1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *
352   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
353                        SourceLocation Loc,
354                        ScalarConversionOpts Opts = ScalarConversionOpts());
355 
356   /// Convert between either a fixed point and other fixed point or fixed point
357   /// and an integer.
358   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
359                                   SourceLocation Loc);
360 
361   /// Emit a conversion from the specified complex type to the specified
362   /// destination type, where the destination type is an LLVM scalar type.
363   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
364                                        QualType SrcTy, QualType DstTy,
365                                        SourceLocation Loc);
366 
367   /// EmitNullValue - Emit a value that corresponds to null for the given type.
368   Value *EmitNullValue(QualType Ty);
369 
370   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
371   Value *EmitFloatToBoolConversion(Value *V) {
372     // Compare against 0.0 for fp scalars.
373     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
374     return Builder.CreateFCmpUNE(V, Zero, "tobool");
375   }
376 
377   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
378   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
379     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
380 
381     return Builder.CreateICmpNE(V, Zero, "tobool");
382   }
383 
384   Value *EmitIntToBoolConversion(Value *V) {
385     // Because of the type rules of C, we often end up computing a
386     // logical value, then zero extending it to int, then wanting it
387     // as a logical value again.  Optimize this common case.
388     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
389       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
390         Value *Result = ZI->getOperand(0);
391         // If there aren't any more uses, zap the instruction to save space.
392         // Note that there can be more uses, for example if this
393         // is the result of an assignment.
394         if (ZI->use_empty())
395           ZI->eraseFromParent();
396         return Result;
397       }
398     }
399 
400     return Builder.CreateIsNotNull(V, "tobool");
401   }
402 
403   //===--------------------------------------------------------------------===//
404   //                            Visitor Methods
405   //===--------------------------------------------------------------------===//
406 
407   Value *Visit(Expr *E) {
408     ApplyDebugLocation DL(CGF, E);
409     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
410   }
411 
412   Value *VisitStmt(Stmt *S) {
413     S->dump(llvm::errs(), CGF.getContext());
414     llvm_unreachable("Stmt can't have complex result type!");
415   }
416   Value *VisitExpr(Expr *S);
417 
418   Value *VisitConstantExpr(ConstantExpr *E) {
419     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
420       if (E->isGLValue())
421         return CGF.Builder.CreateLoad(Address(
422             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
423       return Result;
424     }
425     return Visit(E->getSubExpr());
426   }
427   Value *VisitParenExpr(ParenExpr *PE) {
428     return Visit(PE->getSubExpr());
429   }
430   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
431     return Visit(E->getReplacement());
432   }
433   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
434     return Visit(GE->getResultExpr());
435   }
436   Value *VisitCoawaitExpr(CoawaitExpr *S) {
437     return CGF.EmitCoawaitExpr(*S).getScalarVal();
438   }
439   Value *VisitCoyieldExpr(CoyieldExpr *S) {
440     return CGF.EmitCoyieldExpr(*S).getScalarVal();
441   }
442   Value *VisitUnaryCoawait(const UnaryOperator *E) {
443     return Visit(E->getSubExpr());
444   }
445 
446   // Leaves.
447   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
448     return Builder.getInt(E->getValue());
449   }
450   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
454     return llvm::ConstantFP::get(VMContext, E->getValue());
455   }
456   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
457     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
458   }
459   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
466     return EmitNullValue(E->getType());
467   }
468   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
472   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
473   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
474     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
475     return Builder.CreateBitCast(V, ConvertType(E->getType()));
476   }
477 
478   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
479     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
480   }
481 
482   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
483     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
484   }
485 
486   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
487     if (E->isGLValue())
488       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
489                               E->getExprLoc());
490 
491     // Otherwise, assume the mapping is the scalar directly.
492     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
493   }
494 
495   // l-values.
496   Value *VisitDeclRefExpr(DeclRefExpr *E) {
497     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
498       return CGF.emitScalarConstant(Constant, E);
499     return EmitLoadOfLValue(E);
500   }
501 
502   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
503     return CGF.EmitObjCSelectorExpr(E);
504   }
505   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
506     return CGF.EmitObjCProtocolExpr(E);
507   }
508   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
509     return EmitLoadOfLValue(E);
510   }
511   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
512     if (E->getMethodDecl() &&
513         E->getMethodDecl()->getReturnType()->isReferenceType())
514       return EmitLoadOfLValue(E);
515     return CGF.EmitObjCMessageExpr(E).getScalarVal();
516   }
517 
518   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
519     LValue LV = CGF.EmitObjCIsaExpr(E);
520     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
521     return V;
522   }
523 
524   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
525     VersionTuple Version = E->getVersion();
526 
527     // If we're checking for a platform older than our minimum deployment
528     // target, we can fold the check away.
529     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
530       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
531 
532     return CGF.EmitBuiltinAvailable(Version);
533   }
534 
535   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
536   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
537   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
538   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
539   Value *VisitMemberExpr(MemberExpr *E);
540   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
541   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
542     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
543     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
544     // literals aren't l-values in C++. We do so simply because that's the
545     // cleanest way to handle compound literals in C++.
546     // See the discussion here: https://reviews.llvm.org/D64464
547     return EmitLoadOfLValue(E);
548   }
549 
550   Value *VisitInitListExpr(InitListExpr *E);
551 
552   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
553     assert(CGF.getArrayInitIndex() &&
554            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
555     return CGF.getArrayInitIndex();
556   }
557 
558   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
559     return EmitNullValue(E->getType());
560   }
561   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
562     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
563     return VisitCastExpr(E);
564   }
565   Value *VisitCastExpr(CastExpr *E);
566 
567   Value *VisitCallExpr(const CallExpr *E) {
568     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
569       return EmitLoadOfLValue(E);
570 
571     Value *V = CGF.EmitCallExpr(E).getScalarVal();
572 
573     EmitLValueAlignmentAssumption(E, V);
574     return V;
575   }
576 
577   Value *VisitStmtExpr(const StmtExpr *E);
578 
579   // Unary Operators.
580   Value *VisitUnaryPostDec(const UnaryOperator *E) {
581     LValue LV = EmitLValue(E->getSubExpr());
582     return EmitScalarPrePostIncDec(E, LV, false, false);
583   }
584   Value *VisitUnaryPostInc(const UnaryOperator *E) {
585     LValue LV = EmitLValue(E->getSubExpr());
586     return EmitScalarPrePostIncDec(E, LV, true, false);
587   }
588   Value *VisitUnaryPreDec(const UnaryOperator *E) {
589     LValue LV = EmitLValue(E->getSubExpr());
590     return EmitScalarPrePostIncDec(E, LV, false, true);
591   }
592   Value *VisitUnaryPreInc(const UnaryOperator *E) {
593     LValue LV = EmitLValue(E->getSubExpr());
594     return EmitScalarPrePostIncDec(E, LV, true, true);
595   }
596 
597   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
598                                                   llvm::Value *InVal,
599                                                   bool IsInc);
600 
601   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
602                                        bool isInc, bool isPre);
603 
604 
605   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
606     if (isa<MemberPointerType>(E->getType())) // never sugared
607       return CGF.CGM.getMemberPointerConstant(E);
608 
609     return EmitLValue(E->getSubExpr()).getPointer(CGF);
610   }
611   Value *VisitUnaryDeref(const UnaryOperator *E) {
612     if (E->getType()->isVoidType())
613       return Visit(E->getSubExpr()); // the actual value should be unused
614     return EmitLoadOfLValue(E);
615   }
616   Value *VisitUnaryPlus(const UnaryOperator *E) {
617     // This differs from gcc, though, most likely due to a bug in gcc.
618     TestAndClearIgnoreResultAssign();
619     return Visit(E->getSubExpr());
620   }
621   Value *VisitUnaryMinus    (const UnaryOperator *E);
622   Value *VisitUnaryNot      (const UnaryOperator *E);
623   Value *VisitUnaryLNot     (const UnaryOperator *E);
624   Value *VisitUnaryReal     (const UnaryOperator *E);
625   Value *VisitUnaryImag     (const UnaryOperator *E);
626   Value *VisitUnaryExtension(const UnaryOperator *E) {
627     return Visit(E->getSubExpr());
628   }
629 
630   // C++
631   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
632     return EmitLoadOfLValue(E);
633   }
634   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
635     auto &Ctx = CGF.getContext();
636     APValue Evaluated =
637         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
638     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
639                                              SLE->getType());
640   }
641 
642   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
643     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
644     return Visit(DAE->getExpr());
645   }
646   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
647     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
648     return Visit(DIE->getExpr());
649   }
650   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
651     return CGF.LoadCXXThis();
652   }
653 
654   Value *VisitExprWithCleanups(ExprWithCleanups *E);
655   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
656     return CGF.EmitCXXNewExpr(E);
657   }
658   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
659     CGF.EmitCXXDeleteExpr(E);
660     return nullptr;
661   }
662 
663   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
664     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
665   }
666 
667   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
668     return Builder.getInt1(E->isSatisfied());
669   }
670 
671   Value *VisitRequiresExpr(const RequiresExpr *E) {
672     return Builder.getInt1(E->isSatisfied());
673   }
674 
675   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
676     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
677   }
678 
679   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
680     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
681   }
682 
683   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
684     // C++ [expr.pseudo]p1:
685     //   The result shall only be used as the operand for the function call
686     //   operator (), and the result of such a call has type void. The only
687     //   effect is the evaluation of the postfix-expression before the dot or
688     //   arrow.
689     CGF.EmitScalarExpr(E->getBase());
690     return nullptr;
691   }
692 
693   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
694     return EmitNullValue(E->getType());
695   }
696 
697   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
698     CGF.EmitCXXThrowExpr(E);
699     return nullptr;
700   }
701 
702   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
703     return Builder.getInt1(E->getValue());
704   }
705 
706   // Binary Operators.
707   Value *EmitMul(const BinOpInfo &Ops) {
708     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
709       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
710       case LangOptions::SOB_Defined:
711         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
712       case LangOptions::SOB_Undefined:
713         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
714           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
715         LLVM_FALLTHROUGH;
716       case LangOptions::SOB_Trapping:
717         if (CanElideOverflowCheck(CGF.getContext(), Ops))
718           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
719         return EmitOverflowCheckedBinOp(Ops);
720       }
721     }
722 
723     if (Ops.Ty->isConstantMatrixType()) {
724       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
725       // We need to check the types of the operands of the operator to get the
726       // correct matrix dimensions.
727       auto *BO = cast<BinaryOperator>(Ops.E);
728       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
729           BO->getLHS()->getType().getCanonicalType());
730       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
731           BO->getRHS()->getType().getCanonicalType());
732       if (LHSMatTy && RHSMatTy)
733         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
734                                        LHSMatTy->getNumColumns(),
735                                        RHSMatTy->getNumColumns());
736       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
737     }
738 
739     if (Ops.Ty->isUnsignedIntegerType() &&
740         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
741         !CanElideOverflowCheck(CGF.getContext(), Ops))
742       return EmitOverflowCheckedBinOp(Ops);
743 
744     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
745       //  Preserve the old values
746       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
747       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
748     }
749     if (Ops.isFixedPointOp())
750       return EmitFixedPointBinOp(Ops);
751     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
752   }
753   /// Create a binary op that checks for overflow.
754   /// Currently only supports +, - and *.
755   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
756 
757   // Check for undefined division and modulus behaviors.
758   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
759                                                   llvm::Value *Zero,bool isDiv);
760   // Common helper for getting how wide LHS of shift is.
761   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
762 
763   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
764   // non powers of two.
765   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
766 
767   Value *EmitDiv(const BinOpInfo &Ops);
768   Value *EmitRem(const BinOpInfo &Ops);
769   Value *EmitAdd(const BinOpInfo &Ops);
770   Value *EmitSub(const BinOpInfo &Ops);
771   Value *EmitShl(const BinOpInfo &Ops);
772   Value *EmitShr(const BinOpInfo &Ops);
773   Value *EmitAnd(const BinOpInfo &Ops) {
774     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
775   }
776   Value *EmitXor(const BinOpInfo &Ops) {
777     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
778   }
779   Value *EmitOr (const BinOpInfo &Ops) {
780     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
781   }
782 
783   // Helper functions for fixed point binary operations.
784   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
785 
786   BinOpInfo EmitBinOps(const BinaryOperator *E);
787   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
788                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
789                                   Value *&Result);
790 
791   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
792                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
793 
794   // Binary operators and binary compound assignment operators.
795 #define HANDLEBINOP(OP) \
796   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
797     return Emit ## OP(EmitBinOps(E));                                      \
798   }                                                                        \
799   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
800     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
801   }
802   HANDLEBINOP(Mul)
803   HANDLEBINOP(Div)
804   HANDLEBINOP(Rem)
805   HANDLEBINOP(Add)
806   HANDLEBINOP(Sub)
807   HANDLEBINOP(Shl)
808   HANDLEBINOP(Shr)
809   HANDLEBINOP(And)
810   HANDLEBINOP(Xor)
811   HANDLEBINOP(Or)
812 #undef HANDLEBINOP
813 
814   // Comparisons.
815   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
816                      llvm::CmpInst::Predicate SICmpOpc,
817                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
818 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
819     Value *VisitBin##CODE(const BinaryOperator *E) { \
820       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
821                          llvm::FCmpInst::FP, SIG); }
822   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
823   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
824   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
825   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
826   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
827   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
828 #undef VISITCOMP
829 
830   Value *VisitBinAssign     (const BinaryOperator *E);
831 
832   Value *VisitBinLAnd       (const BinaryOperator *E);
833   Value *VisitBinLOr        (const BinaryOperator *E);
834   Value *VisitBinComma      (const BinaryOperator *E);
835 
836   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
837   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
838 
839   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
840     return Visit(E->getSemanticForm());
841   }
842 
843   // Other Operators.
844   Value *VisitBlockExpr(const BlockExpr *BE);
845   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
846   Value *VisitChooseExpr(ChooseExpr *CE);
847   Value *VisitVAArgExpr(VAArgExpr *VE);
848   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
849     return CGF.EmitObjCStringLiteral(E);
850   }
851   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
852     return CGF.EmitObjCBoxedExpr(E);
853   }
854   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
855     return CGF.EmitObjCArrayLiteral(E);
856   }
857   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
858     return CGF.EmitObjCDictionaryLiteral(E);
859   }
860   Value *VisitAsTypeExpr(AsTypeExpr *CE);
861   Value *VisitAtomicExpr(AtomicExpr *AE);
862 };
863 }  // end anonymous namespace.
864 
865 //===----------------------------------------------------------------------===//
866 //                                Utilities
867 //===----------------------------------------------------------------------===//
868 
869 /// EmitConversionToBool - Convert the specified expression value to a
870 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
871 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
872   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
873 
874   if (SrcType->isRealFloatingType())
875     return EmitFloatToBoolConversion(Src);
876 
877   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
878     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
879 
880   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
881          "Unknown scalar type to convert");
882 
883   if (isa<llvm::IntegerType>(Src->getType()))
884     return EmitIntToBoolConversion(Src);
885 
886   assert(isa<llvm::PointerType>(Src->getType()));
887   return EmitPointerToBoolConversion(Src, SrcType);
888 }
889 
890 void ScalarExprEmitter::EmitFloatConversionCheck(
891     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
892     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
893   assert(SrcType->isFloatingType() && "not a conversion from floating point");
894   if (!isa<llvm::IntegerType>(DstTy))
895     return;
896 
897   CodeGenFunction::SanitizerScope SanScope(&CGF);
898   using llvm::APFloat;
899   using llvm::APSInt;
900 
901   llvm::Value *Check = nullptr;
902   const llvm::fltSemantics &SrcSema =
903     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
904 
905   // Floating-point to integer. This has undefined behavior if the source is
906   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
907   // to an integer).
908   unsigned Width = CGF.getContext().getIntWidth(DstType);
909   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
910 
911   APSInt Min = APSInt::getMinValue(Width, Unsigned);
912   APFloat MinSrc(SrcSema, APFloat::uninitialized);
913   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
914       APFloat::opOverflow)
915     // Don't need an overflow check for lower bound. Just check for
916     // -Inf/NaN.
917     MinSrc = APFloat::getInf(SrcSema, true);
918   else
919     // Find the largest value which is too small to represent (before
920     // truncation toward zero).
921     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
922 
923   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
924   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
925   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
926       APFloat::opOverflow)
927     // Don't need an overflow check for upper bound. Just check for
928     // +Inf/NaN.
929     MaxSrc = APFloat::getInf(SrcSema, false);
930   else
931     // Find the smallest value which is too large to represent (before
932     // truncation toward zero).
933     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
934 
935   // If we're converting from __half, convert the range to float to match
936   // the type of src.
937   if (OrigSrcType->isHalfType()) {
938     const llvm::fltSemantics &Sema =
939       CGF.getContext().getFloatTypeSemantics(SrcType);
940     bool IsInexact;
941     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
942     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
943   }
944 
945   llvm::Value *GE =
946     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
947   llvm::Value *LE =
948     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
949   Check = Builder.CreateAnd(GE, LE);
950 
951   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
952                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
953                                   CGF.EmitCheckTypeDescriptor(DstType)};
954   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
955                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
956 }
957 
958 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
959 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
960 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
961                  std::pair<llvm::Value *, SanitizerMask>>
962 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
963                                  QualType DstType, CGBuilderTy &Builder) {
964   llvm::Type *SrcTy = Src->getType();
965   llvm::Type *DstTy = Dst->getType();
966   (void)DstTy; // Only used in assert()
967 
968   // This should be truncation of integral types.
969   assert(Src != Dst);
970   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
971   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
972          "non-integer llvm type");
973 
974   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
975   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
976 
977   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
978   // Else, it is a signed truncation.
979   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
980   SanitizerMask Mask;
981   if (!SrcSigned && !DstSigned) {
982     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
983     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
984   } else {
985     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
986     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
987   }
988 
989   llvm::Value *Check = nullptr;
990   // 1. Extend the truncated value back to the same width as the Src.
991   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
992   // 2. Equality-compare with the original source value
993   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
994   // If the comparison result is 'i1 false', then the truncation was lossy.
995   return std::make_pair(Kind, std::make_pair(Check, Mask));
996 }
997 
998 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
999     QualType SrcType, QualType DstType) {
1000   return SrcType->isIntegerType() && DstType->isIntegerType();
1001 }
1002 
1003 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1004                                                    Value *Dst, QualType DstType,
1005                                                    SourceLocation Loc) {
1006   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1007     return;
1008 
1009   // We only care about int->int conversions here.
1010   // We ignore conversions to/from pointer and/or bool.
1011   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1012                                                                        DstType))
1013     return;
1014 
1015   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1016   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1017   // This must be truncation. Else we do not care.
1018   if (SrcBits <= DstBits)
1019     return;
1020 
1021   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1022 
1023   // If the integer sign change sanitizer is enabled,
1024   // and we are truncating from larger unsigned type to smaller signed type,
1025   // let that next sanitizer deal with it.
1026   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1027   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1028   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1029       (!SrcSigned && DstSigned))
1030     return;
1031 
1032   CodeGenFunction::SanitizerScope SanScope(&CGF);
1033 
1034   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1035             std::pair<llvm::Value *, SanitizerMask>>
1036       Check =
1037           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1038   // If the comparison result is 'i1 false', then the truncation was lossy.
1039 
1040   // Do we care about this type of truncation?
1041   if (!CGF.SanOpts.has(Check.second.second))
1042     return;
1043 
1044   llvm::Constant *StaticArgs[] = {
1045       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1046       CGF.EmitCheckTypeDescriptor(DstType),
1047       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1048   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1049                 {Src, Dst});
1050 }
1051 
1052 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1053 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1054 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1055                  std::pair<llvm::Value *, SanitizerMask>>
1056 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1057                                  QualType DstType, CGBuilderTy &Builder) {
1058   llvm::Type *SrcTy = Src->getType();
1059   llvm::Type *DstTy = Dst->getType();
1060 
1061   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1062          "non-integer llvm type");
1063 
1064   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1065   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1066   (void)SrcSigned; // Only used in assert()
1067   (void)DstSigned; // Only used in assert()
1068   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1069   unsigned DstBits = DstTy->getScalarSizeInBits();
1070   (void)SrcBits; // Only used in assert()
1071   (void)DstBits; // Only used in assert()
1072 
1073   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1074          "either the widths should be different, or the signednesses.");
1075 
1076   // NOTE: zero value is considered to be non-negative.
1077   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1078                                        const char *Name) -> Value * {
1079     // Is this value a signed type?
1080     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1081     llvm::Type *VTy = V->getType();
1082     if (!VSigned) {
1083       // If the value is unsigned, then it is never negative.
1084       // FIXME: can we encounter non-scalar VTy here?
1085       return llvm::ConstantInt::getFalse(VTy->getContext());
1086     }
1087     // Get the zero of the same type with which we will be comparing.
1088     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1089     // %V.isnegative = icmp slt %V, 0
1090     // I.e is %V *strictly* less than zero, does it have negative value?
1091     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1092                               llvm::Twine(Name) + "." + V->getName() +
1093                                   ".negativitycheck");
1094   };
1095 
1096   // 1. Was the old Value negative?
1097   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1098   // 2. Is the new Value negative?
1099   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1100   // 3. Now, was the 'negativity status' preserved during the conversion?
1101   //    NOTE: conversion from negative to zero is considered to change the sign.
1102   //    (We want to get 'false' when the conversion changed the sign)
1103   //    So we should just equality-compare the negativity statuses.
1104   llvm::Value *Check = nullptr;
1105   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1106   // If the comparison result is 'false', then the conversion changed the sign.
1107   return std::make_pair(
1108       ScalarExprEmitter::ICCK_IntegerSignChange,
1109       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1110 }
1111 
1112 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1113                                                    Value *Dst, QualType DstType,
1114                                                    SourceLocation Loc) {
1115   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1116     return;
1117 
1118   llvm::Type *SrcTy = Src->getType();
1119   llvm::Type *DstTy = Dst->getType();
1120 
1121   // We only care about int->int conversions here.
1122   // We ignore conversions to/from pointer and/or bool.
1123   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1124                                                                        DstType))
1125     return;
1126 
1127   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1128   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1129   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1130   unsigned DstBits = DstTy->getScalarSizeInBits();
1131 
1132   // Now, we do not need to emit the check in *all* of the cases.
1133   // We can avoid emitting it in some obvious cases where it would have been
1134   // dropped by the opt passes (instcombine) always anyways.
1135   // If it's a cast between effectively the same type, no check.
1136   // NOTE: this is *not* equivalent to checking the canonical types.
1137   if (SrcSigned == DstSigned && SrcBits == DstBits)
1138     return;
1139   // At least one of the values needs to have signed type.
1140   // If both are unsigned, then obviously, neither of them can be negative.
1141   if (!SrcSigned && !DstSigned)
1142     return;
1143   // If the conversion is to *larger* *signed* type, then no check is needed.
1144   // Because either sign-extension happens (so the sign will remain),
1145   // or zero-extension will happen (the sign bit will be zero.)
1146   if ((DstBits > SrcBits) && DstSigned)
1147     return;
1148   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1149       (SrcBits > DstBits) && SrcSigned) {
1150     // If the signed integer truncation sanitizer is enabled,
1151     // and this is a truncation from signed type, then no check is needed.
1152     // Because here sign change check is interchangeable with truncation check.
1153     return;
1154   }
1155   // That's it. We can't rule out any more cases with the data we have.
1156 
1157   CodeGenFunction::SanitizerScope SanScope(&CGF);
1158 
1159   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1160             std::pair<llvm::Value *, SanitizerMask>>
1161       Check;
1162 
1163   // Each of these checks needs to return 'false' when an issue was detected.
1164   ImplicitConversionCheckKind CheckKind;
1165   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1166   // So we can 'and' all the checks together, and still get 'false',
1167   // if at least one of the checks detected an issue.
1168 
1169   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1170   CheckKind = Check.first;
1171   Checks.emplace_back(Check.second);
1172 
1173   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1174       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1175     // If the signed integer truncation sanitizer was enabled,
1176     // and we are truncating from larger unsigned type to smaller signed type,
1177     // let's handle the case we skipped in that check.
1178     Check =
1179         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1180     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1181     Checks.emplace_back(Check.second);
1182     // If the comparison result is 'i1 false', then the truncation was lossy.
1183   }
1184 
1185   llvm::Constant *StaticArgs[] = {
1186       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1187       CGF.EmitCheckTypeDescriptor(DstType),
1188       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1189   // EmitCheck() will 'and' all the checks together.
1190   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1191                 {Src, Dst});
1192 }
1193 
1194 /// Emit a conversion from the specified type to the specified destination type,
1195 /// both of which are LLVM scalar types.
1196 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1197                                                QualType DstType,
1198                                                SourceLocation Loc,
1199                                                ScalarConversionOpts Opts) {
1200   // All conversions involving fixed point types should be handled by the
1201   // EmitFixedPoint family functions. This is done to prevent bloating up this
1202   // function more, and although fixed point numbers are represented by
1203   // integers, we do not want to follow any logic that assumes they should be
1204   // treated as integers.
1205   // TODO(leonardchan): When necessary, add another if statement checking for
1206   // conversions to fixed point types from other types.
1207   if (SrcType->isFixedPointType()) {
1208     if (DstType->isBooleanType())
1209       // It is important that we check this before checking if the dest type is
1210       // an integer because booleans are technically integer types.
1211       // We do not need to check the padding bit on unsigned types if unsigned
1212       // padding is enabled because overflow into this bit is undefined
1213       // behavior.
1214       return Builder.CreateIsNotNull(Src, "tobool");
1215     if (DstType->isFixedPointType() || DstType->isIntegerType())
1216       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1217 
1218     llvm_unreachable(
1219         "Unhandled scalar conversion from a fixed point type to another type.");
1220   } else if (DstType->isFixedPointType()) {
1221     if (SrcType->isIntegerType())
1222       // This also includes converting booleans and enums to fixed point types.
1223       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1224 
1225     llvm_unreachable(
1226         "Unhandled scalar conversion to a fixed point type from another type.");
1227   }
1228 
1229   QualType NoncanonicalSrcType = SrcType;
1230   QualType NoncanonicalDstType = DstType;
1231 
1232   SrcType = CGF.getContext().getCanonicalType(SrcType);
1233   DstType = CGF.getContext().getCanonicalType(DstType);
1234   if (SrcType == DstType) return Src;
1235 
1236   if (DstType->isVoidType()) return nullptr;
1237 
1238   llvm::Value *OrigSrc = Src;
1239   QualType OrigSrcType = SrcType;
1240   llvm::Type *SrcTy = Src->getType();
1241 
1242   // Handle conversions to bool first, they are special: comparisons against 0.
1243   if (DstType->isBooleanType())
1244     return EmitConversionToBool(Src, SrcType);
1245 
1246   llvm::Type *DstTy = ConvertType(DstType);
1247 
1248   // Cast from half through float if half isn't a native type.
1249   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1250     // Cast to FP using the intrinsic if the half type itself isn't supported.
1251     if (DstTy->isFloatingPointTy()) {
1252       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1253         return Builder.CreateCall(
1254             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1255             Src);
1256     } else {
1257       // Cast to other types through float, using either the intrinsic or FPExt,
1258       // depending on whether the half type itself is supported
1259       // (as opposed to operations on half, available with NativeHalfType).
1260       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1261         Src = Builder.CreateCall(
1262             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1263                                  CGF.CGM.FloatTy),
1264             Src);
1265       } else {
1266         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1267       }
1268       SrcType = CGF.getContext().FloatTy;
1269       SrcTy = CGF.FloatTy;
1270     }
1271   }
1272 
1273   // Ignore conversions like int -> uint.
1274   if (SrcTy == DstTy) {
1275     if (Opts.EmitImplicitIntegerSignChangeChecks)
1276       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1277                                  NoncanonicalDstType, Loc);
1278 
1279     return Src;
1280   }
1281 
1282   // Handle pointer conversions next: pointers can only be converted to/from
1283   // other pointers and integers. Check for pointer types in terms of LLVM, as
1284   // some native types (like Obj-C id) may map to a pointer type.
1285   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1286     // The source value may be an integer, or a pointer.
1287     if (isa<llvm::PointerType>(SrcTy))
1288       return Builder.CreateBitCast(Src, DstTy, "conv");
1289 
1290     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1291     // First, convert to the correct width so that we control the kind of
1292     // extension.
1293     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1294     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1295     llvm::Value* IntResult =
1296         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1297     // Then, cast to pointer.
1298     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1299   }
1300 
1301   if (isa<llvm::PointerType>(SrcTy)) {
1302     // Must be an ptr to int cast.
1303     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1304     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1305   }
1306 
1307   // A scalar can be splatted to an extended vector of the same element type
1308   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1309     // Sema should add casts to make sure that the source expression's type is
1310     // the same as the vector's element type (sans qualifiers)
1311     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1312                SrcType.getTypePtr() &&
1313            "Splatted expr doesn't match with vector element type?");
1314 
1315     // Splat the element across to all elements
1316     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1317     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1318   }
1319 
1320   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1321     // Allow bitcast from vector to integer/fp of the same size.
1322     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1323     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1324     if (SrcSize == DstSize)
1325       return Builder.CreateBitCast(Src, DstTy, "conv");
1326 
1327     // Conversions between vectors of different sizes are not allowed except
1328     // when vectors of half are involved. Operations on storage-only half
1329     // vectors require promoting half vector operands to float vectors and
1330     // truncating the result, which is either an int or float vector, to a
1331     // short or half vector.
1332 
1333     // Source and destination are both expected to be vectors.
1334     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1335     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1336     (void)DstElementTy;
1337 
1338     assert(((SrcElementTy->isIntegerTy() &&
1339              DstElementTy->isIntegerTy()) ||
1340             (SrcElementTy->isFloatingPointTy() &&
1341              DstElementTy->isFloatingPointTy())) &&
1342            "unexpected conversion between a floating-point vector and an "
1343            "integer vector");
1344 
1345     // Truncate an i32 vector to an i16 vector.
1346     if (SrcElementTy->isIntegerTy())
1347       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1348 
1349     // Truncate a float vector to a half vector.
1350     if (SrcSize > DstSize)
1351       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1352 
1353     // Promote a half vector to a float vector.
1354     return Builder.CreateFPExt(Src, DstTy, "conv");
1355   }
1356 
1357   // Finally, we have the arithmetic types: real int/float.
1358   Value *Res = nullptr;
1359   llvm::Type *ResTy = DstTy;
1360 
1361   // An overflowing conversion has undefined behavior if either the source type
1362   // or the destination type is a floating-point type. However, we consider the
1363   // range of representable values for all floating-point types to be
1364   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1365   // floating-point type.
1366   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1367       OrigSrcType->isFloatingType())
1368     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1369                              Loc);
1370 
1371   // Cast to half through float if half isn't a native type.
1372   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1373     // Make sure we cast in a single step if from another FP type.
1374     if (SrcTy->isFloatingPointTy()) {
1375       // Use the intrinsic if the half type itself isn't supported
1376       // (as opposed to operations on half, available with NativeHalfType).
1377       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1378         return Builder.CreateCall(
1379             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1380       // If the half type is supported, just use an fptrunc.
1381       return Builder.CreateFPTrunc(Src, DstTy);
1382     }
1383     DstTy = CGF.FloatTy;
1384   }
1385 
1386   if (isa<llvm::IntegerType>(SrcTy)) {
1387     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1388     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1389       InputSigned = true;
1390     }
1391     if (isa<llvm::IntegerType>(DstTy))
1392       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1393     else if (InputSigned)
1394       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1395     else
1396       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1397   } else if (isa<llvm::IntegerType>(DstTy)) {
1398     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1399     if (DstType->isSignedIntegerOrEnumerationType())
1400       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1401     else
1402       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1403   } else {
1404     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1405            "Unknown real conversion");
1406     if (DstTy->getTypeID() < SrcTy->getTypeID())
1407       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1408     else
1409       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1410   }
1411 
1412   if (DstTy != ResTy) {
1413     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1414       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1415       Res = Builder.CreateCall(
1416         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1417         Res);
1418     } else {
1419       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1420     }
1421   }
1422 
1423   if (Opts.EmitImplicitIntegerTruncationChecks)
1424     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1425                                NoncanonicalDstType, Loc);
1426 
1427   if (Opts.EmitImplicitIntegerSignChangeChecks)
1428     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1429                                NoncanonicalDstType, Loc);
1430 
1431   return Res;
1432 }
1433 
1434 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1435                                                    QualType DstTy,
1436                                                    SourceLocation Loc) {
1437   auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1438   auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1439   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1440   llvm::Value *Result;
1441   if (DstTy->isIntegerType())
1442     Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1443                                             DstFPSema.getWidth(),
1444                                             DstFPSema.isSigned());
1445   else if (SrcTy->isIntegerType())
1446     Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1447                                              DstFPSema);
1448   else
1449     Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1450   return Result;
1451 }
1452 
1453 /// Emit a conversion from the specified complex type to the specified
1454 /// destination type, where the destination type is an LLVM scalar type.
1455 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1456     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1457     SourceLocation Loc) {
1458   // Get the source element type.
1459   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1460 
1461   // Handle conversions to bool first, they are special: comparisons against 0.
1462   if (DstTy->isBooleanType()) {
1463     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1464     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1465     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1466     return Builder.CreateOr(Src.first, Src.second, "tobool");
1467   }
1468 
1469   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1470   // the imaginary part of the complex value is discarded and the value of the
1471   // real part is converted according to the conversion rules for the
1472   // corresponding real type.
1473   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1474 }
1475 
1476 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1477   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1478 }
1479 
1480 /// Emit a sanitization check for the given "binary" operation (which
1481 /// might actually be a unary increment which has been lowered to a binary
1482 /// operation). The check passes if all values in \p Checks (which are \c i1),
1483 /// are \c true.
1484 void ScalarExprEmitter::EmitBinOpCheck(
1485     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1486   assert(CGF.IsSanitizerScope);
1487   SanitizerHandler Check;
1488   SmallVector<llvm::Constant *, 4> StaticData;
1489   SmallVector<llvm::Value *, 2> DynamicData;
1490 
1491   BinaryOperatorKind Opcode = Info.Opcode;
1492   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1493     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1494 
1495   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1496   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1497   if (UO && UO->getOpcode() == UO_Minus) {
1498     Check = SanitizerHandler::NegateOverflow;
1499     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1500     DynamicData.push_back(Info.RHS);
1501   } else {
1502     if (BinaryOperator::isShiftOp(Opcode)) {
1503       // Shift LHS negative or too large, or RHS out of bounds.
1504       Check = SanitizerHandler::ShiftOutOfBounds;
1505       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1506       StaticData.push_back(
1507         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1508       StaticData.push_back(
1509         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1510     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1511       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1512       Check = SanitizerHandler::DivremOverflow;
1513       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1514     } else {
1515       // Arithmetic overflow (+, -, *).
1516       switch (Opcode) {
1517       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1518       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1519       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1520       default: llvm_unreachable("unexpected opcode for bin op check");
1521       }
1522       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1523     }
1524     DynamicData.push_back(Info.LHS);
1525     DynamicData.push_back(Info.RHS);
1526   }
1527 
1528   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1529 }
1530 
1531 //===----------------------------------------------------------------------===//
1532 //                            Visitor Methods
1533 //===----------------------------------------------------------------------===//
1534 
1535 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1536   CGF.ErrorUnsupported(E, "scalar expression");
1537   if (E->getType()->isVoidType())
1538     return nullptr;
1539   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1540 }
1541 
1542 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1543   // Vector Mask Case
1544   if (E->getNumSubExprs() == 2) {
1545     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1546     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1547     Value *Mask;
1548 
1549     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1550     unsigned LHSElts = LTy->getNumElements();
1551 
1552     Mask = RHS;
1553 
1554     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1555 
1556     // Mask off the high bits of each shuffle index.
1557     Value *MaskBits =
1558         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1559     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1560 
1561     // newv = undef
1562     // mask = mask & maskbits
1563     // for each elt
1564     //   n = extract mask i
1565     //   x = extract val n
1566     //   newv = insert newv, x, i
1567     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1568                                            MTy->getNumElements());
1569     Value* NewV = llvm::UndefValue::get(RTy);
1570     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1571       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1572       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1573 
1574       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1575       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1576     }
1577     return NewV;
1578   }
1579 
1580   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1581   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1582 
1583   SmallVector<int, 32> Indices;
1584   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1585     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1586     // Check for -1 and output it as undef in the IR.
1587     if (Idx.isSigned() && Idx.isAllOnesValue())
1588       Indices.push_back(-1);
1589     else
1590       Indices.push_back(Idx.getZExtValue());
1591   }
1592 
1593   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1594 }
1595 
1596 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1597   QualType SrcType = E->getSrcExpr()->getType(),
1598            DstType = E->getType();
1599 
1600   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1601 
1602   SrcType = CGF.getContext().getCanonicalType(SrcType);
1603   DstType = CGF.getContext().getCanonicalType(DstType);
1604   if (SrcType == DstType) return Src;
1605 
1606   assert(SrcType->isVectorType() &&
1607          "ConvertVector source type must be a vector");
1608   assert(DstType->isVectorType() &&
1609          "ConvertVector destination type must be a vector");
1610 
1611   llvm::Type *SrcTy = Src->getType();
1612   llvm::Type *DstTy = ConvertType(DstType);
1613 
1614   // Ignore conversions like int -> uint.
1615   if (SrcTy == DstTy)
1616     return Src;
1617 
1618   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1619            DstEltType = DstType->castAs<VectorType>()->getElementType();
1620 
1621   assert(SrcTy->isVectorTy() &&
1622          "ConvertVector source IR type must be a vector");
1623   assert(DstTy->isVectorTy() &&
1624          "ConvertVector destination IR type must be a vector");
1625 
1626   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1627              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1628 
1629   if (DstEltType->isBooleanType()) {
1630     assert((SrcEltTy->isFloatingPointTy() ||
1631             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1632 
1633     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1634     if (SrcEltTy->isFloatingPointTy()) {
1635       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1636     } else {
1637       return Builder.CreateICmpNE(Src, Zero, "tobool");
1638     }
1639   }
1640 
1641   // We have the arithmetic types: real int/float.
1642   Value *Res = nullptr;
1643 
1644   if (isa<llvm::IntegerType>(SrcEltTy)) {
1645     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1646     if (isa<llvm::IntegerType>(DstEltTy))
1647       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1648     else if (InputSigned)
1649       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1650     else
1651       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1652   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1653     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1654     if (DstEltType->isSignedIntegerOrEnumerationType())
1655       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1656     else
1657       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1658   } else {
1659     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1660            "Unknown real conversion");
1661     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1662       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1663     else
1664       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1665   }
1666 
1667   return Res;
1668 }
1669 
1670 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1671   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1672     CGF.EmitIgnoredExpr(E->getBase());
1673     return CGF.emitScalarConstant(Constant, E);
1674   } else {
1675     Expr::EvalResult Result;
1676     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1677       llvm::APSInt Value = Result.Val.getInt();
1678       CGF.EmitIgnoredExpr(E->getBase());
1679       return Builder.getInt(Value);
1680     }
1681   }
1682 
1683   return EmitLoadOfLValue(E);
1684 }
1685 
1686 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1687   TestAndClearIgnoreResultAssign();
1688 
1689   // Emit subscript expressions in rvalue context's.  For most cases, this just
1690   // loads the lvalue formed by the subscript expr.  However, we have to be
1691   // careful, because the base of a vector subscript is occasionally an rvalue,
1692   // so we can't get it as an lvalue.
1693   if (!E->getBase()->getType()->isVectorType())
1694     return EmitLoadOfLValue(E);
1695 
1696   // Handle the vector case.  The base must be a vector, the index must be an
1697   // integer value.
1698   Value *Base = Visit(E->getBase());
1699   Value *Idx  = Visit(E->getIdx());
1700   QualType IdxTy = E->getIdx()->getType();
1701 
1702   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1703     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1704 
1705   return Builder.CreateExtractElement(Base, Idx, "vecext");
1706 }
1707 
1708 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1709   TestAndClearIgnoreResultAssign();
1710 
1711   // Handle the vector case.  The base must be a vector, the index must be an
1712   // integer value.
1713   Value *RowIdx = Visit(E->getRowIdx());
1714   Value *ColumnIdx = Visit(E->getColumnIdx());
1715   Value *Matrix = Visit(E->getBase());
1716 
1717   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1718   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1719   return MB.CreateExtractElement(
1720       Matrix, RowIdx, ColumnIdx,
1721       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
1722 }
1723 
1724 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1725                       unsigned Off) {
1726   int MV = SVI->getMaskValue(Idx);
1727   if (MV == -1)
1728     return -1;
1729   return Off + MV;
1730 }
1731 
1732 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1733   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1734          "Index operand too large for shufflevector mask!");
1735   return C->getZExtValue();
1736 }
1737 
1738 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1739   bool Ignore = TestAndClearIgnoreResultAssign();
1740   (void)Ignore;
1741   assert (Ignore == false && "init list ignored");
1742   unsigned NumInitElements = E->getNumInits();
1743 
1744   if (E->hadArrayRangeDesignator())
1745     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1746 
1747   llvm::VectorType *VType =
1748     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1749 
1750   if (!VType) {
1751     if (NumInitElements == 0) {
1752       // C++11 value-initialization for the scalar.
1753       return EmitNullValue(E->getType());
1754     }
1755     // We have a scalar in braces. Just use the first element.
1756     return Visit(E->getInit(0));
1757   }
1758 
1759   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1760 
1761   // Loop over initializers collecting the Value for each, and remembering
1762   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1763   // us to fold the shuffle for the swizzle into the shuffle for the vector
1764   // initializer, since LLVM optimizers generally do not want to touch
1765   // shuffles.
1766   unsigned CurIdx = 0;
1767   bool VIsUndefShuffle = false;
1768   llvm::Value *V = llvm::UndefValue::get(VType);
1769   for (unsigned i = 0; i != NumInitElements; ++i) {
1770     Expr *IE = E->getInit(i);
1771     Value *Init = Visit(IE);
1772     SmallVector<int, 16> Args;
1773 
1774     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1775 
1776     // Handle scalar elements.  If the scalar initializer is actually one
1777     // element of a different vector of the same width, use shuffle instead of
1778     // extract+insert.
1779     if (!VVT) {
1780       if (isa<ExtVectorElementExpr>(IE)) {
1781         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1782 
1783         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1784                 ->getNumElements() == ResElts) {
1785           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1786           Value *LHS = nullptr, *RHS = nullptr;
1787           if (CurIdx == 0) {
1788             // insert into undef -> shuffle (src, undef)
1789             // shufflemask must use an i32
1790             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1791             Args.resize(ResElts, -1);
1792 
1793             LHS = EI->getVectorOperand();
1794             RHS = V;
1795             VIsUndefShuffle = true;
1796           } else if (VIsUndefShuffle) {
1797             // insert into undefshuffle && size match -> shuffle (v, src)
1798             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1799             for (unsigned j = 0; j != CurIdx; ++j)
1800               Args.push_back(getMaskElt(SVV, j, 0));
1801             Args.push_back(ResElts + C->getZExtValue());
1802             Args.resize(ResElts, -1);
1803 
1804             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1805             RHS = EI->getVectorOperand();
1806             VIsUndefShuffle = false;
1807           }
1808           if (!Args.empty()) {
1809             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1810             ++CurIdx;
1811             continue;
1812           }
1813         }
1814       }
1815       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1816                                       "vecinit");
1817       VIsUndefShuffle = false;
1818       ++CurIdx;
1819       continue;
1820     }
1821 
1822     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1823 
1824     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1825     // input is the same width as the vector being constructed, generate an
1826     // optimized shuffle of the swizzle input into the result.
1827     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1828     if (isa<ExtVectorElementExpr>(IE)) {
1829       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1830       Value *SVOp = SVI->getOperand(0);
1831       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1832 
1833       if (OpTy->getNumElements() == ResElts) {
1834         for (unsigned j = 0; j != CurIdx; ++j) {
1835           // If the current vector initializer is a shuffle with undef, merge
1836           // this shuffle directly into it.
1837           if (VIsUndefShuffle) {
1838             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1839           } else {
1840             Args.push_back(j);
1841           }
1842         }
1843         for (unsigned j = 0, je = InitElts; j != je; ++j)
1844           Args.push_back(getMaskElt(SVI, j, Offset));
1845         Args.resize(ResElts, -1);
1846 
1847         if (VIsUndefShuffle)
1848           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1849 
1850         Init = SVOp;
1851       }
1852     }
1853 
1854     // Extend init to result vector length, and then shuffle its contribution
1855     // to the vector initializer into V.
1856     if (Args.empty()) {
1857       for (unsigned j = 0; j != InitElts; ++j)
1858         Args.push_back(j);
1859       Args.resize(ResElts, -1);
1860       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1861 
1862       Args.clear();
1863       for (unsigned j = 0; j != CurIdx; ++j)
1864         Args.push_back(j);
1865       for (unsigned j = 0; j != InitElts; ++j)
1866         Args.push_back(j + Offset);
1867       Args.resize(ResElts, -1);
1868     }
1869 
1870     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1871     // merging subsequent shuffles into this one.
1872     if (CurIdx == 0)
1873       std::swap(V, Init);
1874     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1875     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1876     CurIdx += InitElts;
1877   }
1878 
1879   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1880   // Emit remaining default initializers.
1881   llvm::Type *EltTy = VType->getElementType();
1882 
1883   // Emit remaining default initializers
1884   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1885     Value *Idx = Builder.getInt32(CurIdx);
1886     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1887     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1888   }
1889   return V;
1890 }
1891 
1892 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1893   const Expr *E = CE->getSubExpr();
1894 
1895   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1896     return false;
1897 
1898   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1899     // We always assume that 'this' is never null.
1900     return false;
1901   }
1902 
1903   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1904     // And that glvalue casts are never null.
1905     if (ICE->getValueKind() != VK_RValue)
1906       return false;
1907   }
1908 
1909   return true;
1910 }
1911 
1912 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1913 // have to handle a more broad range of conversions than explicit casts, as they
1914 // handle things like function to ptr-to-function decay etc.
1915 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1916   Expr *E = CE->getSubExpr();
1917   QualType DestTy = CE->getType();
1918   CastKind Kind = CE->getCastKind();
1919 
1920   // These cases are generally not written to ignore the result of
1921   // evaluating their sub-expressions, so we clear this now.
1922   bool Ignored = TestAndClearIgnoreResultAssign();
1923 
1924   // Since almost all cast kinds apply to scalars, this switch doesn't have
1925   // a default case, so the compiler will warn on a missing case.  The cases
1926   // are in the same order as in the CastKind enum.
1927   switch (Kind) {
1928   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1929   case CK_BuiltinFnToFnPtr:
1930     llvm_unreachable("builtin functions are handled elsewhere");
1931 
1932   case CK_LValueBitCast:
1933   case CK_ObjCObjectLValueCast: {
1934     Address Addr = EmitLValue(E).getAddress(CGF);
1935     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1936     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1937     return EmitLoadOfLValue(LV, CE->getExprLoc());
1938   }
1939 
1940   case CK_LValueToRValueBitCast: {
1941     LValue SourceLVal = CGF.EmitLValue(E);
1942     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1943                                                 CGF.ConvertTypeForMem(DestTy));
1944     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1945     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1946     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1947   }
1948 
1949   case CK_CPointerToObjCPointerCast:
1950   case CK_BlockPointerToObjCPointerCast:
1951   case CK_AnyPointerToBlockPointerCast:
1952   case CK_BitCast: {
1953     Value *Src = Visit(const_cast<Expr*>(E));
1954     llvm::Type *SrcTy = Src->getType();
1955     llvm::Type *DstTy = ConvertType(DestTy);
1956     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1957         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1958       llvm_unreachable("wrong cast for pointers in different address spaces"
1959                        "(must be an address space cast)!");
1960     }
1961 
1962     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1963       if (auto PT = DestTy->getAs<PointerType>())
1964         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1965                                       /*MayBeNull=*/true,
1966                                       CodeGenFunction::CFITCK_UnrelatedCast,
1967                                       CE->getBeginLoc());
1968     }
1969 
1970     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1971       const QualType SrcType = E->getType();
1972 
1973       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
1974         // Casting to pointer that could carry dynamic information (provided by
1975         // invariant.group) requires launder.
1976         Src = Builder.CreateLaunderInvariantGroup(Src);
1977       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
1978         // Casting to pointer that does not carry dynamic information (provided
1979         // by invariant.group) requires stripping it.  Note that we don't do it
1980         // if the source could not be dynamic type and destination could be
1981         // dynamic because dynamic information is already laundered.  It is
1982         // because launder(strip(src)) == launder(src), so there is no need to
1983         // add extra strip before launder.
1984         Src = Builder.CreateStripInvariantGroup(Src);
1985       }
1986     }
1987 
1988     // Update heapallocsite metadata when there is an explicit pointer cast.
1989     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
1990       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
1991         QualType PointeeType = DestTy->getPointeeType();
1992         if (!PointeeType.isNull())
1993           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
1994                                                        CE->getExprLoc());
1995       }
1996     }
1997 
1998     // If Src is a fixed vector and Dst is a scalable vector, and both have the
1999     // same element type, use the llvm.experimental.vector.insert intrinsic to
2000     // perform the bitcast.
2001     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2002       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2003         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2004           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2005           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2006           return Builder.CreateInsertVector(DstTy, UndefVec, Src, Zero,
2007                                             "castScalableSve");
2008         }
2009       }
2010     }
2011 
2012     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2013     // same element type, use the llvm.experimental.vector.extract intrinsic to
2014     // perform the bitcast.
2015     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2016       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2017         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2018           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2019           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2020         }
2021       }
2022     }
2023 
2024     // Perform VLAT <-> VLST bitcast through memory.
2025     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2026     //       require the element types of the vectors to be the same, we
2027     //       need to keep this around for casting between predicates, or more
2028     //       generally for bitcasts between VLAT <-> VLST where the element
2029     //       types of the vectors are not the same, until we figure out a better
2030     //       way of doing these casts.
2031     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2032          isa<llvm::ScalableVectorType>(DstTy)) ||
2033         (isa<llvm::ScalableVectorType>(SrcTy) &&
2034          isa<llvm::FixedVectorType>(DstTy))) {
2035       if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2036         // Call expressions can't have a scalar return unless the return type
2037         // is a reference type so an lvalue can't be emitted. Create a temp
2038         // alloca to store the call, bitcast the address then load.
2039         QualType RetTy = CE->getCallReturnType(CGF.getContext());
2040         Address Addr =
2041             CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue");
2042         LValue LV = CGF.MakeAddrLValue(Addr, RetTy);
2043         CGF.EmitStoreOfScalar(Src, LV);
2044         Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2045                                             "castFixedSve");
2046         LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2047         DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2048         return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2049       }
2050 
2051       Address Addr = EmitLValue(E).getAddress(CGF);
2052       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2053       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2054       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2055       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2056     }
2057 
2058     return Builder.CreateBitCast(Src, DstTy);
2059   }
2060   case CK_AddressSpaceConversion: {
2061     Expr::EvalResult Result;
2062     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2063         Result.Val.isNullPointer()) {
2064       // If E has side effect, it is emitted even if its final result is a
2065       // null pointer. In that case, a DCE pass should be able to
2066       // eliminate the useless instructions emitted during translating E.
2067       if (Result.HasSideEffects)
2068         Visit(E);
2069       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2070           ConvertType(DestTy)), DestTy);
2071     }
2072     // Since target may map different address spaces in AST to the same address
2073     // space, an address space conversion may end up as a bitcast.
2074     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2075         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2076         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2077   }
2078   case CK_AtomicToNonAtomic:
2079   case CK_NonAtomicToAtomic:
2080   case CK_NoOp:
2081   case CK_UserDefinedConversion:
2082     return Visit(const_cast<Expr*>(E));
2083 
2084   case CK_BaseToDerived: {
2085     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2086     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2087 
2088     Address Base = CGF.EmitPointerWithAlignment(E);
2089     Address Derived =
2090       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2091                                    CE->path_begin(), CE->path_end(),
2092                                    CGF.ShouldNullCheckClassCastValue(CE));
2093 
2094     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2095     // performed and the object is not of the derived type.
2096     if (CGF.sanitizePerformTypeCheck())
2097       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2098                         Derived.getPointer(), DestTy->getPointeeType());
2099 
2100     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2101       CGF.EmitVTablePtrCheckForCast(
2102           DestTy->getPointeeType(), Derived.getPointer(),
2103           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2104           CE->getBeginLoc());
2105 
2106     return Derived.getPointer();
2107   }
2108   case CK_UncheckedDerivedToBase:
2109   case CK_DerivedToBase: {
2110     // The EmitPointerWithAlignment path does this fine; just discard
2111     // the alignment.
2112     return CGF.EmitPointerWithAlignment(CE).getPointer();
2113   }
2114 
2115   case CK_Dynamic: {
2116     Address V = CGF.EmitPointerWithAlignment(E);
2117     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2118     return CGF.EmitDynamicCast(V, DCE);
2119   }
2120 
2121   case CK_ArrayToPointerDecay:
2122     return CGF.EmitArrayToPointerDecay(E).getPointer();
2123   case CK_FunctionToPointerDecay:
2124     return EmitLValue(E).getPointer(CGF);
2125 
2126   case CK_NullToPointer:
2127     if (MustVisitNullValue(E))
2128       CGF.EmitIgnoredExpr(E);
2129 
2130     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2131                               DestTy);
2132 
2133   case CK_NullToMemberPointer: {
2134     if (MustVisitNullValue(E))
2135       CGF.EmitIgnoredExpr(E);
2136 
2137     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2138     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2139   }
2140 
2141   case CK_ReinterpretMemberPointer:
2142   case CK_BaseToDerivedMemberPointer:
2143   case CK_DerivedToBaseMemberPointer: {
2144     Value *Src = Visit(E);
2145 
2146     // Note that the AST doesn't distinguish between checked and
2147     // unchecked member pointer conversions, so we always have to
2148     // implement checked conversions here.  This is inefficient when
2149     // actual control flow may be required in order to perform the
2150     // check, which it is for data member pointers (but not member
2151     // function pointers on Itanium and ARM).
2152     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2153   }
2154 
2155   case CK_ARCProduceObject:
2156     return CGF.EmitARCRetainScalarExpr(E);
2157   case CK_ARCConsumeObject:
2158     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2159   case CK_ARCReclaimReturnedObject:
2160     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2161   case CK_ARCExtendBlockObject:
2162     return CGF.EmitARCExtendBlockObject(E);
2163 
2164   case CK_CopyAndAutoreleaseBlockObject:
2165     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2166 
2167   case CK_FloatingRealToComplex:
2168   case CK_FloatingComplexCast:
2169   case CK_IntegralRealToComplex:
2170   case CK_IntegralComplexCast:
2171   case CK_IntegralComplexToFloatingComplex:
2172   case CK_FloatingComplexToIntegralComplex:
2173   case CK_ConstructorConversion:
2174   case CK_ToUnion:
2175     llvm_unreachable("scalar cast to non-scalar value");
2176 
2177   case CK_LValueToRValue:
2178     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2179     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2180     return Visit(const_cast<Expr*>(E));
2181 
2182   case CK_IntegralToPointer: {
2183     Value *Src = Visit(const_cast<Expr*>(E));
2184 
2185     // First, convert to the correct width so that we control the kind of
2186     // extension.
2187     auto DestLLVMTy = ConvertType(DestTy);
2188     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2189     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2190     llvm::Value* IntResult =
2191       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2192 
2193     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2194 
2195     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2196       // Going from integer to pointer that could be dynamic requires reloading
2197       // dynamic information from invariant.group.
2198       if (DestTy.mayBeDynamicClass())
2199         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2200     }
2201     return IntToPtr;
2202   }
2203   case CK_PointerToIntegral: {
2204     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2205     auto *PtrExpr = Visit(E);
2206 
2207     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2208       const QualType SrcType = E->getType();
2209 
2210       // Casting to integer requires stripping dynamic information as it does
2211       // not carries it.
2212       if (SrcType.mayBeDynamicClass())
2213         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2214     }
2215 
2216     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2217   }
2218   case CK_ToVoid: {
2219     CGF.EmitIgnoredExpr(E);
2220     return nullptr;
2221   }
2222   case CK_VectorSplat: {
2223     llvm::Type *DstTy = ConvertType(DestTy);
2224     Value *Elt = Visit(const_cast<Expr*>(E));
2225     // Splat the element across to all elements
2226     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2227     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2228   }
2229 
2230   case CK_FixedPointCast:
2231     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2232                                 CE->getExprLoc());
2233 
2234   case CK_FixedPointToBoolean:
2235     assert(E->getType()->isFixedPointType() &&
2236            "Expected src type to be fixed point type");
2237     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2238     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2239                                 CE->getExprLoc());
2240 
2241   case CK_FixedPointToIntegral:
2242     assert(E->getType()->isFixedPointType() &&
2243            "Expected src type to be fixed point type");
2244     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2245     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2246                                 CE->getExprLoc());
2247 
2248   case CK_IntegralToFixedPoint:
2249     assert(E->getType()->isIntegerType() &&
2250            "Expected src type to be an integer");
2251     assert(DestTy->isFixedPointType() &&
2252            "Expected dest type to be fixed point type");
2253     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2254                                 CE->getExprLoc());
2255 
2256   case CK_IntegralCast: {
2257     ScalarConversionOpts Opts;
2258     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2259       if (!ICE->isPartOfExplicitCast())
2260         Opts = ScalarConversionOpts(CGF.SanOpts);
2261     }
2262     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2263                                 CE->getExprLoc(), Opts);
2264   }
2265   case CK_IntegralToFloating:
2266   case CK_FloatingToIntegral:
2267   case CK_FloatingCast:
2268   case CK_FixedPointToFloating:
2269   case CK_FloatingToFixedPoint: {
2270     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2271     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2272                                 CE->getExprLoc());
2273   }
2274   case CK_BooleanToSignedIntegral: {
2275     ScalarConversionOpts Opts;
2276     Opts.TreatBooleanAsSigned = true;
2277     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2278                                 CE->getExprLoc(), Opts);
2279   }
2280   case CK_IntegralToBoolean:
2281     return EmitIntToBoolConversion(Visit(E));
2282   case CK_PointerToBoolean:
2283     return EmitPointerToBoolConversion(Visit(E), E->getType());
2284   case CK_FloatingToBoolean: {
2285     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2286     return EmitFloatToBoolConversion(Visit(E));
2287   }
2288   case CK_MemberPointerToBoolean: {
2289     llvm::Value *MemPtr = Visit(E);
2290     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2291     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2292   }
2293 
2294   case CK_FloatingComplexToReal:
2295   case CK_IntegralComplexToReal:
2296     return CGF.EmitComplexExpr(E, false, true).first;
2297 
2298   case CK_FloatingComplexToBoolean:
2299   case CK_IntegralComplexToBoolean: {
2300     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2301 
2302     // TODO: kill this function off, inline appropriate case here
2303     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2304                                          CE->getExprLoc());
2305   }
2306 
2307   case CK_ZeroToOCLOpaqueType: {
2308     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2309             DestTy->isOCLIntelSubgroupAVCType()) &&
2310            "CK_ZeroToOCLEvent cast on non-event type");
2311     return llvm::Constant::getNullValue(ConvertType(DestTy));
2312   }
2313 
2314   case CK_IntToOCLSampler:
2315     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2316 
2317   } // end of switch
2318 
2319   llvm_unreachable("unknown scalar cast");
2320 }
2321 
2322 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2323   CodeGenFunction::StmtExprEvaluation eval(CGF);
2324   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2325                                            !E->getType()->isVoidType());
2326   if (!RetAlloca.isValid())
2327     return nullptr;
2328   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2329                               E->getExprLoc());
2330 }
2331 
2332 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2333   CodeGenFunction::RunCleanupsScope Scope(CGF);
2334   Value *V = Visit(E->getSubExpr());
2335   // Defend against dominance problems caused by jumps out of expression
2336   // evaluation through the shared cleanup block.
2337   Scope.ForceCleanup({&V});
2338   return V;
2339 }
2340 
2341 //===----------------------------------------------------------------------===//
2342 //                             Unary Operators
2343 //===----------------------------------------------------------------------===//
2344 
2345 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2346                                            llvm::Value *InVal, bool IsInc,
2347                                            FPOptions FPFeatures) {
2348   BinOpInfo BinOp;
2349   BinOp.LHS = InVal;
2350   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2351   BinOp.Ty = E->getType();
2352   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2353   BinOp.FPFeatures = FPFeatures;
2354   BinOp.E = E;
2355   return BinOp;
2356 }
2357 
2358 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2359     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2360   llvm::Value *Amount =
2361       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2362   StringRef Name = IsInc ? "inc" : "dec";
2363   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2364   case LangOptions::SOB_Defined:
2365     return Builder.CreateAdd(InVal, Amount, Name);
2366   case LangOptions::SOB_Undefined:
2367     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2368       return Builder.CreateNSWAdd(InVal, Amount, Name);
2369     LLVM_FALLTHROUGH;
2370   case LangOptions::SOB_Trapping:
2371     if (!E->canOverflow())
2372       return Builder.CreateNSWAdd(InVal, Amount, Name);
2373     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2374         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2375   }
2376   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2377 }
2378 
2379 namespace {
2380 /// Handles check and update for lastprivate conditional variables.
2381 class OMPLastprivateConditionalUpdateRAII {
2382 private:
2383   CodeGenFunction &CGF;
2384   const UnaryOperator *E;
2385 
2386 public:
2387   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2388                                       const UnaryOperator *E)
2389       : CGF(CGF), E(E) {}
2390   ~OMPLastprivateConditionalUpdateRAII() {
2391     if (CGF.getLangOpts().OpenMP)
2392       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2393           CGF, E->getSubExpr());
2394   }
2395 };
2396 } // namespace
2397 
2398 llvm::Value *
2399 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2400                                            bool isInc, bool isPre) {
2401   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2402   QualType type = E->getSubExpr()->getType();
2403   llvm::PHINode *atomicPHI = nullptr;
2404   llvm::Value *value;
2405   llvm::Value *input;
2406 
2407   int amount = (isInc ? 1 : -1);
2408   bool isSubtraction = !isInc;
2409 
2410   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2411     type = atomicTy->getValueType();
2412     if (isInc && type->isBooleanType()) {
2413       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2414       if (isPre) {
2415         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2416             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2417         return Builder.getTrue();
2418       }
2419       // For atomic bool increment, we just store true and return it for
2420       // preincrement, do an atomic swap with true for postincrement
2421       return Builder.CreateAtomicRMW(
2422           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2423           llvm::AtomicOrdering::SequentiallyConsistent);
2424     }
2425     // Special case for atomic increment / decrement on integers, emit
2426     // atomicrmw instructions.  We skip this if we want to be doing overflow
2427     // checking, and fall into the slow path with the atomic cmpxchg loop.
2428     if (!type->isBooleanType() && type->isIntegerType() &&
2429         !(type->isUnsignedIntegerType() &&
2430           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2431         CGF.getLangOpts().getSignedOverflowBehavior() !=
2432             LangOptions::SOB_Trapping) {
2433       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2434         llvm::AtomicRMWInst::Sub;
2435       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2436         llvm::Instruction::Sub;
2437       llvm::Value *amt = CGF.EmitToMemory(
2438           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2439       llvm::Value *old =
2440           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2441                                   llvm::AtomicOrdering::SequentiallyConsistent);
2442       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2443     }
2444     value = EmitLoadOfLValue(LV, E->getExprLoc());
2445     input = value;
2446     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2447     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2448     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2449     value = CGF.EmitToMemory(value, type);
2450     Builder.CreateBr(opBB);
2451     Builder.SetInsertPoint(opBB);
2452     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2453     atomicPHI->addIncoming(value, startBB);
2454     value = atomicPHI;
2455   } else {
2456     value = EmitLoadOfLValue(LV, E->getExprLoc());
2457     input = value;
2458   }
2459 
2460   // Special case of integer increment that we have to check first: bool++.
2461   // Due to promotion rules, we get:
2462   //   bool++ -> bool = bool + 1
2463   //          -> bool = (int)bool + 1
2464   //          -> bool = ((int)bool + 1 != 0)
2465   // An interesting aspect of this is that increment is always true.
2466   // Decrement does not have this property.
2467   if (isInc && type->isBooleanType()) {
2468     value = Builder.getTrue();
2469 
2470   // Most common case by far: integer increment.
2471   } else if (type->isIntegerType()) {
2472     QualType promotedType;
2473     bool canPerformLossyDemotionCheck = false;
2474     if (type->isPromotableIntegerType()) {
2475       promotedType = CGF.getContext().getPromotedIntegerType(type);
2476       assert(promotedType != type && "Shouldn't promote to the same type.");
2477       canPerformLossyDemotionCheck = true;
2478       canPerformLossyDemotionCheck &=
2479           CGF.getContext().getCanonicalType(type) !=
2480           CGF.getContext().getCanonicalType(promotedType);
2481       canPerformLossyDemotionCheck &=
2482           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2483               type, promotedType);
2484       assert((!canPerformLossyDemotionCheck ||
2485               type->isSignedIntegerOrEnumerationType() ||
2486               promotedType->isSignedIntegerOrEnumerationType() ||
2487               ConvertType(type)->getScalarSizeInBits() ==
2488                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2489              "The following check expects that if we do promotion to different "
2490              "underlying canonical type, at least one of the types (either "
2491              "base or promoted) will be signed, or the bitwidths will match.");
2492     }
2493     if (CGF.SanOpts.hasOneOf(
2494             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2495         canPerformLossyDemotionCheck) {
2496       // While `x += 1` (for `x` with width less than int) is modeled as
2497       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2498       // ease; inc/dec with width less than int can't overflow because of
2499       // promotion rules, so we omit promotion+demotion, which means that we can
2500       // not catch lossy "demotion". Because we still want to catch these cases
2501       // when the sanitizer is enabled, we perform the promotion, then perform
2502       // the increment/decrement in the wider type, and finally
2503       // perform the demotion. This will catch lossy demotions.
2504 
2505       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2506       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2507       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2508       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2509       // emitted.
2510       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2511                                    ScalarConversionOpts(CGF.SanOpts));
2512 
2513       // Note that signed integer inc/dec with width less than int can't
2514       // overflow because of promotion rules; we're just eliding a few steps
2515       // here.
2516     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2517       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2518     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2519                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2520       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2521           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2522     } else {
2523       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2524       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2525     }
2526 
2527   // Next most common: pointer increment.
2528   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2529     QualType type = ptr->getPointeeType();
2530 
2531     // VLA types don't have constant size.
2532     if (const VariableArrayType *vla
2533           = CGF.getContext().getAsVariableArrayType(type)) {
2534       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2535       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2536       if (CGF.getLangOpts().isSignedOverflowDefined())
2537         value = Builder.CreateGEP(value, numElts, "vla.inc");
2538       else
2539         value = CGF.EmitCheckedInBoundsGEP(
2540             value, numElts, /*SignedIndices=*/false, isSubtraction,
2541             E->getExprLoc(), "vla.inc");
2542 
2543     // Arithmetic on function pointers (!) is just +-1.
2544     } else if (type->isFunctionType()) {
2545       llvm::Value *amt = Builder.getInt32(amount);
2546 
2547       value = CGF.EmitCastToVoidPtr(value);
2548       if (CGF.getLangOpts().isSignedOverflowDefined())
2549         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2550       else
2551         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2552                                            isSubtraction, E->getExprLoc(),
2553                                            "incdec.funcptr");
2554       value = Builder.CreateBitCast(value, input->getType());
2555 
2556     // For everything else, we can just do a simple increment.
2557     } else {
2558       llvm::Value *amt = Builder.getInt32(amount);
2559       if (CGF.getLangOpts().isSignedOverflowDefined())
2560         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2561       else
2562         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2563                                            isSubtraction, E->getExprLoc(),
2564                                            "incdec.ptr");
2565     }
2566 
2567   // Vector increment/decrement.
2568   } else if (type->isVectorType()) {
2569     if (type->hasIntegerRepresentation()) {
2570       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2571 
2572       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2573     } else {
2574       value = Builder.CreateFAdd(
2575                   value,
2576                   llvm::ConstantFP::get(value->getType(), amount),
2577                   isInc ? "inc" : "dec");
2578     }
2579 
2580   // Floating point.
2581   } else if (type->isRealFloatingType()) {
2582     // Add the inc/dec to the real part.
2583     llvm::Value *amt;
2584     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2585 
2586     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2587       // Another special case: half FP increment should be done via float
2588       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2589         value = Builder.CreateCall(
2590             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2591                                  CGF.CGM.FloatTy),
2592             input, "incdec.conv");
2593       } else {
2594         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2595       }
2596     }
2597 
2598     if (value->getType()->isFloatTy())
2599       amt = llvm::ConstantFP::get(VMContext,
2600                                   llvm::APFloat(static_cast<float>(amount)));
2601     else if (value->getType()->isDoubleTy())
2602       amt = llvm::ConstantFP::get(VMContext,
2603                                   llvm::APFloat(static_cast<double>(amount)));
2604     else {
2605       // Remaining types are Half, LongDouble or __float128. Convert from float.
2606       llvm::APFloat F(static_cast<float>(amount));
2607       bool ignored;
2608       const llvm::fltSemantics *FS;
2609       // Don't use getFloatTypeSemantics because Half isn't
2610       // necessarily represented using the "half" LLVM type.
2611       if (value->getType()->isFP128Ty())
2612         FS = &CGF.getTarget().getFloat128Format();
2613       else if (value->getType()->isHalfTy())
2614         FS = &CGF.getTarget().getHalfFormat();
2615       else
2616         FS = &CGF.getTarget().getLongDoubleFormat();
2617       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2618       amt = llvm::ConstantFP::get(VMContext, F);
2619     }
2620     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2621 
2622     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2623       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2624         value = Builder.CreateCall(
2625             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2626                                  CGF.CGM.FloatTy),
2627             value, "incdec.conv");
2628       } else {
2629         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2630       }
2631     }
2632 
2633   // Fixed-point types.
2634   } else if (type->isFixedPointType()) {
2635     // Fixed-point types are tricky. In some cases, it isn't possible to
2636     // represent a 1 or a -1 in the type at all. Piggyback off of
2637     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2638     BinOpInfo Info;
2639     Info.E = E;
2640     Info.Ty = E->getType();
2641     Info.Opcode = isInc ? BO_Add : BO_Sub;
2642     Info.LHS = value;
2643     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2644     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2645     // since -1 is guaranteed to be representable.
2646     if (type->isSignedFixedPointType()) {
2647       Info.Opcode = isInc ? BO_Sub : BO_Add;
2648       Info.RHS = Builder.CreateNeg(Info.RHS);
2649     }
2650     // Now, convert from our invented integer literal to the type of the unary
2651     // op. This will upscale and saturate if necessary. This value can become
2652     // undef in some cases.
2653     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2654     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2655     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2656     value = EmitFixedPointBinOp(Info);
2657 
2658   // Objective-C pointer types.
2659   } else {
2660     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2661     value = CGF.EmitCastToVoidPtr(value);
2662 
2663     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2664     if (!isInc) size = -size;
2665     llvm::Value *sizeValue =
2666       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2667 
2668     if (CGF.getLangOpts().isSignedOverflowDefined())
2669       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2670     else
2671       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2672                                          /*SignedIndices=*/false, isSubtraction,
2673                                          E->getExprLoc(), "incdec.objptr");
2674     value = Builder.CreateBitCast(value, input->getType());
2675   }
2676 
2677   if (atomicPHI) {
2678     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2679     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2680     auto Pair = CGF.EmitAtomicCompareExchange(
2681         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2682     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2683     llvm::Value *success = Pair.second;
2684     atomicPHI->addIncoming(old, curBlock);
2685     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2686     Builder.SetInsertPoint(contBB);
2687     return isPre ? value : input;
2688   }
2689 
2690   // Store the updated result through the lvalue.
2691   if (LV.isBitField())
2692     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2693   else
2694     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2695 
2696   // If this is a postinc, return the value read from memory, otherwise use the
2697   // updated value.
2698   return isPre ? value : input;
2699 }
2700 
2701 
2702 
2703 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2704   TestAndClearIgnoreResultAssign();
2705   Value *Op = Visit(E->getSubExpr());
2706 
2707   // Generate a unary FNeg for FP ops.
2708   if (Op->getType()->isFPOrFPVectorTy())
2709     return Builder.CreateFNeg(Op, "fneg");
2710 
2711   // Emit unary minus with EmitSub so we handle overflow cases etc.
2712   BinOpInfo BinOp;
2713   BinOp.RHS = Op;
2714   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2715   BinOp.Ty = E->getType();
2716   BinOp.Opcode = BO_Sub;
2717   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2718   BinOp.E = E;
2719   return EmitSub(BinOp);
2720 }
2721 
2722 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2723   TestAndClearIgnoreResultAssign();
2724   Value *Op = Visit(E->getSubExpr());
2725   return Builder.CreateNot(Op, "neg");
2726 }
2727 
2728 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2729   // Perform vector logical not on comparison with zero vector.
2730   if (E->getType()->isVectorType() &&
2731       E->getType()->castAs<VectorType>()->getVectorKind() ==
2732           VectorType::GenericVector) {
2733     Value *Oper = Visit(E->getSubExpr());
2734     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2735     Value *Result;
2736     if (Oper->getType()->isFPOrFPVectorTy()) {
2737       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2738           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2739       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2740     } else
2741       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2742     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2743   }
2744 
2745   // Compare operand to zero.
2746   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2747 
2748   // Invert value.
2749   // TODO: Could dynamically modify easy computations here.  For example, if
2750   // the operand is an icmp ne, turn into icmp eq.
2751   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2752 
2753   // ZExt result to the expr type.
2754   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2755 }
2756 
2757 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2758   // Try folding the offsetof to a constant.
2759   Expr::EvalResult EVResult;
2760   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2761     llvm::APSInt Value = EVResult.Val.getInt();
2762     return Builder.getInt(Value);
2763   }
2764 
2765   // Loop over the components of the offsetof to compute the value.
2766   unsigned n = E->getNumComponents();
2767   llvm::Type* ResultType = ConvertType(E->getType());
2768   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2769   QualType CurrentType = E->getTypeSourceInfo()->getType();
2770   for (unsigned i = 0; i != n; ++i) {
2771     OffsetOfNode ON = E->getComponent(i);
2772     llvm::Value *Offset = nullptr;
2773     switch (ON.getKind()) {
2774     case OffsetOfNode::Array: {
2775       // Compute the index
2776       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2777       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2778       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2779       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2780 
2781       // Save the element type
2782       CurrentType =
2783           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2784 
2785       // Compute the element size
2786       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2787           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2788 
2789       // Multiply out to compute the result
2790       Offset = Builder.CreateMul(Idx, ElemSize);
2791       break;
2792     }
2793 
2794     case OffsetOfNode::Field: {
2795       FieldDecl *MemberDecl = ON.getField();
2796       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2797       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2798 
2799       // Compute the index of the field in its parent.
2800       unsigned i = 0;
2801       // FIXME: It would be nice if we didn't have to loop here!
2802       for (RecordDecl::field_iterator Field = RD->field_begin(),
2803                                       FieldEnd = RD->field_end();
2804            Field != FieldEnd; ++Field, ++i) {
2805         if (*Field == MemberDecl)
2806           break;
2807       }
2808       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2809 
2810       // Compute the offset to the field
2811       int64_t OffsetInt = RL.getFieldOffset(i) /
2812                           CGF.getContext().getCharWidth();
2813       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2814 
2815       // Save the element type.
2816       CurrentType = MemberDecl->getType();
2817       break;
2818     }
2819 
2820     case OffsetOfNode::Identifier:
2821       llvm_unreachable("dependent __builtin_offsetof");
2822 
2823     case OffsetOfNode::Base: {
2824       if (ON.getBase()->isVirtual()) {
2825         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2826         continue;
2827       }
2828 
2829       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2830       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2831 
2832       // Save the element type.
2833       CurrentType = ON.getBase()->getType();
2834 
2835       // Compute the offset to the base.
2836       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2837       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2838       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2839       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2840       break;
2841     }
2842     }
2843     Result = Builder.CreateAdd(Result, Offset);
2844   }
2845   return Result;
2846 }
2847 
2848 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2849 /// argument of the sizeof expression as an integer.
2850 Value *
2851 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2852                               const UnaryExprOrTypeTraitExpr *E) {
2853   QualType TypeToSize = E->getTypeOfArgument();
2854   if (E->getKind() == UETT_SizeOf) {
2855     if (const VariableArrayType *VAT =
2856           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2857       if (E->isArgumentType()) {
2858         // sizeof(type) - make sure to emit the VLA size.
2859         CGF.EmitVariablyModifiedType(TypeToSize);
2860       } else {
2861         // C99 6.5.3.4p2: If the argument is an expression of type
2862         // VLA, it is evaluated.
2863         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2864       }
2865 
2866       auto VlaSize = CGF.getVLASize(VAT);
2867       llvm::Value *size = VlaSize.NumElts;
2868 
2869       // Scale the number of non-VLA elements by the non-VLA element size.
2870       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2871       if (!eltSize.isOne())
2872         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2873 
2874       return size;
2875     }
2876   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2877     auto Alignment =
2878         CGF.getContext()
2879             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2880                 E->getTypeOfArgument()->getPointeeType()))
2881             .getQuantity();
2882     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2883   }
2884 
2885   // If this isn't sizeof(vla), the result must be constant; use the constant
2886   // folding logic so we don't have to duplicate it here.
2887   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2888 }
2889 
2890 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2891   Expr *Op = E->getSubExpr();
2892   if (Op->getType()->isAnyComplexType()) {
2893     // If it's an l-value, load through the appropriate subobject l-value.
2894     // Note that we have to ask E because Op might be an l-value that
2895     // this won't work for, e.g. an Obj-C property.
2896     if (E->isGLValue())
2897       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2898                                   E->getExprLoc()).getScalarVal();
2899 
2900     // Otherwise, calculate and project.
2901     return CGF.EmitComplexExpr(Op, false, true).first;
2902   }
2903 
2904   return Visit(Op);
2905 }
2906 
2907 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2908   Expr *Op = E->getSubExpr();
2909   if (Op->getType()->isAnyComplexType()) {
2910     // If it's an l-value, load through the appropriate subobject l-value.
2911     // Note that we have to ask E because Op might be an l-value that
2912     // this won't work for, e.g. an Obj-C property.
2913     if (Op->isGLValue())
2914       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2915                                   E->getExprLoc()).getScalarVal();
2916 
2917     // Otherwise, calculate and project.
2918     return CGF.EmitComplexExpr(Op, true, false).second;
2919   }
2920 
2921   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2922   // effects are evaluated, but not the actual value.
2923   if (Op->isGLValue())
2924     CGF.EmitLValue(Op);
2925   else
2926     CGF.EmitScalarExpr(Op, true);
2927   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2928 }
2929 
2930 //===----------------------------------------------------------------------===//
2931 //                           Binary Operators
2932 //===----------------------------------------------------------------------===//
2933 
2934 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2935   TestAndClearIgnoreResultAssign();
2936   BinOpInfo Result;
2937   Result.LHS = Visit(E->getLHS());
2938   Result.RHS = Visit(E->getRHS());
2939   Result.Ty  = E->getType();
2940   Result.Opcode = E->getOpcode();
2941   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2942   Result.E = E;
2943   return Result;
2944 }
2945 
2946 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2947                                               const CompoundAssignOperator *E,
2948                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2949                                                    Value *&Result) {
2950   QualType LHSTy = E->getLHS()->getType();
2951   BinOpInfo OpInfo;
2952 
2953   if (E->getComputationResultType()->isAnyComplexType())
2954     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2955 
2956   // Emit the RHS first.  __block variables need to have the rhs evaluated
2957   // first, plus this should improve codegen a little.
2958   OpInfo.RHS = Visit(E->getRHS());
2959   OpInfo.Ty = E->getComputationResultType();
2960   OpInfo.Opcode = E->getOpcode();
2961   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2962   OpInfo.E = E;
2963   // Load/convert the LHS.
2964   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2965 
2966   llvm::PHINode *atomicPHI = nullptr;
2967   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2968     QualType type = atomicTy->getValueType();
2969     if (!type->isBooleanType() && type->isIntegerType() &&
2970         !(type->isUnsignedIntegerType() &&
2971           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2972         CGF.getLangOpts().getSignedOverflowBehavior() !=
2973             LangOptions::SOB_Trapping) {
2974       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2975       llvm::Instruction::BinaryOps Op;
2976       switch (OpInfo.Opcode) {
2977         // We don't have atomicrmw operands for *, %, /, <<, >>
2978         case BO_MulAssign: case BO_DivAssign:
2979         case BO_RemAssign:
2980         case BO_ShlAssign:
2981         case BO_ShrAssign:
2982           break;
2983         case BO_AddAssign:
2984           AtomicOp = llvm::AtomicRMWInst::Add;
2985           Op = llvm::Instruction::Add;
2986           break;
2987         case BO_SubAssign:
2988           AtomicOp = llvm::AtomicRMWInst::Sub;
2989           Op = llvm::Instruction::Sub;
2990           break;
2991         case BO_AndAssign:
2992           AtomicOp = llvm::AtomicRMWInst::And;
2993           Op = llvm::Instruction::And;
2994           break;
2995         case BO_XorAssign:
2996           AtomicOp = llvm::AtomicRMWInst::Xor;
2997           Op = llvm::Instruction::Xor;
2998           break;
2999         case BO_OrAssign:
3000           AtomicOp = llvm::AtomicRMWInst::Or;
3001           Op = llvm::Instruction::Or;
3002           break;
3003         default:
3004           llvm_unreachable("Invalid compound assignment type");
3005       }
3006       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3007         llvm::Value *Amt = CGF.EmitToMemory(
3008             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3009                                  E->getExprLoc()),
3010             LHSTy);
3011         Value *OldVal = Builder.CreateAtomicRMW(
3012             AtomicOp, LHSLV.getPointer(CGF), Amt,
3013             llvm::AtomicOrdering::SequentiallyConsistent);
3014 
3015         // Since operation is atomic, the result type is guaranteed to be the
3016         // same as the input in LLVM terms.
3017         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3018         return LHSLV;
3019       }
3020     }
3021     // FIXME: For floating point types, we should be saving and restoring the
3022     // floating point environment in the loop.
3023     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3024     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3025     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3026     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3027     Builder.CreateBr(opBB);
3028     Builder.SetInsertPoint(opBB);
3029     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3030     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3031     OpInfo.LHS = atomicPHI;
3032   }
3033   else
3034     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3035 
3036   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3037   SourceLocation Loc = E->getExprLoc();
3038   OpInfo.LHS =
3039       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3040 
3041   // Expand the binary operator.
3042   Result = (this->*Func)(OpInfo);
3043 
3044   // Convert the result back to the LHS type,
3045   // potentially with Implicit Conversion sanitizer check.
3046   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3047                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3048 
3049   if (atomicPHI) {
3050     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3051     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3052     auto Pair = CGF.EmitAtomicCompareExchange(
3053         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3054     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3055     llvm::Value *success = Pair.second;
3056     atomicPHI->addIncoming(old, curBlock);
3057     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3058     Builder.SetInsertPoint(contBB);
3059     return LHSLV;
3060   }
3061 
3062   // Store the result value into the LHS lvalue. Bit-fields are handled
3063   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3064   // 'An assignment expression has the value of the left operand after the
3065   // assignment...'.
3066   if (LHSLV.isBitField())
3067     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3068   else
3069     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3070 
3071   if (CGF.getLangOpts().OpenMP)
3072     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3073                                                                   E->getLHS());
3074   return LHSLV;
3075 }
3076 
3077 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3078                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3079   bool Ignore = TestAndClearIgnoreResultAssign();
3080   Value *RHS = nullptr;
3081   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3082 
3083   // If the result is clearly ignored, return now.
3084   if (Ignore)
3085     return nullptr;
3086 
3087   // The result of an assignment in C is the assigned r-value.
3088   if (!CGF.getLangOpts().CPlusPlus)
3089     return RHS;
3090 
3091   // If the lvalue is non-volatile, return the computed value of the assignment.
3092   if (!LHS.isVolatileQualified())
3093     return RHS;
3094 
3095   // Otherwise, reload the value.
3096   return EmitLoadOfLValue(LHS, E->getExprLoc());
3097 }
3098 
3099 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3100     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3101   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3102 
3103   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3104     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3105                                     SanitizerKind::IntegerDivideByZero));
3106   }
3107 
3108   const auto *BO = cast<BinaryOperator>(Ops.E);
3109   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3110       Ops.Ty->hasSignedIntegerRepresentation() &&
3111       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3112       Ops.mayHaveIntegerOverflow()) {
3113     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3114 
3115     llvm::Value *IntMin =
3116       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3117     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3118 
3119     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3120     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3121     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3122     Checks.push_back(
3123         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3124   }
3125 
3126   if (Checks.size() > 0)
3127     EmitBinOpCheck(Checks, Ops);
3128 }
3129 
3130 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3131   {
3132     CodeGenFunction::SanitizerScope SanScope(&CGF);
3133     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3134          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3135         Ops.Ty->isIntegerType() &&
3136         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3137       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3138       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3139     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3140                Ops.Ty->isRealFloatingType() &&
3141                Ops.mayHaveFloatDivisionByZero()) {
3142       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3143       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3144       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3145                      Ops);
3146     }
3147   }
3148 
3149   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3150     llvm::Value *Val;
3151     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3152     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3153     if (CGF.getLangOpts().OpenCL &&
3154         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3155       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3156       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3157       // build option allows an application to specify that single precision
3158       // floating-point divide (x/y and 1/x) and sqrt used in the program
3159       // source are correctly rounded.
3160       llvm::Type *ValTy = Val->getType();
3161       if (ValTy->isFloatTy() ||
3162           (isa<llvm::VectorType>(ValTy) &&
3163            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3164         CGF.SetFPAccuracy(Val, 2.5);
3165     }
3166     return Val;
3167   }
3168   else if (Ops.isFixedPointOp())
3169     return EmitFixedPointBinOp(Ops);
3170   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3171     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3172   else
3173     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3174 }
3175 
3176 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3177   // Rem in C can't be a floating point type: C99 6.5.5p2.
3178   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3179        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3180       Ops.Ty->isIntegerType() &&
3181       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3182     CodeGenFunction::SanitizerScope SanScope(&CGF);
3183     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3184     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3185   }
3186 
3187   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3188     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3189   else
3190     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3191 }
3192 
3193 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3194   unsigned IID;
3195   unsigned OpID = 0;
3196   SanitizerHandler OverflowKind;
3197 
3198   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3199   switch (Ops.Opcode) {
3200   case BO_Add:
3201   case BO_AddAssign:
3202     OpID = 1;
3203     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3204                      llvm::Intrinsic::uadd_with_overflow;
3205     OverflowKind = SanitizerHandler::AddOverflow;
3206     break;
3207   case BO_Sub:
3208   case BO_SubAssign:
3209     OpID = 2;
3210     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3211                      llvm::Intrinsic::usub_with_overflow;
3212     OverflowKind = SanitizerHandler::SubOverflow;
3213     break;
3214   case BO_Mul:
3215   case BO_MulAssign:
3216     OpID = 3;
3217     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3218                      llvm::Intrinsic::umul_with_overflow;
3219     OverflowKind = SanitizerHandler::MulOverflow;
3220     break;
3221   default:
3222     llvm_unreachable("Unsupported operation for overflow detection");
3223   }
3224   OpID <<= 1;
3225   if (isSigned)
3226     OpID |= 1;
3227 
3228   CodeGenFunction::SanitizerScope SanScope(&CGF);
3229   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3230 
3231   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3232 
3233   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3234   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3235   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3236 
3237   // Handle overflow with llvm.trap if no custom handler has been specified.
3238   const std::string *handlerName =
3239     &CGF.getLangOpts().OverflowHandler;
3240   if (handlerName->empty()) {
3241     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3242     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3243     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3244       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3245       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3246                               : SanitizerKind::UnsignedIntegerOverflow;
3247       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3248     } else
3249       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3250     return result;
3251   }
3252 
3253   // Branch in case of overflow.
3254   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3255   llvm::BasicBlock *continueBB =
3256       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3257   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3258 
3259   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3260 
3261   // If an overflow handler is set, then we want to call it and then use its
3262   // result, if it returns.
3263   Builder.SetInsertPoint(overflowBB);
3264 
3265   // Get the overflow handler.
3266   llvm::Type *Int8Ty = CGF.Int8Ty;
3267   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3268   llvm::FunctionType *handlerTy =
3269       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3270   llvm::FunctionCallee handler =
3271       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3272 
3273   // Sign extend the args to 64-bit, so that we can use the same handler for
3274   // all types of overflow.
3275   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3276   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3277 
3278   // Call the handler with the two arguments, the operation, and the size of
3279   // the result.
3280   llvm::Value *handlerArgs[] = {
3281     lhs,
3282     rhs,
3283     Builder.getInt8(OpID),
3284     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3285   };
3286   llvm::Value *handlerResult =
3287     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3288 
3289   // Truncate the result back to the desired size.
3290   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3291   Builder.CreateBr(continueBB);
3292 
3293   Builder.SetInsertPoint(continueBB);
3294   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3295   phi->addIncoming(result, initialBB);
3296   phi->addIncoming(handlerResult, overflowBB);
3297 
3298   return phi;
3299 }
3300 
3301 /// Emit pointer + index arithmetic.
3302 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3303                                     const BinOpInfo &op,
3304                                     bool isSubtraction) {
3305   // Must have binary (not unary) expr here.  Unary pointer
3306   // increment/decrement doesn't use this path.
3307   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3308 
3309   Value *pointer = op.LHS;
3310   Expr *pointerOperand = expr->getLHS();
3311   Value *index = op.RHS;
3312   Expr *indexOperand = expr->getRHS();
3313 
3314   // In a subtraction, the LHS is always the pointer.
3315   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3316     std::swap(pointer, index);
3317     std::swap(pointerOperand, indexOperand);
3318   }
3319 
3320   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3321 
3322   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3323   auto &DL = CGF.CGM.getDataLayout();
3324   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3325 
3326   // Some versions of glibc and gcc use idioms (particularly in their malloc
3327   // routines) that add a pointer-sized integer (known to be a pointer value)
3328   // to a null pointer in order to cast the value back to an integer or as
3329   // part of a pointer alignment algorithm.  This is undefined behavior, but
3330   // we'd like to be able to compile programs that use it.
3331   //
3332   // Normally, we'd generate a GEP with a null-pointer base here in response
3333   // to that code, but it's also UB to dereference a pointer created that
3334   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3335   // generate a direct cast of the integer value to a pointer.
3336   //
3337   // The idiom (p = nullptr + N) is not met if any of the following are true:
3338   //
3339   //   The operation is subtraction.
3340   //   The index is not pointer-sized.
3341   //   The pointer type is not byte-sized.
3342   //
3343   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3344                                                        op.Opcode,
3345                                                        expr->getLHS(),
3346                                                        expr->getRHS()))
3347     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3348 
3349   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3350     // Zero-extend or sign-extend the pointer value according to
3351     // whether the index is signed or not.
3352     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3353                                       "idx.ext");
3354   }
3355 
3356   // If this is subtraction, negate the index.
3357   if (isSubtraction)
3358     index = CGF.Builder.CreateNeg(index, "idx.neg");
3359 
3360   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3361     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3362                         /*Accessed*/ false);
3363 
3364   const PointerType *pointerType
3365     = pointerOperand->getType()->getAs<PointerType>();
3366   if (!pointerType) {
3367     QualType objectType = pointerOperand->getType()
3368                                         ->castAs<ObjCObjectPointerType>()
3369                                         ->getPointeeType();
3370     llvm::Value *objectSize
3371       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3372 
3373     index = CGF.Builder.CreateMul(index, objectSize);
3374 
3375     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3376     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3377     return CGF.Builder.CreateBitCast(result, pointer->getType());
3378   }
3379 
3380   QualType elementType = pointerType->getPointeeType();
3381   if (const VariableArrayType *vla
3382         = CGF.getContext().getAsVariableArrayType(elementType)) {
3383     // The element count here is the total number of non-VLA elements.
3384     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3385 
3386     // Effectively, the multiply by the VLA size is part of the GEP.
3387     // GEP indexes are signed, and scaling an index isn't permitted to
3388     // signed-overflow, so we use the same semantics for our explicit
3389     // multiply.  We suppress this if overflow is not undefined behavior.
3390     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3391       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3392       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3393     } else {
3394       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3395       pointer =
3396           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3397                                      op.E->getExprLoc(), "add.ptr");
3398     }
3399     return pointer;
3400   }
3401 
3402   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3403   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3404   // future proof.
3405   if (elementType->isVoidType() || elementType->isFunctionType()) {
3406     Value *result = CGF.EmitCastToVoidPtr(pointer);
3407     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3408     return CGF.Builder.CreateBitCast(result, pointer->getType());
3409   }
3410 
3411   if (CGF.getLangOpts().isSignedOverflowDefined())
3412     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3413 
3414   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3415                                     op.E->getExprLoc(), "add.ptr");
3416 }
3417 
3418 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3419 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3420 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3421 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3422 // efficient operations.
3423 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3424                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3425                            bool negMul, bool negAdd) {
3426   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3427 
3428   Value *MulOp0 = MulOp->getOperand(0);
3429   Value *MulOp1 = MulOp->getOperand(1);
3430   if (negMul)
3431     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3432   if (negAdd)
3433     Addend = Builder.CreateFNeg(Addend, "neg");
3434 
3435   Value *FMulAdd = nullptr;
3436   if (Builder.getIsFPConstrained()) {
3437     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3438            "Only constrained operation should be created when Builder is in FP "
3439            "constrained mode");
3440     FMulAdd = Builder.CreateConstrainedFPCall(
3441         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3442                              Addend->getType()),
3443         {MulOp0, MulOp1, Addend});
3444   } else {
3445     FMulAdd = Builder.CreateCall(
3446         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3447         {MulOp0, MulOp1, Addend});
3448   }
3449   MulOp->eraseFromParent();
3450 
3451   return FMulAdd;
3452 }
3453 
3454 // Check whether it would be legal to emit an fmuladd intrinsic call to
3455 // represent op and if so, build the fmuladd.
3456 //
3457 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3458 // Does NOT check the type of the operation - it's assumed that this function
3459 // will be called from contexts where it's known that the type is contractable.
3460 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3461                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3462                          bool isSub=false) {
3463 
3464   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3465           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3466          "Only fadd/fsub can be the root of an fmuladd.");
3467 
3468   // Check whether this op is marked as fusable.
3469   if (!op.FPFeatures.allowFPContractWithinStatement())
3470     return nullptr;
3471 
3472   // We have a potentially fusable op. Look for a mul on one of the operands.
3473   // Also, make sure that the mul result isn't used directly. In that case,
3474   // there's no point creating a muladd operation.
3475   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3476     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3477         LHSBinOp->use_empty())
3478       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3479   }
3480   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3481     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3482         RHSBinOp->use_empty())
3483       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3484   }
3485 
3486   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3487     if (LHSBinOp->getIntrinsicID() ==
3488             llvm::Intrinsic::experimental_constrained_fmul &&
3489         LHSBinOp->use_empty())
3490       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3491   }
3492   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3493     if (RHSBinOp->getIntrinsicID() ==
3494             llvm::Intrinsic::experimental_constrained_fmul &&
3495         RHSBinOp->use_empty())
3496       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3497   }
3498 
3499   return nullptr;
3500 }
3501 
3502 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3503   if (op.LHS->getType()->isPointerTy() ||
3504       op.RHS->getType()->isPointerTy())
3505     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3506 
3507   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3508     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3509     case LangOptions::SOB_Defined:
3510       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3511     case LangOptions::SOB_Undefined:
3512       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3513         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3514       LLVM_FALLTHROUGH;
3515     case LangOptions::SOB_Trapping:
3516       if (CanElideOverflowCheck(CGF.getContext(), op))
3517         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3518       return EmitOverflowCheckedBinOp(op);
3519     }
3520   }
3521 
3522   if (op.Ty->isConstantMatrixType()) {
3523     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3524     return MB.CreateAdd(op.LHS, op.RHS);
3525   }
3526 
3527   if (op.Ty->isUnsignedIntegerType() &&
3528       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3529       !CanElideOverflowCheck(CGF.getContext(), op))
3530     return EmitOverflowCheckedBinOp(op);
3531 
3532   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3533     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3534     // Try to form an fmuladd.
3535     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3536       return FMulAdd;
3537 
3538     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3539   }
3540 
3541   if (op.isFixedPointOp())
3542     return EmitFixedPointBinOp(op);
3543 
3544   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3545 }
3546 
3547 /// The resulting value must be calculated with exact precision, so the operands
3548 /// may not be the same type.
3549 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3550   using llvm::APSInt;
3551   using llvm::ConstantInt;
3552 
3553   // This is either a binary operation where at least one of the operands is
3554   // a fixed-point type, or a unary operation where the operand is a fixed-point
3555   // type. The result type of a binary operation is determined by
3556   // Sema::handleFixedPointConversions().
3557   QualType ResultTy = op.Ty;
3558   QualType LHSTy, RHSTy;
3559   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3560     RHSTy = BinOp->getRHS()->getType();
3561     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3562       // For compound assignment, the effective type of the LHS at this point
3563       // is the computation LHS type, not the actual LHS type, and the final
3564       // result type is not the type of the expression but rather the
3565       // computation result type.
3566       LHSTy = CAO->getComputationLHSType();
3567       ResultTy = CAO->getComputationResultType();
3568     } else
3569       LHSTy = BinOp->getLHS()->getType();
3570   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3571     LHSTy = UnOp->getSubExpr()->getType();
3572     RHSTy = UnOp->getSubExpr()->getType();
3573   }
3574   ASTContext &Ctx = CGF.getContext();
3575   Value *LHS = op.LHS;
3576   Value *RHS = op.RHS;
3577 
3578   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3579   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3580   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3581   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3582 
3583   // Perform the actual operation.
3584   Value *Result;
3585   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3586   switch (op.Opcode) {
3587   case BO_AddAssign:
3588   case BO_Add:
3589     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3590     break;
3591   case BO_SubAssign:
3592   case BO_Sub:
3593     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3594     break;
3595   case BO_MulAssign:
3596   case BO_Mul:
3597     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3598     break;
3599   case BO_DivAssign:
3600   case BO_Div:
3601     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3602     break;
3603   case BO_ShlAssign:
3604   case BO_Shl:
3605     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3606     break;
3607   case BO_ShrAssign:
3608   case BO_Shr:
3609     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3610     break;
3611   case BO_LT:
3612     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3613   case BO_GT:
3614     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3615   case BO_LE:
3616     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3617   case BO_GE:
3618     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3619   case BO_EQ:
3620     // For equality operations, we assume any padding bits on unsigned types are
3621     // zero'd out. They could be overwritten through non-saturating operations
3622     // that cause overflow, but this leads to undefined behavior.
3623     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3624   case BO_NE:
3625     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3626   case BO_Cmp:
3627   case BO_LAnd:
3628   case BO_LOr:
3629     llvm_unreachable("Found unimplemented fixed point binary operation");
3630   case BO_PtrMemD:
3631   case BO_PtrMemI:
3632   case BO_Rem:
3633   case BO_Xor:
3634   case BO_And:
3635   case BO_Or:
3636   case BO_Assign:
3637   case BO_RemAssign:
3638   case BO_AndAssign:
3639   case BO_XorAssign:
3640   case BO_OrAssign:
3641   case BO_Comma:
3642     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3643   }
3644 
3645   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3646                  BinaryOperator::isShiftAssignOp(op.Opcode);
3647   // Convert to the result type.
3648   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3649                                                       : CommonFixedSema,
3650                                       ResultFixedSema);
3651 }
3652 
3653 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3654   // The LHS is always a pointer if either side is.
3655   if (!op.LHS->getType()->isPointerTy()) {
3656     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3657       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3658       case LangOptions::SOB_Defined:
3659         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3660       case LangOptions::SOB_Undefined:
3661         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3662           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3663         LLVM_FALLTHROUGH;
3664       case LangOptions::SOB_Trapping:
3665         if (CanElideOverflowCheck(CGF.getContext(), op))
3666           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3667         return EmitOverflowCheckedBinOp(op);
3668       }
3669     }
3670 
3671     if (op.Ty->isConstantMatrixType()) {
3672       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3673       return MB.CreateSub(op.LHS, op.RHS);
3674     }
3675 
3676     if (op.Ty->isUnsignedIntegerType() &&
3677         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3678         !CanElideOverflowCheck(CGF.getContext(), op))
3679       return EmitOverflowCheckedBinOp(op);
3680 
3681     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3682       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3683       // Try to form an fmuladd.
3684       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3685         return FMulAdd;
3686       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3687     }
3688 
3689     if (op.isFixedPointOp())
3690       return EmitFixedPointBinOp(op);
3691 
3692     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3693   }
3694 
3695   // If the RHS is not a pointer, then we have normal pointer
3696   // arithmetic.
3697   if (!op.RHS->getType()->isPointerTy())
3698     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3699 
3700   // Otherwise, this is a pointer subtraction.
3701 
3702   // Do the raw subtraction part.
3703   llvm::Value *LHS
3704     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3705   llvm::Value *RHS
3706     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3707   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3708 
3709   // Okay, figure out the element size.
3710   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3711   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3712 
3713   llvm::Value *divisor = nullptr;
3714 
3715   // For a variable-length array, this is going to be non-constant.
3716   if (const VariableArrayType *vla
3717         = CGF.getContext().getAsVariableArrayType(elementType)) {
3718     auto VlaSize = CGF.getVLASize(vla);
3719     elementType = VlaSize.Type;
3720     divisor = VlaSize.NumElts;
3721 
3722     // Scale the number of non-VLA elements by the non-VLA element size.
3723     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3724     if (!eltSize.isOne())
3725       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3726 
3727   // For everything elese, we can just compute it, safe in the
3728   // assumption that Sema won't let anything through that we can't
3729   // safely compute the size of.
3730   } else {
3731     CharUnits elementSize;
3732     // Handle GCC extension for pointer arithmetic on void* and
3733     // function pointer types.
3734     if (elementType->isVoidType() || elementType->isFunctionType())
3735       elementSize = CharUnits::One();
3736     else
3737       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3738 
3739     // Don't even emit the divide for element size of 1.
3740     if (elementSize.isOne())
3741       return diffInChars;
3742 
3743     divisor = CGF.CGM.getSize(elementSize);
3744   }
3745 
3746   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3747   // pointer difference in C is only defined in the case where both operands
3748   // are pointing to elements of an array.
3749   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3750 }
3751 
3752 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3753   llvm::IntegerType *Ty;
3754   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3755     Ty = cast<llvm::IntegerType>(VT->getElementType());
3756   else
3757     Ty = cast<llvm::IntegerType>(LHS->getType());
3758   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3759 }
3760 
3761 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3762                                               const Twine &Name) {
3763   llvm::IntegerType *Ty;
3764   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3765     Ty = cast<llvm::IntegerType>(VT->getElementType());
3766   else
3767     Ty = cast<llvm::IntegerType>(LHS->getType());
3768 
3769   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3770         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3771 
3772   return Builder.CreateURem(
3773       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3774 }
3775 
3776 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3777   // TODO: This misses out on the sanitizer check below.
3778   if (Ops.isFixedPointOp())
3779     return EmitFixedPointBinOp(Ops);
3780 
3781   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3782   // RHS to the same size as the LHS.
3783   Value *RHS = Ops.RHS;
3784   if (Ops.LHS->getType() != RHS->getType())
3785     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3786 
3787   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3788                             Ops.Ty->hasSignedIntegerRepresentation() &&
3789                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3790                             !CGF.getLangOpts().CPlusPlus20;
3791   bool SanitizeUnsignedBase =
3792       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3793       Ops.Ty->hasUnsignedIntegerRepresentation();
3794   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3795   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3796   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3797   if (CGF.getLangOpts().OpenCL)
3798     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3799   else if ((SanitizeBase || SanitizeExponent) &&
3800            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3801     CodeGenFunction::SanitizerScope SanScope(&CGF);
3802     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3803     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3804     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3805 
3806     if (SanitizeExponent) {
3807       Checks.push_back(
3808           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3809     }
3810 
3811     if (SanitizeBase) {
3812       // Check whether we are shifting any non-zero bits off the top of the
3813       // integer. We only emit this check if exponent is valid - otherwise
3814       // instructions below will have undefined behavior themselves.
3815       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3816       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3817       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3818       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3819       llvm::Value *PromotedWidthMinusOne =
3820           (RHS == Ops.RHS) ? WidthMinusOne
3821                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3822       CGF.EmitBlock(CheckShiftBase);
3823       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3824           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3825                                      /*NUW*/ true, /*NSW*/ true),
3826           "shl.check");
3827       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3828         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3829         // Under C++11's rules, shifting a 1 bit into the sign bit is
3830         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3831         // define signed left shifts, so we use the C99 and C++11 rules there).
3832         // Unsigned shifts can always shift into the top bit.
3833         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3834         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3835       }
3836       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3837       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3838       CGF.EmitBlock(Cont);
3839       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3840       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3841       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3842       Checks.push_back(std::make_pair(
3843           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3844                                         : SanitizerKind::UnsignedShiftBase));
3845     }
3846 
3847     assert(!Checks.empty());
3848     EmitBinOpCheck(Checks, Ops);
3849   }
3850 
3851   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3852 }
3853 
3854 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3855   // TODO: This misses out on the sanitizer check below.
3856   if (Ops.isFixedPointOp())
3857     return EmitFixedPointBinOp(Ops);
3858 
3859   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3860   // RHS to the same size as the LHS.
3861   Value *RHS = Ops.RHS;
3862   if (Ops.LHS->getType() != RHS->getType())
3863     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3864 
3865   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3866   if (CGF.getLangOpts().OpenCL)
3867     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3868   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3869            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3870     CodeGenFunction::SanitizerScope SanScope(&CGF);
3871     llvm::Value *Valid =
3872         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3873     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3874   }
3875 
3876   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3877     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3878   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3879 }
3880 
3881 enum IntrinsicType { VCMPEQ, VCMPGT };
3882 // return corresponding comparison intrinsic for given vector type
3883 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3884                                         BuiltinType::Kind ElemKind) {
3885   switch (ElemKind) {
3886   default: llvm_unreachable("unexpected element type");
3887   case BuiltinType::Char_U:
3888   case BuiltinType::UChar:
3889     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3890                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3891   case BuiltinType::Char_S:
3892   case BuiltinType::SChar:
3893     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3894                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3895   case BuiltinType::UShort:
3896     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3897                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3898   case BuiltinType::Short:
3899     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3900                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3901   case BuiltinType::UInt:
3902     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3903                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3904   case BuiltinType::Int:
3905     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3906                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3907   case BuiltinType::ULong:
3908   case BuiltinType::ULongLong:
3909     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3910                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3911   case BuiltinType::Long:
3912   case BuiltinType::LongLong:
3913     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3914                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3915   case BuiltinType::Float:
3916     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3917                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3918   case BuiltinType::Double:
3919     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3920                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3921   case BuiltinType::UInt128:
3922     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3923                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
3924   case BuiltinType::Int128:
3925     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3926                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
3927   }
3928 }
3929 
3930 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3931                                       llvm::CmpInst::Predicate UICmpOpc,
3932                                       llvm::CmpInst::Predicate SICmpOpc,
3933                                       llvm::CmpInst::Predicate FCmpOpc,
3934                                       bool IsSignaling) {
3935   TestAndClearIgnoreResultAssign();
3936   Value *Result;
3937   QualType LHSTy = E->getLHS()->getType();
3938   QualType RHSTy = E->getRHS()->getType();
3939   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3940     assert(E->getOpcode() == BO_EQ ||
3941            E->getOpcode() == BO_NE);
3942     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3943     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3944     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3945                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3946   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3947     BinOpInfo BOInfo = EmitBinOps(E);
3948     Value *LHS = BOInfo.LHS;
3949     Value *RHS = BOInfo.RHS;
3950 
3951     // If AltiVec, the comparison results in a numeric type, so we use
3952     // intrinsics comparing vectors and giving 0 or 1 as a result
3953     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3954       // constants for mapping CR6 register bits to predicate result
3955       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3956 
3957       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3958 
3959       // in several cases vector arguments order will be reversed
3960       Value *FirstVecArg = LHS,
3961             *SecondVecArg = RHS;
3962 
3963       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3964       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3965 
3966       switch(E->getOpcode()) {
3967       default: llvm_unreachable("is not a comparison operation");
3968       case BO_EQ:
3969         CR6 = CR6_LT;
3970         ID = GetIntrinsic(VCMPEQ, ElementKind);
3971         break;
3972       case BO_NE:
3973         CR6 = CR6_EQ;
3974         ID = GetIntrinsic(VCMPEQ, ElementKind);
3975         break;
3976       case BO_LT:
3977         CR6 = CR6_LT;
3978         ID = GetIntrinsic(VCMPGT, ElementKind);
3979         std::swap(FirstVecArg, SecondVecArg);
3980         break;
3981       case BO_GT:
3982         CR6 = CR6_LT;
3983         ID = GetIntrinsic(VCMPGT, ElementKind);
3984         break;
3985       case BO_LE:
3986         if (ElementKind == BuiltinType::Float) {
3987           CR6 = CR6_LT;
3988           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3989           std::swap(FirstVecArg, SecondVecArg);
3990         }
3991         else {
3992           CR6 = CR6_EQ;
3993           ID = GetIntrinsic(VCMPGT, ElementKind);
3994         }
3995         break;
3996       case BO_GE:
3997         if (ElementKind == BuiltinType::Float) {
3998           CR6 = CR6_LT;
3999           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4000         }
4001         else {
4002           CR6 = CR6_EQ;
4003           ID = GetIntrinsic(VCMPGT, ElementKind);
4004           std::swap(FirstVecArg, SecondVecArg);
4005         }
4006         break;
4007       }
4008 
4009       Value *CR6Param = Builder.getInt32(CR6);
4010       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4011       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4012 
4013       // The result type of intrinsic may not be same as E->getType().
4014       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4015       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4016       // do nothing, if ResultTy is not i1 at the same time, it will cause
4017       // crash later.
4018       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4019       if (ResultTy->getBitWidth() > 1 &&
4020           E->getType() == CGF.getContext().BoolTy)
4021         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4022       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4023                                   E->getExprLoc());
4024     }
4025 
4026     if (BOInfo.isFixedPointOp()) {
4027       Result = EmitFixedPointBinOp(BOInfo);
4028     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4029       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4030       if (!IsSignaling)
4031         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4032       else
4033         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4034     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4035       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4036     } else {
4037       // Unsigned integers and pointers.
4038 
4039       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4040           !isa<llvm::ConstantPointerNull>(LHS) &&
4041           !isa<llvm::ConstantPointerNull>(RHS)) {
4042 
4043         // Dynamic information is required to be stripped for comparisons,
4044         // because it could leak the dynamic information.  Based on comparisons
4045         // of pointers to dynamic objects, the optimizer can replace one pointer
4046         // with another, which might be incorrect in presence of invariant
4047         // groups. Comparison with null is safe because null does not carry any
4048         // dynamic information.
4049         if (LHSTy.mayBeDynamicClass())
4050           LHS = Builder.CreateStripInvariantGroup(LHS);
4051         if (RHSTy.mayBeDynamicClass())
4052           RHS = Builder.CreateStripInvariantGroup(RHS);
4053       }
4054 
4055       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4056     }
4057 
4058     // If this is a vector comparison, sign extend the result to the appropriate
4059     // vector integer type and return it (don't convert to bool).
4060     if (LHSTy->isVectorType())
4061       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4062 
4063   } else {
4064     // Complex Comparison: can only be an equality comparison.
4065     CodeGenFunction::ComplexPairTy LHS, RHS;
4066     QualType CETy;
4067     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4068       LHS = CGF.EmitComplexExpr(E->getLHS());
4069       CETy = CTy->getElementType();
4070     } else {
4071       LHS.first = Visit(E->getLHS());
4072       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4073       CETy = LHSTy;
4074     }
4075     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4076       RHS = CGF.EmitComplexExpr(E->getRHS());
4077       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4078                                                      CTy->getElementType()) &&
4079              "The element types must always match.");
4080       (void)CTy;
4081     } else {
4082       RHS.first = Visit(E->getRHS());
4083       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4084       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4085              "The element types must always match.");
4086     }
4087 
4088     Value *ResultR, *ResultI;
4089     if (CETy->isRealFloatingType()) {
4090       // As complex comparisons can only be equality comparisons, they
4091       // are never signaling comparisons.
4092       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4093       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4094     } else {
4095       // Complex comparisons can only be equality comparisons.  As such, signed
4096       // and unsigned opcodes are the same.
4097       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4098       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4099     }
4100 
4101     if (E->getOpcode() == BO_EQ) {
4102       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4103     } else {
4104       assert(E->getOpcode() == BO_NE &&
4105              "Complex comparison other than == or != ?");
4106       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4107     }
4108   }
4109 
4110   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4111                               E->getExprLoc());
4112 }
4113 
4114 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4115   bool Ignore = TestAndClearIgnoreResultAssign();
4116 
4117   Value *RHS;
4118   LValue LHS;
4119 
4120   switch (E->getLHS()->getType().getObjCLifetime()) {
4121   case Qualifiers::OCL_Strong:
4122     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4123     break;
4124 
4125   case Qualifiers::OCL_Autoreleasing:
4126     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4127     break;
4128 
4129   case Qualifiers::OCL_ExplicitNone:
4130     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4131     break;
4132 
4133   case Qualifiers::OCL_Weak:
4134     RHS = Visit(E->getRHS());
4135     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4136     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4137     break;
4138 
4139   case Qualifiers::OCL_None:
4140     // __block variables need to have the rhs evaluated first, plus
4141     // this should improve codegen just a little.
4142     RHS = Visit(E->getRHS());
4143     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4144 
4145     // Store the value into the LHS.  Bit-fields are handled specially
4146     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4147     // 'An assignment expression has the value of the left operand after
4148     // the assignment...'.
4149     if (LHS.isBitField()) {
4150       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4151     } else {
4152       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4153       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4154     }
4155   }
4156 
4157   // If the result is clearly ignored, return now.
4158   if (Ignore)
4159     return nullptr;
4160 
4161   // The result of an assignment in C is the assigned r-value.
4162   if (!CGF.getLangOpts().CPlusPlus)
4163     return RHS;
4164 
4165   // If the lvalue is non-volatile, return the computed value of the assignment.
4166   if (!LHS.isVolatileQualified())
4167     return RHS;
4168 
4169   // Otherwise, reload the value.
4170   return EmitLoadOfLValue(LHS, E->getExprLoc());
4171 }
4172 
4173 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4174   // Perform vector logical and on comparisons with zero vectors.
4175   if (E->getType()->isVectorType()) {
4176     CGF.incrementProfileCounter(E);
4177 
4178     Value *LHS = Visit(E->getLHS());
4179     Value *RHS = Visit(E->getRHS());
4180     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4181     if (LHS->getType()->isFPOrFPVectorTy()) {
4182       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4183           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4184       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4185       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4186     } else {
4187       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4188       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4189     }
4190     Value *And = Builder.CreateAnd(LHS, RHS);
4191     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4192   }
4193 
4194   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4195   llvm::Type *ResTy = ConvertType(E->getType());
4196 
4197   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4198   // If we have 1 && X, just emit X without inserting the control flow.
4199   bool LHSCondVal;
4200   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4201     if (LHSCondVal) { // If we have 1 && X, just emit X.
4202       CGF.incrementProfileCounter(E);
4203 
4204       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4205 
4206       // If we're generating for profiling or coverage, generate a branch to a
4207       // block that increments the RHS counter needed to track branch condition
4208       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4209       // "FalseBlock" after the increment is done.
4210       if (InstrumentRegions &&
4211           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4212         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4213         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4214         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4215         CGF.EmitBlock(RHSBlockCnt);
4216         CGF.incrementProfileCounter(E->getRHS());
4217         CGF.EmitBranch(FBlock);
4218         CGF.EmitBlock(FBlock);
4219       }
4220 
4221       // ZExt result to int or bool.
4222       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4223     }
4224 
4225     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4226     if (!CGF.ContainsLabel(E->getRHS()))
4227       return llvm::Constant::getNullValue(ResTy);
4228   }
4229 
4230   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4231   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4232 
4233   CodeGenFunction::ConditionalEvaluation eval(CGF);
4234 
4235   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4236   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4237                            CGF.getProfileCount(E->getRHS()));
4238 
4239   // Any edges into the ContBlock are now from an (indeterminate number of)
4240   // edges from this first condition.  All of these values will be false.  Start
4241   // setting up the PHI node in the Cont Block for this.
4242   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4243                                             "", ContBlock);
4244   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4245        PI != PE; ++PI)
4246     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4247 
4248   eval.begin(CGF);
4249   CGF.EmitBlock(RHSBlock);
4250   CGF.incrementProfileCounter(E);
4251   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4252   eval.end(CGF);
4253 
4254   // Reaquire the RHS block, as there may be subblocks inserted.
4255   RHSBlock = Builder.GetInsertBlock();
4256 
4257   // If we're generating for profiling or coverage, generate a branch on the
4258   // RHS to a block that increments the RHS true counter needed to track branch
4259   // condition coverage.
4260   if (InstrumentRegions &&
4261       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4262     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4263     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4264     CGF.EmitBlock(RHSBlockCnt);
4265     CGF.incrementProfileCounter(E->getRHS());
4266     CGF.EmitBranch(ContBlock);
4267     PN->addIncoming(RHSCond, RHSBlockCnt);
4268   }
4269 
4270   // Emit an unconditional branch from this block to ContBlock.
4271   {
4272     // There is no need to emit line number for unconditional branch.
4273     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4274     CGF.EmitBlock(ContBlock);
4275   }
4276   // Insert an entry into the phi node for the edge with the value of RHSCond.
4277   PN->addIncoming(RHSCond, RHSBlock);
4278 
4279   // Artificial location to preserve the scope information
4280   {
4281     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4282     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4283   }
4284 
4285   // ZExt result to int.
4286   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4287 }
4288 
4289 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4290   // Perform vector logical or on comparisons with zero vectors.
4291   if (E->getType()->isVectorType()) {
4292     CGF.incrementProfileCounter(E);
4293 
4294     Value *LHS = Visit(E->getLHS());
4295     Value *RHS = Visit(E->getRHS());
4296     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4297     if (LHS->getType()->isFPOrFPVectorTy()) {
4298       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4299           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4300       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4301       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4302     } else {
4303       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4304       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4305     }
4306     Value *Or = Builder.CreateOr(LHS, RHS);
4307     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4308   }
4309 
4310   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4311   llvm::Type *ResTy = ConvertType(E->getType());
4312 
4313   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4314   // If we have 0 || X, just emit X without inserting the control flow.
4315   bool LHSCondVal;
4316   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4317     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4318       CGF.incrementProfileCounter(E);
4319 
4320       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4321 
4322       // If we're generating for profiling or coverage, generate a branch to a
4323       // block that increments the RHS counter need to track branch condition
4324       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4325       // "FalseBlock" after the increment is done.
4326       if (InstrumentRegions &&
4327           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4328         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4329         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4330         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4331         CGF.EmitBlock(RHSBlockCnt);
4332         CGF.incrementProfileCounter(E->getRHS());
4333         CGF.EmitBranch(FBlock);
4334         CGF.EmitBlock(FBlock);
4335       }
4336 
4337       // ZExt result to int or bool.
4338       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4339     }
4340 
4341     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4342     if (!CGF.ContainsLabel(E->getRHS()))
4343       return llvm::ConstantInt::get(ResTy, 1);
4344   }
4345 
4346   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4347   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4348 
4349   CodeGenFunction::ConditionalEvaluation eval(CGF);
4350 
4351   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4352   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4353                            CGF.getCurrentProfileCount() -
4354                                CGF.getProfileCount(E->getRHS()));
4355 
4356   // Any edges into the ContBlock are now from an (indeterminate number of)
4357   // edges from this first condition.  All of these values will be true.  Start
4358   // setting up the PHI node in the Cont Block for this.
4359   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4360                                             "", ContBlock);
4361   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4362        PI != PE; ++PI)
4363     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4364 
4365   eval.begin(CGF);
4366 
4367   // Emit the RHS condition as a bool value.
4368   CGF.EmitBlock(RHSBlock);
4369   CGF.incrementProfileCounter(E);
4370   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4371 
4372   eval.end(CGF);
4373 
4374   // Reaquire the RHS block, as there may be subblocks inserted.
4375   RHSBlock = Builder.GetInsertBlock();
4376 
4377   // If we're generating for profiling or coverage, generate a branch on the
4378   // RHS to a block that increments the RHS true counter needed to track branch
4379   // condition coverage.
4380   if (InstrumentRegions &&
4381       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4382     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4383     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4384     CGF.EmitBlock(RHSBlockCnt);
4385     CGF.incrementProfileCounter(E->getRHS());
4386     CGF.EmitBranch(ContBlock);
4387     PN->addIncoming(RHSCond, RHSBlockCnt);
4388   }
4389 
4390   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4391   // into the phi node for the edge with the value of RHSCond.
4392   CGF.EmitBlock(ContBlock);
4393   PN->addIncoming(RHSCond, RHSBlock);
4394 
4395   // ZExt result to int.
4396   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4397 }
4398 
4399 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4400   CGF.EmitIgnoredExpr(E->getLHS());
4401   CGF.EnsureInsertPoint();
4402   return Visit(E->getRHS());
4403 }
4404 
4405 //===----------------------------------------------------------------------===//
4406 //                             Other Operators
4407 //===----------------------------------------------------------------------===//
4408 
4409 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4410 /// expression is cheap enough and side-effect-free enough to evaluate
4411 /// unconditionally instead of conditionally.  This is used to convert control
4412 /// flow into selects in some cases.
4413 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4414                                                    CodeGenFunction &CGF) {
4415   // Anything that is an integer or floating point constant is fine.
4416   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4417 
4418   // Even non-volatile automatic variables can't be evaluated unconditionally.
4419   // Referencing a thread_local may cause non-trivial initialization work to
4420   // occur. If we're inside a lambda and one of the variables is from the scope
4421   // outside the lambda, that function may have returned already. Reading its
4422   // locals is a bad idea. Also, these reads may introduce races there didn't
4423   // exist in the source-level program.
4424 }
4425 
4426 
4427 Value *ScalarExprEmitter::
4428 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4429   TestAndClearIgnoreResultAssign();
4430 
4431   // Bind the common expression if necessary.
4432   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4433 
4434   Expr *condExpr = E->getCond();
4435   Expr *lhsExpr = E->getTrueExpr();
4436   Expr *rhsExpr = E->getFalseExpr();
4437 
4438   // If the condition constant folds and can be elided, try to avoid emitting
4439   // the condition and the dead arm.
4440   bool CondExprBool;
4441   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4442     Expr *live = lhsExpr, *dead = rhsExpr;
4443     if (!CondExprBool) std::swap(live, dead);
4444 
4445     // If the dead side doesn't have labels we need, just emit the Live part.
4446     if (!CGF.ContainsLabel(dead)) {
4447       if (CondExprBool)
4448         CGF.incrementProfileCounter(E);
4449       Value *Result = Visit(live);
4450 
4451       // If the live part is a throw expression, it acts like it has a void
4452       // type, so evaluating it returns a null Value*.  However, a conditional
4453       // with non-void type must return a non-null Value*.
4454       if (!Result && !E->getType()->isVoidType())
4455         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4456 
4457       return Result;
4458     }
4459   }
4460 
4461   // OpenCL: If the condition is a vector, we can treat this condition like
4462   // the select function.
4463   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4464       condExpr->getType()->isExtVectorType()) {
4465     CGF.incrementProfileCounter(E);
4466 
4467     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4468     llvm::Value *LHS = Visit(lhsExpr);
4469     llvm::Value *RHS = Visit(rhsExpr);
4470 
4471     llvm::Type *condType = ConvertType(condExpr->getType());
4472     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4473 
4474     unsigned numElem = vecTy->getNumElements();
4475     llvm::Type *elemType = vecTy->getElementType();
4476 
4477     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4478     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4479     llvm::Value *tmp = Builder.CreateSExt(
4480         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4481     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4482 
4483     // Cast float to int to perform ANDs if necessary.
4484     llvm::Value *RHSTmp = RHS;
4485     llvm::Value *LHSTmp = LHS;
4486     bool wasCast = false;
4487     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4488     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4489       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4490       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4491       wasCast = true;
4492     }
4493 
4494     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4495     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4496     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4497     if (wasCast)
4498       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4499 
4500     return tmp5;
4501   }
4502 
4503   if (condExpr->getType()->isVectorType()) {
4504     CGF.incrementProfileCounter(E);
4505 
4506     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4507     llvm::Value *LHS = Visit(lhsExpr);
4508     llvm::Value *RHS = Visit(rhsExpr);
4509 
4510     llvm::Type *CondType = ConvertType(condExpr->getType());
4511     auto *VecTy = cast<llvm::VectorType>(CondType);
4512     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4513 
4514     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4515     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4516   }
4517 
4518   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4519   // select instead of as control flow.  We can only do this if it is cheap and
4520   // safe to evaluate the LHS and RHS unconditionally.
4521   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4522       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4523     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4524     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4525 
4526     CGF.incrementProfileCounter(E, StepV);
4527 
4528     llvm::Value *LHS = Visit(lhsExpr);
4529     llvm::Value *RHS = Visit(rhsExpr);
4530     if (!LHS) {
4531       // If the conditional has void type, make sure we return a null Value*.
4532       assert(!RHS && "LHS and RHS types must match");
4533       return nullptr;
4534     }
4535     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4536   }
4537 
4538   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4539   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4540   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4541 
4542   CodeGenFunction::ConditionalEvaluation eval(CGF);
4543   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4544                            CGF.getProfileCount(lhsExpr));
4545 
4546   CGF.EmitBlock(LHSBlock);
4547   CGF.incrementProfileCounter(E);
4548   eval.begin(CGF);
4549   Value *LHS = Visit(lhsExpr);
4550   eval.end(CGF);
4551 
4552   LHSBlock = Builder.GetInsertBlock();
4553   Builder.CreateBr(ContBlock);
4554 
4555   CGF.EmitBlock(RHSBlock);
4556   eval.begin(CGF);
4557   Value *RHS = Visit(rhsExpr);
4558   eval.end(CGF);
4559 
4560   RHSBlock = Builder.GetInsertBlock();
4561   CGF.EmitBlock(ContBlock);
4562 
4563   // If the LHS or RHS is a throw expression, it will be legitimately null.
4564   if (!LHS)
4565     return RHS;
4566   if (!RHS)
4567     return LHS;
4568 
4569   // Create a PHI node for the real part.
4570   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4571   PN->addIncoming(LHS, LHSBlock);
4572   PN->addIncoming(RHS, RHSBlock);
4573   return PN;
4574 }
4575 
4576 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4577   return Visit(E->getChosenSubExpr());
4578 }
4579 
4580 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4581   QualType Ty = VE->getType();
4582 
4583   if (Ty->isVariablyModifiedType())
4584     CGF.EmitVariablyModifiedType(Ty);
4585 
4586   Address ArgValue = Address::invalid();
4587   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4588 
4589   llvm::Type *ArgTy = ConvertType(VE->getType());
4590 
4591   // If EmitVAArg fails, emit an error.
4592   if (!ArgPtr.isValid()) {
4593     CGF.ErrorUnsupported(VE, "va_arg expression");
4594     return llvm::UndefValue::get(ArgTy);
4595   }
4596 
4597   // FIXME Volatility.
4598   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4599 
4600   // If EmitVAArg promoted the type, we must truncate it.
4601   if (ArgTy != Val->getType()) {
4602     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4603       Val = Builder.CreateIntToPtr(Val, ArgTy);
4604     else
4605       Val = Builder.CreateTrunc(Val, ArgTy);
4606   }
4607 
4608   return Val;
4609 }
4610 
4611 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4612   return CGF.EmitBlockLiteral(block);
4613 }
4614 
4615 // Convert a vec3 to vec4, or vice versa.
4616 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4617                                  Value *Src, unsigned NumElementsDst) {
4618   static constexpr int Mask[] = {0, 1, 2, -1};
4619   return Builder.CreateShuffleVector(Src,
4620                                      llvm::makeArrayRef(Mask, NumElementsDst));
4621 }
4622 
4623 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4624 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4625 // but could be scalar or vectors of different lengths, and either can be
4626 // pointer.
4627 // There are 4 cases:
4628 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4629 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4630 // 3. pointer -> non-pointer
4631 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4632 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4633 // 4. non-pointer -> pointer
4634 //   a) intptr_t -> pointer       : needs 1 inttoptr
4635 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4636 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4637 // allow casting directly between pointer types and non-integer non-pointer
4638 // types.
4639 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4640                                            const llvm::DataLayout &DL,
4641                                            Value *Src, llvm::Type *DstTy,
4642                                            StringRef Name = "") {
4643   auto SrcTy = Src->getType();
4644 
4645   // Case 1.
4646   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4647     return Builder.CreateBitCast(Src, DstTy, Name);
4648 
4649   // Case 2.
4650   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4651     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4652 
4653   // Case 3.
4654   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4655     // Case 3b.
4656     if (!DstTy->isIntegerTy())
4657       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4658     // Cases 3a and 3b.
4659     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4660   }
4661 
4662   // Case 4b.
4663   if (!SrcTy->isIntegerTy())
4664     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4665   // Cases 4a and 4b.
4666   return Builder.CreateIntToPtr(Src, DstTy, Name);
4667 }
4668 
4669 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4670   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4671   llvm::Type *DstTy = ConvertType(E->getType());
4672 
4673   llvm::Type *SrcTy = Src->getType();
4674   unsigned NumElementsSrc =
4675       isa<llvm::VectorType>(SrcTy)
4676           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4677           : 0;
4678   unsigned NumElementsDst =
4679       isa<llvm::VectorType>(DstTy)
4680           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4681           : 0;
4682 
4683   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4684   // vector to get a vec4, then a bitcast if the target type is different.
4685   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4686     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4687 
4688     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4689       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4690                                          DstTy);
4691     }
4692 
4693     Src->setName("astype");
4694     return Src;
4695   }
4696 
4697   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4698   // to vec4 if the original type is not vec4, then a shuffle vector to
4699   // get a vec3.
4700   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4701     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4702       auto *Vec4Ty = llvm::FixedVectorType::get(
4703           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4704       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4705                                          Vec4Ty);
4706     }
4707 
4708     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4709     Src->setName("astype");
4710     return Src;
4711   }
4712 
4713   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4714                                       Src, DstTy, "astype");
4715 }
4716 
4717 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4718   return CGF.EmitAtomicExpr(E).getScalarVal();
4719 }
4720 
4721 //===----------------------------------------------------------------------===//
4722 //                         Entry Point into this File
4723 //===----------------------------------------------------------------------===//
4724 
4725 /// Emit the computation of the specified expression of scalar type, ignoring
4726 /// the result.
4727 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4728   assert(E && hasScalarEvaluationKind(E->getType()) &&
4729          "Invalid scalar expression to emit");
4730 
4731   return ScalarExprEmitter(*this, IgnoreResultAssign)
4732       .Visit(const_cast<Expr *>(E));
4733 }
4734 
4735 /// Emit a conversion from the specified type to the specified destination type,
4736 /// both of which are LLVM scalar types.
4737 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4738                                              QualType DstTy,
4739                                              SourceLocation Loc) {
4740   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4741          "Invalid scalar expression to emit");
4742   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4743 }
4744 
4745 /// Emit a conversion from the specified complex type to the specified
4746 /// destination type, where the destination type is an LLVM scalar type.
4747 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4748                                                       QualType SrcTy,
4749                                                       QualType DstTy,
4750                                                       SourceLocation Loc) {
4751   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4752          "Invalid complex -> scalar conversion");
4753   return ScalarExprEmitter(*this)
4754       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4755 }
4756 
4757 
4758 llvm::Value *CodeGenFunction::
4759 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4760                         bool isInc, bool isPre) {
4761   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4762 }
4763 
4764 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4765   // object->isa or (*object).isa
4766   // Generate code as for: *(Class*)object
4767 
4768   Expr *BaseExpr = E->getBase();
4769   Address Addr = Address::invalid();
4770   if (BaseExpr->isRValue()) {
4771     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4772   } else {
4773     Addr = EmitLValue(BaseExpr).getAddress(*this);
4774   }
4775 
4776   // Cast the address to Class*.
4777   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4778   return MakeAddrLValue(Addr, E->getType());
4779 }
4780 
4781 
4782 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4783                                             const CompoundAssignOperator *E) {
4784   ScalarExprEmitter Scalar(*this);
4785   Value *Result = nullptr;
4786   switch (E->getOpcode()) {
4787 #define COMPOUND_OP(Op)                                                       \
4788     case BO_##Op##Assign:                                                     \
4789       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4790                                              Result)
4791   COMPOUND_OP(Mul);
4792   COMPOUND_OP(Div);
4793   COMPOUND_OP(Rem);
4794   COMPOUND_OP(Add);
4795   COMPOUND_OP(Sub);
4796   COMPOUND_OP(Shl);
4797   COMPOUND_OP(Shr);
4798   COMPOUND_OP(And);
4799   COMPOUND_OP(Xor);
4800   COMPOUND_OP(Or);
4801 #undef COMPOUND_OP
4802 
4803   case BO_PtrMemD:
4804   case BO_PtrMemI:
4805   case BO_Mul:
4806   case BO_Div:
4807   case BO_Rem:
4808   case BO_Add:
4809   case BO_Sub:
4810   case BO_Shl:
4811   case BO_Shr:
4812   case BO_LT:
4813   case BO_GT:
4814   case BO_LE:
4815   case BO_GE:
4816   case BO_EQ:
4817   case BO_NE:
4818   case BO_Cmp:
4819   case BO_And:
4820   case BO_Xor:
4821   case BO_Or:
4822   case BO_LAnd:
4823   case BO_LOr:
4824   case BO_Assign:
4825   case BO_Comma:
4826     llvm_unreachable("Not valid compound assignment operators");
4827   }
4828 
4829   llvm_unreachable("Unhandled compound assignment operator");
4830 }
4831 
4832 struct GEPOffsetAndOverflow {
4833   // The total (signed) byte offset for the GEP.
4834   llvm::Value *TotalOffset;
4835   // The offset overflow flag - true if the total offset overflows.
4836   llvm::Value *OffsetOverflows;
4837 };
4838 
4839 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4840 /// and compute the total offset it applies from it's base pointer BasePtr.
4841 /// Returns offset in bytes and a boolean flag whether an overflow happened
4842 /// during evaluation.
4843 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4844                                                  llvm::LLVMContext &VMContext,
4845                                                  CodeGenModule &CGM,
4846                                                  CGBuilderTy &Builder) {
4847   const auto &DL = CGM.getDataLayout();
4848 
4849   // The total (signed) byte offset for the GEP.
4850   llvm::Value *TotalOffset = nullptr;
4851 
4852   // Was the GEP already reduced to a constant?
4853   if (isa<llvm::Constant>(GEPVal)) {
4854     // Compute the offset by casting both pointers to integers and subtracting:
4855     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4856     Value *BasePtr_int =
4857         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4858     Value *GEPVal_int =
4859         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4860     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4861     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4862   }
4863 
4864   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4865   assert(GEP->getPointerOperand() == BasePtr &&
4866          "BasePtr must be the the base of the GEP.");
4867   assert(GEP->isInBounds() && "Expected inbounds GEP");
4868 
4869   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4870 
4871   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4872   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4873   auto *SAddIntrinsic =
4874       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4875   auto *SMulIntrinsic =
4876       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4877 
4878   // The offset overflow flag - true if the total offset overflows.
4879   llvm::Value *OffsetOverflows = Builder.getFalse();
4880 
4881   /// Return the result of the given binary operation.
4882   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4883                   llvm::Value *RHS) -> llvm::Value * {
4884     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4885 
4886     // If the operands are constants, return a constant result.
4887     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4888       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4889         llvm::APInt N;
4890         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4891                                                   /*Signed=*/true, N);
4892         if (HasOverflow)
4893           OffsetOverflows = Builder.getTrue();
4894         return llvm::ConstantInt::get(VMContext, N);
4895       }
4896     }
4897 
4898     // Otherwise, compute the result with checked arithmetic.
4899     auto *ResultAndOverflow = Builder.CreateCall(
4900         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4901     OffsetOverflows = Builder.CreateOr(
4902         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4903     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4904   };
4905 
4906   // Determine the total byte offset by looking at each GEP operand.
4907   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4908        GTI != GTE; ++GTI) {
4909     llvm::Value *LocalOffset;
4910     auto *Index = GTI.getOperand();
4911     // Compute the local offset contributed by this indexing step:
4912     if (auto *STy = GTI.getStructTypeOrNull()) {
4913       // For struct indexing, the local offset is the byte position of the
4914       // specified field.
4915       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4916       LocalOffset = llvm::ConstantInt::get(
4917           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4918     } else {
4919       // Otherwise this is array-like indexing. The local offset is the index
4920       // multiplied by the element size.
4921       auto *ElementSize = llvm::ConstantInt::get(
4922           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4923       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4924       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4925     }
4926 
4927     // If this is the first offset, set it as the total offset. Otherwise, add
4928     // the local offset into the running total.
4929     if (!TotalOffset || TotalOffset == Zero)
4930       TotalOffset = LocalOffset;
4931     else
4932       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4933   }
4934 
4935   return {TotalOffset, OffsetOverflows};
4936 }
4937 
4938 Value *
4939 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4940                                         bool SignedIndices, bool IsSubtraction,
4941                                         SourceLocation Loc, const Twine &Name) {
4942   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4943 
4944   // If the pointer overflow sanitizer isn't enabled, do nothing.
4945   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4946     return GEPVal;
4947 
4948   llvm::Type *PtrTy = Ptr->getType();
4949 
4950   // Perform nullptr-and-offset check unless the nullptr is defined.
4951   bool PerformNullCheck = !NullPointerIsDefined(
4952       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4953   // Check for overflows unless the GEP got constant-folded,
4954   // and only in the default address space
4955   bool PerformOverflowCheck =
4956       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4957 
4958   if (!(PerformNullCheck || PerformOverflowCheck))
4959     return GEPVal;
4960 
4961   const auto &DL = CGM.getDataLayout();
4962 
4963   SanitizerScope SanScope(this);
4964   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4965 
4966   GEPOffsetAndOverflow EvaluatedGEP =
4967       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4968 
4969   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4970           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4971          "If the offset got constant-folded, we don't expect that there was an "
4972          "overflow.");
4973 
4974   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4975 
4976   // Common case: if the total offset is zero, and we are using C++ semantics,
4977   // where nullptr+0 is defined, don't emit a check.
4978   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4979     return GEPVal;
4980 
4981   // Now that we've computed the total offset, add it to the base pointer (with
4982   // wrapping semantics).
4983   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4984   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4985 
4986   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4987 
4988   if (PerformNullCheck) {
4989     // In C++, if the base pointer evaluates to a null pointer value,
4990     // the only valid  pointer this inbounds GEP can produce is also
4991     // a null pointer, so the offset must also evaluate to zero.
4992     // Likewise, if we have non-zero base pointer, we can not get null pointer
4993     // as a result, so the offset can not be -intptr_t(BasePtr).
4994     // In other words, both pointers are either null, or both are non-null,
4995     // or the behaviour is undefined.
4996     //
4997     // C, however, is more strict in this regard, and gives more
4998     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4999     // So both the input to the 'gep inbounds' AND the output must not be null.
5000     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5001     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5002     auto *Valid =
5003         CGM.getLangOpts().CPlusPlus
5004             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5005             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5006     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5007   }
5008 
5009   if (PerformOverflowCheck) {
5010     // The GEP is valid if:
5011     // 1) The total offset doesn't overflow, and
5012     // 2) The sign of the difference between the computed address and the base
5013     // pointer matches the sign of the total offset.
5014     llvm::Value *ValidGEP;
5015     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5016     if (SignedIndices) {
5017       // GEP is computed as `unsigned base + signed offset`, therefore:
5018       // * If offset was positive, then the computed pointer can not be
5019       //   [unsigned] less than the base pointer, unless it overflowed.
5020       // * If offset was negative, then the computed pointer can not be
5021       //   [unsigned] greater than the bas pointere, unless it overflowed.
5022       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5023       auto *PosOrZeroOffset =
5024           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5025       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5026       ValidGEP =
5027           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5028     } else if (!IsSubtraction) {
5029       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5030       // computed pointer can not be [unsigned] less than base pointer,
5031       // unless there was an overflow.
5032       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5033       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5034     } else {
5035       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5036       // computed pointer can not be [unsigned] greater than base pointer,
5037       // unless there was an overflow.
5038       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5039       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5040     }
5041     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5042     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5043   }
5044 
5045   assert(!Checks.empty() && "Should have produced some checks.");
5046 
5047   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5048   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5049   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5050   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5051 
5052   return GEPVal;
5053 }
5054