1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
81   const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
85   Value *EmitLoadOfLValue(LValue LV, QualType T) {
86     return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     const llvm::IntegerType *Ty = cast<llvm::IntegerType>(V->getType());
144     Value *Zero = llvm::ConstantInt::get(Ty, 0);
145     return Builder.CreateICmpNE(V, Zero, "tobool");
146   }
147 
148   //===--------------------------------------------------------------------===//
149   //                            Visitor Methods
150   //===--------------------------------------------------------------------===//
151 
152   Value *Visit(Expr *E) {
153     llvm::DenseMap<const Expr *, llvm::Value *>::iterator I =
154       CGF.ConditionalSaveExprs.find(E);
155     if (I != CGF.ConditionalSaveExprs.end())
156       return I->second;
157 
158     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
159   }
160 
161   Value *VisitStmt(Stmt *S) {
162     S->dump(CGF.getContext().getSourceManager());
163     assert(0 && "Stmt can't have complex result type!");
164     return 0;
165   }
166   Value *VisitExpr(Expr *S);
167 
168   Value *VisitParenExpr(ParenExpr *PE) {
169     return Visit(PE->getSubExpr());
170   }
171 
172   // Leaves.
173   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
174     return llvm::ConstantInt::get(VMContext, E->getValue());
175   }
176   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
177     return llvm::ConstantFP::get(VMContext, E->getValue());
178   }
179   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
180     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
181   }
182   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
183     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
184   }
185   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
186     return EmitNullValue(E->getType());
187   }
188   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
189     return EmitNullValue(E->getType());
190   }
191   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
192   Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
193   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
194     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
195     return Builder.CreateBitCast(V, ConvertType(E->getType()));
196   }
197 
198   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
199     return llvm::ConstantInt::get(ConvertType(E->getType()),
200                                   E->getPackLength());
201   }
202 
203   // l-values.
204   Value *VisitDeclRefExpr(DeclRefExpr *E) {
205     Expr::EvalResult Result;
206     if (!E->Evaluate(Result, CGF.getContext()))
207       return EmitLoadOfLValue(E);
208 
209     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
210 
211     llvm::Constant *C;
212     if (Result.Val.isInt()) {
213       C = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
214     } else if (Result.Val.isFloat()) {
215       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
216     } else {
217       return EmitLoadOfLValue(E);
218     }
219 
220     // Make sure we emit a debug reference to the global variable.
221     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
222       if (!CGF.getContext().DeclMustBeEmitted(VD))
223         CGF.EmitDeclRefExprDbgValue(E, C);
224     } else if (isa<EnumConstantDecl>(E->getDecl())) {
225       CGF.EmitDeclRefExprDbgValue(E, C);
226     }
227 
228     return C;
229   }
230   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
231     return CGF.EmitObjCSelectorExpr(E);
232   }
233   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
234     return CGF.EmitObjCProtocolExpr(E);
235   }
236   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
237     return EmitLoadOfLValue(E);
238   }
239   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
240     assert(E->getObjectKind() == OK_Ordinary &&
241            "reached property reference without lvalue-to-rvalue");
242     return EmitLoadOfLValue(E);
243   }
244   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
245     return CGF.EmitObjCMessageExpr(E).getScalarVal();
246   }
247 
248   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
249     LValue LV = CGF.EmitObjCIsaExpr(E);
250     Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
251     return V;
252   }
253 
254   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
255   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
256   Value *VisitMemberExpr(MemberExpr *E);
257   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
258   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
259     return EmitLoadOfLValue(E);
260   }
261 
262   Value *VisitInitListExpr(InitListExpr *E);
263 
264   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
265     return CGF.CGM.EmitNullConstant(E->getType());
266   }
267   Value *VisitCastExpr(CastExpr *E) {
268     // Make sure to evaluate VLA bounds now so that we have them for later.
269     if (E->getType()->isVariablyModifiedType())
270       CGF.EmitVLASize(E->getType());
271 
272     return EmitCastExpr(E);
273   }
274   Value *EmitCastExpr(CastExpr *E);
275 
276   Value *VisitCallExpr(const CallExpr *E) {
277     if (E->getCallReturnType()->isReferenceType())
278       return EmitLoadOfLValue(E);
279 
280     return CGF.EmitCallExpr(E).getScalarVal();
281   }
282 
283   Value *VisitStmtExpr(const StmtExpr *E);
284 
285   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
286 
287   // Unary Operators.
288   Value *VisitUnaryPostDec(const UnaryOperator *E) {
289     LValue LV = EmitLValue(E->getSubExpr());
290     return EmitScalarPrePostIncDec(E, LV, false, false);
291   }
292   Value *VisitUnaryPostInc(const UnaryOperator *E) {
293     LValue LV = EmitLValue(E->getSubExpr());
294     return EmitScalarPrePostIncDec(E, LV, true, false);
295   }
296   Value *VisitUnaryPreDec(const UnaryOperator *E) {
297     LValue LV = EmitLValue(E->getSubExpr());
298     return EmitScalarPrePostIncDec(E, LV, false, true);
299   }
300   Value *VisitUnaryPreInc(const UnaryOperator *E) {
301     LValue LV = EmitLValue(E->getSubExpr());
302     return EmitScalarPrePostIncDec(E, LV, true, true);
303   }
304 
305   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
306                                        bool isInc, bool isPre);
307 
308 
309   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
310     // If the sub-expression is an instance member reference,
311     // EmitDeclRefLValue will magically emit it with the appropriate
312     // value as the "address".
313     return EmitLValue(E->getSubExpr()).getAddress();
314   }
315   Value *VisitUnaryDeref(const UnaryOperator *E) {
316     if (E->getType()->isVoidType())
317       return Visit(E->getSubExpr()); // the actual value should be unused
318     return EmitLoadOfLValue(E);
319   }
320   Value *VisitUnaryPlus(const UnaryOperator *E) {
321     // This differs from gcc, though, most likely due to a bug in gcc.
322     TestAndClearIgnoreResultAssign();
323     return Visit(E->getSubExpr());
324   }
325   Value *VisitUnaryMinus    (const UnaryOperator *E);
326   Value *VisitUnaryNot      (const UnaryOperator *E);
327   Value *VisitUnaryLNot     (const UnaryOperator *E);
328   Value *VisitUnaryReal     (const UnaryOperator *E);
329   Value *VisitUnaryImag     (const UnaryOperator *E);
330   Value *VisitUnaryExtension(const UnaryOperator *E) {
331     return Visit(E->getSubExpr());
332   }
333 
334   // C++
335   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
336     return Visit(DAE->getExpr());
337   }
338   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
339     return CGF.LoadCXXThis();
340   }
341 
342   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
343     return CGF.EmitExprWithCleanups(E).getScalarVal();
344   }
345   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
346     return CGF.EmitCXXNewExpr(E);
347   }
348   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
349     CGF.EmitCXXDeleteExpr(E);
350     return 0;
351   }
352   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
353     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
354   }
355 
356   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
357     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
358   }
359 
360   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
361     // C++ [expr.pseudo]p1:
362     //   The result shall only be used as the operand for the function call
363     //   operator (), and the result of such a call has type void. The only
364     //   effect is the evaluation of the postfix-expression before the dot or
365     //   arrow.
366     CGF.EmitScalarExpr(E->getBase());
367     return 0;
368   }
369 
370   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
371     return EmitNullValue(E->getType());
372   }
373 
374   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
375     CGF.EmitCXXThrowExpr(E);
376     return 0;
377   }
378 
379   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
380     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381   }
382 
383   // Binary Operators.
384   Value *EmitMul(const BinOpInfo &Ops) {
385     if (Ops.Ty->hasSignedIntegerRepresentation()) {
386       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
387       case LangOptions::SOB_Undefined:
388         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
389       case LangOptions::SOB_Defined:
390         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
391       case LangOptions::SOB_Trapping:
392         return EmitOverflowCheckedBinOp(Ops);
393       }
394     }
395 
396     if (Ops.LHS->getType()->isFPOrFPVectorTy())
397       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
398     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
399   }
400   bool isTrapvOverflowBehavior() {
401     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
402                == LangOptions::SOB_Trapping;
403   }
404   /// Create a binary op that checks for overflow.
405   /// Currently only supports +, - and *.
406   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
407   // Emit the overflow BB when -ftrapv option is activated.
408   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
409     Builder.SetInsertPoint(overflowBB);
410     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
411     Builder.CreateCall(Trap);
412     Builder.CreateUnreachable();
413   }
414   // Check for undefined division and modulus behaviors.
415   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
416                                                   llvm::Value *Zero,bool isDiv);
417   Value *EmitDiv(const BinOpInfo &Ops);
418   Value *EmitRem(const BinOpInfo &Ops);
419   Value *EmitAdd(const BinOpInfo &Ops);
420   Value *EmitSub(const BinOpInfo &Ops);
421   Value *EmitShl(const BinOpInfo &Ops);
422   Value *EmitShr(const BinOpInfo &Ops);
423   Value *EmitAnd(const BinOpInfo &Ops) {
424     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
425   }
426   Value *EmitXor(const BinOpInfo &Ops) {
427     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
428   }
429   Value *EmitOr (const BinOpInfo &Ops) {
430     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
431   }
432 
433   BinOpInfo EmitBinOps(const BinaryOperator *E);
434   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
435                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
436                                   Value *&Result);
437 
438   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
439                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
440 
441   // Binary operators and binary compound assignment operators.
442 #define HANDLEBINOP(OP) \
443   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
444     return Emit ## OP(EmitBinOps(E));                                      \
445   }                                                                        \
446   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
447     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
448   }
449   HANDLEBINOP(Mul)
450   HANDLEBINOP(Div)
451   HANDLEBINOP(Rem)
452   HANDLEBINOP(Add)
453   HANDLEBINOP(Sub)
454   HANDLEBINOP(Shl)
455   HANDLEBINOP(Shr)
456   HANDLEBINOP(And)
457   HANDLEBINOP(Xor)
458   HANDLEBINOP(Or)
459 #undef HANDLEBINOP
460 
461   // Comparisons.
462   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
463                      unsigned SICmpOpc, unsigned FCmpOpc);
464 #define VISITCOMP(CODE, UI, SI, FP) \
465     Value *VisitBin##CODE(const BinaryOperator *E) { \
466       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
467                          llvm::FCmpInst::FP); }
468   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
469   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
470   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
471   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
472   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
473   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
474 #undef VISITCOMP
475 
476   Value *VisitBinAssign     (const BinaryOperator *E);
477 
478   Value *VisitBinLAnd       (const BinaryOperator *E);
479   Value *VisitBinLOr        (const BinaryOperator *E);
480   Value *VisitBinComma      (const BinaryOperator *E);
481 
482   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
483   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
484 
485   // Other Operators.
486   Value *VisitBlockExpr(const BlockExpr *BE);
487   Value *VisitConditionalOperator(const ConditionalOperator *CO);
488   Value *VisitChooseExpr(ChooseExpr *CE);
489   Value *VisitVAArgExpr(VAArgExpr *VE);
490   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
491     return CGF.EmitObjCStringLiteral(E);
492   }
493 };
494 }  // end anonymous namespace.
495 
496 //===----------------------------------------------------------------------===//
497 //                                Utilities
498 //===----------------------------------------------------------------------===//
499 
500 /// EmitConversionToBool - Convert the specified expression value to a
501 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
502 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
503   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
504 
505   if (SrcType->isRealFloatingType())
506     return EmitFloatToBoolConversion(Src);
507 
508   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
509     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
510 
511   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
512          "Unknown scalar type to convert");
513 
514   if (isa<llvm::IntegerType>(Src->getType()))
515     return EmitIntToBoolConversion(Src);
516 
517   assert(isa<llvm::PointerType>(Src->getType()));
518   return EmitPointerToBoolConversion(Src);
519 }
520 
521 /// EmitScalarConversion - Emit a conversion from the specified type to the
522 /// specified destination type, both of which are LLVM scalar types.
523 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
524                                                QualType DstType) {
525   SrcType = CGF.getContext().getCanonicalType(SrcType);
526   DstType = CGF.getContext().getCanonicalType(DstType);
527   if (SrcType == DstType) return Src;
528 
529   if (DstType->isVoidType()) return 0;
530 
531   // Handle conversions to bool first, they are special: comparisons against 0.
532   if (DstType->isBooleanType())
533     return EmitConversionToBool(Src, SrcType);
534 
535   const llvm::Type *DstTy = ConvertType(DstType);
536 
537   // Ignore conversions like int -> uint.
538   if (Src->getType() == DstTy)
539     return Src;
540 
541   // Handle pointer conversions next: pointers can only be converted to/from
542   // other pointers and integers. Check for pointer types in terms of LLVM, as
543   // some native types (like Obj-C id) may map to a pointer type.
544   if (isa<llvm::PointerType>(DstTy)) {
545     // The source value may be an integer, or a pointer.
546     if (isa<llvm::PointerType>(Src->getType()))
547       return Builder.CreateBitCast(Src, DstTy, "conv");
548 
549     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
550     // First, convert to the correct width so that we control the kind of
551     // extension.
552     const llvm::Type *MiddleTy = CGF.IntPtrTy;
553     bool InputSigned = SrcType->isSignedIntegerType();
554     llvm::Value* IntResult =
555         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
556     // Then, cast to pointer.
557     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
558   }
559 
560   if (isa<llvm::PointerType>(Src->getType())) {
561     // Must be an ptr to int cast.
562     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
563     return Builder.CreatePtrToInt(Src, DstTy, "conv");
564   }
565 
566   // A scalar can be splatted to an extended vector of the same element type
567   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
568     // Cast the scalar to element type
569     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
570     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
571 
572     // Insert the element in element zero of an undef vector
573     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
574     llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
575     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
576 
577     // Splat the element across to all elements
578     llvm::SmallVector<llvm::Constant*, 16> Args;
579     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
580     for (unsigned i = 0; i < NumElements; i++)
581       Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
582 
583     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
584     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
585     return Yay;
586   }
587 
588   // Allow bitcast from vector to integer/fp of the same size.
589   if (isa<llvm::VectorType>(Src->getType()) ||
590       isa<llvm::VectorType>(DstTy))
591     return Builder.CreateBitCast(Src, DstTy, "conv");
592 
593   // Finally, we have the arithmetic types: real int/float.
594   if (isa<llvm::IntegerType>(Src->getType())) {
595     bool InputSigned = SrcType->isSignedIntegerType();
596     if (isa<llvm::IntegerType>(DstTy))
597       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
598     else if (InputSigned)
599       return Builder.CreateSIToFP(Src, DstTy, "conv");
600     else
601       return Builder.CreateUIToFP(Src, DstTy, "conv");
602   }
603 
604   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
605   if (isa<llvm::IntegerType>(DstTy)) {
606     if (DstType->isSignedIntegerType())
607       return Builder.CreateFPToSI(Src, DstTy, "conv");
608     else
609       return Builder.CreateFPToUI(Src, DstTy, "conv");
610   }
611 
612   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
613   if (DstTy->getTypeID() < Src->getType()->getTypeID())
614     return Builder.CreateFPTrunc(Src, DstTy, "conv");
615   else
616     return Builder.CreateFPExt(Src, DstTy, "conv");
617 }
618 
619 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
620 /// type to the specified destination type, where the destination type is an
621 /// LLVM scalar type.
622 Value *ScalarExprEmitter::
623 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
624                               QualType SrcTy, QualType DstTy) {
625   // Get the source element type.
626   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
627 
628   // Handle conversions to bool first, they are special: comparisons against 0.
629   if (DstTy->isBooleanType()) {
630     //  Complex != 0  -> (Real != 0) | (Imag != 0)
631     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
632     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
633     return Builder.CreateOr(Src.first, Src.second, "tobool");
634   }
635 
636   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
637   // the imaginary part of the complex value is discarded and the value of the
638   // real part is converted according to the conversion rules for the
639   // corresponding real type.
640   return EmitScalarConversion(Src.first, SrcTy, DstTy);
641 }
642 
643 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
644   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
645     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
646 
647   return llvm::Constant::getNullValue(ConvertType(Ty));
648 }
649 
650 //===----------------------------------------------------------------------===//
651 //                            Visitor Methods
652 //===----------------------------------------------------------------------===//
653 
654 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
655   CGF.ErrorUnsupported(E, "scalar expression");
656   if (E->getType()->isVoidType())
657     return 0;
658   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
659 }
660 
661 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
662   // Vector Mask Case
663   if (E->getNumSubExprs() == 2 ||
664       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
665     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
666     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
667     Value *Mask;
668 
669     const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
670     unsigned LHSElts = LTy->getNumElements();
671 
672     if (E->getNumSubExprs() == 3) {
673       Mask = CGF.EmitScalarExpr(E->getExpr(2));
674 
675       // Shuffle LHS & RHS into one input vector.
676       llvm::SmallVector<llvm::Constant*, 32> concat;
677       for (unsigned i = 0; i != LHSElts; ++i) {
678         concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
679         concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
680       }
681 
682       Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
683       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
684       LHSElts *= 2;
685     } else {
686       Mask = RHS;
687     }
688 
689     const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
690     llvm::Constant* EltMask;
691 
692     // Treat vec3 like vec4.
693     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
694       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
695                                        (1 << llvm::Log2_32(LHSElts+2))-1);
696     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
697       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
698                                        (1 << llvm::Log2_32(LHSElts+1))-1);
699     else
700       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
701                                        (1 << llvm::Log2_32(LHSElts))-1);
702 
703     // Mask off the high bits of each shuffle index.
704     llvm::SmallVector<llvm::Constant *, 32> MaskV;
705     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
706       MaskV.push_back(EltMask);
707 
708     Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
709     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
710 
711     // newv = undef
712     // mask = mask & maskbits
713     // for each elt
714     //   n = extract mask i
715     //   x = extract val n
716     //   newv = insert newv, x, i
717     const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
718                                                         MTy->getNumElements());
719     Value* NewV = llvm::UndefValue::get(RTy);
720     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
721       Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
722       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
723       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
724 
725       // Handle vec3 special since the index will be off by one for the RHS.
726       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
727         Value *cmpIndx, *newIndx;
728         cmpIndx = Builder.CreateICmpUGT(Indx,
729                                         llvm::ConstantInt::get(CGF.Int32Ty, 3),
730                                         "cmp_shuf_idx");
731         newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
732                                     "shuf_idx_adj");
733         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
734       }
735       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
736       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
737     }
738     return NewV;
739   }
740 
741   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
742   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
743 
744   // Handle vec3 special since the index will be off by one for the RHS.
745   llvm::SmallVector<llvm::Constant*, 32> indices;
746   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
747     llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
748     const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
749     if (VTy->getNumElements() == 3) {
750       if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
751         uint64_t cVal = CI->getZExtValue();
752         if (cVal > 3) {
753           C = llvm::ConstantInt::get(C->getType(), cVal-1);
754         }
755       }
756     }
757     indices.push_back(C);
758   }
759 
760   Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
761   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
762 }
763 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
764   Expr::EvalResult Result;
765   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
766     if (E->isArrow())
767       CGF.EmitScalarExpr(E->getBase());
768     else
769       EmitLValue(E->getBase());
770     return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
771   }
772 
773   // Emit debug info for aggregate now, if it was delayed to reduce
774   // debug info size.
775   CGDebugInfo *DI = CGF.getDebugInfo();
776   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
777     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
778     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
779       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
780         DI->getOrCreateRecordType(PTy->getPointeeType(),
781                                   M->getParent()->getLocation());
782   }
783   return EmitLoadOfLValue(E);
784 }
785 
786 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
787   TestAndClearIgnoreResultAssign();
788 
789   // Emit subscript expressions in rvalue context's.  For most cases, this just
790   // loads the lvalue formed by the subscript expr.  However, we have to be
791   // careful, because the base of a vector subscript is occasionally an rvalue,
792   // so we can't get it as an lvalue.
793   if (!E->getBase()->getType()->isVectorType())
794     return EmitLoadOfLValue(E);
795 
796   // Handle the vector case.  The base must be a vector, the index must be an
797   // integer value.
798   Value *Base = Visit(E->getBase());
799   Value *Idx  = Visit(E->getIdx());
800   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
801   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
802   return Builder.CreateExtractElement(Base, Idx, "vecext");
803 }
804 
805 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
806                                   unsigned Off, const llvm::Type *I32Ty) {
807   int MV = SVI->getMaskValue(Idx);
808   if (MV == -1)
809     return llvm::UndefValue::get(I32Ty);
810   return llvm::ConstantInt::get(I32Ty, Off+MV);
811 }
812 
813 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
814   bool Ignore = TestAndClearIgnoreResultAssign();
815   (void)Ignore;
816   assert (Ignore == false && "init list ignored");
817   unsigned NumInitElements = E->getNumInits();
818 
819   if (E->hadArrayRangeDesignator())
820     CGF.ErrorUnsupported(E, "GNU array range designator extension");
821 
822   const llvm::VectorType *VType =
823     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
824 
825   // We have a scalar in braces. Just use the first element.
826   if (!VType)
827     return Visit(E->getInit(0));
828 
829   unsigned ResElts = VType->getNumElements();
830 
831   // Loop over initializers collecting the Value for each, and remembering
832   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
833   // us to fold the shuffle for the swizzle into the shuffle for the vector
834   // initializer, since LLVM optimizers generally do not want to touch
835   // shuffles.
836   unsigned CurIdx = 0;
837   bool VIsUndefShuffle = false;
838   llvm::Value *V = llvm::UndefValue::get(VType);
839   for (unsigned i = 0; i != NumInitElements; ++i) {
840     Expr *IE = E->getInit(i);
841     Value *Init = Visit(IE);
842     llvm::SmallVector<llvm::Constant*, 16> Args;
843 
844     const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
845 
846     // Handle scalar elements.  If the scalar initializer is actually one
847     // element of a different vector of the same width, use shuffle instead of
848     // extract+insert.
849     if (!VVT) {
850       if (isa<ExtVectorElementExpr>(IE)) {
851         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
852 
853         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
854           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
855           Value *LHS = 0, *RHS = 0;
856           if (CurIdx == 0) {
857             // insert into undef -> shuffle (src, undef)
858             Args.push_back(C);
859             for (unsigned j = 1; j != ResElts; ++j)
860               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
861 
862             LHS = EI->getVectorOperand();
863             RHS = V;
864             VIsUndefShuffle = true;
865           } else if (VIsUndefShuffle) {
866             // insert into undefshuffle && size match -> shuffle (v, src)
867             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
868             for (unsigned j = 0; j != CurIdx; ++j)
869               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
870             Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
871                                                   ResElts + C->getZExtValue()));
872             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
873               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
874 
875             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
876             RHS = EI->getVectorOperand();
877             VIsUndefShuffle = false;
878           }
879           if (!Args.empty()) {
880             llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
881             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
882             ++CurIdx;
883             continue;
884           }
885         }
886       }
887       Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
888       V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
889       VIsUndefShuffle = false;
890       ++CurIdx;
891       continue;
892     }
893 
894     unsigned InitElts = VVT->getNumElements();
895 
896     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
897     // input is the same width as the vector being constructed, generate an
898     // optimized shuffle of the swizzle input into the result.
899     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
900     if (isa<ExtVectorElementExpr>(IE)) {
901       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
902       Value *SVOp = SVI->getOperand(0);
903       const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
904 
905       if (OpTy->getNumElements() == ResElts) {
906         for (unsigned j = 0; j != CurIdx; ++j) {
907           // If the current vector initializer is a shuffle with undef, merge
908           // this shuffle directly into it.
909           if (VIsUndefShuffle) {
910             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
911                                       CGF.Int32Ty));
912           } else {
913             Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
914           }
915         }
916         for (unsigned j = 0, je = InitElts; j != je; ++j)
917           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
918         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
919           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
920 
921         if (VIsUndefShuffle)
922           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
923 
924         Init = SVOp;
925       }
926     }
927 
928     // Extend init to result vector length, and then shuffle its contribution
929     // to the vector initializer into V.
930     if (Args.empty()) {
931       for (unsigned j = 0; j != InitElts; ++j)
932         Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
933       for (unsigned j = InitElts; j != ResElts; ++j)
934         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
935       llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
936       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
937                                          Mask, "vext");
938 
939       Args.clear();
940       for (unsigned j = 0; j != CurIdx; ++j)
941         Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
942       for (unsigned j = 0; j != InitElts; ++j)
943         Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
944       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
945         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
946     }
947 
948     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
949     // merging subsequent shuffles into this one.
950     if (CurIdx == 0)
951       std::swap(V, Init);
952     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
953     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
954     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
955     CurIdx += InitElts;
956   }
957 
958   // FIXME: evaluate codegen vs. shuffling against constant null vector.
959   // Emit remaining default initializers.
960   const llvm::Type *EltTy = VType->getElementType();
961 
962   // Emit remaining default initializers
963   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
964     Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
965     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
966     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
967   }
968   return V;
969 }
970 
971 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
972   const Expr *E = CE->getSubExpr();
973 
974   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
975     return false;
976 
977   if (isa<CXXThisExpr>(E)) {
978     // We always assume that 'this' is never null.
979     return false;
980   }
981 
982   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
983     // And that glvalue casts are never null.
984     if (ICE->getValueKind() != VK_RValue)
985       return false;
986   }
987 
988   return true;
989 }
990 
991 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
992 // have to handle a more broad range of conversions than explicit casts, as they
993 // handle things like function to ptr-to-function decay etc.
994 Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
995   Expr *E = CE->getSubExpr();
996   QualType DestTy = CE->getType();
997   CastKind Kind = CE->getCastKind();
998 
999   if (!DestTy->isVoidType())
1000     TestAndClearIgnoreResultAssign();
1001 
1002   // Since almost all cast kinds apply to scalars, this switch doesn't have
1003   // a default case, so the compiler will warn on a missing case.  The cases
1004   // are in the same order as in the CastKind enum.
1005   switch (Kind) {
1006   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1007 
1008   case CK_LValueBitCast:
1009   case CK_ObjCObjectLValueCast: {
1010     Value *V = EmitLValue(E).getAddress();
1011     V = Builder.CreateBitCast(V,
1012                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1013     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
1014   }
1015 
1016   case CK_AnyPointerToObjCPointerCast:
1017   case CK_AnyPointerToBlockPointerCast:
1018   case CK_BitCast: {
1019     Value *Src = Visit(const_cast<Expr*>(E));
1020     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1021   }
1022   case CK_NoOp:
1023   case CK_UserDefinedConversion:
1024     return Visit(const_cast<Expr*>(E));
1025 
1026   case CK_BaseToDerived: {
1027     const CXXRecordDecl *DerivedClassDecl =
1028       DestTy->getCXXRecordDeclForPointerType();
1029 
1030     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1031                                         CE->path_begin(), CE->path_end(),
1032                                         ShouldNullCheckClassCastValue(CE));
1033   }
1034   case CK_UncheckedDerivedToBase:
1035   case CK_DerivedToBase: {
1036     const RecordType *DerivedClassTy =
1037       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1038     CXXRecordDecl *DerivedClassDecl =
1039       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1040 
1041     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1042                                      CE->path_begin(), CE->path_end(),
1043                                      ShouldNullCheckClassCastValue(CE));
1044   }
1045   case CK_Dynamic: {
1046     Value *V = Visit(const_cast<Expr*>(E));
1047     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1048     return CGF.EmitDynamicCast(V, DCE);
1049   }
1050 
1051   case CK_ArrayToPointerDecay: {
1052     assert(E->getType()->isArrayType() &&
1053            "Array to pointer decay must have array source type!");
1054 
1055     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1056 
1057     // Note that VLA pointers are always decayed, so we don't need to do
1058     // anything here.
1059     if (!E->getType()->isVariableArrayType()) {
1060       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1061       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1062                                  ->getElementType()) &&
1063              "Expected pointer to array");
1064       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1065     }
1066 
1067     return V;
1068   }
1069   case CK_FunctionToPointerDecay:
1070     return EmitLValue(E).getAddress();
1071 
1072   case CK_NullToPointer:
1073     if (MustVisitNullValue(E))
1074       (void) Visit(E);
1075 
1076     return llvm::ConstantPointerNull::get(
1077                                cast<llvm::PointerType>(ConvertType(DestTy)));
1078 
1079   case CK_NullToMemberPointer: {
1080     if (MustVisitNullValue(E))
1081       (void) Visit(E);
1082 
1083     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1084     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1085   }
1086 
1087   case CK_BaseToDerivedMemberPointer:
1088   case CK_DerivedToBaseMemberPointer: {
1089     Value *Src = Visit(E);
1090 
1091     // Note that the AST doesn't distinguish between checked and
1092     // unchecked member pointer conversions, so we always have to
1093     // implement checked conversions here.  This is inefficient when
1094     // actual control flow may be required in order to perform the
1095     // check, which it is for data member pointers (but not member
1096     // function pointers on Itanium and ARM).
1097     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1098   }
1099 
1100   case CK_FloatingRealToComplex:
1101   case CK_FloatingComplexCast:
1102   case CK_IntegralRealToComplex:
1103   case CK_IntegralComplexCast:
1104   case CK_IntegralComplexToFloatingComplex:
1105   case CK_FloatingComplexToIntegralComplex:
1106   case CK_ConstructorConversion:
1107   case CK_ToUnion:
1108     llvm_unreachable("scalar cast to non-scalar value");
1109     break;
1110 
1111   case CK_GetObjCProperty: {
1112     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1113     assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1114            "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1115     RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType());
1116     return RV.getScalarVal();
1117   }
1118 
1119   case CK_LValueToRValue:
1120     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1121     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1122     return Visit(const_cast<Expr*>(E));
1123 
1124   case CK_IntegralToPointer: {
1125     Value *Src = Visit(const_cast<Expr*>(E));
1126 
1127     // First, convert to the correct width so that we control the kind of
1128     // extension.
1129     const llvm::Type *MiddleTy = CGF.IntPtrTy;
1130     bool InputSigned = E->getType()->isSignedIntegerType();
1131     llvm::Value* IntResult =
1132       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1133 
1134     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1135   }
1136   case CK_PointerToIntegral: {
1137     Value *Src = Visit(const_cast<Expr*>(E));
1138 
1139     // Handle conversion to bool correctly.
1140     if (DestTy->isBooleanType())
1141       return EmitScalarConversion(Src, E->getType(), DestTy);
1142 
1143     return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1144   }
1145   case CK_ToVoid: {
1146     CGF.EmitIgnoredExpr(E);
1147     return 0;
1148   }
1149   case CK_VectorSplat: {
1150     const llvm::Type *DstTy = ConvertType(DestTy);
1151     Value *Elt = Visit(const_cast<Expr*>(E));
1152 
1153     // Insert the element in element zero of an undef vector
1154     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1155     llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1156     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1157 
1158     // Splat the element across to all elements
1159     llvm::SmallVector<llvm::Constant*, 16> Args;
1160     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1161     llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1162     for (unsigned i = 0; i < NumElements; i++)
1163       Args.push_back(Zero);
1164 
1165     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1166     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1167     return Yay;
1168   }
1169 
1170   case CK_IntegralCast:
1171   case CK_IntegralToFloating:
1172   case CK_FloatingToIntegral:
1173   case CK_FloatingCast:
1174     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1175 
1176   case CK_IntegralToBoolean:
1177     return EmitIntToBoolConversion(Visit(E));
1178   case CK_PointerToBoolean:
1179     return EmitPointerToBoolConversion(Visit(E));
1180   case CK_FloatingToBoolean:
1181     return EmitFloatToBoolConversion(Visit(E));
1182   case CK_MemberPointerToBoolean: {
1183     llvm::Value *MemPtr = Visit(E);
1184     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1185     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1186   }
1187 
1188   case CK_FloatingComplexToReal:
1189   case CK_IntegralComplexToReal:
1190     return CGF.EmitComplexExpr(E, false, true).first;
1191 
1192   case CK_FloatingComplexToBoolean:
1193   case CK_IntegralComplexToBoolean: {
1194     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1195 
1196     // TODO: kill this function off, inline appropriate case here
1197     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1198   }
1199 
1200   }
1201 
1202   llvm_unreachable("unknown scalar cast");
1203   return 0;
1204 }
1205 
1206 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1207   CodeGenFunction::StmtExprEvaluation eval(CGF);
1208   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1209     .getScalarVal();
1210 }
1211 
1212 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1213   llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1214   if (E->getType().isObjCGCWeak())
1215     return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1216   return CGF.EmitLoadOfScalar(V, false, 0, E->getType());
1217 }
1218 
1219 //===----------------------------------------------------------------------===//
1220 //                             Unary Operators
1221 //===----------------------------------------------------------------------===//
1222 
1223 llvm::Value *ScalarExprEmitter::
1224 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1225                         bool isInc, bool isPre) {
1226 
1227   QualType ValTy = E->getSubExpr()->getType();
1228   llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
1229 
1230   int AmountVal = isInc ? 1 : -1;
1231 
1232   if (ValTy->isPointerType() &&
1233       ValTy->getAs<PointerType>()->isVariableArrayType()) {
1234     // The amount of the addition/subtraction needs to account for the VLA size
1235     CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1236   }
1237 
1238   llvm::Value *NextVal;
1239   if (const llvm::PointerType *PT =
1240       dyn_cast<llvm::PointerType>(InVal->getType())) {
1241     llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
1242     if (!isa<llvm::FunctionType>(PT->getElementType())) {
1243       QualType PTEE = ValTy->getPointeeType();
1244       if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
1245         // Handle interface types, which are not represented with a concrete
1246         // type.
1247         CharUnits size = CGF.getContext().getTypeSizeInChars(OIT);
1248         if (!isInc)
1249           size = -size;
1250         Inc = llvm::ConstantInt::get(Inc->getType(), size.getQuantity());
1251         const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1252         InVal = Builder.CreateBitCast(InVal, i8Ty);
1253         NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1254         llvm::Value *lhs = LV.getAddress();
1255         lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1256         LV = CGF.MakeAddrLValue(lhs, ValTy);
1257       } else
1258         NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1259     } else {
1260       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1261       NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1262       NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1263       NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1264     }
1265   } else if (InVal->getType()->isIntegerTy(1) && isInc) {
1266     // Bool++ is an interesting case, due to promotion rules, we get:
1267     // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1268     // Bool = ((int)Bool+1) != 0
1269     // An interesting aspect of this is that increment is always true.
1270     // Decrement does not have this property.
1271     NextVal = llvm::ConstantInt::getTrue(VMContext);
1272   } else if (isa<llvm::IntegerType>(InVal->getType())) {
1273     NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1274 
1275     if (!ValTy->isSignedIntegerType())
1276       // Unsigned integer inc is always two's complement.
1277       NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1278     else {
1279       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1280       case LangOptions::SOB_Undefined:
1281         NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1282         break;
1283       case LangOptions::SOB_Defined:
1284         NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1285         break;
1286       case LangOptions::SOB_Trapping:
1287         BinOpInfo BinOp;
1288         BinOp.LHS = InVal;
1289         BinOp.RHS = NextVal;
1290         BinOp.Ty = E->getType();
1291         BinOp.Opcode = BO_Add;
1292         BinOp.E = E;
1293         NextVal = EmitOverflowCheckedBinOp(BinOp);
1294         break;
1295       }
1296     }
1297   } else {
1298     // Add the inc/dec to the real part.
1299     if (InVal->getType()->isFloatTy())
1300       NextVal =
1301       llvm::ConstantFP::get(VMContext,
1302                             llvm::APFloat(static_cast<float>(AmountVal)));
1303     else if (InVal->getType()->isDoubleTy())
1304       NextVal =
1305       llvm::ConstantFP::get(VMContext,
1306                             llvm::APFloat(static_cast<double>(AmountVal)));
1307     else {
1308       llvm::APFloat F(static_cast<float>(AmountVal));
1309       bool ignored;
1310       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1311                 &ignored);
1312       NextVal = llvm::ConstantFP::get(VMContext, F);
1313     }
1314     NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1315   }
1316 
1317   // Store the updated result through the lvalue.
1318   if (LV.isBitField())
1319     CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
1320   else
1321     CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1322 
1323   // If this is a postinc, return the value read from memory, otherwise use the
1324   // updated value.
1325   return isPre ? NextVal : InVal;
1326 }
1327 
1328 
1329 
1330 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1331   TestAndClearIgnoreResultAssign();
1332   // Emit unary minus with EmitSub so we handle overflow cases etc.
1333   BinOpInfo BinOp;
1334   BinOp.RHS = Visit(E->getSubExpr());
1335 
1336   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1337     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1338   else
1339     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1340   BinOp.Ty = E->getType();
1341   BinOp.Opcode = BO_Sub;
1342   BinOp.E = E;
1343   return EmitSub(BinOp);
1344 }
1345 
1346 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1347   TestAndClearIgnoreResultAssign();
1348   Value *Op = Visit(E->getSubExpr());
1349   return Builder.CreateNot(Op, "neg");
1350 }
1351 
1352 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1353   // Compare operand to zero.
1354   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1355 
1356   // Invert value.
1357   // TODO: Could dynamically modify easy computations here.  For example, if
1358   // the operand is an icmp ne, turn into icmp eq.
1359   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1360 
1361   // ZExt result to the expr type.
1362   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1363 }
1364 
1365 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1366   // Try folding the offsetof to a constant.
1367   Expr::EvalResult EvalResult;
1368   if (E->Evaluate(EvalResult, CGF.getContext()))
1369     return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1370 
1371   // Loop over the components of the offsetof to compute the value.
1372   unsigned n = E->getNumComponents();
1373   const llvm::Type* ResultType = ConvertType(E->getType());
1374   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1375   QualType CurrentType = E->getTypeSourceInfo()->getType();
1376   for (unsigned i = 0; i != n; ++i) {
1377     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1378     llvm::Value *Offset = 0;
1379     switch (ON.getKind()) {
1380     case OffsetOfExpr::OffsetOfNode::Array: {
1381       // Compute the index
1382       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1383       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1384       bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1385       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1386 
1387       // Save the element type
1388       CurrentType =
1389           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1390 
1391       // Compute the element size
1392       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1393           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1394 
1395       // Multiply out to compute the result
1396       Offset = Builder.CreateMul(Idx, ElemSize);
1397       break;
1398     }
1399 
1400     case OffsetOfExpr::OffsetOfNode::Field: {
1401       FieldDecl *MemberDecl = ON.getField();
1402       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1403       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1404 
1405       // Compute the index of the field in its parent.
1406       unsigned i = 0;
1407       // FIXME: It would be nice if we didn't have to loop here!
1408       for (RecordDecl::field_iterator Field = RD->field_begin(),
1409                                       FieldEnd = RD->field_end();
1410            Field != FieldEnd; (void)++Field, ++i) {
1411         if (*Field == MemberDecl)
1412           break;
1413       }
1414       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1415 
1416       // Compute the offset to the field
1417       int64_t OffsetInt = RL.getFieldOffset(i) /
1418                           CGF.getContext().getCharWidth();
1419       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1420 
1421       // Save the element type.
1422       CurrentType = MemberDecl->getType();
1423       break;
1424     }
1425 
1426     case OffsetOfExpr::OffsetOfNode::Identifier:
1427       llvm_unreachable("dependent __builtin_offsetof");
1428 
1429     case OffsetOfExpr::OffsetOfNode::Base: {
1430       if (ON.getBase()->isVirtual()) {
1431         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1432         continue;
1433       }
1434 
1435       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1436       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1437 
1438       // Save the element type.
1439       CurrentType = ON.getBase()->getType();
1440 
1441       // Compute the offset to the base.
1442       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1443       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1444       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1445                           CGF.getContext().getCharWidth();
1446       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1447       break;
1448     }
1449     }
1450     Result = Builder.CreateAdd(Result, Offset);
1451   }
1452   return Result;
1453 }
1454 
1455 /// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1456 /// argument of the sizeof expression as an integer.
1457 Value *
1458 ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1459   QualType TypeToSize = E->getTypeOfArgument();
1460   if (E->isSizeOf()) {
1461     if (const VariableArrayType *VAT =
1462           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1463       if (E->isArgumentType()) {
1464         // sizeof(type) - make sure to emit the VLA size.
1465         CGF.EmitVLASize(TypeToSize);
1466       } else {
1467         // C99 6.5.3.4p2: If the argument is an expression of type
1468         // VLA, it is evaluated.
1469         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1470       }
1471 
1472       return CGF.GetVLASize(VAT);
1473     }
1474   }
1475 
1476   // If this isn't sizeof(vla), the result must be constant; use the constant
1477   // folding logic so we don't have to duplicate it here.
1478   Expr::EvalResult Result;
1479   E->Evaluate(Result, CGF.getContext());
1480   return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1481 }
1482 
1483 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1484   Expr *Op = E->getSubExpr();
1485   if (Op->getType()->isAnyComplexType()) {
1486     // If it's an l-value, load through the appropriate subobject l-value.
1487     // Note that we have to ask E because Op might be an l-value that
1488     // this won't work for, e.g. an Obj-C property.
1489     if (E->isGLValue())
1490       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1491                 .getScalarVal();
1492 
1493     // Otherwise, calculate and project.
1494     return CGF.EmitComplexExpr(Op, false, true).first;
1495   }
1496 
1497   return Visit(Op);
1498 }
1499 
1500 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1501   Expr *Op = E->getSubExpr();
1502   if (Op->getType()->isAnyComplexType()) {
1503     // If it's an l-value, load through the appropriate subobject l-value.
1504     // Note that we have to ask E because Op might be an l-value that
1505     // this won't work for, e.g. an Obj-C property.
1506     if (Op->isGLValue())
1507       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1508                 .getScalarVal();
1509 
1510     // Otherwise, calculate and project.
1511     return CGF.EmitComplexExpr(Op, true, false).second;
1512   }
1513 
1514   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1515   // effects are evaluated, but not the actual value.
1516   CGF.EmitScalarExpr(Op, true);
1517   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1518 }
1519 
1520 //===----------------------------------------------------------------------===//
1521 //                           Binary Operators
1522 //===----------------------------------------------------------------------===//
1523 
1524 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1525   TestAndClearIgnoreResultAssign();
1526   BinOpInfo Result;
1527   Result.LHS = Visit(E->getLHS());
1528   Result.RHS = Visit(E->getRHS());
1529   Result.Ty  = E->getType();
1530   Result.Opcode = E->getOpcode();
1531   Result.E = E;
1532   return Result;
1533 }
1534 
1535 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1536                                               const CompoundAssignOperator *E,
1537                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1538                                                    Value *&Result) {
1539   QualType LHSTy = E->getLHS()->getType();
1540   BinOpInfo OpInfo;
1541 
1542   if (E->getComputationResultType()->isAnyComplexType()) {
1543     // This needs to go through the complex expression emitter, but it's a tad
1544     // complicated to do that... I'm leaving it out for now.  (Note that we do
1545     // actually need the imaginary part of the RHS for multiplication and
1546     // division.)
1547     CGF.ErrorUnsupported(E, "complex compound assignment");
1548     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1549     return LValue();
1550   }
1551 
1552   // Emit the RHS first.  __block variables need to have the rhs evaluated
1553   // first, plus this should improve codegen a little.
1554   OpInfo.RHS = Visit(E->getRHS());
1555   OpInfo.Ty = E->getComputationResultType();
1556   OpInfo.Opcode = E->getOpcode();
1557   OpInfo.E = E;
1558   // Load/convert the LHS.
1559   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1560   OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1561   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1562                                     E->getComputationLHSType());
1563 
1564   // Expand the binary operator.
1565   Result = (this->*Func)(OpInfo);
1566 
1567   // Convert the result back to the LHS type.
1568   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1569 
1570   // Store the result value into the LHS lvalue. Bit-fields are handled
1571   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1572   // 'An assignment expression has the value of the left operand after the
1573   // assignment...'.
1574   if (LHSLV.isBitField())
1575     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1576                                        &Result);
1577   else
1578     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1579 
1580   return LHSLV;
1581 }
1582 
1583 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1584                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1585   bool Ignore = TestAndClearIgnoreResultAssign();
1586   Value *RHS;
1587   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1588 
1589   // If the result is clearly ignored, return now.
1590   if (Ignore)
1591     return 0;
1592 
1593   // The result of an assignment in C is the assigned r-value.
1594   if (!CGF.getContext().getLangOptions().CPlusPlus)
1595     return RHS;
1596 
1597   // Objective-C property assignment never reloads the value following a store.
1598   if (LHS.isPropertyRef())
1599     return RHS;
1600 
1601   // If the lvalue is non-volatile, return the computed value of the assignment.
1602   if (!LHS.isVolatileQualified())
1603     return RHS;
1604 
1605   // Otherwise, reload the value.
1606   return EmitLoadOfLValue(LHS, E->getType());
1607 }
1608 
1609 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1610      					    const BinOpInfo &Ops,
1611 				     	    llvm::Value *Zero, bool isDiv) {
1612   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1613   llvm::BasicBlock *contBB =
1614     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1615 
1616   const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1617 
1618   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1619     llvm::Value *IntMin =
1620       llvm::ConstantInt::get(VMContext,
1621                              llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1622     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1623 
1624     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1625     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1626     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1627     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1628     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1629                          overflowBB, contBB);
1630   } else {
1631     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1632                              overflowBB, contBB);
1633   }
1634   EmitOverflowBB(overflowBB);
1635   Builder.SetInsertPoint(contBB);
1636 }
1637 
1638 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1639   if (isTrapvOverflowBehavior()) {
1640     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1641 
1642     if (Ops.Ty->isIntegerType())
1643       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1644     else if (Ops.Ty->isRealFloatingType()) {
1645       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1646                                                           CGF.CurFn);
1647       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1648       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1649                                overflowBB, DivCont);
1650       EmitOverflowBB(overflowBB);
1651       Builder.SetInsertPoint(DivCont);
1652     }
1653   }
1654   if (Ops.LHS->getType()->isFPOrFPVectorTy())
1655     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1656   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1657     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1658   else
1659     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1660 }
1661 
1662 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1663   // Rem in C can't be a floating point type: C99 6.5.5p2.
1664   if (isTrapvOverflowBehavior()) {
1665     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1666 
1667     if (Ops.Ty->isIntegerType())
1668       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1669   }
1670 
1671   if (Ops.Ty->isUnsignedIntegerType())
1672     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1673   else
1674     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1675 }
1676 
1677 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1678   unsigned IID;
1679   unsigned OpID = 0;
1680 
1681   switch (Ops.Opcode) {
1682   case BO_Add:
1683   case BO_AddAssign:
1684     OpID = 1;
1685     IID = llvm::Intrinsic::sadd_with_overflow;
1686     break;
1687   case BO_Sub:
1688   case BO_SubAssign:
1689     OpID = 2;
1690     IID = llvm::Intrinsic::ssub_with_overflow;
1691     break;
1692   case BO_Mul:
1693   case BO_MulAssign:
1694     OpID = 3;
1695     IID = llvm::Intrinsic::smul_with_overflow;
1696     break;
1697   default:
1698     assert(false && "Unsupported operation for overflow detection");
1699     IID = 0;
1700   }
1701   OpID <<= 1;
1702   OpID |= 1;
1703 
1704   const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1705 
1706   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1707 
1708   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1709   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1710   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1711 
1712   // Branch in case of overflow.
1713   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1714   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1715   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1716 
1717   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1718 
1719   // Handle overflow with llvm.trap.
1720   const std::string *handlerName =
1721     &CGF.getContext().getLangOptions().OverflowHandler;
1722   if (handlerName->empty()) {
1723     EmitOverflowBB(overflowBB);
1724     Builder.SetInsertPoint(continueBB);
1725     return result;
1726   }
1727 
1728   // If an overflow handler is set, then we want to call it and then use its
1729   // result, if it returns.
1730   Builder.SetInsertPoint(overflowBB);
1731 
1732   // Get the overflow handler.
1733   const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1734   std::vector<const llvm::Type*> argTypes;
1735   argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty);
1736   argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty);
1737   llvm::FunctionType *handlerTy =
1738       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1739   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1740 
1741   // Sign extend the args to 64-bit, so that we can use the same handler for
1742   // all types of overflow.
1743   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1744   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1745 
1746   // Call the handler with the two arguments, the operation, and the size of
1747   // the result.
1748   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1749       Builder.getInt8(OpID),
1750       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1751 
1752   // Truncate the result back to the desired size.
1753   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1754   Builder.CreateBr(continueBB);
1755 
1756   Builder.SetInsertPoint(continueBB);
1757   llvm::PHINode *phi = Builder.CreatePHI(opTy);
1758   phi->reserveOperandSpace(2);
1759   phi->addIncoming(result, initialBB);
1760   phi->addIncoming(handlerResult, overflowBB);
1761 
1762   return phi;
1763 }
1764 
1765 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1766   if (!Ops.Ty->isAnyPointerType()) {
1767     if (Ops.Ty->hasSignedIntegerRepresentation()) {
1768       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1769       case LangOptions::SOB_Undefined:
1770         return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1771       case LangOptions::SOB_Defined:
1772         return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1773       case LangOptions::SOB_Trapping:
1774         return EmitOverflowCheckedBinOp(Ops);
1775       }
1776     }
1777 
1778     if (Ops.LHS->getType()->isFPOrFPVectorTy())
1779       return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1780 
1781     return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1782   }
1783 
1784   // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1785   // use this path.
1786   const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1787 
1788   if (Ops.Ty->isPointerType() &&
1789       Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1790     // The amount of the addition needs to account for the VLA size
1791     CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1792   }
1793 
1794   Value *Ptr, *Idx;
1795   Expr *IdxExp;
1796   const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1797   const ObjCObjectPointerType *OPT =
1798     BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1799   if (PT || OPT) {
1800     Ptr = Ops.LHS;
1801     Idx = Ops.RHS;
1802     IdxExp = BinOp->getRHS();
1803   } else {  // int + pointer
1804     PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1805     OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1806     assert((PT || OPT) && "Invalid add expr");
1807     Ptr = Ops.RHS;
1808     Idx = Ops.LHS;
1809     IdxExp = BinOp->getLHS();
1810   }
1811 
1812   unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1813   if (Width < CGF.LLVMPointerWidth) {
1814     // Zero or sign extend the pointer value based on whether the index is
1815     // signed or not.
1816     const llvm::Type *IdxType = CGF.IntPtrTy;
1817     if (IdxExp->getType()->isSignedIntegerType())
1818       Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1819     else
1820       Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1821   }
1822   const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1823   // Handle interface types, which are not represented with a concrete type.
1824   if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1825     llvm::Value *InterfaceSize =
1826       llvm::ConstantInt::get(Idx->getType(),
1827           CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1828     Idx = Builder.CreateMul(Idx, InterfaceSize);
1829     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1830     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1831     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1832     return Builder.CreateBitCast(Res, Ptr->getType());
1833   }
1834 
1835   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1836   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1837   // future proof.
1838   if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1839     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1840     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1841     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1842     return Builder.CreateBitCast(Res, Ptr->getType());
1843   }
1844 
1845   return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1846 }
1847 
1848 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1849   if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1850     if (Ops.Ty->hasSignedIntegerRepresentation()) {
1851       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1852       case LangOptions::SOB_Undefined:
1853         return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1854       case LangOptions::SOB_Defined:
1855         return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1856       case LangOptions::SOB_Trapping:
1857         return EmitOverflowCheckedBinOp(Ops);
1858       }
1859     }
1860 
1861     if (Ops.LHS->getType()->isFPOrFPVectorTy())
1862       return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1863 
1864     return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1865   }
1866 
1867   // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1868   // use this path.
1869   const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1870 
1871   if (BinOp->getLHS()->getType()->isPointerType() &&
1872       BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1873     // The amount of the addition needs to account for the VLA size for
1874     // ptr-int
1875     // The amount of the division needs to account for the VLA size for
1876     // ptr-ptr.
1877     CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1878   }
1879 
1880   const QualType LHSType = BinOp->getLHS()->getType();
1881   const QualType LHSElementType = LHSType->getPointeeType();
1882   if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1883     // pointer - int
1884     Value *Idx = Ops.RHS;
1885     unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1886     if (Width < CGF.LLVMPointerWidth) {
1887       // Zero or sign extend the pointer value based on whether the index is
1888       // signed or not.
1889       const llvm::Type *IdxType = CGF.IntPtrTy;
1890       if (BinOp->getRHS()->getType()->isSignedIntegerType())
1891         Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1892       else
1893         Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1894     }
1895     Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1896 
1897     // Handle interface types, which are not represented with a concrete type.
1898     if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1899       llvm::Value *InterfaceSize =
1900         llvm::ConstantInt::get(Idx->getType(),
1901                                CGF.getContext().
1902                                  getTypeSizeInChars(OIT).getQuantity());
1903       Idx = Builder.CreateMul(Idx, InterfaceSize);
1904       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1905       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1906       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1907       return Builder.CreateBitCast(Res, Ops.LHS->getType());
1908     }
1909 
1910     // Explicitly handle GNU void* and function pointer arithmetic
1911     // extensions. The GNU void* casts amount to no-ops since our void* type is
1912     // i8*, but this is future proof.
1913     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1914       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1915       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1916       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1917       return Builder.CreateBitCast(Res, Ops.LHS->getType());
1918     }
1919 
1920     return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1921   } else {
1922     // pointer - pointer
1923     Value *LHS = Ops.LHS;
1924     Value *RHS = Ops.RHS;
1925 
1926     CharUnits ElementSize;
1927 
1928     // Handle GCC extension for pointer arithmetic on void* and function pointer
1929     // types.
1930     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1931       ElementSize = CharUnits::One();
1932     } else {
1933       ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1934     }
1935 
1936     const llvm::Type *ResultType = ConvertType(Ops.Ty);
1937     LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1938     RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1939     Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1940 
1941     // Optimize out the shift for element size of 1.
1942     if (ElementSize.isOne())
1943       return BytesBetween;
1944 
1945     // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1946     // pointer difference in C is only defined in the case where both operands
1947     // are pointing to elements of an array.
1948     Value *BytesPerElt =
1949         llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1950     return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1951   }
1952 }
1953 
1954 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1955   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1956   // RHS to the same size as the LHS.
1957   Value *RHS = Ops.RHS;
1958   if (Ops.LHS->getType() != RHS->getType())
1959     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1960 
1961   if (CGF.CatchUndefined
1962       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1963     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1964     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1965     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1966                                  llvm::ConstantInt::get(RHS->getType(), Width)),
1967                              Cont, CGF.getTrapBB());
1968     CGF.EmitBlock(Cont);
1969   }
1970 
1971   return Builder.CreateShl(Ops.LHS, RHS, "shl");
1972 }
1973 
1974 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1975   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1976   // RHS to the same size as the LHS.
1977   Value *RHS = Ops.RHS;
1978   if (Ops.LHS->getType() != RHS->getType())
1979     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1980 
1981   if (CGF.CatchUndefined
1982       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1983     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1984     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1985     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1986                                  llvm::ConstantInt::get(RHS->getType(), Width)),
1987                              Cont, CGF.getTrapBB());
1988     CGF.EmitBlock(Cont);
1989   }
1990 
1991   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1992     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1993   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1994 }
1995 
1996 enum IntrinsicType { VCMPEQ, VCMPGT };
1997 // return corresponding comparison intrinsic for given vector type
1998 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
1999                                         BuiltinType::Kind ElemKind) {
2000   switch (ElemKind) {
2001   default: assert(0 && "unexpected element type");
2002   case BuiltinType::Char_U:
2003   case BuiltinType::UChar:
2004     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2005                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2006     break;
2007   case BuiltinType::Char_S:
2008   case BuiltinType::SChar:
2009     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2010                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2011     break;
2012   case BuiltinType::UShort:
2013     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2014                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2015     break;
2016   case BuiltinType::Short:
2017     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2018                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2019     break;
2020   case BuiltinType::UInt:
2021   case BuiltinType::ULong:
2022     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2023                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2024     break;
2025   case BuiltinType::Int:
2026   case BuiltinType::Long:
2027     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2028                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2029     break;
2030   case BuiltinType::Float:
2031     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2032                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2033     break;
2034   }
2035   return llvm::Intrinsic::not_intrinsic;
2036 }
2037 
2038 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2039                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2040   TestAndClearIgnoreResultAssign();
2041   Value *Result;
2042   QualType LHSTy = E->getLHS()->getType();
2043   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2044     assert(E->getOpcode() == BO_EQ ||
2045            E->getOpcode() == BO_NE);
2046     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2047     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2048     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2049                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2050   } else if (!LHSTy->isAnyComplexType()) {
2051     Value *LHS = Visit(E->getLHS());
2052     Value *RHS = Visit(E->getRHS());
2053 
2054     // If AltiVec, the comparison results in a numeric type, so we use
2055     // intrinsics comparing vectors and giving 0 or 1 as a result
2056     if (LHSTy->isVectorType() && CGF.getContext().getLangOptions().AltiVec) {
2057       // constants for mapping CR6 register bits to predicate result
2058       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2059 
2060       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2061 
2062       // in several cases vector arguments order will be reversed
2063       Value *FirstVecArg = LHS,
2064             *SecondVecArg = RHS;
2065 
2066       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2067       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2068       BuiltinType::Kind ElementKind = BTy->getKind();
2069 
2070       switch(E->getOpcode()) {
2071       default: assert(0 && "is not a comparison operation");
2072       case BO_EQ:
2073         CR6 = CR6_LT;
2074         ID = GetIntrinsic(VCMPEQ, ElementKind);
2075         break;
2076       case BO_NE:
2077         CR6 = CR6_EQ;
2078         ID = GetIntrinsic(VCMPEQ, ElementKind);
2079         break;
2080       case BO_LT:
2081         CR6 = CR6_LT;
2082         ID = GetIntrinsic(VCMPGT, ElementKind);
2083         std::swap(FirstVecArg, SecondVecArg);
2084         break;
2085       case BO_GT:
2086         CR6 = CR6_LT;
2087         ID = GetIntrinsic(VCMPGT, ElementKind);
2088         break;
2089       case BO_LE:
2090         if (ElementKind == BuiltinType::Float) {
2091           CR6 = CR6_LT;
2092           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2093           std::swap(FirstVecArg, SecondVecArg);
2094         }
2095         else {
2096           CR6 = CR6_EQ;
2097           ID = GetIntrinsic(VCMPGT, ElementKind);
2098         }
2099         break;
2100       case BO_GE:
2101         if (ElementKind == BuiltinType::Float) {
2102           CR6 = CR6_LT;
2103           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2104         }
2105         else {
2106           CR6 = CR6_EQ;
2107           ID = GetIntrinsic(VCMPGT, ElementKind);
2108           std::swap(FirstVecArg, SecondVecArg);
2109         }
2110         break;
2111       }
2112 
2113       Value *CR6Param = llvm::ConstantInt::get(CGF.Int32Ty, CR6);
2114       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2115       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2116       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2117     }
2118 
2119     if (LHS->getType()->isFPOrFPVectorTy()) {
2120       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2121                                   LHS, RHS, "cmp");
2122     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2123       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2124                                   LHS, RHS, "cmp");
2125     } else {
2126       // Unsigned integers and pointers.
2127       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2128                                   LHS, RHS, "cmp");
2129     }
2130 
2131     // If this is a vector comparison, sign extend the result to the appropriate
2132     // vector integer type and return it (don't convert to bool).
2133     if (LHSTy->isVectorType())
2134       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2135 
2136   } else {
2137     // Complex Comparison: can only be an equality comparison.
2138     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2139     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2140 
2141     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2142 
2143     Value *ResultR, *ResultI;
2144     if (CETy->isRealFloatingType()) {
2145       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2146                                    LHS.first, RHS.first, "cmp.r");
2147       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2148                                    LHS.second, RHS.second, "cmp.i");
2149     } else {
2150       // Complex comparisons can only be equality comparisons.  As such, signed
2151       // and unsigned opcodes are the same.
2152       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2153                                    LHS.first, RHS.first, "cmp.r");
2154       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2155                                    LHS.second, RHS.second, "cmp.i");
2156     }
2157 
2158     if (E->getOpcode() == BO_EQ) {
2159       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2160     } else {
2161       assert(E->getOpcode() == BO_NE &&
2162              "Complex comparison other than == or != ?");
2163       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2164     }
2165   }
2166 
2167   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2168 }
2169 
2170 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2171   bool Ignore = TestAndClearIgnoreResultAssign();
2172 
2173   // __block variables need to have the rhs evaluated first, plus this should
2174   // improve codegen just a little.
2175   Value *RHS = Visit(E->getRHS());
2176   LValue LHS = EmitCheckedLValue(E->getLHS());
2177 
2178   // Store the value into the LHS.  Bit-fields are handled specially
2179   // because the result is altered by the store, i.e., [C99 6.5.16p1]
2180   // 'An assignment expression has the value of the left operand after
2181   // the assignment...'.
2182   if (LHS.isBitField())
2183     CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2184                                        &RHS);
2185   else
2186     CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2187 
2188   // If the result is clearly ignored, return now.
2189   if (Ignore)
2190     return 0;
2191 
2192   // The result of an assignment in C is the assigned r-value.
2193   if (!CGF.getContext().getLangOptions().CPlusPlus)
2194     return RHS;
2195 
2196   // Objective-C property assignment never reloads the value following a store.
2197   if (LHS.isPropertyRef())
2198     return RHS;
2199 
2200   // If the lvalue is non-volatile, return the computed value of the assignment.
2201   if (!LHS.isVolatileQualified())
2202     return RHS;
2203 
2204   // Otherwise, reload the value.
2205   return EmitLoadOfLValue(LHS, E->getType());
2206 }
2207 
2208 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2209   const llvm::Type *ResTy = ConvertType(E->getType());
2210 
2211   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2212   // If we have 1 && X, just emit X without inserting the control flow.
2213   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2214     if (Cond == 1) { // If we have 1 && X, just emit X.
2215       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2216       // ZExt result to int or bool.
2217       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2218     }
2219 
2220     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2221     if (!CGF.ContainsLabel(E->getRHS()))
2222       return llvm::Constant::getNullValue(ResTy);
2223   }
2224 
2225   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2226   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2227 
2228   CodeGenFunction::ConditionalEvaluation eval(CGF);
2229 
2230   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2231   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2232 
2233   // Any edges into the ContBlock are now from an (indeterminate number of)
2234   // edges from this first condition.  All of these values will be false.  Start
2235   // setting up the PHI node in the Cont Block for this.
2236   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2237                                             "", ContBlock);
2238   PN->reserveOperandSpace(2);  // Normal case, two inputs.
2239   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2240        PI != PE; ++PI)
2241     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2242 
2243   eval.begin(CGF);
2244   CGF.EmitBlock(RHSBlock);
2245   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2246   eval.end(CGF);
2247 
2248   // Reaquire the RHS block, as there may be subblocks inserted.
2249   RHSBlock = Builder.GetInsertBlock();
2250 
2251   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2252   // into the phi node for the edge with the value of RHSCond.
2253   CGF.EmitBlock(ContBlock);
2254   PN->addIncoming(RHSCond, RHSBlock);
2255 
2256   // ZExt result to int.
2257   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2258 }
2259 
2260 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2261   const llvm::Type *ResTy = ConvertType(E->getType());
2262 
2263   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2264   // If we have 0 || X, just emit X without inserting the control flow.
2265   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2266     if (Cond == -1) { // If we have 0 || X, just emit X.
2267       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2268       // ZExt result to int or bool.
2269       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2270     }
2271 
2272     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2273     if (!CGF.ContainsLabel(E->getRHS()))
2274       return llvm::ConstantInt::get(ResTy, 1);
2275   }
2276 
2277   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2278   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2279 
2280   CodeGenFunction::ConditionalEvaluation eval(CGF);
2281 
2282   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2283   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2284 
2285   // Any edges into the ContBlock are now from an (indeterminate number of)
2286   // edges from this first condition.  All of these values will be true.  Start
2287   // setting up the PHI node in the Cont Block for this.
2288   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2289                                             "", ContBlock);
2290   PN->reserveOperandSpace(2);  // Normal case, two inputs.
2291   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2292        PI != PE; ++PI)
2293     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2294 
2295   eval.begin(CGF);
2296 
2297   // Emit the RHS condition as a bool value.
2298   CGF.EmitBlock(RHSBlock);
2299   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2300 
2301   eval.end(CGF);
2302 
2303   // Reaquire the RHS block, as there may be subblocks inserted.
2304   RHSBlock = Builder.GetInsertBlock();
2305 
2306   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2307   // into the phi node for the edge with the value of RHSCond.
2308   CGF.EmitBlock(ContBlock);
2309   PN->addIncoming(RHSCond, RHSBlock);
2310 
2311   // ZExt result to int.
2312   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2313 }
2314 
2315 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2316   CGF.EmitIgnoredExpr(E->getLHS());
2317   CGF.EnsureInsertPoint();
2318   return Visit(E->getRHS());
2319 }
2320 
2321 //===----------------------------------------------------------------------===//
2322 //                             Other Operators
2323 //===----------------------------------------------------------------------===//
2324 
2325 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2326 /// expression is cheap enough and side-effect-free enough to evaluate
2327 /// unconditionally instead of conditionally.  This is used to convert control
2328 /// flow into selects in some cases.
2329 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2330                                                    CodeGenFunction &CGF) {
2331   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2332     return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2333 
2334   // TODO: Allow anything we can constant fold to an integer or fp constant.
2335   if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2336       isa<FloatingLiteral>(E))
2337     return true;
2338 
2339   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2340   // X and Y are local variables.
2341   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2342     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2343       if (VD->hasLocalStorage() && !(CGF.getContext()
2344                                      .getCanonicalType(VD->getType())
2345                                      .isVolatileQualified()))
2346         return true;
2347 
2348   return false;
2349 }
2350 
2351 
2352 Value *ScalarExprEmitter::
2353 VisitConditionalOperator(const ConditionalOperator *E) {
2354   TestAndClearIgnoreResultAssign();
2355   // If the condition constant folds and can be elided, try to avoid emitting
2356   // the condition and the dead arm.
2357   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
2358     Expr *Live = E->getLHS(), *Dead = E->getRHS();
2359     if (Cond == -1)
2360       std::swap(Live, Dead);
2361 
2362     // If the dead side doesn't have labels we need, and if the Live side isn't
2363     // the gnu missing ?: extension (which we could handle, but don't bother
2364     // to), just emit the Live part.
2365     if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
2366         Live)                                   // Live part isn't missing.
2367       return Visit(Live);
2368   }
2369 
2370   // OpenCL: If the condition is a vector, we can treat this condition like
2371   // the select function.
2372   if (CGF.getContext().getLangOptions().OpenCL
2373       && E->getCond()->getType()->isVectorType()) {
2374     llvm::Value *CondV = CGF.EmitScalarExpr(E->getCond());
2375     llvm::Value *LHS = Visit(E->getLHS());
2376     llvm::Value *RHS = Visit(E->getRHS());
2377 
2378     const llvm::Type *condType = ConvertType(E->getCond()->getType());
2379     const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2380 
2381     unsigned numElem = vecTy->getNumElements();
2382     const llvm::Type *elemType = vecTy->getElementType();
2383 
2384     std::vector<llvm::Constant*> Zvals;
2385     for (unsigned i = 0; i < numElem; ++i)
2386       Zvals.push_back(llvm::ConstantInt::get(elemType,0));
2387 
2388     llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2389     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2390     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2391                                           llvm::VectorType::get(elemType,
2392                                                                 numElem),
2393                                           "sext");
2394     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2395 
2396     // Cast float to int to perform ANDs if necessary.
2397     llvm::Value *RHSTmp = RHS;
2398     llvm::Value *LHSTmp = LHS;
2399     bool wasCast = false;
2400     const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2401     if (rhsVTy->getElementType()->isFloatTy()) {
2402       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2403       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2404       wasCast = true;
2405     }
2406 
2407     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2408     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2409     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2410     if (wasCast)
2411       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2412 
2413     return tmp5;
2414   }
2415 
2416   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2417   // select instead of as control flow.  We can only do this if it is cheap and
2418   // safe to evaluate the LHS and RHS unconditionally.
2419   if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
2420                                                             CGF) &&
2421       isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
2422     llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
2423     llvm::Value *LHS = Visit(E->getLHS());
2424     llvm::Value *RHS = Visit(E->getRHS());
2425     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2426   }
2427 
2428   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2429   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2430   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2431 
2432   CodeGenFunction::ConditionalEvaluation eval(CGF);
2433 
2434   // If we don't have the GNU missing condition extension, emit a branch on bool
2435   // the normal way.
2436   if (E->getLHS()) {
2437     // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
2438     // the branch on bool.
2439     CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
2440   } else {
2441     // Otherwise, for the ?: extension, evaluate the conditional and then
2442     // convert it to bool the hard way.  We do this explicitly because we need
2443     // the unconverted value for the missing middle value of the ?:.
2444     Expr *save = E->getSAVE();
2445     assert(save && "VisitConditionalOperator - save is null");
2446     // Intentianlly not doing direct assignment to ConditionalSaveExprs[save] !!
2447     Value *SaveVal = CGF.EmitScalarExpr(save);
2448     CGF.ConditionalSaveExprs[save] = SaveVal;
2449     Value *CondVal = Visit(E->getCond());
2450     // In some cases, EmitScalarConversion will delete the "CondVal" expression
2451     // if there are no extra uses (an optimization).  Inhibit this by making an
2452     // extra dead use, because we're going to add a use of CondVal later.  We
2453     // don't use the builder for this, because we don't want it to get optimized
2454     // away.  This leaves dead code, but the ?: extension isn't common.
2455     new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
2456                           Builder.GetInsertBlock());
2457 
2458     Value *CondBoolVal =
2459       CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
2460                                CGF.getContext().BoolTy);
2461     Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
2462   }
2463 
2464   CGF.EmitBlock(LHSBlock);
2465   eval.begin(CGF);
2466   Value *LHS = Visit(E->getTrueExpr());
2467   eval.end(CGF);
2468 
2469   LHSBlock = Builder.GetInsertBlock();
2470   Builder.CreateBr(ContBlock);
2471 
2472   CGF.EmitBlock(RHSBlock);
2473   eval.begin(CGF);
2474   Value *RHS = Visit(E->getRHS());
2475   eval.end(CGF);
2476 
2477   RHSBlock = Builder.GetInsertBlock();
2478   CGF.EmitBlock(ContBlock);
2479 
2480   // If the LHS or RHS is a throw expression, it will be legitimately null.
2481   if (!LHS)
2482     return RHS;
2483   if (!RHS)
2484     return LHS;
2485 
2486   // Create a PHI node for the real part.
2487   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
2488   PN->reserveOperandSpace(2);
2489   PN->addIncoming(LHS, LHSBlock);
2490   PN->addIncoming(RHS, RHSBlock);
2491   return PN;
2492 }
2493 
2494 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2495   return Visit(E->getChosenSubExpr(CGF.getContext()));
2496 }
2497 
2498 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2499   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2500   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2501 
2502   // If EmitVAArg fails, we fall back to the LLVM instruction.
2503   if (!ArgPtr)
2504     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2505 
2506   // FIXME Volatility.
2507   return Builder.CreateLoad(ArgPtr);
2508 }
2509 
2510 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
2511   return CGF.BuildBlockLiteralTmp(BE);
2512 }
2513 
2514 //===----------------------------------------------------------------------===//
2515 //                         Entry Point into this File
2516 //===----------------------------------------------------------------------===//
2517 
2518 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2519 /// type, ignoring the result.
2520 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2521   assert(E && !hasAggregateLLVMType(E->getType()) &&
2522          "Invalid scalar expression to emit");
2523 
2524   return ScalarExprEmitter(*this, IgnoreResultAssign)
2525     .Visit(const_cast<Expr*>(E));
2526 }
2527 
2528 /// EmitScalarConversion - Emit a conversion from the specified type to the
2529 /// specified destination type, both of which are LLVM scalar types.
2530 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2531                                              QualType DstTy) {
2532   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2533          "Invalid scalar expression to emit");
2534   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2535 }
2536 
2537 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2538 /// type to the specified destination type, where the destination type is an
2539 /// LLVM scalar type.
2540 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2541                                                       QualType SrcTy,
2542                                                       QualType DstTy) {
2543   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2544          "Invalid complex -> scalar conversion");
2545   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2546                                                                 DstTy);
2547 }
2548 
2549 
2550 llvm::Value *CodeGenFunction::
2551 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2552                         bool isInc, bool isPre) {
2553   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2554 }
2555 
2556 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2557   llvm::Value *V;
2558   // object->isa or (*object).isa
2559   // Generate code as for: *(Class*)object
2560   // build Class* type
2561   const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2562 
2563   Expr *BaseExpr = E->getBase();
2564   if (BaseExpr->isRValue()) {
2565     V = CreateTempAlloca(ClassPtrTy, "resval");
2566     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2567     Builder.CreateStore(Src, V);
2568     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2569       MakeAddrLValue(V, E->getType()), E->getType());
2570   } else {
2571     if (E->isArrow())
2572       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2573     else
2574       V = EmitLValue(BaseExpr).getAddress();
2575   }
2576 
2577   // build Class* type
2578   ClassPtrTy = ClassPtrTy->getPointerTo();
2579   V = Builder.CreateBitCast(V, ClassPtrTy);
2580   return MakeAddrLValue(V, E->getType());
2581 }
2582 
2583 
2584 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2585                                             const CompoundAssignOperator *E) {
2586   ScalarExprEmitter Scalar(*this);
2587   Value *Result = 0;
2588   switch (E->getOpcode()) {
2589 #define COMPOUND_OP(Op)                                                       \
2590     case BO_##Op##Assign:                                                     \
2591       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2592                                              Result)
2593   COMPOUND_OP(Mul);
2594   COMPOUND_OP(Div);
2595   COMPOUND_OP(Rem);
2596   COMPOUND_OP(Add);
2597   COMPOUND_OP(Sub);
2598   COMPOUND_OP(Shl);
2599   COMPOUND_OP(Shr);
2600   COMPOUND_OP(And);
2601   COMPOUND_OP(Xor);
2602   COMPOUND_OP(Or);
2603 #undef COMPOUND_OP
2604 
2605   case BO_PtrMemD:
2606   case BO_PtrMemI:
2607   case BO_Mul:
2608   case BO_Div:
2609   case BO_Rem:
2610   case BO_Add:
2611   case BO_Sub:
2612   case BO_Shl:
2613   case BO_Shr:
2614   case BO_LT:
2615   case BO_GT:
2616   case BO_LE:
2617   case BO_GE:
2618   case BO_EQ:
2619   case BO_NE:
2620   case BO_And:
2621   case BO_Xor:
2622   case BO_Or:
2623   case BO_LAnd:
2624   case BO_LOr:
2625   case BO_Assign:
2626   case BO_Comma:
2627     assert(false && "Not valid compound assignment operators");
2628     break;
2629   }
2630 
2631   llvm_unreachable("Unhandled compound assignment operator");
2632 }
2633