1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34 
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38 
39 //===----------------------------------------------------------------------===//
40 //                         Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 struct BinOpInfo {
45   Value *LHS;
46   Value *RHS;
47   QualType Ty;  // Computation Type.
48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49   bool FPContractable;
50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51 };
52 
53 static bool MustVisitNullValue(const Expr *E) {
54   // If a null pointer expression's type is the C++0x nullptr_t, then
55   // it's not necessarily a simple constant and it must be evaluated
56   // for its potential side effects.
57   return E->getType()->isNullPtrType();
58 }
59 
60 class ScalarExprEmitter
61   : public StmtVisitor<ScalarExprEmitter, Value*> {
62   CodeGenFunction &CGF;
63   CGBuilderTy &Builder;
64   bool IgnoreResultAssign;
65   llvm::LLVMContext &VMContext;
66 public:
67 
68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70       VMContext(cgf.getLLVMContext()) {
71   }
72 
73   //===--------------------------------------------------------------------===//
74   //                               Utilities
75   //===--------------------------------------------------------------------===//
76 
77   bool TestAndClearIgnoreResultAssign() {
78     bool I = IgnoreResultAssign;
79     IgnoreResultAssign = false;
80     return I;
81   }
82 
83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86     return CGF.EmitCheckedLValue(E, TCK);
87   }
88 
89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                       const BinOpInfo &Info);
91 
92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94   }
95 
96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97     const AlignValueAttr *AVAttr = nullptr;
98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99       const ValueDecl *VD = DRE->getDecl();
100 
101       if (VD->getType()->isReferenceType()) {
102         if (const auto *TTy =
103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105       } else {
106         // Assumptions for function parameters are emitted at the start of the
107         // function, so there is no need to repeat that here.
108         if (isa<ParmVarDecl>(VD))
109           return;
110 
111         AVAttr = VD->getAttr<AlignValueAttr>();
112       }
113     }
114 
115     if (!AVAttr)
116       if (const auto *TTy =
117           dyn_cast<TypedefType>(E->getType()))
118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119 
120     if (!AVAttr)
121       return;
122 
123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126   }
127 
128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129   /// value l-value, this method emits the address of the l-value, then loads
130   /// and returns the result.
131   Value *EmitLoadOfLValue(const Expr *E) {
132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                 E->getExprLoc());
134 
135     EmitLValueAlignmentAssumption(E, V);
136     return V;
137   }
138 
139   /// EmitConversionToBool - Convert the specified expression value to a
140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142 
143   /// \brief Emit a check that a conversion to or from a floating-point type
144   /// does not overflow.
145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                 Value *Src, QualType SrcType,
147                                 QualType DstType, llvm::Type *DstTy);
148 
149   /// EmitScalarConversion - Emit a conversion from the specified type to the
150   /// specified destination type, both of which are LLVM scalar types.
151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
152 
153   /// EmitComplexToScalarConversion - Emit a conversion from the specified
154   /// complex type to the specified destination type, where the destination type
155   /// is an LLVM scalar type.
156   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
157                                        QualType SrcTy, QualType DstTy);
158 
159   /// EmitNullValue - Emit a value that corresponds to null for the given type.
160   Value *EmitNullValue(QualType Ty);
161 
162   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
163   Value *EmitFloatToBoolConversion(Value *V) {
164     // Compare against 0.0 for fp scalars.
165     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
166     return Builder.CreateFCmpUNE(V, Zero, "tobool");
167   }
168 
169   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
170   Value *EmitPointerToBoolConversion(Value *V) {
171     Value *Zero = llvm::ConstantPointerNull::get(
172                                       cast<llvm::PointerType>(V->getType()));
173     return Builder.CreateICmpNE(V, Zero, "tobool");
174   }
175 
176   Value *EmitIntToBoolConversion(Value *V) {
177     // Because of the type rules of C, we often end up computing a
178     // logical value, then zero extending it to int, then wanting it
179     // as a logical value again.  Optimize this common case.
180     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
181       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
182         Value *Result = ZI->getOperand(0);
183         // If there aren't any more uses, zap the instruction to save space.
184         // Note that there can be more uses, for example if this
185         // is the result of an assignment.
186         if (ZI->use_empty())
187           ZI->eraseFromParent();
188         return Result;
189       }
190     }
191 
192     return Builder.CreateIsNotNull(V, "tobool");
193   }
194 
195   //===--------------------------------------------------------------------===//
196   //                            Visitor Methods
197   //===--------------------------------------------------------------------===//
198 
199   Value *Visit(Expr *E) {
200     ApplyDebugLocation DL(CGF, E);
201     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
202   }
203 
204   Value *VisitStmt(Stmt *S) {
205     S->dump(CGF.getContext().getSourceManager());
206     llvm_unreachable("Stmt can't have complex result type!");
207   }
208   Value *VisitExpr(Expr *S);
209 
210   Value *VisitParenExpr(ParenExpr *PE) {
211     return Visit(PE->getSubExpr());
212   }
213   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
214     return Visit(E->getReplacement());
215   }
216   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
217     return Visit(GE->getResultExpr());
218   }
219 
220   // Leaves.
221   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
222     return Builder.getInt(E->getValue());
223   }
224   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
225     return llvm::ConstantFP::get(VMContext, E->getValue());
226   }
227   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
228     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
229   }
230   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
231     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
232   }
233   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
234     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
235   }
236   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
237     return EmitNullValue(E->getType());
238   }
239   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
240     return EmitNullValue(E->getType());
241   }
242   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
243   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
244   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
245     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
246     return Builder.CreateBitCast(V, ConvertType(E->getType()));
247   }
248 
249   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
250     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
251   }
252 
253   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
254     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
255   }
256 
257   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
258     if (E->isGLValue())
259       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
260 
261     // Otherwise, assume the mapping is the scalar directly.
262     return CGF.getOpaqueRValueMapping(E).getScalarVal();
263   }
264 
265   // l-values.
266   Value *VisitDeclRefExpr(DeclRefExpr *E) {
267     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
268       if (result.isReference())
269         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
270                                 E->getExprLoc());
271       return result.getValue();
272     }
273     return EmitLoadOfLValue(E);
274   }
275 
276   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
277     return CGF.EmitObjCSelectorExpr(E);
278   }
279   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
280     return CGF.EmitObjCProtocolExpr(E);
281   }
282   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
283     return EmitLoadOfLValue(E);
284   }
285   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
286     if (E->getMethodDecl() &&
287         E->getMethodDecl()->getReturnType()->isReferenceType())
288       return EmitLoadOfLValue(E);
289     return CGF.EmitObjCMessageExpr(E).getScalarVal();
290   }
291 
292   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
293     LValue LV = CGF.EmitObjCIsaExpr(E);
294     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
295     return V;
296   }
297 
298   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
299   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
300   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
301   Value *VisitMemberExpr(MemberExpr *E);
302   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
303   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
304     return EmitLoadOfLValue(E);
305   }
306 
307   Value *VisitInitListExpr(InitListExpr *E);
308 
309   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
310     return EmitNullValue(E->getType());
311   }
312   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
313     if (E->getType()->isVariablyModifiedType())
314       CGF.EmitVariablyModifiedType(E->getType());
315 
316     if (CGDebugInfo *DI = CGF.getDebugInfo())
317       DI->EmitExplicitCastType(E->getType());
318 
319     return VisitCastExpr(E);
320   }
321   Value *VisitCastExpr(CastExpr *E);
322 
323   Value *VisitCallExpr(const CallExpr *E) {
324     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
325       return EmitLoadOfLValue(E);
326 
327     Value *V = CGF.EmitCallExpr(E).getScalarVal();
328 
329     EmitLValueAlignmentAssumption(E, V);
330     return V;
331   }
332 
333   Value *VisitStmtExpr(const StmtExpr *E);
334 
335   // Unary Operators.
336   Value *VisitUnaryPostDec(const UnaryOperator *E) {
337     LValue LV = EmitLValue(E->getSubExpr());
338     return EmitScalarPrePostIncDec(E, LV, false, false);
339   }
340   Value *VisitUnaryPostInc(const UnaryOperator *E) {
341     LValue LV = EmitLValue(E->getSubExpr());
342     return EmitScalarPrePostIncDec(E, LV, true, false);
343   }
344   Value *VisitUnaryPreDec(const UnaryOperator *E) {
345     LValue LV = EmitLValue(E->getSubExpr());
346     return EmitScalarPrePostIncDec(E, LV, false, true);
347   }
348   Value *VisitUnaryPreInc(const UnaryOperator *E) {
349     LValue LV = EmitLValue(E->getSubExpr());
350     return EmitScalarPrePostIncDec(E, LV, true, true);
351   }
352 
353   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
354                                                   llvm::Value *InVal,
355                                                   bool IsInc);
356 
357   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
358                                        bool isInc, bool isPre);
359 
360 
361   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
362     if (isa<MemberPointerType>(E->getType())) // never sugared
363       return CGF.CGM.getMemberPointerConstant(E);
364 
365     return EmitLValue(E->getSubExpr()).getAddress();
366   }
367   Value *VisitUnaryDeref(const UnaryOperator *E) {
368     if (E->getType()->isVoidType())
369       return Visit(E->getSubExpr()); // the actual value should be unused
370     return EmitLoadOfLValue(E);
371   }
372   Value *VisitUnaryPlus(const UnaryOperator *E) {
373     // This differs from gcc, though, most likely due to a bug in gcc.
374     TestAndClearIgnoreResultAssign();
375     return Visit(E->getSubExpr());
376   }
377   Value *VisitUnaryMinus    (const UnaryOperator *E);
378   Value *VisitUnaryNot      (const UnaryOperator *E);
379   Value *VisitUnaryLNot     (const UnaryOperator *E);
380   Value *VisitUnaryReal     (const UnaryOperator *E);
381   Value *VisitUnaryImag     (const UnaryOperator *E);
382   Value *VisitUnaryExtension(const UnaryOperator *E) {
383     return Visit(E->getSubExpr());
384   }
385 
386   // C++
387   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
388     return EmitLoadOfLValue(E);
389   }
390 
391   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
392     return Visit(DAE->getExpr());
393   }
394   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
395     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
396     return Visit(DIE->getExpr());
397   }
398   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
399     return CGF.LoadCXXThis();
400   }
401 
402   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
403     CGF.enterFullExpression(E);
404     CodeGenFunction::RunCleanupsScope Scope(CGF);
405     return Visit(E->getSubExpr());
406   }
407   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
408     return CGF.EmitCXXNewExpr(E);
409   }
410   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
411     CGF.EmitCXXDeleteExpr(E);
412     return nullptr;
413   }
414 
415   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
416     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
417   }
418 
419   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
420     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
421   }
422 
423   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
424     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
425   }
426 
427   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
428     // C++ [expr.pseudo]p1:
429     //   The result shall only be used as the operand for the function call
430     //   operator (), and the result of such a call has type void. The only
431     //   effect is the evaluation of the postfix-expression before the dot or
432     //   arrow.
433     CGF.EmitScalarExpr(E->getBase());
434     return nullptr;
435   }
436 
437   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
438     return EmitNullValue(E->getType());
439   }
440 
441   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
442     CGF.EmitCXXThrowExpr(E);
443     return nullptr;
444   }
445 
446   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
447     return Builder.getInt1(E->getValue());
448   }
449 
450   // Binary Operators.
451   Value *EmitMul(const BinOpInfo &Ops) {
452     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
453       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
454       case LangOptions::SOB_Defined:
455         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
456       case LangOptions::SOB_Undefined:
457         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
458           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
459         // Fall through.
460       case LangOptions::SOB_Trapping:
461         return EmitOverflowCheckedBinOp(Ops);
462       }
463     }
464 
465     if (Ops.Ty->isUnsignedIntegerType() &&
466         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
467       return EmitOverflowCheckedBinOp(Ops);
468 
469     if (Ops.LHS->getType()->isFPOrFPVectorTy())
470       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
471     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
472   }
473   /// Create a binary op that checks for overflow.
474   /// Currently only supports +, - and *.
475   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
476 
477   // Check for undefined division and modulus behaviors.
478   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
479                                                   llvm::Value *Zero,bool isDiv);
480   // Common helper for getting how wide LHS of shift is.
481   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
482   Value *EmitDiv(const BinOpInfo &Ops);
483   Value *EmitRem(const BinOpInfo &Ops);
484   Value *EmitAdd(const BinOpInfo &Ops);
485   Value *EmitSub(const BinOpInfo &Ops);
486   Value *EmitShl(const BinOpInfo &Ops);
487   Value *EmitShr(const BinOpInfo &Ops);
488   Value *EmitAnd(const BinOpInfo &Ops) {
489     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
490   }
491   Value *EmitXor(const BinOpInfo &Ops) {
492     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
493   }
494   Value *EmitOr (const BinOpInfo &Ops) {
495     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
496   }
497 
498   BinOpInfo EmitBinOps(const BinaryOperator *E);
499   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
500                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
501                                   Value *&Result);
502 
503   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
504                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
505 
506   // Binary operators and binary compound assignment operators.
507 #define HANDLEBINOP(OP) \
508   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
509     return Emit ## OP(EmitBinOps(E));                                      \
510   }                                                                        \
511   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
512     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
513   }
514   HANDLEBINOP(Mul)
515   HANDLEBINOP(Div)
516   HANDLEBINOP(Rem)
517   HANDLEBINOP(Add)
518   HANDLEBINOP(Sub)
519   HANDLEBINOP(Shl)
520   HANDLEBINOP(Shr)
521   HANDLEBINOP(And)
522   HANDLEBINOP(Xor)
523   HANDLEBINOP(Or)
524 #undef HANDLEBINOP
525 
526   // Comparisons.
527   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
528                      unsigned SICmpOpc, unsigned FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530     Value *VisitBin##CODE(const BinaryOperator *E) { \
531       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532                          llvm::FCmpInst::FP); }
533   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540 
541   Value *VisitBinAssign     (const BinaryOperator *E);
542 
543   Value *VisitBinLAnd       (const BinaryOperator *E);
544   Value *VisitBinLOr        (const BinaryOperator *E);
545   Value *VisitBinComma      (const BinaryOperator *E);
546 
547   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
548   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549 
550   // Other Operators.
551   Value *VisitBlockExpr(const BlockExpr *BE);
552   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553   Value *VisitChooseExpr(ChooseExpr *CE);
554   Value *VisitVAArgExpr(VAArgExpr *VE);
555   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556     return CGF.EmitObjCStringLiteral(E);
557   }
558   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559     return CGF.EmitObjCBoxedExpr(E);
560   }
561   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562     return CGF.EmitObjCArrayLiteral(E);
563   }
564   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565     return CGF.EmitObjCDictionaryLiteral(E);
566   }
567   Value *VisitAsTypeExpr(AsTypeExpr *CE);
568   Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 }  // end anonymous namespace.
571 
572 //===----------------------------------------------------------------------===//
573 //                                Utilities
574 //===----------------------------------------------------------------------===//
575 
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580 
581   if (SrcType->isRealFloatingType())
582     return EmitFloatToBoolConversion(Src);
583 
584   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586 
587   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588          "Unknown scalar type to convert");
589 
590   if (isa<llvm::IntegerType>(Src->getType()))
591     return EmitIntToBoolConversion(Src);
592 
593   assert(isa<llvm::PointerType>(Src->getType()));
594   return EmitPointerToBoolConversion(Src);
595 }
596 
597 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
598                                                  QualType OrigSrcType,
599                                                  Value *Src, QualType SrcType,
600                                                  QualType DstType,
601                                                  llvm::Type *DstTy) {
602   CodeGenFunction::SanitizerScope SanScope(&CGF);
603   using llvm::APFloat;
604   using llvm::APSInt;
605 
606   llvm::Type *SrcTy = Src->getType();
607 
608   llvm::Value *Check = nullptr;
609   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
610     // Integer to floating-point. This can fail for unsigned short -> __half
611     // or unsigned __int128 -> float.
612     assert(DstType->isFloatingType());
613     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
614 
615     APFloat LargestFloat =
616       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
617     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
618 
619     bool IsExact;
620     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
621                                       &IsExact) != APFloat::opOK)
622       // The range of representable values of this floating point type includes
623       // all values of this integer type. Don't need an overflow check.
624       return;
625 
626     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
627     if (SrcIsUnsigned)
628       Check = Builder.CreateICmpULE(Src, Max);
629     else {
630       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
631       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
632       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
633       Check = Builder.CreateAnd(GE, LE);
634     }
635   } else {
636     const llvm::fltSemantics &SrcSema =
637       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
638     if (isa<llvm::IntegerType>(DstTy)) {
639       // Floating-point to integer. This has undefined behavior if the source is
640       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
641       // to an integer).
642       unsigned Width = CGF.getContext().getIntWidth(DstType);
643       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
644 
645       APSInt Min = APSInt::getMinValue(Width, Unsigned);
646       APFloat MinSrc(SrcSema, APFloat::uninitialized);
647       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
648           APFloat::opOverflow)
649         // Don't need an overflow check for lower bound. Just check for
650         // -Inf/NaN.
651         MinSrc = APFloat::getInf(SrcSema, true);
652       else
653         // Find the largest value which is too small to represent (before
654         // truncation toward zero).
655         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
656 
657       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
658       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
659       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
660           APFloat::opOverflow)
661         // Don't need an overflow check for upper bound. Just check for
662         // +Inf/NaN.
663         MaxSrc = APFloat::getInf(SrcSema, false);
664       else
665         // Find the smallest value which is too large to represent (before
666         // truncation toward zero).
667         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
668 
669       // If we're converting from __half, convert the range to float to match
670       // the type of src.
671       if (OrigSrcType->isHalfType()) {
672         const llvm::fltSemantics &Sema =
673           CGF.getContext().getFloatTypeSemantics(SrcType);
674         bool IsInexact;
675         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
676         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
677       }
678 
679       llvm::Value *GE =
680         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
681       llvm::Value *LE =
682         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
683       Check = Builder.CreateAnd(GE, LE);
684     } else {
685       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
686       //
687       // Floating-point to floating-point. This has undefined behavior if the
688       // source is not in the range of representable values of the destination
689       // type. The C and C++ standards are spectacularly unclear here. We
690       // diagnose finite out-of-range conversions, but allow infinities and NaNs
691       // to convert to the corresponding value in the smaller type.
692       //
693       // C11 Annex F gives all such conversions defined behavior for IEC 60559
694       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
695       // does not.
696 
697       // Converting from a lower rank to a higher rank can never have
698       // undefined behavior, since higher-rank types must have a superset
699       // of values of lower-rank types.
700       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
701         return;
702 
703       assert(!OrigSrcType->isHalfType() &&
704              "should not check conversion from __half, it has the lowest rank");
705 
706       const llvm::fltSemantics &DstSema =
707         CGF.getContext().getFloatTypeSemantics(DstType);
708       APFloat MinBad = APFloat::getLargest(DstSema, false);
709       APFloat MaxBad = APFloat::getInf(DstSema, false);
710 
711       bool IsInexact;
712       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
713       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
714 
715       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
716         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
717       llvm::Value *GE =
718         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
719       llvm::Value *LE =
720         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
721       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
722     }
723   }
724 
725   // FIXME: Provide a SourceLocation.
726   llvm::Constant *StaticArgs[] = {
727     CGF.EmitCheckTypeDescriptor(OrigSrcType),
728     CGF.EmitCheckTypeDescriptor(DstType)
729   };
730   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
731                 "float_cast_overflow", StaticArgs, OrigSrc);
732 }
733 
734 /// EmitScalarConversion - Emit a conversion from the specified type to the
735 /// specified destination type, both of which are LLVM scalar types.
736 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
737                                                QualType DstType) {
738   SrcType = CGF.getContext().getCanonicalType(SrcType);
739   DstType = CGF.getContext().getCanonicalType(DstType);
740   if (SrcType == DstType) return Src;
741 
742   if (DstType->isVoidType()) return nullptr;
743 
744   llvm::Value *OrigSrc = Src;
745   QualType OrigSrcType = SrcType;
746   llvm::Type *SrcTy = Src->getType();
747 
748   // Handle conversions to bool first, they are special: comparisons against 0.
749   if (DstType->isBooleanType())
750     return EmitConversionToBool(Src, SrcType);
751 
752   llvm::Type *DstTy = ConvertType(DstType);
753 
754   // Cast from half through float if half isn't a native type.
755   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
756     // Cast to FP using the intrinsic if the half type itself isn't supported.
757     if (DstTy->isFloatingPointTy()) {
758       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
759         return Builder.CreateCall(
760             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
761             Src);
762     } else {
763       // Cast to other types through float, using either the intrinsic or FPExt,
764       // depending on whether the half type itself is supported
765       // (as opposed to operations on half, available with NativeHalfType).
766       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
767         Src = Builder.CreateCall(
768             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
769                                  CGF.CGM.FloatTy),
770             Src);
771       } else {
772         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
773       }
774       SrcType = CGF.getContext().FloatTy;
775       SrcTy = CGF.FloatTy;
776     }
777   }
778 
779   // Ignore conversions like int -> uint.
780   if (SrcTy == DstTy)
781     return Src;
782 
783   // Handle pointer conversions next: pointers can only be converted to/from
784   // other pointers and integers. Check for pointer types in terms of LLVM, as
785   // some native types (like Obj-C id) may map to a pointer type.
786   if (isa<llvm::PointerType>(DstTy)) {
787     // The source value may be an integer, or a pointer.
788     if (isa<llvm::PointerType>(SrcTy))
789       return Builder.CreateBitCast(Src, DstTy, "conv");
790 
791     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
792     // First, convert to the correct width so that we control the kind of
793     // extension.
794     llvm::Type *MiddleTy = CGF.IntPtrTy;
795     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
796     llvm::Value* IntResult =
797         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
798     // Then, cast to pointer.
799     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
800   }
801 
802   if (isa<llvm::PointerType>(SrcTy)) {
803     // Must be an ptr to int cast.
804     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
805     return Builder.CreatePtrToInt(Src, DstTy, "conv");
806   }
807 
808   // A scalar can be splatted to an extended vector of the same element type
809   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
810     // Cast the scalar to element type
811     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
812     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
813 
814     // Splat the element across to all elements
815     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
816     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
817   }
818 
819   // Allow bitcast from vector to integer/fp of the same size.
820   if (isa<llvm::VectorType>(SrcTy) ||
821       isa<llvm::VectorType>(DstTy))
822     return Builder.CreateBitCast(Src, DstTy, "conv");
823 
824   // Finally, we have the arithmetic types: real int/float.
825   Value *Res = nullptr;
826   llvm::Type *ResTy = DstTy;
827 
828   // An overflowing conversion has undefined behavior if either the source type
829   // or the destination type is a floating-point type.
830   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
831       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
832     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
833                              DstTy);
834 
835   // Cast to half through float if half isn't a native type.
836   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
837     // Make sure we cast in a single step if from another FP type.
838     if (SrcTy->isFloatingPointTy()) {
839       // Use the intrinsic if the half type itself isn't supported
840       // (as opposed to operations on half, available with NativeHalfType).
841       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
842         return Builder.CreateCall(
843             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
844       // If the half type is supported, just use an fptrunc.
845       return Builder.CreateFPTrunc(Src, DstTy);
846     }
847     DstTy = CGF.FloatTy;
848   }
849 
850   if (isa<llvm::IntegerType>(SrcTy)) {
851     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
852     if (isa<llvm::IntegerType>(DstTy))
853       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
854     else if (InputSigned)
855       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
856     else
857       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
858   } else if (isa<llvm::IntegerType>(DstTy)) {
859     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
860     if (DstType->isSignedIntegerOrEnumerationType())
861       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
862     else
863       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
864   } else {
865     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
866            "Unknown real conversion");
867     if (DstTy->getTypeID() < SrcTy->getTypeID())
868       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
869     else
870       Res = Builder.CreateFPExt(Src, DstTy, "conv");
871   }
872 
873   if (DstTy != ResTy) {
874     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
875       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
876       Res = Builder.CreateCall(
877         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
878         Res);
879     } else {
880       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
881     }
882   }
883 
884   return Res;
885 }
886 
887 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
888 /// type to the specified destination type, where the destination type is an
889 /// LLVM scalar type.
890 Value *ScalarExprEmitter::
891 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
892                               QualType SrcTy, QualType DstTy) {
893   // Get the source element type.
894   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
895 
896   // Handle conversions to bool first, they are special: comparisons against 0.
897   if (DstTy->isBooleanType()) {
898     //  Complex != 0  -> (Real != 0) | (Imag != 0)
899     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
900     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
901     return Builder.CreateOr(Src.first, Src.second, "tobool");
902   }
903 
904   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
905   // the imaginary part of the complex value is discarded and the value of the
906   // real part is converted according to the conversion rules for the
907   // corresponding real type.
908   return EmitScalarConversion(Src.first, SrcTy, DstTy);
909 }
910 
911 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
912   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
913 }
914 
915 /// \brief Emit a sanitization check for the given "binary" operation (which
916 /// might actually be a unary increment which has been lowered to a binary
917 /// operation). The check passes if all values in \p Checks (which are \c i1),
918 /// are \c true.
919 void ScalarExprEmitter::EmitBinOpCheck(
920     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
921   assert(CGF.IsSanitizerScope);
922   StringRef CheckName;
923   SmallVector<llvm::Constant *, 4> StaticData;
924   SmallVector<llvm::Value *, 2> DynamicData;
925 
926   BinaryOperatorKind Opcode = Info.Opcode;
927   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
928     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
929 
930   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
931   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
932   if (UO && UO->getOpcode() == UO_Minus) {
933     CheckName = "negate_overflow";
934     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
935     DynamicData.push_back(Info.RHS);
936   } else {
937     if (BinaryOperator::isShiftOp(Opcode)) {
938       // Shift LHS negative or too large, or RHS out of bounds.
939       CheckName = "shift_out_of_bounds";
940       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
941       StaticData.push_back(
942         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
943       StaticData.push_back(
944         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
945     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
946       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
947       CheckName = "divrem_overflow";
948       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
949     } else {
950       // Arithmetic overflow (+, -, *).
951       switch (Opcode) {
952       case BO_Add: CheckName = "add_overflow"; break;
953       case BO_Sub: CheckName = "sub_overflow"; break;
954       case BO_Mul: CheckName = "mul_overflow"; break;
955       default: llvm_unreachable("unexpected opcode for bin op check");
956       }
957       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
958     }
959     DynamicData.push_back(Info.LHS);
960     DynamicData.push_back(Info.RHS);
961   }
962 
963   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
964 }
965 
966 //===----------------------------------------------------------------------===//
967 //                            Visitor Methods
968 //===----------------------------------------------------------------------===//
969 
970 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
971   CGF.ErrorUnsupported(E, "scalar expression");
972   if (E->getType()->isVoidType())
973     return nullptr;
974   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
975 }
976 
977 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
978   // Vector Mask Case
979   if (E->getNumSubExprs() == 2 ||
980       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
981     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
982     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
983     Value *Mask;
984 
985     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
986     unsigned LHSElts = LTy->getNumElements();
987 
988     if (E->getNumSubExprs() == 3) {
989       Mask = CGF.EmitScalarExpr(E->getExpr(2));
990 
991       // Shuffle LHS & RHS into one input vector.
992       SmallVector<llvm::Constant*, 32> concat;
993       for (unsigned i = 0; i != LHSElts; ++i) {
994         concat.push_back(Builder.getInt32(2*i));
995         concat.push_back(Builder.getInt32(2*i+1));
996       }
997 
998       Value* CV = llvm::ConstantVector::get(concat);
999       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1000       LHSElts *= 2;
1001     } else {
1002       Mask = RHS;
1003     }
1004 
1005     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1006 
1007     // Mask off the high bits of each shuffle index.
1008     Value *MaskBits =
1009         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1010     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1011 
1012     // newv = undef
1013     // mask = mask & maskbits
1014     // for each elt
1015     //   n = extract mask i
1016     //   x = extract val n
1017     //   newv = insert newv, x, i
1018     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1019                                                   MTy->getNumElements());
1020     Value* NewV = llvm::UndefValue::get(RTy);
1021     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1022       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1023       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1024 
1025       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1026       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1027     }
1028     return NewV;
1029   }
1030 
1031   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1032   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1033 
1034   SmallVector<llvm::Constant*, 32> indices;
1035   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1036     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1037     // Check for -1 and output it as undef in the IR.
1038     if (Idx.isSigned() && Idx.isAllOnesValue())
1039       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1040     else
1041       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1042   }
1043 
1044   Value *SV = llvm::ConstantVector::get(indices);
1045   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1046 }
1047 
1048 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1049   QualType SrcType = E->getSrcExpr()->getType(),
1050            DstType = E->getType();
1051 
1052   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1053 
1054   SrcType = CGF.getContext().getCanonicalType(SrcType);
1055   DstType = CGF.getContext().getCanonicalType(DstType);
1056   if (SrcType == DstType) return Src;
1057 
1058   assert(SrcType->isVectorType() &&
1059          "ConvertVector source type must be a vector");
1060   assert(DstType->isVectorType() &&
1061          "ConvertVector destination type must be a vector");
1062 
1063   llvm::Type *SrcTy = Src->getType();
1064   llvm::Type *DstTy = ConvertType(DstType);
1065 
1066   // Ignore conversions like int -> uint.
1067   if (SrcTy == DstTy)
1068     return Src;
1069 
1070   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1071            DstEltType = DstType->getAs<VectorType>()->getElementType();
1072 
1073   assert(SrcTy->isVectorTy() &&
1074          "ConvertVector source IR type must be a vector");
1075   assert(DstTy->isVectorTy() &&
1076          "ConvertVector destination IR type must be a vector");
1077 
1078   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1079              *DstEltTy = DstTy->getVectorElementType();
1080 
1081   if (DstEltType->isBooleanType()) {
1082     assert((SrcEltTy->isFloatingPointTy() ||
1083             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1084 
1085     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1086     if (SrcEltTy->isFloatingPointTy()) {
1087       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1088     } else {
1089       return Builder.CreateICmpNE(Src, Zero, "tobool");
1090     }
1091   }
1092 
1093   // We have the arithmetic types: real int/float.
1094   Value *Res = nullptr;
1095 
1096   if (isa<llvm::IntegerType>(SrcEltTy)) {
1097     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1098     if (isa<llvm::IntegerType>(DstEltTy))
1099       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1100     else if (InputSigned)
1101       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1102     else
1103       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1104   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1105     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1106     if (DstEltType->isSignedIntegerOrEnumerationType())
1107       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1108     else
1109       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1110   } else {
1111     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1112            "Unknown real conversion");
1113     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1114       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1115     else
1116       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1117   }
1118 
1119   return Res;
1120 }
1121 
1122 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1123   llvm::APSInt Value;
1124   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1125     if (E->isArrow())
1126       CGF.EmitScalarExpr(E->getBase());
1127     else
1128       EmitLValue(E->getBase());
1129     return Builder.getInt(Value);
1130   }
1131 
1132   return EmitLoadOfLValue(E);
1133 }
1134 
1135 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1136   TestAndClearIgnoreResultAssign();
1137 
1138   // Emit subscript expressions in rvalue context's.  For most cases, this just
1139   // loads the lvalue formed by the subscript expr.  However, we have to be
1140   // careful, because the base of a vector subscript is occasionally an rvalue,
1141   // so we can't get it as an lvalue.
1142   if (!E->getBase()->getType()->isVectorType())
1143     return EmitLoadOfLValue(E);
1144 
1145   // Handle the vector case.  The base must be a vector, the index must be an
1146   // integer value.
1147   Value *Base = Visit(E->getBase());
1148   Value *Idx  = Visit(E->getIdx());
1149   QualType IdxTy = E->getIdx()->getType();
1150 
1151   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1152     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1153 
1154   return Builder.CreateExtractElement(Base, Idx, "vecext");
1155 }
1156 
1157 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1158                                   unsigned Off, llvm::Type *I32Ty) {
1159   int MV = SVI->getMaskValue(Idx);
1160   if (MV == -1)
1161     return llvm::UndefValue::get(I32Ty);
1162   return llvm::ConstantInt::get(I32Ty, Off+MV);
1163 }
1164 
1165 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1166   bool Ignore = TestAndClearIgnoreResultAssign();
1167   (void)Ignore;
1168   assert (Ignore == false && "init list ignored");
1169   unsigned NumInitElements = E->getNumInits();
1170 
1171   if (E->hadArrayRangeDesignator())
1172     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1173 
1174   llvm::VectorType *VType =
1175     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1176 
1177   if (!VType) {
1178     if (NumInitElements == 0) {
1179       // C++11 value-initialization for the scalar.
1180       return EmitNullValue(E->getType());
1181     }
1182     // We have a scalar in braces. Just use the first element.
1183     return Visit(E->getInit(0));
1184   }
1185 
1186   unsigned ResElts = VType->getNumElements();
1187 
1188   // Loop over initializers collecting the Value for each, and remembering
1189   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1190   // us to fold the shuffle for the swizzle into the shuffle for the vector
1191   // initializer, since LLVM optimizers generally do not want to touch
1192   // shuffles.
1193   unsigned CurIdx = 0;
1194   bool VIsUndefShuffle = false;
1195   llvm::Value *V = llvm::UndefValue::get(VType);
1196   for (unsigned i = 0; i != NumInitElements; ++i) {
1197     Expr *IE = E->getInit(i);
1198     Value *Init = Visit(IE);
1199     SmallVector<llvm::Constant*, 16> Args;
1200 
1201     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1202 
1203     // Handle scalar elements.  If the scalar initializer is actually one
1204     // element of a different vector of the same width, use shuffle instead of
1205     // extract+insert.
1206     if (!VVT) {
1207       if (isa<ExtVectorElementExpr>(IE)) {
1208         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1209 
1210         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1211           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1212           Value *LHS = nullptr, *RHS = nullptr;
1213           if (CurIdx == 0) {
1214             // insert into undef -> shuffle (src, undef)
1215             Args.push_back(C);
1216             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1217 
1218             LHS = EI->getVectorOperand();
1219             RHS = V;
1220             VIsUndefShuffle = true;
1221           } else if (VIsUndefShuffle) {
1222             // insert into undefshuffle && size match -> shuffle (v, src)
1223             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1224             for (unsigned j = 0; j != CurIdx; ++j)
1225               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1226             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1227             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1228 
1229             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1230             RHS = EI->getVectorOperand();
1231             VIsUndefShuffle = false;
1232           }
1233           if (!Args.empty()) {
1234             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1235             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1236             ++CurIdx;
1237             continue;
1238           }
1239         }
1240       }
1241       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1242                                       "vecinit");
1243       VIsUndefShuffle = false;
1244       ++CurIdx;
1245       continue;
1246     }
1247 
1248     unsigned InitElts = VVT->getNumElements();
1249 
1250     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1251     // input is the same width as the vector being constructed, generate an
1252     // optimized shuffle of the swizzle input into the result.
1253     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1254     if (isa<ExtVectorElementExpr>(IE)) {
1255       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1256       Value *SVOp = SVI->getOperand(0);
1257       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1258 
1259       if (OpTy->getNumElements() == ResElts) {
1260         for (unsigned j = 0; j != CurIdx; ++j) {
1261           // If the current vector initializer is a shuffle with undef, merge
1262           // this shuffle directly into it.
1263           if (VIsUndefShuffle) {
1264             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1265                                       CGF.Int32Ty));
1266           } else {
1267             Args.push_back(Builder.getInt32(j));
1268           }
1269         }
1270         for (unsigned j = 0, je = InitElts; j != je; ++j)
1271           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1272         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1273 
1274         if (VIsUndefShuffle)
1275           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1276 
1277         Init = SVOp;
1278       }
1279     }
1280 
1281     // Extend init to result vector length, and then shuffle its contribution
1282     // to the vector initializer into V.
1283     if (Args.empty()) {
1284       for (unsigned j = 0; j != InitElts; ++j)
1285         Args.push_back(Builder.getInt32(j));
1286       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1287       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1288       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1289                                          Mask, "vext");
1290 
1291       Args.clear();
1292       for (unsigned j = 0; j != CurIdx; ++j)
1293         Args.push_back(Builder.getInt32(j));
1294       for (unsigned j = 0; j != InitElts; ++j)
1295         Args.push_back(Builder.getInt32(j+Offset));
1296       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1297     }
1298 
1299     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1300     // merging subsequent shuffles into this one.
1301     if (CurIdx == 0)
1302       std::swap(V, Init);
1303     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1304     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1305     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1306     CurIdx += InitElts;
1307   }
1308 
1309   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1310   // Emit remaining default initializers.
1311   llvm::Type *EltTy = VType->getElementType();
1312 
1313   // Emit remaining default initializers
1314   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1315     Value *Idx = Builder.getInt32(CurIdx);
1316     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1317     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1318   }
1319   return V;
1320 }
1321 
1322 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1323   const Expr *E = CE->getSubExpr();
1324 
1325   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1326     return false;
1327 
1328   if (isa<CXXThisExpr>(E)) {
1329     // We always assume that 'this' is never null.
1330     return false;
1331   }
1332 
1333   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1334     // And that glvalue casts are never null.
1335     if (ICE->getValueKind() != VK_RValue)
1336       return false;
1337   }
1338 
1339   return true;
1340 }
1341 
1342 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1343 // have to handle a more broad range of conversions than explicit casts, as they
1344 // handle things like function to ptr-to-function decay etc.
1345 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1346   Expr *E = CE->getSubExpr();
1347   QualType DestTy = CE->getType();
1348   CastKind Kind = CE->getCastKind();
1349 
1350   if (!DestTy->isVoidType())
1351     TestAndClearIgnoreResultAssign();
1352 
1353   // Since almost all cast kinds apply to scalars, this switch doesn't have
1354   // a default case, so the compiler will warn on a missing case.  The cases
1355   // are in the same order as in the CastKind enum.
1356   switch (Kind) {
1357   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1358   case CK_BuiltinFnToFnPtr:
1359     llvm_unreachable("builtin functions are handled elsewhere");
1360 
1361   case CK_LValueBitCast:
1362   case CK_ObjCObjectLValueCast: {
1363     Value *V = EmitLValue(E).getAddress();
1364     V = Builder.CreateBitCast(V,
1365                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1366     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
1367                             CE->getExprLoc());
1368   }
1369 
1370   case CK_CPointerToObjCPointerCast:
1371   case CK_BlockPointerToObjCPointerCast:
1372   case CK_AnyPointerToBlockPointerCast:
1373   case CK_BitCast: {
1374     Value *Src = Visit(const_cast<Expr*>(E));
1375     llvm::Type *SrcTy = Src->getType();
1376     llvm::Type *DstTy = ConvertType(DestTy);
1377     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1378         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1379       llvm_unreachable("wrong cast for pointers in different address spaces"
1380                        "(must be an address space cast)!");
1381     }
1382 
1383     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1384       if (auto PT = DestTy->getAs<PointerType>())
1385         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1386                                       /*MayBeNull=*/true,
1387                                       CodeGenFunction::CFITCK_UnrelatedCast,
1388                                       CE->getLocStart());
1389     }
1390 
1391     return Builder.CreateBitCast(Src, DstTy);
1392   }
1393   case CK_AddressSpaceConversion: {
1394     Value *Src = Visit(const_cast<Expr*>(E));
1395     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1396   }
1397   case CK_AtomicToNonAtomic:
1398   case CK_NonAtomicToAtomic:
1399   case CK_NoOp:
1400   case CK_UserDefinedConversion:
1401     return Visit(const_cast<Expr*>(E));
1402 
1403   case CK_BaseToDerived: {
1404     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1405     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1406 
1407     llvm::Value *V = Visit(E);
1408 
1409     llvm::Value *Derived =
1410       CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1411                                    CE->path_begin(), CE->path_end(),
1412                                    ShouldNullCheckClassCastValue(CE));
1413 
1414     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1415     // performed and the object is not of the derived type.
1416     if (CGF.sanitizePerformTypeCheck())
1417       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1418                         Derived, DestTy->getPointeeType());
1419 
1420     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1421       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
1422                                     /*MayBeNull=*/true,
1423                                     CodeGenFunction::CFITCK_DerivedCast,
1424                                     CE->getLocStart());
1425 
1426     return Derived;
1427   }
1428   case CK_UncheckedDerivedToBase:
1429   case CK_DerivedToBase: {
1430     const CXXRecordDecl *DerivedClassDecl =
1431       E->getType()->getPointeeCXXRecordDecl();
1432     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1433 
1434     return CGF.GetAddressOfBaseClass(
1435         Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
1436         ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
1437   }
1438   case CK_Dynamic: {
1439     Value *V = Visit(const_cast<Expr*>(E));
1440     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1441     return CGF.EmitDynamicCast(V, DCE);
1442   }
1443 
1444   case CK_ArrayToPointerDecay: {
1445     assert(E->getType()->isArrayType() &&
1446            "Array to pointer decay must have array source type!");
1447 
1448     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1449 
1450     // Note that VLA pointers are always decayed, so we don't need to do
1451     // anything here.
1452     if (!E->getType()->isVariableArrayType()) {
1453       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1454       llvm::Type *NewTy = ConvertType(E->getType());
1455       V = CGF.Builder.CreatePointerCast(
1456           V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
1457 
1458       assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
1459              "Expected pointer to array");
1460       V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
1461     }
1462 
1463     // Make sure the array decay ends up being the right type.  This matters if
1464     // the array type was of an incomplete type.
1465     return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
1466   }
1467   case CK_FunctionToPointerDecay:
1468     return EmitLValue(E).getAddress();
1469 
1470   case CK_NullToPointer:
1471     if (MustVisitNullValue(E))
1472       (void) Visit(E);
1473 
1474     return llvm::ConstantPointerNull::get(
1475                                cast<llvm::PointerType>(ConvertType(DestTy)));
1476 
1477   case CK_NullToMemberPointer: {
1478     if (MustVisitNullValue(E))
1479       (void) Visit(E);
1480 
1481     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1482     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1483   }
1484 
1485   case CK_ReinterpretMemberPointer:
1486   case CK_BaseToDerivedMemberPointer:
1487   case CK_DerivedToBaseMemberPointer: {
1488     Value *Src = Visit(E);
1489 
1490     // Note that the AST doesn't distinguish between checked and
1491     // unchecked member pointer conversions, so we always have to
1492     // implement checked conversions here.  This is inefficient when
1493     // actual control flow may be required in order to perform the
1494     // check, which it is for data member pointers (but not member
1495     // function pointers on Itanium and ARM).
1496     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1497   }
1498 
1499   case CK_ARCProduceObject:
1500     return CGF.EmitARCRetainScalarExpr(E);
1501   case CK_ARCConsumeObject:
1502     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1503   case CK_ARCReclaimReturnedObject: {
1504     llvm::Value *value = Visit(E);
1505     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1506     return CGF.EmitObjCConsumeObject(E->getType(), value);
1507   }
1508   case CK_ARCExtendBlockObject:
1509     return CGF.EmitARCExtendBlockObject(E);
1510 
1511   case CK_CopyAndAutoreleaseBlockObject:
1512     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1513 
1514   case CK_FloatingRealToComplex:
1515   case CK_FloatingComplexCast:
1516   case CK_IntegralRealToComplex:
1517   case CK_IntegralComplexCast:
1518   case CK_IntegralComplexToFloatingComplex:
1519   case CK_FloatingComplexToIntegralComplex:
1520   case CK_ConstructorConversion:
1521   case CK_ToUnion:
1522     llvm_unreachable("scalar cast to non-scalar value");
1523 
1524   case CK_LValueToRValue:
1525     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1526     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1527     return Visit(const_cast<Expr*>(E));
1528 
1529   case CK_IntegralToPointer: {
1530     Value *Src = Visit(const_cast<Expr*>(E));
1531 
1532     // First, convert to the correct width so that we control the kind of
1533     // extension.
1534     llvm::Type *MiddleTy = CGF.IntPtrTy;
1535     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1536     llvm::Value* IntResult =
1537       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1538 
1539     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1540   }
1541   case CK_PointerToIntegral:
1542     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1543     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1544 
1545   case CK_ToVoid: {
1546     CGF.EmitIgnoredExpr(E);
1547     return nullptr;
1548   }
1549   case CK_VectorSplat: {
1550     llvm::Type *DstTy = ConvertType(DestTy);
1551     Value *Elt = Visit(const_cast<Expr*>(E));
1552     Elt = EmitScalarConversion(Elt, E->getType(),
1553                                DestTy->getAs<VectorType>()->getElementType());
1554 
1555     // Splat the element across to all elements
1556     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1557     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1558   }
1559 
1560   case CK_IntegralCast:
1561   case CK_IntegralToFloating:
1562   case CK_FloatingToIntegral:
1563   case CK_FloatingCast:
1564     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1565   case CK_IntegralToBoolean:
1566     return EmitIntToBoolConversion(Visit(E));
1567   case CK_PointerToBoolean:
1568     return EmitPointerToBoolConversion(Visit(E));
1569   case CK_FloatingToBoolean:
1570     return EmitFloatToBoolConversion(Visit(E));
1571   case CK_MemberPointerToBoolean: {
1572     llvm::Value *MemPtr = Visit(E);
1573     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1574     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1575   }
1576 
1577   case CK_FloatingComplexToReal:
1578   case CK_IntegralComplexToReal:
1579     return CGF.EmitComplexExpr(E, false, true).first;
1580 
1581   case CK_FloatingComplexToBoolean:
1582   case CK_IntegralComplexToBoolean: {
1583     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1584 
1585     // TODO: kill this function off, inline appropriate case here
1586     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1587   }
1588 
1589   case CK_ZeroToOCLEvent: {
1590     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1591     return llvm::Constant::getNullValue(ConvertType(DestTy));
1592   }
1593 
1594   }
1595 
1596   llvm_unreachable("unknown scalar cast");
1597 }
1598 
1599 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1600   CodeGenFunction::StmtExprEvaluation eval(CGF);
1601   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1602                                                 !E->getType()->isVoidType());
1603   if (!RetAlloca)
1604     return nullptr;
1605   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1606                               E->getExprLoc());
1607 }
1608 
1609 //===----------------------------------------------------------------------===//
1610 //                             Unary Operators
1611 //===----------------------------------------------------------------------===//
1612 
1613 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1614                                            llvm::Value *InVal, bool IsInc) {
1615   BinOpInfo BinOp;
1616   BinOp.LHS = InVal;
1617   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1618   BinOp.Ty = E->getType();
1619   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1620   BinOp.FPContractable = false;
1621   BinOp.E = E;
1622   return BinOp;
1623 }
1624 
1625 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1626     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1627   llvm::Value *Amount =
1628       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1629   StringRef Name = IsInc ? "inc" : "dec";
1630   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1631   case LangOptions::SOB_Defined:
1632     return Builder.CreateAdd(InVal, Amount, Name);
1633   case LangOptions::SOB_Undefined:
1634     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1635       return Builder.CreateNSWAdd(InVal, Amount, Name);
1636     // Fall through.
1637   case LangOptions::SOB_Trapping:
1638     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1639   }
1640   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1641 }
1642 
1643 llvm::Value *
1644 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1645                                            bool isInc, bool isPre) {
1646 
1647   QualType type = E->getSubExpr()->getType();
1648   llvm::PHINode *atomicPHI = nullptr;
1649   llvm::Value *value;
1650   llvm::Value *input;
1651 
1652   int amount = (isInc ? 1 : -1);
1653 
1654   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1655     type = atomicTy->getValueType();
1656     if (isInc && type->isBooleanType()) {
1657       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1658       if (isPre) {
1659         Builder.Insert(new llvm::StoreInst(True,
1660               LV.getAddress(), LV.isVolatileQualified(),
1661               LV.getAlignment().getQuantity(),
1662               llvm::SequentiallyConsistent));
1663         return Builder.getTrue();
1664       }
1665       // For atomic bool increment, we just store true and return it for
1666       // preincrement, do an atomic swap with true for postincrement
1667         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1668             LV.getAddress(), True, llvm::SequentiallyConsistent);
1669     }
1670     // Special case for atomic increment / decrement on integers, emit
1671     // atomicrmw instructions.  We skip this if we want to be doing overflow
1672     // checking, and fall into the slow path with the atomic cmpxchg loop.
1673     if (!type->isBooleanType() && type->isIntegerType() &&
1674         !(type->isUnsignedIntegerType() &&
1675           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1676         CGF.getLangOpts().getSignedOverflowBehavior() !=
1677             LangOptions::SOB_Trapping) {
1678       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1679         llvm::AtomicRMWInst::Sub;
1680       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1681         llvm::Instruction::Sub;
1682       llvm::Value *amt = CGF.EmitToMemory(
1683           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1684       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1685           LV.getAddress(), amt, llvm::SequentiallyConsistent);
1686       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1687     }
1688     value = EmitLoadOfLValue(LV, E->getExprLoc());
1689     input = value;
1690     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1691     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1692     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1693     value = CGF.EmitToMemory(value, type);
1694     Builder.CreateBr(opBB);
1695     Builder.SetInsertPoint(opBB);
1696     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1697     atomicPHI->addIncoming(value, startBB);
1698     value = atomicPHI;
1699   } else {
1700     value = EmitLoadOfLValue(LV, E->getExprLoc());
1701     input = value;
1702   }
1703 
1704   // Special case of integer increment that we have to check first: bool++.
1705   // Due to promotion rules, we get:
1706   //   bool++ -> bool = bool + 1
1707   //          -> bool = (int)bool + 1
1708   //          -> bool = ((int)bool + 1 != 0)
1709   // An interesting aspect of this is that increment is always true.
1710   // Decrement does not have this property.
1711   if (isInc && type->isBooleanType()) {
1712     value = Builder.getTrue();
1713 
1714   // Most common case by far: integer increment.
1715   } else if (type->isIntegerType()) {
1716     // Note that signed integer inc/dec with width less than int can't
1717     // overflow because of promotion rules; we're just eliding a few steps here.
1718     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1719                        CGF.IntTy->getIntegerBitWidth();
1720     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1721       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1722     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1723                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1724       value =
1725           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1726     } else {
1727       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1728       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1729     }
1730 
1731   // Next most common: pointer increment.
1732   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1733     QualType type = ptr->getPointeeType();
1734 
1735     // VLA types don't have constant size.
1736     if (const VariableArrayType *vla
1737           = CGF.getContext().getAsVariableArrayType(type)) {
1738       llvm::Value *numElts = CGF.getVLASize(vla).first;
1739       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1740       if (CGF.getLangOpts().isSignedOverflowDefined())
1741         value = Builder.CreateGEP(value, numElts, "vla.inc");
1742       else
1743         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1744 
1745     // Arithmetic on function pointers (!) is just +-1.
1746     } else if (type->isFunctionType()) {
1747       llvm::Value *amt = Builder.getInt32(amount);
1748 
1749       value = CGF.EmitCastToVoidPtr(value);
1750       if (CGF.getLangOpts().isSignedOverflowDefined())
1751         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1752       else
1753         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1754       value = Builder.CreateBitCast(value, input->getType());
1755 
1756     // For everything else, we can just do a simple increment.
1757     } else {
1758       llvm::Value *amt = Builder.getInt32(amount);
1759       if (CGF.getLangOpts().isSignedOverflowDefined())
1760         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1761       else
1762         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1763     }
1764 
1765   // Vector increment/decrement.
1766   } else if (type->isVectorType()) {
1767     if (type->hasIntegerRepresentation()) {
1768       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1769 
1770       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1771     } else {
1772       value = Builder.CreateFAdd(
1773                   value,
1774                   llvm::ConstantFP::get(value->getType(), amount),
1775                   isInc ? "inc" : "dec");
1776     }
1777 
1778   // Floating point.
1779   } else if (type->isRealFloatingType()) {
1780     // Add the inc/dec to the real part.
1781     llvm::Value *amt;
1782 
1783     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1784       // Another special case: half FP increment should be done via float
1785       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1786         value = Builder.CreateCall(
1787             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1788                                  CGF.CGM.FloatTy),
1789             input, "incdec.conv");
1790       } else {
1791         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1792       }
1793     }
1794 
1795     if (value->getType()->isFloatTy())
1796       amt = llvm::ConstantFP::get(VMContext,
1797                                   llvm::APFloat(static_cast<float>(amount)));
1798     else if (value->getType()->isDoubleTy())
1799       amt = llvm::ConstantFP::get(VMContext,
1800                                   llvm::APFloat(static_cast<double>(amount)));
1801     else {
1802       // Remaining types are either Half or LongDouble.  Convert from float.
1803       llvm::APFloat F(static_cast<float>(amount));
1804       bool ignored;
1805       // Don't use getFloatTypeSemantics because Half isn't
1806       // necessarily represented using the "half" LLVM type.
1807       F.convert(value->getType()->isHalfTy()
1808                     ? CGF.getTarget().getHalfFormat()
1809                     : CGF.getTarget().getLongDoubleFormat(),
1810                 llvm::APFloat::rmTowardZero, &ignored);
1811       amt = llvm::ConstantFP::get(VMContext, F);
1812     }
1813     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1814 
1815     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1816       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1817         value = Builder.CreateCall(
1818             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1819                                  CGF.CGM.FloatTy),
1820             value, "incdec.conv");
1821       } else {
1822         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1823       }
1824     }
1825 
1826   // Objective-C pointer types.
1827   } else {
1828     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1829     value = CGF.EmitCastToVoidPtr(value);
1830 
1831     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1832     if (!isInc) size = -size;
1833     llvm::Value *sizeValue =
1834       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1835 
1836     if (CGF.getLangOpts().isSignedOverflowDefined())
1837       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1838     else
1839       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1840     value = Builder.CreateBitCast(value, input->getType());
1841   }
1842 
1843   if (atomicPHI) {
1844     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1845     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1846     auto Pair = CGF.EmitAtomicCompareExchange(
1847         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1848     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1849     llvm::Value *success = Pair.second;
1850     atomicPHI->addIncoming(old, opBB);
1851     Builder.CreateCondBr(success, contBB, opBB);
1852     Builder.SetInsertPoint(contBB);
1853     return isPre ? value : input;
1854   }
1855 
1856   // Store the updated result through the lvalue.
1857   if (LV.isBitField())
1858     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1859   else
1860     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1861 
1862   // If this is a postinc, return the value read from memory, otherwise use the
1863   // updated value.
1864   return isPre ? value : input;
1865 }
1866 
1867 
1868 
1869 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1870   TestAndClearIgnoreResultAssign();
1871   // Emit unary minus with EmitSub so we handle overflow cases etc.
1872   BinOpInfo BinOp;
1873   BinOp.RHS = Visit(E->getSubExpr());
1874 
1875   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1876     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1877   else
1878     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1879   BinOp.Ty = E->getType();
1880   BinOp.Opcode = BO_Sub;
1881   BinOp.FPContractable = false;
1882   BinOp.E = E;
1883   return EmitSub(BinOp);
1884 }
1885 
1886 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1887   TestAndClearIgnoreResultAssign();
1888   Value *Op = Visit(E->getSubExpr());
1889   return Builder.CreateNot(Op, "neg");
1890 }
1891 
1892 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1893   // Perform vector logical not on comparison with zero vector.
1894   if (E->getType()->isExtVectorType()) {
1895     Value *Oper = Visit(E->getSubExpr());
1896     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1897     Value *Result;
1898     if (Oper->getType()->isFPOrFPVectorTy())
1899       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1900     else
1901       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1902     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1903   }
1904 
1905   // Compare operand to zero.
1906   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1907 
1908   // Invert value.
1909   // TODO: Could dynamically modify easy computations here.  For example, if
1910   // the operand is an icmp ne, turn into icmp eq.
1911   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1912 
1913   // ZExt result to the expr type.
1914   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1915 }
1916 
1917 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1918   // Try folding the offsetof to a constant.
1919   llvm::APSInt Value;
1920   if (E->EvaluateAsInt(Value, CGF.getContext()))
1921     return Builder.getInt(Value);
1922 
1923   // Loop over the components of the offsetof to compute the value.
1924   unsigned n = E->getNumComponents();
1925   llvm::Type* ResultType = ConvertType(E->getType());
1926   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1927   QualType CurrentType = E->getTypeSourceInfo()->getType();
1928   for (unsigned i = 0; i != n; ++i) {
1929     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1930     llvm::Value *Offset = nullptr;
1931     switch (ON.getKind()) {
1932     case OffsetOfExpr::OffsetOfNode::Array: {
1933       // Compute the index
1934       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1935       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1936       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1937       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1938 
1939       // Save the element type
1940       CurrentType =
1941           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1942 
1943       // Compute the element size
1944       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1945           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1946 
1947       // Multiply out to compute the result
1948       Offset = Builder.CreateMul(Idx, ElemSize);
1949       break;
1950     }
1951 
1952     case OffsetOfExpr::OffsetOfNode::Field: {
1953       FieldDecl *MemberDecl = ON.getField();
1954       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1955       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1956 
1957       // Compute the index of the field in its parent.
1958       unsigned i = 0;
1959       // FIXME: It would be nice if we didn't have to loop here!
1960       for (RecordDecl::field_iterator Field = RD->field_begin(),
1961                                       FieldEnd = RD->field_end();
1962            Field != FieldEnd; ++Field, ++i) {
1963         if (*Field == MemberDecl)
1964           break;
1965       }
1966       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1967 
1968       // Compute the offset to the field
1969       int64_t OffsetInt = RL.getFieldOffset(i) /
1970                           CGF.getContext().getCharWidth();
1971       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1972 
1973       // Save the element type.
1974       CurrentType = MemberDecl->getType();
1975       break;
1976     }
1977 
1978     case OffsetOfExpr::OffsetOfNode::Identifier:
1979       llvm_unreachable("dependent __builtin_offsetof");
1980 
1981     case OffsetOfExpr::OffsetOfNode::Base: {
1982       if (ON.getBase()->isVirtual()) {
1983         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1984         continue;
1985       }
1986 
1987       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1988       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1989 
1990       // Save the element type.
1991       CurrentType = ON.getBase()->getType();
1992 
1993       // Compute the offset to the base.
1994       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1995       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1996       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1997       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1998       break;
1999     }
2000     }
2001     Result = Builder.CreateAdd(Result, Offset);
2002   }
2003   return Result;
2004 }
2005 
2006 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2007 /// argument of the sizeof expression as an integer.
2008 Value *
2009 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2010                               const UnaryExprOrTypeTraitExpr *E) {
2011   QualType TypeToSize = E->getTypeOfArgument();
2012   if (E->getKind() == UETT_SizeOf) {
2013     if (const VariableArrayType *VAT =
2014           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2015       if (E->isArgumentType()) {
2016         // sizeof(type) - make sure to emit the VLA size.
2017         CGF.EmitVariablyModifiedType(TypeToSize);
2018       } else {
2019         // C99 6.5.3.4p2: If the argument is an expression of type
2020         // VLA, it is evaluated.
2021         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2022       }
2023 
2024       QualType eltType;
2025       llvm::Value *numElts;
2026       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2027 
2028       llvm::Value *size = numElts;
2029 
2030       // Scale the number of non-VLA elements by the non-VLA element size.
2031       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2032       if (!eltSize.isOne())
2033         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2034 
2035       return size;
2036     }
2037   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2038     auto Alignment =
2039         CGF.getContext()
2040             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2041                 E->getTypeOfArgument()->getPointeeType()))
2042             .getQuantity();
2043     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2044   }
2045 
2046   // If this isn't sizeof(vla), the result must be constant; use the constant
2047   // folding logic so we don't have to duplicate it here.
2048   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2049 }
2050 
2051 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2052   Expr *Op = E->getSubExpr();
2053   if (Op->getType()->isAnyComplexType()) {
2054     // If it's an l-value, load through the appropriate subobject l-value.
2055     // Note that we have to ask E because Op might be an l-value that
2056     // this won't work for, e.g. an Obj-C property.
2057     if (E->isGLValue())
2058       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2059                                   E->getExprLoc()).getScalarVal();
2060 
2061     // Otherwise, calculate and project.
2062     return CGF.EmitComplexExpr(Op, false, true).first;
2063   }
2064 
2065   return Visit(Op);
2066 }
2067 
2068 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2069   Expr *Op = E->getSubExpr();
2070   if (Op->getType()->isAnyComplexType()) {
2071     // If it's an l-value, load through the appropriate subobject l-value.
2072     // Note that we have to ask E because Op might be an l-value that
2073     // this won't work for, e.g. an Obj-C property.
2074     if (Op->isGLValue())
2075       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2076                                   E->getExprLoc()).getScalarVal();
2077 
2078     // Otherwise, calculate and project.
2079     return CGF.EmitComplexExpr(Op, true, false).second;
2080   }
2081 
2082   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2083   // effects are evaluated, but not the actual value.
2084   if (Op->isGLValue())
2085     CGF.EmitLValue(Op);
2086   else
2087     CGF.EmitScalarExpr(Op, true);
2088   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2089 }
2090 
2091 //===----------------------------------------------------------------------===//
2092 //                           Binary Operators
2093 //===----------------------------------------------------------------------===//
2094 
2095 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2096   TestAndClearIgnoreResultAssign();
2097   BinOpInfo Result;
2098   Result.LHS = Visit(E->getLHS());
2099   Result.RHS = Visit(E->getRHS());
2100   Result.Ty  = E->getType();
2101   Result.Opcode = E->getOpcode();
2102   Result.FPContractable = E->isFPContractable();
2103   Result.E = E;
2104   return Result;
2105 }
2106 
2107 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2108                                               const CompoundAssignOperator *E,
2109                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2110                                                    Value *&Result) {
2111   QualType LHSTy = E->getLHS()->getType();
2112   BinOpInfo OpInfo;
2113 
2114   if (E->getComputationResultType()->isAnyComplexType())
2115     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2116 
2117   // Emit the RHS first.  __block variables need to have the rhs evaluated
2118   // first, plus this should improve codegen a little.
2119   OpInfo.RHS = Visit(E->getRHS());
2120   OpInfo.Ty = E->getComputationResultType();
2121   OpInfo.Opcode = E->getOpcode();
2122   OpInfo.FPContractable = false;
2123   OpInfo.E = E;
2124   // Load/convert the LHS.
2125   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2126 
2127   llvm::PHINode *atomicPHI = nullptr;
2128   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2129     QualType type = atomicTy->getValueType();
2130     if (!type->isBooleanType() && type->isIntegerType() &&
2131         !(type->isUnsignedIntegerType() &&
2132           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2133         CGF.getLangOpts().getSignedOverflowBehavior() !=
2134             LangOptions::SOB_Trapping) {
2135       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2136       switch (OpInfo.Opcode) {
2137         // We don't have atomicrmw operands for *, %, /, <<, >>
2138         case BO_MulAssign: case BO_DivAssign:
2139         case BO_RemAssign:
2140         case BO_ShlAssign:
2141         case BO_ShrAssign:
2142           break;
2143         case BO_AddAssign:
2144           aop = llvm::AtomicRMWInst::Add;
2145           break;
2146         case BO_SubAssign:
2147           aop = llvm::AtomicRMWInst::Sub;
2148           break;
2149         case BO_AndAssign:
2150           aop = llvm::AtomicRMWInst::And;
2151           break;
2152         case BO_XorAssign:
2153           aop = llvm::AtomicRMWInst::Xor;
2154           break;
2155         case BO_OrAssign:
2156           aop = llvm::AtomicRMWInst::Or;
2157           break;
2158         default:
2159           llvm_unreachable("Invalid compound assignment type");
2160       }
2161       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2162         llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
2163               E->getRHS()->getType(), LHSTy), LHSTy);
2164         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
2165             llvm::SequentiallyConsistent);
2166         return LHSLV;
2167       }
2168     }
2169     // FIXME: For floating point types, we should be saving and restoring the
2170     // floating point environment in the loop.
2171     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2172     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2173     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2174     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2175     Builder.CreateBr(opBB);
2176     Builder.SetInsertPoint(opBB);
2177     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2178     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2179     OpInfo.LHS = atomicPHI;
2180   }
2181   else
2182     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2183 
2184   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2185                                     E->getComputationLHSType());
2186 
2187   // Expand the binary operator.
2188   Result = (this->*Func)(OpInfo);
2189 
2190   // Convert the result back to the LHS type.
2191   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2192 
2193   if (atomicPHI) {
2194     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2195     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2196     auto Pair = CGF.EmitAtomicCompareExchange(
2197         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2198     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2199     llvm::Value *success = Pair.second;
2200     atomicPHI->addIncoming(old, opBB);
2201     Builder.CreateCondBr(success, contBB, opBB);
2202     Builder.SetInsertPoint(contBB);
2203     return LHSLV;
2204   }
2205 
2206   // Store the result value into the LHS lvalue. Bit-fields are handled
2207   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2208   // 'An assignment expression has the value of the left operand after the
2209   // assignment...'.
2210   if (LHSLV.isBitField())
2211     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2212   else
2213     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2214 
2215   return LHSLV;
2216 }
2217 
2218 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2219                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2220   bool Ignore = TestAndClearIgnoreResultAssign();
2221   Value *RHS;
2222   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2223 
2224   // If the result is clearly ignored, return now.
2225   if (Ignore)
2226     return nullptr;
2227 
2228   // The result of an assignment in C is the assigned r-value.
2229   if (!CGF.getLangOpts().CPlusPlus)
2230     return RHS;
2231 
2232   // If the lvalue is non-volatile, return the computed value of the assignment.
2233   if (!LHS.isVolatileQualified())
2234     return RHS;
2235 
2236   // Otherwise, reload the value.
2237   return EmitLoadOfLValue(LHS, E->getExprLoc());
2238 }
2239 
2240 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2241     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2242   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2243 
2244   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2245     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2246                                     SanitizerKind::IntegerDivideByZero));
2247   }
2248 
2249   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2250       Ops.Ty->hasSignedIntegerRepresentation()) {
2251     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2252 
2253     llvm::Value *IntMin =
2254       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2255     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2256 
2257     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2258     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2259     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2260     Checks.push_back(
2261         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2262   }
2263 
2264   if (Checks.size() > 0)
2265     EmitBinOpCheck(Checks, Ops);
2266 }
2267 
2268 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2269   {
2270     CodeGenFunction::SanitizerScope SanScope(&CGF);
2271     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2272          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2273         Ops.Ty->isIntegerType()) {
2274       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2275       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2276     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2277                Ops.Ty->isRealFloatingType()) {
2278       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2279       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2280       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2281                      Ops);
2282     }
2283   }
2284 
2285   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2286     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2287     if (CGF.getLangOpts().OpenCL) {
2288       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2289       llvm::Type *ValTy = Val->getType();
2290       if (ValTy->isFloatTy() ||
2291           (isa<llvm::VectorType>(ValTy) &&
2292            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2293         CGF.SetFPAccuracy(Val, 2.5);
2294     }
2295     return Val;
2296   }
2297   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2298     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2299   else
2300     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2301 }
2302 
2303 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2304   // Rem in C can't be a floating point type: C99 6.5.5p2.
2305   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2306     CodeGenFunction::SanitizerScope SanScope(&CGF);
2307     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2308 
2309     if (Ops.Ty->isIntegerType())
2310       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2311   }
2312 
2313   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2314     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2315   else
2316     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2317 }
2318 
2319 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2320   unsigned IID;
2321   unsigned OpID = 0;
2322 
2323   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2324   switch (Ops.Opcode) {
2325   case BO_Add:
2326   case BO_AddAssign:
2327     OpID = 1;
2328     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2329                      llvm::Intrinsic::uadd_with_overflow;
2330     break;
2331   case BO_Sub:
2332   case BO_SubAssign:
2333     OpID = 2;
2334     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2335                      llvm::Intrinsic::usub_with_overflow;
2336     break;
2337   case BO_Mul:
2338   case BO_MulAssign:
2339     OpID = 3;
2340     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2341                      llvm::Intrinsic::umul_with_overflow;
2342     break;
2343   default:
2344     llvm_unreachable("Unsupported operation for overflow detection");
2345   }
2346   OpID <<= 1;
2347   if (isSigned)
2348     OpID |= 1;
2349 
2350   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2351 
2352   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2353 
2354   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2355   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2356   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2357 
2358   // Handle overflow with llvm.trap if no custom handler has been specified.
2359   const std::string *handlerName =
2360     &CGF.getLangOpts().OverflowHandler;
2361   if (handlerName->empty()) {
2362     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2363     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2364     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2365       CodeGenFunction::SanitizerScope SanScope(&CGF);
2366       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2367       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2368                               : SanitizerKind::UnsignedIntegerOverflow;
2369       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2370     } else
2371       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2372     return result;
2373   }
2374 
2375   // Branch in case of overflow.
2376   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2377   llvm::Function::iterator insertPt = initialBB;
2378   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2379                                                       std::next(insertPt));
2380   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2381 
2382   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2383 
2384   // If an overflow handler is set, then we want to call it and then use its
2385   // result, if it returns.
2386   Builder.SetInsertPoint(overflowBB);
2387 
2388   // Get the overflow handler.
2389   llvm::Type *Int8Ty = CGF.Int8Ty;
2390   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2391   llvm::FunctionType *handlerTy =
2392       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2393   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2394 
2395   // Sign extend the args to 64-bit, so that we can use the same handler for
2396   // all types of overflow.
2397   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2398   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2399 
2400   // Call the handler with the two arguments, the operation, and the size of
2401   // the result.
2402   llvm::Value *handlerArgs[] = {
2403     lhs,
2404     rhs,
2405     Builder.getInt8(OpID),
2406     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2407   };
2408   llvm::Value *handlerResult =
2409     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2410 
2411   // Truncate the result back to the desired size.
2412   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2413   Builder.CreateBr(continueBB);
2414 
2415   Builder.SetInsertPoint(continueBB);
2416   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2417   phi->addIncoming(result, initialBB);
2418   phi->addIncoming(handlerResult, overflowBB);
2419 
2420   return phi;
2421 }
2422 
2423 /// Emit pointer + index arithmetic.
2424 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2425                                     const BinOpInfo &op,
2426                                     bool isSubtraction) {
2427   // Must have binary (not unary) expr here.  Unary pointer
2428   // increment/decrement doesn't use this path.
2429   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2430 
2431   Value *pointer = op.LHS;
2432   Expr *pointerOperand = expr->getLHS();
2433   Value *index = op.RHS;
2434   Expr *indexOperand = expr->getRHS();
2435 
2436   // In a subtraction, the LHS is always the pointer.
2437   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2438     std::swap(pointer, index);
2439     std::swap(pointerOperand, indexOperand);
2440   }
2441 
2442   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2443   if (width != CGF.PointerWidthInBits) {
2444     // Zero-extend or sign-extend the pointer value according to
2445     // whether the index is signed or not.
2446     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2447     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2448                                       "idx.ext");
2449   }
2450 
2451   // If this is subtraction, negate the index.
2452   if (isSubtraction)
2453     index = CGF.Builder.CreateNeg(index, "idx.neg");
2454 
2455   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2456     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2457                         /*Accessed*/ false);
2458 
2459   const PointerType *pointerType
2460     = pointerOperand->getType()->getAs<PointerType>();
2461   if (!pointerType) {
2462     QualType objectType = pointerOperand->getType()
2463                                         ->castAs<ObjCObjectPointerType>()
2464                                         ->getPointeeType();
2465     llvm::Value *objectSize
2466       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2467 
2468     index = CGF.Builder.CreateMul(index, objectSize);
2469 
2470     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2471     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2472     return CGF.Builder.CreateBitCast(result, pointer->getType());
2473   }
2474 
2475   QualType elementType = pointerType->getPointeeType();
2476   if (const VariableArrayType *vla
2477         = CGF.getContext().getAsVariableArrayType(elementType)) {
2478     // The element count here is the total number of non-VLA elements.
2479     llvm::Value *numElements = CGF.getVLASize(vla).first;
2480 
2481     // Effectively, the multiply by the VLA size is part of the GEP.
2482     // GEP indexes are signed, and scaling an index isn't permitted to
2483     // signed-overflow, so we use the same semantics for our explicit
2484     // multiply.  We suppress this if overflow is not undefined behavior.
2485     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2486       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2487       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2488     } else {
2489       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2490       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2491     }
2492     return pointer;
2493   }
2494 
2495   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2496   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2497   // future proof.
2498   if (elementType->isVoidType() || elementType->isFunctionType()) {
2499     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2500     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2501     return CGF.Builder.CreateBitCast(result, pointer->getType());
2502   }
2503 
2504   if (CGF.getLangOpts().isSignedOverflowDefined())
2505     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2506 
2507   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2508 }
2509 
2510 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2511 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2512 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2513 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2514 // efficient operations.
2515 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2516                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2517                            bool negMul, bool negAdd) {
2518   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2519 
2520   Value *MulOp0 = MulOp->getOperand(0);
2521   Value *MulOp1 = MulOp->getOperand(1);
2522   if (negMul) {
2523     MulOp0 =
2524       Builder.CreateFSub(
2525         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2526         "neg");
2527   } else if (negAdd) {
2528     Addend =
2529       Builder.CreateFSub(
2530         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2531         "neg");
2532   }
2533 
2534   Value *FMulAdd = Builder.CreateCall(
2535       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2536       {MulOp0, MulOp1, Addend});
2537    MulOp->eraseFromParent();
2538 
2539    return FMulAdd;
2540 }
2541 
2542 // Check whether it would be legal to emit an fmuladd intrinsic call to
2543 // represent op and if so, build the fmuladd.
2544 //
2545 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2546 // Does NOT check the type of the operation - it's assumed that this function
2547 // will be called from contexts where it's known that the type is contractable.
2548 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2549                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2550                          bool isSub=false) {
2551 
2552   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2553           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2554          "Only fadd/fsub can be the root of an fmuladd.");
2555 
2556   // Check whether this op is marked as fusable.
2557   if (!op.FPContractable)
2558     return nullptr;
2559 
2560   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2561   // either disabled, or handled entirely by the LLVM backend).
2562   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2563     return nullptr;
2564 
2565   // We have a potentially fusable op. Look for a mul on one of the operands.
2566   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2567     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2568       assert(LHSBinOp->getNumUses() == 0 &&
2569              "Operations with multiple uses shouldn't be contracted.");
2570       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2571     }
2572   } else if (llvm::BinaryOperator* RHSBinOp =
2573                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2574     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2575       assert(RHSBinOp->getNumUses() == 0 &&
2576              "Operations with multiple uses shouldn't be contracted.");
2577       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2578     }
2579   }
2580 
2581   return nullptr;
2582 }
2583 
2584 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2585   if (op.LHS->getType()->isPointerTy() ||
2586       op.RHS->getType()->isPointerTy())
2587     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2588 
2589   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2590     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2591     case LangOptions::SOB_Defined:
2592       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2593     case LangOptions::SOB_Undefined:
2594       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2595         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2596       // Fall through.
2597     case LangOptions::SOB_Trapping:
2598       return EmitOverflowCheckedBinOp(op);
2599     }
2600   }
2601 
2602   if (op.Ty->isUnsignedIntegerType() &&
2603       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2604     return EmitOverflowCheckedBinOp(op);
2605 
2606   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2607     // Try to form an fmuladd.
2608     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2609       return FMulAdd;
2610 
2611     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2612   }
2613 
2614   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2615 }
2616 
2617 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2618   // The LHS is always a pointer if either side is.
2619   if (!op.LHS->getType()->isPointerTy()) {
2620     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2621       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2622       case LangOptions::SOB_Defined:
2623         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2624       case LangOptions::SOB_Undefined:
2625         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2626           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2627         // Fall through.
2628       case LangOptions::SOB_Trapping:
2629         return EmitOverflowCheckedBinOp(op);
2630       }
2631     }
2632 
2633     if (op.Ty->isUnsignedIntegerType() &&
2634         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2635       return EmitOverflowCheckedBinOp(op);
2636 
2637     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2638       // Try to form an fmuladd.
2639       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2640         return FMulAdd;
2641       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2642     }
2643 
2644     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2645   }
2646 
2647   // If the RHS is not a pointer, then we have normal pointer
2648   // arithmetic.
2649   if (!op.RHS->getType()->isPointerTy())
2650     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2651 
2652   // Otherwise, this is a pointer subtraction.
2653 
2654   // Do the raw subtraction part.
2655   llvm::Value *LHS
2656     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2657   llvm::Value *RHS
2658     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2659   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2660 
2661   // Okay, figure out the element size.
2662   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2663   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2664 
2665   llvm::Value *divisor = nullptr;
2666 
2667   // For a variable-length array, this is going to be non-constant.
2668   if (const VariableArrayType *vla
2669         = CGF.getContext().getAsVariableArrayType(elementType)) {
2670     llvm::Value *numElements;
2671     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2672 
2673     divisor = numElements;
2674 
2675     // Scale the number of non-VLA elements by the non-VLA element size.
2676     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2677     if (!eltSize.isOne())
2678       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2679 
2680   // For everything elese, we can just compute it, safe in the
2681   // assumption that Sema won't let anything through that we can't
2682   // safely compute the size of.
2683   } else {
2684     CharUnits elementSize;
2685     // Handle GCC extension for pointer arithmetic on void* and
2686     // function pointer types.
2687     if (elementType->isVoidType() || elementType->isFunctionType())
2688       elementSize = CharUnits::One();
2689     else
2690       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2691 
2692     // Don't even emit the divide for element size of 1.
2693     if (elementSize.isOne())
2694       return diffInChars;
2695 
2696     divisor = CGF.CGM.getSize(elementSize);
2697   }
2698 
2699   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2700   // pointer difference in C is only defined in the case where both operands
2701   // are pointing to elements of an array.
2702   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2703 }
2704 
2705 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2706   llvm::IntegerType *Ty;
2707   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2708     Ty = cast<llvm::IntegerType>(VT->getElementType());
2709   else
2710     Ty = cast<llvm::IntegerType>(LHS->getType());
2711   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2712 }
2713 
2714 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2715   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2716   // RHS to the same size as the LHS.
2717   Value *RHS = Ops.RHS;
2718   if (Ops.LHS->getType() != RHS->getType())
2719     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2720 
2721   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2722                       Ops.Ty->hasSignedIntegerRepresentation();
2723   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2724   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2725   if (CGF.getLangOpts().OpenCL)
2726     RHS =
2727         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2728   else if ((SanitizeBase || SanitizeExponent) &&
2729            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2730     CodeGenFunction::SanitizerScope SanScope(&CGF);
2731     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2732     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2733     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2734 
2735     if (SanitizeExponent) {
2736       Checks.push_back(
2737           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2738     }
2739 
2740     if (SanitizeBase) {
2741       // Check whether we are shifting any non-zero bits off the top of the
2742       // integer. We only emit this check if exponent is valid - otherwise
2743       // instructions below will have undefined behavior themselves.
2744       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2745       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2746       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2747       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2748       CGF.EmitBlock(CheckShiftBase);
2749       llvm::Value *BitsShiftedOff =
2750         Builder.CreateLShr(Ops.LHS,
2751                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2752                                              /*NUW*/true, /*NSW*/true),
2753                            "shl.check");
2754       if (CGF.getLangOpts().CPlusPlus) {
2755         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2756         // Under C++11's rules, shifting a 1 bit into the sign bit is
2757         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2758         // define signed left shifts, so we use the C99 and C++11 rules there).
2759         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2760         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2761       }
2762       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2763       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2764       CGF.EmitBlock(Cont);
2765       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2766       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2767       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2768       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2769     }
2770 
2771     assert(!Checks.empty());
2772     EmitBinOpCheck(Checks, Ops);
2773   }
2774 
2775   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2776 }
2777 
2778 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2779   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2780   // RHS to the same size as the LHS.
2781   Value *RHS = Ops.RHS;
2782   if (Ops.LHS->getType() != RHS->getType())
2783     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2784 
2785   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2786   if (CGF.getLangOpts().OpenCL)
2787     RHS =
2788         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2789   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2790            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2791     CodeGenFunction::SanitizerScope SanScope(&CGF);
2792     llvm::Value *Valid =
2793         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2794     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2795   }
2796 
2797   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2798     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2799   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2800 }
2801 
2802 enum IntrinsicType { VCMPEQ, VCMPGT };
2803 // return corresponding comparison intrinsic for given vector type
2804 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2805                                         BuiltinType::Kind ElemKind) {
2806   switch (ElemKind) {
2807   default: llvm_unreachable("unexpected element type");
2808   case BuiltinType::Char_U:
2809   case BuiltinType::UChar:
2810     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2811                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2812   case BuiltinType::Char_S:
2813   case BuiltinType::SChar:
2814     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2815                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2816   case BuiltinType::UShort:
2817     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2818                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2819   case BuiltinType::Short:
2820     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2821                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2822   case BuiltinType::UInt:
2823   case BuiltinType::ULong:
2824     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2825                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2826   case BuiltinType::Int:
2827   case BuiltinType::Long:
2828     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2829                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2830   case BuiltinType::Float:
2831     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2832                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2833   }
2834 }
2835 
2836 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2837                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2838   TestAndClearIgnoreResultAssign();
2839   Value *Result;
2840   QualType LHSTy = E->getLHS()->getType();
2841   QualType RHSTy = E->getRHS()->getType();
2842   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2843     assert(E->getOpcode() == BO_EQ ||
2844            E->getOpcode() == BO_NE);
2845     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2846     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2847     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2848                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2849   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2850     Value *LHS = Visit(E->getLHS());
2851     Value *RHS = Visit(E->getRHS());
2852 
2853     // If AltiVec, the comparison results in a numeric type, so we use
2854     // intrinsics comparing vectors and giving 0 or 1 as a result
2855     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2856       // constants for mapping CR6 register bits to predicate result
2857       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2858 
2859       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2860 
2861       // in several cases vector arguments order will be reversed
2862       Value *FirstVecArg = LHS,
2863             *SecondVecArg = RHS;
2864 
2865       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2866       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2867       BuiltinType::Kind ElementKind = BTy->getKind();
2868 
2869       switch(E->getOpcode()) {
2870       default: llvm_unreachable("is not a comparison operation");
2871       case BO_EQ:
2872         CR6 = CR6_LT;
2873         ID = GetIntrinsic(VCMPEQ, ElementKind);
2874         break;
2875       case BO_NE:
2876         CR6 = CR6_EQ;
2877         ID = GetIntrinsic(VCMPEQ, ElementKind);
2878         break;
2879       case BO_LT:
2880         CR6 = CR6_LT;
2881         ID = GetIntrinsic(VCMPGT, ElementKind);
2882         std::swap(FirstVecArg, SecondVecArg);
2883         break;
2884       case BO_GT:
2885         CR6 = CR6_LT;
2886         ID = GetIntrinsic(VCMPGT, ElementKind);
2887         break;
2888       case BO_LE:
2889         if (ElementKind == BuiltinType::Float) {
2890           CR6 = CR6_LT;
2891           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2892           std::swap(FirstVecArg, SecondVecArg);
2893         }
2894         else {
2895           CR6 = CR6_EQ;
2896           ID = GetIntrinsic(VCMPGT, ElementKind);
2897         }
2898         break;
2899       case BO_GE:
2900         if (ElementKind == BuiltinType::Float) {
2901           CR6 = CR6_LT;
2902           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2903         }
2904         else {
2905           CR6 = CR6_EQ;
2906           ID = GetIntrinsic(VCMPGT, ElementKind);
2907           std::swap(FirstVecArg, SecondVecArg);
2908         }
2909         break;
2910       }
2911 
2912       Value *CR6Param = Builder.getInt32(CR6);
2913       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2914       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2915       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2916     }
2917 
2918     if (LHS->getType()->isFPOrFPVectorTy()) {
2919       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2920                                   LHS, RHS, "cmp");
2921     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2922       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2923                                   LHS, RHS, "cmp");
2924     } else {
2925       // Unsigned integers and pointers.
2926       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2927                                   LHS, RHS, "cmp");
2928     }
2929 
2930     // If this is a vector comparison, sign extend the result to the appropriate
2931     // vector integer type and return it (don't convert to bool).
2932     if (LHSTy->isVectorType())
2933       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2934 
2935   } else {
2936     // Complex Comparison: can only be an equality comparison.
2937     CodeGenFunction::ComplexPairTy LHS, RHS;
2938     QualType CETy;
2939     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2940       LHS = CGF.EmitComplexExpr(E->getLHS());
2941       CETy = CTy->getElementType();
2942     } else {
2943       LHS.first = Visit(E->getLHS());
2944       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2945       CETy = LHSTy;
2946     }
2947     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2948       RHS = CGF.EmitComplexExpr(E->getRHS());
2949       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2950                                                      CTy->getElementType()) &&
2951              "The element types must always match.");
2952       (void)CTy;
2953     } else {
2954       RHS.first = Visit(E->getRHS());
2955       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2956       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2957              "The element types must always match.");
2958     }
2959 
2960     Value *ResultR, *ResultI;
2961     if (CETy->isRealFloatingType()) {
2962       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2963                                    LHS.first, RHS.first, "cmp.r");
2964       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2965                                    LHS.second, RHS.second, "cmp.i");
2966     } else {
2967       // Complex comparisons can only be equality comparisons.  As such, signed
2968       // and unsigned opcodes are the same.
2969       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2970                                    LHS.first, RHS.first, "cmp.r");
2971       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2972                                    LHS.second, RHS.second, "cmp.i");
2973     }
2974 
2975     if (E->getOpcode() == BO_EQ) {
2976       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2977     } else {
2978       assert(E->getOpcode() == BO_NE &&
2979              "Complex comparison other than == or != ?");
2980       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2981     }
2982   }
2983 
2984   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2985 }
2986 
2987 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2988   bool Ignore = TestAndClearIgnoreResultAssign();
2989 
2990   Value *RHS;
2991   LValue LHS;
2992 
2993   switch (E->getLHS()->getType().getObjCLifetime()) {
2994   case Qualifiers::OCL_Strong:
2995     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2996     break;
2997 
2998   case Qualifiers::OCL_Autoreleasing:
2999     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3000     break;
3001 
3002   case Qualifiers::OCL_Weak:
3003     RHS = Visit(E->getRHS());
3004     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3005     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3006     break;
3007 
3008   // No reason to do any of these differently.
3009   case Qualifiers::OCL_None:
3010   case Qualifiers::OCL_ExplicitNone:
3011     // __block variables need to have the rhs evaluated first, plus
3012     // this should improve codegen just a little.
3013     RHS = Visit(E->getRHS());
3014     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3015 
3016     // Store the value into the LHS.  Bit-fields are handled specially
3017     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3018     // 'An assignment expression has the value of the left operand after
3019     // the assignment...'.
3020     if (LHS.isBitField())
3021       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3022     else
3023       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3024   }
3025 
3026   // If the result is clearly ignored, return now.
3027   if (Ignore)
3028     return nullptr;
3029 
3030   // The result of an assignment in C is the assigned r-value.
3031   if (!CGF.getLangOpts().CPlusPlus)
3032     return RHS;
3033 
3034   // If the lvalue is non-volatile, return the computed value of the assignment.
3035   if (!LHS.isVolatileQualified())
3036     return RHS;
3037 
3038   // Otherwise, reload the value.
3039   return EmitLoadOfLValue(LHS, E->getExprLoc());
3040 }
3041 
3042 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3043   // Perform vector logical and on comparisons with zero vectors.
3044   if (E->getType()->isVectorType()) {
3045     CGF.incrementProfileCounter(E);
3046 
3047     Value *LHS = Visit(E->getLHS());
3048     Value *RHS = Visit(E->getRHS());
3049     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3050     if (LHS->getType()->isFPOrFPVectorTy()) {
3051       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3052       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3053     } else {
3054       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3055       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3056     }
3057     Value *And = Builder.CreateAnd(LHS, RHS);
3058     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3059   }
3060 
3061   llvm::Type *ResTy = ConvertType(E->getType());
3062 
3063   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3064   // If we have 1 && X, just emit X without inserting the control flow.
3065   bool LHSCondVal;
3066   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3067     if (LHSCondVal) { // If we have 1 && X, just emit X.
3068       CGF.incrementProfileCounter(E);
3069 
3070       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3071       // ZExt result to int or bool.
3072       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3073     }
3074 
3075     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3076     if (!CGF.ContainsLabel(E->getRHS()))
3077       return llvm::Constant::getNullValue(ResTy);
3078   }
3079 
3080   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3081   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3082 
3083   CodeGenFunction::ConditionalEvaluation eval(CGF);
3084 
3085   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3086   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3087                            CGF.getProfileCount(E->getRHS()));
3088 
3089   // Any edges into the ContBlock are now from an (indeterminate number of)
3090   // edges from this first condition.  All of these values will be false.  Start
3091   // setting up the PHI node in the Cont Block for this.
3092   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3093                                             "", ContBlock);
3094   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3095        PI != PE; ++PI)
3096     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3097 
3098   eval.begin(CGF);
3099   CGF.EmitBlock(RHSBlock);
3100   CGF.incrementProfileCounter(E);
3101   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3102   eval.end(CGF);
3103 
3104   // Reaquire the RHS block, as there may be subblocks inserted.
3105   RHSBlock = Builder.GetInsertBlock();
3106 
3107   // Emit an unconditional branch from this block to ContBlock.
3108   {
3109     // There is no need to emit line number for unconditional branch.
3110     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3111     CGF.EmitBlock(ContBlock);
3112   }
3113   // Insert an entry into the phi node for the edge with the value of RHSCond.
3114   PN->addIncoming(RHSCond, RHSBlock);
3115 
3116   // ZExt result to int.
3117   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3118 }
3119 
3120 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3121   // Perform vector logical or on comparisons with zero vectors.
3122   if (E->getType()->isVectorType()) {
3123     CGF.incrementProfileCounter(E);
3124 
3125     Value *LHS = Visit(E->getLHS());
3126     Value *RHS = Visit(E->getRHS());
3127     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3128     if (LHS->getType()->isFPOrFPVectorTy()) {
3129       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3130       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3131     } else {
3132       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3133       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3134     }
3135     Value *Or = Builder.CreateOr(LHS, RHS);
3136     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3137   }
3138 
3139   llvm::Type *ResTy = ConvertType(E->getType());
3140 
3141   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3142   // If we have 0 || X, just emit X without inserting the control flow.
3143   bool LHSCondVal;
3144   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3145     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3146       CGF.incrementProfileCounter(E);
3147 
3148       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3149       // ZExt result to int or bool.
3150       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3151     }
3152 
3153     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3154     if (!CGF.ContainsLabel(E->getRHS()))
3155       return llvm::ConstantInt::get(ResTy, 1);
3156   }
3157 
3158   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3159   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3160 
3161   CodeGenFunction::ConditionalEvaluation eval(CGF);
3162 
3163   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3164   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3165                            CGF.getCurrentProfileCount() -
3166                                CGF.getProfileCount(E->getRHS()));
3167 
3168   // Any edges into the ContBlock are now from an (indeterminate number of)
3169   // edges from this first condition.  All of these values will be true.  Start
3170   // setting up the PHI node in the Cont Block for this.
3171   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3172                                             "", ContBlock);
3173   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3174        PI != PE; ++PI)
3175     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3176 
3177   eval.begin(CGF);
3178 
3179   // Emit the RHS condition as a bool value.
3180   CGF.EmitBlock(RHSBlock);
3181   CGF.incrementProfileCounter(E);
3182   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3183 
3184   eval.end(CGF);
3185 
3186   // Reaquire the RHS block, as there may be subblocks inserted.
3187   RHSBlock = Builder.GetInsertBlock();
3188 
3189   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3190   // into the phi node for the edge with the value of RHSCond.
3191   CGF.EmitBlock(ContBlock);
3192   PN->addIncoming(RHSCond, RHSBlock);
3193 
3194   // ZExt result to int.
3195   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3196 }
3197 
3198 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3199   CGF.EmitIgnoredExpr(E->getLHS());
3200   CGF.EnsureInsertPoint();
3201   return Visit(E->getRHS());
3202 }
3203 
3204 //===----------------------------------------------------------------------===//
3205 //                             Other Operators
3206 //===----------------------------------------------------------------------===//
3207 
3208 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3209 /// expression is cheap enough and side-effect-free enough to evaluate
3210 /// unconditionally instead of conditionally.  This is used to convert control
3211 /// flow into selects in some cases.
3212 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3213                                                    CodeGenFunction &CGF) {
3214   // Anything that is an integer or floating point constant is fine.
3215   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3216 
3217   // Even non-volatile automatic variables can't be evaluated unconditionally.
3218   // Referencing a thread_local may cause non-trivial initialization work to
3219   // occur. If we're inside a lambda and one of the variables is from the scope
3220   // outside the lambda, that function may have returned already. Reading its
3221   // locals is a bad idea. Also, these reads may introduce races there didn't
3222   // exist in the source-level program.
3223 }
3224 
3225 
3226 Value *ScalarExprEmitter::
3227 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3228   TestAndClearIgnoreResultAssign();
3229 
3230   // Bind the common expression if necessary.
3231   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3232 
3233   Expr *condExpr = E->getCond();
3234   Expr *lhsExpr = E->getTrueExpr();
3235   Expr *rhsExpr = E->getFalseExpr();
3236 
3237   // If the condition constant folds and can be elided, try to avoid emitting
3238   // the condition and the dead arm.
3239   bool CondExprBool;
3240   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3241     Expr *live = lhsExpr, *dead = rhsExpr;
3242     if (!CondExprBool) std::swap(live, dead);
3243 
3244     // If the dead side doesn't have labels we need, just emit the Live part.
3245     if (!CGF.ContainsLabel(dead)) {
3246       if (CondExprBool)
3247         CGF.incrementProfileCounter(E);
3248       Value *Result = Visit(live);
3249 
3250       // If the live part is a throw expression, it acts like it has a void
3251       // type, so evaluating it returns a null Value*.  However, a conditional
3252       // with non-void type must return a non-null Value*.
3253       if (!Result && !E->getType()->isVoidType())
3254         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3255 
3256       return Result;
3257     }
3258   }
3259 
3260   // OpenCL: If the condition is a vector, we can treat this condition like
3261   // the select function.
3262   if (CGF.getLangOpts().OpenCL
3263       && condExpr->getType()->isVectorType()) {
3264     CGF.incrementProfileCounter(E);
3265 
3266     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3267     llvm::Value *LHS = Visit(lhsExpr);
3268     llvm::Value *RHS = Visit(rhsExpr);
3269 
3270     llvm::Type *condType = ConvertType(condExpr->getType());
3271     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3272 
3273     unsigned numElem = vecTy->getNumElements();
3274     llvm::Type *elemType = vecTy->getElementType();
3275 
3276     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3277     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3278     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3279                                           llvm::VectorType::get(elemType,
3280                                                                 numElem),
3281                                           "sext");
3282     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3283 
3284     // Cast float to int to perform ANDs if necessary.
3285     llvm::Value *RHSTmp = RHS;
3286     llvm::Value *LHSTmp = LHS;
3287     bool wasCast = false;
3288     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3289     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3290       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3291       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3292       wasCast = true;
3293     }
3294 
3295     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3296     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3297     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3298     if (wasCast)
3299       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3300 
3301     return tmp5;
3302   }
3303 
3304   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3305   // select instead of as control flow.  We can only do this if it is cheap and
3306   // safe to evaluate the LHS and RHS unconditionally.
3307   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3308       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3309     CGF.incrementProfileCounter(E);
3310 
3311     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3312     llvm::Value *LHS = Visit(lhsExpr);
3313     llvm::Value *RHS = Visit(rhsExpr);
3314     if (!LHS) {
3315       // If the conditional has void type, make sure we return a null Value*.
3316       assert(!RHS && "LHS and RHS types must match");
3317       return nullptr;
3318     }
3319     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3320   }
3321 
3322   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3323   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3324   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3325 
3326   CodeGenFunction::ConditionalEvaluation eval(CGF);
3327   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3328                            CGF.getProfileCount(lhsExpr));
3329 
3330   CGF.EmitBlock(LHSBlock);
3331   CGF.incrementProfileCounter(E);
3332   eval.begin(CGF);
3333   Value *LHS = Visit(lhsExpr);
3334   eval.end(CGF);
3335 
3336   LHSBlock = Builder.GetInsertBlock();
3337   Builder.CreateBr(ContBlock);
3338 
3339   CGF.EmitBlock(RHSBlock);
3340   eval.begin(CGF);
3341   Value *RHS = Visit(rhsExpr);
3342   eval.end(CGF);
3343 
3344   RHSBlock = Builder.GetInsertBlock();
3345   CGF.EmitBlock(ContBlock);
3346 
3347   // If the LHS or RHS is a throw expression, it will be legitimately null.
3348   if (!LHS)
3349     return RHS;
3350   if (!RHS)
3351     return LHS;
3352 
3353   // Create a PHI node for the real part.
3354   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3355   PN->addIncoming(LHS, LHSBlock);
3356   PN->addIncoming(RHS, RHSBlock);
3357   return PN;
3358 }
3359 
3360 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3361   return Visit(E->getChosenSubExpr());
3362 }
3363 
3364 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3365   QualType Ty = VE->getType();
3366 
3367   if (Ty->isVariablyModifiedType())
3368     CGF.EmitVariablyModifiedType(Ty);
3369 
3370   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3371   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3372   llvm::Type *ArgTy = ConvertType(VE->getType());
3373 
3374   // If EmitVAArg fails, we fall back to the LLVM instruction.
3375   if (!ArgPtr)
3376     return Builder.CreateVAArg(ArgValue, ArgTy);
3377 
3378   // FIXME Volatility.
3379   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3380 
3381   // If EmitVAArg promoted the type, we must truncate it.
3382   if (ArgTy != Val->getType()) {
3383     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3384       Val = Builder.CreateIntToPtr(Val, ArgTy);
3385     else
3386       Val = Builder.CreateTrunc(Val, ArgTy);
3387   }
3388 
3389   return Val;
3390 }
3391 
3392 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3393   return CGF.EmitBlockLiteral(block);
3394 }
3395 
3396 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3397   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3398   llvm::Type *DstTy = ConvertType(E->getType());
3399 
3400   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3401   // a shuffle vector instead of a bitcast.
3402   llvm::Type *SrcTy = Src->getType();
3403   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3404     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3405     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3406     if ((numElementsDst == 3 && numElementsSrc == 4)
3407         || (numElementsDst == 4 && numElementsSrc == 3)) {
3408 
3409 
3410       // In the case of going from int4->float3, a bitcast is needed before
3411       // doing a shuffle.
3412       llvm::Type *srcElemTy =
3413       cast<llvm::VectorType>(SrcTy)->getElementType();
3414       llvm::Type *dstElemTy =
3415       cast<llvm::VectorType>(DstTy)->getElementType();
3416 
3417       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3418           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3419         // Create a float type of the same size as the source or destination.
3420         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3421                                                                  numElementsSrc);
3422 
3423         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3424       }
3425 
3426       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3427 
3428       SmallVector<llvm::Constant*, 3> Args;
3429       Args.push_back(Builder.getInt32(0));
3430       Args.push_back(Builder.getInt32(1));
3431       Args.push_back(Builder.getInt32(2));
3432 
3433       if (numElementsDst == 4)
3434         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3435 
3436       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3437 
3438       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3439     }
3440   }
3441 
3442   return Builder.CreateBitCast(Src, DstTy, "astype");
3443 }
3444 
3445 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3446   return CGF.EmitAtomicExpr(E).getScalarVal();
3447 }
3448 
3449 //===----------------------------------------------------------------------===//
3450 //                         Entry Point into this File
3451 //===----------------------------------------------------------------------===//
3452 
3453 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3454 /// type, ignoring the result.
3455 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3456   assert(E && hasScalarEvaluationKind(E->getType()) &&
3457          "Invalid scalar expression to emit");
3458 
3459   return ScalarExprEmitter(*this, IgnoreResultAssign)
3460       .Visit(const_cast<Expr *>(E));
3461 }
3462 
3463 /// EmitScalarConversion - Emit a conversion from the specified type to the
3464 /// specified destination type, both of which are LLVM scalar types.
3465 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3466                                              QualType DstTy) {
3467   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3468          "Invalid scalar expression to emit");
3469   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3470 }
3471 
3472 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3473 /// type to the specified destination type, where the destination type is an
3474 /// LLVM scalar type.
3475 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3476                                                       QualType SrcTy,
3477                                                       QualType DstTy) {
3478   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3479          "Invalid complex -> scalar conversion");
3480   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3481                                                                 DstTy);
3482 }
3483 
3484 
3485 llvm::Value *CodeGenFunction::
3486 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3487                         bool isInc, bool isPre) {
3488   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3489 }
3490 
3491 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3492   llvm::Value *V;
3493   // object->isa or (*object).isa
3494   // Generate code as for: *(Class*)object
3495   // build Class* type
3496   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3497 
3498   Expr *BaseExpr = E->getBase();
3499   if (BaseExpr->isRValue()) {
3500     V = CreateMemTemp(E->getType(), "resval");
3501     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3502     Builder.CreateStore(Src, V);
3503     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3504       MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
3505   } else {
3506     if (E->isArrow())
3507       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3508     else
3509       V = EmitLValue(BaseExpr).getAddress();
3510   }
3511 
3512   // build Class* type
3513   ClassPtrTy = ClassPtrTy->getPointerTo();
3514   V = Builder.CreateBitCast(V, ClassPtrTy);
3515   return MakeNaturalAlignAddrLValue(V, E->getType());
3516 }
3517 
3518 
3519 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3520                                             const CompoundAssignOperator *E) {
3521   ScalarExprEmitter Scalar(*this);
3522   Value *Result = nullptr;
3523   switch (E->getOpcode()) {
3524 #define COMPOUND_OP(Op)                                                       \
3525     case BO_##Op##Assign:                                                     \
3526       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3527                                              Result)
3528   COMPOUND_OP(Mul);
3529   COMPOUND_OP(Div);
3530   COMPOUND_OP(Rem);
3531   COMPOUND_OP(Add);
3532   COMPOUND_OP(Sub);
3533   COMPOUND_OP(Shl);
3534   COMPOUND_OP(Shr);
3535   COMPOUND_OP(And);
3536   COMPOUND_OP(Xor);
3537   COMPOUND_OP(Or);
3538 #undef COMPOUND_OP
3539 
3540   case BO_PtrMemD:
3541   case BO_PtrMemI:
3542   case BO_Mul:
3543   case BO_Div:
3544   case BO_Rem:
3545   case BO_Add:
3546   case BO_Sub:
3547   case BO_Shl:
3548   case BO_Shr:
3549   case BO_LT:
3550   case BO_GT:
3551   case BO_LE:
3552   case BO_GE:
3553   case BO_EQ:
3554   case BO_NE:
3555   case BO_And:
3556   case BO_Xor:
3557   case BO_Or:
3558   case BO_LAnd:
3559   case BO_LOr:
3560   case BO_Assign:
3561   case BO_Comma:
3562     llvm_unreachable("Not valid compound assignment operators");
3563   }
3564 
3565   llvm_unreachable("Unhandled compound assignment operator");
3566 }
3567