1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Module.h" 33 #include <cstdarg> 34 35 using namespace clang; 36 using namespace CodeGen; 37 using llvm::Value; 38 39 //===----------------------------------------------------------------------===// 40 // Scalar Expression Emitter 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 struct BinOpInfo { 45 Value *LHS; 46 Value *RHS; 47 QualType Ty; // Computation Type. 48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 49 bool FPContractable; 50 const Expr *E; // Entire expr, for error unsupported. May not be binop. 51 }; 52 53 static bool MustVisitNullValue(const Expr *E) { 54 // If a null pointer expression's type is the C++0x nullptr_t, then 55 // it's not necessarily a simple constant and it must be evaluated 56 // for its potential side effects. 57 return E->getType()->isNullPtrType(); 58 } 59 60 class ScalarExprEmitter 61 : public StmtVisitor<ScalarExprEmitter, Value*> { 62 CodeGenFunction &CGF; 63 CGBuilderTy &Builder; 64 bool IgnoreResultAssign; 65 llvm::LLVMContext &VMContext; 66 public: 67 68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 70 VMContext(cgf.getLLVMContext()) { 71 } 72 73 //===--------------------------------------------------------------------===// 74 // Utilities 75 //===--------------------------------------------------------------------===// 76 77 bool TestAndClearIgnoreResultAssign() { 78 bool I = IgnoreResultAssign; 79 IgnoreResultAssign = false; 80 return I; 81 } 82 83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 86 return CGF.EmitCheckedLValue(E, TCK); 87 } 88 89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 90 const BinOpInfo &Info); 91 92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 94 } 95 96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 97 const AlignValueAttr *AVAttr = nullptr; 98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 99 const ValueDecl *VD = DRE->getDecl(); 100 101 if (VD->getType()->isReferenceType()) { 102 if (const auto *TTy = 103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 105 } else { 106 // Assumptions for function parameters are emitted at the start of the 107 // function, so there is no need to repeat that here. 108 if (isa<ParmVarDecl>(VD)) 109 return; 110 111 AVAttr = VD->getAttr<AlignValueAttr>(); 112 } 113 } 114 115 if (!AVAttr) 116 if (const auto *TTy = 117 dyn_cast<TypedefType>(E->getType())) 118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 119 120 if (!AVAttr) 121 return; 122 123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 126 } 127 128 /// EmitLoadOfLValue - Given an expression with complex type that represents a 129 /// value l-value, this method emits the address of the l-value, then loads 130 /// and returns the result. 131 Value *EmitLoadOfLValue(const Expr *E) { 132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 133 E->getExprLoc()); 134 135 EmitLValueAlignmentAssumption(E, V); 136 return V; 137 } 138 139 /// EmitConversionToBool - Convert the specified expression value to a 140 /// boolean (i1) truth value. This is equivalent to "Val != 0". 141 Value *EmitConversionToBool(Value *Src, QualType DstTy); 142 143 /// \brief Emit a check that a conversion to or from a floating-point type 144 /// does not overflow. 145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 146 Value *Src, QualType SrcType, 147 QualType DstType, llvm::Type *DstTy); 148 149 /// EmitScalarConversion - Emit a conversion from the specified type to the 150 /// specified destination type, both of which are LLVM scalar types. 151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 152 153 /// EmitComplexToScalarConversion - Emit a conversion from the specified 154 /// complex type to the specified destination type, where the destination type 155 /// is an LLVM scalar type. 156 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 157 QualType SrcTy, QualType DstTy); 158 159 /// EmitNullValue - Emit a value that corresponds to null for the given type. 160 Value *EmitNullValue(QualType Ty); 161 162 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 163 Value *EmitFloatToBoolConversion(Value *V) { 164 // Compare against 0.0 for fp scalars. 165 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 166 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 167 } 168 169 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 170 Value *EmitPointerToBoolConversion(Value *V) { 171 Value *Zero = llvm::ConstantPointerNull::get( 172 cast<llvm::PointerType>(V->getType())); 173 return Builder.CreateICmpNE(V, Zero, "tobool"); 174 } 175 176 Value *EmitIntToBoolConversion(Value *V) { 177 // Because of the type rules of C, we often end up computing a 178 // logical value, then zero extending it to int, then wanting it 179 // as a logical value again. Optimize this common case. 180 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 181 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 182 Value *Result = ZI->getOperand(0); 183 // If there aren't any more uses, zap the instruction to save space. 184 // Note that there can be more uses, for example if this 185 // is the result of an assignment. 186 if (ZI->use_empty()) 187 ZI->eraseFromParent(); 188 return Result; 189 } 190 } 191 192 return Builder.CreateIsNotNull(V, "tobool"); 193 } 194 195 //===--------------------------------------------------------------------===// 196 // Visitor Methods 197 //===--------------------------------------------------------------------===// 198 199 Value *Visit(Expr *E) { 200 ApplyDebugLocation DL(CGF, E); 201 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 202 } 203 204 Value *VisitStmt(Stmt *S) { 205 S->dump(CGF.getContext().getSourceManager()); 206 llvm_unreachable("Stmt can't have complex result type!"); 207 } 208 Value *VisitExpr(Expr *S); 209 210 Value *VisitParenExpr(ParenExpr *PE) { 211 return Visit(PE->getSubExpr()); 212 } 213 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 214 return Visit(E->getReplacement()); 215 } 216 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 217 return Visit(GE->getResultExpr()); 218 } 219 220 // Leaves. 221 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 222 return Builder.getInt(E->getValue()); 223 } 224 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 225 return llvm::ConstantFP::get(VMContext, E->getValue()); 226 } 227 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 228 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 229 } 230 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 231 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 232 } 233 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 234 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 235 } 236 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 237 return EmitNullValue(E->getType()); 238 } 239 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 240 return EmitNullValue(E->getType()); 241 } 242 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 243 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 244 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 245 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 246 return Builder.CreateBitCast(V, ConvertType(E->getType())); 247 } 248 249 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 250 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 251 } 252 253 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 254 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 255 } 256 257 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 258 if (E->isGLValue()) 259 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 260 261 // Otherwise, assume the mapping is the scalar directly. 262 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 263 } 264 265 // l-values. 266 Value *VisitDeclRefExpr(DeclRefExpr *E) { 267 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 268 if (result.isReference()) 269 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 270 E->getExprLoc()); 271 return result.getValue(); 272 } 273 return EmitLoadOfLValue(E); 274 } 275 276 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 277 return CGF.EmitObjCSelectorExpr(E); 278 } 279 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 280 return CGF.EmitObjCProtocolExpr(E); 281 } 282 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 283 return EmitLoadOfLValue(E); 284 } 285 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 286 if (E->getMethodDecl() && 287 E->getMethodDecl()->getReturnType()->isReferenceType()) 288 return EmitLoadOfLValue(E); 289 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 290 } 291 292 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 293 LValue LV = CGF.EmitObjCIsaExpr(E); 294 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 295 return V; 296 } 297 298 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 299 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 300 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 301 Value *VisitMemberExpr(MemberExpr *E); 302 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 303 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 304 return EmitLoadOfLValue(E); 305 } 306 307 Value *VisitInitListExpr(InitListExpr *E); 308 309 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 310 return EmitNullValue(E->getType()); 311 } 312 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 313 if (E->getType()->isVariablyModifiedType()) 314 CGF.EmitVariablyModifiedType(E->getType()); 315 316 if (CGDebugInfo *DI = CGF.getDebugInfo()) 317 DI->EmitExplicitCastType(E->getType()); 318 319 return VisitCastExpr(E); 320 } 321 Value *VisitCastExpr(CastExpr *E); 322 323 Value *VisitCallExpr(const CallExpr *E) { 324 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 325 return EmitLoadOfLValue(E); 326 327 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 328 329 EmitLValueAlignmentAssumption(E, V); 330 return V; 331 } 332 333 Value *VisitStmtExpr(const StmtExpr *E); 334 335 // Unary Operators. 336 Value *VisitUnaryPostDec(const UnaryOperator *E) { 337 LValue LV = EmitLValue(E->getSubExpr()); 338 return EmitScalarPrePostIncDec(E, LV, false, false); 339 } 340 Value *VisitUnaryPostInc(const UnaryOperator *E) { 341 LValue LV = EmitLValue(E->getSubExpr()); 342 return EmitScalarPrePostIncDec(E, LV, true, false); 343 } 344 Value *VisitUnaryPreDec(const UnaryOperator *E) { 345 LValue LV = EmitLValue(E->getSubExpr()); 346 return EmitScalarPrePostIncDec(E, LV, false, true); 347 } 348 Value *VisitUnaryPreInc(const UnaryOperator *E) { 349 LValue LV = EmitLValue(E->getSubExpr()); 350 return EmitScalarPrePostIncDec(E, LV, true, true); 351 } 352 353 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 354 llvm::Value *InVal, 355 bool IsInc); 356 357 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 358 bool isInc, bool isPre); 359 360 361 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 362 if (isa<MemberPointerType>(E->getType())) // never sugared 363 return CGF.CGM.getMemberPointerConstant(E); 364 365 return EmitLValue(E->getSubExpr()).getAddress(); 366 } 367 Value *VisitUnaryDeref(const UnaryOperator *E) { 368 if (E->getType()->isVoidType()) 369 return Visit(E->getSubExpr()); // the actual value should be unused 370 return EmitLoadOfLValue(E); 371 } 372 Value *VisitUnaryPlus(const UnaryOperator *E) { 373 // This differs from gcc, though, most likely due to a bug in gcc. 374 TestAndClearIgnoreResultAssign(); 375 return Visit(E->getSubExpr()); 376 } 377 Value *VisitUnaryMinus (const UnaryOperator *E); 378 Value *VisitUnaryNot (const UnaryOperator *E); 379 Value *VisitUnaryLNot (const UnaryOperator *E); 380 Value *VisitUnaryReal (const UnaryOperator *E); 381 Value *VisitUnaryImag (const UnaryOperator *E); 382 Value *VisitUnaryExtension(const UnaryOperator *E) { 383 return Visit(E->getSubExpr()); 384 } 385 386 // C++ 387 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 388 return EmitLoadOfLValue(E); 389 } 390 391 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 392 return Visit(DAE->getExpr()); 393 } 394 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 395 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 396 return Visit(DIE->getExpr()); 397 } 398 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 399 return CGF.LoadCXXThis(); 400 } 401 402 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 403 CGF.enterFullExpression(E); 404 CodeGenFunction::RunCleanupsScope Scope(CGF); 405 return Visit(E->getSubExpr()); 406 } 407 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 408 return CGF.EmitCXXNewExpr(E); 409 } 410 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 411 CGF.EmitCXXDeleteExpr(E); 412 return nullptr; 413 } 414 415 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 416 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 417 } 418 419 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 420 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 421 } 422 423 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 424 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 425 } 426 427 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 428 // C++ [expr.pseudo]p1: 429 // The result shall only be used as the operand for the function call 430 // operator (), and the result of such a call has type void. The only 431 // effect is the evaluation of the postfix-expression before the dot or 432 // arrow. 433 CGF.EmitScalarExpr(E->getBase()); 434 return nullptr; 435 } 436 437 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 438 return EmitNullValue(E->getType()); 439 } 440 441 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 442 CGF.EmitCXXThrowExpr(E); 443 return nullptr; 444 } 445 446 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 447 return Builder.getInt1(E->getValue()); 448 } 449 450 // Binary Operators. 451 Value *EmitMul(const BinOpInfo &Ops) { 452 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 453 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 454 case LangOptions::SOB_Defined: 455 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 456 case LangOptions::SOB_Undefined: 457 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 458 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 459 // Fall through. 460 case LangOptions::SOB_Trapping: 461 return EmitOverflowCheckedBinOp(Ops); 462 } 463 } 464 465 if (Ops.Ty->isUnsignedIntegerType() && 466 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 467 return EmitOverflowCheckedBinOp(Ops); 468 469 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 470 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 471 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 472 } 473 /// Create a binary op that checks for overflow. 474 /// Currently only supports +, - and *. 475 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 476 477 // Check for undefined division and modulus behaviors. 478 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 479 llvm::Value *Zero,bool isDiv); 480 // Common helper for getting how wide LHS of shift is. 481 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 482 Value *EmitDiv(const BinOpInfo &Ops); 483 Value *EmitRem(const BinOpInfo &Ops); 484 Value *EmitAdd(const BinOpInfo &Ops); 485 Value *EmitSub(const BinOpInfo &Ops); 486 Value *EmitShl(const BinOpInfo &Ops); 487 Value *EmitShr(const BinOpInfo &Ops); 488 Value *EmitAnd(const BinOpInfo &Ops) { 489 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 490 } 491 Value *EmitXor(const BinOpInfo &Ops) { 492 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 493 } 494 Value *EmitOr (const BinOpInfo &Ops) { 495 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 496 } 497 498 BinOpInfo EmitBinOps(const BinaryOperator *E); 499 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 500 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 501 Value *&Result); 502 503 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 504 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 505 506 // Binary operators and binary compound assignment operators. 507 #define HANDLEBINOP(OP) \ 508 Value *VisitBin ## OP(const BinaryOperator *E) { \ 509 return Emit ## OP(EmitBinOps(E)); \ 510 } \ 511 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 512 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 513 } 514 HANDLEBINOP(Mul) 515 HANDLEBINOP(Div) 516 HANDLEBINOP(Rem) 517 HANDLEBINOP(Add) 518 HANDLEBINOP(Sub) 519 HANDLEBINOP(Shl) 520 HANDLEBINOP(Shr) 521 HANDLEBINOP(And) 522 HANDLEBINOP(Xor) 523 HANDLEBINOP(Or) 524 #undef HANDLEBINOP 525 526 // Comparisons. 527 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 528 unsigned SICmpOpc, unsigned FCmpOpc); 529 #define VISITCOMP(CODE, UI, SI, FP) \ 530 Value *VisitBin##CODE(const BinaryOperator *E) { \ 531 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 532 llvm::FCmpInst::FP); } 533 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 534 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 535 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 536 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 537 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 538 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 539 #undef VISITCOMP 540 541 Value *VisitBinAssign (const BinaryOperator *E); 542 543 Value *VisitBinLAnd (const BinaryOperator *E); 544 Value *VisitBinLOr (const BinaryOperator *E); 545 Value *VisitBinComma (const BinaryOperator *E); 546 547 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 548 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 549 550 // Other Operators. 551 Value *VisitBlockExpr(const BlockExpr *BE); 552 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 553 Value *VisitChooseExpr(ChooseExpr *CE); 554 Value *VisitVAArgExpr(VAArgExpr *VE); 555 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 556 return CGF.EmitObjCStringLiteral(E); 557 } 558 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 559 return CGF.EmitObjCBoxedExpr(E); 560 } 561 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 562 return CGF.EmitObjCArrayLiteral(E); 563 } 564 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 565 return CGF.EmitObjCDictionaryLiteral(E); 566 } 567 Value *VisitAsTypeExpr(AsTypeExpr *CE); 568 Value *VisitAtomicExpr(AtomicExpr *AE); 569 }; 570 } // end anonymous namespace. 571 572 //===----------------------------------------------------------------------===// 573 // Utilities 574 //===----------------------------------------------------------------------===// 575 576 /// EmitConversionToBool - Convert the specified expression value to a 577 /// boolean (i1) truth value. This is equivalent to "Val != 0". 578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 579 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 580 581 if (SrcType->isRealFloatingType()) 582 return EmitFloatToBoolConversion(Src); 583 584 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 585 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 586 587 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 588 "Unknown scalar type to convert"); 589 590 if (isa<llvm::IntegerType>(Src->getType())) 591 return EmitIntToBoolConversion(Src); 592 593 assert(isa<llvm::PointerType>(Src->getType())); 594 return EmitPointerToBoolConversion(Src); 595 } 596 597 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 598 QualType OrigSrcType, 599 Value *Src, QualType SrcType, 600 QualType DstType, 601 llvm::Type *DstTy) { 602 CodeGenFunction::SanitizerScope SanScope(&CGF); 603 using llvm::APFloat; 604 using llvm::APSInt; 605 606 llvm::Type *SrcTy = Src->getType(); 607 608 llvm::Value *Check = nullptr; 609 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 610 // Integer to floating-point. This can fail for unsigned short -> __half 611 // or unsigned __int128 -> float. 612 assert(DstType->isFloatingType()); 613 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 614 615 APFloat LargestFloat = 616 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 617 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 618 619 bool IsExact; 620 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 621 &IsExact) != APFloat::opOK) 622 // The range of representable values of this floating point type includes 623 // all values of this integer type. Don't need an overflow check. 624 return; 625 626 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 627 if (SrcIsUnsigned) 628 Check = Builder.CreateICmpULE(Src, Max); 629 else { 630 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 631 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 632 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 633 Check = Builder.CreateAnd(GE, LE); 634 } 635 } else { 636 const llvm::fltSemantics &SrcSema = 637 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 638 if (isa<llvm::IntegerType>(DstTy)) { 639 // Floating-point to integer. This has undefined behavior if the source is 640 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 641 // to an integer). 642 unsigned Width = CGF.getContext().getIntWidth(DstType); 643 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 644 645 APSInt Min = APSInt::getMinValue(Width, Unsigned); 646 APFloat MinSrc(SrcSema, APFloat::uninitialized); 647 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 648 APFloat::opOverflow) 649 // Don't need an overflow check for lower bound. Just check for 650 // -Inf/NaN. 651 MinSrc = APFloat::getInf(SrcSema, true); 652 else 653 // Find the largest value which is too small to represent (before 654 // truncation toward zero). 655 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 656 657 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 658 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 659 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 660 APFloat::opOverflow) 661 // Don't need an overflow check for upper bound. Just check for 662 // +Inf/NaN. 663 MaxSrc = APFloat::getInf(SrcSema, false); 664 else 665 // Find the smallest value which is too large to represent (before 666 // truncation toward zero). 667 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 668 669 // If we're converting from __half, convert the range to float to match 670 // the type of src. 671 if (OrigSrcType->isHalfType()) { 672 const llvm::fltSemantics &Sema = 673 CGF.getContext().getFloatTypeSemantics(SrcType); 674 bool IsInexact; 675 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 676 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 677 } 678 679 llvm::Value *GE = 680 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 681 llvm::Value *LE = 682 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 683 Check = Builder.CreateAnd(GE, LE); 684 } else { 685 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 686 // 687 // Floating-point to floating-point. This has undefined behavior if the 688 // source is not in the range of representable values of the destination 689 // type. The C and C++ standards are spectacularly unclear here. We 690 // diagnose finite out-of-range conversions, but allow infinities and NaNs 691 // to convert to the corresponding value in the smaller type. 692 // 693 // C11 Annex F gives all such conversions defined behavior for IEC 60559 694 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 695 // does not. 696 697 // Converting from a lower rank to a higher rank can never have 698 // undefined behavior, since higher-rank types must have a superset 699 // of values of lower-rank types. 700 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 701 return; 702 703 assert(!OrigSrcType->isHalfType() && 704 "should not check conversion from __half, it has the lowest rank"); 705 706 const llvm::fltSemantics &DstSema = 707 CGF.getContext().getFloatTypeSemantics(DstType); 708 APFloat MinBad = APFloat::getLargest(DstSema, false); 709 APFloat MaxBad = APFloat::getInf(DstSema, false); 710 711 bool IsInexact; 712 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 713 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 714 715 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 716 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 717 llvm::Value *GE = 718 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 719 llvm::Value *LE = 720 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 721 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 722 } 723 } 724 725 // FIXME: Provide a SourceLocation. 726 llvm::Constant *StaticArgs[] = { 727 CGF.EmitCheckTypeDescriptor(OrigSrcType), 728 CGF.EmitCheckTypeDescriptor(DstType) 729 }; 730 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 731 "float_cast_overflow", StaticArgs, OrigSrc); 732 } 733 734 /// EmitScalarConversion - Emit a conversion from the specified type to the 735 /// specified destination type, both of which are LLVM scalar types. 736 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 737 QualType DstType) { 738 SrcType = CGF.getContext().getCanonicalType(SrcType); 739 DstType = CGF.getContext().getCanonicalType(DstType); 740 if (SrcType == DstType) return Src; 741 742 if (DstType->isVoidType()) return nullptr; 743 744 llvm::Value *OrigSrc = Src; 745 QualType OrigSrcType = SrcType; 746 llvm::Type *SrcTy = Src->getType(); 747 748 // Handle conversions to bool first, they are special: comparisons against 0. 749 if (DstType->isBooleanType()) 750 return EmitConversionToBool(Src, SrcType); 751 752 llvm::Type *DstTy = ConvertType(DstType); 753 754 // Cast from half through float if half isn't a native type. 755 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 756 // Cast to FP using the intrinsic if the half type itself isn't supported. 757 if (DstTy->isFloatingPointTy()) { 758 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 759 return Builder.CreateCall( 760 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 761 Src); 762 } else { 763 // Cast to other types through float, using either the intrinsic or FPExt, 764 // depending on whether the half type itself is supported 765 // (as opposed to operations on half, available with NativeHalfType). 766 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 767 Src = Builder.CreateCall( 768 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 769 CGF.CGM.FloatTy), 770 Src); 771 } else { 772 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 773 } 774 SrcType = CGF.getContext().FloatTy; 775 SrcTy = CGF.FloatTy; 776 } 777 } 778 779 // Ignore conversions like int -> uint. 780 if (SrcTy == DstTy) 781 return Src; 782 783 // Handle pointer conversions next: pointers can only be converted to/from 784 // other pointers and integers. Check for pointer types in terms of LLVM, as 785 // some native types (like Obj-C id) may map to a pointer type. 786 if (isa<llvm::PointerType>(DstTy)) { 787 // The source value may be an integer, or a pointer. 788 if (isa<llvm::PointerType>(SrcTy)) 789 return Builder.CreateBitCast(Src, DstTy, "conv"); 790 791 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 792 // First, convert to the correct width so that we control the kind of 793 // extension. 794 llvm::Type *MiddleTy = CGF.IntPtrTy; 795 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 796 llvm::Value* IntResult = 797 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 798 // Then, cast to pointer. 799 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 800 } 801 802 if (isa<llvm::PointerType>(SrcTy)) { 803 // Must be an ptr to int cast. 804 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 805 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 806 } 807 808 // A scalar can be splatted to an extended vector of the same element type 809 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 810 // Cast the scalar to element type 811 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 812 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 813 814 // Splat the element across to all elements 815 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 816 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 817 } 818 819 // Allow bitcast from vector to integer/fp of the same size. 820 if (isa<llvm::VectorType>(SrcTy) || 821 isa<llvm::VectorType>(DstTy)) 822 return Builder.CreateBitCast(Src, DstTy, "conv"); 823 824 // Finally, we have the arithmetic types: real int/float. 825 Value *Res = nullptr; 826 llvm::Type *ResTy = DstTy; 827 828 // An overflowing conversion has undefined behavior if either the source type 829 // or the destination type is a floating-point type. 830 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 831 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 832 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 833 DstTy); 834 835 // Cast to half through float if half isn't a native type. 836 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 837 // Make sure we cast in a single step if from another FP type. 838 if (SrcTy->isFloatingPointTy()) { 839 // Use the intrinsic if the half type itself isn't supported 840 // (as opposed to operations on half, available with NativeHalfType). 841 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 842 return Builder.CreateCall( 843 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 844 // If the half type is supported, just use an fptrunc. 845 return Builder.CreateFPTrunc(Src, DstTy); 846 } 847 DstTy = CGF.FloatTy; 848 } 849 850 if (isa<llvm::IntegerType>(SrcTy)) { 851 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 852 if (isa<llvm::IntegerType>(DstTy)) 853 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 854 else if (InputSigned) 855 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 856 else 857 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 858 } else if (isa<llvm::IntegerType>(DstTy)) { 859 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 860 if (DstType->isSignedIntegerOrEnumerationType()) 861 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 862 else 863 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 864 } else { 865 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 866 "Unknown real conversion"); 867 if (DstTy->getTypeID() < SrcTy->getTypeID()) 868 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 869 else 870 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 871 } 872 873 if (DstTy != ResTy) { 874 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 875 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 876 Res = Builder.CreateCall( 877 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 878 Res); 879 } else { 880 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 881 } 882 } 883 884 return Res; 885 } 886 887 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 888 /// type to the specified destination type, where the destination type is an 889 /// LLVM scalar type. 890 Value *ScalarExprEmitter:: 891 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 892 QualType SrcTy, QualType DstTy) { 893 // Get the source element type. 894 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 895 896 // Handle conversions to bool first, they are special: comparisons against 0. 897 if (DstTy->isBooleanType()) { 898 // Complex != 0 -> (Real != 0) | (Imag != 0) 899 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 900 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 901 return Builder.CreateOr(Src.first, Src.second, "tobool"); 902 } 903 904 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 905 // the imaginary part of the complex value is discarded and the value of the 906 // real part is converted according to the conversion rules for the 907 // corresponding real type. 908 return EmitScalarConversion(Src.first, SrcTy, DstTy); 909 } 910 911 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 912 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 913 } 914 915 /// \brief Emit a sanitization check for the given "binary" operation (which 916 /// might actually be a unary increment which has been lowered to a binary 917 /// operation). The check passes if all values in \p Checks (which are \c i1), 918 /// are \c true. 919 void ScalarExprEmitter::EmitBinOpCheck( 920 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 921 assert(CGF.IsSanitizerScope); 922 StringRef CheckName; 923 SmallVector<llvm::Constant *, 4> StaticData; 924 SmallVector<llvm::Value *, 2> DynamicData; 925 926 BinaryOperatorKind Opcode = Info.Opcode; 927 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 928 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 929 930 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 931 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 932 if (UO && UO->getOpcode() == UO_Minus) { 933 CheckName = "negate_overflow"; 934 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 935 DynamicData.push_back(Info.RHS); 936 } else { 937 if (BinaryOperator::isShiftOp(Opcode)) { 938 // Shift LHS negative or too large, or RHS out of bounds. 939 CheckName = "shift_out_of_bounds"; 940 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 941 StaticData.push_back( 942 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 943 StaticData.push_back( 944 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 945 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 946 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 947 CheckName = "divrem_overflow"; 948 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 949 } else { 950 // Arithmetic overflow (+, -, *). 951 switch (Opcode) { 952 case BO_Add: CheckName = "add_overflow"; break; 953 case BO_Sub: CheckName = "sub_overflow"; break; 954 case BO_Mul: CheckName = "mul_overflow"; break; 955 default: llvm_unreachable("unexpected opcode for bin op check"); 956 } 957 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 958 } 959 DynamicData.push_back(Info.LHS); 960 DynamicData.push_back(Info.RHS); 961 } 962 963 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 964 } 965 966 //===----------------------------------------------------------------------===// 967 // Visitor Methods 968 //===----------------------------------------------------------------------===// 969 970 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 971 CGF.ErrorUnsupported(E, "scalar expression"); 972 if (E->getType()->isVoidType()) 973 return nullptr; 974 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 975 } 976 977 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 978 // Vector Mask Case 979 if (E->getNumSubExprs() == 2 || 980 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 981 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 982 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 983 Value *Mask; 984 985 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 986 unsigned LHSElts = LTy->getNumElements(); 987 988 if (E->getNumSubExprs() == 3) { 989 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 990 991 // Shuffle LHS & RHS into one input vector. 992 SmallVector<llvm::Constant*, 32> concat; 993 for (unsigned i = 0; i != LHSElts; ++i) { 994 concat.push_back(Builder.getInt32(2*i)); 995 concat.push_back(Builder.getInt32(2*i+1)); 996 } 997 998 Value* CV = llvm::ConstantVector::get(concat); 999 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 1000 LHSElts *= 2; 1001 } else { 1002 Mask = RHS; 1003 } 1004 1005 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1006 1007 // Mask off the high bits of each shuffle index. 1008 Value *MaskBits = 1009 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1010 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1011 1012 // newv = undef 1013 // mask = mask & maskbits 1014 // for each elt 1015 // n = extract mask i 1016 // x = extract val n 1017 // newv = insert newv, x, i 1018 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1019 MTy->getNumElements()); 1020 Value* NewV = llvm::UndefValue::get(RTy); 1021 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1022 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1023 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1024 1025 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1026 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1027 } 1028 return NewV; 1029 } 1030 1031 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1032 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1033 1034 SmallVector<llvm::Constant*, 32> indices; 1035 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1036 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1037 // Check for -1 and output it as undef in the IR. 1038 if (Idx.isSigned() && Idx.isAllOnesValue()) 1039 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1040 else 1041 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1042 } 1043 1044 Value *SV = llvm::ConstantVector::get(indices); 1045 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1046 } 1047 1048 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1049 QualType SrcType = E->getSrcExpr()->getType(), 1050 DstType = E->getType(); 1051 1052 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1053 1054 SrcType = CGF.getContext().getCanonicalType(SrcType); 1055 DstType = CGF.getContext().getCanonicalType(DstType); 1056 if (SrcType == DstType) return Src; 1057 1058 assert(SrcType->isVectorType() && 1059 "ConvertVector source type must be a vector"); 1060 assert(DstType->isVectorType() && 1061 "ConvertVector destination type must be a vector"); 1062 1063 llvm::Type *SrcTy = Src->getType(); 1064 llvm::Type *DstTy = ConvertType(DstType); 1065 1066 // Ignore conversions like int -> uint. 1067 if (SrcTy == DstTy) 1068 return Src; 1069 1070 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1071 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1072 1073 assert(SrcTy->isVectorTy() && 1074 "ConvertVector source IR type must be a vector"); 1075 assert(DstTy->isVectorTy() && 1076 "ConvertVector destination IR type must be a vector"); 1077 1078 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1079 *DstEltTy = DstTy->getVectorElementType(); 1080 1081 if (DstEltType->isBooleanType()) { 1082 assert((SrcEltTy->isFloatingPointTy() || 1083 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1084 1085 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1086 if (SrcEltTy->isFloatingPointTy()) { 1087 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1088 } else { 1089 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1090 } 1091 } 1092 1093 // We have the arithmetic types: real int/float. 1094 Value *Res = nullptr; 1095 1096 if (isa<llvm::IntegerType>(SrcEltTy)) { 1097 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1098 if (isa<llvm::IntegerType>(DstEltTy)) 1099 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1100 else if (InputSigned) 1101 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1102 else 1103 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1104 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1105 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1106 if (DstEltType->isSignedIntegerOrEnumerationType()) 1107 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1108 else 1109 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1110 } else { 1111 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1112 "Unknown real conversion"); 1113 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1114 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1115 else 1116 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1117 } 1118 1119 return Res; 1120 } 1121 1122 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1123 llvm::APSInt Value; 1124 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1125 if (E->isArrow()) 1126 CGF.EmitScalarExpr(E->getBase()); 1127 else 1128 EmitLValue(E->getBase()); 1129 return Builder.getInt(Value); 1130 } 1131 1132 return EmitLoadOfLValue(E); 1133 } 1134 1135 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1136 TestAndClearIgnoreResultAssign(); 1137 1138 // Emit subscript expressions in rvalue context's. For most cases, this just 1139 // loads the lvalue formed by the subscript expr. However, we have to be 1140 // careful, because the base of a vector subscript is occasionally an rvalue, 1141 // so we can't get it as an lvalue. 1142 if (!E->getBase()->getType()->isVectorType()) 1143 return EmitLoadOfLValue(E); 1144 1145 // Handle the vector case. The base must be a vector, the index must be an 1146 // integer value. 1147 Value *Base = Visit(E->getBase()); 1148 Value *Idx = Visit(E->getIdx()); 1149 QualType IdxTy = E->getIdx()->getType(); 1150 1151 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1152 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1153 1154 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1155 } 1156 1157 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1158 unsigned Off, llvm::Type *I32Ty) { 1159 int MV = SVI->getMaskValue(Idx); 1160 if (MV == -1) 1161 return llvm::UndefValue::get(I32Ty); 1162 return llvm::ConstantInt::get(I32Ty, Off+MV); 1163 } 1164 1165 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1166 bool Ignore = TestAndClearIgnoreResultAssign(); 1167 (void)Ignore; 1168 assert (Ignore == false && "init list ignored"); 1169 unsigned NumInitElements = E->getNumInits(); 1170 1171 if (E->hadArrayRangeDesignator()) 1172 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1173 1174 llvm::VectorType *VType = 1175 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1176 1177 if (!VType) { 1178 if (NumInitElements == 0) { 1179 // C++11 value-initialization for the scalar. 1180 return EmitNullValue(E->getType()); 1181 } 1182 // We have a scalar in braces. Just use the first element. 1183 return Visit(E->getInit(0)); 1184 } 1185 1186 unsigned ResElts = VType->getNumElements(); 1187 1188 // Loop over initializers collecting the Value for each, and remembering 1189 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1190 // us to fold the shuffle for the swizzle into the shuffle for the vector 1191 // initializer, since LLVM optimizers generally do not want to touch 1192 // shuffles. 1193 unsigned CurIdx = 0; 1194 bool VIsUndefShuffle = false; 1195 llvm::Value *V = llvm::UndefValue::get(VType); 1196 for (unsigned i = 0; i != NumInitElements; ++i) { 1197 Expr *IE = E->getInit(i); 1198 Value *Init = Visit(IE); 1199 SmallVector<llvm::Constant*, 16> Args; 1200 1201 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1202 1203 // Handle scalar elements. If the scalar initializer is actually one 1204 // element of a different vector of the same width, use shuffle instead of 1205 // extract+insert. 1206 if (!VVT) { 1207 if (isa<ExtVectorElementExpr>(IE)) { 1208 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1209 1210 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1211 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1212 Value *LHS = nullptr, *RHS = nullptr; 1213 if (CurIdx == 0) { 1214 // insert into undef -> shuffle (src, undef) 1215 Args.push_back(C); 1216 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1217 1218 LHS = EI->getVectorOperand(); 1219 RHS = V; 1220 VIsUndefShuffle = true; 1221 } else if (VIsUndefShuffle) { 1222 // insert into undefshuffle && size match -> shuffle (v, src) 1223 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1224 for (unsigned j = 0; j != CurIdx; ++j) 1225 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1226 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1227 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1228 1229 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1230 RHS = EI->getVectorOperand(); 1231 VIsUndefShuffle = false; 1232 } 1233 if (!Args.empty()) { 1234 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1235 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1236 ++CurIdx; 1237 continue; 1238 } 1239 } 1240 } 1241 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1242 "vecinit"); 1243 VIsUndefShuffle = false; 1244 ++CurIdx; 1245 continue; 1246 } 1247 1248 unsigned InitElts = VVT->getNumElements(); 1249 1250 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1251 // input is the same width as the vector being constructed, generate an 1252 // optimized shuffle of the swizzle input into the result. 1253 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1254 if (isa<ExtVectorElementExpr>(IE)) { 1255 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1256 Value *SVOp = SVI->getOperand(0); 1257 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1258 1259 if (OpTy->getNumElements() == ResElts) { 1260 for (unsigned j = 0; j != CurIdx; ++j) { 1261 // If the current vector initializer is a shuffle with undef, merge 1262 // this shuffle directly into it. 1263 if (VIsUndefShuffle) { 1264 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1265 CGF.Int32Ty)); 1266 } else { 1267 Args.push_back(Builder.getInt32(j)); 1268 } 1269 } 1270 for (unsigned j = 0, je = InitElts; j != je; ++j) 1271 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1272 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1273 1274 if (VIsUndefShuffle) 1275 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1276 1277 Init = SVOp; 1278 } 1279 } 1280 1281 // Extend init to result vector length, and then shuffle its contribution 1282 // to the vector initializer into V. 1283 if (Args.empty()) { 1284 for (unsigned j = 0; j != InitElts; ++j) 1285 Args.push_back(Builder.getInt32(j)); 1286 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1287 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1288 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1289 Mask, "vext"); 1290 1291 Args.clear(); 1292 for (unsigned j = 0; j != CurIdx; ++j) 1293 Args.push_back(Builder.getInt32(j)); 1294 for (unsigned j = 0; j != InitElts; ++j) 1295 Args.push_back(Builder.getInt32(j+Offset)); 1296 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1297 } 1298 1299 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1300 // merging subsequent shuffles into this one. 1301 if (CurIdx == 0) 1302 std::swap(V, Init); 1303 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1304 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1305 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1306 CurIdx += InitElts; 1307 } 1308 1309 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1310 // Emit remaining default initializers. 1311 llvm::Type *EltTy = VType->getElementType(); 1312 1313 // Emit remaining default initializers 1314 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1315 Value *Idx = Builder.getInt32(CurIdx); 1316 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1317 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1318 } 1319 return V; 1320 } 1321 1322 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1323 const Expr *E = CE->getSubExpr(); 1324 1325 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1326 return false; 1327 1328 if (isa<CXXThisExpr>(E)) { 1329 // We always assume that 'this' is never null. 1330 return false; 1331 } 1332 1333 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1334 // And that glvalue casts are never null. 1335 if (ICE->getValueKind() != VK_RValue) 1336 return false; 1337 } 1338 1339 return true; 1340 } 1341 1342 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1343 // have to handle a more broad range of conversions than explicit casts, as they 1344 // handle things like function to ptr-to-function decay etc. 1345 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1346 Expr *E = CE->getSubExpr(); 1347 QualType DestTy = CE->getType(); 1348 CastKind Kind = CE->getCastKind(); 1349 1350 if (!DestTy->isVoidType()) 1351 TestAndClearIgnoreResultAssign(); 1352 1353 // Since almost all cast kinds apply to scalars, this switch doesn't have 1354 // a default case, so the compiler will warn on a missing case. The cases 1355 // are in the same order as in the CastKind enum. 1356 switch (Kind) { 1357 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1358 case CK_BuiltinFnToFnPtr: 1359 llvm_unreachable("builtin functions are handled elsewhere"); 1360 1361 case CK_LValueBitCast: 1362 case CK_ObjCObjectLValueCast: { 1363 Value *V = EmitLValue(E).getAddress(); 1364 V = Builder.CreateBitCast(V, 1365 ConvertType(CGF.getContext().getPointerType(DestTy))); 1366 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy), 1367 CE->getExprLoc()); 1368 } 1369 1370 case CK_CPointerToObjCPointerCast: 1371 case CK_BlockPointerToObjCPointerCast: 1372 case CK_AnyPointerToBlockPointerCast: 1373 case CK_BitCast: { 1374 Value *Src = Visit(const_cast<Expr*>(E)); 1375 llvm::Type *SrcTy = Src->getType(); 1376 llvm::Type *DstTy = ConvertType(DestTy); 1377 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1378 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1379 llvm_unreachable("wrong cast for pointers in different address spaces" 1380 "(must be an address space cast)!"); 1381 } 1382 1383 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1384 if (auto PT = DestTy->getAs<PointerType>()) 1385 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1386 /*MayBeNull=*/true, 1387 CodeGenFunction::CFITCK_UnrelatedCast, 1388 CE->getLocStart()); 1389 } 1390 1391 return Builder.CreateBitCast(Src, DstTy); 1392 } 1393 case CK_AddressSpaceConversion: { 1394 Value *Src = Visit(const_cast<Expr*>(E)); 1395 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1396 } 1397 case CK_AtomicToNonAtomic: 1398 case CK_NonAtomicToAtomic: 1399 case CK_NoOp: 1400 case CK_UserDefinedConversion: 1401 return Visit(const_cast<Expr*>(E)); 1402 1403 case CK_BaseToDerived: { 1404 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1405 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1406 1407 llvm::Value *V = Visit(E); 1408 1409 llvm::Value *Derived = 1410 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1411 CE->path_begin(), CE->path_end(), 1412 ShouldNullCheckClassCastValue(CE)); 1413 1414 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1415 // performed and the object is not of the derived type. 1416 if (CGF.sanitizePerformTypeCheck()) 1417 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1418 Derived, DestTy->getPointeeType()); 1419 1420 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1421 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived, 1422 /*MayBeNull=*/true, 1423 CodeGenFunction::CFITCK_DerivedCast, 1424 CE->getLocStart()); 1425 1426 return Derived; 1427 } 1428 case CK_UncheckedDerivedToBase: 1429 case CK_DerivedToBase: { 1430 const CXXRecordDecl *DerivedClassDecl = 1431 E->getType()->getPointeeCXXRecordDecl(); 1432 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1433 1434 return CGF.GetAddressOfBaseClass( 1435 Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(), 1436 ShouldNullCheckClassCastValue(CE), CE->getExprLoc()); 1437 } 1438 case CK_Dynamic: { 1439 Value *V = Visit(const_cast<Expr*>(E)); 1440 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1441 return CGF.EmitDynamicCast(V, DCE); 1442 } 1443 1444 case CK_ArrayToPointerDecay: { 1445 assert(E->getType()->isArrayType() && 1446 "Array to pointer decay must have array source type!"); 1447 1448 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1449 1450 // Note that VLA pointers are always decayed, so we don't need to do 1451 // anything here. 1452 if (!E->getType()->isVariableArrayType()) { 1453 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1454 llvm::Type *NewTy = ConvertType(E->getType()); 1455 V = CGF.Builder.CreatePointerCast( 1456 V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace())); 1457 1458 assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) && 1459 "Expected pointer to array"); 1460 V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay"); 1461 } 1462 1463 // Make sure the array decay ends up being the right type. This matters if 1464 // the array type was of an incomplete type. 1465 return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType())); 1466 } 1467 case CK_FunctionToPointerDecay: 1468 return EmitLValue(E).getAddress(); 1469 1470 case CK_NullToPointer: 1471 if (MustVisitNullValue(E)) 1472 (void) Visit(E); 1473 1474 return llvm::ConstantPointerNull::get( 1475 cast<llvm::PointerType>(ConvertType(DestTy))); 1476 1477 case CK_NullToMemberPointer: { 1478 if (MustVisitNullValue(E)) 1479 (void) Visit(E); 1480 1481 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1482 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1483 } 1484 1485 case CK_ReinterpretMemberPointer: 1486 case CK_BaseToDerivedMemberPointer: 1487 case CK_DerivedToBaseMemberPointer: { 1488 Value *Src = Visit(E); 1489 1490 // Note that the AST doesn't distinguish between checked and 1491 // unchecked member pointer conversions, so we always have to 1492 // implement checked conversions here. This is inefficient when 1493 // actual control flow may be required in order to perform the 1494 // check, which it is for data member pointers (but not member 1495 // function pointers on Itanium and ARM). 1496 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1497 } 1498 1499 case CK_ARCProduceObject: 1500 return CGF.EmitARCRetainScalarExpr(E); 1501 case CK_ARCConsumeObject: 1502 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1503 case CK_ARCReclaimReturnedObject: { 1504 llvm::Value *value = Visit(E); 1505 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1506 return CGF.EmitObjCConsumeObject(E->getType(), value); 1507 } 1508 case CK_ARCExtendBlockObject: 1509 return CGF.EmitARCExtendBlockObject(E); 1510 1511 case CK_CopyAndAutoreleaseBlockObject: 1512 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1513 1514 case CK_FloatingRealToComplex: 1515 case CK_FloatingComplexCast: 1516 case CK_IntegralRealToComplex: 1517 case CK_IntegralComplexCast: 1518 case CK_IntegralComplexToFloatingComplex: 1519 case CK_FloatingComplexToIntegralComplex: 1520 case CK_ConstructorConversion: 1521 case CK_ToUnion: 1522 llvm_unreachable("scalar cast to non-scalar value"); 1523 1524 case CK_LValueToRValue: 1525 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1526 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1527 return Visit(const_cast<Expr*>(E)); 1528 1529 case CK_IntegralToPointer: { 1530 Value *Src = Visit(const_cast<Expr*>(E)); 1531 1532 // First, convert to the correct width so that we control the kind of 1533 // extension. 1534 llvm::Type *MiddleTy = CGF.IntPtrTy; 1535 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1536 llvm::Value* IntResult = 1537 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1538 1539 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1540 } 1541 case CK_PointerToIntegral: 1542 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1543 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1544 1545 case CK_ToVoid: { 1546 CGF.EmitIgnoredExpr(E); 1547 return nullptr; 1548 } 1549 case CK_VectorSplat: { 1550 llvm::Type *DstTy = ConvertType(DestTy); 1551 Value *Elt = Visit(const_cast<Expr*>(E)); 1552 Elt = EmitScalarConversion(Elt, E->getType(), 1553 DestTy->getAs<VectorType>()->getElementType()); 1554 1555 // Splat the element across to all elements 1556 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1557 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1558 } 1559 1560 case CK_IntegralCast: 1561 case CK_IntegralToFloating: 1562 case CK_FloatingToIntegral: 1563 case CK_FloatingCast: 1564 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1565 case CK_IntegralToBoolean: 1566 return EmitIntToBoolConversion(Visit(E)); 1567 case CK_PointerToBoolean: 1568 return EmitPointerToBoolConversion(Visit(E)); 1569 case CK_FloatingToBoolean: 1570 return EmitFloatToBoolConversion(Visit(E)); 1571 case CK_MemberPointerToBoolean: { 1572 llvm::Value *MemPtr = Visit(E); 1573 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1574 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1575 } 1576 1577 case CK_FloatingComplexToReal: 1578 case CK_IntegralComplexToReal: 1579 return CGF.EmitComplexExpr(E, false, true).first; 1580 1581 case CK_FloatingComplexToBoolean: 1582 case CK_IntegralComplexToBoolean: { 1583 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1584 1585 // TODO: kill this function off, inline appropriate case here 1586 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1587 } 1588 1589 case CK_ZeroToOCLEvent: { 1590 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1591 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1592 } 1593 1594 } 1595 1596 llvm_unreachable("unknown scalar cast"); 1597 } 1598 1599 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1600 CodeGenFunction::StmtExprEvaluation eval(CGF); 1601 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1602 !E->getType()->isVoidType()); 1603 if (!RetAlloca) 1604 return nullptr; 1605 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1606 E->getExprLoc()); 1607 } 1608 1609 //===----------------------------------------------------------------------===// 1610 // Unary Operators 1611 //===----------------------------------------------------------------------===// 1612 1613 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1614 llvm::Value *InVal, bool IsInc) { 1615 BinOpInfo BinOp; 1616 BinOp.LHS = InVal; 1617 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1618 BinOp.Ty = E->getType(); 1619 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1620 BinOp.FPContractable = false; 1621 BinOp.E = E; 1622 return BinOp; 1623 } 1624 1625 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1626 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1627 llvm::Value *Amount = 1628 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1629 StringRef Name = IsInc ? "inc" : "dec"; 1630 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1631 case LangOptions::SOB_Defined: 1632 return Builder.CreateAdd(InVal, Amount, Name); 1633 case LangOptions::SOB_Undefined: 1634 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1635 return Builder.CreateNSWAdd(InVal, Amount, Name); 1636 // Fall through. 1637 case LangOptions::SOB_Trapping: 1638 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1639 } 1640 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1641 } 1642 1643 llvm::Value * 1644 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1645 bool isInc, bool isPre) { 1646 1647 QualType type = E->getSubExpr()->getType(); 1648 llvm::PHINode *atomicPHI = nullptr; 1649 llvm::Value *value; 1650 llvm::Value *input; 1651 1652 int amount = (isInc ? 1 : -1); 1653 1654 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1655 type = atomicTy->getValueType(); 1656 if (isInc && type->isBooleanType()) { 1657 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1658 if (isPre) { 1659 Builder.Insert(new llvm::StoreInst(True, 1660 LV.getAddress(), LV.isVolatileQualified(), 1661 LV.getAlignment().getQuantity(), 1662 llvm::SequentiallyConsistent)); 1663 return Builder.getTrue(); 1664 } 1665 // For atomic bool increment, we just store true and return it for 1666 // preincrement, do an atomic swap with true for postincrement 1667 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1668 LV.getAddress(), True, llvm::SequentiallyConsistent); 1669 } 1670 // Special case for atomic increment / decrement on integers, emit 1671 // atomicrmw instructions. We skip this if we want to be doing overflow 1672 // checking, and fall into the slow path with the atomic cmpxchg loop. 1673 if (!type->isBooleanType() && type->isIntegerType() && 1674 !(type->isUnsignedIntegerType() && 1675 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1676 CGF.getLangOpts().getSignedOverflowBehavior() != 1677 LangOptions::SOB_Trapping) { 1678 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1679 llvm::AtomicRMWInst::Sub; 1680 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1681 llvm::Instruction::Sub; 1682 llvm::Value *amt = CGF.EmitToMemory( 1683 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1684 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1685 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1686 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1687 } 1688 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1689 input = value; 1690 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1691 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1692 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1693 value = CGF.EmitToMemory(value, type); 1694 Builder.CreateBr(opBB); 1695 Builder.SetInsertPoint(opBB); 1696 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1697 atomicPHI->addIncoming(value, startBB); 1698 value = atomicPHI; 1699 } else { 1700 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1701 input = value; 1702 } 1703 1704 // Special case of integer increment that we have to check first: bool++. 1705 // Due to promotion rules, we get: 1706 // bool++ -> bool = bool + 1 1707 // -> bool = (int)bool + 1 1708 // -> bool = ((int)bool + 1 != 0) 1709 // An interesting aspect of this is that increment is always true. 1710 // Decrement does not have this property. 1711 if (isInc && type->isBooleanType()) { 1712 value = Builder.getTrue(); 1713 1714 // Most common case by far: integer increment. 1715 } else if (type->isIntegerType()) { 1716 // Note that signed integer inc/dec with width less than int can't 1717 // overflow because of promotion rules; we're just eliding a few steps here. 1718 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1719 CGF.IntTy->getIntegerBitWidth(); 1720 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1721 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1722 } else if (CanOverflow && type->isUnsignedIntegerType() && 1723 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1724 value = 1725 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1726 } else { 1727 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1728 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1729 } 1730 1731 // Next most common: pointer increment. 1732 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1733 QualType type = ptr->getPointeeType(); 1734 1735 // VLA types don't have constant size. 1736 if (const VariableArrayType *vla 1737 = CGF.getContext().getAsVariableArrayType(type)) { 1738 llvm::Value *numElts = CGF.getVLASize(vla).first; 1739 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1740 if (CGF.getLangOpts().isSignedOverflowDefined()) 1741 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1742 else 1743 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1744 1745 // Arithmetic on function pointers (!) is just +-1. 1746 } else if (type->isFunctionType()) { 1747 llvm::Value *amt = Builder.getInt32(amount); 1748 1749 value = CGF.EmitCastToVoidPtr(value); 1750 if (CGF.getLangOpts().isSignedOverflowDefined()) 1751 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1752 else 1753 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1754 value = Builder.CreateBitCast(value, input->getType()); 1755 1756 // For everything else, we can just do a simple increment. 1757 } else { 1758 llvm::Value *amt = Builder.getInt32(amount); 1759 if (CGF.getLangOpts().isSignedOverflowDefined()) 1760 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1761 else 1762 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1763 } 1764 1765 // Vector increment/decrement. 1766 } else if (type->isVectorType()) { 1767 if (type->hasIntegerRepresentation()) { 1768 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1769 1770 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1771 } else { 1772 value = Builder.CreateFAdd( 1773 value, 1774 llvm::ConstantFP::get(value->getType(), amount), 1775 isInc ? "inc" : "dec"); 1776 } 1777 1778 // Floating point. 1779 } else if (type->isRealFloatingType()) { 1780 // Add the inc/dec to the real part. 1781 llvm::Value *amt; 1782 1783 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1784 // Another special case: half FP increment should be done via float 1785 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1786 value = Builder.CreateCall( 1787 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1788 CGF.CGM.FloatTy), 1789 input, "incdec.conv"); 1790 } else { 1791 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1792 } 1793 } 1794 1795 if (value->getType()->isFloatTy()) 1796 amt = llvm::ConstantFP::get(VMContext, 1797 llvm::APFloat(static_cast<float>(amount))); 1798 else if (value->getType()->isDoubleTy()) 1799 amt = llvm::ConstantFP::get(VMContext, 1800 llvm::APFloat(static_cast<double>(amount))); 1801 else { 1802 // Remaining types are either Half or LongDouble. Convert from float. 1803 llvm::APFloat F(static_cast<float>(amount)); 1804 bool ignored; 1805 // Don't use getFloatTypeSemantics because Half isn't 1806 // necessarily represented using the "half" LLVM type. 1807 F.convert(value->getType()->isHalfTy() 1808 ? CGF.getTarget().getHalfFormat() 1809 : CGF.getTarget().getLongDoubleFormat(), 1810 llvm::APFloat::rmTowardZero, &ignored); 1811 amt = llvm::ConstantFP::get(VMContext, F); 1812 } 1813 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1814 1815 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1816 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1817 value = Builder.CreateCall( 1818 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1819 CGF.CGM.FloatTy), 1820 value, "incdec.conv"); 1821 } else { 1822 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1823 } 1824 } 1825 1826 // Objective-C pointer types. 1827 } else { 1828 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1829 value = CGF.EmitCastToVoidPtr(value); 1830 1831 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1832 if (!isInc) size = -size; 1833 llvm::Value *sizeValue = 1834 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1835 1836 if (CGF.getLangOpts().isSignedOverflowDefined()) 1837 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1838 else 1839 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1840 value = Builder.CreateBitCast(value, input->getType()); 1841 } 1842 1843 if (atomicPHI) { 1844 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1845 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1846 auto Pair = CGF.EmitAtomicCompareExchange( 1847 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1848 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1849 llvm::Value *success = Pair.second; 1850 atomicPHI->addIncoming(old, opBB); 1851 Builder.CreateCondBr(success, contBB, opBB); 1852 Builder.SetInsertPoint(contBB); 1853 return isPre ? value : input; 1854 } 1855 1856 // Store the updated result through the lvalue. 1857 if (LV.isBitField()) 1858 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1859 else 1860 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1861 1862 // If this is a postinc, return the value read from memory, otherwise use the 1863 // updated value. 1864 return isPre ? value : input; 1865 } 1866 1867 1868 1869 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1870 TestAndClearIgnoreResultAssign(); 1871 // Emit unary minus with EmitSub so we handle overflow cases etc. 1872 BinOpInfo BinOp; 1873 BinOp.RHS = Visit(E->getSubExpr()); 1874 1875 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1876 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1877 else 1878 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1879 BinOp.Ty = E->getType(); 1880 BinOp.Opcode = BO_Sub; 1881 BinOp.FPContractable = false; 1882 BinOp.E = E; 1883 return EmitSub(BinOp); 1884 } 1885 1886 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1887 TestAndClearIgnoreResultAssign(); 1888 Value *Op = Visit(E->getSubExpr()); 1889 return Builder.CreateNot(Op, "neg"); 1890 } 1891 1892 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1893 // Perform vector logical not on comparison with zero vector. 1894 if (E->getType()->isExtVectorType()) { 1895 Value *Oper = Visit(E->getSubExpr()); 1896 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1897 Value *Result; 1898 if (Oper->getType()->isFPOrFPVectorTy()) 1899 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1900 else 1901 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1902 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1903 } 1904 1905 // Compare operand to zero. 1906 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1907 1908 // Invert value. 1909 // TODO: Could dynamically modify easy computations here. For example, if 1910 // the operand is an icmp ne, turn into icmp eq. 1911 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1912 1913 // ZExt result to the expr type. 1914 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1915 } 1916 1917 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1918 // Try folding the offsetof to a constant. 1919 llvm::APSInt Value; 1920 if (E->EvaluateAsInt(Value, CGF.getContext())) 1921 return Builder.getInt(Value); 1922 1923 // Loop over the components of the offsetof to compute the value. 1924 unsigned n = E->getNumComponents(); 1925 llvm::Type* ResultType = ConvertType(E->getType()); 1926 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1927 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1928 for (unsigned i = 0; i != n; ++i) { 1929 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1930 llvm::Value *Offset = nullptr; 1931 switch (ON.getKind()) { 1932 case OffsetOfExpr::OffsetOfNode::Array: { 1933 // Compute the index 1934 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1935 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1936 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1937 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1938 1939 // Save the element type 1940 CurrentType = 1941 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1942 1943 // Compute the element size 1944 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1945 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1946 1947 // Multiply out to compute the result 1948 Offset = Builder.CreateMul(Idx, ElemSize); 1949 break; 1950 } 1951 1952 case OffsetOfExpr::OffsetOfNode::Field: { 1953 FieldDecl *MemberDecl = ON.getField(); 1954 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1955 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1956 1957 // Compute the index of the field in its parent. 1958 unsigned i = 0; 1959 // FIXME: It would be nice if we didn't have to loop here! 1960 for (RecordDecl::field_iterator Field = RD->field_begin(), 1961 FieldEnd = RD->field_end(); 1962 Field != FieldEnd; ++Field, ++i) { 1963 if (*Field == MemberDecl) 1964 break; 1965 } 1966 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1967 1968 // Compute the offset to the field 1969 int64_t OffsetInt = RL.getFieldOffset(i) / 1970 CGF.getContext().getCharWidth(); 1971 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1972 1973 // Save the element type. 1974 CurrentType = MemberDecl->getType(); 1975 break; 1976 } 1977 1978 case OffsetOfExpr::OffsetOfNode::Identifier: 1979 llvm_unreachable("dependent __builtin_offsetof"); 1980 1981 case OffsetOfExpr::OffsetOfNode::Base: { 1982 if (ON.getBase()->isVirtual()) { 1983 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1984 continue; 1985 } 1986 1987 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1988 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1989 1990 // Save the element type. 1991 CurrentType = ON.getBase()->getType(); 1992 1993 // Compute the offset to the base. 1994 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1995 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1996 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1997 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1998 break; 1999 } 2000 } 2001 Result = Builder.CreateAdd(Result, Offset); 2002 } 2003 return Result; 2004 } 2005 2006 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2007 /// argument of the sizeof expression as an integer. 2008 Value * 2009 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2010 const UnaryExprOrTypeTraitExpr *E) { 2011 QualType TypeToSize = E->getTypeOfArgument(); 2012 if (E->getKind() == UETT_SizeOf) { 2013 if (const VariableArrayType *VAT = 2014 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2015 if (E->isArgumentType()) { 2016 // sizeof(type) - make sure to emit the VLA size. 2017 CGF.EmitVariablyModifiedType(TypeToSize); 2018 } else { 2019 // C99 6.5.3.4p2: If the argument is an expression of type 2020 // VLA, it is evaluated. 2021 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2022 } 2023 2024 QualType eltType; 2025 llvm::Value *numElts; 2026 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2027 2028 llvm::Value *size = numElts; 2029 2030 // Scale the number of non-VLA elements by the non-VLA element size. 2031 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2032 if (!eltSize.isOne()) 2033 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2034 2035 return size; 2036 } 2037 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2038 auto Alignment = 2039 CGF.getContext() 2040 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2041 E->getTypeOfArgument()->getPointeeType())) 2042 .getQuantity(); 2043 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2044 } 2045 2046 // If this isn't sizeof(vla), the result must be constant; use the constant 2047 // folding logic so we don't have to duplicate it here. 2048 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2049 } 2050 2051 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2052 Expr *Op = E->getSubExpr(); 2053 if (Op->getType()->isAnyComplexType()) { 2054 // If it's an l-value, load through the appropriate subobject l-value. 2055 // Note that we have to ask E because Op might be an l-value that 2056 // this won't work for, e.g. an Obj-C property. 2057 if (E->isGLValue()) 2058 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2059 E->getExprLoc()).getScalarVal(); 2060 2061 // Otherwise, calculate and project. 2062 return CGF.EmitComplexExpr(Op, false, true).first; 2063 } 2064 2065 return Visit(Op); 2066 } 2067 2068 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2069 Expr *Op = E->getSubExpr(); 2070 if (Op->getType()->isAnyComplexType()) { 2071 // If it's an l-value, load through the appropriate subobject l-value. 2072 // Note that we have to ask E because Op might be an l-value that 2073 // this won't work for, e.g. an Obj-C property. 2074 if (Op->isGLValue()) 2075 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2076 E->getExprLoc()).getScalarVal(); 2077 2078 // Otherwise, calculate and project. 2079 return CGF.EmitComplexExpr(Op, true, false).second; 2080 } 2081 2082 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2083 // effects are evaluated, but not the actual value. 2084 if (Op->isGLValue()) 2085 CGF.EmitLValue(Op); 2086 else 2087 CGF.EmitScalarExpr(Op, true); 2088 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2089 } 2090 2091 //===----------------------------------------------------------------------===// 2092 // Binary Operators 2093 //===----------------------------------------------------------------------===// 2094 2095 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2096 TestAndClearIgnoreResultAssign(); 2097 BinOpInfo Result; 2098 Result.LHS = Visit(E->getLHS()); 2099 Result.RHS = Visit(E->getRHS()); 2100 Result.Ty = E->getType(); 2101 Result.Opcode = E->getOpcode(); 2102 Result.FPContractable = E->isFPContractable(); 2103 Result.E = E; 2104 return Result; 2105 } 2106 2107 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2108 const CompoundAssignOperator *E, 2109 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2110 Value *&Result) { 2111 QualType LHSTy = E->getLHS()->getType(); 2112 BinOpInfo OpInfo; 2113 2114 if (E->getComputationResultType()->isAnyComplexType()) 2115 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2116 2117 // Emit the RHS first. __block variables need to have the rhs evaluated 2118 // first, plus this should improve codegen a little. 2119 OpInfo.RHS = Visit(E->getRHS()); 2120 OpInfo.Ty = E->getComputationResultType(); 2121 OpInfo.Opcode = E->getOpcode(); 2122 OpInfo.FPContractable = false; 2123 OpInfo.E = E; 2124 // Load/convert the LHS. 2125 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2126 2127 llvm::PHINode *atomicPHI = nullptr; 2128 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2129 QualType type = atomicTy->getValueType(); 2130 if (!type->isBooleanType() && type->isIntegerType() && 2131 !(type->isUnsignedIntegerType() && 2132 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2133 CGF.getLangOpts().getSignedOverflowBehavior() != 2134 LangOptions::SOB_Trapping) { 2135 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2136 switch (OpInfo.Opcode) { 2137 // We don't have atomicrmw operands for *, %, /, <<, >> 2138 case BO_MulAssign: case BO_DivAssign: 2139 case BO_RemAssign: 2140 case BO_ShlAssign: 2141 case BO_ShrAssign: 2142 break; 2143 case BO_AddAssign: 2144 aop = llvm::AtomicRMWInst::Add; 2145 break; 2146 case BO_SubAssign: 2147 aop = llvm::AtomicRMWInst::Sub; 2148 break; 2149 case BO_AndAssign: 2150 aop = llvm::AtomicRMWInst::And; 2151 break; 2152 case BO_XorAssign: 2153 aop = llvm::AtomicRMWInst::Xor; 2154 break; 2155 case BO_OrAssign: 2156 aop = llvm::AtomicRMWInst::Or; 2157 break; 2158 default: 2159 llvm_unreachable("Invalid compound assignment type"); 2160 } 2161 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2162 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 2163 E->getRHS()->getType(), LHSTy), LHSTy); 2164 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 2165 llvm::SequentiallyConsistent); 2166 return LHSLV; 2167 } 2168 } 2169 // FIXME: For floating point types, we should be saving and restoring the 2170 // floating point environment in the loop. 2171 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2172 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2173 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2174 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2175 Builder.CreateBr(opBB); 2176 Builder.SetInsertPoint(opBB); 2177 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2178 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2179 OpInfo.LHS = atomicPHI; 2180 } 2181 else 2182 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2183 2184 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 2185 E->getComputationLHSType()); 2186 2187 // Expand the binary operator. 2188 Result = (this->*Func)(OpInfo); 2189 2190 // Convert the result back to the LHS type. 2191 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 2192 2193 if (atomicPHI) { 2194 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2195 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2196 auto Pair = CGF.EmitAtomicCompareExchange( 2197 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2198 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2199 llvm::Value *success = Pair.second; 2200 atomicPHI->addIncoming(old, opBB); 2201 Builder.CreateCondBr(success, contBB, opBB); 2202 Builder.SetInsertPoint(contBB); 2203 return LHSLV; 2204 } 2205 2206 // Store the result value into the LHS lvalue. Bit-fields are handled 2207 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2208 // 'An assignment expression has the value of the left operand after the 2209 // assignment...'. 2210 if (LHSLV.isBitField()) 2211 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2212 else 2213 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2214 2215 return LHSLV; 2216 } 2217 2218 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2219 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2220 bool Ignore = TestAndClearIgnoreResultAssign(); 2221 Value *RHS; 2222 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2223 2224 // If the result is clearly ignored, return now. 2225 if (Ignore) 2226 return nullptr; 2227 2228 // The result of an assignment in C is the assigned r-value. 2229 if (!CGF.getLangOpts().CPlusPlus) 2230 return RHS; 2231 2232 // If the lvalue is non-volatile, return the computed value of the assignment. 2233 if (!LHS.isVolatileQualified()) 2234 return RHS; 2235 2236 // Otherwise, reload the value. 2237 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2238 } 2239 2240 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2241 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2242 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2243 2244 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2245 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2246 SanitizerKind::IntegerDivideByZero)); 2247 } 2248 2249 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2250 Ops.Ty->hasSignedIntegerRepresentation()) { 2251 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2252 2253 llvm::Value *IntMin = 2254 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2255 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2256 2257 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2258 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2259 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2260 Checks.push_back( 2261 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2262 } 2263 2264 if (Checks.size() > 0) 2265 EmitBinOpCheck(Checks, Ops); 2266 } 2267 2268 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2269 { 2270 CodeGenFunction::SanitizerScope SanScope(&CGF); 2271 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2272 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2273 Ops.Ty->isIntegerType()) { 2274 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2275 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2276 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2277 Ops.Ty->isRealFloatingType()) { 2278 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2279 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2280 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2281 Ops); 2282 } 2283 } 2284 2285 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2286 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2287 if (CGF.getLangOpts().OpenCL) { 2288 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2289 llvm::Type *ValTy = Val->getType(); 2290 if (ValTy->isFloatTy() || 2291 (isa<llvm::VectorType>(ValTy) && 2292 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2293 CGF.SetFPAccuracy(Val, 2.5); 2294 } 2295 return Val; 2296 } 2297 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2298 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2299 else 2300 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2301 } 2302 2303 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2304 // Rem in C can't be a floating point type: C99 6.5.5p2. 2305 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2306 CodeGenFunction::SanitizerScope SanScope(&CGF); 2307 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2308 2309 if (Ops.Ty->isIntegerType()) 2310 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2311 } 2312 2313 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2314 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2315 else 2316 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2317 } 2318 2319 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2320 unsigned IID; 2321 unsigned OpID = 0; 2322 2323 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2324 switch (Ops.Opcode) { 2325 case BO_Add: 2326 case BO_AddAssign: 2327 OpID = 1; 2328 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2329 llvm::Intrinsic::uadd_with_overflow; 2330 break; 2331 case BO_Sub: 2332 case BO_SubAssign: 2333 OpID = 2; 2334 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2335 llvm::Intrinsic::usub_with_overflow; 2336 break; 2337 case BO_Mul: 2338 case BO_MulAssign: 2339 OpID = 3; 2340 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2341 llvm::Intrinsic::umul_with_overflow; 2342 break; 2343 default: 2344 llvm_unreachable("Unsupported operation for overflow detection"); 2345 } 2346 OpID <<= 1; 2347 if (isSigned) 2348 OpID |= 1; 2349 2350 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2351 2352 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2353 2354 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2355 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2356 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2357 2358 // Handle overflow with llvm.trap if no custom handler has been specified. 2359 const std::string *handlerName = 2360 &CGF.getLangOpts().OverflowHandler; 2361 if (handlerName->empty()) { 2362 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2363 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2364 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2365 CodeGenFunction::SanitizerScope SanScope(&CGF); 2366 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2367 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2368 : SanitizerKind::UnsignedIntegerOverflow; 2369 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2370 } else 2371 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2372 return result; 2373 } 2374 2375 // Branch in case of overflow. 2376 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2377 llvm::Function::iterator insertPt = initialBB; 2378 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2379 std::next(insertPt)); 2380 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2381 2382 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2383 2384 // If an overflow handler is set, then we want to call it and then use its 2385 // result, if it returns. 2386 Builder.SetInsertPoint(overflowBB); 2387 2388 // Get the overflow handler. 2389 llvm::Type *Int8Ty = CGF.Int8Ty; 2390 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2391 llvm::FunctionType *handlerTy = 2392 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2393 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2394 2395 // Sign extend the args to 64-bit, so that we can use the same handler for 2396 // all types of overflow. 2397 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2398 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2399 2400 // Call the handler with the two arguments, the operation, and the size of 2401 // the result. 2402 llvm::Value *handlerArgs[] = { 2403 lhs, 2404 rhs, 2405 Builder.getInt8(OpID), 2406 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2407 }; 2408 llvm::Value *handlerResult = 2409 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2410 2411 // Truncate the result back to the desired size. 2412 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2413 Builder.CreateBr(continueBB); 2414 2415 Builder.SetInsertPoint(continueBB); 2416 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2417 phi->addIncoming(result, initialBB); 2418 phi->addIncoming(handlerResult, overflowBB); 2419 2420 return phi; 2421 } 2422 2423 /// Emit pointer + index arithmetic. 2424 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2425 const BinOpInfo &op, 2426 bool isSubtraction) { 2427 // Must have binary (not unary) expr here. Unary pointer 2428 // increment/decrement doesn't use this path. 2429 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2430 2431 Value *pointer = op.LHS; 2432 Expr *pointerOperand = expr->getLHS(); 2433 Value *index = op.RHS; 2434 Expr *indexOperand = expr->getRHS(); 2435 2436 // In a subtraction, the LHS is always the pointer. 2437 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2438 std::swap(pointer, index); 2439 std::swap(pointerOperand, indexOperand); 2440 } 2441 2442 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2443 if (width != CGF.PointerWidthInBits) { 2444 // Zero-extend or sign-extend the pointer value according to 2445 // whether the index is signed or not. 2446 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2447 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2448 "idx.ext"); 2449 } 2450 2451 // If this is subtraction, negate the index. 2452 if (isSubtraction) 2453 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2454 2455 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2456 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2457 /*Accessed*/ false); 2458 2459 const PointerType *pointerType 2460 = pointerOperand->getType()->getAs<PointerType>(); 2461 if (!pointerType) { 2462 QualType objectType = pointerOperand->getType() 2463 ->castAs<ObjCObjectPointerType>() 2464 ->getPointeeType(); 2465 llvm::Value *objectSize 2466 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2467 2468 index = CGF.Builder.CreateMul(index, objectSize); 2469 2470 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2471 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2472 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2473 } 2474 2475 QualType elementType = pointerType->getPointeeType(); 2476 if (const VariableArrayType *vla 2477 = CGF.getContext().getAsVariableArrayType(elementType)) { 2478 // The element count here is the total number of non-VLA elements. 2479 llvm::Value *numElements = CGF.getVLASize(vla).first; 2480 2481 // Effectively, the multiply by the VLA size is part of the GEP. 2482 // GEP indexes are signed, and scaling an index isn't permitted to 2483 // signed-overflow, so we use the same semantics for our explicit 2484 // multiply. We suppress this if overflow is not undefined behavior. 2485 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2486 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2487 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2488 } else { 2489 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2490 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2491 } 2492 return pointer; 2493 } 2494 2495 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2496 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2497 // future proof. 2498 if (elementType->isVoidType() || elementType->isFunctionType()) { 2499 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2500 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2501 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2502 } 2503 2504 if (CGF.getLangOpts().isSignedOverflowDefined()) 2505 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2506 2507 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2508 } 2509 2510 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2511 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2512 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2513 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2514 // efficient operations. 2515 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2516 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2517 bool negMul, bool negAdd) { 2518 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2519 2520 Value *MulOp0 = MulOp->getOperand(0); 2521 Value *MulOp1 = MulOp->getOperand(1); 2522 if (negMul) { 2523 MulOp0 = 2524 Builder.CreateFSub( 2525 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2526 "neg"); 2527 } else if (negAdd) { 2528 Addend = 2529 Builder.CreateFSub( 2530 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2531 "neg"); 2532 } 2533 2534 Value *FMulAdd = Builder.CreateCall( 2535 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2536 {MulOp0, MulOp1, Addend}); 2537 MulOp->eraseFromParent(); 2538 2539 return FMulAdd; 2540 } 2541 2542 // Check whether it would be legal to emit an fmuladd intrinsic call to 2543 // represent op and if so, build the fmuladd. 2544 // 2545 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2546 // Does NOT check the type of the operation - it's assumed that this function 2547 // will be called from contexts where it's known that the type is contractable. 2548 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2549 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2550 bool isSub=false) { 2551 2552 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2553 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2554 "Only fadd/fsub can be the root of an fmuladd."); 2555 2556 // Check whether this op is marked as fusable. 2557 if (!op.FPContractable) 2558 return nullptr; 2559 2560 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2561 // either disabled, or handled entirely by the LLVM backend). 2562 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2563 return nullptr; 2564 2565 // We have a potentially fusable op. Look for a mul on one of the operands. 2566 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2567 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2568 assert(LHSBinOp->getNumUses() == 0 && 2569 "Operations with multiple uses shouldn't be contracted."); 2570 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2571 } 2572 } else if (llvm::BinaryOperator* RHSBinOp = 2573 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2574 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2575 assert(RHSBinOp->getNumUses() == 0 && 2576 "Operations with multiple uses shouldn't be contracted."); 2577 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2578 } 2579 } 2580 2581 return nullptr; 2582 } 2583 2584 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2585 if (op.LHS->getType()->isPointerTy() || 2586 op.RHS->getType()->isPointerTy()) 2587 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2588 2589 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2590 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2591 case LangOptions::SOB_Defined: 2592 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2593 case LangOptions::SOB_Undefined: 2594 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2595 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2596 // Fall through. 2597 case LangOptions::SOB_Trapping: 2598 return EmitOverflowCheckedBinOp(op); 2599 } 2600 } 2601 2602 if (op.Ty->isUnsignedIntegerType() && 2603 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2604 return EmitOverflowCheckedBinOp(op); 2605 2606 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2607 // Try to form an fmuladd. 2608 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2609 return FMulAdd; 2610 2611 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2612 } 2613 2614 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2615 } 2616 2617 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2618 // The LHS is always a pointer if either side is. 2619 if (!op.LHS->getType()->isPointerTy()) { 2620 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2621 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2622 case LangOptions::SOB_Defined: 2623 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2624 case LangOptions::SOB_Undefined: 2625 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2626 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2627 // Fall through. 2628 case LangOptions::SOB_Trapping: 2629 return EmitOverflowCheckedBinOp(op); 2630 } 2631 } 2632 2633 if (op.Ty->isUnsignedIntegerType() && 2634 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2635 return EmitOverflowCheckedBinOp(op); 2636 2637 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2638 // Try to form an fmuladd. 2639 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2640 return FMulAdd; 2641 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2642 } 2643 2644 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2645 } 2646 2647 // If the RHS is not a pointer, then we have normal pointer 2648 // arithmetic. 2649 if (!op.RHS->getType()->isPointerTy()) 2650 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2651 2652 // Otherwise, this is a pointer subtraction. 2653 2654 // Do the raw subtraction part. 2655 llvm::Value *LHS 2656 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2657 llvm::Value *RHS 2658 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2659 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2660 2661 // Okay, figure out the element size. 2662 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2663 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2664 2665 llvm::Value *divisor = nullptr; 2666 2667 // For a variable-length array, this is going to be non-constant. 2668 if (const VariableArrayType *vla 2669 = CGF.getContext().getAsVariableArrayType(elementType)) { 2670 llvm::Value *numElements; 2671 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2672 2673 divisor = numElements; 2674 2675 // Scale the number of non-VLA elements by the non-VLA element size. 2676 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2677 if (!eltSize.isOne()) 2678 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2679 2680 // For everything elese, we can just compute it, safe in the 2681 // assumption that Sema won't let anything through that we can't 2682 // safely compute the size of. 2683 } else { 2684 CharUnits elementSize; 2685 // Handle GCC extension for pointer arithmetic on void* and 2686 // function pointer types. 2687 if (elementType->isVoidType() || elementType->isFunctionType()) 2688 elementSize = CharUnits::One(); 2689 else 2690 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2691 2692 // Don't even emit the divide for element size of 1. 2693 if (elementSize.isOne()) 2694 return diffInChars; 2695 2696 divisor = CGF.CGM.getSize(elementSize); 2697 } 2698 2699 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2700 // pointer difference in C is only defined in the case where both operands 2701 // are pointing to elements of an array. 2702 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2703 } 2704 2705 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2706 llvm::IntegerType *Ty; 2707 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2708 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2709 else 2710 Ty = cast<llvm::IntegerType>(LHS->getType()); 2711 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2712 } 2713 2714 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2715 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2716 // RHS to the same size as the LHS. 2717 Value *RHS = Ops.RHS; 2718 if (Ops.LHS->getType() != RHS->getType()) 2719 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2720 2721 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2722 Ops.Ty->hasSignedIntegerRepresentation(); 2723 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2724 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2725 if (CGF.getLangOpts().OpenCL) 2726 RHS = 2727 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2728 else if ((SanitizeBase || SanitizeExponent) && 2729 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2730 CodeGenFunction::SanitizerScope SanScope(&CGF); 2731 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2732 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2733 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2734 2735 if (SanitizeExponent) { 2736 Checks.push_back( 2737 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2738 } 2739 2740 if (SanitizeBase) { 2741 // Check whether we are shifting any non-zero bits off the top of the 2742 // integer. We only emit this check if exponent is valid - otherwise 2743 // instructions below will have undefined behavior themselves. 2744 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2745 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2746 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2747 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2748 CGF.EmitBlock(CheckShiftBase); 2749 llvm::Value *BitsShiftedOff = 2750 Builder.CreateLShr(Ops.LHS, 2751 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2752 /*NUW*/true, /*NSW*/true), 2753 "shl.check"); 2754 if (CGF.getLangOpts().CPlusPlus) { 2755 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2756 // Under C++11's rules, shifting a 1 bit into the sign bit is 2757 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2758 // define signed left shifts, so we use the C99 and C++11 rules there). 2759 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2760 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2761 } 2762 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2763 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2764 CGF.EmitBlock(Cont); 2765 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2766 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2767 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2768 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2769 } 2770 2771 assert(!Checks.empty()); 2772 EmitBinOpCheck(Checks, Ops); 2773 } 2774 2775 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2776 } 2777 2778 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2779 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2780 // RHS to the same size as the LHS. 2781 Value *RHS = Ops.RHS; 2782 if (Ops.LHS->getType() != RHS->getType()) 2783 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2784 2785 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2786 if (CGF.getLangOpts().OpenCL) 2787 RHS = 2788 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2789 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2790 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2791 CodeGenFunction::SanitizerScope SanScope(&CGF); 2792 llvm::Value *Valid = 2793 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2794 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2795 } 2796 2797 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2798 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2799 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2800 } 2801 2802 enum IntrinsicType { VCMPEQ, VCMPGT }; 2803 // return corresponding comparison intrinsic for given vector type 2804 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2805 BuiltinType::Kind ElemKind) { 2806 switch (ElemKind) { 2807 default: llvm_unreachable("unexpected element type"); 2808 case BuiltinType::Char_U: 2809 case BuiltinType::UChar: 2810 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2811 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2812 case BuiltinType::Char_S: 2813 case BuiltinType::SChar: 2814 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2815 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2816 case BuiltinType::UShort: 2817 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2818 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2819 case BuiltinType::Short: 2820 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2821 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2822 case BuiltinType::UInt: 2823 case BuiltinType::ULong: 2824 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2825 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2826 case BuiltinType::Int: 2827 case BuiltinType::Long: 2828 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2829 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2830 case BuiltinType::Float: 2831 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2832 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2833 } 2834 } 2835 2836 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2837 unsigned SICmpOpc, unsigned FCmpOpc) { 2838 TestAndClearIgnoreResultAssign(); 2839 Value *Result; 2840 QualType LHSTy = E->getLHS()->getType(); 2841 QualType RHSTy = E->getRHS()->getType(); 2842 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2843 assert(E->getOpcode() == BO_EQ || 2844 E->getOpcode() == BO_NE); 2845 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2846 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2847 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2848 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2849 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2850 Value *LHS = Visit(E->getLHS()); 2851 Value *RHS = Visit(E->getRHS()); 2852 2853 // If AltiVec, the comparison results in a numeric type, so we use 2854 // intrinsics comparing vectors and giving 0 or 1 as a result 2855 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2856 // constants for mapping CR6 register bits to predicate result 2857 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2858 2859 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2860 2861 // in several cases vector arguments order will be reversed 2862 Value *FirstVecArg = LHS, 2863 *SecondVecArg = RHS; 2864 2865 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2866 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2867 BuiltinType::Kind ElementKind = BTy->getKind(); 2868 2869 switch(E->getOpcode()) { 2870 default: llvm_unreachable("is not a comparison operation"); 2871 case BO_EQ: 2872 CR6 = CR6_LT; 2873 ID = GetIntrinsic(VCMPEQ, ElementKind); 2874 break; 2875 case BO_NE: 2876 CR6 = CR6_EQ; 2877 ID = GetIntrinsic(VCMPEQ, ElementKind); 2878 break; 2879 case BO_LT: 2880 CR6 = CR6_LT; 2881 ID = GetIntrinsic(VCMPGT, ElementKind); 2882 std::swap(FirstVecArg, SecondVecArg); 2883 break; 2884 case BO_GT: 2885 CR6 = CR6_LT; 2886 ID = GetIntrinsic(VCMPGT, ElementKind); 2887 break; 2888 case BO_LE: 2889 if (ElementKind == BuiltinType::Float) { 2890 CR6 = CR6_LT; 2891 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2892 std::swap(FirstVecArg, SecondVecArg); 2893 } 2894 else { 2895 CR6 = CR6_EQ; 2896 ID = GetIntrinsic(VCMPGT, ElementKind); 2897 } 2898 break; 2899 case BO_GE: 2900 if (ElementKind == BuiltinType::Float) { 2901 CR6 = CR6_LT; 2902 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2903 } 2904 else { 2905 CR6 = CR6_EQ; 2906 ID = GetIntrinsic(VCMPGT, ElementKind); 2907 std::swap(FirstVecArg, SecondVecArg); 2908 } 2909 break; 2910 } 2911 2912 Value *CR6Param = Builder.getInt32(CR6); 2913 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2914 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2915 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2916 } 2917 2918 if (LHS->getType()->isFPOrFPVectorTy()) { 2919 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2920 LHS, RHS, "cmp"); 2921 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2922 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2923 LHS, RHS, "cmp"); 2924 } else { 2925 // Unsigned integers and pointers. 2926 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2927 LHS, RHS, "cmp"); 2928 } 2929 2930 // If this is a vector comparison, sign extend the result to the appropriate 2931 // vector integer type and return it (don't convert to bool). 2932 if (LHSTy->isVectorType()) 2933 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2934 2935 } else { 2936 // Complex Comparison: can only be an equality comparison. 2937 CodeGenFunction::ComplexPairTy LHS, RHS; 2938 QualType CETy; 2939 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2940 LHS = CGF.EmitComplexExpr(E->getLHS()); 2941 CETy = CTy->getElementType(); 2942 } else { 2943 LHS.first = Visit(E->getLHS()); 2944 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2945 CETy = LHSTy; 2946 } 2947 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2948 RHS = CGF.EmitComplexExpr(E->getRHS()); 2949 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2950 CTy->getElementType()) && 2951 "The element types must always match."); 2952 (void)CTy; 2953 } else { 2954 RHS.first = Visit(E->getRHS()); 2955 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2956 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2957 "The element types must always match."); 2958 } 2959 2960 Value *ResultR, *ResultI; 2961 if (CETy->isRealFloatingType()) { 2962 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2963 LHS.first, RHS.first, "cmp.r"); 2964 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2965 LHS.second, RHS.second, "cmp.i"); 2966 } else { 2967 // Complex comparisons can only be equality comparisons. As such, signed 2968 // and unsigned opcodes are the same. 2969 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2970 LHS.first, RHS.first, "cmp.r"); 2971 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2972 LHS.second, RHS.second, "cmp.i"); 2973 } 2974 2975 if (E->getOpcode() == BO_EQ) { 2976 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2977 } else { 2978 assert(E->getOpcode() == BO_NE && 2979 "Complex comparison other than == or != ?"); 2980 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2981 } 2982 } 2983 2984 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2985 } 2986 2987 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2988 bool Ignore = TestAndClearIgnoreResultAssign(); 2989 2990 Value *RHS; 2991 LValue LHS; 2992 2993 switch (E->getLHS()->getType().getObjCLifetime()) { 2994 case Qualifiers::OCL_Strong: 2995 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2996 break; 2997 2998 case Qualifiers::OCL_Autoreleasing: 2999 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3000 break; 3001 3002 case Qualifiers::OCL_Weak: 3003 RHS = Visit(E->getRHS()); 3004 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3005 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3006 break; 3007 3008 // No reason to do any of these differently. 3009 case Qualifiers::OCL_None: 3010 case Qualifiers::OCL_ExplicitNone: 3011 // __block variables need to have the rhs evaluated first, plus 3012 // this should improve codegen just a little. 3013 RHS = Visit(E->getRHS()); 3014 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3015 3016 // Store the value into the LHS. Bit-fields are handled specially 3017 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3018 // 'An assignment expression has the value of the left operand after 3019 // the assignment...'. 3020 if (LHS.isBitField()) 3021 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3022 else 3023 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3024 } 3025 3026 // If the result is clearly ignored, return now. 3027 if (Ignore) 3028 return nullptr; 3029 3030 // The result of an assignment in C is the assigned r-value. 3031 if (!CGF.getLangOpts().CPlusPlus) 3032 return RHS; 3033 3034 // If the lvalue is non-volatile, return the computed value of the assignment. 3035 if (!LHS.isVolatileQualified()) 3036 return RHS; 3037 3038 // Otherwise, reload the value. 3039 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3040 } 3041 3042 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3043 // Perform vector logical and on comparisons with zero vectors. 3044 if (E->getType()->isVectorType()) { 3045 CGF.incrementProfileCounter(E); 3046 3047 Value *LHS = Visit(E->getLHS()); 3048 Value *RHS = Visit(E->getRHS()); 3049 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3050 if (LHS->getType()->isFPOrFPVectorTy()) { 3051 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3052 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3053 } else { 3054 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3055 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3056 } 3057 Value *And = Builder.CreateAnd(LHS, RHS); 3058 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3059 } 3060 3061 llvm::Type *ResTy = ConvertType(E->getType()); 3062 3063 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3064 // If we have 1 && X, just emit X without inserting the control flow. 3065 bool LHSCondVal; 3066 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3067 if (LHSCondVal) { // If we have 1 && X, just emit X. 3068 CGF.incrementProfileCounter(E); 3069 3070 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3071 // ZExt result to int or bool. 3072 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3073 } 3074 3075 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3076 if (!CGF.ContainsLabel(E->getRHS())) 3077 return llvm::Constant::getNullValue(ResTy); 3078 } 3079 3080 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3081 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3082 3083 CodeGenFunction::ConditionalEvaluation eval(CGF); 3084 3085 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3086 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3087 CGF.getProfileCount(E->getRHS())); 3088 3089 // Any edges into the ContBlock are now from an (indeterminate number of) 3090 // edges from this first condition. All of these values will be false. Start 3091 // setting up the PHI node in the Cont Block for this. 3092 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3093 "", ContBlock); 3094 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3095 PI != PE; ++PI) 3096 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3097 3098 eval.begin(CGF); 3099 CGF.EmitBlock(RHSBlock); 3100 CGF.incrementProfileCounter(E); 3101 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3102 eval.end(CGF); 3103 3104 // Reaquire the RHS block, as there may be subblocks inserted. 3105 RHSBlock = Builder.GetInsertBlock(); 3106 3107 // Emit an unconditional branch from this block to ContBlock. 3108 { 3109 // There is no need to emit line number for unconditional branch. 3110 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3111 CGF.EmitBlock(ContBlock); 3112 } 3113 // Insert an entry into the phi node for the edge with the value of RHSCond. 3114 PN->addIncoming(RHSCond, RHSBlock); 3115 3116 // ZExt result to int. 3117 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3118 } 3119 3120 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3121 // Perform vector logical or on comparisons with zero vectors. 3122 if (E->getType()->isVectorType()) { 3123 CGF.incrementProfileCounter(E); 3124 3125 Value *LHS = Visit(E->getLHS()); 3126 Value *RHS = Visit(E->getRHS()); 3127 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3128 if (LHS->getType()->isFPOrFPVectorTy()) { 3129 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3130 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3131 } else { 3132 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3133 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3134 } 3135 Value *Or = Builder.CreateOr(LHS, RHS); 3136 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3137 } 3138 3139 llvm::Type *ResTy = ConvertType(E->getType()); 3140 3141 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3142 // If we have 0 || X, just emit X without inserting the control flow. 3143 bool LHSCondVal; 3144 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3145 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3146 CGF.incrementProfileCounter(E); 3147 3148 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3149 // ZExt result to int or bool. 3150 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3151 } 3152 3153 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3154 if (!CGF.ContainsLabel(E->getRHS())) 3155 return llvm::ConstantInt::get(ResTy, 1); 3156 } 3157 3158 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3159 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3160 3161 CodeGenFunction::ConditionalEvaluation eval(CGF); 3162 3163 // Branch on the LHS first. If it is true, go to the success (cont) block. 3164 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3165 CGF.getCurrentProfileCount() - 3166 CGF.getProfileCount(E->getRHS())); 3167 3168 // Any edges into the ContBlock are now from an (indeterminate number of) 3169 // edges from this first condition. All of these values will be true. Start 3170 // setting up the PHI node in the Cont Block for this. 3171 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3172 "", ContBlock); 3173 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3174 PI != PE; ++PI) 3175 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3176 3177 eval.begin(CGF); 3178 3179 // Emit the RHS condition as a bool value. 3180 CGF.EmitBlock(RHSBlock); 3181 CGF.incrementProfileCounter(E); 3182 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3183 3184 eval.end(CGF); 3185 3186 // Reaquire the RHS block, as there may be subblocks inserted. 3187 RHSBlock = Builder.GetInsertBlock(); 3188 3189 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3190 // into the phi node for the edge with the value of RHSCond. 3191 CGF.EmitBlock(ContBlock); 3192 PN->addIncoming(RHSCond, RHSBlock); 3193 3194 // ZExt result to int. 3195 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3196 } 3197 3198 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3199 CGF.EmitIgnoredExpr(E->getLHS()); 3200 CGF.EnsureInsertPoint(); 3201 return Visit(E->getRHS()); 3202 } 3203 3204 //===----------------------------------------------------------------------===// 3205 // Other Operators 3206 //===----------------------------------------------------------------------===// 3207 3208 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3209 /// expression is cheap enough and side-effect-free enough to evaluate 3210 /// unconditionally instead of conditionally. This is used to convert control 3211 /// flow into selects in some cases. 3212 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3213 CodeGenFunction &CGF) { 3214 // Anything that is an integer or floating point constant is fine. 3215 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3216 3217 // Even non-volatile automatic variables can't be evaluated unconditionally. 3218 // Referencing a thread_local may cause non-trivial initialization work to 3219 // occur. If we're inside a lambda and one of the variables is from the scope 3220 // outside the lambda, that function may have returned already. Reading its 3221 // locals is a bad idea. Also, these reads may introduce races there didn't 3222 // exist in the source-level program. 3223 } 3224 3225 3226 Value *ScalarExprEmitter:: 3227 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3228 TestAndClearIgnoreResultAssign(); 3229 3230 // Bind the common expression if necessary. 3231 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3232 3233 Expr *condExpr = E->getCond(); 3234 Expr *lhsExpr = E->getTrueExpr(); 3235 Expr *rhsExpr = E->getFalseExpr(); 3236 3237 // If the condition constant folds and can be elided, try to avoid emitting 3238 // the condition and the dead arm. 3239 bool CondExprBool; 3240 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3241 Expr *live = lhsExpr, *dead = rhsExpr; 3242 if (!CondExprBool) std::swap(live, dead); 3243 3244 // If the dead side doesn't have labels we need, just emit the Live part. 3245 if (!CGF.ContainsLabel(dead)) { 3246 if (CondExprBool) 3247 CGF.incrementProfileCounter(E); 3248 Value *Result = Visit(live); 3249 3250 // If the live part is a throw expression, it acts like it has a void 3251 // type, so evaluating it returns a null Value*. However, a conditional 3252 // with non-void type must return a non-null Value*. 3253 if (!Result && !E->getType()->isVoidType()) 3254 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3255 3256 return Result; 3257 } 3258 } 3259 3260 // OpenCL: If the condition is a vector, we can treat this condition like 3261 // the select function. 3262 if (CGF.getLangOpts().OpenCL 3263 && condExpr->getType()->isVectorType()) { 3264 CGF.incrementProfileCounter(E); 3265 3266 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3267 llvm::Value *LHS = Visit(lhsExpr); 3268 llvm::Value *RHS = Visit(rhsExpr); 3269 3270 llvm::Type *condType = ConvertType(condExpr->getType()); 3271 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3272 3273 unsigned numElem = vecTy->getNumElements(); 3274 llvm::Type *elemType = vecTy->getElementType(); 3275 3276 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3277 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3278 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3279 llvm::VectorType::get(elemType, 3280 numElem), 3281 "sext"); 3282 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3283 3284 // Cast float to int to perform ANDs if necessary. 3285 llvm::Value *RHSTmp = RHS; 3286 llvm::Value *LHSTmp = LHS; 3287 bool wasCast = false; 3288 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3289 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3290 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3291 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3292 wasCast = true; 3293 } 3294 3295 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3296 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3297 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3298 if (wasCast) 3299 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3300 3301 return tmp5; 3302 } 3303 3304 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3305 // select instead of as control flow. We can only do this if it is cheap and 3306 // safe to evaluate the LHS and RHS unconditionally. 3307 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3308 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3309 CGF.incrementProfileCounter(E); 3310 3311 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3312 llvm::Value *LHS = Visit(lhsExpr); 3313 llvm::Value *RHS = Visit(rhsExpr); 3314 if (!LHS) { 3315 // If the conditional has void type, make sure we return a null Value*. 3316 assert(!RHS && "LHS and RHS types must match"); 3317 return nullptr; 3318 } 3319 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3320 } 3321 3322 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3323 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3324 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3325 3326 CodeGenFunction::ConditionalEvaluation eval(CGF); 3327 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3328 CGF.getProfileCount(lhsExpr)); 3329 3330 CGF.EmitBlock(LHSBlock); 3331 CGF.incrementProfileCounter(E); 3332 eval.begin(CGF); 3333 Value *LHS = Visit(lhsExpr); 3334 eval.end(CGF); 3335 3336 LHSBlock = Builder.GetInsertBlock(); 3337 Builder.CreateBr(ContBlock); 3338 3339 CGF.EmitBlock(RHSBlock); 3340 eval.begin(CGF); 3341 Value *RHS = Visit(rhsExpr); 3342 eval.end(CGF); 3343 3344 RHSBlock = Builder.GetInsertBlock(); 3345 CGF.EmitBlock(ContBlock); 3346 3347 // If the LHS or RHS is a throw expression, it will be legitimately null. 3348 if (!LHS) 3349 return RHS; 3350 if (!RHS) 3351 return LHS; 3352 3353 // Create a PHI node for the real part. 3354 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3355 PN->addIncoming(LHS, LHSBlock); 3356 PN->addIncoming(RHS, RHSBlock); 3357 return PN; 3358 } 3359 3360 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3361 return Visit(E->getChosenSubExpr()); 3362 } 3363 3364 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3365 QualType Ty = VE->getType(); 3366 3367 if (Ty->isVariablyModifiedType()) 3368 CGF.EmitVariablyModifiedType(Ty); 3369 3370 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3371 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3372 llvm::Type *ArgTy = ConvertType(VE->getType()); 3373 3374 // If EmitVAArg fails, we fall back to the LLVM instruction. 3375 if (!ArgPtr) 3376 return Builder.CreateVAArg(ArgValue, ArgTy); 3377 3378 // FIXME Volatility. 3379 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3380 3381 // If EmitVAArg promoted the type, we must truncate it. 3382 if (ArgTy != Val->getType()) { 3383 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3384 Val = Builder.CreateIntToPtr(Val, ArgTy); 3385 else 3386 Val = Builder.CreateTrunc(Val, ArgTy); 3387 } 3388 3389 return Val; 3390 } 3391 3392 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3393 return CGF.EmitBlockLiteral(block); 3394 } 3395 3396 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3397 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3398 llvm::Type *DstTy = ConvertType(E->getType()); 3399 3400 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3401 // a shuffle vector instead of a bitcast. 3402 llvm::Type *SrcTy = Src->getType(); 3403 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3404 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3405 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3406 if ((numElementsDst == 3 && numElementsSrc == 4) 3407 || (numElementsDst == 4 && numElementsSrc == 3)) { 3408 3409 3410 // In the case of going from int4->float3, a bitcast is needed before 3411 // doing a shuffle. 3412 llvm::Type *srcElemTy = 3413 cast<llvm::VectorType>(SrcTy)->getElementType(); 3414 llvm::Type *dstElemTy = 3415 cast<llvm::VectorType>(DstTy)->getElementType(); 3416 3417 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3418 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3419 // Create a float type of the same size as the source or destination. 3420 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3421 numElementsSrc); 3422 3423 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3424 } 3425 3426 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3427 3428 SmallVector<llvm::Constant*, 3> Args; 3429 Args.push_back(Builder.getInt32(0)); 3430 Args.push_back(Builder.getInt32(1)); 3431 Args.push_back(Builder.getInt32(2)); 3432 3433 if (numElementsDst == 4) 3434 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3435 3436 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3437 3438 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3439 } 3440 } 3441 3442 return Builder.CreateBitCast(Src, DstTy, "astype"); 3443 } 3444 3445 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3446 return CGF.EmitAtomicExpr(E).getScalarVal(); 3447 } 3448 3449 //===----------------------------------------------------------------------===// 3450 // Entry Point into this File 3451 //===----------------------------------------------------------------------===// 3452 3453 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3454 /// type, ignoring the result. 3455 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3456 assert(E && hasScalarEvaluationKind(E->getType()) && 3457 "Invalid scalar expression to emit"); 3458 3459 return ScalarExprEmitter(*this, IgnoreResultAssign) 3460 .Visit(const_cast<Expr *>(E)); 3461 } 3462 3463 /// EmitScalarConversion - Emit a conversion from the specified type to the 3464 /// specified destination type, both of which are LLVM scalar types. 3465 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3466 QualType DstTy) { 3467 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3468 "Invalid scalar expression to emit"); 3469 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3470 } 3471 3472 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3473 /// type to the specified destination type, where the destination type is an 3474 /// LLVM scalar type. 3475 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3476 QualType SrcTy, 3477 QualType DstTy) { 3478 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3479 "Invalid complex -> scalar conversion"); 3480 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3481 DstTy); 3482 } 3483 3484 3485 llvm::Value *CodeGenFunction:: 3486 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3487 bool isInc, bool isPre) { 3488 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3489 } 3490 3491 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3492 llvm::Value *V; 3493 // object->isa or (*object).isa 3494 // Generate code as for: *(Class*)object 3495 // build Class* type 3496 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3497 3498 Expr *BaseExpr = E->getBase(); 3499 if (BaseExpr->isRValue()) { 3500 V = CreateMemTemp(E->getType(), "resval"); 3501 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3502 Builder.CreateStore(Src, V); 3503 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3504 MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc()); 3505 } else { 3506 if (E->isArrow()) 3507 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3508 else 3509 V = EmitLValue(BaseExpr).getAddress(); 3510 } 3511 3512 // build Class* type 3513 ClassPtrTy = ClassPtrTy->getPointerTo(); 3514 V = Builder.CreateBitCast(V, ClassPtrTy); 3515 return MakeNaturalAlignAddrLValue(V, E->getType()); 3516 } 3517 3518 3519 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3520 const CompoundAssignOperator *E) { 3521 ScalarExprEmitter Scalar(*this); 3522 Value *Result = nullptr; 3523 switch (E->getOpcode()) { 3524 #define COMPOUND_OP(Op) \ 3525 case BO_##Op##Assign: \ 3526 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3527 Result) 3528 COMPOUND_OP(Mul); 3529 COMPOUND_OP(Div); 3530 COMPOUND_OP(Rem); 3531 COMPOUND_OP(Add); 3532 COMPOUND_OP(Sub); 3533 COMPOUND_OP(Shl); 3534 COMPOUND_OP(Shr); 3535 COMPOUND_OP(And); 3536 COMPOUND_OP(Xor); 3537 COMPOUND_OP(Or); 3538 #undef COMPOUND_OP 3539 3540 case BO_PtrMemD: 3541 case BO_PtrMemI: 3542 case BO_Mul: 3543 case BO_Div: 3544 case BO_Rem: 3545 case BO_Add: 3546 case BO_Sub: 3547 case BO_Shl: 3548 case BO_Shr: 3549 case BO_LT: 3550 case BO_GT: 3551 case BO_LE: 3552 case BO_GE: 3553 case BO_EQ: 3554 case BO_NE: 3555 case BO_And: 3556 case BO_Xor: 3557 case BO_Or: 3558 case BO_LAnd: 3559 case BO_LOr: 3560 case BO_Assign: 3561 case BO_Comma: 3562 llvm_unreachable("Not valid compound assignment operators"); 3563 } 3564 3565 llvm_unreachable("Unhandled compound assignment operator"); 3566 } 3567