1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
352                         llvm::Type *SrcTy, llvm::Type *DstTy,
353                         ScalarConversionOpts Opts);
354   Value *
355   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
356                        SourceLocation Loc,
357                        ScalarConversionOpts Opts = ScalarConversionOpts());
358 
359   /// Convert between either a fixed point and other fixed point or fixed point
360   /// and an integer.
361   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
362                                   SourceLocation Loc);
363 
364   /// Emit a conversion from the specified complex type to the specified
365   /// destination type, where the destination type is an LLVM scalar type.
366   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367                                        QualType SrcTy, QualType DstTy,
368                                        SourceLocation Loc);
369 
370   /// EmitNullValue - Emit a value that corresponds to null for the given type.
371   Value *EmitNullValue(QualType Ty);
372 
373   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
374   Value *EmitFloatToBoolConversion(Value *V) {
375     // Compare against 0.0 for fp scalars.
376     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377     return Builder.CreateFCmpUNE(V, Zero, "tobool");
378   }
379 
380   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
381   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384     return Builder.CreateICmpNE(V, Zero, "tobool");
385   }
386 
387   Value *EmitIntToBoolConversion(Value *V) {
388     // Because of the type rules of C, we often end up computing a
389     // logical value, then zero extending it to int, then wanting it
390     // as a logical value again.  Optimize this common case.
391     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393         Value *Result = ZI->getOperand(0);
394         // If there aren't any more uses, zap the instruction to save space.
395         // Note that there can be more uses, for example if this
396         // is the result of an assignment.
397         if (ZI->use_empty())
398           ZI->eraseFromParent();
399         return Result;
400       }
401     }
402 
403     return Builder.CreateIsNotNull(V, "tobool");
404   }
405 
406   //===--------------------------------------------------------------------===//
407   //                            Visitor Methods
408   //===--------------------------------------------------------------------===//
409 
410   Value *Visit(Expr *E) {
411     ApplyDebugLocation DL(CGF, E);
412     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
413   }
414 
415   Value *VisitStmt(Stmt *S) {
416     S->dump(llvm::errs(), CGF.getContext());
417     llvm_unreachable("Stmt can't have complex result type!");
418   }
419   Value *VisitExpr(Expr *S);
420 
421   Value *VisitConstantExpr(ConstantExpr *E) {
422     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423       if (E->isGLValue())
424         return CGF.Builder.CreateLoad(Address(
425             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
426       return Result;
427     }
428     return Visit(E->getSubExpr());
429   }
430   Value *VisitParenExpr(ParenExpr *PE) {
431     return Visit(PE->getSubExpr());
432   }
433   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
434     return Visit(E->getReplacement());
435   }
436   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
437     return Visit(GE->getResultExpr());
438   }
439   Value *VisitCoawaitExpr(CoawaitExpr *S) {
440     return CGF.EmitCoawaitExpr(*S).getScalarVal();
441   }
442   Value *VisitCoyieldExpr(CoyieldExpr *S) {
443     return CGF.EmitCoyieldExpr(*S).getScalarVal();
444   }
445   Value *VisitUnaryCoawait(const UnaryOperator *E) {
446     return Visit(E->getSubExpr());
447   }
448 
449   // Leaves.
450   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
454     return Builder.getInt(E->getValue());
455   }
456   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
457     return llvm::ConstantFP::get(VMContext, E->getValue());
458   }
459   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
466     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467   }
468   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
472     return EmitNullValue(E->getType());
473   }
474   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
475   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
476   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
477     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
478     return Builder.CreateBitCast(V, ConvertType(E->getType()));
479   }
480 
481   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
482     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
483   }
484 
485   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
486     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
487   }
488 
489   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
490 
491   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
492     if (E->isGLValue())
493       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
494                               E->getExprLoc());
495 
496     // Otherwise, assume the mapping is the scalar directly.
497     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
498   }
499 
500   // l-values.
501   Value *VisitDeclRefExpr(DeclRefExpr *E) {
502     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
503       return CGF.emitScalarConstant(Constant, E);
504     return EmitLoadOfLValue(E);
505   }
506 
507   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
508     return CGF.EmitObjCSelectorExpr(E);
509   }
510   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
511     return CGF.EmitObjCProtocolExpr(E);
512   }
513   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
514     return EmitLoadOfLValue(E);
515   }
516   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
517     if (E->getMethodDecl() &&
518         E->getMethodDecl()->getReturnType()->isReferenceType())
519       return EmitLoadOfLValue(E);
520     return CGF.EmitObjCMessageExpr(E).getScalarVal();
521   }
522 
523   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
524     LValue LV = CGF.EmitObjCIsaExpr(E);
525     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
526     return V;
527   }
528 
529   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
530     VersionTuple Version = E->getVersion();
531 
532     // If we're checking for a platform older than our minimum deployment
533     // target, we can fold the check away.
534     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
535       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
536 
537     return CGF.EmitBuiltinAvailable(Version);
538   }
539 
540   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
541   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
542   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
543   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
544   Value *VisitMemberExpr(MemberExpr *E);
545   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
546   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
547     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
548     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
549     // literals aren't l-values in C++. We do so simply because that's the
550     // cleanest way to handle compound literals in C++.
551     // See the discussion here: https://reviews.llvm.org/D64464
552     return EmitLoadOfLValue(E);
553   }
554 
555   Value *VisitInitListExpr(InitListExpr *E);
556 
557   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
558     assert(CGF.getArrayInitIndex() &&
559            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
560     return CGF.getArrayInitIndex();
561   }
562 
563   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
564     return EmitNullValue(E->getType());
565   }
566   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
567     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
568     return VisitCastExpr(E);
569   }
570   Value *VisitCastExpr(CastExpr *E);
571 
572   Value *VisitCallExpr(const CallExpr *E) {
573     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
574       return EmitLoadOfLValue(E);
575 
576     Value *V = CGF.EmitCallExpr(E).getScalarVal();
577 
578     EmitLValueAlignmentAssumption(E, V);
579     return V;
580   }
581 
582   Value *VisitStmtExpr(const StmtExpr *E);
583 
584   // Unary Operators.
585   Value *VisitUnaryPostDec(const UnaryOperator *E) {
586     LValue LV = EmitLValue(E->getSubExpr());
587     return EmitScalarPrePostIncDec(E, LV, false, false);
588   }
589   Value *VisitUnaryPostInc(const UnaryOperator *E) {
590     LValue LV = EmitLValue(E->getSubExpr());
591     return EmitScalarPrePostIncDec(E, LV, true, false);
592   }
593   Value *VisitUnaryPreDec(const UnaryOperator *E) {
594     LValue LV = EmitLValue(E->getSubExpr());
595     return EmitScalarPrePostIncDec(E, LV, false, true);
596   }
597   Value *VisitUnaryPreInc(const UnaryOperator *E) {
598     LValue LV = EmitLValue(E->getSubExpr());
599     return EmitScalarPrePostIncDec(E, LV, true, true);
600   }
601 
602   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
603                                                   llvm::Value *InVal,
604                                                   bool IsInc);
605 
606   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
607                                        bool isInc, bool isPre);
608 
609 
610   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
611     if (isa<MemberPointerType>(E->getType())) // never sugared
612       return CGF.CGM.getMemberPointerConstant(E);
613 
614     return EmitLValue(E->getSubExpr()).getPointer(CGF);
615   }
616   Value *VisitUnaryDeref(const UnaryOperator *E) {
617     if (E->getType()->isVoidType())
618       return Visit(E->getSubExpr()); // the actual value should be unused
619     return EmitLoadOfLValue(E);
620   }
621   Value *VisitUnaryPlus(const UnaryOperator *E) {
622     // This differs from gcc, though, most likely due to a bug in gcc.
623     TestAndClearIgnoreResultAssign();
624     return Visit(E->getSubExpr());
625   }
626   Value *VisitUnaryMinus    (const UnaryOperator *E);
627   Value *VisitUnaryNot      (const UnaryOperator *E);
628   Value *VisitUnaryLNot     (const UnaryOperator *E);
629   Value *VisitUnaryReal     (const UnaryOperator *E);
630   Value *VisitUnaryImag     (const UnaryOperator *E);
631   Value *VisitUnaryExtension(const UnaryOperator *E) {
632     return Visit(E->getSubExpr());
633   }
634 
635   // C++
636   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
637     return EmitLoadOfLValue(E);
638   }
639   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
640     auto &Ctx = CGF.getContext();
641     APValue Evaluated =
642         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
643     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
644                                              SLE->getType());
645   }
646 
647   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
648     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
649     return Visit(DAE->getExpr());
650   }
651   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
652     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
653     return Visit(DIE->getExpr());
654   }
655   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
656     return CGF.LoadCXXThis();
657   }
658 
659   Value *VisitExprWithCleanups(ExprWithCleanups *E);
660   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
661     return CGF.EmitCXXNewExpr(E);
662   }
663   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
664     CGF.EmitCXXDeleteExpr(E);
665     return nullptr;
666   }
667 
668   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
669     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
670   }
671 
672   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
673     return Builder.getInt1(E->isSatisfied());
674   }
675 
676   Value *VisitRequiresExpr(const RequiresExpr *E) {
677     return Builder.getInt1(E->isSatisfied());
678   }
679 
680   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
681     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
682   }
683 
684   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
685     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
686   }
687 
688   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
689     // C++ [expr.pseudo]p1:
690     //   The result shall only be used as the operand for the function call
691     //   operator (), and the result of such a call has type void. The only
692     //   effect is the evaluation of the postfix-expression before the dot or
693     //   arrow.
694     CGF.EmitScalarExpr(E->getBase());
695     return nullptr;
696   }
697 
698   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
699     return EmitNullValue(E->getType());
700   }
701 
702   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
703     CGF.EmitCXXThrowExpr(E);
704     return nullptr;
705   }
706 
707   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
708     return Builder.getInt1(E->getValue());
709   }
710 
711   // Binary Operators.
712   Value *EmitMul(const BinOpInfo &Ops) {
713     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
714       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
715       case LangOptions::SOB_Defined:
716         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
717       case LangOptions::SOB_Undefined:
718         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
719           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
720         LLVM_FALLTHROUGH;
721       case LangOptions::SOB_Trapping:
722         if (CanElideOverflowCheck(CGF.getContext(), Ops))
723           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
724         return EmitOverflowCheckedBinOp(Ops);
725       }
726     }
727 
728     if (Ops.Ty->isConstantMatrixType()) {
729       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
730       // We need to check the types of the operands of the operator to get the
731       // correct matrix dimensions.
732       auto *BO = cast<BinaryOperator>(Ops.E);
733       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
734           BO->getLHS()->getType().getCanonicalType());
735       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
736           BO->getRHS()->getType().getCanonicalType());
737       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
738       if (LHSMatTy && RHSMatTy)
739         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
740                                        LHSMatTy->getNumColumns(),
741                                        RHSMatTy->getNumColumns());
742       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
743     }
744 
745     if (Ops.Ty->isUnsignedIntegerType() &&
746         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
747         !CanElideOverflowCheck(CGF.getContext(), Ops))
748       return EmitOverflowCheckedBinOp(Ops);
749 
750     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
751       //  Preserve the old values
752       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
753       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
754     }
755     if (Ops.isFixedPointOp())
756       return EmitFixedPointBinOp(Ops);
757     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
758   }
759   /// Create a binary op that checks for overflow.
760   /// Currently only supports +, - and *.
761   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
762 
763   // Check for undefined division and modulus behaviors.
764   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
765                                                   llvm::Value *Zero,bool isDiv);
766   // Common helper for getting how wide LHS of shift is.
767   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
768 
769   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
770   // non powers of two.
771   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
772 
773   Value *EmitDiv(const BinOpInfo &Ops);
774   Value *EmitRem(const BinOpInfo &Ops);
775   Value *EmitAdd(const BinOpInfo &Ops);
776   Value *EmitSub(const BinOpInfo &Ops);
777   Value *EmitShl(const BinOpInfo &Ops);
778   Value *EmitShr(const BinOpInfo &Ops);
779   Value *EmitAnd(const BinOpInfo &Ops) {
780     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
781   }
782   Value *EmitXor(const BinOpInfo &Ops) {
783     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
784   }
785   Value *EmitOr (const BinOpInfo &Ops) {
786     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
787   }
788 
789   // Helper functions for fixed point binary operations.
790   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
791 
792   BinOpInfo EmitBinOps(const BinaryOperator *E);
793   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
794                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
795                                   Value *&Result);
796 
797   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
798                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
799 
800   // Binary operators and binary compound assignment operators.
801 #define HANDLEBINOP(OP) \
802   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
803     return Emit ## OP(EmitBinOps(E));                                      \
804   }                                                                        \
805   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
806     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
807   }
808   HANDLEBINOP(Mul)
809   HANDLEBINOP(Div)
810   HANDLEBINOP(Rem)
811   HANDLEBINOP(Add)
812   HANDLEBINOP(Sub)
813   HANDLEBINOP(Shl)
814   HANDLEBINOP(Shr)
815   HANDLEBINOP(And)
816   HANDLEBINOP(Xor)
817   HANDLEBINOP(Or)
818 #undef HANDLEBINOP
819 
820   // Comparisons.
821   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
822                      llvm::CmpInst::Predicate SICmpOpc,
823                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
824 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
825     Value *VisitBin##CODE(const BinaryOperator *E) { \
826       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
827                          llvm::FCmpInst::FP, SIG); }
828   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
829   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
830   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
831   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
832   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
833   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
834 #undef VISITCOMP
835 
836   Value *VisitBinAssign     (const BinaryOperator *E);
837 
838   Value *VisitBinLAnd       (const BinaryOperator *E);
839   Value *VisitBinLOr        (const BinaryOperator *E);
840   Value *VisitBinComma      (const BinaryOperator *E);
841 
842   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
843   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
844 
845   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
846     return Visit(E->getSemanticForm());
847   }
848 
849   // Other Operators.
850   Value *VisitBlockExpr(const BlockExpr *BE);
851   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
852   Value *VisitChooseExpr(ChooseExpr *CE);
853   Value *VisitVAArgExpr(VAArgExpr *VE);
854   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
855     return CGF.EmitObjCStringLiteral(E);
856   }
857   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
858     return CGF.EmitObjCBoxedExpr(E);
859   }
860   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
861     return CGF.EmitObjCArrayLiteral(E);
862   }
863   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
864     return CGF.EmitObjCDictionaryLiteral(E);
865   }
866   Value *VisitAsTypeExpr(AsTypeExpr *CE);
867   Value *VisitAtomicExpr(AtomicExpr *AE);
868 };
869 }  // end anonymous namespace.
870 
871 //===----------------------------------------------------------------------===//
872 //                                Utilities
873 //===----------------------------------------------------------------------===//
874 
875 /// EmitConversionToBool - Convert the specified expression value to a
876 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
877 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
878   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
879 
880   if (SrcType->isRealFloatingType())
881     return EmitFloatToBoolConversion(Src);
882 
883   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
884     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
885 
886   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
887          "Unknown scalar type to convert");
888 
889   if (isa<llvm::IntegerType>(Src->getType()))
890     return EmitIntToBoolConversion(Src);
891 
892   assert(isa<llvm::PointerType>(Src->getType()));
893   return EmitPointerToBoolConversion(Src, SrcType);
894 }
895 
896 void ScalarExprEmitter::EmitFloatConversionCheck(
897     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
898     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
899   assert(SrcType->isFloatingType() && "not a conversion from floating point");
900   if (!isa<llvm::IntegerType>(DstTy))
901     return;
902 
903   CodeGenFunction::SanitizerScope SanScope(&CGF);
904   using llvm::APFloat;
905   using llvm::APSInt;
906 
907   llvm::Value *Check = nullptr;
908   const llvm::fltSemantics &SrcSema =
909     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
910 
911   // Floating-point to integer. This has undefined behavior if the source is
912   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
913   // to an integer).
914   unsigned Width = CGF.getContext().getIntWidth(DstType);
915   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
916 
917   APSInt Min = APSInt::getMinValue(Width, Unsigned);
918   APFloat MinSrc(SrcSema, APFloat::uninitialized);
919   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
920       APFloat::opOverflow)
921     // Don't need an overflow check for lower bound. Just check for
922     // -Inf/NaN.
923     MinSrc = APFloat::getInf(SrcSema, true);
924   else
925     // Find the largest value which is too small to represent (before
926     // truncation toward zero).
927     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
928 
929   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
930   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
931   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
932       APFloat::opOverflow)
933     // Don't need an overflow check for upper bound. Just check for
934     // +Inf/NaN.
935     MaxSrc = APFloat::getInf(SrcSema, false);
936   else
937     // Find the smallest value which is too large to represent (before
938     // truncation toward zero).
939     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
940 
941   // If we're converting from __half, convert the range to float to match
942   // the type of src.
943   if (OrigSrcType->isHalfType()) {
944     const llvm::fltSemantics &Sema =
945       CGF.getContext().getFloatTypeSemantics(SrcType);
946     bool IsInexact;
947     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
948     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
949   }
950 
951   llvm::Value *GE =
952     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
953   llvm::Value *LE =
954     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
955   Check = Builder.CreateAnd(GE, LE);
956 
957   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
958                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
959                                   CGF.EmitCheckTypeDescriptor(DstType)};
960   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
961                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
962 }
963 
964 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
965 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
966 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
967                  std::pair<llvm::Value *, SanitizerMask>>
968 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
969                                  QualType DstType, CGBuilderTy &Builder) {
970   llvm::Type *SrcTy = Src->getType();
971   llvm::Type *DstTy = Dst->getType();
972   (void)DstTy; // Only used in assert()
973 
974   // This should be truncation of integral types.
975   assert(Src != Dst);
976   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
977   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
978          "non-integer llvm type");
979 
980   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
981   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
982 
983   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
984   // Else, it is a signed truncation.
985   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
986   SanitizerMask Mask;
987   if (!SrcSigned && !DstSigned) {
988     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
989     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
990   } else {
991     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
992     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
993   }
994 
995   llvm::Value *Check = nullptr;
996   // 1. Extend the truncated value back to the same width as the Src.
997   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
998   // 2. Equality-compare with the original source value
999   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1000   // If the comparison result is 'i1 false', then the truncation was lossy.
1001   return std::make_pair(Kind, std::make_pair(Check, Mask));
1002 }
1003 
1004 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1005     QualType SrcType, QualType DstType) {
1006   return SrcType->isIntegerType() && DstType->isIntegerType();
1007 }
1008 
1009 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1010                                                    Value *Dst, QualType DstType,
1011                                                    SourceLocation Loc) {
1012   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1013     return;
1014 
1015   // We only care about int->int conversions here.
1016   // We ignore conversions to/from pointer and/or bool.
1017   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1018                                                                        DstType))
1019     return;
1020 
1021   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1022   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1023   // This must be truncation. Else we do not care.
1024   if (SrcBits <= DstBits)
1025     return;
1026 
1027   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1028 
1029   // If the integer sign change sanitizer is enabled,
1030   // and we are truncating from larger unsigned type to smaller signed type,
1031   // let that next sanitizer deal with it.
1032   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1033   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1034   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1035       (!SrcSigned && DstSigned))
1036     return;
1037 
1038   CodeGenFunction::SanitizerScope SanScope(&CGF);
1039 
1040   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1041             std::pair<llvm::Value *, SanitizerMask>>
1042       Check =
1043           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1044   // If the comparison result is 'i1 false', then the truncation was lossy.
1045 
1046   // Do we care about this type of truncation?
1047   if (!CGF.SanOpts.has(Check.second.second))
1048     return;
1049 
1050   llvm::Constant *StaticArgs[] = {
1051       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1052       CGF.EmitCheckTypeDescriptor(DstType),
1053       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1054   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1055                 {Src, Dst});
1056 }
1057 
1058 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1059 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1060 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1061                  std::pair<llvm::Value *, SanitizerMask>>
1062 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1063                                  QualType DstType, CGBuilderTy &Builder) {
1064   llvm::Type *SrcTy = Src->getType();
1065   llvm::Type *DstTy = Dst->getType();
1066 
1067   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1068          "non-integer llvm type");
1069 
1070   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1071   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1072   (void)SrcSigned; // Only used in assert()
1073   (void)DstSigned; // Only used in assert()
1074   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1075   unsigned DstBits = DstTy->getScalarSizeInBits();
1076   (void)SrcBits; // Only used in assert()
1077   (void)DstBits; // Only used in assert()
1078 
1079   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1080          "either the widths should be different, or the signednesses.");
1081 
1082   // NOTE: zero value is considered to be non-negative.
1083   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1084                                        const char *Name) -> Value * {
1085     // Is this value a signed type?
1086     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1087     llvm::Type *VTy = V->getType();
1088     if (!VSigned) {
1089       // If the value is unsigned, then it is never negative.
1090       // FIXME: can we encounter non-scalar VTy here?
1091       return llvm::ConstantInt::getFalse(VTy->getContext());
1092     }
1093     // Get the zero of the same type with which we will be comparing.
1094     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1095     // %V.isnegative = icmp slt %V, 0
1096     // I.e is %V *strictly* less than zero, does it have negative value?
1097     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1098                               llvm::Twine(Name) + "." + V->getName() +
1099                                   ".negativitycheck");
1100   };
1101 
1102   // 1. Was the old Value negative?
1103   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1104   // 2. Is the new Value negative?
1105   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1106   // 3. Now, was the 'negativity status' preserved during the conversion?
1107   //    NOTE: conversion from negative to zero is considered to change the sign.
1108   //    (We want to get 'false' when the conversion changed the sign)
1109   //    So we should just equality-compare the negativity statuses.
1110   llvm::Value *Check = nullptr;
1111   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1112   // If the comparison result is 'false', then the conversion changed the sign.
1113   return std::make_pair(
1114       ScalarExprEmitter::ICCK_IntegerSignChange,
1115       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1116 }
1117 
1118 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1119                                                    Value *Dst, QualType DstType,
1120                                                    SourceLocation Loc) {
1121   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1122     return;
1123 
1124   llvm::Type *SrcTy = Src->getType();
1125   llvm::Type *DstTy = Dst->getType();
1126 
1127   // We only care about int->int conversions here.
1128   // We ignore conversions to/from pointer and/or bool.
1129   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1130                                                                        DstType))
1131     return;
1132 
1133   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1134   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1135   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1136   unsigned DstBits = DstTy->getScalarSizeInBits();
1137 
1138   // Now, we do not need to emit the check in *all* of the cases.
1139   // We can avoid emitting it in some obvious cases where it would have been
1140   // dropped by the opt passes (instcombine) always anyways.
1141   // If it's a cast between effectively the same type, no check.
1142   // NOTE: this is *not* equivalent to checking the canonical types.
1143   if (SrcSigned == DstSigned && SrcBits == DstBits)
1144     return;
1145   // At least one of the values needs to have signed type.
1146   // If both are unsigned, then obviously, neither of them can be negative.
1147   if (!SrcSigned && !DstSigned)
1148     return;
1149   // If the conversion is to *larger* *signed* type, then no check is needed.
1150   // Because either sign-extension happens (so the sign will remain),
1151   // or zero-extension will happen (the sign bit will be zero.)
1152   if ((DstBits > SrcBits) && DstSigned)
1153     return;
1154   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1155       (SrcBits > DstBits) && SrcSigned) {
1156     // If the signed integer truncation sanitizer is enabled,
1157     // and this is a truncation from signed type, then no check is needed.
1158     // Because here sign change check is interchangeable with truncation check.
1159     return;
1160   }
1161   // That's it. We can't rule out any more cases with the data we have.
1162 
1163   CodeGenFunction::SanitizerScope SanScope(&CGF);
1164 
1165   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1166             std::pair<llvm::Value *, SanitizerMask>>
1167       Check;
1168 
1169   // Each of these checks needs to return 'false' when an issue was detected.
1170   ImplicitConversionCheckKind CheckKind;
1171   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1172   // So we can 'and' all the checks together, and still get 'false',
1173   // if at least one of the checks detected an issue.
1174 
1175   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1176   CheckKind = Check.first;
1177   Checks.emplace_back(Check.second);
1178 
1179   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1180       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1181     // If the signed integer truncation sanitizer was enabled,
1182     // and we are truncating from larger unsigned type to smaller signed type,
1183     // let's handle the case we skipped in that check.
1184     Check =
1185         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1186     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1187     Checks.emplace_back(Check.second);
1188     // If the comparison result is 'i1 false', then the truncation was lossy.
1189   }
1190 
1191   llvm::Constant *StaticArgs[] = {
1192       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1193       CGF.EmitCheckTypeDescriptor(DstType),
1194       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1195   // EmitCheck() will 'and' all the checks together.
1196   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1197                 {Src, Dst});
1198 }
1199 
1200 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1201                                          QualType DstType, llvm::Type *SrcTy,
1202                                          llvm::Type *DstTy,
1203                                          ScalarConversionOpts Opts) {
1204   // The Element types determine the type of cast to perform.
1205   llvm::Type *SrcElementTy;
1206   llvm::Type *DstElementTy;
1207   QualType SrcElementType;
1208   QualType DstElementType;
1209   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1210     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1211     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1212     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1213     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1214   } else {
1215     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1216            "cannot cast between matrix and non-matrix types");
1217     SrcElementTy = SrcTy;
1218     DstElementTy = DstTy;
1219     SrcElementType = SrcType;
1220     DstElementType = DstType;
1221   }
1222 
1223   if (isa<llvm::IntegerType>(SrcElementTy)) {
1224     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1225     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1226       InputSigned = true;
1227     }
1228 
1229     if (isa<llvm::IntegerType>(DstElementTy))
1230       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1231     if (InputSigned)
1232       return Builder.CreateSIToFP(Src, DstTy, "conv");
1233     return Builder.CreateUIToFP(Src, DstTy, "conv");
1234   }
1235 
1236   if (isa<llvm::IntegerType>(DstElementTy)) {
1237     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1238     if (DstElementType->isSignedIntegerOrEnumerationType())
1239       return Builder.CreateFPToSI(Src, DstTy, "conv");
1240     return Builder.CreateFPToUI(Src, DstTy, "conv");
1241   }
1242 
1243   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1244     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1245   return Builder.CreateFPExt(Src, DstTy, "conv");
1246 }
1247 
1248 /// Emit a conversion from the specified type to the specified destination type,
1249 /// both of which are LLVM scalar types.
1250 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1251                                                QualType DstType,
1252                                                SourceLocation Loc,
1253                                                ScalarConversionOpts Opts) {
1254   // All conversions involving fixed point types should be handled by the
1255   // EmitFixedPoint family functions. This is done to prevent bloating up this
1256   // function more, and although fixed point numbers are represented by
1257   // integers, we do not want to follow any logic that assumes they should be
1258   // treated as integers.
1259   // TODO(leonardchan): When necessary, add another if statement checking for
1260   // conversions to fixed point types from other types.
1261   if (SrcType->isFixedPointType()) {
1262     if (DstType->isBooleanType())
1263       // It is important that we check this before checking if the dest type is
1264       // an integer because booleans are technically integer types.
1265       // We do not need to check the padding bit on unsigned types if unsigned
1266       // padding is enabled because overflow into this bit is undefined
1267       // behavior.
1268       return Builder.CreateIsNotNull(Src, "tobool");
1269     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1270         DstType->isRealFloatingType())
1271       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1272 
1273     llvm_unreachable(
1274         "Unhandled scalar conversion from a fixed point type to another type.");
1275   } else if (DstType->isFixedPointType()) {
1276     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1277       // This also includes converting booleans and enums to fixed point types.
1278       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1279 
1280     llvm_unreachable(
1281         "Unhandled scalar conversion to a fixed point type from another type.");
1282   }
1283 
1284   QualType NoncanonicalSrcType = SrcType;
1285   QualType NoncanonicalDstType = DstType;
1286 
1287   SrcType = CGF.getContext().getCanonicalType(SrcType);
1288   DstType = CGF.getContext().getCanonicalType(DstType);
1289   if (SrcType == DstType) return Src;
1290 
1291   if (DstType->isVoidType()) return nullptr;
1292 
1293   llvm::Value *OrigSrc = Src;
1294   QualType OrigSrcType = SrcType;
1295   llvm::Type *SrcTy = Src->getType();
1296 
1297   // Handle conversions to bool first, they are special: comparisons against 0.
1298   if (DstType->isBooleanType())
1299     return EmitConversionToBool(Src, SrcType);
1300 
1301   llvm::Type *DstTy = ConvertType(DstType);
1302 
1303   // Cast from half through float if half isn't a native type.
1304   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1305     // Cast to FP using the intrinsic if the half type itself isn't supported.
1306     if (DstTy->isFloatingPointTy()) {
1307       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1308         return Builder.CreateCall(
1309             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1310             Src);
1311     } else {
1312       // Cast to other types through float, using either the intrinsic or FPExt,
1313       // depending on whether the half type itself is supported
1314       // (as opposed to operations on half, available with NativeHalfType).
1315       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1316         Src = Builder.CreateCall(
1317             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1318                                  CGF.CGM.FloatTy),
1319             Src);
1320       } else {
1321         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1322       }
1323       SrcType = CGF.getContext().FloatTy;
1324       SrcTy = CGF.FloatTy;
1325     }
1326   }
1327 
1328   // Ignore conversions like int -> uint.
1329   if (SrcTy == DstTy) {
1330     if (Opts.EmitImplicitIntegerSignChangeChecks)
1331       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1332                                  NoncanonicalDstType, Loc);
1333 
1334     return Src;
1335   }
1336 
1337   // Handle pointer conversions next: pointers can only be converted to/from
1338   // other pointers and integers. Check for pointer types in terms of LLVM, as
1339   // some native types (like Obj-C id) may map to a pointer type.
1340   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1341     // The source value may be an integer, or a pointer.
1342     if (isa<llvm::PointerType>(SrcTy))
1343       return Builder.CreateBitCast(Src, DstTy, "conv");
1344 
1345     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1346     // First, convert to the correct width so that we control the kind of
1347     // extension.
1348     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1349     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1350     llvm::Value* IntResult =
1351         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1352     // Then, cast to pointer.
1353     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1354   }
1355 
1356   if (isa<llvm::PointerType>(SrcTy)) {
1357     // Must be an ptr to int cast.
1358     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1359     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1360   }
1361 
1362   // A scalar can be splatted to an extended vector of the same element type
1363   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1364     // Sema should add casts to make sure that the source expression's type is
1365     // the same as the vector's element type (sans qualifiers)
1366     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1367                SrcType.getTypePtr() &&
1368            "Splatted expr doesn't match with vector element type?");
1369 
1370     // Splat the element across to all elements
1371     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1372     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1373   }
1374 
1375   if (SrcType->isMatrixType() && DstType->isMatrixType())
1376     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1377 
1378   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1379     // Allow bitcast from vector to integer/fp of the same size.
1380     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1381     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1382     if (SrcSize == DstSize)
1383       return Builder.CreateBitCast(Src, DstTy, "conv");
1384 
1385     // Conversions between vectors of different sizes are not allowed except
1386     // when vectors of half are involved. Operations on storage-only half
1387     // vectors require promoting half vector operands to float vectors and
1388     // truncating the result, which is either an int or float vector, to a
1389     // short or half vector.
1390 
1391     // Source and destination are both expected to be vectors.
1392     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1393     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1394     (void)DstElementTy;
1395 
1396     assert(((SrcElementTy->isIntegerTy() &&
1397              DstElementTy->isIntegerTy()) ||
1398             (SrcElementTy->isFloatingPointTy() &&
1399              DstElementTy->isFloatingPointTy())) &&
1400            "unexpected conversion between a floating-point vector and an "
1401            "integer vector");
1402 
1403     // Truncate an i32 vector to an i16 vector.
1404     if (SrcElementTy->isIntegerTy())
1405       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1406 
1407     // Truncate a float vector to a half vector.
1408     if (SrcSize > DstSize)
1409       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1410 
1411     // Promote a half vector to a float vector.
1412     return Builder.CreateFPExt(Src, DstTy, "conv");
1413   }
1414 
1415   // Finally, we have the arithmetic types: real int/float.
1416   Value *Res = nullptr;
1417   llvm::Type *ResTy = DstTy;
1418 
1419   // An overflowing conversion has undefined behavior if either the source type
1420   // or the destination type is a floating-point type. However, we consider the
1421   // range of representable values for all floating-point types to be
1422   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1423   // floating-point type.
1424   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1425       OrigSrcType->isFloatingType())
1426     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1427                              Loc);
1428 
1429   // Cast to half through float if half isn't a native type.
1430   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1431     // Make sure we cast in a single step if from another FP type.
1432     if (SrcTy->isFloatingPointTy()) {
1433       // Use the intrinsic if the half type itself isn't supported
1434       // (as opposed to operations on half, available with NativeHalfType).
1435       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1436         return Builder.CreateCall(
1437             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1438       // If the half type is supported, just use an fptrunc.
1439       return Builder.CreateFPTrunc(Src, DstTy);
1440     }
1441     DstTy = CGF.FloatTy;
1442   }
1443 
1444   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1445 
1446   if (DstTy != ResTy) {
1447     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1448       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1449       Res = Builder.CreateCall(
1450         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1451         Res);
1452     } else {
1453       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1454     }
1455   }
1456 
1457   if (Opts.EmitImplicitIntegerTruncationChecks)
1458     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1459                                NoncanonicalDstType, Loc);
1460 
1461   if (Opts.EmitImplicitIntegerSignChangeChecks)
1462     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1463                                NoncanonicalDstType, Loc);
1464 
1465   return Res;
1466 }
1467 
1468 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1469                                                    QualType DstTy,
1470                                                    SourceLocation Loc) {
1471   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1472   llvm::Value *Result;
1473   if (SrcTy->isRealFloatingType())
1474     Result = FPBuilder.CreateFloatingToFixed(Src,
1475         CGF.getContext().getFixedPointSemantics(DstTy));
1476   else if (DstTy->isRealFloatingType())
1477     Result = FPBuilder.CreateFixedToFloating(Src,
1478         CGF.getContext().getFixedPointSemantics(SrcTy),
1479         ConvertType(DstTy));
1480   else {
1481     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1482     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1483 
1484     if (DstTy->isIntegerType())
1485       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1486                                               DstFPSema.getWidth(),
1487                                               DstFPSema.isSigned());
1488     else if (SrcTy->isIntegerType())
1489       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1490                                                DstFPSema);
1491     else
1492       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1493   }
1494   return Result;
1495 }
1496 
1497 /// Emit a conversion from the specified complex type to the specified
1498 /// destination type, where the destination type is an LLVM scalar type.
1499 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1500     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1501     SourceLocation Loc) {
1502   // Get the source element type.
1503   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1504 
1505   // Handle conversions to bool first, they are special: comparisons against 0.
1506   if (DstTy->isBooleanType()) {
1507     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1508     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1509     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1510     return Builder.CreateOr(Src.first, Src.second, "tobool");
1511   }
1512 
1513   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1514   // the imaginary part of the complex value is discarded and the value of the
1515   // real part is converted according to the conversion rules for the
1516   // corresponding real type.
1517   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1518 }
1519 
1520 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1521   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1522 }
1523 
1524 /// Emit a sanitization check for the given "binary" operation (which
1525 /// might actually be a unary increment which has been lowered to a binary
1526 /// operation). The check passes if all values in \p Checks (which are \c i1),
1527 /// are \c true.
1528 void ScalarExprEmitter::EmitBinOpCheck(
1529     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1530   assert(CGF.IsSanitizerScope);
1531   SanitizerHandler Check;
1532   SmallVector<llvm::Constant *, 4> StaticData;
1533   SmallVector<llvm::Value *, 2> DynamicData;
1534 
1535   BinaryOperatorKind Opcode = Info.Opcode;
1536   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1537     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1538 
1539   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1540   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1541   if (UO && UO->getOpcode() == UO_Minus) {
1542     Check = SanitizerHandler::NegateOverflow;
1543     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1544     DynamicData.push_back(Info.RHS);
1545   } else {
1546     if (BinaryOperator::isShiftOp(Opcode)) {
1547       // Shift LHS negative or too large, or RHS out of bounds.
1548       Check = SanitizerHandler::ShiftOutOfBounds;
1549       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1550       StaticData.push_back(
1551         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1552       StaticData.push_back(
1553         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1554     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1555       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1556       Check = SanitizerHandler::DivremOverflow;
1557       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1558     } else {
1559       // Arithmetic overflow (+, -, *).
1560       switch (Opcode) {
1561       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1562       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1563       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1564       default: llvm_unreachable("unexpected opcode for bin op check");
1565       }
1566       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1567     }
1568     DynamicData.push_back(Info.LHS);
1569     DynamicData.push_back(Info.RHS);
1570   }
1571 
1572   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1573 }
1574 
1575 //===----------------------------------------------------------------------===//
1576 //                            Visitor Methods
1577 //===----------------------------------------------------------------------===//
1578 
1579 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1580   CGF.ErrorUnsupported(E, "scalar expression");
1581   if (E->getType()->isVoidType())
1582     return nullptr;
1583   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1584 }
1585 
1586 Value *
1587 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1588   ASTContext &Context = CGF.getContext();
1589   llvm::Optional<LangAS> GlobalAS =
1590       Context.getTargetInfo().getConstantAddressSpace();
1591   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1592       E->ComputeName(Context), "__usn_str",
1593       static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default)));
1594 
1595   unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
1596 
1597   if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
1598     return GlobalConstStr;
1599 
1600   llvm::Type *EltTy = GlobalConstStr->getType()->getPointerElementType();
1601   llvm::PointerType *NewPtrTy = llvm::PointerType::get(EltTy, ExprAS);
1602   return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
1603 }
1604 
1605 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1606   // Vector Mask Case
1607   if (E->getNumSubExprs() == 2) {
1608     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1609     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1610     Value *Mask;
1611 
1612     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1613     unsigned LHSElts = LTy->getNumElements();
1614 
1615     Mask = RHS;
1616 
1617     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1618 
1619     // Mask off the high bits of each shuffle index.
1620     Value *MaskBits =
1621         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1622     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1623 
1624     // newv = undef
1625     // mask = mask & maskbits
1626     // for each elt
1627     //   n = extract mask i
1628     //   x = extract val n
1629     //   newv = insert newv, x, i
1630     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1631                                            MTy->getNumElements());
1632     Value* NewV = llvm::UndefValue::get(RTy);
1633     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1634       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1635       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1636 
1637       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1638       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1639     }
1640     return NewV;
1641   }
1642 
1643   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1644   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1645 
1646   SmallVector<int, 32> Indices;
1647   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1648     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1649     // Check for -1 and output it as undef in the IR.
1650     if (Idx.isSigned() && Idx.isAllOnesValue())
1651       Indices.push_back(-1);
1652     else
1653       Indices.push_back(Idx.getZExtValue());
1654   }
1655 
1656   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1657 }
1658 
1659 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1660   QualType SrcType = E->getSrcExpr()->getType(),
1661            DstType = E->getType();
1662 
1663   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1664 
1665   SrcType = CGF.getContext().getCanonicalType(SrcType);
1666   DstType = CGF.getContext().getCanonicalType(DstType);
1667   if (SrcType == DstType) return Src;
1668 
1669   assert(SrcType->isVectorType() &&
1670          "ConvertVector source type must be a vector");
1671   assert(DstType->isVectorType() &&
1672          "ConvertVector destination type must be a vector");
1673 
1674   llvm::Type *SrcTy = Src->getType();
1675   llvm::Type *DstTy = ConvertType(DstType);
1676 
1677   // Ignore conversions like int -> uint.
1678   if (SrcTy == DstTy)
1679     return Src;
1680 
1681   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1682            DstEltType = DstType->castAs<VectorType>()->getElementType();
1683 
1684   assert(SrcTy->isVectorTy() &&
1685          "ConvertVector source IR type must be a vector");
1686   assert(DstTy->isVectorTy() &&
1687          "ConvertVector destination IR type must be a vector");
1688 
1689   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1690              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1691 
1692   if (DstEltType->isBooleanType()) {
1693     assert((SrcEltTy->isFloatingPointTy() ||
1694             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1695 
1696     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1697     if (SrcEltTy->isFloatingPointTy()) {
1698       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1699     } else {
1700       return Builder.CreateICmpNE(Src, Zero, "tobool");
1701     }
1702   }
1703 
1704   // We have the arithmetic types: real int/float.
1705   Value *Res = nullptr;
1706 
1707   if (isa<llvm::IntegerType>(SrcEltTy)) {
1708     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1709     if (isa<llvm::IntegerType>(DstEltTy))
1710       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1711     else if (InputSigned)
1712       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1713     else
1714       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1715   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1716     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1717     if (DstEltType->isSignedIntegerOrEnumerationType())
1718       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1719     else
1720       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1721   } else {
1722     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1723            "Unknown real conversion");
1724     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1725       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1726     else
1727       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1728   }
1729 
1730   return Res;
1731 }
1732 
1733 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1734   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1735     CGF.EmitIgnoredExpr(E->getBase());
1736     return CGF.emitScalarConstant(Constant, E);
1737   } else {
1738     Expr::EvalResult Result;
1739     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1740       llvm::APSInt Value = Result.Val.getInt();
1741       CGF.EmitIgnoredExpr(E->getBase());
1742       return Builder.getInt(Value);
1743     }
1744   }
1745 
1746   return EmitLoadOfLValue(E);
1747 }
1748 
1749 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1750   TestAndClearIgnoreResultAssign();
1751 
1752   // Emit subscript expressions in rvalue context's.  For most cases, this just
1753   // loads the lvalue formed by the subscript expr.  However, we have to be
1754   // careful, because the base of a vector subscript is occasionally an rvalue,
1755   // so we can't get it as an lvalue.
1756   if (!E->getBase()->getType()->isVectorType())
1757     return EmitLoadOfLValue(E);
1758 
1759   // Handle the vector case.  The base must be a vector, the index must be an
1760   // integer value.
1761   Value *Base = Visit(E->getBase());
1762   Value *Idx  = Visit(E->getIdx());
1763   QualType IdxTy = E->getIdx()->getType();
1764 
1765   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1766     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1767 
1768   return Builder.CreateExtractElement(Base, Idx, "vecext");
1769 }
1770 
1771 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1772   TestAndClearIgnoreResultAssign();
1773 
1774   // Handle the vector case.  The base must be a vector, the index must be an
1775   // integer value.
1776   Value *RowIdx = Visit(E->getRowIdx());
1777   Value *ColumnIdx = Visit(E->getColumnIdx());
1778   Value *Matrix = Visit(E->getBase());
1779 
1780   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1781   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1782   return MB.CreateExtractElement(
1783       Matrix, RowIdx, ColumnIdx,
1784       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
1785 }
1786 
1787 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1788                       unsigned Off) {
1789   int MV = SVI->getMaskValue(Idx);
1790   if (MV == -1)
1791     return -1;
1792   return Off + MV;
1793 }
1794 
1795 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1796   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1797          "Index operand too large for shufflevector mask!");
1798   return C->getZExtValue();
1799 }
1800 
1801 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1802   bool Ignore = TestAndClearIgnoreResultAssign();
1803   (void)Ignore;
1804   assert (Ignore == false && "init list ignored");
1805   unsigned NumInitElements = E->getNumInits();
1806 
1807   if (E->hadArrayRangeDesignator())
1808     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1809 
1810   llvm::VectorType *VType =
1811     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1812 
1813   if (!VType) {
1814     if (NumInitElements == 0) {
1815       // C++11 value-initialization for the scalar.
1816       return EmitNullValue(E->getType());
1817     }
1818     // We have a scalar in braces. Just use the first element.
1819     return Visit(E->getInit(0));
1820   }
1821 
1822   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1823 
1824   // Loop over initializers collecting the Value for each, and remembering
1825   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1826   // us to fold the shuffle for the swizzle into the shuffle for the vector
1827   // initializer, since LLVM optimizers generally do not want to touch
1828   // shuffles.
1829   unsigned CurIdx = 0;
1830   bool VIsUndefShuffle = false;
1831   llvm::Value *V = llvm::UndefValue::get(VType);
1832   for (unsigned i = 0; i != NumInitElements; ++i) {
1833     Expr *IE = E->getInit(i);
1834     Value *Init = Visit(IE);
1835     SmallVector<int, 16> Args;
1836 
1837     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1838 
1839     // Handle scalar elements.  If the scalar initializer is actually one
1840     // element of a different vector of the same width, use shuffle instead of
1841     // extract+insert.
1842     if (!VVT) {
1843       if (isa<ExtVectorElementExpr>(IE)) {
1844         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1845 
1846         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1847                 ->getNumElements() == ResElts) {
1848           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1849           Value *LHS = nullptr, *RHS = nullptr;
1850           if (CurIdx == 0) {
1851             // insert into undef -> shuffle (src, undef)
1852             // shufflemask must use an i32
1853             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1854             Args.resize(ResElts, -1);
1855 
1856             LHS = EI->getVectorOperand();
1857             RHS = V;
1858             VIsUndefShuffle = true;
1859           } else if (VIsUndefShuffle) {
1860             // insert into undefshuffle && size match -> shuffle (v, src)
1861             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1862             for (unsigned j = 0; j != CurIdx; ++j)
1863               Args.push_back(getMaskElt(SVV, j, 0));
1864             Args.push_back(ResElts + C->getZExtValue());
1865             Args.resize(ResElts, -1);
1866 
1867             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1868             RHS = EI->getVectorOperand();
1869             VIsUndefShuffle = false;
1870           }
1871           if (!Args.empty()) {
1872             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1873             ++CurIdx;
1874             continue;
1875           }
1876         }
1877       }
1878       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1879                                       "vecinit");
1880       VIsUndefShuffle = false;
1881       ++CurIdx;
1882       continue;
1883     }
1884 
1885     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1886 
1887     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1888     // input is the same width as the vector being constructed, generate an
1889     // optimized shuffle of the swizzle input into the result.
1890     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1891     if (isa<ExtVectorElementExpr>(IE)) {
1892       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1893       Value *SVOp = SVI->getOperand(0);
1894       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1895 
1896       if (OpTy->getNumElements() == ResElts) {
1897         for (unsigned j = 0; j != CurIdx; ++j) {
1898           // If the current vector initializer is a shuffle with undef, merge
1899           // this shuffle directly into it.
1900           if (VIsUndefShuffle) {
1901             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1902           } else {
1903             Args.push_back(j);
1904           }
1905         }
1906         for (unsigned j = 0, je = InitElts; j != je; ++j)
1907           Args.push_back(getMaskElt(SVI, j, Offset));
1908         Args.resize(ResElts, -1);
1909 
1910         if (VIsUndefShuffle)
1911           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1912 
1913         Init = SVOp;
1914       }
1915     }
1916 
1917     // Extend init to result vector length, and then shuffle its contribution
1918     // to the vector initializer into V.
1919     if (Args.empty()) {
1920       for (unsigned j = 0; j != InitElts; ++j)
1921         Args.push_back(j);
1922       Args.resize(ResElts, -1);
1923       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1924 
1925       Args.clear();
1926       for (unsigned j = 0; j != CurIdx; ++j)
1927         Args.push_back(j);
1928       for (unsigned j = 0; j != InitElts; ++j)
1929         Args.push_back(j + Offset);
1930       Args.resize(ResElts, -1);
1931     }
1932 
1933     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1934     // merging subsequent shuffles into this one.
1935     if (CurIdx == 0)
1936       std::swap(V, Init);
1937     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1938     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1939     CurIdx += InitElts;
1940   }
1941 
1942   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1943   // Emit remaining default initializers.
1944   llvm::Type *EltTy = VType->getElementType();
1945 
1946   // Emit remaining default initializers
1947   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1948     Value *Idx = Builder.getInt32(CurIdx);
1949     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1950     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1951   }
1952   return V;
1953 }
1954 
1955 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1956   const Expr *E = CE->getSubExpr();
1957 
1958   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1959     return false;
1960 
1961   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1962     // We always assume that 'this' is never null.
1963     return false;
1964   }
1965 
1966   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1967     // And that glvalue casts are never null.
1968     if (ICE->getValueKind() != VK_PRValue)
1969       return false;
1970   }
1971 
1972   return true;
1973 }
1974 
1975 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1976 // have to handle a more broad range of conversions than explicit casts, as they
1977 // handle things like function to ptr-to-function decay etc.
1978 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1979   Expr *E = CE->getSubExpr();
1980   QualType DestTy = CE->getType();
1981   CastKind Kind = CE->getCastKind();
1982 
1983   // These cases are generally not written to ignore the result of
1984   // evaluating their sub-expressions, so we clear this now.
1985   bool Ignored = TestAndClearIgnoreResultAssign();
1986 
1987   // Since almost all cast kinds apply to scalars, this switch doesn't have
1988   // a default case, so the compiler will warn on a missing case.  The cases
1989   // are in the same order as in the CastKind enum.
1990   switch (Kind) {
1991   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1992   case CK_BuiltinFnToFnPtr:
1993     llvm_unreachable("builtin functions are handled elsewhere");
1994 
1995   case CK_LValueBitCast:
1996   case CK_ObjCObjectLValueCast: {
1997     Address Addr = EmitLValue(E).getAddress(CGF);
1998     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1999     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2000     return EmitLoadOfLValue(LV, CE->getExprLoc());
2001   }
2002 
2003   case CK_LValueToRValueBitCast: {
2004     LValue SourceLVal = CGF.EmitLValue(E);
2005     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2006                                                 CGF.ConvertTypeForMem(DestTy));
2007     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2008     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2009     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2010   }
2011 
2012   case CK_CPointerToObjCPointerCast:
2013   case CK_BlockPointerToObjCPointerCast:
2014   case CK_AnyPointerToBlockPointerCast:
2015   case CK_BitCast: {
2016     Value *Src = Visit(const_cast<Expr*>(E));
2017     llvm::Type *SrcTy = Src->getType();
2018     llvm::Type *DstTy = ConvertType(DestTy);
2019     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2020         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2021       llvm_unreachable("wrong cast for pointers in different address spaces"
2022                        "(must be an address space cast)!");
2023     }
2024 
2025     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2026       if (auto PT = DestTy->getAs<PointerType>())
2027         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2028                                       /*MayBeNull=*/true,
2029                                       CodeGenFunction::CFITCK_UnrelatedCast,
2030                                       CE->getBeginLoc());
2031     }
2032 
2033     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2034       const QualType SrcType = E->getType();
2035 
2036       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2037         // Casting to pointer that could carry dynamic information (provided by
2038         // invariant.group) requires launder.
2039         Src = Builder.CreateLaunderInvariantGroup(Src);
2040       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2041         // Casting to pointer that does not carry dynamic information (provided
2042         // by invariant.group) requires stripping it.  Note that we don't do it
2043         // if the source could not be dynamic type and destination could be
2044         // dynamic because dynamic information is already laundered.  It is
2045         // because launder(strip(src)) == launder(src), so there is no need to
2046         // add extra strip before launder.
2047         Src = Builder.CreateStripInvariantGroup(Src);
2048       }
2049     }
2050 
2051     // Update heapallocsite metadata when there is an explicit pointer cast.
2052     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2053       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2054         QualType PointeeType = DestTy->getPointeeType();
2055         if (!PointeeType.isNull())
2056           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2057                                                        CE->getExprLoc());
2058       }
2059     }
2060 
2061     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2062     // same element type, use the llvm.experimental.vector.insert intrinsic to
2063     // perform the bitcast.
2064     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2065       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2066         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2067           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2068           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2069           return Builder.CreateInsertVector(DstTy, UndefVec, Src, Zero,
2070                                             "castScalableSve");
2071         }
2072       }
2073     }
2074 
2075     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2076     // same element type, use the llvm.experimental.vector.extract intrinsic to
2077     // perform the bitcast.
2078     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2079       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2080         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2081           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2082           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2083         }
2084       }
2085     }
2086 
2087     // Perform VLAT <-> VLST bitcast through memory.
2088     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2089     //       require the element types of the vectors to be the same, we
2090     //       need to keep this around for casting between predicates, or more
2091     //       generally for bitcasts between VLAT <-> VLST where the element
2092     //       types of the vectors are not the same, until we figure out a better
2093     //       way of doing these casts.
2094     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2095          isa<llvm::ScalableVectorType>(DstTy)) ||
2096         (isa<llvm::ScalableVectorType>(SrcTy) &&
2097          isa<llvm::FixedVectorType>(DstTy))) {
2098       if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2099         // Call expressions can't have a scalar return unless the return type
2100         // is a reference type so an lvalue can't be emitted. Create a temp
2101         // alloca to store the call, bitcast the address then load.
2102         QualType RetTy = CE->getCallReturnType(CGF.getContext());
2103         Address Addr =
2104             CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue");
2105         LValue LV = CGF.MakeAddrLValue(Addr, RetTy);
2106         CGF.EmitStoreOfScalar(Src, LV);
2107         Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2108                                             "castFixedSve");
2109         LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2110         DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2111         return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2112       }
2113 
2114       Address Addr = EmitLValue(E).getAddress(CGF);
2115       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2116       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2117       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2118       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2119     }
2120 
2121     return Builder.CreateBitCast(Src, DstTy);
2122   }
2123   case CK_AddressSpaceConversion: {
2124     Expr::EvalResult Result;
2125     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2126         Result.Val.isNullPointer()) {
2127       // If E has side effect, it is emitted even if its final result is a
2128       // null pointer. In that case, a DCE pass should be able to
2129       // eliminate the useless instructions emitted during translating E.
2130       if (Result.HasSideEffects)
2131         Visit(E);
2132       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2133           ConvertType(DestTy)), DestTy);
2134     }
2135     // Since target may map different address spaces in AST to the same address
2136     // space, an address space conversion may end up as a bitcast.
2137     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2138         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2139         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2140   }
2141   case CK_AtomicToNonAtomic:
2142   case CK_NonAtomicToAtomic:
2143   case CK_NoOp:
2144   case CK_UserDefinedConversion:
2145     return Visit(const_cast<Expr*>(E));
2146 
2147   case CK_BaseToDerived: {
2148     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2149     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2150 
2151     Address Base = CGF.EmitPointerWithAlignment(E);
2152     Address Derived =
2153       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2154                                    CE->path_begin(), CE->path_end(),
2155                                    CGF.ShouldNullCheckClassCastValue(CE));
2156 
2157     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2158     // performed and the object is not of the derived type.
2159     if (CGF.sanitizePerformTypeCheck())
2160       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2161                         Derived.getPointer(), DestTy->getPointeeType());
2162 
2163     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2164       CGF.EmitVTablePtrCheckForCast(
2165           DestTy->getPointeeType(), Derived.getPointer(),
2166           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2167           CE->getBeginLoc());
2168 
2169     return Derived.getPointer();
2170   }
2171   case CK_UncheckedDerivedToBase:
2172   case CK_DerivedToBase: {
2173     // The EmitPointerWithAlignment path does this fine; just discard
2174     // the alignment.
2175     return CGF.EmitPointerWithAlignment(CE).getPointer();
2176   }
2177 
2178   case CK_Dynamic: {
2179     Address V = CGF.EmitPointerWithAlignment(E);
2180     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2181     return CGF.EmitDynamicCast(V, DCE);
2182   }
2183 
2184   case CK_ArrayToPointerDecay:
2185     return CGF.EmitArrayToPointerDecay(E).getPointer();
2186   case CK_FunctionToPointerDecay:
2187     return EmitLValue(E).getPointer(CGF);
2188 
2189   case CK_NullToPointer:
2190     if (MustVisitNullValue(E))
2191       CGF.EmitIgnoredExpr(E);
2192 
2193     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2194                               DestTy);
2195 
2196   case CK_NullToMemberPointer: {
2197     if (MustVisitNullValue(E))
2198       CGF.EmitIgnoredExpr(E);
2199 
2200     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2201     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2202   }
2203 
2204   case CK_ReinterpretMemberPointer:
2205   case CK_BaseToDerivedMemberPointer:
2206   case CK_DerivedToBaseMemberPointer: {
2207     Value *Src = Visit(E);
2208 
2209     // Note that the AST doesn't distinguish between checked and
2210     // unchecked member pointer conversions, so we always have to
2211     // implement checked conversions here.  This is inefficient when
2212     // actual control flow may be required in order to perform the
2213     // check, which it is for data member pointers (but not member
2214     // function pointers on Itanium and ARM).
2215     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2216   }
2217 
2218   case CK_ARCProduceObject:
2219     return CGF.EmitARCRetainScalarExpr(E);
2220   case CK_ARCConsumeObject:
2221     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2222   case CK_ARCReclaimReturnedObject:
2223     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2224   case CK_ARCExtendBlockObject:
2225     return CGF.EmitARCExtendBlockObject(E);
2226 
2227   case CK_CopyAndAutoreleaseBlockObject:
2228     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2229 
2230   case CK_FloatingRealToComplex:
2231   case CK_FloatingComplexCast:
2232   case CK_IntegralRealToComplex:
2233   case CK_IntegralComplexCast:
2234   case CK_IntegralComplexToFloatingComplex:
2235   case CK_FloatingComplexToIntegralComplex:
2236   case CK_ConstructorConversion:
2237   case CK_ToUnion:
2238     llvm_unreachable("scalar cast to non-scalar value");
2239 
2240   case CK_LValueToRValue:
2241     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2242     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2243     return Visit(const_cast<Expr*>(E));
2244 
2245   case CK_IntegralToPointer: {
2246     Value *Src = Visit(const_cast<Expr*>(E));
2247 
2248     // First, convert to the correct width so that we control the kind of
2249     // extension.
2250     auto DestLLVMTy = ConvertType(DestTy);
2251     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2252     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2253     llvm::Value* IntResult =
2254       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2255 
2256     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2257 
2258     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2259       // Going from integer to pointer that could be dynamic requires reloading
2260       // dynamic information from invariant.group.
2261       if (DestTy.mayBeDynamicClass())
2262         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2263     }
2264     return IntToPtr;
2265   }
2266   case CK_PointerToIntegral: {
2267     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2268     auto *PtrExpr = Visit(E);
2269 
2270     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2271       const QualType SrcType = E->getType();
2272 
2273       // Casting to integer requires stripping dynamic information as it does
2274       // not carries it.
2275       if (SrcType.mayBeDynamicClass())
2276         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2277     }
2278 
2279     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2280   }
2281   case CK_ToVoid: {
2282     CGF.EmitIgnoredExpr(E);
2283     return nullptr;
2284   }
2285   case CK_MatrixCast: {
2286     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2287                                 CE->getExprLoc());
2288   }
2289   case CK_VectorSplat: {
2290     llvm::Type *DstTy = ConvertType(DestTy);
2291     Value *Elt = Visit(const_cast<Expr*>(E));
2292     // Splat the element across to all elements
2293     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2294     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2295   }
2296 
2297   case CK_FixedPointCast:
2298     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2299                                 CE->getExprLoc());
2300 
2301   case CK_FixedPointToBoolean:
2302     assert(E->getType()->isFixedPointType() &&
2303            "Expected src type to be fixed point type");
2304     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2305     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2306                                 CE->getExprLoc());
2307 
2308   case CK_FixedPointToIntegral:
2309     assert(E->getType()->isFixedPointType() &&
2310            "Expected src type to be fixed point type");
2311     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2312     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2313                                 CE->getExprLoc());
2314 
2315   case CK_IntegralToFixedPoint:
2316     assert(E->getType()->isIntegerType() &&
2317            "Expected src type to be an integer");
2318     assert(DestTy->isFixedPointType() &&
2319            "Expected dest type to be fixed point type");
2320     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2321                                 CE->getExprLoc());
2322 
2323   case CK_IntegralCast: {
2324     ScalarConversionOpts Opts;
2325     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2326       if (!ICE->isPartOfExplicitCast())
2327         Opts = ScalarConversionOpts(CGF.SanOpts);
2328     }
2329     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2330                                 CE->getExprLoc(), Opts);
2331   }
2332   case CK_IntegralToFloating:
2333   case CK_FloatingToIntegral:
2334   case CK_FloatingCast:
2335   case CK_FixedPointToFloating:
2336   case CK_FloatingToFixedPoint: {
2337     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2338     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2339                                 CE->getExprLoc());
2340   }
2341   case CK_BooleanToSignedIntegral: {
2342     ScalarConversionOpts Opts;
2343     Opts.TreatBooleanAsSigned = true;
2344     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2345                                 CE->getExprLoc(), Opts);
2346   }
2347   case CK_IntegralToBoolean:
2348     return EmitIntToBoolConversion(Visit(E));
2349   case CK_PointerToBoolean:
2350     return EmitPointerToBoolConversion(Visit(E), E->getType());
2351   case CK_FloatingToBoolean: {
2352     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2353     return EmitFloatToBoolConversion(Visit(E));
2354   }
2355   case CK_MemberPointerToBoolean: {
2356     llvm::Value *MemPtr = Visit(E);
2357     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2358     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2359   }
2360 
2361   case CK_FloatingComplexToReal:
2362   case CK_IntegralComplexToReal:
2363     return CGF.EmitComplexExpr(E, false, true).first;
2364 
2365   case CK_FloatingComplexToBoolean:
2366   case CK_IntegralComplexToBoolean: {
2367     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2368 
2369     // TODO: kill this function off, inline appropriate case here
2370     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2371                                          CE->getExprLoc());
2372   }
2373 
2374   case CK_ZeroToOCLOpaqueType: {
2375     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2376             DestTy->isOCLIntelSubgroupAVCType()) &&
2377            "CK_ZeroToOCLEvent cast on non-event type");
2378     return llvm::Constant::getNullValue(ConvertType(DestTy));
2379   }
2380 
2381   case CK_IntToOCLSampler:
2382     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2383 
2384   } // end of switch
2385 
2386   llvm_unreachable("unknown scalar cast");
2387 }
2388 
2389 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2390   CodeGenFunction::StmtExprEvaluation eval(CGF);
2391   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2392                                            !E->getType()->isVoidType());
2393   if (!RetAlloca.isValid())
2394     return nullptr;
2395   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2396                               E->getExprLoc());
2397 }
2398 
2399 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2400   CodeGenFunction::RunCleanupsScope Scope(CGF);
2401   Value *V = Visit(E->getSubExpr());
2402   // Defend against dominance problems caused by jumps out of expression
2403   // evaluation through the shared cleanup block.
2404   Scope.ForceCleanup({&V});
2405   return V;
2406 }
2407 
2408 //===----------------------------------------------------------------------===//
2409 //                             Unary Operators
2410 //===----------------------------------------------------------------------===//
2411 
2412 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2413                                            llvm::Value *InVal, bool IsInc,
2414                                            FPOptions FPFeatures) {
2415   BinOpInfo BinOp;
2416   BinOp.LHS = InVal;
2417   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2418   BinOp.Ty = E->getType();
2419   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2420   BinOp.FPFeatures = FPFeatures;
2421   BinOp.E = E;
2422   return BinOp;
2423 }
2424 
2425 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2426     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2427   llvm::Value *Amount =
2428       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2429   StringRef Name = IsInc ? "inc" : "dec";
2430   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2431   case LangOptions::SOB_Defined:
2432     return Builder.CreateAdd(InVal, Amount, Name);
2433   case LangOptions::SOB_Undefined:
2434     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2435       return Builder.CreateNSWAdd(InVal, Amount, Name);
2436     LLVM_FALLTHROUGH;
2437   case LangOptions::SOB_Trapping:
2438     if (!E->canOverflow())
2439       return Builder.CreateNSWAdd(InVal, Amount, Name);
2440     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2441         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2442   }
2443   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2444 }
2445 
2446 namespace {
2447 /// Handles check and update for lastprivate conditional variables.
2448 class OMPLastprivateConditionalUpdateRAII {
2449 private:
2450   CodeGenFunction &CGF;
2451   const UnaryOperator *E;
2452 
2453 public:
2454   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2455                                       const UnaryOperator *E)
2456       : CGF(CGF), E(E) {}
2457   ~OMPLastprivateConditionalUpdateRAII() {
2458     if (CGF.getLangOpts().OpenMP)
2459       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2460           CGF, E->getSubExpr());
2461   }
2462 };
2463 } // namespace
2464 
2465 llvm::Value *
2466 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2467                                            bool isInc, bool isPre) {
2468   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2469   QualType type = E->getSubExpr()->getType();
2470   llvm::PHINode *atomicPHI = nullptr;
2471   llvm::Value *value;
2472   llvm::Value *input;
2473 
2474   int amount = (isInc ? 1 : -1);
2475   bool isSubtraction = !isInc;
2476 
2477   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2478     type = atomicTy->getValueType();
2479     if (isInc && type->isBooleanType()) {
2480       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2481       if (isPre) {
2482         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2483             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2484         return Builder.getTrue();
2485       }
2486       // For atomic bool increment, we just store true and return it for
2487       // preincrement, do an atomic swap with true for postincrement
2488       return Builder.CreateAtomicRMW(
2489           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2490           llvm::AtomicOrdering::SequentiallyConsistent);
2491     }
2492     // Special case for atomic increment / decrement on integers, emit
2493     // atomicrmw instructions.  We skip this if we want to be doing overflow
2494     // checking, and fall into the slow path with the atomic cmpxchg loop.
2495     if (!type->isBooleanType() && type->isIntegerType() &&
2496         !(type->isUnsignedIntegerType() &&
2497           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2498         CGF.getLangOpts().getSignedOverflowBehavior() !=
2499             LangOptions::SOB_Trapping) {
2500       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2501         llvm::AtomicRMWInst::Sub;
2502       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2503         llvm::Instruction::Sub;
2504       llvm::Value *amt = CGF.EmitToMemory(
2505           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2506       llvm::Value *old =
2507           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2508                                   llvm::AtomicOrdering::SequentiallyConsistent);
2509       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2510     }
2511     value = EmitLoadOfLValue(LV, E->getExprLoc());
2512     input = value;
2513     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2514     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2515     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2516     value = CGF.EmitToMemory(value, type);
2517     Builder.CreateBr(opBB);
2518     Builder.SetInsertPoint(opBB);
2519     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2520     atomicPHI->addIncoming(value, startBB);
2521     value = atomicPHI;
2522   } else {
2523     value = EmitLoadOfLValue(LV, E->getExprLoc());
2524     input = value;
2525   }
2526 
2527   // Special case of integer increment that we have to check first: bool++.
2528   // Due to promotion rules, we get:
2529   //   bool++ -> bool = bool + 1
2530   //          -> bool = (int)bool + 1
2531   //          -> bool = ((int)bool + 1 != 0)
2532   // An interesting aspect of this is that increment is always true.
2533   // Decrement does not have this property.
2534   if (isInc && type->isBooleanType()) {
2535     value = Builder.getTrue();
2536 
2537   // Most common case by far: integer increment.
2538   } else if (type->isIntegerType()) {
2539     QualType promotedType;
2540     bool canPerformLossyDemotionCheck = false;
2541     if (type->isPromotableIntegerType()) {
2542       promotedType = CGF.getContext().getPromotedIntegerType(type);
2543       assert(promotedType != type && "Shouldn't promote to the same type.");
2544       canPerformLossyDemotionCheck = true;
2545       canPerformLossyDemotionCheck &=
2546           CGF.getContext().getCanonicalType(type) !=
2547           CGF.getContext().getCanonicalType(promotedType);
2548       canPerformLossyDemotionCheck &=
2549           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2550               type, promotedType);
2551       assert((!canPerformLossyDemotionCheck ||
2552               type->isSignedIntegerOrEnumerationType() ||
2553               promotedType->isSignedIntegerOrEnumerationType() ||
2554               ConvertType(type)->getScalarSizeInBits() ==
2555                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2556              "The following check expects that if we do promotion to different "
2557              "underlying canonical type, at least one of the types (either "
2558              "base or promoted) will be signed, or the bitwidths will match.");
2559     }
2560     if (CGF.SanOpts.hasOneOf(
2561             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2562         canPerformLossyDemotionCheck) {
2563       // While `x += 1` (for `x` with width less than int) is modeled as
2564       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2565       // ease; inc/dec with width less than int can't overflow because of
2566       // promotion rules, so we omit promotion+demotion, which means that we can
2567       // not catch lossy "demotion". Because we still want to catch these cases
2568       // when the sanitizer is enabled, we perform the promotion, then perform
2569       // the increment/decrement in the wider type, and finally
2570       // perform the demotion. This will catch lossy demotions.
2571 
2572       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2573       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2574       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2575       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2576       // emitted.
2577       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2578                                    ScalarConversionOpts(CGF.SanOpts));
2579 
2580       // Note that signed integer inc/dec with width less than int can't
2581       // overflow because of promotion rules; we're just eliding a few steps
2582       // here.
2583     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2584       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2585     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2586                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2587       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2588           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2589     } else {
2590       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2591       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2592     }
2593 
2594   // Next most common: pointer increment.
2595   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2596     QualType type = ptr->getPointeeType();
2597 
2598     // VLA types don't have constant size.
2599     if (const VariableArrayType *vla
2600           = CGF.getContext().getAsVariableArrayType(type)) {
2601       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2602       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2603       if (CGF.getLangOpts().isSignedOverflowDefined())
2604         value = Builder.CreateGEP(value, numElts, "vla.inc");
2605       else
2606         value = CGF.EmitCheckedInBoundsGEP(
2607             value, numElts, /*SignedIndices=*/false, isSubtraction,
2608             E->getExprLoc(), "vla.inc");
2609 
2610     // Arithmetic on function pointers (!) is just +-1.
2611     } else if (type->isFunctionType()) {
2612       llvm::Value *amt = Builder.getInt32(amount);
2613 
2614       value = CGF.EmitCastToVoidPtr(value);
2615       if (CGF.getLangOpts().isSignedOverflowDefined())
2616         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2617       else
2618         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2619                                            isSubtraction, E->getExprLoc(),
2620                                            "incdec.funcptr");
2621       value = Builder.CreateBitCast(value, input->getType());
2622 
2623     // For everything else, we can just do a simple increment.
2624     } else {
2625       llvm::Value *amt = Builder.getInt32(amount);
2626       if (CGF.getLangOpts().isSignedOverflowDefined())
2627         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2628       else
2629         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2630                                            isSubtraction, E->getExprLoc(),
2631                                            "incdec.ptr");
2632     }
2633 
2634   // Vector increment/decrement.
2635   } else if (type->isVectorType()) {
2636     if (type->hasIntegerRepresentation()) {
2637       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2638 
2639       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2640     } else {
2641       value = Builder.CreateFAdd(
2642                   value,
2643                   llvm::ConstantFP::get(value->getType(), amount),
2644                   isInc ? "inc" : "dec");
2645     }
2646 
2647   // Floating point.
2648   } else if (type->isRealFloatingType()) {
2649     // Add the inc/dec to the real part.
2650     llvm::Value *amt;
2651     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2652 
2653     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2654       // Another special case: half FP increment should be done via float
2655       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2656         value = Builder.CreateCall(
2657             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2658                                  CGF.CGM.FloatTy),
2659             input, "incdec.conv");
2660       } else {
2661         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2662       }
2663     }
2664 
2665     if (value->getType()->isFloatTy())
2666       amt = llvm::ConstantFP::get(VMContext,
2667                                   llvm::APFloat(static_cast<float>(amount)));
2668     else if (value->getType()->isDoubleTy())
2669       amt = llvm::ConstantFP::get(VMContext,
2670                                   llvm::APFloat(static_cast<double>(amount)));
2671     else {
2672       // Remaining types are Half, LongDouble or __float128. Convert from float.
2673       llvm::APFloat F(static_cast<float>(amount));
2674       bool ignored;
2675       const llvm::fltSemantics *FS;
2676       // Don't use getFloatTypeSemantics because Half isn't
2677       // necessarily represented using the "half" LLVM type.
2678       if (value->getType()->isFP128Ty())
2679         FS = &CGF.getTarget().getFloat128Format();
2680       else if (value->getType()->isHalfTy())
2681         FS = &CGF.getTarget().getHalfFormat();
2682       else
2683         FS = &CGF.getTarget().getLongDoubleFormat();
2684       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2685       amt = llvm::ConstantFP::get(VMContext, F);
2686     }
2687     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2688 
2689     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2690       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2691         value = Builder.CreateCall(
2692             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2693                                  CGF.CGM.FloatTy),
2694             value, "incdec.conv");
2695       } else {
2696         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2697       }
2698     }
2699 
2700   // Fixed-point types.
2701   } else if (type->isFixedPointType()) {
2702     // Fixed-point types are tricky. In some cases, it isn't possible to
2703     // represent a 1 or a -1 in the type at all. Piggyback off of
2704     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2705     BinOpInfo Info;
2706     Info.E = E;
2707     Info.Ty = E->getType();
2708     Info.Opcode = isInc ? BO_Add : BO_Sub;
2709     Info.LHS = value;
2710     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2711     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2712     // since -1 is guaranteed to be representable.
2713     if (type->isSignedFixedPointType()) {
2714       Info.Opcode = isInc ? BO_Sub : BO_Add;
2715       Info.RHS = Builder.CreateNeg(Info.RHS);
2716     }
2717     // Now, convert from our invented integer literal to the type of the unary
2718     // op. This will upscale and saturate if necessary. This value can become
2719     // undef in some cases.
2720     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2721     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2722     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2723     value = EmitFixedPointBinOp(Info);
2724 
2725   // Objective-C pointer types.
2726   } else {
2727     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2728     value = CGF.EmitCastToVoidPtr(value);
2729 
2730     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2731     if (!isInc) size = -size;
2732     llvm::Value *sizeValue =
2733       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2734 
2735     if (CGF.getLangOpts().isSignedOverflowDefined())
2736       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2737     else
2738       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2739                                          /*SignedIndices=*/false, isSubtraction,
2740                                          E->getExprLoc(), "incdec.objptr");
2741     value = Builder.CreateBitCast(value, input->getType());
2742   }
2743 
2744   if (atomicPHI) {
2745     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2746     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2747     auto Pair = CGF.EmitAtomicCompareExchange(
2748         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2749     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2750     llvm::Value *success = Pair.second;
2751     atomicPHI->addIncoming(old, curBlock);
2752     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2753     Builder.SetInsertPoint(contBB);
2754     return isPre ? value : input;
2755   }
2756 
2757   // Store the updated result through the lvalue.
2758   if (LV.isBitField())
2759     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2760   else
2761     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2762 
2763   // If this is a postinc, return the value read from memory, otherwise use the
2764   // updated value.
2765   return isPre ? value : input;
2766 }
2767 
2768 
2769 
2770 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2771   TestAndClearIgnoreResultAssign();
2772   Value *Op = Visit(E->getSubExpr());
2773 
2774   // Generate a unary FNeg for FP ops.
2775   if (Op->getType()->isFPOrFPVectorTy())
2776     return Builder.CreateFNeg(Op, "fneg");
2777 
2778   // Emit unary minus with EmitSub so we handle overflow cases etc.
2779   BinOpInfo BinOp;
2780   BinOp.RHS = Op;
2781   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2782   BinOp.Ty = E->getType();
2783   BinOp.Opcode = BO_Sub;
2784   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2785   BinOp.E = E;
2786   return EmitSub(BinOp);
2787 }
2788 
2789 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2790   TestAndClearIgnoreResultAssign();
2791   Value *Op = Visit(E->getSubExpr());
2792   return Builder.CreateNot(Op, "neg");
2793 }
2794 
2795 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2796   // Perform vector logical not on comparison with zero vector.
2797   if (E->getType()->isVectorType() &&
2798       E->getType()->castAs<VectorType>()->getVectorKind() ==
2799           VectorType::GenericVector) {
2800     Value *Oper = Visit(E->getSubExpr());
2801     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2802     Value *Result;
2803     if (Oper->getType()->isFPOrFPVectorTy()) {
2804       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2805           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2806       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2807     } else
2808       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2809     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2810   }
2811 
2812   // Compare operand to zero.
2813   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2814 
2815   // Invert value.
2816   // TODO: Could dynamically modify easy computations here.  For example, if
2817   // the operand is an icmp ne, turn into icmp eq.
2818   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2819 
2820   // ZExt result to the expr type.
2821   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2822 }
2823 
2824 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2825   // Try folding the offsetof to a constant.
2826   Expr::EvalResult EVResult;
2827   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2828     llvm::APSInt Value = EVResult.Val.getInt();
2829     return Builder.getInt(Value);
2830   }
2831 
2832   // Loop over the components of the offsetof to compute the value.
2833   unsigned n = E->getNumComponents();
2834   llvm::Type* ResultType = ConvertType(E->getType());
2835   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2836   QualType CurrentType = E->getTypeSourceInfo()->getType();
2837   for (unsigned i = 0; i != n; ++i) {
2838     OffsetOfNode ON = E->getComponent(i);
2839     llvm::Value *Offset = nullptr;
2840     switch (ON.getKind()) {
2841     case OffsetOfNode::Array: {
2842       // Compute the index
2843       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2844       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2845       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2846       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2847 
2848       // Save the element type
2849       CurrentType =
2850           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2851 
2852       // Compute the element size
2853       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2854           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2855 
2856       // Multiply out to compute the result
2857       Offset = Builder.CreateMul(Idx, ElemSize);
2858       break;
2859     }
2860 
2861     case OffsetOfNode::Field: {
2862       FieldDecl *MemberDecl = ON.getField();
2863       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2864       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2865 
2866       // Compute the index of the field in its parent.
2867       unsigned i = 0;
2868       // FIXME: It would be nice if we didn't have to loop here!
2869       for (RecordDecl::field_iterator Field = RD->field_begin(),
2870                                       FieldEnd = RD->field_end();
2871            Field != FieldEnd; ++Field, ++i) {
2872         if (*Field == MemberDecl)
2873           break;
2874       }
2875       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2876 
2877       // Compute the offset to the field
2878       int64_t OffsetInt = RL.getFieldOffset(i) /
2879                           CGF.getContext().getCharWidth();
2880       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2881 
2882       // Save the element type.
2883       CurrentType = MemberDecl->getType();
2884       break;
2885     }
2886 
2887     case OffsetOfNode::Identifier:
2888       llvm_unreachable("dependent __builtin_offsetof");
2889 
2890     case OffsetOfNode::Base: {
2891       if (ON.getBase()->isVirtual()) {
2892         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2893         continue;
2894       }
2895 
2896       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2897       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2898 
2899       // Save the element type.
2900       CurrentType = ON.getBase()->getType();
2901 
2902       // Compute the offset to the base.
2903       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2904       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2905       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2906       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2907       break;
2908     }
2909     }
2910     Result = Builder.CreateAdd(Result, Offset);
2911   }
2912   return Result;
2913 }
2914 
2915 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2916 /// argument of the sizeof expression as an integer.
2917 Value *
2918 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2919                               const UnaryExprOrTypeTraitExpr *E) {
2920   QualType TypeToSize = E->getTypeOfArgument();
2921   if (E->getKind() == UETT_SizeOf) {
2922     if (const VariableArrayType *VAT =
2923           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2924       if (E->isArgumentType()) {
2925         // sizeof(type) - make sure to emit the VLA size.
2926         CGF.EmitVariablyModifiedType(TypeToSize);
2927       } else {
2928         // C99 6.5.3.4p2: If the argument is an expression of type
2929         // VLA, it is evaluated.
2930         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2931       }
2932 
2933       auto VlaSize = CGF.getVLASize(VAT);
2934       llvm::Value *size = VlaSize.NumElts;
2935 
2936       // Scale the number of non-VLA elements by the non-VLA element size.
2937       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2938       if (!eltSize.isOne())
2939         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2940 
2941       return size;
2942     }
2943   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2944     auto Alignment =
2945         CGF.getContext()
2946             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2947                 E->getTypeOfArgument()->getPointeeType()))
2948             .getQuantity();
2949     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2950   }
2951 
2952   // If this isn't sizeof(vla), the result must be constant; use the constant
2953   // folding logic so we don't have to duplicate it here.
2954   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2955 }
2956 
2957 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2958   Expr *Op = E->getSubExpr();
2959   if (Op->getType()->isAnyComplexType()) {
2960     // If it's an l-value, load through the appropriate subobject l-value.
2961     // Note that we have to ask E because Op might be an l-value that
2962     // this won't work for, e.g. an Obj-C property.
2963     if (E->isGLValue())
2964       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2965                                   E->getExprLoc()).getScalarVal();
2966 
2967     // Otherwise, calculate and project.
2968     return CGF.EmitComplexExpr(Op, false, true).first;
2969   }
2970 
2971   return Visit(Op);
2972 }
2973 
2974 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2975   Expr *Op = E->getSubExpr();
2976   if (Op->getType()->isAnyComplexType()) {
2977     // If it's an l-value, load through the appropriate subobject l-value.
2978     // Note that we have to ask E because Op might be an l-value that
2979     // this won't work for, e.g. an Obj-C property.
2980     if (Op->isGLValue())
2981       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2982                                   E->getExprLoc()).getScalarVal();
2983 
2984     // Otherwise, calculate and project.
2985     return CGF.EmitComplexExpr(Op, true, false).second;
2986   }
2987 
2988   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2989   // effects are evaluated, but not the actual value.
2990   if (Op->isGLValue())
2991     CGF.EmitLValue(Op);
2992   else
2993     CGF.EmitScalarExpr(Op, true);
2994   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2995 }
2996 
2997 //===----------------------------------------------------------------------===//
2998 //                           Binary Operators
2999 //===----------------------------------------------------------------------===//
3000 
3001 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
3002   TestAndClearIgnoreResultAssign();
3003   BinOpInfo Result;
3004   Result.LHS = Visit(E->getLHS());
3005   Result.RHS = Visit(E->getRHS());
3006   Result.Ty  = E->getType();
3007   Result.Opcode = E->getOpcode();
3008   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3009   Result.E = E;
3010   return Result;
3011 }
3012 
3013 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3014                                               const CompoundAssignOperator *E,
3015                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3016                                                    Value *&Result) {
3017   QualType LHSTy = E->getLHS()->getType();
3018   BinOpInfo OpInfo;
3019 
3020   if (E->getComputationResultType()->isAnyComplexType())
3021     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3022 
3023   // Emit the RHS first.  __block variables need to have the rhs evaluated
3024   // first, plus this should improve codegen a little.
3025   OpInfo.RHS = Visit(E->getRHS());
3026   OpInfo.Ty = E->getComputationResultType();
3027   OpInfo.Opcode = E->getOpcode();
3028   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3029   OpInfo.E = E;
3030   // Load/convert the LHS.
3031   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3032 
3033   llvm::PHINode *atomicPHI = nullptr;
3034   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3035     QualType type = atomicTy->getValueType();
3036     if (!type->isBooleanType() && type->isIntegerType() &&
3037         !(type->isUnsignedIntegerType() &&
3038           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3039         CGF.getLangOpts().getSignedOverflowBehavior() !=
3040             LangOptions::SOB_Trapping) {
3041       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3042       llvm::Instruction::BinaryOps Op;
3043       switch (OpInfo.Opcode) {
3044         // We don't have atomicrmw operands for *, %, /, <<, >>
3045         case BO_MulAssign: case BO_DivAssign:
3046         case BO_RemAssign:
3047         case BO_ShlAssign:
3048         case BO_ShrAssign:
3049           break;
3050         case BO_AddAssign:
3051           AtomicOp = llvm::AtomicRMWInst::Add;
3052           Op = llvm::Instruction::Add;
3053           break;
3054         case BO_SubAssign:
3055           AtomicOp = llvm::AtomicRMWInst::Sub;
3056           Op = llvm::Instruction::Sub;
3057           break;
3058         case BO_AndAssign:
3059           AtomicOp = llvm::AtomicRMWInst::And;
3060           Op = llvm::Instruction::And;
3061           break;
3062         case BO_XorAssign:
3063           AtomicOp = llvm::AtomicRMWInst::Xor;
3064           Op = llvm::Instruction::Xor;
3065           break;
3066         case BO_OrAssign:
3067           AtomicOp = llvm::AtomicRMWInst::Or;
3068           Op = llvm::Instruction::Or;
3069           break;
3070         default:
3071           llvm_unreachable("Invalid compound assignment type");
3072       }
3073       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3074         llvm::Value *Amt = CGF.EmitToMemory(
3075             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3076                                  E->getExprLoc()),
3077             LHSTy);
3078         Value *OldVal = Builder.CreateAtomicRMW(
3079             AtomicOp, LHSLV.getPointer(CGF), Amt,
3080             llvm::AtomicOrdering::SequentiallyConsistent);
3081 
3082         // Since operation is atomic, the result type is guaranteed to be the
3083         // same as the input in LLVM terms.
3084         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3085         return LHSLV;
3086       }
3087     }
3088     // FIXME: For floating point types, we should be saving and restoring the
3089     // floating point environment in the loop.
3090     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3091     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3092     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3093     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3094     Builder.CreateBr(opBB);
3095     Builder.SetInsertPoint(opBB);
3096     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3097     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3098     OpInfo.LHS = atomicPHI;
3099   }
3100   else
3101     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3102 
3103   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3104   SourceLocation Loc = E->getExprLoc();
3105   OpInfo.LHS =
3106       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3107 
3108   // Expand the binary operator.
3109   Result = (this->*Func)(OpInfo);
3110 
3111   // Convert the result back to the LHS type,
3112   // potentially with Implicit Conversion sanitizer check.
3113   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3114                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3115 
3116   if (atomicPHI) {
3117     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3118     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3119     auto Pair = CGF.EmitAtomicCompareExchange(
3120         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3121     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3122     llvm::Value *success = Pair.second;
3123     atomicPHI->addIncoming(old, curBlock);
3124     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3125     Builder.SetInsertPoint(contBB);
3126     return LHSLV;
3127   }
3128 
3129   // Store the result value into the LHS lvalue. Bit-fields are handled
3130   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3131   // 'An assignment expression has the value of the left operand after the
3132   // assignment...'.
3133   if (LHSLV.isBitField())
3134     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3135   else
3136     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3137 
3138   if (CGF.getLangOpts().OpenMP)
3139     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3140                                                                   E->getLHS());
3141   return LHSLV;
3142 }
3143 
3144 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3145                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3146   bool Ignore = TestAndClearIgnoreResultAssign();
3147   Value *RHS = nullptr;
3148   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3149 
3150   // If the result is clearly ignored, return now.
3151   if (Ignore)
3152     return nullptr;
3153 
3154   // The result of an assignment in C is the assigned r-value.
3155   if (!CGF.getLangOpts().CPlusPlus)
3156     return RHS;
3157 
3158   // If the lvalue is non-volatile, return the computed value of the assignment.
3159   if (!LHS.isVolatileQualified())
3160     return RHS;
3161 
3162   // Otherwise, reload the value.
3163   return EmitLoadOfLValue(LHS, E->getExprLoc());
3164 }
3165 
3166 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3167     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3168   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3169 
3170   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3171     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3172                                     SanitizerKind::IntegerDivideByZero));
3173   }
3174 
3175   const auto *BO = cast<BinaryOperator>(Ops.E);
3176   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3177       Ops.Ty->hasSignedIntegerRepresentation() &&
3178       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3179       Ops.mayHaveIntegerOverflow()) {
3180     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3181 
3182     llvm::Value *IntMin =
3183       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3184     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3185 
3186     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3187     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3188     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3189     Checks.push_back(
3190         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3191   }
3192 
3193   if (Checks.size() > 0)
3194     EmitBinOpCheck(Checks, Ops);
3195 }
3196 
3197 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3198   {
3199     CodeGenFunction::SanitizerScope SanScope(&CGF);
3200     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3201          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3202         Ops.Ty->isIntegerType() &&
3203         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3204       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3205       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3206     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3207                Ops.Ty->isRealFloatingType() &&
3208                Ops.mayHaveFloatDivisionByZero()) {
3209       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3210       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3211       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3212                      Ops);
3213     }
3214   }
3215 
3216   if (Ops.Ty->isConstantMatrixType()) {
3217     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3218     // We need to check the types of the operands of the operator to get the
3219     // correct matrix dimensions.
3220     auto *BO = cast<BinaryOperator>(Ops.E);
3221     (void)BO;
3222     assert(
3223         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3224         "first operand must be a matrix");
3225     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3226            "second operand must be an arithmetic type");
3227     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3228     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3229                               Ops.Ty->hasUnsignedIntegerRepresentation());
3230   }
3231 
3232   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3233     llvm::Value *Val;
3234     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3235     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3236     if ((CGF.getLangOpts().OpenCL &&
3237          !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3238         (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3239          !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3240       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3241       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3242       // build option allows an application to specify that single precision
3243       // floating-point divide (x/y and 1/x) and sqrt used in the program
3244       // source are correctly rounded.
3245       llvm::Type *ValTy = Val->getType();
3246       if (ValTy->isFloatTy() ||
3247           (isa<llvm::VectorType>(ValTy) &&
3248            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3249         CGF.SetFPAccuracy(Val, 2.5);
3250     }
3251     return Val;
3252   }
3253   else if (Ops.isFixedPointOp())
3254     return EmitFixedPointBinOp(Ops);
3255   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3256     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3257   else
3258     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3259 }
3260 
3261 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3262   // Rem in C can't be a floating point type: C99 6.5.5p2.
3263   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3264        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3265       Ops.Ty->isIntegerType() &&
3266       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3267     CodeGenFunction::SanitizerScope SanScope(&CGF);
3268     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3269     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3270   }
3271 
3272   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3273     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3274   else
3275     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3276 }
3277 
3278 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3279   unsigned IID;
3280   unsigned OpID = 0;
3281   SanitizerHandler OverflowKind;
3282 
3283   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3284   switch (Ops.Opcode) {
3285   case BO_Add:
3286   case BO_AddAssign:
3287     OpID = 1;
3288     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3289                      llvm::Intrinsic::uadd_with_overflow;
3290     OverflowKind = SanitizerHandler::AddOverflow;
3291     break;
3292   case BO_Sub:
3293   case BO_SubAssign:
3294     OpID = 2;
3295     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3296                      llvm::Intrinsic::usub_with_overflow;
3297     OverflowKind = SanitizerHandler::SubOverflow;
3298     break;
3299   case BO_Mul:
3300   case BO_MulAssign:
3301     OpID = 3;
3302     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3303                      llvm::Intrinsic::umul_with_overflow;
3304     OverflowKind = SanitizerHandler::MulOverflow;
3305     break;
3306   default:
3307     llvm_unreachable("Unsupported operation for overflow detection");
3308   }
3309   OpID <<= 1;
3310   if (isSigned)
3311     OpID |= 1;
3312 
3313   CodeGenFunction::SanitizerScope SanScope(&CGF);
3314   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3315 
3316   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3317 
3318   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3319   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3320   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3321 
3322   // Handle overflow with llvm.trap if no custom handler has been specified.
3323   const std::string *handlerName =
3324     &CGF.getLangOpts().OverflowHandler;
3325   if (handlerName->empty()) {
3326     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3327     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3328     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3329       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3330       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3331                               : SanitizerKind::UnsignedIntegerOverflow;
3332       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3333     } else
3334       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3335     return result;
3336   }
3337 
3338   // Branch in case of overflow.
3339   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3340   llvm::BasicBlock *continueBB =
3341       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3342   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3343 
3344   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3345 
3346   // If an overflow handler is set, then we want to call it and then use its
3347   // result, if it returns.
3348   Builder.SetInsertPoint(overflowBB);
3349 
3350   // Get the overflow handler.
3351   llvm::Type *Int8Ty = CGF.Int8Ty;
3352   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3353   llvm::FunctionType *handlerTy =
3354       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3355   llvm::FunctionCallee handler =
3356       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3357 
3358   // Sign extend the args to 64-bit, so that we can use the same handler for
3359   // all types of overflow.
3360   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3361   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3362 
3363   // Call the handler with the two arguments, the operation, and the size of
3364   // the result.
3365   llvm::Value *handlerArgs[] = {
3366     lhs,
3367     rhs,
3368     Builder.getInt8(OpID),
3369     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3370   };
3371   llvm::Value *handlerResult =
3372     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3373 
3374   // Truncate the result back to the desired size.
3375   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3376   Builder.CreateBr(continueBB);
3377 
3378   Builder.SetInsertPoint(continueBB);
3379   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3380   phi->addIncoming(result, initialBB);
3381   phi->addIncoming(handlerResult, overflowBB);
3382 
3383   return phi;
3384 }
3385 
3386 /// Emit pointer + index arithmetic.
3387 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3388                                     const BinOpInfo &op,
3389                                     bool isSubtraction) {
3390   // Must have binary (not unary) expr here.  Unary pointer
3391   // increment/decrement doesn't use this path.
3392   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3393 
3394   Value *pointer = op.LHS;
3395   Expr *pointerOperand = expr->getLHS();
3396   Value *index = op.RHS;
3397   Expr *indexOperand = expr->getRHS();
3398 
3399   // In a subtraction, the LHS is always the pointer.
3400   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3401     std::swap(pointer, index);
3402     std::swap(pointerOperand, indexOperand);
3403   }
3404 
3405   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3406 
3407   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3408   auto &DL = CGF.CGM.getDataLayout();
3409   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3410 
3411   // Some versions of glibc and gcc use idioms (particularly in their malloc
3412   // routines) that add a pointer-sized integer (known to be a pointer value)
3413   // to a null pointer in order to cast the value back to an integer or as
3414   // part of a pointer alignment algorithm.  This is undefined behavior, but
3415   // we'd like to be able to compile programs that use it.
3416   //
3417   // Normally, we'd generate a GEP with a null-pointer base here in response
3418   // to that code, but it's also UB to dereference a pointer created that
3419   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3420   // generate a direct cast of the integer value to a pointer.
3421   //
3422   // The idiom (p = nullptr + N) is not met if any of the following are true:
3423   //
3424   //   The operation is subtraction.
3425   //   The index is not pointer-sized.
3426   //   The pointer type is not byte-sized.
3427   //
3428   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3429                                                        op.Opcode,
3430                                                        expr->getLHS(),
3431                                                        expr->getRHS()))
3432     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3433 
3434   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3435     // Zero-extend or sign-extend the pointer value according to
3436     // whether the index is signed or not.
3437     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3438                                       "idx.ext");
3439   }
3440 
3441   // If this is subtraction, negate the index.
3442   if (isSubtraction)
3443     index = CGF.Builder.CreateNeg(index, "idx.neg");
3444 
3445   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3446     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3447                         /*Accessed*/ false);
3448 
3449   const PointerType *pointerType
3450     = pointerOperand->getType()->getAs<PointerType>();
3451   if (!pointerType) {
3452     QualType objectType = pointerOperand->getType()
3453                                         ->castAs<ObjCObjectPointerType>()
3454                                         ->getPointeeType();
3455     llvm::Value *objectSize
3456       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3457 
3458     index = CGF.Builder.CreateMul(index, objectSize);
3459 
3460     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3461     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3462     return CGF.Builder.CreateBitCast(result, pointer->getType());
3463   }
3464 
3465   QualType elementType = pointerType->getPointeeType();
3466   if (const VariableArrayType *vla
3467         = CGF.getContext().getAsVariableArrayType(elementType)) {
3468     // The element count here is the total number of non-VLA elements.
3469     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3470 
3471     // Effectively, the multiply by the VLA size is part of the GEP.
3472     // GEP indexes are signed, and scaling an index isn't permitted to
3473     // signed-overflow, so we use the same semantics for our explicit
3474     // multiply.  We suppress this if overflow is not undefined behavior.
3475     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3476       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3477       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3478     } else {
3479       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3480       pointer =
3481           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3482                                      op.E->getExprLoc(), "add.ptr");
3483     }
3484     return pointer;
3485   }
3486 
3487   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3488   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3489   // future proof.
3490   if (elementType->isVoidType() || elementType->isFunctionType()) {
3491     Value *result = CGF.EmitCastToVoidPtr(pointer);
3492     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3493     return CGF.Builder.CreateBitCast(result, pointer->getType());
3494   }
3495 
3496   if (CGF.getLangOpts().isSignedOverflowDefined())
3497     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3498 
3499   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3500                                     op.E->getExprLoc(), "add.ptr");
3501 }
3502 
3503 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3504 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3505 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3506 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3507 // efficient operations.
3508 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3509                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3510                            bool negMul, bool negAdd) {
3511   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3512 
3513   Value *MulOp0 = MulOp->getOperand(0);
3514   Value *MulOp1 = MulOp->getOperand(1);
3515   if (negMul)
3516     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3517   if (negAdd)
3518     Addend = Builder.CreateFNeg(Addend, "neg");
3519 
3520   Value *FMulAdd = nullptr;
3521   if (Builder.getIsFPConstrained()) {
3522     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3523            "Only constrained operation should be created when Builder is in FP "
3524            "constrained mode");
3525     FMulAdd = Builder.CreateConstrainedFPCall(
3526         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3527                              Addend->getType()),
3528         {MulOp0, MulOp1, Addend});
3529   } else {
3530     FMulAdd = Builder.CreateCall(
3531         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3532         {MulOp0, MulOp1, Addend});
3533   }
3534   MulOp->eraseFromParent();
3535 
3536   return FMulAdd;
3537 }
3538 
3539 // Check whether it would be legal to emit an fmuladd intrinsic call to
3540 // represent op and if so, build the fmuladd.
3541 //
3542 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3543 // Does NOT check the type of the operation - it's assumed that this function
3544 // will be called from contexts where it's known that the type is contractable.
3545 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3546                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3547                          bool isSub=false) {
3548 
3549   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3550           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3551          "Only fadd/fsub can be the root of an fmuladd.");
3552 
3553   // Check whether this op is marked as fusable.
3554   if (!op.FPFeatures.allowFPContractWithinStatement())
3555     return nullptr;
3556 
3557   // We have a potentially fusable op. Look for a mul on one of the operands.
3558   // Also, make sure that the mul result isn't used directly. In that case,
3559   // there's no point creating a muladd operation.
3560   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3561     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3562         LHSBinOp->use_empty())
3563       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3564   }
3565   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3566     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3567         RHSBinOp->use_empty())
3568       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3569   }
3570 
3571   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3572     if (LHSBinOp->getIntrinsicID() ==
3573             llvm::Intrinsic::experimental_constrained_fmul &&
3574         LHSBinOp->use_empty())
3575       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3576   }
3577   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3578     if (RHSBinOp->getIntrinsicID() ==
3579             llvm::Intrinsic::experimental_constrained_fmul &&
3580         RHSBinOp->use_empty())
3581       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3582   }
3583 
3584   return nullptr;
3585 }
3586 
3587 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3588   if (op.LHS->getType()->isPointerTy() ||
3589       op.RHS->getType()->isPointerTy())
3590     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3591 
3592   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3593     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3594     case LangOptions::SOB_Defined:
3595       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3596     case LangOptions::SOB_Undefined:
3597       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3598         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3599       LLVM_FALLTHROUGH;
3600     case LangOptions::SOB_Trapping:
3601       if (CanElideOverflowCheck(CGF.getContext(), op))
3602         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3603       return EmitOverflowCheckedBinOp(op);
3604     }
3605   }
3606 
3607   if (op.Ty->isConstantMatrixType()) {
3608     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3609     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3610     return MB.CreateAdd(op.LHS, op.RHS);
3611   }
3612 
3613   if (op.Ty->isUnsignedIntegerType() &&
3614       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3615       !CanElideOverflowCheck(CGF.getContext(), op))
3616     return EmitOverflowCheckedBinOp(op);
3617 
3618   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3619     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3620     // Try to form an fmuladd.
3621     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3622       return FMulAdd;
3623 
3624     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3625   }
3626 
3627   if (op.isFixedPointOp())
3628     return EmitFixedPointBinOp(op);
3629 
3630   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3631 }
3632 
3633 /// The resulting value must be calculated with exact precision, so the operands
3634 /// may not be the same type.
3635 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3636   using llvm::APSInt;
3637   using llvm::ConstantInt;
3638 
3639   // This is either a binary operation where at least one of the operands is
3640   // a fixed-point type, or a unary operation where the operand is a fixed-point
3641   // type. The result type of a binary operation is determined by
3642   // Sema::handleFixedPointConversions().
3643   QualType ResultTy = op.Ty;
3644   QualType LHSTy, RHSTy;
3645   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3646     RHSTy = BinOp->getRHS()->getType();
3647     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3648       // For compound assignment, the effective type of the LHS at this point
3649       // is the computation LHS type, not the actual LHS type, and the final
3650       // result type is not the type of the expression but rather the
3651       // computation result type.
3652       LHSTy = CAO->getComputationLHSType();
3653       ResultTy = CAO->getComputationResultType();
3654     } else
3655       LHSTy = BinOp->getLHS()->getType();
3656   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3657     LHSTy = UnOp->getSubExpr()->getType();
3658     RHSTy = UnOp->getSubExpr()->getType();
3659   }
3660   ASTContext &Ctx = CGF.getContext();
3661   Value *LHS = op.LHS;
3662   Value *RHS = op.RHS;
3663 
3664   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3665   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3666   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3667   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3668 
3669   // Perform the actual operation.
3670   Value *Result;
3671   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3672   switch (op.Opcode) {
3673   case BO_AddAssign:
3674   case BO_Add:
3675     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3676     break;
3677   case BO_SubAssign:
3678   case BO_Sub:
3679     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3680     break;
3681   case BO_MulAssign:
3682   case BO_Mul:
3683     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3684     break;
3685   case BO_DivAssign:
3686   case BO_Div:
3687     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3688     break;
3689   case BO_ShlAssign:
3690   case BO_Shl:
3691     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3692     break;
3693   case BO_ShrAssign:
3694   case BO_Shr:
3695     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3696     break;
3697   case BO_LT:
3698     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3699   case BO_GT:
3700     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3701   case BO_LE:
3702     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3703   case BO_GE:
3704     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3705   case BO_EQ:
3706     // For equality operations, we assume any padding bits on unsigned types are
3707     // zero'd out. They could be overwritten through non-saturating operations
3708     // that cause overflow, but this leads to undefined behavior.
3709     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3710   case BO_NE:
3711     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3712   case BO_Cmp:
3713   case BO_LAnd:
3714   case BO_LOr:
3715     llvm_unreachable("Found unimplemented fixed point binary operation");
3716   case BO_PtrMemD:
3717   case BO_PtrMemI:
3718   case BO_Rem:
3719   case BO_Xor:
3720   case BO_And:
3721   case BO_Or:
3722   case BO_Assign:
3723   case BO_RemAssign:
3724   case BO_AndAssign:
3725   case BO_XorAssign:
3726   case BO_OrAssign:
3727   case BO_Comma:
3728     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3729   }
3730 
3731   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3732                  BinaryOperator::isShiftAssignOp(op.Opcode);
3733   // Convert to the result type.
3734   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3735                                                       : CommonFixedSema,
3736                                       ResultFixedSema);
3737 }
3738 
3739 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3740   // The LHS is always a pointer if either side is.
3741   if (!op.LHS->getType()->isPointerTy()) {
3742     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3743       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3744       case LangOptions::SOB_Defined:
3745         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3746       case LangOptions::SOB_Undefined:
3747         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3748           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3749         LLVM_FALLTHROUGH;
3750       case LangOptions::SOB_Trapping:
3751         if (CanElideOverflowCheck(CGF.getContext(), op))
3752           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3753         return EmitOverflowCheckedBinOp(op);
3754       }
3755     }
3756 
3757     if (op.Ty->isConstantMatrixType()) {
3758       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3759       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3760       return MB.CreateSub(op.LHS, op.RHS);
3761     }
3762 
3763     if (op.Ty->isUnsignedIntegerType() &&
3764         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3765         !CanElideOverflowCheck(CGF.getContext(), op))
3766       return EmitOverflowCheckedBinOp(op);
3767 
3768     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3769       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3770       // Try to form an fmuladd.
3771       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3772         return FMulAdd;
3773       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3774     }
3775 
3776     if (op.isFixedPointOp())
3777       return EmitFixedPointBinOp(op);
3778 
3779     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3780   }
3781 
3782   // If the RHS is not a pointer, then we have normal pointer
3783   // arithmetic.
3784   if (!op.RHS->getType()->isPointerTy())
3785     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3786 
3787   // Otherwise, this is a pointer subtraction.
3788 
3789   // Do the raw subtraction part.
3790   llvm::Value *LHS
3791     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3792   llvm::Value *RHS
3793     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3794   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3795 
3796   // Okay, figure out the element size.
3797   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3798   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3799 
3800   llvm::Value *divisor = nullptr;
3801 
3802   // For a variable-length array, this is going to be non-constant.
3803   if (const VariableArrayType *vla
3804         = CGF.getContext().getAsVariableArrayType(elementType)) {
3805     auto VlaSize = CGF.getVLASize(vla);
3806     elementType = VlaSize.Type;
3807     divisor = VlaSize.NumElts;
3808 
3809     // Scale the number of non-VLA elements by the non-VLA element size.
3810     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3811     if (!eltSize.isOne())
3812       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3813 
3814   // For everything elese, we can just compute it, safe in the
3815   // assumption that Sema won't let anything through that we can't
3816   // safely compute the size of.
3817   } else {
3818     CharUnits elementSize;
3819     // Handle GCC extension for pointer arithmetic on void* and
3820     // function pointer types.
3821     if (elementType->isVoidType() || elementType->isFunctionType())
3822       elementSize = CharUnits::One();
3823     else
3824       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3825 
3826     // Don't even emit the divide for element size of 1.
3827     if (elementSize.isOne())
3828       return diffInChars;
3829 
3830     divisor = CGF.CGM.getSize(elementSize);
3831   }
3832 
3833   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3834   // pointer difference in C is only defined in the case where both operands
3835   // are pointing to elements of an array.
3836   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3837 }
3838 
3839 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3840   llvm::IntegerType *Ty;
3841   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3842     Ty = cast<llvm::IntegerType>(VT->getElementType());
3843   else
3844     Ty = cast<llvm::IntegerType>(LHS->getType());
3845   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3846 }
3847 
3848 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3849                                               const Twine &Name) {
3850   llvm::IntegerType *Ty;
3851   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3852     Ty = cast<llvm::IntegerType>(VT->getElementType());
3853   else
3854     Ty = cast<llvm::IntegerType>(LHS->getType());
3855 
3856   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3857         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3858 
3859   return Builder.CreateURem(
3860       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3861 }
3862 
3863 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3864   // TODO: This misses out on the sanitizer check below.
3865   if (Ops.isFixedPointOp())
3866     return EmitFixedPointBinOp(Ops);
3867 
3868   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3869   // RHS to the same size as the LHS.
3870   Value *RHS = Ops.RHS;
3871   if (Ops.LHS->getType() != RHS->getType())
3872     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3873 
3874   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3875                             Ops.Ty->hasSignedIntegerRepresentation() &&
3876                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3877                             !CGF.getLangOpts().CPlusPlus20;
3878   bool SanitizeUnsignedBase =
3879       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3880       Ops.Ty->hasUnsignedIntegerRepresentation();
3881   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3882   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3883   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3884   if (CGF.getLangOpts().OpenCL)
3885     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3886   else if ((SanitizeBase || SanitizeExponent) &&
3887            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3888     CodeGenFunction::SanitizerScope SanScope(&CGF);
3889     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3890     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3891     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3892 
3893     if (SanitizeExponent) {
3894       Checks.push_back(
3895           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3896     }
3897 
3898     if (SanitizeBase) {
3899       // Check whether we are shifting any non-zero bits off the top of the
3900       // integer. We only emit this check if exponent is valid - otherwise
3901       // instructions below will have undefined behavior themselves.
3902       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3903       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3904       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3905       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3906       llvm::Value *PromotedWidthMinusOne =
3907           (RHS == Ops.RHS) ? WidthMinusOne
3908                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3909       CGF.EmitBlock(CheckShiftBase);
3910       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3911           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3912                                      /*NUW*/ true, /*NSW*/ true),
3913           "shl.check");
3914       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3915         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3916         // Under C++11's rules, shifting a 1 bit into the sign bit is
3917         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3918         // define signed left shifts, so we use the C99 and C++11 rules there).
3919         // Unsigned shifts can always shift into the top bit.
3920         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3921         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3922       }
3923       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3924       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3925       CGF.EmitBlock(Cont);
3926       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3927       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3928       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3929       Checks.push_back(std::make_pair(
3930           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3931                                         : SanitizerKind::UnsignedShiftBase));
3932     }
3933 
3934     assert(!Checks.empty());
3935     EmitBinOpCheck(Checks, Ops);
3936   }
3937 
3938   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3939 }
3940 
3941 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3942   // TODO: This misses out on the sanitizer check below.
3943   if (Ops.isFixedPointOp())
3944     return EmitFixedPointBinOp(Ops);
3945 
3946   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3947   // RHS to the same size as the LHS.
3948   Value *RHS = Ops.RHS;
3949   if (Ops.LHS->getType() != RHS->getType())
3950     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3951 
3952   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3953   if (CGF.getLangOpts().OpenCL)
3954     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3955   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3956            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3957     CodeGenFunction::SanitizerScope SanScope(&CGF);
3958     llvm::Value *Valid =
3959         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3960     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3961   }
3962 
3963   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3964     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3965   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3966 }
3967 
3968 enum IntrinsicType { VCMPEQ, VCMPGT };
3969 // return corresponding comparison intrinsic for given vector type
3970 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3971                                         BuiltinType::Kind ElemKind) {
3972   switch (ElemKind) {
3973   default: llvm_unreachable("unexpected element type");
3974   case BuiltinType::Char_U:
3975   case BuiltinType::UChar:
3976     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3977                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3978   case BuiltinType::Char_S:
3979   case BuiltinType::SChar:
3980     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3981                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3982   case BuiltinType::UShort:
3983     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3984                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3985   case BuiltinType::Short:
3986     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3987                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3988   case BuiltinType::UInt:
3989     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3990                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3991   case BuiltinType::Int:
3992     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3993                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3994   case BuiltinType::ULong:
3995   case BuiltinType::ULongLong:
3996     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3997                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3998   case BuiltinType::Long:
3999   case BuiltinType::LongLong:
4000     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4001                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4002   case BuiltinType::Float:
4003     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4004                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4005   case BuiltinType::Double:
4006     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4007                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4008   case BuiltinType::UInt128:
4009     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4010                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4011   case BuiltinType::Int128:
4012     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4013                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4014   }
4015 }
4016 
4017 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4018                                       llvm::CmpInst::Predicate UICmpOpc,
4019                                       llvm::CmpInst::Predicate SICmpOpc,
4020                                       llvm::CmpInst::Predicate FCmpOpc,
4021                                       bool IsSignaling) {
4022   TestAndClearIgnoreResultAssign();
4023   Value *Result;
4024   QualType LHSTy = E->getLHS()->getType();
4025   QualType RHSTy = E->getRHS()->getType();
4026   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4027     assert(E->getOpcode() == BO_EQ ||
4028            E->getOpcode() == BO_NE);
4029     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4030     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4031     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4032                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4033   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4034     BinOpInfo BOInfo = EmitBinOps(E);
4035     Value *LHS = BOInfo.LHS;
4036     Value *RHS = BOInfo.RHS;
4037 
4038     // If AltiVec, the comparison results in a numeric type, so we use
4039     // intrinsics comparing vectors and giving 0 or 1 as a result
4040     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4041       // constants for mapping CR6 register bits to predicate result
4042       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4043 
4044       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4045 
4046       // in several cases vector arguments order will be reversed
4047       Value *FirstVecArg = LHS,
4048             *SecondVecArg = RHS;
4049 
4050       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4051       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4052 
4053       switch(E->getOpcode()) {
4054       default: llvm_unreachable("is not a comparison operation");
4055       case BO_EQ:
4056         CR6 = CR6_LT;
4057         ID = GetIntrinsic(VCMPEQ, ElementKind);
4058         break;
4059       case BO_NE:
4060         CR6 = CR6_EQ;
4061         ID = GetIntrinsic(VCMPEQ, ElementKind);
4062         break;
4063       case BO_LT:
4064         CR6 = CR6_LT;
4065         ID = GetIntrinsic(VCMPGT, ElementKind);
4066         std::swap(FirstVecArg, SecondVecArg);
4067         break;
4068       case BO_GT:
4069         CR6 = CR6_LT;
4070         ID = GetIntrinsic(VCMPGT, ElementKind);
4071         break;
4072       case BO_LE:
4073         if (ElementKind == BuiltinType::Float) {
4074           CR6 = CR6_LT;
4075           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4076           std::swap(FirstVecArg, SecondVecArg);
4077         }
4078         else {
4079           CR6 = CR6_EQ;
4080           ID = GetIntrinsic(VCMPGT, ElementKind);
4081         }
4082         break;
4083       case BO_GE:
4084         if (ElementKind == BuiltinType::Float) {
4085           CR6 = CR6_LT;
4086           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4087         }
4088         else {
4089           CR6 = CR6_EQ;
4090           ID = GetIntrinsic(VCMPGT, ElementKind);
4091           std::swap(FirstVecArg, SecondVecArg);
4092         }
4093         break;
4094       }
4095 
4096       Value *CR6Param = Builder.getInt32(CR6);
4097       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4098       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4099 
4100       // The result type of intrinsic may not be same as E->getType().
4101       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4102       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4103       // do nothing, if ResultTy is not i1 at the same time, it will cause
4104       // crash later.
4105       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4106       if (ResultTy->getBitWidth() > 1 &&
4107           E->getType() == CGF.getContext().BoolTy)
4108         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4109       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4110                                   E->getExprLoc());
4111     }
4112 
4113     if (BOInfo.isFixedPointOp()) {
4114       Result = EmitFixedPointBinOp(BOInfo);
4115     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4116       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4117       if (!IsSignaling)
4118         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4119       else
4120         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4121     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4122       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4123     } else {
4124       // Unsigned integers and pointers.
4125 
4126       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4127           !isa<llvm::ConstantPointerNull>(LHS) &&
4128           !isa<llvm::ConstantPointerNull>(RHS)) {
4129 
4130         // Dynamic information is required to be stripped for comparisons,
4131         // because it could leak the dynamic information.  Based on comparisons
4132         // of pointers to dynamic objects, the optimizer can replace one pointer
4133         // with another, which might be incorrect in presence of invariant
4134         // groups. Comparison with null is safe because null does not carry any
4135         // dynamic information.
4136         if (LHSTy.mayBeDynamicClass())
4137           LHS = Builder.CreateStripInvariantGroup(LHS);
4138         if (RHSTy.mayBeDynamicClass())
4139           RHS = Builder.CreateStripInvariantGroup(RHS);
4140       }
4141 
4142       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4143     }
4144 
4145     // If this is a vector comparison, sign extend the result to the appropriate
4146     // vector integer type and return it (don't convert to bool).
4147     if (LHSTy->isVectorType())
4148       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4149 
4150   } else {
4151     // Complex Comparison: can only be an equality comparison.
4152     CodeGenFunction::ComplexPairTy LHS, RHS;
4153     QualType CETy;
4154     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4155       LHS = CGF.EmitComplexExpr(E->getLHS());
4156       CETy = CTy->getElementType();
4157     } else {
4158       LHS.first = Visit(E->getLHS());
4159       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4160       CETy = LHSTy;
4161     }
4162     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4163       RHS = CGF.EmitComplexExpr(E->getRHS());
4164       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4165                                                      CTy->getElementType()) &&
4166              "The element types must always match.");
4167       (void)CTy;
4168     } else {
4169       RHS.first = Visit(E->getRHS());
4170       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4171       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4172              "The element types must always match.");
4173     }
4174 
4175     Value *ResultR, *ResultI;
4176     if (CETy->isRealFloatingType()) {
4177       // As complex comparisons can only be equality comparisons, they
4178       // are never signaling comparisons.
4179       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4180       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4181     } else {
4182       // Complex comparisons can only be equality comparisons.  As such, signed
4183       // and unsigned opcodes are the same.
4184       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4185       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4186     }
4187 
4188     if (E->getOpcode() == BO_EQ) {
4189       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4190     } else {
4191       assert(E->getOpcode() == BO_NE &&
4192              "Complex comparison other than == or != ?");
4193       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4194     }
4195   }
4196 
4197   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4198                               E->getExprLoc());
4199 }
4200 
4201 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4202   bool Ignore = TestAndClearIgnoreResultAssign();
4203 
4204   Value *RHS;
4205   LValue LHS;
4206 
4207   switch (E->getLHS()->getType().getObjCLifetime()) {
4208   case Qualifiers::OCL_Strong:
4209     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4210     break;
4211 
4212   case Qualifiers::OCL_Autoreleasing:
4213     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4214     break;
4215 
4216   case Qualifiers::OCL_ExplicitNone:
4217     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4218     break;
4219 
4220   case Qualifiers::OCL_Weak:
4221     RHS = Visit(E->getRHS());
4222     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4223     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4224     break;
4225 
4226   case Qualifiers::OCL_None:
4227     // __block variables need to have the rhs evaluated first, plus
4228     // this should improve codegen just a little.
4229     RHS = Visit(E->getRHS());
4230     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4231 
4232     // Store the value into the LHS.  Bit-fields are handled specially
4233     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4234     // 'An assignment expression has the value of the left operand after
4235     // the assignment...'.
4236     if (LHS.isBitField()) {
4237       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4238     } else {
4239       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4240       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4241     }
4242   }
4243 
4244   // If the result is clearly ignored, return now.
4245   if (Ignore)
4246     return nullptr;
4247 
4248   // The result of an assignment in C is the assigned r-value.
4249   if (!CGF.getLangOpts().CPlusPlus)
4250     return RHS;
4251 
4252   // If the lvalue is non-volatile, return the computed value of the assignment.
4253   if (!LHS.isVolatileQualified())
4254     return RHS;
4255 
4256   // Otherwise, reload the value.
4257   return EmitLoadOfLValue(LHS, E->getExprLoc());
4258 }
4259 
4260 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4261   // Perform vector logical and on comparisons with zero vectors.
4262   if (E->getType()->isVectorType()) {
4263     CGF.incrementProfileCounter(E);
4264 
4265     Value *LHS = Visit(E->getLHS());
4266     Value *RHS = Visit(E->getRHS());
4267     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4268     if (LHS->getType()->isFPOrFPVectorTy()) {
4269       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4270           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4271       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4272       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4273     } else {
4274       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4275       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4276     }
4277     Value *And = Builder.CreateAnd(LHS, RHS);
4278     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4279   }
4280 
4281   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4282   llvm::Type *ResTy = ConvertType(E->getType());
4283 
4284   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4285   // If we have 1 && X, just emit X without inserting the control flow.
4286   bool LHSCondVal;
4287   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4288     if (LHSCondVal) { // If we have 1 && X, just emit X.
4289       CGF.incrementProfileCounter(E);
4290 
4291       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4292 
4293       // If we're generating for profiling or coverage, generate a branch to a
4294       // block that increments the RHS counter needed to track branch condition
4295       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4296       // "FalseBlock" after the increment is done.
4297       if (InstrumentRegions &&
4298           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4299         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4300         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4301         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4302         CGF.EmitBlock(RHSBlockCnt);
4303         CGF.incrementProfileCounter(E->getRHS());
4304         CGF.EmitBranch(FBlock);
4305         CGF.EmitBlock(FBlock);
4306       }
4307 
4308       // ZExt result to int or bool.
4309       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4310     }
4311 
4312     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4313     if (!CGF.ContainsLabel(E->getRHS()))
4314       return llvm::Constant::getNullValue(ResTy);
4315   }
4316 
4317   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4318   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4319 
4320   CodeGenFunction::ConditionalEvaluation eval(CGF);
4321 
4322   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4323   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4324                            CGF.getProfileCount(E->getRHS()));
4325 
4326   // Any edges into the ContBlock are now from an (indeterminate number of)
4327   // edges from this first condition.  All of these values will be false.  Start
4328   // setting up the PHI node in the Cont Block for this.
4329   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4330                                             "", ContBlock);
4331   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4332        PI != PE; ++PI)
4333     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4334 
4335   eval.begin(CGF);
4336   CGF.EmitBlock(RHSBlock);
4337   CGF.incrementProfileCounter(E);
4338   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4339   eval.end(CGF);
4340 
4341   // Reaquire the RHS block, as there may be subblocks inserted.
4342   RHSBlock = Builder.GetInsertBlock();
4343 
4344   // If we're generating for profiling or coverage, generate a branch on the
4345   // RHS to a block that increments the RHS true counter needed to track branch
4346   // condition coverage.
4347   if (InstrumentRegions &&
4348       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4349     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4350     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4351     CGF.EmitBlock(RHSBlockCnt);
4352     CGF.incrementProfileCounter(E->getRHS());
4353     CGF.EmitBranch(ContBlock);
4354     PN->addIncoming(RHSCond, RHSBlockCnt);
4355   }
4356 
4357   // Emit an unconditional branch from this block to ContBlock.
4358   {
4359     // There is no need to emit line number for unconditional branch.
4360     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4361     CGF.EmitBlock(ContBlock);
4362   }
4363   // Insert an entry into the phi node for the edge with the value of RHSCond.
4364   PN->addIncoming(RHSCond, RHSBlock);
4365 
4366   // Artificial location to preserve the scope information
4367   {
4368     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4369     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4370   }
4371 
4372   // ZExt result to int.
4373   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4374 }
4375 
4376 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4377   // Perform vector logical or on comparisons with zero vectors.
4378   if (E->getType()->isVectorType()) {
4379     CGF.incrementProfileCounter(E);
4380 
4381     Value *LHS = Visit(E->getLHS());
4382     Value *RHS = Visit(E->getRHS());
4383     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4384     if (LHS->getType()->isFPOrFPVectorTy()) {
4385       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4386           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4387       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4388       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4389     } else {
4390       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4391       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4392     }
4393     Value *Or = Builder.CreateOr(LHS, RHS);
4394     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4395   }
4396 
4397   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4398   llvm::Type *ResTy = ConvertType(E->getType());
4399 
4400   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4401   // If we have 0 || X, just emit X without inserting the control flow.
4402   bool LHSCondVal;
4403   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4404     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4405       CGF.incrementProfileCounter(E);
4406 
4407       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4408 
4409       // If we're generating for profiling or coverage, generate a branch to a
4410       // block that increments the RHS counter need to track branch condition
4411       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4412       // "FalseBlock" after the increment is done.
4413       if (InstrumentRegions &&
4414           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4415         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4416         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4417         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4418         CGF.EmitBlock(RHSBlockCnt);
4419         CGF.incrementProfileCounter(E->getRHS());
4420         CGF.EmitBranch(FBlock);
4421         CGF.EmitBlock(FBlock);
4422       }
4423 
4424       // ZExt result to int or bool.
4425       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4426     }
4427 
4428     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4429     if (!CGF.ContainsLabel(E->getRHS()))
4430       return llvm::ConstantInt::get(ResTy, 1);
4431   }
4432 
4433   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4434   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4435 
4436   CodeGenFunction::ConditionalEvaluation eval(CGF);
4437 
4438   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4439   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4440                            CGF.getCurrentProfileCount() -
4441                                CGF.getProfileCount(E->getRHS()));
4442 
4443   // Any edges into the ContBlock are now from an (indeterminate number of)
4444   // edges from this first condition.  All of these values will be true.  Start
4445   // setting up the PHI node in the Cont Block for this.
4446   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4447                                             "", ContBlock);
4448   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4449        PI != PE; ++PI)
4450     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4451 
4452   eval.begin(CGF);
4453 
4454   // Emit the RHS condition as a bool value.
4455   CGF.EmitBlock(RHSBlock);
4456   CGF.incrementProfileCounter(E);
4457   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4458 
4459   eval.end(CGF);
4460 
4461   // Reaquire the RHS block, as there may be subblocks inserted.
4462   RHSBlock = Builder.GetInsertBlock();
4463 
4464   // If we're generating for profiling or coverage, generate a branch on the
4465   // RHS to a block that increments the RHS true counter needed to track branch
4466   // condition coverage.
4467   if (InstrumentRegions &&
4468       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4469     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4470     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4471     CGF.EmitBlock(RHSBlockCnt);
4472     CGF.incrementProfileCounter(E->getRHS());
4473     CGF.EmitBranch(ContBlock);
4474     PN->addIncoming(RHSCond, RHSBlockCnt);
4475   }
4476 
4477   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4478   // into the phi node for the edge with the value of RHSCond.
4479   CGF.EmitBlock(ContBlock);
4480   PN->addIncoming(RHSCond, RHSBlock);
4481 
4482   // ZExt result to int.
4483   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4484 }
4485 
4486 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4487   CGF.EmitIgnoredExpr(E->getLHS());
4488   CGF.EnsureInsertPoint();
4489   return Visit(E->getRHS());
4490 }
4491 
4492 //===----------------------------------------------------------------------===//
4493 //                             Other Operators
4494 //===----------------------------------------------------------------------===//
4495 
4496 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4497 /// expression is cheap enough and side-effect-free enough to evaluate
4498 /// unconditionally instead of conditionally.  This is used to convert control
4499 /// flow into selects in some cases.
4500 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4501                                                    CodeGenFunction &CGF) {
4502   // Anything that is an integer or floating point constant is fine.
4503   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4504 
4505   // Even non-volatile automatic variables can't be evaluated unconditionally.
4506   // Referencing a thread_local may cause non-trivial initialization work to
4507   // occur. If we're inside a lambda and one of the variables is from the scope
4508   // outside the lambda, that function may have returned already. Reading its
4509   // locals is a bad idea. Also, these reads may introduce races there didn't
4510   // exist in the source-level program.
4511 }
4512 
4513 
4514 Value *ScalarExprEmitter::
4515 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4516   TestAndClearIgnoreResultAssign();
4517 
4518   // Bind the common expression if necessary.
4519   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4520 
4521   Expr *condExpr = E->getCond();
4522   Expr *lhsExpr = E->getTrueExpr();
4523   Expr *rhsExpr = E->getFalseExpr();
4524 
4525   // If the condition constant folds and can be elided, try to avoid emitting
4526   // the condition and the dead arm.
4527   bool CondExprBool;
4528   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4529     Expr *live = lhsExpr, *dead = rhsExpr;
4530     if (!CondExprBool) std::swap(live, dead);
4531 
4532     // If the dead side doesn't have labels we need, just emit the Live part.
4533     if (!CGF.ContainsLabel(dead)) {
4534       if (CondExprBool)
4535         CGF.incrementProfileCounter(E);
4536       Value *Result = Visit(live);
4537 
4538       // If the live part is a throw expression, it acts like it has a void
4539       // type, so evaluating it returns a null Value*.  However, a conditional
4540       // with non-void type must return a non-null Value*.
4541       if (!Result && !E->getType()->isVoidType())
4542         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4543 
4544       return Result;
4545     }
4546   }
4547 
4548   // OpenCL: If the condition is a vector, we can treat this condition like
4549   // the select function.
4550   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4551       condExpr->getType()->isExtVectorType()) {
4552     CGF.incrementProfileCounter(E);
4553 
4554     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4555     llvm::Value *LHS = Visit(lhsExpr);
4556     llvm::Value *RHS = Visit(rhsExpr);
4557 
4558     llvm::Type *condType = ConvertType(condExpr->getType());
4559     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4560 
4561     unsigned numElem = vecTy->getNumElements();
4562     llvm::Type *elemType = vecTy->getElementType();
4563 
4564     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4565     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4566     llvm::Value *tmp = Builder.CreateSExt(
4567         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4568     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4569 
4570     // Cast float to int to perform ANDs if necessary.
4571     llvm::Value *RHSTmp = RHS;
4572     llvm::Value *LHSTmp = LHS;
4573     bool wasCast = false;
4574     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4575     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4576       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4577       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4578       wasCast = true;
4579     }
4580 
4581     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4582     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4583     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4584     if (wasCast)
4585       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4586 
4587     return tmp5;
4588   }
4589 
4590   if (condExpr->getType()->isVectorType()) {
4591     CGF.incrementProfileCounter(E);
4592 
4593     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4594     llvm::Value *LHS = Visit(lhsExpr);
4595     llvm::Value *RHS = Visit(rhsExpr);
4596 
4597     llvm::Type *CondType = ConvertType(condExpr->getType());
4598     auto *VecTy = cast<llvm::VectorType>(CondType);
4599     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4600 
4601     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4602     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4603   }
4604 
4605   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4606   // select instead of as control flow.  We can only do this if it is cheap and
4607   // safe to evaluate the LHS and RHS unconditionally.
4608   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4609       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4610     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4611     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4612 
4613     CGF.incrementProfileCounter(E, StepV);
4614 
4615     llvm::Value *LHS = Visit(lhsExpr);
4616     llvm::Value *RHS = Visit(rhsExpr);
4617     if (!LHS) {
4618       // If the conditional has void type, make sure we return a null Value*.
4619       assert(!RHS && "LHS and RHS types must match");
4620       return nullptr;
4621     }
4622     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4623   }
4624 
4625   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4626   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4627   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4628 
4629   CodeGenFunction::ConditionalEvaluation eval(CGF);
4630   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4631                            CGF.getProfileCount(lhsExpr));
4632 
4633   CGF.EmitBlock(LHSBlock);
4634   CGF.incrementProfileCounter(E);
4635   eval.begin(CGF);
4636   Value *LHS = Visit(lhsExpr);
4637   eval.end(CGF);
4638 
4639   LHSBlock = Builder.GetInsertBlock();
4640   Builder.CreateBr(ContBlock);
4641 
4642   CGF.EmitBlock(RHSBlock);
4643   eval.begin(CGF);
4644   Value *RHS = Visit(rhsExpr);
4645   eval.end(CGF);
4646 
4647   RHSBlock = Builder.GetInsertBlock();
4648   CGF.EmitBlock(ContBlock);
4649 
4650   // If the LHS or RHS is a throw expression, it will be legitimately null.
4651   if (!LHS)
4652     return RHS;
4653   if (!RHS)
4654     return LHS;
4655 
4656   // Create a PHI node for the real part.
4657   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4658   PN->addIncoming(LHS, LHSBlock);
4659   PN->addIncoming(RHS, RHSBlock);
4660   return PN;
4661 }
4662 
4663 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4664   return Visit(E->getChosenSubExpr());
4665 }
4666 
4667 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4668   QualType Ty = VE->getType();
4669 
4670   if (Ty->isVariablyModifiedType())
4671     CGF.EmitVariablyModifiedType(Ty);
4672 
4673   Address ArgValue = Address::invalid();
4674   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4675 
4676   llvm::Type *ArgTy = ConvertType(VE->getType());
4677 
4678   // If EmitVAArg fails, emit an error.
4679   if (!ArgPtr.isValid()) {
4680     CGF.ErrorUnsupported(VE, "va_arg expression");
4681     return llvm::UndefValue::get(ArgTy);
4682   }
4683 
4684   // FIXME Volatility.
4685   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4686 
4687   // If EmitVAArg promoted the type, we must truncate it.
4688   if (ArgTy != Val->getType()) {
4689     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4690       Val = Builder.CreateIntToPtr(Val, ArgTy);
4691     else
4692       Val = Builder.CreateTrunc(Val, ArgTy);
4693   }
4694 
4695   return Val;
4696 }
4697 
4698 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4699   return CGF.EmitBlockLiteral(block);
4700 }
4701 
4702 // Convert a vec3 to vec4, or vice versa.
4703 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4704                                  Value *Src, unsigned NumElementsDst) {
4705   static constexpr int Mask[] = {0, 1, 2, -1};
4706   return Builder.CreateShuffleVector(Src,
4707                                      llvm::makeArrayRef(Mask, NumElementsDst));
4708 }
4709 
4710 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4711 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4712 // but could be scalar or vectors of different lengths, and either can be
4713 // pointer.
4714 // There are 4 cases:
4715 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4716 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4717 // 3. pointer -> non-pointer
4718 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4719 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4720 // 4. non-pointer -> pointer
4721 //   a) intptr_t -> pointer       : needs 1 inttoptr
4722 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4723 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4724 // allow casting directly between pointer types and non-integer non-pointer
4725 // types.
4726 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4727                                            const llvm::DataLayout &DL,
4728                                            Value *Src, llvm::Type *DstTy,
4729                                            StringRef Name = "") {
4730   auto SrcTy = Src->getType();
4731 
4732   // Case 1.
4733   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4734     return Builder.CreateBitCast(Src, DstTy, Name);
4735 
4736   // Case 2.
4737   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4738     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4739 
4740   // Case 3.
4741   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4742     // Case 3b.
4743     if (!DstTy->isIntegerTy())
4744       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4745     // Cases 3a and 3b.
4746     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4747   }
4748 
4749   // Case 4b.
4750   if (!SrcTy->isIntegerTy())
4751     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4752   // Cases 4a and 4b.
4753   return Builder.CreateIntToPtr(Src, DstTy, Name);
4754 }
4755 
4756 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4757   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4758   llvm::Type *DstTy = ConvertType(E->getType());
4759 
4760   llvm::Type *SrcTy = Src->getType();
4761   unsigned NumElementsSrc =
4762       isa<llvm::VectorType>(SrcTy)
4763           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4764           : 0;
4765   unsigned NumElementsDst =
4766       isa<llvm::VectorType>(DstTy)
4767           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4768           : 0;
4769 
4770   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4771   // vector to get a vec4, then a bitcast if the target type is different.
4772   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4773     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4774 
4775     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4776       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4777                                          DstTy);
4778     }
4779 
4780     Src->setName("astype");
4781     return Src;
4782   }
4783 
4784   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4785   // to vec4 if the original type is not vec4, then a shuffle vector to
4786   // get a vec3.
4787   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4788     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4789       auto *Vec4Ty = llvm::FixedVectorType::get(
4790           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4791       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4792                                          Vec4Ty);
4793     }
4794 
4795     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4796     Src->setName("astype");
4797     return Src;
4798   }
4799 
4800   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4801                                       Src, DstTy, "astype");
4802 }
4803 
4804 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4805   return CGF.EmitAtomicExpr(E).getScalarVal();
4806 }
4807 
4808 //===----------------------------------------------------------------------===//
4809 //                         Entry Point into this File
4810 //===----------------------------------------------------------------------===//
4811 
4812 /// Emit the computation of the specified expression of scalar type, ignoring
4813 /// the result.
4814 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4815   assert(E && hasScalarEvaluationKind(E->getType()) &&
4816          "Invalid scalar expression to emit");
4817 
4818   return ScalarExprEmitter(*this, IgnoreResultAssign)
4819       .Visit(const_cast<Expr *>(E));
4820 }
4821 
4822 /// Emit a conversion from the specified type to the specified destination type,
4823 /// both of which are LLVM scalar types.
4824 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4825                                              QualType DstTy,
4826                                              SourceLocation Loc) {
4827   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4828          "Invalid scalar expression to emit");
4829   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4830 }
4831 
4832 /// Emit a conversion from the specified complex type to the specified
4833 /// destination type, where the destination type is an LLVM scalar type.
4834 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4835                                                       QualType SrcTy,
4836                                                       QualType DstTy,
4837                                                       SourceLocation Loc) {
4838   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4839          "Invalid complex -> scalar conversion");
4840   return ScalarExprEmitter(*this)
4841       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4842 }
4843 
4844 
4845 llvm::Value *CodeGenFunction::
4846 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4847                         bool isInc, bool isPre) {
4848   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4849 }
4850 
4851 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4852   // object->isa or (*object).isa
4853   // Generate code as for: *(Class*)object
4854 
4855   Expr *BaseExpr = E->getBase();
4856   Address Addr = Address::invalid();
4857   if (BaseExpr->isPRValue()) {
4858     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4859   } else {
4860     Addr = EmitLValue(BaseExpr).getAddress(*this);
4861   }
4862 
4863   // Cast the address to Class*.
4864   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4865   return MakeAddrLValue(Addr, E->getType());
4866 }
4867 
4868 
4869 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4870                                             const CompoundAssignOperator *E) {
4871   ScalarExprEmitter Scalar(*this);
4872   Value *Result = nullptr;
4873   switch (E->getOpcode()) {
4874 #define COMPOUND_OP(Op)                                                       \
4875     case BO_##Op##Assign:                                                     \
4876       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4877                                              Result)
4878   COMPOUND_OP(Mul);
4879   COMPOUND_OP(Div);
4880   COMPOUND_OP(Rem);
4881   COMPOUND_OP(Add);
4882   COMPOUND_OP(Sub);
4883   COMPOUND_OP(Shl);
4884   COMPOUND_OP(Shr);
4885   COMPOUND_OP(And);
4886   COMPOUND_OP(Xor);
4887   COMPOUND_OP(Or);
4888 #undef COMPOUND_OP
4889 
4890   case BO_PtrMemD:
4891   case BO_PtrMemI:
4892   case BO_Mul:
4893   case BO_Div:
4894   case BO_Rem:
4895   case BO_Add:
4896   case BO_Sub:
4897   case BO_Shl:
4898   case BO_Shr:
4899   case BO_LT:
4900   case BO_GT:
4901   case BO_LE:
4902   case BO_GE:
4903   case BO_EQ:
4904   case BO_NE:
4905   case BO_Cmp:
4906   case BO_And:
4907   case BO_Xor:
4908   case BO_Or:
4909   case BO_LAnd:
4910   case BO_LOr:
4911   case BO_Assign:
4912   case BO_Comma:
4913     llvm_unreachable("Not valid compound assignment operators");
4914   }
4915 
4916   llvm_unreachable("Unhandled compound assignment operator");
4917 }
4918 
4919 struct GEPOffsetAndOverflow {
4920   // The total (signed) byte offset for the GEP.
4921   llvm::Value *TotalOffset;
4922   // The offset overflow flag - true if the total offset overflows.
4923   llvm::Value *OffsetOverflows;
4924 };
4925 
4926 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4927 /// and compute the total offset it applies from it's base pointer BasePtr.
4928 /// Returns offset in bytes and a boolean flag whether an overflow happened
4929 /// during evaluation.
4930 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4931                                                  llvm::LLVMContext &VMContext,
4932                                                  CodeGenModule &CGM,
4933                                                  CGBuilderTy &Builder) {
4934   const auto &DL = CGM.getDataLayout();
4935 
4936   // The total (signed) byte offset for the GEP.
4937   llvm::Value *TotalOffset = nullptr;
4938 
4939   // Was the GEP already reduced to a constant?
4940   if (isa<llvm::Constant>(GEPVal)) {
4941     // Compute the offset by casting both pointers to integers and subtracting:
4942     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4943     Value *BasePtr_int =
4944         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4945     Value *GEPVal_int =
4946         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4947     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4948     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4949   }
4950 
4951   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4952   assert(GEP->getPointerOperand() == BasePtr &&
4953          "BasePtr must be the the base of the GEP.");
4954   assert(GEP->isInBounds() && "Expected inbounds GEP");
4955 
4956   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4957 
4958   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4959   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4960   auto *SAddIntrinsic =
4961       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4962   auto *SMulIntrinsic =
4963       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4964 
4965   // The offset overflow flag - true if the total offset overflows.
4966   llvm::Value *OffsetOverflows = Builder.getFalse();
4967 
4968   /// Return the result of the given binary operation.
4969   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4970                   llvm::Value *RHS) -> llvm::Value * {
4971     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4972 
4973     // If the operands are constants, return a constant result.
4974     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4975       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4976         llvm::APInt N;
4977         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4978                                                   /*Signed=*/true, N);
4979         if (HasOverflow)
4980           OffsetOverflows = Builder.getTrue();
4981         return llvm::ConstantInt::get(VMContext, N);
4982       }
4983     }
4984 
4985     // Otherwise, compute the result with checked arithmetic.
4986     auto *ResultAndOverflow = Builder.CreateCall(
4987         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4988     OffsetOverflows = Builder.CreateOr(
4989         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4990     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4991   };
4992 
4993   // Determine the total byte offset by looking at each GEP operand.
4994   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4995        GTI != GTE; ++GTI) {
4996     llvm::Value *LocalOffset;
4997     auto *Index = GTI.getOperand();
4998     // Compute the local offset contributed by this indexing step:
4999     if (auto *STy = GTI.getStructTypeOrNull()) {
5000       // For struct indexing, the local offset is the byte position of the
5001       // specified field.
5002       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5003       LocalOffset = llvm::ConstantInt::get(
5004           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5005     } else {
5006       // Otherwise this is array-like indexing. The local offset is the index
5007       // multiplied by the element size.
5008       auto *ElementSize = llvm::ConstantInt::get(
5009           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5010       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5011       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5012     }
5013 
5014     // If this is the first offset, set it as the total offset. Otherwise, add
5015     // the local offset into the running total.
5016     if (!TotalOffset || TotalOffset == Zero)
5017       TotalOffset = LocalOffset;
5018     else
5019       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5020   }
5021 
5022   return {TotalOffset, OffsetOverflows};
5023 }
5024 
5025 Value *
5026 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
5027                                         bool SignedIndices, bool IsSubtraction,
5028                                         SourceLocation Loc, const Twine &Name) {
5029   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
5030 
5031   // If the pointer overflow sanitizer isn't enabled, do nothing.
5032   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5033     return GEPVal;
5034 
5035   llvm::Type *PtrTy = Ptr->getType();
5036 
5037   // Perform nullptr-and-offset check unless the nullptr is defined.
5038   bool PerformNullCheck = !NullPointerIsDefined(
5039       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5040   // Check for overflows unless the GEP got constant-folded,
5041   // and only in the default address space
5042   bool PerformOverflowCheck =
5043       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5044 
5045   if (!(PerformNullCheck || PerformOverflowCheck))
5046     return GEPVal;
5047 
5048   const auto &DL = CGM.getDataLayout();
5049 
5050   SanitizerScope SanScope(this);
5051   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5052 
5053   GEPOffsetAndOverflow EvaluatedGEP =
5054       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5055 
5056   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5057           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5058          "If the offset got constant-folded, we don't expect that there was an "
5059          "overflow.");
5060 
5061   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5062 
5063   // Common case: if the total offset is zero, and we are using C++ semantics,
5064   // where nullptr+0 is defined, don't emit a check.
5065   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5066     return GEPVal;
5067 
5068   // Now that we've computed the total offset, add it to the base pointer (with
5069   // wrapping semantics).
5070   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5071   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5072 
5073   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5074 
5075   if (PerformNullCheck) {
5076     // In C++, if the base pointer evaluates to a null pointer value,
5077     // the only valid  pointer this inbounds GEP can produce is also
5078     // a null pointer, so the offset must also evaluate to zero.
5079     // Likewise, if we have non-zero base pointer, we can not get null pointer
5080     // as a result, so the offset can not be -intptr_t(BasePtr).
5081     // In other words, both pointers are either null, or both are non-null,
5082     // or the behaviour is undefined.
5083     //
5084     // C, however, is more strict in this regard, and gives more
5085     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5086     // So both the input to the 'gep inbounds' AND the output must not be null.
5087     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5088     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5089     auto *Valid =
5090         CGM.getLangOpts().CPlusPlus
5091             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5092             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5093     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5094   }
5095 
5096   if (PerformOverflowCheck) {
5097     // The GEP is valid if:
5098     // 1) The total offset doesn't overflow, and
5099     // 2) The sign of the difference between the computed address and the base
5100     // pointer matches the sign of the total offset.
5101     llvm::Value *ValidGEP;
5102     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5103     if (SignedIndices) {
5104       // GEP is computed as `unsigned base + signed offset`, therefore:
5105       // * If offset was positive, then the computed pointer can not be
5106       //   [unsigned] less than the base pointer, unless it overflowed.
5107       // * If offset was negative, then the computed pointer can not be
5108       //   [unsigned] greater than the bas pointere, unless it overflowed.
5109       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5110       auto *PosOrZeroOffset =
5111           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5112       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5113       ValidGEP =
5114           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5115     } else if (!IsSubtraction) {
5116       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5117       // computed pointer can not be [unsigned] less than base pointer,
5118       // unless there was an overflow.
5119       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5120       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5121     } else {
5122       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5123       // computed pointer can not be [unsigned] greater than base pointer,
5124       // unless there was an overflow.
5125       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5126       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5127     }
5128     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5129     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5130   }
5131 
5132   assert(!Checks.empty() && "Should have produced some checks.");
5133 
5134   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5135   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5136   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5137   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5138 
5139   return GEPVal;
5140 }
5141