (Ignore == false && "init list ignored"); 1171 unsigned NumInitElements = E->getNumInits(); 1172 1173 if (E->hadArrayRangeDesignator()) 1174 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1175 1176 llvm::VectorType *VType = 1177 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1178 1179 if (!VType) { 1180 if (NumInitElements == 0) { 1181 // C++11 value-initialization for the scalar. 1182 return EmitNullValue(E->getType()); 1183 } 1184 // We have a scalar in braces. Just use the first element. 1185 return Visit(E->getInit(0)); 1186 } 1187 1188 unsigned ResElts = VType->getNumElements(); 1189 1190 // Loop over initializers collecting the Value for each, and remembering 1191 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1192 // us to fold the shuffle for the swizzle into the shuffle for the vector 1193 // initializer, since LLVM optimizers generally do not want to touch 1194 // shuffles. 1195 unsigned CurIdx = 0; 1196 bool VIsUndefShuffle = false; 1197 llvm::Value *V = llvm::UndefValue::get(VType); 1198 for (unsigned i = 0; i != NumInitElements; ++i) { 1199 Expr *IE = E->getInit(i); 1200 Value *Init = Visit(IE); 1201 SmallVector<llvm::Constant*, 16> Args; 1202 1203 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1204 1205 // Handle scalar elements. If the scalar initializer is actually one 1206 // element of a different vector of the same width, use shuffle instead of 1207 // extract+insert. 1208 if (!VVT) { 1209 if (isa<ExtVectorElementExpr>(IE)) { 1210 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1211 1212 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1213 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1214 Value *LHS = nullptr, *RHS = nullptr; 1215 if (CurIdx == 0) { 1216 // insert into undef -> shuffle (src, undef) 1217 // shufflemask must use an i32 1218 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1219 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1220 1221 LHS = EI->getVectorOperand(); 1222 RHS = V; 1223 VIsUndefShuffle = true; 1224 } else if (VIsUndefShuffle) { 1225 // insert into undefshuffle && size match -> shuffle (v, src) 1226 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1227 for (unsigned j = 0; j != CurIdx; ++j) 1228 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1229 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1230 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1231 1232 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1233 RHS = EI->getVectorOperand(); 1234 VIsUndefShuffle = false; 1235 } 1236 if (!Args.empty()) { 1237 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1238 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1239 ++CurIdx; 1240 continue; 1241 } 1242 } 1243 } 1244 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1245 "vecinit"); 1246 VIsUndefShuffle = false; 1247 ++CurIdx; 1248 continue; 1249 } 1250 1251 unsigned InitElts = VVT->getNumElements(); 1252 1253 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1254 // input is the same width as the vector being constructed, generate an 1255 // optimized shuffle of the swizzle input into the result. 1256 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1257 if (isa<ExtVectorElementExpr>(IE)) { 1258 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1259 Value *SVOp = SVI->getOperand(0); 1260 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1261 1262 if (OpTy->getNumElements() == ResElts) { 1263 for (unsigned j = 0; j != CurIdx; ++j) { 1264 // If the current vector initializer is a shuffle with undef, merge 1265 // this shuffle directly into it. 1266 if (VIsUndefShuffle) { 1267 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1268 CGF.Int32Ty)); 1269 } else { 1270 Args.push_back(Builder.getInt32(j)); 1271 } 1272 } 1273 for (unsigned j = 0, je = InitElts; j != je; ++j) 1274 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1275 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1276 1277 if (VIsUndefShuffle) 1278 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1279 1280 Init = SVOp; 1281 } 1282 } 1283 1284 // Extend init to result vector length, and then shuffle its contribution 1285 // to the vector initializer into V. 1286 if (Args.empty()) { 1287 for (unsigned j = 0; j != InitElts; ++j) 1288 Args.push_back(Builder.getInt32(j)); 1289 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1290 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1291 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1292 Mask, "vext"); 1293 1294 Args.clear(); 1295 for (unsigned j = 0; j != CurIdx; ++j) 1296 Args.push_back(Builder.getInt32(j)); 1297 for (unsigned j = 0; j != InitElts; ++j) 1298 Args.push_back(Builder.getInt32(j+Offset)); 1299 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1300 } 1301 1302 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1303 // merging subsequent shuffles into this one. 1304 if (CurIdx == 0) 1305 std::swap(V, Init); 1306 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1307 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1308 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1309 CurIdx += InitElts; 1310 } 1311 1312 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1313 // Emit remaining default initializers. 1314 llvm::Type *EltTy = VType->getElementType(); 1315 1316 // Emit remaining default initializers 1317 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1318 Value *Idx = Builder.getInt32(CurIdx); 1319 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1320 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1321 } 1322 return V; 1323 } 1324 1325 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1326 const Expr *E = CE->getSubExpr(); 1327 1328 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1329 return false; 1330 1331 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1332 // We always assume that 'this' is never null. 1333 return false; 1334 } 1335 1336 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1337 // And that glvalue casts are never null. 1338 if (ICE->getValueKind() != VK_RValue) 1339 return false; 1340 } 1341 1342 return true; 1343 } 1344 1345 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1346 // have to handle a more broad range of conversions than explicit casts, as they 1347 // handle things like function to ptr-to-function decay etc. 1348 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1349 Expr *E = CE->getSubExpr(); 1350 QualType DestTy = CE->getType(); 1351 CastKind Kind = CE->getCastKind(); 1352 1353 // These cases are generally not written to ignore the result of 1354 // evaluating their sub-expressions, so we clear this now. 1355 bool Ignored = TestAndClearIgnoreResultAssign(); 1356 1357 // Since almost all cast kinds apply to scalars, this switch doesn't have 1358 // a default case, so the compiler will warn on a missing case. The cases 1359 // are in the same order as in the CastKind enum. 1360 switch (Kind) { 1361 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1362 case CK_BuiltinFnToFnPtr: 1363 llvm_unreachable("builtin functions are handled elsewhere"); 1364 1365 case CK_LValueBitCast: 1366 case CK_ObjCObjectLValueCast: { 1367 Address Addr = EmitLValue(E).getAddress(); 1368 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1369 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1370 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1371 } 1372 1373 case CK_CPointerToObjCPointerCast: 1374 case CK_BlockPointerToObjCPointerCast: 1375 case CK_AnyPointerToBlockPointerCast: 1376 case CK_BitCast: { 1377 Value *Src = Visit(const_cast<Expr*>(E)); 1378 llvm::Type *SrcTy = Src->getType(); 1379 llvm::Type *DstTy = ConvertType(DestTy); 1380 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1381 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1382 llvm_unreachable("wrong cast for pointers in different address spaces" 1383 "(must be an address space cast)!"); 1384 } 1385 1386 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1387 if (auto PT = DestTy->getAs<PointerType>()) 1388 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1389 /*MayBeNull=*/true, 1390 CodeGenFunction::CFITCK_UnrelatedCast, 1391 CE->getLocStart()); 1392 } 1393 1394 return Builder.CreateBitCast(Src, DstTy); 1395 } 1396 case CK_AddressSpaceConversion: { 1397 Value *Src = Visit(const_cast<Expr*>(E)); 1398 // Since target may map different address spaces in AST to the same address 1399 // space, an address space conversion may end up as a bitcast. 1400 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, 1401 ConvertType(DestTy)); 1402 } 1403 case CK_AtomicToNonAtomic: 1404 case CK_NonAtomicToAtomic: 1405 case CK_NoOp: 1406 case CK_UserDefinedConversion: 1407 return Visit(const_cast<Expr*>(E)); 1408 1409 case CK_BaseToDerived: { 1410 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1411 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1412 1413 Address Base = CGF.EmitPointerWithAlignment(E); 1414 Address Derived = 1415 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1416 CE->path_begin(), CE->path_end(), 1417 CGF.ShouldNullCheckClassCastValue(CE)); 1418 1419 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1420 // performed and the object is not of the derived type. 1421 if (CGF.sanitizePerformTypeCheck()) 1422 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1423 Derived.getPointer(), DestTy->getPointeeType()); 1424 1425 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1426 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1427 Derived.getPointer(), 1428 /*MayBeNull=*/true, 1429 CodeGenFunction::CFITCK_DerivedCast, 1430 CE->getLocStart()); 1431 1432 return Derived.getPointer(); 1433 } 1434 case CK_UncheckedDerivedToBase: 1435 case CK_DerivedToBase: { 1436 // The EmitPointerWithAlignment path does this fine; just discard 1437 // the alignment. 1438 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1439 } 1440 1441 case CK_Dynamic: { 1442 Address V = CGF.EmitPointerWithAlignment(E); 1443 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1444 return CGF.EmitDynamicCast(V, DCE); 1445 } 1446 1447 case CK_ArrayToPointerDecay: 1448 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1449 case CK_FunctionToPointerDecay: 1450 return EmitLValue(E).getPointer(); 1451 1452 case CK_NullToPointer: 1453 if (MustVisitNullValue(E)) 1454 (void) Visit(E); 1455 1456 return llvm::ConstantPointerNull::get( 1457 cast<llvm::PointerType>(ConvertType(DestTy))); 1458 1459 case CK_NullToMemberPointer: { 1460 if (MustVisitNullValue(E)) 1461 (void) Visit(E); 1462 1463 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1464 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1465 } 1466 1467 case CK_ReinterpretMemberPointer: 1468 case CK_BaseToDerivedMemberPointer: 1469 case CK_DerivedToBaseMemberPointer: { 1470 Value *Src = Visit(E); 1471 1472 // Note that the AST doesn't distinguish between checked and 1473 // unchecked member pointer conversions, so we always have to 1474 // implement checked conversions here. This is inefficient when 1475 // actual control flow may be required in order to perform the 1476 // check, which it is for data member pointers (but not member 1477 // function pointers on Itanium and ARM). 1478 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1479 } 1480 1481 case CK_ARCProduceObject: 1482 return CGF.EmitARCRetainScalarExpr(E); 1483 case CK_ARCConsumeObject: 1484 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1485 case CK_ARCReclaimReturnedObject: 1486 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1487 case CK_ARCExtendBlockObject: 1488 return CGF.EmitARCExtendBlockObject(E); 1489 1490 case CK_CopyAndAutoreleaseBlockObject: 1491 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1492 1493 case CK_FloatingRealToComplex: 1494 case CK_FloatingComplexCast: 1495 case CK_IntegralRealToComplex: 1496 case CK_IntegralComplexCast: 1497 case CK_IntegralComplexToFloatingComplex: 1498 case CK_FloatingComplexToIntegralComplex: 1499 case CK_ConstructorConversion: 1500 case CK_ToUnion: 1501 llvm_unreachable("scalar cast to non-scalar value"); 1502 1503 case CK_LValueToRValue: 1504 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1505 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1506 return Visit(const_cast<Expr*>(E)); 1507 1508 case CK_IntegralToPointer: { 1509 Value *Src = Visit(const_cast<Expr*>(E)); 1510 1511 // First, convert to the correct width so that we control the kind of 1512 // extension. 1513 llvm::Type *MiddleTy = CGF.IntPtrTy; 1514 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1515 llvm::Value* IntResult = 1516 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1517 1518 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1519 } 1520 case CK_PointerToIntegral: 1521 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1522 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1523 1524 case CK_ToVoid: { 1525 CGF.EmitIgnoredExpr(E); 1526 return nullptr; 1527 } 1528 case CK_VectorSplat: { 1529 llvm::Type *DstTy = ConvertType(DestTy); 1530 Value *Elt = Visit(const_cast<Expr*>(E)); 1531 // Splat the element across to all elements 1532 unsigned NumElements = DstTy->getVectorNumElements(); 1533 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1534 } 1535 1536 case CK_IntegralCast: 1537 case CK_IntegralToFloating: 1538 case CK_FloatingToIntegral: 1539 case CK_FloatingCast: 1540 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1541 CE->getExprLoc()); 1542 case CK_BooleanToSignedIntegral: 1543 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1544 CE->getExprLoc(), 1545 /*TreatBooleanAsSigned=*/true); 1546 case CK_IntegralToBoolean: 1547 return EmitIntToBoolConversion(Visit(E)); 1548 case CK_PointerToBoolean: 1549 return EmitPointerToBoolConversion(Visit(E)); 1550 case CK_FloatingToBoolean: 1551 return EmitFloatToBoolConversion(Visit(E)); 1552 case CK_MemberPointerToBoolean: { 1553 llvm::Value *MemPtr = Visit(E); 1554 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1555 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1556 } 1557 1558 case CK_FloatingComplexToReal: 1559 case CK_IntegralComplexToReal: 1560 return CGF.EmitComplexExpr(E, false, true).first; 1561 1562 case CK_FloatingComplexToBoolean: 1563 case CK_IntegralComplexToBoolean: { 1564 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1565 1566 // TODO: kill this function off, inline appropriate case here 1567 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1568 CE->getExprLoc()); 1569 } 1570 1571 case CK_ZeroToOCLEvent: { 1572 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1573 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1574 } 1575 1576 case CK_IntToOCLSampler: 1577 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1578 1579 } // end of switch 1580 1581 llvm_unreachable("unknown scalar cast"); 1582 } 1583 1584 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1585 CodeGenFunction::StmtExprEvaluation eval(CGF); 1586 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1587 !E->getType()->isVoidType()); 1588 if (!RetAlloca.isValid()) 1589 return nullptr; 1590 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1591 E->getExprLoc()); 1592 } 1593 1594 //===----------------------------------------------------------------------===// 1595 // Unary Operators 1596 //===----------------------------------------------------------------------===// 1597 1598 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1599 llvm::Value *InVal, bool IsInc) { 1600 BinOpInfo BinOp; 1601 BinOp.LHS = InVal; 1602 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1603 BinOp.Ty = E->getType(); 1604 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1605 BinOp.FPContractable = false; 1606 BinOp.E = E; 1607 return BinOp; 1608 } 1609 1610 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1611 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1612 llvm::Value *Amount = 1613 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1614 StringRef Name = IsInc ? "inc" : "dec"; 1615 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1616 case LangOptions::SOB_Defined: 1617 return Builder.CreateAdd(InVal, Amount, Name); 1618 case LangOptions::SOB_Undefined: 1619 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1620 return Builder.CreateNSWAdd(InVal, Amount, Name); 1621 // Fall through. 1622 case LangOptions::SOB_Trapping: 1623 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1624 } 1625 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1626 } 1627 1628 llvm::Value * 1629 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1630 bool isInc, bool isPre) { 1631 1632 QualType type = E->getSubExpr()->getType(); 1633 llvm::PHINode *atomicPHI = nullptr; 1634 llvm::Value *value; 1635 llvm::Value *input; 1636 1637 int amount = (isInc ? 1 : -1); 1638 1639 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1640 type = atomicTy->getValueType(); 1641 if (isInc && type->isBooleanType()) { 1642 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1643 if (isPre) { 1644 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1645 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1646 return Builder.getTrue(); 1647 } 1648 // For atomic bool increment, we just store true and return it for 1649 // preincrement, do an atomic swap with true for postincrement 1650 return Builder.CreateAtomicRMW( 1651 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1652 llvm::AtomicOrdering::SequentiallyConsistent); 1653 } 1654 // Special case for atomic increment / decrement on integers, emit 1655 // atomicrmw instructions. We skip this if we want to be doing overflow 1656 // checking, and fall into the slow path with the atomic cmpxchg loop. 1657 if (!type->isBooleanType() && type->isIntegerType() && 1658 !(type->isUnsignedIntegerType() && 1659 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1660 CGF.getLangOpts().getSignedOverflowBehavior() != 1661 LangOptions::SOB_Trapping) { 1662 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1663 llvm::AtomicRMWInst::Sub; 1664 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1665 llvm::Instruction::Sub; 1666 llvm::Value *amt = CGF.EmitToMemory( 1667 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1668 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1669 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1670 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1671 } 1672 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1673 input = value; 1674 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1675 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1676 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1677 value = CGF.EmitToMemory(value, type); 1678 Builder.CreateBr(opBB); 1679 Builder.SetInsertPoint(opBB); 1680 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1681 atomicPHI->addIncoming(value, startBB); 1682 value = atomicPHI; 1683 } else { 1684 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1685 input = value; 1686 } 1687 1688 // Special case of integer increment that we have to check first: bool++. 1689 // Due to promotion rules, we get: 1690 // bool++ -> bool = bool + 1 1691 // -> bool = (int)bool + 1 1692 // -> bool = ((int)bool + 1 != 0) 1693 // An interesting aspect of this is that increment is always true. 1694 // Decrement does not have this property. 1695 if (isInc && type->isBooleanType()) { 1696 value = Builder.getTrue(); 1697 1698 // Most common case by far: integer increment. 1699 } else if (type->isIntegerType()) { 1700 // Note that signed integer inc/dec with width less than int can't 1701 // overflow because of promotion rules; we're just eliding a few steps here. 1702 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1703 CGF.IntTy->getIntegerBitWidth(); 1704 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1705 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1706 } else if (CanOverflow && type->isUnsignedIntegerType() && 1707 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1708 value = 1709 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1710 } else { 1711 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1712 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1713 } 1714 1715 // Next most common: pointer increment. 1716 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1717 QualType type = ptr->getPointeeType(); 1718 1719 // VLA types don't have constant size. 1720 if (const VariableArrayType *vla 1721 = CGF.getContext().getAsVariableArrayType(type)) { 1722 llvm::Value *numElts = CGF.getVLASize(vla).first; 1723 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1724 if (CGF.getLangOpts().isSignedOverflowDefined()) 1725 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1726 else 1727 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1728 1729 // Arithmetic on function pointers (!) is just +-1. 1730 } else if (type->isFunctionType()) { 1731 llvm::Value *amt = Builder.getInt32(amount); 1732 1733 value = CGF.EmitCastToVoidPtr(value); 1734 if (CGF.getLangOpts().isSignedOverflowDefined()) 1735 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1736 else 1737 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1738 value = Builder.CreateBitCast(value, input->getType()); 1739 1740 // For everything else, we can just do a simple increment. 1741 } else { 1742 llvm::Value *amt = Builder.getInt32(amount); 1743 if (CGF.getLangOpts().isSignedOverflowDefined()) 1744 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1745 else 1746 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1747 } 1748 1749 // Vector increment/decrement. 1750 } else if (type->isVectorType()) { 1751 if (type->hasIntegerRepresentation()) { 1752 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1753 1754 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1755 } else { 1756 value = Builder.CreateFAdd( 1757 value, 1758 llvm::ConstantFP::get(value->getType(), amount), 1759 isInc ? "inc" : "dec"); 1760 } 1761 1762 // Floating point. 1763 } else if (type->isRealFloatingType()) { 1764 // Add the inc/dec to the real part. 1765 llvm::Value *amt; 1766 1767 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1768 // Another special case: half FP increment should be done via float 1769 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1770 value = Builder.CreateCall( 1771 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1772 CGF.CGM.FloatTy), 1773 input, "incdec.conv"); 1774 } else { 1775 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1776 } 1777 } 1778 1779 if (value->getType()->isFloatTy()) 1780 amt = llvm::ConstantFP::get(VMContext, 1781 llvm::APFloat(static_cast<float>(amount))); 1782 else if (value->getType()->isDoubleTy()) 1783 amt = llvm::ConstantFP::get(VMContext, 1784 llvm::APFloat(static_cast<double>(amount))); 1785 else { 1786 // Remaining types are Half, LongDouble or __float128. Convert from float. 1787 llvm::APFloat F(static_cast<float>(amount)); 1788 bool ignored; 1789 const llvm::fltSemantics *FS; 1790 // Don't use getFloatTypeSemantics because Half isn't 1791 // necessarily represented using the "half" LLVM type. 1792 if (value->getType()->isFP128Ty()) 1793 FS = &CGF.getTarget().getFloat128Format(); 1794 else if (value->getType()->isHalfTy()) 1795 FS = &CGF.getTarget().getHalfFormat(); 1796 else 1797 FS = &CGF.getTarget().getLongDoubleFormat(); 1798 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 1799 amt = llvm::ConstantFP::get(VMContext, F); 1800 } 1801 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1802 1803 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1804 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1805 value = Builder.CreateCall( 1806 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1807 CGF.CGM.FloatTy), 1808 value, "incdec.conv"); 1809 } else { 1810 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1811 } 1812 } 1813 1814 // Objective-C pointer types. 1815 } else { 1816 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1817 value = CGF.EmitCastToVoidPtr(value); 1818 1819 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1820 if (!isInc) size = -size; 1821 llvm::Value *sizeValue = 1822 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1823 1824 if (CGF.getLangOpts().isSignedOverflowDefined()) 1825 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1826 else 1827 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1828 value = Builder.CreateBitCast(value, input->getType()); 1829 } 1830 1831 if (atomicPHI) { 1832 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1833 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1834 auto Pair = CGF.EmitAtomicCompareExchange( 1835 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1836 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1837 llvm::Value *success = Pair.second; 1838 atomicPHI->addIncoming(old, opBB); 1839 Builder.CreateCondBr(success, contBB, opBB); 1840 Builder.SetInsertPoint(contBB); 1841 return isPre ? value : input; 1842 } 1843 1844 // Store the updated result through the lvalue. 1845 if (LV.isBitField()) 1846 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1847 else 1848 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1849 1850 // If this is a postinc, return the value read from memory, otherwise use the 1851 // updated value. 1852 return isPre ? value : input; 1853 } 1854 1855 1856 1857 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1858 TestAndClearIgnoreResultAssign(); 1859 // Emit unary minus with EmitSub so we handle overflow cases etc. 1860 BinOpInfo BinOp; 1861 BinOp.RHS = Visit(E->getSubExpr()); 1862 1863 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1864 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1865 else 1866 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1867 BinOp.Ty = E->getType(); 1868 BinOp.Opcode = BO_Sub; 1869 BinOp.FPContractable = false; 1870 BinOp.E = E; 1871 return EmitSub(BinOp); 1872 } 1873 1874 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1875 TestAndClearIgnoreResultAssign(); 1876 Value *Op = Visit(E->getSubExpr()); 1877 return Builder.CreateNot(Op, "neg"); 1878 } 1879 1880 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1881 // Perform vector logical not on comparison with zero vector. 1882 if (E->getType()->isExtVectorType()) { 1883 Value *Oper = Visit(E->getSubExpr()); 1884 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1885 Value *Result; 1886 if (Oper->getType()->isFPOrFPVectorTy()) 1887 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1888 else 1889 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1890 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1891 } 1892 1893 // Compare operand to zero. 1894 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1895 1896 // Invert value. 1897 // TODO: Could dynamically modify easy computations here. For example, if 1898 // the operand is an icmp ne, turn into icmp eq. 1899 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1900 1901 // ZExt result to the expr type. 1902 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1903 } 1904 1905 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1906 // Try folding the offsetof to a constant. 1907 llvm::APSInt Value; 1908 if (E->EvaluateAsInt(Value, CGF.getContext())) 1909 return Builder.getInt(Value); 1910 1911 // Loop over the components of the offsetof to compute the value. 1912 unsigned n = E->getNumComponents(); 1913 llvm::Type* ResultType = ConvertType(E->getType()); 1914 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1915 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1916 for (unsigned i = 0; i != n; ++i) { 1917 OffsetOfNode ON = E->getComponent(i); 1918 llvm::Value *Offset = nullptr; 1919 switch (ON.getKind()) { 1920 case OffsetOfNode::Array: { 1921 // Compute the index 1922 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1923 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1924 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1925 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1926 1927 // Save the element type 1928 CurrentType = 1929 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1930 1931 // Compute the element size 1932 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1933 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1934 1935 // Multiply out to compute the result 1936 Offset = Builder.CreateMul(Idx, ElemSize); 1937 break; 1938 } 1939 1940 case OffsetOfNode::Field: { 1941 FieldDecl *MemberDecl = ON.getField(); 1942 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1943 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1944 1945 // Compute the index of the field in its parent. 1946 unsigned i = 0; 1947 // FIXME: It would be nice if we didn't have to loop here! 1948 for (RecordDecl::field_iterator Field = RD->field_begin(), 1949 FieldEnd = RD->field_end(); 1950 Field != FieldEnd; ++Field, ++i) { 1951 if (*Field == MemberDecl) 1952 break; 1953 } 1954 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1955 1956 // Compute the offset to the field 1957 int64_t OffsetInt = RL.getFieldOffset(i) / 1958 CGF.getContext().getCharWidth(); 1959 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1960 1961 // Save the element type. 1962 CurrentType = MemberDecl->getType(); 1963 break; 1964 } 1965 1966 case OffsetOfNode::Identifier: 1967 llvm_unreachable("dependent __builtin_offsetof"); 1968 1969 case OffsetOfNode::Base: { 1970 if (ON.getBase()->isVirtual()) { 1971 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1972 continue; 1973 } 1974 1975 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1976 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1977 1978 // Save the element type. 1979 CurrentType = ON.getBase()->getType(); 1980 1981 // Compute the offset to the base. 1982 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1983 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1984 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1985 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1986 break; 1987 } 1988 } 1989 Result = Builder.CreateAdd(Result, Offset); 1990 } 1991 return Result; 1992 } 1993 1994 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1995 /// argument of the sizeof expression as an integer. 1996 Value * 1997 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1998 const UnaryExprOrTypeTraitExpr *E) { 1999 QualType TypeToSize = E->getTypeOfArgument(); 2000 if (E->getKind() == UETT_SizeOf) { 2001 if (const VariableArrayType *VAT = 2002 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2003 if (E->isArgumentType()) { 2004 // sizeof(type) - make sure to emit the VLA size. 2005 CGF.EmitVariablyModifiedType(TypeToSize); 2006 } else { 2007 // C99 6.5.3.4p2: If the argument is an expression of type 2008 // VLA, it is evaluated. 2009 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2010 } 2011 2012 QualType eltType; 2013 llvm::Value *numElts; 2014 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2015 2016 llvm::Value *size = numElts; 2017 2018 // Scale the number of non-VLA elements by the non-VLA element size. 2019 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2020 if (!eltSize.isOne()) 2021 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2022 2023 return size; 2024 } 2025 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2026 auto Alignment = 2027 CGF.getContext() 2028 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2029 E->getTypeOfArgument()->getPointeeType())) 2030 .getQuantity(); 2031 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2032 } 2033 2034 // If this isn't sizeof(vla), the result must be constant; use the constant 2035 // folding logic so we don't have to duplicate it here. 2036 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2037 } 2038 2039 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2040 Expr *Op = E->getSubExpr(); 2041 if (Op->getType()->isAnyComplexType()) { 2042 // If it's an l-value, load through the appropriate subobject l-value. 2043 // Note that we have to ask E because Op might be an l-value that 2044 // this won't work for, e.g. an Obj-C property. 2045 if (E->isGLValue()) 2046 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2047 E->getExprLoc()).getScalarVal(); 2048 2049 // Otherwise, calculate and project. 2050 return CGF.EmitComplexExpr(Op, false, true).first; 2051 } 2052 2053 return Visit(Op); 2054 } 2055 2056 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2057 Expr *Op = E->getSubExpr(); 2058 if (Op->getType()->isAnyComplexType()) { 2059 // If it's an l-value, load through the appropriate subobject l-value. 2060 // Note that we have to ask E because Op might be an l-value that 2061 // this won't work for, e.g. an Obj-C property. 2062 if (Op->isGLValue()) 2063 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2064 E->getExprLoc()).getScalarVal(); 2065 2066 // Otherwise, calculate and project. 2067 return CGF.EmitComplexExpr(Op, true, false).second; 2068 } 2069 2070 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2071 // effects are evaluated, but not the actual value. 2072 if (Op->isGLValue()) 2073 CGF.EmitLValue(Op); 2074 else 2075 CGF.EmitScalarExpr(Op, true); 2076 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2077 } 2078 2079 //===----------------------------------------------------------------------===// 2080 // Binary Operators 2081 //===----------------------------------------------------------------------===// 2082 2083 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2084 TestAndClearIgnoreResultAssign(); 2085 BinOpInfo Result; 2086 Result.LHS = Visit(E->getLHS()); 2087 Result.RHS = Visit(E->getRHS()); 2088 Result.Ty = E->getType(); 2089 Result.Opcode = E->getOpcode(); 2090 Result.FPContractable = E->isFPContractable(); 2091 Result.E = E; 2092 return Result; 2093 } 2094 2095 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2096 const CompoundAssignOperator *E, 2097 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2098 Value *&Result) { 2099 QualType LHSTy = E->getLHS()->getType(); 2100 BinOpInfo OpInfo; 2101 2102 if (E->getComputationResultType()->isAnyComplexType()) 2103 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2104 2105 // Emit the RHS first. __block variables need to have the rhs evaluated 2106 // first, plus this should improve codegen a little. 2107 OpInfo.RHS = Visit(E->getRHS()); 2108 OpInfo.Ty = E->getComputationResultType(); 2109 OpInfo.Opcode = E->getOpcode(); 2110 OpInfo.FPContractable = E->isFPContractable(); 2111 OpInfo.E = E; 2112 // Load/convert the LHS. 2113 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2114 2115 llvm::PHINode *atomicPHI = nullptr; 2116 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2117 QualType type = atomicTy->getValueType(); 2118 if (!type->isBooleanType() && type->isIntegerType() && 2119 !(type->isUnsignedIntegerType() && 2120 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2121 CGF.getLangOpts().getSignedOverflowBehavior() != 2122 LangOptions::SOB_Trapping) { 2123 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2124 switch (OpInfo.Opcode) { 2125 // We don't have atomicrmw operands for *, %, /, <<, >> 2126 case BO_MulAssign: case BO_DivAssign: 2127 case BO_RemAssign: 2128 case BO_ShlAssign: 2129 case BO_ShrAssign: 2130 break; 2131 case BO_AddAssign: 2132 aop = llvm::AtomicRMWInst::Add; 2133 break; 2134 case BO_SubAssign: 2135 aop = llvm::AtomicRMWInst::Sub; 2136 break; 2137 case BO_AndAssign: 2138 aop = llvm::AtomicRMWInst::And; 2139 break; 2140 case BO_XorAssign: 2141 aop = llvm::AtomicRMWInst::Xor; 2142 break; 2143 case BO_OrAssign: 2144 aop = llvm::AtomicRMWInst::Or; 2145 break; 2146 default: 2147 llvm_unreachable("Invalid compound assignment type"); 2148 } 2149 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2150 llvm::Value *amt = CGF.EmitToMemory( 2151 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2152 E->getExprLoc()), 2153 LHSTy); 2154 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2155 llvm::AtomicOrdering::SequentiallyConsistent); 2156 return LHSLV; 2157 } 2158 } 2159 // FIXME: For floating point types, we should be saving and restoring the 2160 // floating point environment in the loop. 2161 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2162 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2163 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2164 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2165 Builder.CreateBr(opBB); 2166 Builder.SetInsertPoint(opBB); 2167 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2168 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2169 OpInfo.LHS = atomicPHI; 2170 } 2171 else 2172 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2173 2174 SourceLocation Loc = E->getExprLoc(); 2175 OpInfo.LHS = 2176 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2177 2178 // Expand the binary operator. 2179 Result = (this->*Func)(OpInfo); 2180 2181 // Convert the result back to the LHS type. 2182 Result = 2183 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2184 2185 if (atomicPHI) { 2186 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2187 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2188 auto Pair = CGF.EmitAtomicCompareExchange( 2189 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2190 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2191 llvm::Value *success = Pair.second; 2192 atomicPHI->addIncoming(old, opBB); 2193 Builder.CreateCondBr(success, contBB, opBB); 2194 Builder.SetInsertPoint(contBB); 2195 return LHSLV; 2196 } 2197 2198 // Store the result value into the LHS lvalue. Bit-fields are handled 2199 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2200 // 'An assignment expression has the value of the left operand after the 2201 // assignment...'. 2202 if (LHSLV.isBitField()) 2203 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2204 else 2205 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2206 2207 return LHSLV; 2208 } 2209 2210 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2211 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2212 bool Ignore = TestAndClearIgnoreResultAssign(); 2213 Value *RHS; 2214 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2215 2216 // If the result is clearly ignored, return now. 2217 if (Ignore) 2218 return nullptr; 2219 2220 // The result of an assignment in C is the assigned r-value. 2221 if (!CGF.getLangOpts().CPlusPlus) 2222 return RHS; 2223 2224 // If the lvalue is non-volatile, return the computed value of the assignment. 2225 if (!LHS.isVolatileQualified()) 2226 return RHS; 2227 2228 // Otherwise, reload the value. 2229 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2230 } 2231 2232 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2233 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2234 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2235 2236 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2237 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2238 SanitizerKind::IntegerDivideByZero)); 2239 } 2240 2241 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2242 Ops.Ty->hasSignedIntegerRepresentation()) { 2243 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2244 2245 llvm::Value *IntMin = 2246 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2247 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2248 2249 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2250 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2251 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2252 Checks.push_back( 2253 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2254 } 2255 2256 if (Checks.size() > 0) 2257 EmitBinOpCheck(Checks, Ops); 2258 } 2259 2260 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2261 { 2262 CodeGenFunction::SanitizerScope SanScope(&CGF); 2263 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2264 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2265 Ops.Ty->isIntegerType()) { 2266 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2267 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2268 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2269 Ops.Ty->isRealFloatingType()) { 2270 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2271 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2272 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2273 Ops); 2274 } 2275 } 2276 2277 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2278 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2279 if (CGF.getLangOpts().OpenCL && 2280 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2281 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2282 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2283 // build option allows an application to specify that single precision 2284 // floating-point divide (x/y and 1/x) and sqrt used in the program 2285 // source are correctly rounded. 2286 llvm::Type *ValTy = Val->getType(); 2287 if (ValTy->isFloatTy() || 2288 (isa<llvm::VectorType>(ValTy) && 2289 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2290 CGF.SetFPAccuracy(Val, 2.5); 2291 } 2292 return Val; 2293 } 2294 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2295 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2296 else 2297 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2298 } 2299 2300 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2301 // Rem in C can't be a floating point type: C99 6.5.5p2. 2302 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2303 CodeGenFunction::SanitizerScope SanScope(&CGF); 2304 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2305 2306 if (Ops.Ty->isIntegerType()) 2307 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2308 } 2309 2310 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2311 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2312 else 2313 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2314 } 2315 2316 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2317 unsigned IID; 2318 unsigned OpID = 0; 2319 2320 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2321 switch (Ops.Opcode) { 2322 case BO_Add: 2323 case BO_AddAssign: 2324 OpID = 1; 2325 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2326 llvm::Intrinsic::uadd_with_overflow; 2327 break; 2328 case BO_Sub: 2329 case BO_SubAssign: 2330 OpID = 2; 2331 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2332 llvm::Intrinsic::usub_with_overflow; 2333 break; 2334 case BO_Mul: 2335 case BO_MulAssign: 2336 OpID = 3; 2337 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2338 llvm::Intrinsic::umul_with_overflow; 2339 break; 2340 default: 2341 llvm_unreachable("Unsupported operation for overflow detection"); 2342 } 2343 OpID <<= 1; 2344 if (isSigned) 2345 OpID |= 1; 2346 2347 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2348 2349 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2350 2351 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2352 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2353 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2354 2355 // Handle overflow with llvm.trap if no custom handler has been specified. 2356 const std::string *handlerName = 2357 &CGF.getLangOpts().OverflowHandler; 2358 if (handlerName->empty()) { 2359 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2360 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2361 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2362 CodeGenFunction::SanitizerScope SanScope(&CGF); 2363 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2364 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2365 : SanitizerKind::UnsignedIntegerOverflow; 2366 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2367 } else 2368 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2369 return result; 2370 } 2371 2372 // Branch in case of overflow. 2373 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2374 llvm::BasicBlock *continueBB = 2375 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2376 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2377 2378 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2379 2380 // If an overflow handler is set, then we want to call it and then use its 2381 // result, if it returns. 2382 Builder.SetInsertPoint(overflowBB); 2383 2384 // Get the overflow handler. 2385 llvm::Type *Int8Ty = CGF.Int8Ty; 2386 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2387 llvm::FunctionType *handlerTy = 2388 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2389 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2390 2391 // Sign extend the args to 64-bit, so that we can use the same handler for 2392 // all types of overflow. 2393 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2394 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2395 2396 // Call the handler with the two arguments, the operation, and the size of 2397 // the result. 2398 llvm::Value *handlerArgs[] = { 2399 lhs, 2400 rhs, 2401 Builder.getInt8(OpID), 2402 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2403 }; 2404 llvm::Value *handlerResult = 2405 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2406 2407 // Truncate the result back to the desired size. 2408 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2409 Builder.CreateBr(continueBB); 2410 2411 Builder.SetInsertPoint(continueBB); 2412 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2413 phi->addIncoming(result, initialBB); 2414 phi->addIncoming(handlerResult, overflowBB); 2415 2416 return phi; 2417 } 2418 2419 /// Emit pointer + index arithmetic. 2420 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2421 const BinOpInfo &op, 2422 bool isSubtraction) { 2423 // Must have binary (not unary) expr here. Unary pointer 2424 // increment/decrement doesn't use this path. 2425 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2426 2427 Value *pointer = op.LHS; 2428 Expr *pointerOperand = expr->getLHS(); 2429 Value *index = op.RHS; 2430 Expr *indexOperand = expr->getRHS(); 2431 2432 // In a subtraction, the LHS is always the pointer. 2433 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2434 std::swap(pointer, index); 2435 std::swap(pointerOperand, indexOperand); 2436 } 2437 2438 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2439 if (width != CGF.PointerWidthInBits) { 2440 // Zero-extend or sign-extend the pointer value according to 2441 // whether the index is signed or not. 2442 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2443 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2444 "idx.ext"); 2445 } 2446 2447 // If this is subtraction, negate the index. 2448 if (isSubtraction) 2449 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2450 2451 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2452 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2453 /*Accessed*/ false); 2454 2455 const PointerType *pointerType 2456 = pointerOperand->getType()->getAs<PointerType>(); 2457 if (!pointerType) { 2458 QualType objectType = pointerOperand->getType() 2459 ->castAs<ObjCObjectPointerType>() 2460 ->getPointeeType(); 2461 llvm::Value *objectSize 2462 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2463 2464 index = CGF.Builder.CreateMul(index, objectSize); 2465 2466 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2467 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2468 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2469 } 2470 2471 QualType elementType = pointerType->getPointeeType(); 2472 if (const VariableArrayType *vla 2473 = CGF.getContext().getAsVariableArrayType(elementType)) { 2474 // The element count here is the total number of non-VLA elements. 2475 llvm::Value *numElements = CGF.getVLASize(vla).first; 2476 2477 // Effectively, the multiply by the VLA size is part of the GEP. 2478 // GEP indexes are signed, and scaling an index isn't permitted to 2479 // signed-overflow, so we use the same semantics for our explicit 2480 // multiply. We suppress this if overflow is not undefined behavior. 2481 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2482 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2483 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2484 } else { 2485 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2486 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2487 } 2488 return pointer; 2489 } 2490 2491 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2492 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2493 // future proof. 2494 if (elementType->isVoidType() || elementType->isFunctionType()) { 2495 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2496 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2497 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2498 } 2499 2500 if (CGF.getLangOpts().isSignedOverflowDefined()) 2501 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2502 2503 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2504 } 2505 2506 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2507 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2508 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2509 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2510 // efficient operations. 2511 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2512 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2513 bool negMul, bool negAdd) { 2514 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2515 2516 Value *MulOp0 = MulOp->getOperand(0); 2517 Value *MulOp1 = MulOp->getOperand(1); 2518 if (negMul) { 2519 MulOp0 = 2520 Builder.CreateFSub( 2521 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2522 "neg"); 2523 } else if (negAdd) { 2524 Addend = 2525 Builder.CreateFSub( 2526 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2527 "neg"); 2528 } 2529 2530 Value *FMulAdd = Builder.CreateCall( 2531 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2532 {MulOp0, MulOp1, Addend}); 2533 MulOp->eraseFromParent(); 2534 2535 return FMulAdd; 2536 } 2537 2538 // Check whether it would be legal to emit an fmuladd intrinsic call to 2539 // represent op and if so, build the fmuladd. 2540 // 2541 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2542 // Does NOT check the type of the operation - it's assumed that this function 2543 // will be called from contexts where it's known that the type is contractable. 2544 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2545 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2546 bool isSub=false) { 2547 2548 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2549 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2550 "Only fadd/fsub can be the root of an fmuladd."); 2551 2552 // Check whether this op is marked as fusable. 2553 if (!op.FPContractable) 2554 return nullptr; 2555 2556 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2557 // either disabled, or handled entirely by the LLVM backend). 2558 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2559 return nullptr; 2560 2561 // We have a potentially fusable op. Look for a mul on one of the operands. 2562 // Also, make sure that the mul result isn't used directly. In that case, 2563 // there's no point creating a muladd operation. 2564 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2565 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2566 LHSBinOp->use_empty()) 2567 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2568 } 2569 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2570 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2571 RHSBinOp->use_empty()) 2572 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2573 } 2574 2575 return nullptr; 2576 } 2577 2578 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2579 if (op.LHS->getType()->isPointerTy() || 2580 op.RHS->getType()->isPointerTy()) 2581 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2582 2583 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2584 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2585 case LangOptions::SOB_Defined: 2586 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2587 case LangOptions::SOB_Undefined: 2588 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2589 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2590 // Fall through. 2591 case LangOptions::SOB_Trapping: 2592 return EmitOverflowCheckedBinOp(op); 2593 } 2594 } 2595 2596 if (op.Ty->isUnsignedIntegerType() && 2597 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2598 return EmitOverflowCheckedBinOp(op); 2599 2600 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2601 // Try to form an fmuladd. 2602 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2603 return FMulAdd; 2604 2605 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2606 } 2607 2608 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2609 } 2610 2611 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2612 // The LHS is always a pointer if either side is. 2613 if (!op.LHS->getType()->isPointerTy()) { 2614 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2615 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2616 case LangOptions::SOB_Defined: 2617 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2618 case LangOptions::SOB_Undefined: 2619 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2620 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2621 // Fall through. 2622 case LangOptions::SOB_Trapping: 2623 return EmitOverflowCheckedBinOp(op); 2624 } 2625 } 2626 2627 if (op.Ty->isUnsignedIntegerType() && 2628 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2629 return EmitOverflowCheckedBinOp(op); 2630 2631 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2632 // Try to form an fmuladd. 2633 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2634 return FMulAdd; 2635 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2636 } 2637 2638 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2639 } 2640 2641 // If the RHS is not a pointer, then we have normal pointer 2642 // arithmetic. 2643 if (!op.RHS->getType()->isPointerTy()) 2644 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2645 2646 // Otherwise, this is a pointer subtraction. 2647 2648 // Do the raw subtraction part. 2649 llvm::Value *LHS 2650 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2651 llvm::Value *RHS 2652 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2653 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2654 2655 // Okay, figure out the element size. 2656 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2657 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2658 2659 llvm::Value *divisor = nullptr; 2660 2661 // For a variable-length array, this is going to be non-constant. 2662 if (const VariableArrayType *vla 2663 = CGF.getContext().getAsVariableArrayType(elementType)) { 2664 llvm::Value *numElements; 2665 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2666 2667 divisor = numElements; 2668 2669 // Scale the number of non-VLA elements by the non-VLA element size. 2670 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2671 if (!eltSize.isOne()) 2672 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2673 2674 // For everything elese, we can just compute it, safe in the 2675 // assumption that Sema won't let anything through that we can't 2676 // safely compute the size of. 2677 } else { 2678 CharUnits elementSize; 2679 // Handle GCC extension for pointer arithmetic on void* and 2680 // function pointer types. 2681 if (elementType->isVoidType() || elementType->isFunctionType()) 2682 elementSize = CharUnits::One(); 2683 else 2684 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2685 2686 // Don't even emit the divide for element size of 1. 2687 if (elementSize.isOne()) 2688 return diffInChars; 2689 2690 divisor = CGF.CGM.getSize(elementSize); 2691 } 2692 2693 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2694 // pointer difference in C is only defined in the case where both operands 2695 // are pointing to elements of an array. 2696 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2697 } 2698 2699 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2700 llvm::IntegerType *Ty; 2701 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2702 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2703 else 2704 Ty = cast<llvm::IntegerType>(LHS->getType()); 2705 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2706 } 2707 2708 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2709 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2710 // RHS to the same size as the LHS. 2711 Value *RHS = Ops.RHS; 2712 if (Ops.LHS->getType() != RHS->getType()) 2713 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2714 2715 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2716 Ops.Ty->hasSignedIntegerRepresentation() && 2717 !CGF.getLangOpts().isSignedOverflowDefined(); 2718 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2719 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2720 if (CGF.getLangOpts().OpenCL) 2721 RHS = 2722 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2723 else if ((SanitizeBase || SanitizeExponent) && 2724 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2725 CodeGenFunction::SanitizerScope SanScope(&CGF); 2726 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2727 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2728 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2729 2730 if (SanitizeExponent) { 2731 Checks.push_back( 2732 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2733 } 2734 2735 if (SanitizeBase) { 2736 // Check whether we are shifting any non-zero bits off the top of the 2737 // integer. We only emit this check if exponent is valid - otherwise 2738 // instructions below will have undefined behavior themselves. 2739 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2740 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2741 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2742 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2743 CGF.EmitBlock(CheckShiftBase); 2744 llvm::Value *BitsShiftedOff = 2745 Builder.CreateLShr(Ops.LHS, 2746 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2747 /*NUW*/true, /*NSW*/true), 2748 "shl.check"); 2749 if (CGF.getLangOpts().CPlusPlus) { 2750 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2751 // Under C++11's rules, shifting a 1 bit into the sign bit is 2752 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2753 // define signed left shifts, so we use the C99 and C++11 rules there). 2754 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2755 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2756 } 2757 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2758 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2759 CGF.EmitBlock(Cont); 2760 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2761 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2762 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2763 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2764 } 2765 2766 assert(!Checks.empty()); 2767 EmitBinOpCheck(Checks, Ops); 2768 } 2769 2770 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2771 } 2772 2773 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2774 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2775 // RHS to the same size as the LHS. 2776 Value *RHS = Ops.RHS; 2777 if (Ops.LHS->getType() != RHS->getType()) 2778 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2779 2780 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2781 if (CGF.getLangOpts().OpenCL) 2782 RHS = 2783 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2784 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2785 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2786 CodeGenFunction::SanitizerScope SanScope(&CGF); 2787 llvm::Value *Valid = 2788 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2789 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2790 } 2791 2792 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2793 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2794 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2795 } 2796 2797 enum IntrinsicType { VCMPEQ, VCMPGT }; 2798 // return corresponding comparison intrinsic for given vector type 2799 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2800 BuiltinType::Kind ElemKind) { 2801 switch (ElemKind) { 2802 default: llvm_unreachable("unexpected element type"); 2803 case BuiltinType::Char_U: 2804 case BuiltinType::UChar: 2805 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2806 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2807 case BuiltinType::Char_S: 2808 case BuiltinType::SChar: 2809 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2810 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2811 case BuiltinType::UShort: 2812 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2813 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2814 case BuiltinType::Short: 2815 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2816 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2817 case BuiltinType::UInt: 2818 case BuiltinType::ULong: 2819 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2820 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2821 case BuiltinType::Int: 2822 case BuiltinType::Long: 2823 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2824 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2825 case BuiltinType::Float: 2826 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2827 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2828 } 2829 } 2830 2831 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 2832 llvm::CmpInst::Predicate UICmpOpc, 2833 llvm::CmpInst::Predicate SICmpOpc, 2834 llvm::CmpInst::Predicate FCmpOpc) { 2835 TestAndClearIgnoreResultAssign(); 2836 Value *Result; 2837 QualType LHSTy = E->getLHS()->getType(); 2838 QualType RHSTy = E->getRHS()->getType(); 2839 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2840 assert(E->getOpcode() == BO_EQ || 2841 E->getOpcode() == BO_NE); 2842 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2843 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2844 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2845 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2846 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2847 Value *LHS = Visit(E->getLHS()); 2848 Value *RHS = Visit(E->getRHS()); 2849 2850 // If AltiVec, the comparison results in a numeric type, so we use 2851 // intrinsics comparing vectors and giving 0 or 1 as a result 2852 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2853 // constants for mapping CR6 register bits to predicate result 2854 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2855 2856 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2857 2858 // in several cases vector arguments order will be reversed 2859 Value *FirstVecArg = LHS, 2860 *SecondVecArg = RHS; 2861 2862 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2863 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2864 BuiltinType::Kind ElementKind = BTy->getKind(); 2865 2866 switch(E->getOpcode()) { 2867 default: llvm_unreachable("is not a comparison operation"); 2868 case BO_EQ: 2869 CR6 = CR6_LT; 2870 ID = GetIntrinsic(VCMPEQ, ElementKind); 2871 break; 2872 case BO_NE: 2873 CR6 = CR6_EQ; 2874 ID = GetIntrinsic(VCMPEQ, ElementKind); 2875 break; 2876 case BO_LT: 2877 CR6 = CR6_LT; 2878 ID = GetIntrinsic(VCMPGT, ElementKind); 2879 std::swap(FirstVecArg, SecondVecArg); 2880 break; 2881 case BO_GT: 2882 CR6 = CR6_LT; 2883 ID = GetIntrinsic(VCMPGT, ElementKind); 2884 break; 2885 case BO_LE: 2886 if (ElementKind == BuiltinType::Float) { 2887 CR6 = CR6_LT; 2888 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2889 std::swap(FirstVecArg, SecondVecArg); 2890 } 2891 else { 2892 CR6 = CR6_EQ; 2893 ID = GetIntrinsic(VCMPGT, ElementKind); 2894 } 2895 break; 2896 case BO_GE: 2897 if (ElementKind == BuiltinType::Float) { 2898 CR6 = CR6_LT; 2899 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2900 } 2901 else { 2902 CR6 = CR6_EQ; 2903 ID = GetIntrinsic(VCMPGT, ElementKind); 2904 std::swap(FirstVecArg, SecondVecArg); 2905 } 2906 break; 2907 } 2908 2909 Value *CR6Param = Builder.getInt32(CR6); 2910 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2911 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2912 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2913 E->getExprLoc()); 2914 } 2915 2916 if (LHS->getType()->isFPOrFPVectorTy()) { 2917 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 2918 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2919 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 2920 } else { 2921 // Unsigned integers and pointers. 2922 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 2923 } 2924 2925 // If this is a vector comparison, sign extend the result to the appropriate 2926 // vector integer type and return it (don't convert to bool). 2927 if (LHSTy->isVectorType()) 2928 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2929 2930 } else { 2931 // Complex Comparison: can only be an equality comparison. 2932 CodeGenFunction::ComplexPairTy LHS, RHS; 2933 QualType CETy; 2934 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2935 LHS = CGF.EmitComplexExpr(E->getLHS()); 2936 CETy = CTy->getElementType(); 2937 } else { 2938 LHS.first = Visit(E->getLHS()); 2939 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2940 CETy = LHSTy; 2941 } 2942 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2943 RHS = CGF.EmitComplexExpr(E->getRHS()); 2944 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2945 CTy->getElementType()) && 2946 "The element types must always match."); 2947 (void)CTy; 2948 } else { 2949 RHS.first = Visit(E->getRHS()); 2950 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2951 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2952 "The element types must always match."); 2953 } 2954 2955 Value *ResultR, *ResultI; 2956 if (CETy->isRealFloatingType()) { 2957 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 2958 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 2959 } else { 2960 // Complex comparisons can only be equality comparisons. As such, signed 2961 // and unsigned opcodes are the same. 2962 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 2963 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 2964 } 2965 2966 if (E->getOpcode() == BO_EQ) { 2967 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2968 } else { 2969 assert(E->getOpcode() == BO_NE && 2970 "Complex comparison other than == or != ?"); 2971 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2972 } 2973 } 2974 2975 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2976 E->getExprLoc()); 2977 } 2978 2979 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2980 bool Ignore = TestAndClearIgnoreResultAssign(); 2981 2982 Value *RHS; 2983 LValue LHS; 2984 2985 switch (E->getLHS()->getType().getObjCLifetime()) { 2986 case Qualifiers::OCL_Strong: 2987 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2988 break; 2989 2990 case Qualifiers::OCL_Autoreleasing: 2991 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2992 break; 2993 2994 case Qualifiers::OCL_ExplicitNone: 2995 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 2996 break; 2997 2998 case Qualifiers::OCL_Weak: 2999 RHS = Visit(E->getRHS()); 3000 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3001 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3002 break; 3003 3004 case Qualifiers::OCL_None: 3005 // __block variables need to have the rhs evaluated first, plus 3006 // this should improve codegen just a little. 3007 RHS = Visit(E->getRHS()); 3008 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3009 3010 // Store the value into the LHS. Bit-fields are handled specially 3011 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3012 // 'An assignment expression has the value of the left operand after 3013 // the assignment...'. 3014 if (LHS.isBitField()) 3015 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3016 else 3017 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3018 } 3019 3020 // If the result is clearly ignored, return now. 3021 if (Ignore) 3022 return nullptr; 3023 3024 // The result of an assignment in C is the assigned r-value. 3025 if (!CGF.getLangOpts().CPlusPlus) 3026 return RHS; 3027 3028 // If the lvalue is non-volatile, return the computed value of the assignment. 3029 if (!LHS.isVolatileQualified()) 3030 return RHS; 3031 3032 // Otherwise, reload the value. 3033 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3034 } 3035 3036 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3037 // Perform vector logical and on comparisons with zero vectors. 3038 if (E->getType()->isVectorType()) { 3039 CGF.incrementProfileCounter(E); 3040 3041 Value *LHS = Visit(E->getLHS()); 3042 Value *RHS = Visit(E->getRHS()); 3043 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3044 if (LHS->getType()->isFPOrFPVectorTy()) { 3045 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3046 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3047 } else { 3048 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3049 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3050 } 3051 Value *And = Builder.CreateAnd(LHS, RHS); 3052 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3053 } 3054 3055 llvm::Type *ResTy = ConvertType(E->getType()); 3056 3057 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3058 // If we have 1 && X, just emit X without inserting the control flow. 3059 bool LHSCondVal; 3060 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3061 if (LHSCondVal) { // If we have 1 && X, just emit X. 3062 CGF.incrementProfileCounter(E); 3063 3064 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3065 // ZExt result to int or bool. 3066 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3067 } 3068 3069 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3070 if (!CGF.ContainsLabel(E->getRHS())) 3071 return llvm::Constant::getNullValue(ResTy); 3072 } 3073 3074 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3075 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3076 3077 CodeGenFunction::ConditionalEvaluation eval(CGF); 3078 3079 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3080 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3081 CGF.getProfileCount(E->getRHS())); 3082 3083 // Any edges into the ContBlock are now from an (indeterminate number of) 3084 // edges from this first condition. All of these values will be false. Start 3085 // setting up the PHI node in the Cont Block for this. 3086 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3087 "", ContBlock); 3088 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3089 PI != PE; ++PI) 3090 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3091 3092 eval.begin(CGF); 3093 CGF.EmitBlock(RHSBlock); 3094 CGF.incrementProfileCounter(E); 3095 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3096 eval.end(CGF); 3097 3098 // Reaquire the RHS block, as there may be subblocks inserted. 3099 RHSBlock = Builder.GetInsertBlock(); 3100 3101 // Emit an unconditional branch from this block to ContBlock. 3102 { 3103 // There is no need to emit line number for unconditional branch. 3104 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3105 CGF.EmitBlock(ContBlock); 3106 } 3107 // Insert an entry into the phi node for the edge with the value of RHSCond. 3108 PN->addIncoming(RHSCond, RHSBlock); 3109 3110 // ZExt result to int. 3111 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3112 } 3113 3114 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3115 // Perform vector logical or on comparisons with zero vectors. 3116 if (E->getType()->isVectorType()) { 3117 CGF.incrementProfileCounter(E); 3118 3119 Value *LHS = Visit(E->getLHS()); 3120 Value *RHS = Visit(E->getRHS()); 3121 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3122 if (LHS->getType()->isFPOrFPVectorTy()) { 3123 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3124 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3125 } else { 3126 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3127 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3128 } 3129 Value *Or = Builder.CreateOr(LHS, RHS); 3130 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3131 } 3132 3133 llvm::Type *ResTy = ConvertType(E->getType()); 3134 3135 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3136 // If we have 0 || X, just emit X without inserting the control flow. 3137 bool LHSCondVal; 3138 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3139 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3140 CGF.incrementProfileCounter(E); 3141 3142 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3143 // ZExt result to int or bool. 3144 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3145 } 3146 3147 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3148 if (!CGF.ContainsLabel(E->getRHS())) 3149 return llvm::ConstantInt::get(ResTy, 1); 3150 } 3151 3152 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3153 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3154 3155 CodeGenFunction::ConditionalEvaluation eval(CGF); 3156 3157 // Branch on the LHS first. If it is true, go to the success (cont) block. 3158 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3159 CGF.getCurrentProfileCount() - 3160 CGF.getProfileCount(E->getRHS())); 3161 3162 // Any edges into the ContBlock are now from an (indeterminate number of) 3163 // edges from this first condition. All of these values will be true. Start 3164 // setting up the PHI node in the Cont Block for this. 3165 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3166 "", ContBlock); 3167 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3168 PI != PE; ++PI) 3169 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3170 3171 eval.begin(CGF); 3172 3173 // Emit the RHS condition as a bool value. 3174 CGF.EmitBlock(RHSBlock); 3175 CGF.incrementProfileCounter(E); 3176 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3177 3178 eval.end(CGF); 3179 3180 // Reaquire the RHS block, as there may be subblocks inserted. 3181 RHSBlock = Builder.GetInsertBlock(); 3182 3183 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3184 // into the phi node for the edge with the value of RHSCond. 3185 CGF.EmitBlock(ContBlock); 3186 PN->addIncoming(RHSCond, RHSBlock); 3187 3188 // ZExt result to int. 3189 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3190 } 3191 3192 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3193 CGF.EmitIgnoredExpr(E->getLHS()); 3194 CGF.EnsureInsertPoint(); 3195 return Visit(E->getRHS()); 3196 } 3197 3198 //===----------------------------------------------------------------------===// 3199 // Other Operators 3200 //===----------------------------------------------------------------------===// 3201 3202 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3203 /// expression is cheap enough and side-effect-free enough to evaluate 3204 /// unconditionally instead of conditionally. This is used to convert control 3205 /// flow into selects in some cases. 3206 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3207 CodeGenFunction &CGF) { 3208 // Anything that is an integer or floating point constant is fine. 3209 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3210 3211 // Even non-volatile automatic variables can't be evaluated unconditionally. 3212 // Referencing a thread_local may cause non-trivial initialization work to 3213 // occur. If we're inside a lambda and one of the variables is from the scope 3214 // outside the lambda, that function may have returned already. Reading its 3215 // locals is a bad idea. Also, these reads may introduce races there didn't 3216 // exist in the source-level program. 3217 } 3218 3219 3220 Value *ScalarExprEmitter:: 3221 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3222 TestAndClearIgnoreResultAssign(); 3223 3224 // Bind the common expression if necessary. 3225 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3226 3227 Expr *condExpr = E->getCond(); 3228 Expr *lhsExpr = E->getTrueExpr(); 3229 Expr *rhsExpr = E->getFalseExpr(); 3230 3231 // If the condition constant folds and can be elided, try to avoid emitting 3232 // the condition and the dead arm. 3233 bool CondExprBool; 3234 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3235 Expr *live = lhsExpr, *dead = rhsExpr; 3236 if (!CondExprBool) std::swap(live, dead); 3237 3238 // If the dead side doesn't have labels we need, just emit the Live part. 3239 if (!CGF.ContainsLabel(dead)) { 3240 if (CondExprBool) 3241 CGF.incrementProfileCounter(E); 3242 Value *Result = Visit(live); 3243 3244 // If the live part is a throw expression, it acts like it has a void 3245 // type, so evaluating it returns a null Value*. However, a conditional 3246 // with non-void type must return a non-null Value*. 3247 if (!Result && !E->getType()->isVoidType()) 3248 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3249 3250 return Result; 3251 } 3252 } 3253 3254 // OpenCL: If the condition is a vector, we can treat this condition like 3255 // the select function. 3256 if (CGF.getLangOpts().OpenCL 3257 && condExpr->getType()->isVectorType()) { 3258 CGF.incrementProfileCounter(E); 3259 3260 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3261 llvm::Value *LHS = Visit(lhsExpr); 3262 llvm::Value *RHS = Visit(rhsExpr); 3263 3264 llvm::Type *condType = ConvertType(condExpr->getType()); 3265 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3266 3267 unsigned numElem = vecTy->getNumElements(); 3268 llvm::Type *elemType = vecTy->getElementType(); 3269 3270 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3271 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3272 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3273 llvm::VectorType::get(elemType, 3274 numElem), 3275 "sext"); 3276 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3277 3278 // Cast float to int to perform ANDs if necessary. 3279 llvm::Value *RHSTmp = RHS; 3280 llvm::Value *LHSTmp = LHS; 3281 bool wasCast = false; 3282 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3283 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3284 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3285 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3286 wasCast = true; 3287 } 3288 3289 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3290 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3291 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3292 if (wasCast) 3293 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3294 3295 return tmp5; 3296 } 3297 3298 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3299 // select instead of as control flow. We can only do this if it is cheap and 3300 // safe to evaluate the LHS and RHS unconditionally. 3301 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3302 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3303 CGF.incrementProfileCounter(E); 3304 3305 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3306 llvm::Value *LHS = Visit(lhsExpr); 3307 llvm::Value *RHS = Visit(rhsExpr); 3308 if (!LHS) { 3309 // If the conditional has void type, make sure we return a null Value*. 3310 assert(!RHS && "LHS and RHS types must match"); 3311 return nullptr; 3312 } 3313 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3314 } 3315 3316 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3317 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3318 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3319 3320 CodeGenFunction::ConditionalEvaluation eval(CGF); 3321 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3322 CGF.getProfileCount(lhsExpr)); 3323 3324 CGF.EmitBlock(LHSBlock); 3325 CGF.incrementProfileCounter(E); 3326 eval.begin(CGF); 3327 Value *LHS = Visit(lhsExpr); 3328 eval.end(CGF); 3329 3330 LHSBlock = Builder.GetInsertBlock(); 3331 Builder.CreateBr(ContBlock); 3332 3333 CGF.EmitBlock(RHSBlock); 3334 eval.begin(CGF); 3335 Value *RHS = Visit(rhsExpr); 3336 eval.end(CGF); 3337 3338 RHSBlock = Builder.GetInsertBlock(); 3339 CGF.EmitBlock(ContBlock); 3340 3341 // If the LHS or RHS is a throw expression, it will be legitimately null. 3342 if (!LHS) 3343 return RHS; 3344 if (!RHS) 3345 return LHS; 3346 3347 // Create a PHI node for the real part. 3348 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3349 PN->addIncoming(LHS, LHSBlock); 3350 PN->addIncoming(RHS, RHSBlock); 3351 return PN; 3352 } 3353 3354 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3355 return Visit(E->getChosenSubExpr()); 3356 } 3357 3358 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3359 QualType Ty = VE->getType(); 3360 3361 if (Ty->isVariablyModifiedType()) 3362 CGF.EmitVariablyModifiedType(Ty); 3363 3364 Address ArgValue = Address::invalid(); 3365 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3366 3367 llvm::Type *ArgTy = ConvertType(VE->getType()); 3368 3369 // If EmitVAArg fails, emit an error. 3370 if (!ArgPtr.isValid()) { 3371 CGF.ErrorUnsupported(VE, "va_arg expression"); 3372 return llvm::UndefValue::get(ArgTy); 3373 } 3374 3375 // FIXME Volatility. 3376 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3377 3378 // If EmitVAArg promoted the type, we must truncate it. 3379 if (ArgTy != Val->getType()) { 3380 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3381 Val = Builder.CreateIntToPtr(Val, ArgTy); 3382 else 3383 Val = Builder.CreateTrunc(Val, ArgTy); 3384 } 3385 3386 return Val; 3387 } 3388 3389 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3390 return CGF.EmitBlockLiteral(block); 3391 } 3392 3393 // Convert a vec3 to vec4, or vice versa. 3394 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3395 Value *Src, unsigned NumElementsDst) { 3396 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3397 SmallVector<llvm::Constant*, 4> Args; 3398 Args.push_back(Builder.getInt32(0)); 3399 Args.push_back(Builder.getInt32(1)); 3400 Args.push_back(Builder.getInt32(2)); 3401 if (NumElementsDst == 4) 3402 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3403 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3404 return Builder.CreateShuffleVector(Src, UnV, Mask); 3405 } 3406 3407 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3408 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3409 llvm::Type *DstTy = ConvertType(E->getType()); 3410 3411 llvm::Type *SrcTy = Src->getType(); 3412 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3413 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3414 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3415 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3416 3417 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3418 // vector to get a vec4, then a bitcast if the target type is different. 3419 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3420 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3421 Src = Builder.CreateBitCast(Src, DstTy); 3422 Src->setName("astype"); 3423 return Src; 3424 } 3425 3426 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3427 // to vec4 if the original type is not vec4, then a shuffle vector to 3428 // get a vec3. 3429 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3430 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3431 Src = Builder.CreateBitCast(Src, Vec4Ty); 3432 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3433 Src->setName("astype"); 3434 return Src; 3435 } 3436 3437 return Builder.CreateBitCast(Src, DstTy, "astype"); 3438 } 3439 3440 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3441 return CGF.EmitAtomicExpr(E).getScalarVal(); 3442 } 3443 3444 //===----------------------------------------------------------------------===// 3445 // Entry Point into this File 3446 //===----------------------------------------------------------------------===// 3447 3448 /// Emit the computation of the specified expression of scalar type, ignoring 3449 /// the result. 3450 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3451 assert(E && hasScalarEvaluationKind(E->getType()) && 3452 "Invalid scalar expression to emit"); 3453 3454 return ScalarExprEmitter(*this, IgnoreResultAssign) 3455 .Visit(const_cast<Expr *>(E)); 3456 } 3457 3458 /// Emit a conversion from the specified type to the specified destination type, 3459 /// both of which are LLVM scalar types. 3460 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3461 QualType DstTy, 3462 SourceLocation Loc) { 3463 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3464 "Invalid scalar expression to emit"); 3465 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3466 } 3467 3468 /// Emit a conversion from the specified complex type to the specified 3469 /// destination type, where the destination type is an LLVM scalar type. 3470 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3471 QualType SrcTy, 3472 QualType DstTy, 3473 SourceLocation Loc) { 3474 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3475 "Invalid complex -> scalar conversion"); 3476 return ScalarExprEmitter(*this) 3477 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3478 } 3479 3480 3481 llvm::Value *CodeGenFunction:: 3482 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3483 bool isInc, bool isPre) { 3484 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3485 } 3486 3487 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3488 // object->isa or (*object).isa 3489 // Generate code as for: *(Class*)object 3490 3491 Expr *BaseExpr = E->getBase(); 3492 Address Addr = Address::invalid(); 3493 if (BaseExpr->isRValue()) { 3494 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3495 } else { 3496 Addr = EmitLValue(BaseExpr).getAddress(); 3497 } 3498 3499 // Cast the address to Class*. 3500 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3501 return MakeAddrLValue(Addr, E->getType()); 3502 } 3503 3504 3505 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3506 const CompoundAssignOperator *E) { 3507 ScalarExprEmitter Scalar(*this); 3508 Value *Result = nullptr; 3509 switch (E->getOpcode()) { 3510 #define COMPOUND_OP(Op) \ 3511 case BO_##Op##Assign: \ 3512 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3513 Result) 3514 COMPOUND_OP(Mul); 3515 COMPOUND_OP(Div); 3516 COMPOUND_OP(Rem); 3517 COMPOUND_OP(Add); 3518 COMPOUND_OP(Sub); 3519 COMPOUND_OP(Shl); 3520 COMPOUND_OP(Shr); 3521 COMPOUND_OP(And); 3522 COMPOUND_OP(Xor); 3523 COMPOUND_OP(Or); 3524 #undef COMPOUND_OP 3525 3526 case BO_PtrMemD: 3527 case BO_PtrMemI: 3528 case BO_Mul: 3529 case BO_Div: 3530 case BO_Rem: 3531 case BO_Add: 3532 case BO_Sub: 3533 case BO_Shl: 3534 case BO_Shr: 3535 case BO_LT: 3536 case BO_GT: 3537 case BO_LE: 3538 case BO_GE: 3539 case BO_EQ: 3540 case BO_NE: 3541 case BO_And: 3542 case BO_Xor: 3543 case BO_Or: 3544 case BO_LAnd: 3545 case BO_LOr: 3546 case BO_Assign: 3547 case BO_Comma: 3548 llvm_unreachable("Not valid compound assignment operators"); 3549 } 3550 3551 llvm_unreachable("Unhandled compound assignment operator"); 3552 } 3553