1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/FixedPoint.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Module.h"
38 #include <cstdarg>
39 
40 using namespace clang;
41 using namespace CodeGen;
42 using llvm::Value;
43 
44 //===----------------------------------------------------------------------===//
45 //                         Scalar Expression Emitter
46 //===----------------------------------------------------------------------===//
47 
48 namespace {
49 
50 /// Determine whether the given binary operation may overflow.
51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
53 /// the returned overflow check is precise. The returned value is 'true' for
54 /// all other opcodes, to be conservative.
55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
56                              BinaryOperator::Opcode Opcode, bool Signed,
57                              llvm::APInt &Result) {
58   // Assume overflow is possible, unless we can prove otherwise.
59   bool Overflow = true;
60   const auto &LHSAP = LHS->getValue();
61   const auto &RHSAP = RHS->getValue();
62   if (Opcode == BO_Add) {
63     if (Signed)
64       Result = LHSAP.sadd_ov(RHSAP, Overflow);
65     else
66       Result = LHSAP.uadd_ov(RHSAP, Overflow);
67   } else if (Opcode == BO_Sub) {
68     if (Signed)
69       Result = LHSAP.ssub_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.usub_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Mul) {
73     if (Signed)
74       Result = LHSAP.smul_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.umul_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
78     if (Signed && !RHS->isZero())
79       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
80     else
81       return false;
82   }
83   return Overflow;
84 }
85 
86 struct BinOpInfo {
87   Value *LHS;
88   Value *RHS;
89   QualType Ty;  // Computation Type.
90   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
91   FPOptions FPFeatures;
92   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
93 
94   /// Check if the binop can result in integer overflow.
95   bool mayHaveIntegerOverflow() const {
96     // Without constant input, we can't rule out overflow.
97     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
98     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
99     if (!LHSCI || !RHSCI)
100       return true;
101 
102     llvm::APInt Result;
103     return ::mayHaveIntegerOverflow(
104         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
105   }
106 
107   /// Check if the binop computes a division or a remainder.
108   bool isDivremOp() const {
109     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
110            Opcode == BO_RemAssign;
111   }
112 
113   /// Check if the binop can result in an integer division by zero.
114   bool mayHaveIntegerDivisionByZero() const {
115     if (isDivremOp())
116       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
117         return CI->isZero();
118     return true;
119   }
120 
121   /// Check if the binop can result in a float division by zero.
122   bool mayHaveFloatDivisionByZero() const {
123     if (isDivremOp())
124       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
125         return CFP->isZero();
126     return true;
127   }
128 
129   /// Check if either operand is a fixed point type or integer type, with at
130   /// least one being a fixed point type. In any case, this
131   /// operation did not follow usual arithmetic conversion and both operands may
132   /// not be the same.
133   bool isFixedPointBinOp() const {
134     // We cannot simply check the result type since comparison operations return
135     // an int.
136     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137       QualType LHSType = BinOp->getLHS()->getType();
138       QualType RHSType = BinOp->getRHS()->getType();
139       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140     }
141     return false;
142   }
143 };
144 
145 static bool MustVisitNullValue(const Expr *E) {
146   // If a null pointer expression's type is the C++0x nullptr_t, then
147   // it's not necessarily a simple constant and it must be evaluated
148   // for its potential side effects.
149   return E->getType()->isNullPtrType();
150 }
151 
152 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
154                                                         const Expr *E) {
155   const Expr *Base = E->IgnoreImpCasts();
156   if (E == Base)
157     return llvm::None;
158 
159   QualType BaseTy = Base->getType();
160   if (!BaseTy->isPromotableIntegerType() ||
161       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
162     return llvm::None;
163 
164   return BaseTy;
165 }
166 
167 /// Check if \p E is a widened promoted integer.
168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
169   return getUnwidenedIntegerType(Ctx, E).hasValue();
170 }
171 
172 /// Check if we can skip the overflow check for \p Op.
173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
174   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
175          "Expected a unary or binary operator");
176 
177   // If the binop has constant inputs and we can prove there is no overflow,
178   // we can elide the overflow check.
179   if (!Op.mayHaveIntegerOverflow())
180     return true;
181 
182   // If a unary op has a widened operand, the op cannot overflow.
183   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
184     return !UO->canOverflow();
185 
186   // We usually don't need overflow checks for binops with widened operands.
187   // Multiplication with promoted unsigned operands is a special case.
188   const auto *BO = cast<BinaryOperator>(Op.E);
189   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
190   if (!OptionalLHSTy)
191     return false;
192 
193   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
194   if (!OptionalRHSTy)
195     return false;
196 
197   QualType LHSTy = *OptionalLHSTy;
198   QualType RHSTy = *OptionalRHSTy;
199 
200   // This is the simple case: binops without unsigned multiplication, and with
201   // widened operands. No overflow check is needed here.
202   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
203       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
204     return true;
205 
206   // For unsigned multiplication the overflow check can be elided if either one
207   // of the unpromoted types are less than half the size of the promoted type.
208   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
209   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
210          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
211 }
212 
213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
214 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
215                                 FPOptions FPFeatures) {
216   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
217 }
218 
219 /// Propagate fast-math flags from \p Op to the instruction in \p V.
220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
221   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
222     llvm::FastMathFlags FMF = I->getFastMathFlags();
223     updateFastMathFlags(FMF, Op.FPFeatures);
224     I->setFastMathFlags(FMF);
225   }
226   return V;
227 }
228 
229 class ScalarExprEmitter
230   : public StmtVisitor<ScalarExprEmitter, Value*> {
231   CodeGenFunction &CGF;
232   CGBuilderTy &Builder;
233   bool IgnoreResultAssign;
234   llvm::LLVMContext &VMContext;
235 public:
236 
237   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
238     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
239       VMContext(cgf.getLLVMContext()) {
240   }
241 
242   //===--------------------------------------------------------------------===//
243   //                               Utilities
244   //===--------------------------------------------------------------------===//
245 
246   bool TestAndClearIgnoreResultAssign() {
247     bool I = IgnoreResultAssign;
248     IgnoreResultAssign = false;
249     return I;
250   }
251 
252   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
253   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
254   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
255     return CGF.EmitCheckedLValue(E, TCK);
256   }
257 
258   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
259                       const BinOpInfo &Info);
260 
261   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
262     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
263   }
264 
265   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
266     const AlignValueAttr *AVAttr = nullptr;
267     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
268       const ValueDecl *VD = DRE->getDecl();
269 
270       if (VD->getType()->isReferenceType()) {
271         if (const auto *TTy =
272             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
273           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
274       } else {
275         // Assumptions for function parameters are emitted at the start of the
276         // function, so there is no need to repeat that here,
277         // unless the alignment-assumption sanitizer is enabled,
278         // then we prefer the assumption over alignment attribute
279         // on IR function param.
280         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
281           return;
282 
283         AVAttr = VD->getAttr<AlignValueAttr>();
284       }
285     }
286 
287     if (!AVAttr)
288       if (const auto *TTy =
289           dyn_cast<TypedefType>(E->getType()))
290         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
291 
292     if (!AVAttr)
293       return;
294 
295     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
296     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
297     CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(),
298                                 AlignmentCI->getZExtValue());
299   }
300 
301   /// EmitLoadOfLValue - Given an expression with complex type that represents a
302   /// value l-value, this method emits the address of the l-value, then loads
303   /// and returns the result.
304   Value *EmitLoadOfLValue(const Expr *E) {
305     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
306                                 E->getExprLoc());
307 
308     EmitLValueAlignmentAssumption(E, V);
309     return V;
310   }
311 
312   /// EmitConversionToBool - Convert the specified expression value to a
313   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
314   Value *EmitConversionToBool(Value *Src, QualType DstTy);
315 
316   /// Emit a check that a conversion to or from a floating-point type does not
317   /// overflow.
318   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
319                                 Value *Src, QualType SrcType, QualType DstType,
320                                 llvm::Type *DstTy, SourceLocation Loc);
321 
322   /// Known implicit conversion check kinds.
323   /// Keep in sync with the enum of the same name in ubsan_handlers.h
324   enum ImplicitConversionCheckKind : unsigned char {
325     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
326     ICCK_UnsignedIntegerTruncation = 1,
327     ICCK_SignedIntegerTruncation = 2,
328     ICCK_IntegerSignChange = 3,
329     ICCK_SignedIntegerTruncationOrSignChange = 4,
330   };
331 
332   /// Emit a check that an [implicit] truncation of an integer  does not
333   /// discard any bits. It is not UB, so we use the value after truncation.
334   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
335                                   QualType DstType, SourceLocation Loc);
336 
337   /// Emit a check that an [implicit] conversion of an integer does not change
338   /// the sign of the value. It is not UB, so we use the value after conversion.
339   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
340   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
341                                   QualType DstType, SourceLocation Loc);
342 
343   /// Emit a conversion from the specified type to the specified destination
344   /// type, both of which are LLVM scalar types.
345   struct ScalarConversionOpts {
346     bool TreatBooleanAsSigned;
347     bool EmitImplicitIntegerTruncationChecks;
348     bool EmitImplicitIntegerSignChangeChecks;
349 
350     ScalarConversionOpts()
351         : TreatBooleanAsSigned(false),
352           EmitImplicitIntegerTruncationChecks(false),
353           EmitImplicitIntegerSignChangeChecks(false) {}
354 
355     ScalarConversionOpts(clang::SanitizerSet SanOpts)
356         : TreatBooleanAsSigned(false),
357           EmitImplicitIntegerTruncationChecks(
358               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
359           EmitImplicitIntegerSignChangeChecks(
360               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
361   };
362   Value *
363   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
364                        SourceLocation Loc,
365                        ScalarConversionOpts Opts = ScalarConversionOpts());
366 
367   /// Convert between either a fixed point and other fixed point or fixed point
368   /// and an integer.
369   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
370                                   SourceLocation Loc);
371   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
372                                   FixedPointSemantics &DstFixedSema,
373                                   SourceLocation Loc,
374                                   bool DstIsInteger = false);
375 
376   /// Emit a conversion from the specified complex type to the specified
377   /// destination type, where the destination type is an LLVM scalar type.
378   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
379                                        QualType SrcTy, QualType DstTy,
380                                        SourceLocation Loc);
381 
382   /// EmitNullValue - Emit a value that corresponds to null for the given type.
383   Value *EmitNullValue(QualType Ty);
384 
385   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
386   Value *EmitFloatToBoolConversion(Value *V) {
387     // Compare against 0.0 for fp scalars.
388     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
389     return Builder.CreateFCmpUNE(V, Zero, "tobool");
390   }
391 
392   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
393   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
394     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
395 
396     return Builder.CreateICmpNE(V, Zero, "tobool");
397   }
398 
399   Value *EmitIntToBoolConversion(Value *V) {
400     // Because of the type rules of C, we often end up computing a
401     // logical value, then zero extending it to int, then wanting it
402     // as a logical value again.  Optimize this common case.
403     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
404       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
405         Value *Result = ZI->getOperand(0);
406         // If there aren't any more uses, zap the instruction to save space.
407         // Note that there can be more uses, for example if this
408         // is the result of an assignment.
409         if (ZI->use_empty())
410           ZI->eraseFromParent();
411         return Result;
412       }
413     }
414 
415     return Builder.CreateIsNotNull(V, "tobool");
416   }
417 
418   //===--------------------------------------------------------------------===//
419   //                            Visitor Methods
420   //===--------------------------------------------------------------------===//
421 
422   Value *Visit(Expr *E) {
423     ApplyDebugLocation DL(CGF, E);
424     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
425   }
426 
427   Value *VisitStmt(Stmt *S) {
428     S->dump(CGF.getContext().getSourceManager());
429     llvm_unreachable("Stmt can't have complex result type!");
430   }
431   Value *VisitExpr(Expr *S);
432 
433   Value *VisitConstantExpr(ConstantExpr *E) {
434     return Visit(E->getSubExpr());
435   }
436   Value *VisitParenExpr(ParenExpr *PE) {
437     return Visit(PE->getSubExpr());
438   }
439   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
440     return Visit(E->getReplacement());
441   }
442   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
443     return Visit(GE->getResultExpr());
444   }
445   Value *VisitCoawaitExpr(CoawaitExpr *S) {
446     return CGF.EmitCoawaitExpr(*S).getScalarVal();
447   }
448   Value *VisitCoyieldExpr(CoyieldExpr *S) {
449     return CGF.EmitCoyieldExpr(*S).getScalarVal();
450   }
451   Value *VisitUnaryCoawait(const UnaryOperator *E) {
452     return Visit(E->getSubExpr());
453   }
454 
455   // Leaves.
456   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
457     return Builder.getInt(E->getValue());
458   }
459   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
460     return Builder.getInt(E->getValue());
461   }
462   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
463     return llvm::ConstantFP::get(VMContext, E->getValue());
464   }
465   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
466     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467   }
468   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
469     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
470   }
471   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
472     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
473   }
474   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
475     return EmitNullValue(E->getType());
476   }
477   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
478     return EmitNullValue(E->getType());
479   }
480   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
481   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
482   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
483     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
484     return Builder.CreateBitCast(V, ConvertType(E->getType()));
485   }
486 
487   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
488     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
489   }
490 
491   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
492     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
493   }
494 
495   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
496     if (E->isGLValue())
497       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
498                               E->getExprLoc());
499 
500     // Otherwise, assume the mapping is the scalar directly.
501     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
502   }
503 
504   // l-values.
505   Value *VisitDeclRefExpr(DeclRefExpr *E) {
506     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
507       return CGF.emitScalarConstant(Constant, E);
508     return EmitLoadOfLValue(E);
509   }
510 
511   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
512     return CGF.EmitObjCSelectorExpr(E);
513   }
514   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
515     return CGF.EmitObjCProtocolExpr(E);
516   }
517   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
518     return EmitLoadOfLValue(E);
519   }
520   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
521     if (E->getMethodDecl() &&
522         E->getMethodDecl()->getReturnType()->isReferenceType())
523       return EmitLoadOfLValue(E);
524     return CGF.EmitObjCMessageExpr(E).getScalarVal();
525   }
526 
527   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
528     LValue LV = CGF.EmitObjCIsaExpr(E);
529     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
530     return V;
531   }
532 
533   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
534     VersionTuple Version = E->getVersion();
535 
536     // If we're checking for a platform older than our minimum deployment
537     // target, we can fold the check away.
538     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
539       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
540 
541     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
542     llvm::Value *Args[] = {
543         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
544         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
545         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
546     };
547 
548     return CGF.EmitBuiltinAvailable(Args);
549   }
550 
551   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
552   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
553   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
554   Value *VisitMemberExpr(MemberExpr *E);
555   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
556   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
557     return EmitLoadOfLValue(E);
558   }
559 
560   Value *VisitInitListExpr(InitListExpr *E);
561 
562   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
563     assert(CGF.getArrayInitIndex() &&
564            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
565     return CGF.getArrayInitIndex();
566   }
567 
568   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
569     return EmitNullValue(E->getType());
570   }
571   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
572     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
573     return VisitCastExpr(E);
574   }
575   Value *VisitCastExpr(CastExpr *E);
576 
577   Value *VisitCallExpr(const CallExpr *E) {
578     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
579       return EmitLoadOfLValue(E);
580 
581     Value *V = CGF.EmitCallExpr(E).getScalarVal();
582 
583     EmitLValueAlignmentAssumption(E, V);
584     return V;
585   }
586 
587   Value *VisitStmtExpr(const StmtExpr *E);
588 
589   // Unary Operators.
590   Value *VisitUnaryPostDec(const UnaryOperator *E) {
591     LValue LV = EmitLValue(E->getSubExpr());
592     return EmitScalarPrePostIncDec(E, LV, false, false);
593   }
594   Value *VisitUnaryPostInc(const UnaryOperator *E) {
595     LValue LV = EmitLValue(E->getSubExpr());
596     return EmitScalarPrePostIncDec(E, LV, true, false);
597   }
598   Value *VisitUnaryPreDec(const UnaryOperator *E) {
599     LValue LV = EmitLValue(E->getSubExpr());
600     return EmitScalarPrePostIncDec(E, LV, false, true);
601   }
602   Value *VisitUnaryPreInc(const UnaryOperator *E) {
603     LValue LV = EmitLValue(E->getSubExpr());
604     return EmitScalarPrePostIncDec(E, LV, true, true);
605   }
606 
607   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
608                                                   llvm::Value *InVal,
609                                                   bool IsInc);
610 
611   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
612                                        bool isInc, bool isPre);
613 
614 
615   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
616     if (isa<MemberPointerType>(E->getType())) // never sugared
617       return CGF.CGM.getMemberPointerConstant(E);
618 
619     return EmitLValue(E->getSubExpr()).getPointer();
620   }
621   Value *VisitUnaryDeref(const UnaryOperator *E) {
622     if (E->getType()->isVoidType())
623       return Visit(E->getSubExpr()); // the actual value should be unused
624     return EmitLoadOfLValue(E);
625   }
626   Value *VisitUnaryPlus(const UnaryOperator *E) {
627     // This differs from gcc, though, most likely due to a bug in gcc.
628     TestAndClearIgnoreResultAssign();
629     return Visit(E->getSubExpr());
630   }
631   Value *VisitUnaryMinus    (const UnaryOperator *E);
632   Value *VisitUnaryNot      (const UnaryOperator *E);
633   Value *VisitUnaryLNot     (const UnaryOperator *E);
634   Value *VisitUnaryReal     (const UnaryOperator *E);
635   Value *VisitUnaryImag     (const UnaryOperator *E);
636   Value *VisitUnaryExtension(const UnaryOperator *E) {
637     return Visit(E->getSubExpr());
638   }
639 
640   // C++
641   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
642     return EmitLoadOfLValue(E);
643   }
644   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
645     auto &Ctx = CGF.getContext();
646     APValue Evaluated =
647         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
648     return ConstantEmitter(CGF.CGM, &CGF)
649         .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType());
650   }
651 
652   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
653     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
654     return Visit(DAE->getExpr());
655   }
656   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
657     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
658     return Visit(DIE->getExpr());
659   }
660   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
661     return CGF.LoadCXXThis();
662   }
663 
664   Value *VisitExprWithCleanups(ExprWithCleanups *E);
665   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
666     return CGF.EmitCXXNewExpr(E);
667   }
668   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
669     CGF.EmitCXXDeleteExpr(E);
670     return nullptr;
671   }
672 
673   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
674     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
675   }
676 
677   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
678     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
679   }
680 
681   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
682     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
683   }
684 
685   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
686     // C++ [expr.pseudo]p1:
687     //   The result shall only be used as the operand for the function call
688     //   operator (), and the result of such a call has type void. The only
689     //   effect is the evaluation of the postfix-expression before the dot or
690     //   arrow.
691     CGF.EmitScalarExpr(E->getBase());
692     return nullptr;
693   }
694 
695   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
696     return EmitNullValue(E->getType());
697   }
698 
699   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
700     CGF.EmitCXXThrowExpr(E);
701     return nullptr;
702   }
703 
704   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
705     return Builder.getInt1(E->getValue());
706   }
707 
708   // Binary Operators.
709   Value *EmitMul(const BinOpInfo &Ops) {
710     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
711       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
712       case LangOptions::SOB_Defined:
713         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
714       case LangOptions::SOB_Undefined:
715         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
716           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
717         LLVM_FALLTHROUGH;
718       case LangOptions::SOB_Trapping:
719         if (CanElideOverflowCheck(CGF.getContext(), Ops))
720           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
721         return EmitOverflowCheckedBinOp(Ops);
722       }
723     }
724 
725     if (Ops.Ty->isUnsignedIntegerType() &&
726         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
727         !CanElideOverflowCheck(CGF.getContext(), Ops))
728       return EmitOverflowCheckedBinOp(Ops);
729 
730     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
731       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
732       return propagateFMFlags(V, Ops);
733     }
734     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
735   }
736   /// Create a binary op that checks for overflow.
737   /// Currently only supports +, - and *.
738   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
739 
740   // Check for undefined division and modulus behaviors.
741   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
742                                                   llvm::Value *Zero,bool isDiv);
743   // Common helper for getting how wide LHS of shift is.
744   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
745   Value *EmitDiv(const BinOpInfo &Ops);
746   Value *EmitRem(const BinOpInfo &Ops);
747   Value *EmitAdd(const BinOpInfo &Ops);
748   Value *EmitSub(const BinOpInfo &Ops);
749   Value *EmitShl(const BinOpInfo &Ops);
750   Value *EmitShr(const BinOpInfo &Ops);
751   Value *EmitAnd(const BinOpInfo &Ops) {
752     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
753   }
754   Value *EmitXor(const BinOpInfo &Ops) {
755     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
756   }
757   Value *EmitOr (const BinOpInfo &Ops) {
758     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
759   }
760 
761   // Helper functions for fixed point binary operations.
762   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
763 
764   BinOpInfo EmitBinOps(const BinaryOperator *E);
765   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
766                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
767                                   Value *&Result);
768 
769   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
770                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
771 
772   // Binary operators and binary compound assignment operators.
773 #define HANDLEBINOP(OP) \
774   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
775     return Emit ## OP(EmitBinOps(E));                                      \
776   }                                                                        \
777   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
778     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
779   }
780   HANDLEBINOP(Mul)
781   HANDLEBINOP(Div)
782   HANDLEBINOP(Rem)
783   HANDLEBINOP(Add)
784   HANDLEBINOP(Sub)
785   HANDLEBINOP(Shl)
786   HANDLEBINOP(Shr)
787   HANDLEBINOP(And)
788   HANDLEBINOP(Xor)
789   HANDLEBINOP(Or)
790 #undef HANDLEBINOP
791 
792   // Comparisons.
793   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
794                      llvm::CmpInst::Predicate SICmpOpc,
795                      llvm::CmpInst::Predicate FCmpOpc);
796 #define VISITCOMP(CODE, UI, SI, FP) \
797     Value *VisitBin##CODE(const BinaryOperator *E) { \
798       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
799                          llvm::FCmpInst::FP); }
800   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
801   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
802   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
803   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
804   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
805   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
806 #undef VISITCOMP
807 
808   Value *VisitBinAssign     (const BinaryOperator *E);
809 
810   Value *VisitBinLAnd       (const BinaryOperator *E);
811   Value *VisitBinLOr        (const BinaryOperator *E);
812   Value *VisitBinComma      (const BinaryOperator *E);
813 
814   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
815   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
816 
817   // Other Operators.
818   Value *VisitBlockExpr(const BlockExpr *BE);
819   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
820   Value *VisitChooseExpr(ChooseExpr *CE);
821   Value *VisitVAArgExpr(VAArgExpr *VE);
822   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
823     return CGF.EmitObjCStringLiteral(E);
824   }
825   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
826     return CGF.EmitObjCBoxedExpr(E);
827   }
828   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
829     return CGF.EmitObjCArrayLiteral(E);
830   }
831   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
832     return CGF.EmitObjCDictionaryLiteral(E);
833   }
834   Value *VisitAsTypeExpr(AsTypeExpr *CE);
835   Value *VisitAtomicExpr(AtomicExpr *AE);
836 };
837 }  // end anonymous namespace.
838 
839 //===----------------------------------------------------------------------===//
840 //                                Utilities
841 //===----------------------------------------------------------------------===//
842 
843 /// EmitConversionToBool - Convert the specified expression value to a
844 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
845 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
846   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
847 
848   if (SrcType->isRealFloatingType())
849     return EmitFloatToBoolConversion(Src);
850 
851   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
852     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
853 
854   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
855          "Unknown scalar type to convert");
856 
857   if (isa<llvm::IntegerType>(Src->getType()))
858     return EmitIntToBoolConversion(Src);
859 
860   assert(isa<llvm::PointerType>(Src->getType()));
861   return EmitPointerToBoolConversion(Src, SrcType);
862 }
863 
864 void ScalarExprEmitter::EmitFloatConversionCheck(
865     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
866     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
867   CodeGenFunction::SanitizerScope SanScope(&CGF);
868   using llvm::APFloat;
869   using llvm::APSInt;
870 
871   llvm::Type *SrcTy = Src->getType();
872 
873   llvm::Value *Check = nullptr;
874   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
875     // Integer to floating-point. This can fail for unsigned short -> __half
876     // or unsigned __int128 -> float.
877     assert(DstType->isFloatingType());
878     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
879 
880     APFloat LargestFloat =
881       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
882     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
883 
884     bool IsExact;
885     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
886                                       &IsExact) != APFloat::opOK)
887       // The range of representable values of this floating point type includes
888       // all values of this integer type. Don't need an overflow check.
889       return;
890 
891     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
892     if (SrcIsUnsigned)
893       Check = Builder.CreateICmpULE(Src, Max);
894     else {
895       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
896       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
897       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
898       Check = Builder.CreateAnd(GE, LE);
899     }
900   } else {
901     const llvm::fltSemantics &SrcSema =
902       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
903     if (isa<llvm::IntegerType>(DstTy)) {
904       // Floating-point to integer. This has undefined behavior if the source is
905       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
906       // to an integer).
907       unsigned Width = CGF.getContext().getIntWidth(DstType);
908       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
909 
910       APSInt Min = APSInt::getMinValue(Width, Unsigned);
911       APFloat MinSrc(SrcSema, APFloat::uninitialized);
912       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
913           APFloat::opOverflow)
914         // Don't need an overflow check for lower bound. Just check for
915         // -Inf/NaN.
916         MinSrc = APFloat::getInf(SrcSema, true);
917       else
918         // Find the largest value which is too small to represent (before
919         // truncation toward zero).
920         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
921 
922       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
923       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
924       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
925           APFloat::opOverflow)
926         // Don't need an overflow check for upper bound. Just check for
927         // +Inf/NaN.
928         MaxSrc = APFloat::getInf(SrcSema, false);
929       else
930         // Find the smallest value which is too large to represent (before
931         // truncation toward zero).
932         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
933 
934       // If we're converting from __half, convert the range to float to match
935       // the type of src.
936       if (OrigSrcType->isHalfType()) {
937         const llvm::fltSemantics &Sema =
938           CGF.getContext().getFloatTypeSemantics(SrcType);
939         bool IsInexact;
940         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
941         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
942       }
943 
944       llvm::Value *GE =
945         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
946       llvm::Value *LE =
947         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
948       Check = Builder.CreateAnd(GE, LE);
949     } else {
950       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
951       //
952       // Floating-point to floating-point. This has undefined behavior if the
953       // source is not in the range of representable values of the destination
954       // type. The C and C++ standards are spectacularly unclear here. We
955       // diagnose finite out-of-range conversions, but allow infinities and NaNs
956       // to convert to the corresponding value in the smaller type.
957       //
958       // C11 Annex F gives all such conversions defined behavior for IEC 60559
959       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
960       // does not.
961 
962       // Converting from a lower rank to a higher rank can never have
963       // undefined behavior, since higher-rank types must have a superset
964       // of values of lower-rank types.
965       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
966         return;
967 
968       assert(!OrigSrcType->isHalfType() &&
969              "should not check conversion from __half, it has the lowest rank");
970 
971       const llvm::fltSemantics &DstSema =
972         CGF.getContext().getFloatTypeSemantics(DstType);
973       APFloat MinBad = APFloat::getLargest(DstSema, false);
974       APFloat MaxBad = APFloat::getInf(DstSema, false);
975 
976       bool IsInexact;
977       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
978       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
979 
980       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
981         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
982       llvm::Value *GE =
983         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
984       llvm::Value *LE =
985         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
986       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
987     }
988   }
989 
990   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
991                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
992                                   CGF.EmitCheckTypeDescriptor(DstType)};
993   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
994                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
995 }
996 
997 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
998 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
999 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1000                  std::pair<llvm::Value *, SanitizerMask>>
1001 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1002                                  QualType DstType, CGBuilderTy &Builder) {
1003   llvm::Type *SrcTy = Src->getType();
1004   llvm::Type *DstTy = Dst->getType();
1005   (void)DstTy; // Only used in assert()
1006 
1007   // This should be truncation of integral types.
1008   assert(Src != Dst);
1009   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1010   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1011          "non-integer llvm type");
1012 
1013   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1014   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1015 
1016   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1017   // Else, it is a signed truncation.
1018   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1019   SanitizerMask Mask;
1020   if (!SrcSigned && !DstSigned) {
1021     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1022     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1023   } else {
1024     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1025     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1026   }
1027 
1028   llvm::Value *Check = nullptr;
1029   // 1. Extend the truncated value back to the same width as the Src.
1030   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1031   // 2. Equality-compare with the original source value
1032   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1033   // If the comparison result is 'i1 false', then the truncation was lossy.
1034   return std::make_pair(Kind, std::make_pair(Check, Mask));
1035 }
1036 
1037 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1038                                                    Value *Dst, QualType DstType,
1039                                                    SourceLocation Loc) {
1040   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1041     return;
1042 
1043   // We only care about int->int conversions here.
1044   // We ignore conversions to/from pointer and/or bool.
1045   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1046     return;
1047 
1048   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1049   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1050   // This must be truncation. Else we do not care.
1051   if (SrcBits <= DstBits)
1052     return;
1053 
1054   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1055 
1056   // If the integer sign change sanitizer is enabled,
1057   // and we are truncating from larger unsigned type to smaller signed type,
1058   // let that next sanitizer deal with it.
1059   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1060   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1061   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1062       (!SrcSigned && DstSigned))
1063     return;
1064 
1065   CodeGenFunction::SanitizerScope SanScope(&CGF);
1066 
1067   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1068             std::pair<llvm::Value *, SanitizerMask>>
1069       Check =
1070           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1071   // If the comparison result is 'i1 false', then the truncation was lossy.
1072 
1073   // Do we care about this type of truncation?
1074   if (!CGF.SanOpts.has(Check.second.second))
1075     return;
1076 
1077   llvm::Constant *StaticArgs[] = {
1078       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1079       CGF.EmitCheckTypeDescriptor(DstType),
1080       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1081   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1082                 {Src, Dst});
1083 }
1084 
1085 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1086 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1087 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1088                  std::pair<llvm::Value *, SanitizerMask>>
1089 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1090                                  QualType DstType, CGBuilderTy &Builder) {
1091   llvm::Type *SrcTy = Src->getType();
1092   llvm::Type *DstTy = Dst->getType();
1093 
1094   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1095          "non-integer llvm type");
1096 
1097   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1098   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1099   (void)SrcSigned; // Only used in assert()
1100   (void)DstSigned; // Only used in assert()
1101   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1102   unsigned DstBits = DstTy->getScalarSizeInBits();
1103   (void)SrcBits; // Only used in assert()
1104   (void)DstBits; // Only used in assert()
1105 
1106   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1107          "either the widths should be different, or the signednesses.");
1108 
1109   // NOTE: zero value is considered to be non-negative.
1110   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1111                                        const char *Name) -> Value * {
1112     // Is this value a signed type?
1113     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1114     llvm::Type *VTy = V->getType();
1115     if (!VSigned) {
1116       // If the value is unsigned, then it is never negative.
1117       // FIXME: can we encounter non-scalar VTy here?
1118       return llvm::ConstantInt::getFalse(VTy->getContext());
1119     }
1120     // Get the zero of the same type with which we will be comparing.
1121     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1122     // %V.isnegative = icmp slt %V, 0
1123     // I.e is %V *strictly* less than zero, does it have negative value?
1124     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1125                               llvm::Twine(Name) + "." + V->getName() +
1126                                   ".negativitycheck");
1127   };
1128 
1129   // 1. Was the old Value negative?
1130   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1131   // 2. Is the new Value negative?
1132   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1133   // 3. Now, was the 'negativity status' preserved during the conversion?
1134   //    NOTE: conversion from negative to zero is considered to change the sign.
1135   //    (We want to get 'false' when the conversion changed the sign)
1136   //    So we should just equality-compare the negativity statuses.
1137   llvm::Value *Check = nullptr;
1138   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1139   // If the comparison result is 'false', then the conversion changed the sign.
1140   return std::make_pair(
1141       ScalarExprEmitter::ICCK_IntegerSignChange,
1142       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1143 }
1144 
1145 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1146                                                    Value *Dst, QualType DstType,
1147                                                    SourceLocation Loc) {
1148   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1149     return;
1150 
1151   llvm::Type *SrcTy = Src->getType();
1152   llvm::Type *DstTy = Dst->getType();
1153 
1154   // We only care about int->int conversions here.
1155   // We ignore conversions to/from pointer and/or bool.
1156   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1157     return;
1158 
1159   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1160   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1161   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1162   unsigned DstBits = DstTy->getScalarSizeInBits();
1163 
1164   // Now, we do not need to emit the check in *all* of the cases.
1165   // We can avoid emitting it in some obvious cases where it would have been
1166   // dropped by the opt passes (instcombine) always anyways.
1167   // If it's a cast between effectively the same type, no check.
1168   // NOTE: this is *not* equivalent to checking the canonical types.
1169   if (SrcSigned == DstSigned && SrcBits == DstBits)
1170     return;
1171   // At least one of the values needs to have signed type.
1172   // If both are unsigned, then obviously, neither of them can be negative.
1173   if (!SrcSigned && !DstSigned)
1174     return;
1175   // If the conversion is to *larger* *signed* type, then no check is needed.
1176   // Because either sign-extension happens (so the sign will remain),
1177   // or zero-extension will happen (the sign bit will be zero.)
1178   if ((DstBits > SrcBits) && DstSigned)
1179     return;
1180   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1181       (SrcBits > DstBits) && SrcSigned) {
1182     // If the signed integer truncation sanitizer is enabled,
1183     // and this is a truncation from signed type, then no check is needed.
1184     // Because here sign change check is interchangeable with truncation check.
1185     return;
1186   }
1187   // That's it. We can't rule out any more cases with the data we have.
1188 
1189   CodeGenFunction::SanitizerScope SanScope(&CGF);
1190 
1191   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1192             std::pair<llvm::Value *, SanitizerMask>>
1193       Check;
1194 
1195   // Each of these checks needs to return 'false' when an issue was detected.
1196   ImplicitConversionCheckKind CheckKind;
1197   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1198   // So we can 'and' all the checks together, and still get 'false',
1199   // if at least one of the checks detected an issue.
1200 
1201   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1202   CheckKind = Check.first;
1203   Checks.emplace_back(Check.second);
1204 
1205   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1206       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1207     // If the signed integer truncation sanitizer was enabled,
1208     // and we are truncating from larger unsigned type to smaller signed type,
1209     // let's handle the case we skipped in that check.
1210     Check =
1211         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1212     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1213     Checks.emplace_back(Check.second);
1214     // If the comparison result is 'i1 false', then the truncation was lossy.
1215   }
1216 
1217   llvm::Constant *StaticArgs[] = {
1218       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1219       CGF.EmitCheckTypeDescriptor(DstType),
1220       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1221   // EmitCheck() will 'and' all the checks together.
1222   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1223                 {Src, Dst});
1224 }
1225 
1226 /// Emit a conversion from the specified type to the specified destination type,
1227 /// both of which are LLVM scalar types.
1228 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1229                                                QualType DstType,
1230                                                SourceLocation Loc,
1231                                                ScalarConversionOpts Opts) {
1232   // All conversions involving fixed point types should be handled by the
1233   // EmitFixedPoint family functions. This is done to prevent bloating up this
1234   // function more, and although fixed point numbers are represented by
1235   // integers, we do not want to follow any logic that assumes they should be
1236   // treated as integers.
1237   // TODO(leonardchan): When necessary, add another if statement checking for
1238   // conversions to fixed point types from other types.
1239   if (SrcType->isFixedPointType()) {
1240     if (DstType->isBooleanType())
1241       // It is important that we check this before checking if the dest type is
1242       // an integer because booleans are technically integer types.
1243       // We do not need to check the padding bit on unsigned types if unsigned
1244       // padding is enabled because overflow into this bit is undefined
1245       // behavior.
1246       return Builder.CreateIsNotNull(Src, "tobool");
1247     if (DstType->isFixedPointType() || DstType->isIntegerType())
1248       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1249 
1250     llvm_unreachable(
1251         "Unhandled scalar conversion from a fixed point type to another type.");
1252   } else if (DstType->isFixedPointType()) {
1253     if (SrcType->isIntegerType())
1254       // This also includes converting booleans and enums to fixed point types.
1255       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1256 
1257     llvm_unreachable(
1258         "Unhandled scalar conversion to a fixed point type from another type.");
1259   }
1260 
1261   QualType NoncanonicalSrcType = SrcType;
1262   QualType NoncanonicalDstType = DstType;
1263 
1264   SrcType = CGF.getContext().getCanonicalType(SrcType);
1265   DstType = CGF.getContext().getCanonicalType(DstType);
1266   if (SrcType == DstType) return Src;
1267 
1268   if (DstType->isVoidType()) return nullptr;
1269 
1270   llvm::Value *OrigSrc = Src;
1271   QualType OrigSrcType = SrcType;
1272   llvm::Type *SrcTy = Src->getType();
1273 
1274   // Handle conversions to bool first, they are special: comparisons against 0.
1275   if (DstType->isBooleanType())
1276     return EmitConversionToBool(Src, SrcType);
1277 
1278   llvm::Type *DstTy = ConvertType(DstType);
1279 
1280   // Cast from half through float if half isn't a native type.
1281   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1282     // Cast to FP using the intrinsic if the half type itself isn't supported.
1283     if (DstTy->isFloatingPointTy()) {
1284       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1285         return Builder.CreateCall(
1286             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1287             Src);
1288     } else {
1289       // Cast to other types through float, using either the intrinsic or FPExt,
1290       // depending on whether the half type itself is supported
1291       // (as opposed to operations on half, available with NativeHalfType).
1292       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1293         Src = Builder.CreateCall(
1294             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1295                                  CGF.CGM.FloatTy),
1296             Src);
1297       } else {
1298         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1299       }
1300       SrcType = CGF.getContext().FloatTy;
1301       SrcTy = CGF.FloatTy;
1302     }
1303   }
1304 
1305   // Ignore conversions like int -> uint.
1306   if (SrcTy == DstTy) {
1307     if (Opts.EmitImplicitIntegerSignChangeChecks)
1308       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1309                                  NoncanonicalDstType, Loc);
1310 
1311     return Src;
1312   }
1313 
1314   // Handle pointer conversions next: pointers can only be converted to/from
1315   // other pointers and integers. Check for pointer types in terms of LLVM, as
1316   // some native types (like Obj-C id) may map to a pointer type.
1317   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1318     // The source value may be an integer, or a pointer.
1319     if (isa<llvm::PointerType>(SrcTy))
1320       return Builder.CreateBitCast(Src, DstTy, "conv");
1321 
1322     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1323     // First, convert to the correct width so that we control the kind of
1324     // extension.
1325     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1326     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1327     llvm::Value* IntResult =
1328         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1329     // Then, cast to pointer.
1330     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1331   }
1332 
1333   if (isa<llvm::PointerType>(SrcTy)) {
1334     // Must be an ptr to int cast.
1335     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1336     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1337   }
1338 
1339   // A scalar can be splatted to an extended vector of the same element type
1340   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1341     // Sema should add casts to make sure that the source expression's type is
1342     // the same as the vector's element type (sans qualifiers)
1343     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1344                SrcType.getTypePtr() &&
1345            "Splatted expr doesn't match with vector element type?");
1346 
1347     // Splat the element across to all elements
1348     unsigned NumElements = DstTy->getVectorNumElements();
1349     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1350   }
1351 
1352   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1353     // Allow bitcast from vector to integer/fp of the same size.
1354     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1355     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1356     if (SrcSize == DstSize)
1357       return Builder.CreateBitCast(Src, DstTy, "conv");
1358 
1359     // Conversions between vectors of different sizes are not allowed except
1360     // when vectors of half are involved. Operations on storage-only half
1361     // vectors require promoting half vector operands to float vectors and
1362     // truncating the result, which is either an int or float vector, to a
1363     // short or half vector.
1364 
1365     // Source and destination are both expected to be vectors.
1366     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1367     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1368     (void)DstElementTy;
1369 
1370     assert(((SrcElementTy->isIntegerTy() &&
1371              DstElementTy->isIntegerTy()) ||
1372             (SrcElementTy->isFloatingPointTy() &&
1373              DstElementTy->isFloatingPointTy())) &&
1374            "unexpected conversion between a floating-point vector and an "
1375            "integer vector");
1376 
1377     // Truncate an i32 vector to an i16 vector.
1378     if (SrcElementTy->isIntegerTy())
1379       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1380 
1381     // Truncate a float vector to a half vector.
1382     if (SrcSize > DstSize)
1383       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1384 
1385     // Promote a half vector to a float vector.
1386     return Builder.CreateFPExt(Src, DstTy, "conv");
1387   }
1388 
1389   // Finally, we have the arithmetic types: real int/float.
1390   Value *Res = nullptr;
1391   llvm::Type *ResTy = DstTy;
1392 
1393   // An overflowing conversion has undefined behavior if either the source type
1394   // or the destination type is a floating-point type.
1395   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1396       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1397     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1398                              Loc);
1399 
1400   // Cast to half through float if half isn't a native type.
1401   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1402     // Make sure we cast in a single step if from another FP type.
1403     if (SrcTy->isFloatingPointTy()) {
1404       // Use the intrinsic if the half type itself isn't supported
1405       // (as opposed to operations on half, available with NativeHalfType).
1406       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1407         return Builder.CreateCall(
1408             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1409       // If the half type is supported, just use an fptrunc.
1410       return Builder.CreateFPTrunc(Src, DstTy);
1411     }
1412     DstTy = CGF.FloatTy;
1413   }
1414 
1415   if (isa<llvm::IntegerType>(SrcTy)) {
1416     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1417     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1418       InputSigned = true;
1419     }
1420     if (isa<llvm::IntegerType>(DstTy))
1421       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1422     else if (InputSigned)
1423       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1424     else
1425       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1426   } else if (isa<llvm::IntegerType>(DstTy)) {
1427     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1428     if (DstType->isSignedIntegerOrEnumerationType())
1429       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1430     else
1431       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1432   } else {
1433     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1434            "Unknown real conversion");
1435     if (DstTy->getTypeID() < SrcTy->getTypeID())
1436       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1437     else
1438       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1439   }
1440 
1441   if (DstTy != ResTy) {
1442     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1443       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1444       Res = Builder.CreateCall(
1445         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1446         Res);
1447     } else {
1448       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1449     }
1450   }
1451 
1452   if (Opts.EmitImplicitIntegerTruncationChecks)
1453     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1454                                NoncanonicalDstType, Loc);
1455 
1456   if (Opts.EmitImplicitIntegerSignChangeChecks)
1457     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1458                                NoncanonicalDstType, Loc);
1459 
1460   return Res;
1461 }
1462 
1463 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1464                                                    QualType DstTy,
1465                                                    SourceLocation Loc) {
1466   FixedPointSemantics SrcFPSema =
1467       CGF.getContext().getFixedPointSemantics(SrcTy);
1468   FixedPointSemantics DstFPSema =
1469       CGF.getContext().getFixedPointSemantics(DstTy);
1470   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1471                                   DstTy->isIntegerType());
1472 }
1473 
1474 Value *ScalarExprEmitter::EmitFixedPointConversion(
1475     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1476     SourceLocation Loc, bool DstIsInteger) {
1477   using llvm::APInt;
1478   using llvm::ConstantInt;
1479   using llvm::Value;
1480 
1481   unsigned SrcWidth = SrcFPSema.getWidth();
1482   unsigned DstWidth = DstFPSema.getWidth();
1483   unsigned SrcScale = SrcFPSema.getScale();
1484   unsigned DstScale = DstFPSema.getScale();
1485   bool SrcIsSigned = SrcFPSema.isSigned();
1486   bool DstIsSigned = DstFPSema.isSigned();
1487 
1488   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1489 
1490   Value *Result = Src;
1491   unsigned ResultWidth = SrcWidth;
1492 
1493   // Downscale.
1494   if (DstScale < SrcScale) {
1495     // When converting to integers, we round towards zero. For negative numbers,
1496     // right shifting rounds towards negative infinity. In this case, we can
1497     // just round up before shifting.
1498     if (DstIsInteger && SrcIsSigned) {
1499       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1500       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1501       Value *LowBits = ConstantInt::get(
1502           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1503       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1504       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1505     }
1506 
1507     Result = SrcIsSigned
1508                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1509                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1510   }
1511 
1512   if (!DstFPSema.isSaturated()) {
1513     // Resize.
1514     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1515 
1516     // Upscale.
1517     if (DstScale > SrcScale)
1518       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1519   } else {
1520     // Adjust the number of fractional bits.
1521     if (DstScale > SrcScale) {
1522       // Compare to DstWidth to prevent resizing twice.
1523       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1524       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1525       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1526       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1527     }
1528 
1529     // Handle saturation.
1530     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1531     if (LessIntBits) {
1532       Value *Max = ConstantInt::get(
1533           CGF.getLLVMContext(),
1534           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1535       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1536                                    : Builder.CreateICmpUGT(Result, Max);
1537       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1538     }
1539     // Cannot overflow min to dest type if src is unsigned since all fixed
1540     // point types can cover the unsigned min of 0.
1541     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1542       Value *Min = ConstantInt::get(
1543           CGF.getLLVMContext(),
1544           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1545       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1546       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1547     }
1548 
1549     // Resize the integer part to get the final destination size.
1550     if (ResultWidth != DstWidth)
1551       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1552   }
1553   return Result;
1554 }
1555 
1556 /// Emit a conversion from the specified complex type to the specified
1557 /// destination type, where the destination type is an LLVM scalar type.
1558 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1559     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1560     SourceLocation Loc) {
1561   // Get the source element type.
1562   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1563 
1564   // Handle conversions to bool first, they are special: comparisons against 0.
1565   if (DstTy->isBooleanType()) {
1566     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1567     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1568     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1569     return Builder.CreateOr(Src.first, Src.second, "tobool");
1570   }
1571 
1572   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1573   // the imaginary part of the complex value is discarded and the value of the
1574   // real part is converted according to the conversion rules for the
1575   // corresponding real type.
1576   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1577 }
1578 
1579 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1580   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1581 }
1582 
1583 /// Emit a sanitization check for the given "binary" operation (which
1584 /// might actually be a unary increment which has been lowered to a binary
1585 /// operation). The check passes if all values in \p Checks (which are \c i1),
1586 /// are \c true.
1587 void ScalarExprEmitter::EmitBinOpCheck(
1588     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1589   assert(CGF.IsSanitizerScope);
1590   SanitizerHandler Check;
1591   SmallVector<llvm::Constant *, 4> StaticData;
1592   SmallVector<llvm::Value *, 2> DynamicData;
1593 
1594   BinaryOperatorKind Opcode = Info.Opcode;
1595   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1596     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1597 
1598   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1599   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1600   if (UO && UO->getOpcode() == UO_Minus) {
1601     Check = SanitizerHandler::NegateOverflow;
1602     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1603     DynamicData.push_back(Info.RHS);
1604   } else {
1605     if (BinaryOperator::isShiftOp(Opcode)) {
1606       // Shift LHS negative or too large, or RHS out of bounds.
1607       Check = SanitizerHandler::ShiftOutOfBounds;
1608       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1609       StaticData.push_back(
1610         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1611       StaticData.push_back(
1612         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1613     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1614       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1615       Check = SanitizerHandler::DivremOverflow;
1616       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1617     } else {
1618       // Arithmetic overflow (+, -, *).
1619       switch (Opcode) {
1620       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1621       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1622       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1623       default: llvm_unreachable("unexpected opcode for bin op check");
1624       }
1625       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1626     }
1627     DynamicData.push_back(Info.LHS);
1628     DynamicData.push_back(Info.RHS);
1629   }
1630 
1631   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1632 }
1633 
1634 //===----------------------------------------------------------------------===//
1635 //                            Visitor Methods
1636 //===----------------------------------------------------------------------===//
1637 
1638 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1639   CGF.ErrorUnsupported(E, "scalar expression");
1640   if (E->getType()->isVoidType())
1641     return nullptr;
1642   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1643 }
1644 
1645 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1646   // Vector Mask Case
1647   if (E->getNumSubExprs() == 2) {
1648     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1649     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1650     Value *Mask;
1651 
1652     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1653     unsigned LHSElts = LTy->getNumElements();
1654 
1655     Mask = RHS;
1656 
1657     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1658 
1659     // Mask off the high bits of each shuffle index.
1660     Value *MaskBits =
1661         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1662     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1663 
1664     // newv = undef
1665     // mask = mask & maskbits
1666     // for each elt
1667     //   n = extract mask i
1668     //   x = extract val n
1669     //   newv = insert newv, x, i
1670     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1671                                                   MTy->getNumElements());
1672     Value* NewV = llvm::UndefValue::get(RTy);
1673     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1674       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1675       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1676 
1677       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1678       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1679     }
1680     return NewV;
1681   }
1682 
1683   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1684   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1685 
1686   SmallVector<llvm::Constant*, 32> indices;
1687   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1688     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1689     // Check for -1 and output it as undef in the IR.
1690     if (Idx.isSigned() && Idx.isAllOnesValue())
1691       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1692     else
1693       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1694   }
1695 
1696   Value *SV = llvm::ConstantVector::get(indices);
1697   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1698 }
1699 
1700 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1701   QualType SrcType = E->getSrcExpr()->getType(),
1702            DstType = E->getType();
1703 
1704   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1705 
1706   SrcType = CGF.getContext().getCanonicalType(SrcType);
1707   DstType = CGF.getContext().getCanonicalType(DstType);
1708   if (SrcType == DstType) return Src;
1709 
1710   assert(SrcType->isVectorType() &&
1711          "ConvertVector source type must be a vector");
1712   assert(DstType->isVectorType() &&
1713          "ConvertVector destination type must be a vector");
1714 
1715   llvm::Type *SrcTy = Src->getType();
1716   llvm::Type *DstTy = ConvertType(DstType);
1717 
1718   // Ignore conversions like int -> uint.
1719   if (SrcTy == DstTy)
1720     return Src;
1721 
1722   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1723            DstEltType = DstType->getAs<VectorType>()->getElementType();
1724 
1725   assert(SrcTy->isVectorTy() &&
1726          "ConvertVector source IR type must be a vector");
1727   assert(DstTy->isVectorTy() &&
1728          "ConvertVector destination IR type must be a vector");
1729 
1730   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1731              *DstEltTy = DstTy->getVectorElementType();
1732 
1733   if (DstEltType->isBooleanType()) {
1734     assert((SrcEltTy->isFloatingPointTy() ||
1735             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1736 
1737     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1738     if (SrcEltTy->isFloatingPointTy()) {
1739       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1740     } else {
1741       return Builder.CreateICmpNE(Src, Zero, "tobool");
1742     }
1743   }
1744 
1745   // We have the arithmetic types: real int/float.
1746   Value *Res = nullptr;
1747 
1748   if (isa<llvm::IntegerType>(SrcEltTy)) {
1749     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1750     if (isa<llvm::IntegerType>(DstEltTy))
1751       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1752     else if (InputSigned)
1753       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1754     else
1755       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1756   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1757     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1758     if (DstEltType->isSignedIntegerOrEnumerationType())
1759       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1760     else
1761       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1762   } else {
1763     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1764            "Unknown real conversion");
1765     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1766       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1767     else
1768       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1769   }
1770 
1771   return Res;
1772 }
1773 
1774 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1775   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1776     CGF.EmitIgnoredExpr(E->getBase());
1777     return CGF.emitScalarConstant(Constant, E);
1778   } else {
1779     Expr::EvalResult Result;
1780     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1781       llvm::APSInt Value = Result.Val.getInt();
1782       CGF.EmitIgnoredExpr(E->getBase());
1783       return Builder.getInt(Value);
1784     }
1785   }
1786 
1787   return EmitLoadOfLValue(E);
1788 }
1789 
1790 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1791   TestAndClearIgnoreResultAssign();
1792 
1793   // Emit subscript expressions in rvalue context's.  For most cases, this just
1794   // loads the lvalue formed by the subscript expr.  However, we have to be
1795   // careful, because the base of a vector subscript is occasionally an rvalue,
1796   // so we can't get it as an lvalue.
1797   if (!E->getBase()->getType()->isVectorType())
1798     return EmitLoadOfLValue(E);
1799 
1800   // Handle the vector case.  The base must be a vector, the index must be an
1801   // integer value.
1802   Value *Base = Visit(E->getBase());
1803   Value *Idx  = Visit(E->getIdx());
1804   QualType IdxTy = E->getIdx()->getType();
1805 
1806   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1807     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1808 
1809   return Builder.CreateExtractElement(Base, Idx, "vecext");
1810 }
1811 
1812 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1813                                   unsigned Off, llvm::Type *I32Ty) {
1814   int MV = SVI->getMaskValue(Idx);
1815   if (MV == -1)
1816     return llvm::UndefValue::get(I32Ty);
1817   return llvm::ConstantInt::get(I32Ty, Off+MV);
1818 }
1819 
1820 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1821   if (C->getBitWidth() != 32) {
1822       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1823                                                     C->getZExtValue()) &&
1824              "Index operand too large for shufflevector mask!");
1825       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1826   }
1827   return C;
1828 }
1829 
1830 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1831   bool Ignore = TestAndClearIgnoreResultAssign();
1832   (void)Ignore;
1833   assert (Ignore == false && "init list ignored");
1834   unsigned NumInitElements = E->getNumInits();
1835 
1836   if (E->hadArrayRangeDesignator())
1837     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1838 
1839   llvm::VectorType *VType =
1840     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1841 
1842   if (!VType) {
1843     if (NumInitElements == 0) {
1844       // C++11 value-initialization for the scalar.
1845       return EmitNullValue(E->getType());
1846     }
1847     // We have a scalar in braces. Just use the first element.
1848     return Visit(E->getInit(0));
1849   }
1850 
1851   unsigned ResElts = VType->getNumElements();
1852 
1853   // Loop over initializers collecting the Value for each, and remembering
1854   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1855   // us to fold the shuffle for the swizzle into the shuffle for the vector
1856   // initializer, since LLVM optimizers generally do not want to touch
1857   // shuffles.
1858   unsigned CurIdx = 0;
1859   bool VIsUndefShuffle = false;
1860   llvm::Value *V = llvm::UndefValue::get(VType);
1861   for (unsigned i = 0; i != NumInitElements; ++i) {
1862     Expr *IE = E->getInit(i);
1863     Value *Init = Visit(IE);
1864     SmallVector<llvm::Constant*, 16> Args;
1865 
1866     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1867 
1868     // Handle scalar elements.  If the scalar initializer is actually one
1869     // element of a different vector of the same width, use shuffle instead of
1870     // extract+insert.
1871     if (!VVT) {
1872       if (isa<ExtVectorElementExpr>(IE)) {
1873         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1874 
1875         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1876           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1877           Value *LHS = nullptr, *RHS = nullptr;
1878           if (CurIdx == 0) {
1879             // insert into undef -> shuffle (src, undef)
1880             // shufflemask must use an i32
1881             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1882             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1883 
1884             LHS = EI->getVectorOperand();
1885             RHS = V;
1886             VIsUndefShuffle = true;
1887           } else if (VIsUndefShuffle) {
1888             // insert into undefshuffle && size match -> shuffle (v, src)
1889             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1890             for (unsigned j = 0; j != CurIdx; ++j)
1891               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1892             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1893             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1894 
1895             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1896             RHS = EI->getVectorOperand();
1897             VIsUndefShuffle = false;
1898           }
1899           if (!Args.empty()) {
1900             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1901             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1902             ++CurIdx;
1903             continue;
1904           }
1905         }
1906       }
1907       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1908                                       "vecinit");
1909       VIsUndefShuffle = false;
1910       ++CurIdx;
1911       continue;
1912     }
1913 
1914     unsigned InitElts = VVT->getNumElements();
1915 
1916     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1917     // input is the same width as the vector being constructed, generate an
1918     // optimized shuffle of the swizzle input into the result.
1919     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1920     if (isa<ExtVectorElementExpr>(IE)) {
1921       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1922       Value *SVOp = SVI->getOperand(0);
1923       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1924 
1925       if (OpTy->getNumElements() == ResElts) {
1926         for (unsigned j = 0; j != CurIdx; ++j) {
1927           // If the current vector initializer is a shuffle with undef, merge
1928           // this shuffle directly into it.
1929           if (VIsUndefShuffle) {
1930             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1931                                       CGF.Int32Ty));
1932           } else {
1933             Args.push_back(Builder.getInt32(j));
1934           }
1935         }
1936         for (unsigned j = 0, je = InitElts; j != je; ++j)
1937           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1938         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1939 
1940         if (VIsUndefShuffle)
1941           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1942 
1943         Init = SVOp;
1944       }
1945     }
1946 
1947     // Extend init to result vector length, and then shuffle its contribution
1948     // to the vector initializer into V.
1949     if (Args.empty()) {
1950       for (unsigned j = 0; j != InitElts; ++j)
1951         Args.push_back(Builder.getInt32(j));
1952       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1953       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1954       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1955                                          Mask, "vext");
1956 
1957       Args.clear();
1958       for (unsigned j = 0; j != CurIdx; ++j)
1959         Args.push_back(Builder.getInt32(j));
1960       for (unsigned j = 0; j != InitElts; ++j)
1961         Args.push_back(Builder.getInt32(j+Offset));
1962       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1963     }
1964 
1965     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1966     // merging subsequent shuffles into this one.
1967     if (CurIdx == 0)
1968       std::swap(V, Init);
1969     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1970     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1971     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1972     CurIdx += InitElts;
1973   }
1974 
1975   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1976   // Emit remaining default initializers.
1977   llvm::Type *EltTy = VType->getElementType();
1978 
1979   // Emit remaining default initializers
1980   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1981     Value *Idx = Builder.getInt32(CurIdx);
1982     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1983     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1984   }
1985   return V;
1986 }
1987 
1988 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1989   const Expr *E = CE->getSubExpr();
1990 
1991   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1992     return false;
1993 
1994   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1995     // We always assume that 'this' is never null.
1996     return false;
1997   }
1998 
1999   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2000     // And that glvalue casts are never null.
2001     if (ICE->getValueKind() != VK_RValue)
2002       return false;
2003   }
2004 
2005   return true;
2006 }
2007 
2008 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
2009 // have to handle a more broad range of conversions than explicit casts, as they
2010 // handle things like function to ptr-to-function decay etc.
2011 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2012   Expr *E = CE->getSubExpr();
2013   QualType DestTy = CE->getType();
2014   CastKind Kind = CE->getCastKind();
2015 
2016   // These cases are generally not written to ignore the result of
2017   // evaluating their sub-expressions, so we clear this now.
2018   bool Ignored = TestAndClearIgnoreResultAssign();
2019 
2020   // Since almost all cast kinds apply to scalars, this switch doesn't have
2021   // a default case, so the compiler will warn on a missing case.  The cases
2022   // are in the same order as in the CastKind enum.
2023   switch (Kind) {
2024   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2025   case CK_BuiltinFnToFnPtr:
2026     llvm_unreachable("builtin functions are handled elsewhere");
2027 
2028   case CK_LValueBitCast:
2029   case CK_ObjCObjectLValueCast: {
2030     Address Addr = EmitLValue(E).getAddress();
2031     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2032     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2033     return EmitLoadOfLValue(LV, CE->getExprLoc());
2034   }
2035 
2036   case CK_LValueToRValueBitCast: {
2037     LValue SourceLVal = CGF.EmitLValue(E);
2038     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(),
2039                                                 CGF.ConvertTypeForMem(DestTy));
2040     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2041     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2042     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2043   }
2044 
2045   case CK_CPointerToObjCPointerCast:
2046   case CK_BlockPointerToObjCPointerCast:
2047   case CK_AnyPointerToBlockPointerCast:
2048   case CK_BitCast: {
2049     Value *Src = Visit(const_cast<Expr*>(E));
2050     llvm::Type *SrcTy = Src->getType();
2051     llvm::Type *DstTy = ConvertType(DestTy);
2052     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2053         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2054       llvm_unreachable("wrong cast for pointers in different address spaces"
2055                        "(must be an address space cast)!");
2056     }
2057 
2058     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2059       if (auto PT = DestTy->getAs<PointerType>())
2060         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2061                                       /*MayBeNull=*/true,
2062                                       CodeGenFunction::CFITCK_UnrelatedCast,
2063                                       CE->getBeginLoc());
2064     }
2065 
2066     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2067       const QualType SrcType = E->getType();
2068 
2069       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2070         // Casting to pointer that could carry dynamic information (provided by
2071         // invariant.group) requires launder.
2072         Src = Builder.CreateLaunderInvariantGroup(Src);
2073       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2074         // Casting to pointer that does not carry dynamic information (provided
2075         // by invariant.group) requires stripping it.  Note that we don't do it
2076         // if the source could not be dynamic type and destination could be
2077         // dynamic because dynamic information is already laundered.  It is
2078         // because launder(strip(src)) == launder(src), so there is no need to
2079         // add extra strip before launder.
2080         Src = Builder.CreateStripInvariantGroup(Src);
2081       }
2082     }
2083 
2084     // Update heapallocsite metadata when there is an explicit cast.
2085     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2086       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2087           CGF.getDebugInfo()->
2088               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2089 
2090     return Builder.CreateBitCast(Src, DstTy);
2091   }
2092   case CK_AddressSpaceConversion: {
2093     Expr::EvalResult Result;
2094     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2095         Result.Val.isNullPointer()) {
2096       // If E has side effect, it is emitted even if its final result is a
2097       // null pointer. In that case, a DCE pass should be able to
2098       // eliminate the useless instructions emitted during translating E.
2099       if (Result.HasSideEffects)
2100         Visit(E);
2101       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2102           ConvertType(DestTy)), DestTy);
2103     }
2104     // Since target may map different address spaces in AST to the same address
2105     // space, an address space conversion may end up as a bitcast.
2106     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2107         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2108         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2109   }
2110   case CK_AtomicToNonAtomic:
2111   case CK_NonAtomicToAtomic:
2112   case CK_NoOp:
2113   case CK_UserDefinedConversion:
2114     return Visit(const_cast<Expr*>(E));
2115 
2116   case CK_BaseToDerived: {
2117     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2118     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2119 
2120     Address Base = CGF.EmitPointerWithAlignment(E);
2121     Address Derived =
2122       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2123                                    CE->path_begin(), CE->path_end(),
2124                                    CGF.ShouldNullCheckClassCastValue(CE));
2125 
2126     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2127     // performed and the object is not of the derived type.
2128     if (CGF.sanitizePerformTypeCheck())
2129       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2130                         Derived.getPointer(), DestTy->getPointeeType());
2131 
2132     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2133       CGF.EmitVTablePtrCheckForCast(
2134           DestTy->getPointeeType(), Derived.getPointer(),
2135           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2136           CE->getBeginLoc());
2137 
2138     return Derived.getPointer();
2139   }
2140   case CK_UncheckedDerivedToBase:
2141   case CK_DerivedToBase: {
2142     // The EmitPointerWithAlignment path does this fine; just discard
2143     // the alignment.
2144     return CGF.EmitPointerWithAlignment(CE).getPointer();
2145   }
2146 
2147   case CK_Dynamic: {
2148     Address V = CGF.EmitPointerWithAlignment(E);
2149     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2150     return CGF.EmitDynamicCast(V, DCE);
2151   }
2152 
2153   case CK_ArrayToPointerDecay:
2154     return CGF.EmitArrayToPointerDecay(E).getPointer();
2155   case CK_FunctionToPointerDecay:
2156     return EmitLValue(E).getPointer();
2157 
2158   case CK_NullToPointer:
2159     if (MustVisitNullValue(E))
2160       CGF.EmitIgnoredExpr(E);
2161 
2162     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2163                               DestTy);
2164 
2165   case CK_NullToMemberPointer: {
2166     if (MustVisitNullValue(E))
2167       CGF.EmitIgnoredExpr(E);
2168 
2169     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2170     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2171   }
2172 
2173   case CK_ReinterpretMemberPointer:
2174   case CK_BaseToDerivedMemberPointer:
2175   case CK_DerivedToBaseMemberPointer: {
2176     Value *Src = Visit(E);
2177 
2178     // Note that the AST doesn't distinguish between checked and
2179     // unchecked member pointer conversions, so we always have to
2180     // implement checked conversions here.  This is inefficient when
2181     // actual control flow may be required in order to perform the
2182     // check, which it is for data member pointers (but not member
2183     // function pointers on Itanium and ARM).
2184     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2185   }
2186 
2187   case CK_ARCProduceObject:
2188     return CGF.EmitARCRetainScalarExpr(E);
2189   case CK_ARCConsumeObject:
2190     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2191   case CK_ARCReclaimReturnedObject:
2192     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2193   case CK_ARCExtendBlockObject:
2194     return CGF.EmitARCExtendBlockObject(E);
2195 
2196   case CK_CopyAndAutoreleaseBlockObject:
2197     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2198 
2199   case CK_FloatingRealToComplex:
2200   case CK_FloatingComplexCast:
2201   case CK_IntegralRealToComplex:
2202   case CK_IntegralComplexCast:
2203   case CK_IntegralComplexToFloatingComplex:
2204   case CK_FloatingComplexToIntegralComplex:
2205   case CK_ConstructorConversion:
2206   case CK_ToUnion:
2207     llvm_unreachable("scalar cast to non-scalar value");
2208 
2209   case CK_LValueToRValue:
2210     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2211     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2212     return Visit(const_cast<Expr*>(E));
2213 
2214   case CK_IntegralToPointer: {
2215     Value *Src = Visit(const_cast<Expr*>(E));
2216 
2217     // First, convert to the correct width so that we control the kind of
2218     // extension.
2219     auto DestLLVMTy = ConvertType(DestTy);
2220     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2221     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2222     llvm::Value* IntResult =
2223       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2224 
2225     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2226 
2227     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2228       // Going from integer to pointer that could be dynamic requires reloading
2229       // dynamic information from invariant.group.
2230       if (DestTy.mayBeDynamicClass())
2231         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2232     }
2233     return IntToPtr;
2234   }
2235   case CK_PointerToIntegral: {
2236     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2237     auto *PtrExpr = Visit(E);
2238 
2239     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2240       const QualType SrcType = E->getType();
2241 
2242       // Casting to integer requires stripping dynamic information as it does
2243       // not carries it.
2244       if (SrcType.mayBeDynamicClass())
2245         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2246     }
2247 
2248     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2249   }
2250   case CK_ToVoid: {
2251     CGF.EmitIgnoredExpr(E);
2252     return nullptr;
2253   }
2254   case CK_VectorSplat: {
2255     llvm::Type *DstTy = ConvertType(DestTy);
2256     Value *Elt = Visit(const_cast<Expr*>(E));
2257     // Splat the element across to all elements
2258     unsigned NumElements = DstTy->getVectorNumElements();
2259     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2260   }
2261 
2262   case CK_FixedPointCast:
2263     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2264                                 CE->getExprLoc());
2265 
2266   case CK_FixedPointToBoolean:
2267     assert(E->getType()->isFixedPointType() &&
2268            "Expected src type to be fixed point type");
2269     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2270     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2271                                 CE->getExprLoc());
2272 
2273   case CK_FixedPointToIntegral:
2274     assert(E->getType()->isFixedPointType() &&
2275            "Expected src type to be fixed point type");
2276     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2277     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2278                                 CE->getExprLoc());
2279 
2280   case CK_IntegralToFixedPoint:
2281     assert(E->getType()->isIntegerType() &&
2282            "Expected src type to be an integer");
2283     assert(DestTy->isFixedPointType() &&
2284            "Expected dest type to be fixed point type");
2285     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2286                                 CE->getExprLoc());
2287 
2288   case CK_IntegralCast: {
2289     ScalarConversionOpts Opts;
2290     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2291       if (!ICE->isPartOfExplicitCast())
2292         Opts = ScalarConversionOpts(CGF.SanOpts);
2293     }
2294     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2295                                 CE->getExprLoc(), Opts);
2296   }
2297   case CK_IntegralToFloating:
2298   case CK_FloatingToIntegral:
2299   case CK_FloatingCast:
2300     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2301                                 CE->getExprLoc());
2302   case CK_BooleanToSignedIntegral: {
2303     ScalarConversionOpts Opts;
2304     Opts.TreatBooleanAsSigned = true;
2305     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2306                                 CE->getExprLoc(), Opts);
2307   }
2308   case CK_IntegralToBoolean:
2309     return EmitIntToBoolConversion(Visit(E));
2310   case CK_PointerToBoolean:
2311     return EmitPointerToBoolConversion(Visit(E), E->getType());
2312   case CK_FloatingToBoolean:
2313     return EmitFloatToBoolConversion(Visit(E));
2314   case CK_MemberPointerToBoolean: {
2315     llvm::Value *MemPtr = Visit(E);
2316     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2317     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2318   }
2319 
2320   case CK_FloatingComplexToReal:
2321   case CK_IntegralComplexToReal:
2322     return CGF.EmitComplexExpr(E, false, true).first;
2323 
2324   case CK_FloatingComplexToBoolean:
2325   case CK_IntegralComplexToBoolean: {
2326     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2327 
2328     // TODO: kill this function off, inline appropriate case here
2329     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2330                                          CE->getExprLoc());
2331   }
2332 
2333   case CK_ZeroToOCLOpaqueType: {
2334     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2335             DestTy->isOCLIntelSubgroupAVCType()) &&
2336            "CK_ZeroToOCLEvent cast on non-event type");
2337     return llvm::Constant::getNullValue(ConvertType(DestTy));
2338   }
2339 
2340   case CK_IntToOCLSampler:
2341     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2342 
2343   } // end of switch
2344 
2345   llvm_unreachable("unknown scalar cast");
2346 }
2347 
2348 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2349   CodeGenFunction::StmtExprEvaluation eval(CGF);
2350   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2351                                            !E->getType()->isVoidType());
2352   if (!RetAlloca.isValid())
2353     return nullptr;
2354   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2355                               E->getExprLoc());
2356 }
2357 
2358 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2359   CGF.enterFullExpression(E);
2360   CodeGenFunction::RunCleanupsScope Scope(CGF);
2361   Value *V = Visit(E->getSubExpr());
2362   // Defend against dominance problems caused by jumps out of expression
2363   // evaluation through the shared cleanup block.
2364   Scope.ForceCleanup({&V});
2365   return V;
2366 }
2367 
2368 //===----------------------------------------------------------------------===//
2369 //                             Unary Operators
2370 //===----------------------------------------------------------------------===//
2371 
2372 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2373                                            llvm::Value *InVal, bool IsInc) {
2374   BinOpInfo BinOp;
2375   BinOp.LHS = InVal;
2376   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2377   BinOp.Ty = E->getType();
2378   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2379   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2380   BinOp.E = E;
2381   return BinOp;
2382 }
2383 
2384 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2385     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2386   llvm::Value *Amount =
2387       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2388   StringRef Name = IsInc ? "inc" : "dec";
2389   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2390   case LangOptions::SOB_Defined:
2391     return Builder.CreateAdd(InVal, Amount, Name);
2392   case LangOptions::SOB_Undefined:
2393     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2394       return Builder.CreateNSWAdd(InVal, Amount, Name);
2395     LLVM_FALLTHROUGH;
2396   case LangOptions::SOB_Trapping:
2397     if (!E->canOverflow())
2398       return Builder.CreateNSWAdd(InVal, Amount, Name);
2399     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2400   }
2401   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2402 }
2403 
2404 llvm::Value *
2405 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2406                                            bool isInc, bool isPre) {
2407 
2408   QualType type = E->getSubExpr()->getType();
2409   llvm::PHINode *atomicPHI = nullptr;
2410   llvm::Value *value;
2411   llvm::Value *input;
2412 
2413   int amount = (isInc ? 1 : -1);
2414   bool isSubtraction = !isInc;
2415 
2416   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2417     type = atomicTy->getValueType();
2418     if (isInc && type->isBooleanType()) {
2419       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2420       if (isPre) {
2421         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2422           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2423         return Builder.getTrue();
2424       }
2425       // For atomic bool increment, we just store true and return it for
2426       // preincrement, do an atomic swap with true for postincrement
2427       return Builder.CreateAtomicRMW(
2428           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2429           llvm::AtomicOrdering::SequentiallyConsistent);
2430     }
2431     // Special case for atomic increment / decrement on integers, emit
2432     // atomicrmw instructions.  We skip this if we want to be doing overflow
2433     // checking, and fall into the slow path with the atomic cmpxchg loop.
2434     if (!type->isBooleanType() && type->isIntegerType() &&
2435         !(type->isUnsignedIntegerType() &&
2436           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2437         CGF.getLangOpts().getSignedOverflowBehavior() !=
2438             LangOptions::SOB_Trapping) {
2439       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2440         llvm::AtomicRMWInst::Sub;
2441       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2442         llvm::Instruction::Sub;
2443       llvm::Value *amt = CGF.EmitToMemory(
2444           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2445       llvm::Value *old = Builder.CreateAtomicRMW(aop,
2446           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2447       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2448     }
2449     value = EmitLoadOfLValue(LV, E->getExprLoc());
2450     input = value;
2451     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2452     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2453     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2454     value = CGF.EmitToMemory(value, type);
2455     Builder.CreateBr(opBB);
2456     Builder.SetInsertPoint(opBB);
2457     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2458     atomicPHI->addIncoming(value, startBB);
2459     value = atomicPHI;
2460   } else {
2461     value = EmitLoadOfLValue(LV, E->getExprLoc());
2462     input = value;
2463   }
2464 
2465   // Special case of integer increment that we have to check first: bool++.
2466   // Due to promotion rules, we get:
2467   //   bool++ -> bool = bool + 1
2468   //          -> bool = (int)bool + 1
2469   //          -> bool = ((int)bool + 1 != 0)
2470   // An interesting aspect of this is that increment is always true.
2471   // Decrement does not have this property.
2472   if (isInc && type->isBooleanType()) {
2473     value = Builder.getTrue();
2474 
2475   // Most common case by far: integer increment.
2476   } else if (type->isIntegerType()) {
2477     // Note that signed integer inc/dec with width less than int can't
2478     // overflow because of promotion rules; we're just eliding a few steps here.
2479     if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2480       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2481     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2482                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2483       value =
2484           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2485     } else {
2486       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2487       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2488     }
2489 
2490   // Next most common: pointer increment.
2491   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2492     QualType type = ptr->getPointeeType();
2493 
2494     // VLA types don't have constant size.
2495     if (const VariableArrayType *vla
2496           = CGF.getContext().getAsVariableArrayType(type)) {
2497       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2498       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2499       if (CGF.getLangOpts().isSignedOverflowDefined())
2500         value = Builder.CreateGEP(value, numElts, "vla.inc");
2501       else
2502         value = CGF.EmitCheckedInBoundsGEP(
2503             value, numElts, /*SignedIndices=*/false, isSubtraction,
2504             E->getExprLoc(), "vla.inc");
2505 
2506     // Arithmetic on function pointers (!) is just +-1.
2507     } else if (type->isFunctionType()) {
2508       llvm::Value *amt = Builder.getInt32(amount);
2509 
2510       value = CGF.EmitCastToVoidPtr(value);
2511       if (CGF.getLangOpts().isSignedOverflowDefined())
2512         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2513       else
2514         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2515                                            isSubtraction, E->getExprLoc(),
2516                                            "incdec.funcptr");
2517       value = Builder.CreateBitCast(value, input->getType());
2518 
2519     // For everything else, we can just do a simple increment.
2520     } else {
2521       llvm::Value *amt = Builder.getInt32(amount);
2522       if (CGF.getLangOpts().isSignedOverflowDefined())
2523         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2524       else
2525         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2526                                            isSubtraction, E->getExprLoc(),
2527                                            "incdec.ptr");
2528     }
2529 
2530   // Vector increment/decrement.
2531   } else if (type->isVectorType()) {
2532     if (type->hasIntegerRepresentation()) {
2533       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2534 
2535       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2536     } else {
2537       value = Builder.CreateFAdd(
2538                   value,
2539                   llvm::ConstantFP::get(value->getType(), amount),
2540                   isInc ? "inc" : "dec");
2541     }
2542 
2543   // Floating point.
2544   } else if (type->isRealFloatingType()) {
2545     // Add the inc/dec to the real part.
2546     llvm::Value *amt;
2547 
2548     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2549       // Another special case: half FP increment should be done via float
2550       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2551         value = Builder.CreateCall(
2552             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2553                                  CGF.CGM.FloatTy),
2554             input, "incdec.conv");
2555       } else {
2556         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2557       }
2558     }
2559 
2560     if (value->getType()->isFloatTy())
2561       amt = llvm::ConstantFP::get(VMContext,
2562                                   llvm::APFloat(static_cast<float>(amount)));
2563     else if (value->getType()->isDoubleTy())
2564       amt = llvm::ConstantFP::get(VMContext,
2565                                   llvm::APFloat(static_cast<double>(amount)));
2566     else {
2567       // Remaining types are Half, LongDouble or __float128. Convert from float.
2568       llvm::APFloat F(static_cast<float>(amount));
2569       bool ignored;
2570       const llvm::fltSemantics *FS;
2571       // Don't use getFloatTypeSemantics because Half isn't
2572       // necessarily represented using the "half" LLVM type.
2573       if (value->getType()->isFP128Ty())
2574         FS = &CGF.getTarget().getFloat128Format();
2575       else if (value->getType()->isHalfTy())
2576         FS = &CGF.getTarget().getHalfFormat();
2577       else
2578         FS = &CGF.getTarget().getLongDoubleFormat();
2579       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2580       amt = llvm::ConstantFP::get(VMContext, F);
2581     }
2582     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2583 
2584     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2585       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2586         value = Builder.CreateCall(
2587             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2588                                  CGF.CGM.FloatTy),
2589             value, "incdec.conv");
2590       } else {
2591         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2592       }
2593     }
2594 
2595   // Objective-C pointer types.
2596   } else {
2597     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2598     value = CGF.EmitCastToVoidPtr(value);
2599 
2600     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2601     if (!isInc) size = -size;
2602     llvm::Value *sizeValue =
2603       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2604 
2605     if (CGF.getLangOpts().isSignedOverflowDefined())
2606       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2607     else
2608       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2609                                          /*SignedIndices=*/false, isSubtraction,
2610                                          E->getExprLoc(), "incdec.objptr");
2611     value = Builder.CreateBitCast(value, input->getType());
2612   }
2613 
2614   if (atomicPHI) {
2615     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2616     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2617     auto Pair = CGF.EmitAtomicCompareExchange(
2618         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2619     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2620     llvm::Value *success = Pair.second;
2621     atomicPHI->addIncoming(old, curBlock);
2622     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2623     Builder.SetInsertPoint(contBB);
2624     return isPre ? value : input;
2625   }
2626 
2627   // Store the updated result through the lvalue.
2628   if (LV.isBitField())
2629     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2630   else
2631     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2632 
2633   // If this is a postinc, return the value read from memory, otherwise use the
2634   // updated value.
2635   return isPre ? value : input;
2636 }
2637 
2638 
2639 
2640 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2641   TestAndClearIgnoreResultAssign();
2642   // Emit unary minus with EmitSub so we handle overflow cases etc.
2643   BinOpInfo BinOp;
2644   BinOp.RHS = Visit(E->getSubExpr());
2645 
2646   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2647     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2648   else
2649     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2650   BinOp.Ty = E->getType();
2651   BinOp.Opcode = BO_Sub;
2652   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2653   BinOp.E = E;
2654   return EmitSub(BinOp);
2655 }
2656 
2657 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2658   TestAndClearIgnoreResultAssign();
2659   Value *Op = Visit(E->getSubExpr());
2660   return Builder.CreateNot(Op, "neg");
2661 }
2662 
2663 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2664   // Perform vector logical not on comparison with zero vector.
2665   if (E->getType()->isExtVectorType()) {
2666     Value *Oper = Visit(E->getSubExpr());
2667     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2668     Value *Result;
2669     if (Oper->getType()->isFPOrFPVectorTy())
2670       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2671     else
2672       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2673     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2674   }
2675 
2676   // Compare operand to zero.
2677   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2678 
2679   // Invert value.
2680   // TODO: Could dynamically modify easy computations here.  For example, if
2681   // the operand is an icmp ne, turn into icmp eq.
2682   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2683 
2684   // ZExt result to the expr type.
2685   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2686 }
2687 
2688 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2689   // Try folding the offsetof to a constant.
2690   Expr::EvalResult EVResult;
2691   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2692     llvm::APSInt Value = EVResult.Val.getInt();
2693     return Builder.getInt(Value);
2694   }
2695 
2696   // Loop over the components of the offsetof to compute the value.
2697   unsigned n = E->getNumComponents();
2698   llvm::Type* ResultType = ConvertType(E->getType());
2699   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2700   QualType CurrentType = E->getTypeSourceInfo()->getType();
2701   for (unsigned i = 0; i != n; ++i) {
2702     OffsetOfNode ON = E->getComponent(i);
2703     llvm::Value *Offset = nullptr;
2704     switch (ON.getKind()) {
2705     case OffsetOfNode::Array: {
2706       // Compute the index
2707       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2708       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2709       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2710       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2711 
2712       // Save the element type
2713       CurrentType =
2714           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2715 
2716       // Compute the element size
2717       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2718           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2719 
2720       // Multiply out to compute the result
2721       Offset = Builder.CreateMul(Idx, ElemSize);
2722       break;
2723     }
2724 
2725     case OffsetOfNode::Field: {
2726       FieldDecl *MemberDecl = ON.getField();
2727       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2728       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2729 
2730       // Compute the index of the field in its parent.
2731       unsigned i = 0;
2732       // FIXME: It would be nice if we didn't have to loop here!
2733       for (RecordDecl::field_iterator Field = RD->field_begin(),
2734                                       FieldEnd = RD->field_end();
2735            Field != FieldEnd; ++Field, ++i) {
2736         if (*Field == MemberDecl)
2737           break;
2738       }
2739       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2740 
2741       // Compute the offset to the field
2742       int64_t OffsetInt = RL.getFieldOffset(i) /
2743                           CGF.getContext().getCharWidth();
2744       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2745 
2746       // Save the element type.
2747       CurrentType = MemberDecl->getType();
2748       break;
2749     }
2750 
2751     case OffsetOfNode::Identifier:
2752       llvm_unreachable("dependent __builtin_offsetof");
2753 
2754     case OffsetOfNode::Base: {
2755       if (ON.getBase()->isVirtual()) {
2756         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2757         continue;
2758       }
2759 
2760       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2761       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2762 
2763       // Save the element type.
2764       CurrentType = ON.getBase()->getType();
2765 
2766       // Compute the offset to the base.
2767       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2768       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2769       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2770       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2771       break;
2772     }
2773     }
2774     Result = Builder.CreateAdd(Result, Offset);
2775   }
2776   return Result;
2777 }
2778 
2779 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2780 /// argument of the sizeof expression as an integer.
2781 Value *
2782 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2783                               const UnaryExprOrTypeTraitExpr *E) {
2784   QualType TypeToSize = E->getTypeOfArgument();
2785   if (E->getKind() == UETT_SizeOf) {
2786     if (const VariableArrayType *VAT =
2787           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2788       if (E->isArgumentType()) {
2789         // sizeof(type) - make sure to emit the VLA size.
2790         CGF.EmitVariablyModifiedType(TypeToSize);
2791       } else {
2792         // C99 6.5.3.4p2: If the argument is an expression of type
2793         // VLA, it is evaluated.
2794         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2795       }
2796 
2797       auto VlaSize = CGF.getVLASize(VAT);
2798       llvm::Value *size = VlaSize.NumElts;
2799 
2800       // Scale the number of non-VLA elements by the non-VLA element size.
2801       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2802       if (!eltSize.isOne())
2803         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2804 
2805       return size;
2806     }
2807   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2808     auto Alignment =
2809         CGF.getContext()
2810             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2811                 E->getTypeOfArgument()->getPointeeType()))
2812             .getQuantity();
2813     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2814   }
2815 
2816   // If this isn't sizeof(vla), the result must be constant; use the constant
2817   // folding logic so we don't have to duplicate it here.
2818   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2819 }
2820 
2821 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2822   Expr *Op = E->getSubExpr();
2823   if (Op->getType()->isAnyComplexType()) {
2824     // If it's an l-value, load through the appropriate subobject l-value.
2825     // Note that we have to ask E because Op might be an l-value that
2826     // this won't work for, e.g. an Obj-C property.
2827     if (E->isGLValue())
2828       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2829                                   E->getExprLoc()).getScalarVal();
2830 
2831     // Otherwise, calculate and project.
2832     return CGF.EmitComplexExpr(Op, false, true).first;
2833   }
2834 
2835   return Visit(Op);
2836 }
2837 
2838 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2839   Expr *Op = E->getSubExpr();
2840   if (Op->getType()->isAnyComplexType()) {
2841     // If it's an l-value, load through the appropriate subobject l-value.
2842     // Note that we have to ask E because Op might be an l-value that
2843     // this won't work for, e.g. an Obj-C property.
2844     if (Op->isGLValue())
2845       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2846                                   E->getExprLoc()).getScalarVal();
2847 
2848     // Otherwise, calculate and project.
2849     return CGF.EmitComplexExpr(Op, true, false).second;
2850   }
2851 
2852   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2853   // effects are evaluated, but not the actual value.
2854   if (Op->isGLValue())
2855     CGF.EmitLValue(Op);
2856   else
2857     CGF.EmitScalarExpr(Op, true);
2858   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2859 }
2860 
2861 //===----------------------------------------------------------------------===//
2862 //                           Binary Operators
2863 //===----------------------------------------------------------------------===//
2864 
2865 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2866   TestAndClearIgnoreResultAssign();
2867   BinOpInfo Result;
2868   Result.LHS = Visit(E->getLHS());
2869   Result.RHS = Visit(E->getRHS());
2870   Result.Ty  = E->getType();
2871   Result.Opcode = E->getOpcode();
2872   Result.FPFeatures = E->getFPFeatures();
2873   Result.E = E;
2874   return Result;
2875 }
2876 
2877 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2878                                               const CompoundAssignOperator *E,
2879                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2880                                                    Value *&Result) {
2881   QualType LHSTy = E->getLHS()->getType();
2882   BinOpInfo OpInfo;
2883 
2884   if (E->getComputationResultType()->isAnyComplexType())
2885     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2886 
2887   // Emit the RHS first.  __block variables need to have the rhs evaluated
2888   // first, plus this should improve codegen a little.
2889   OpInfo.RHS = Visit(E->getRHS());
2890   OpInfo.Ty = E->getComputationResultType();
2891   OpInfo.Opcode = E->getOpcode();
2892   OpInfo.FPFeatures = E->getFPFeatures();
2893   OpInfo.E = E;
2894   // Load/convert the LHS.
2895   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2896 
2897   llvm::PHINode *atomicPHI = nullptr;
2898   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2899     QualType type = atomicTy->getValueType();
2900     if (!type->isBooleanType() && type->isIntegerType() &&
2901         !(type->isUnsignedIntegerType() &&
2902           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2903         CGF.getLangOpts().getSignedOverflowBehavior() !=
2904             LangOptions::SOB_Trapping) {
2905       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2906       switch (OpInfo.Opcode) {
2907         // We don't have atomicrmw operands for *, %, /, <<, >>
2908         case BO_MulAssign: case BO_DivAssign:
2909         case BO_RemAssign:
2910         case BO_ShlAssign:
2911         case BO_ShrAssign:
2912           break;
2913         case BO_AddAssign:
2914           aop = llvm::AtomicRMWInst::Add;
2915           break;
2916         case BO_SubAssign:
2917           aop = llvm::AtomicRMWInst::Sub;
2918           break;
2919         case BO_AndAssign:
2920           aop = llvm::AtomicRMWInst::And;
2921           break;
2922         case BO_XorAssign:
2923           aop = llvm::AtomicRMWInst::Xor;
2924           break;
2925         case BO_OrAssign:
2926           aop = llvm::AtomicRMWInst::Or;
2927           break;
2928         default:
2929           llvm_unreachable("Invalid compound assignment type");
2930       }
2931       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2932         llvm::Value *amt = CGF.EmitToMemory(
2933             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2934                                  E->getExprLoc()),
2935             LHSTy);
2936         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2937             llvm::AtomicOrdering::SequentiallyConsistent);
2938         return LHSLV;
2939       }
2940     }
2941     // FIXME: For floating point types, we should be saving and restoring the
2942     // floating point environment in the loop.
2943     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2944     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2945     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2946     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2947     Builder.CreateBr(opBB);
2948     Builder.SetInsertPoint(opBB);
2949     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2950     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2951     OpInfo.LHS = atomicPHI;
2952   }
2953   else
2954     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2955 
2956   SourceLocation Loc = E->getExprLoc();
2957   OpInfo.LHS =
2958       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2959 
2960   // Expand the binary operator.
2961   Result = (this->*Func)(OpInfo);
2962 
2963   // Convert the result back to the LHS type,
2964   // potentially with Implicit Conversion sanitizer check.
2965   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2966                                 Loc, ScalarConversionOpts(CGF.SanOpts));
2967 
2968   if (atomicPHI) {
2969     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2970     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2971     auto Pair = CGF.EmitAtomicCompareExchange(
2972         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2973     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2974     llvm::Value *success = Pair.second;
2975     atomicPHI->addIncoming(old, curBlock);
2976     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2977     Builder.SetInsertPoint(contBB);
2978     return LHSLV;
2979   }
2980 
2981   // Store the result value into the LHS lvalue. Bit-fields are handled
2982   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2983   // 'An assignment expression has the value of the left operand after the
2984   // assignment...'.
2985   if (LHSLV.isBitField())
2986     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2987   else
2988     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2989 
2990   return LHSLV;
2991 }
2992 
2993 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2994                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2995   bool Ignore = TestAndClearIgnoreResultAssign();
2996   Value *RHS = nullptr;
2997   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2998 
2999   // If the result is clearly ignored, return now.
3000   if (Ignore)
3001     return nullptr;
3002 
3003   // The result of an assignment in C is the assigned r-value.
3004   if (!CGF.getLangOpts().CPlusPlus)
3005     return RHS;
3006 
3007   // If the lvalue is non-volatile, return the computed value of the assignment.
3008   if (!LHS.isVolatileQualified())
3009     return RHS;
3010 
3011   // Otherwise, reload the value.
3012   return EmitLoadOfLValue(LHS, E->getExprLoc());
3013 }
3014 
3015 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3016     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3017   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3018 
3019   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3020     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3021                                     SanitizerKind::IntegerDivideByZero));
3022   }
3023 
3024   const auto *BO = cast<BinaryOperator>(Ops.E);
3025   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3026       Ops.Ty->hasSignedIntegerRepresentation() &&
3027       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3028       Ops.mayHaveIntegerOverflow()) {
3029     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3030 
3031     llvm::Value *IntMin =
3032       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3033     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3034 
3035     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3036     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3037     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3038     Checks.push_back(
3039         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3040   }
3041 
3042   if (Checks.size() > 0)
3043     EmitBinOpCheck(Checks, Ops);
3044 }
3045 
3046 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3047   {
3048     CodeGenFunction::SanitizerScope SanScope(&CGF);
3049     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3050          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3051         Ops.Ty->isIntegerType() &&
3052         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3053       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3054       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3055     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3056                Ops.Ty->isRealFloatingType() &&
3057                Ops.mayHaveFloatDivisionByZero()) {
3058       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3059       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3060       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3061                      Ops);
3062     }
3063   }
3064 
3065   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3066     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3067     if (CGF.getLangOpts().OpenCL &&
3068         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3069       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3070       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3071       // build option allows an application to specify that single precision
3072       // floating-point divide (x/y and 1/x) and sqrt used in the program
3073       // source are correctly rounded.
3074       llvm::Type *ValTy = Val->getType();
3075       if (ValTy->isFloatTy() ||
3076           (isa<llvm::VectorType>(ValTy) &&
3077            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3078         CGF.SetFPAccuracy(Val, 2.5);
3079     }
3080     return Val;
3081   }
3082   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3083     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3084   else
3085     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3086 }
3087 
3088 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3089   // Rem in C can't be a floating point type: C99 6.5.5p2.
3090   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3091        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3092       Ops.Ty->isIntegerType() &&
3093       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3094     CodeGenFunction::SanitizerScope SanScope(&CGF);
3095     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3096     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3097   }
3098 
3099   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3100     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3101   else
3102     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3103 }
3104 
3105 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3106   unsigned IID;
3107   unsigned OpID = 0;
3108 
3109   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3110   switch (Ops.Opcode) {
3111   case BO_Add:
3112   case BO_AddAssign:
3113     OpID = 1;
3114     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3115                      llvm::Intrinsic::uadd_with_overflow;
3116     break;
3117   case BO_Sub:
3118   case BO_SubAssign:
3119     OpID = 2;
3120     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3121                      llvm::Intrinsic::usub_with_overflow;
3122     break;
3123   case BO_Mul:
3124   case BO_MulAssign:
3125     OpID = 3;
3126     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3127                      llvm::Intrinsic::umul_with_overflow;
3128     break;
3129   default:
3130     llvm_unreachable("Unsupported operation for overflow detection");
3131   }
3132   OpID <<= 1;
3133   if (isSigned)
3134     OpID |= 1;
3135 
3136   CodeGenFunction::SanitizerScope SanScope(&CGF);
3137   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3138 
3139   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3140 
3141   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3142   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3143   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3144 
3145   // Handle overflow with llvm.trap if no custom handler has been specified.
3146   const std::string *handlerName =
3147     &CGF.getLangOpts().OverflowHandler;
3148   if (handlerName->empty()) {
3149     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3150     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3151     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3152       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3153       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3154                               : SanitizerKind::UnsignedIntegerOverflow;
3155       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3156     } else
3157       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3158     return result;
3159   }
3160 
3161   // Branch in case of overflow.
3162   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3163   llvm::BasicBlock *continueBB =
3164       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3165   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3166 
3167   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3168 
3169   // If an overflow handler is set, then we want to call it and then use its
3170   // result, if it returns.
3171   Builder.SetInsertPoint(overflowBB);
3172 
3173   // Get the overflow handler.
3174   llvm::Type *Int8Ty = CGF.Int8Ty;
3175   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3176   llvm::FunctionType *handlerTy =
3177       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3178   llvm::FunctionCallee handler =
3179       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3180 
3181   // Sign extend the args to 64-bit, so that we can use the same handler for
3182   // all types of overflow.
3183   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3184   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3185 
3186   // Call the handler with the two arguments, the operation, and the size of
3187   // the result.
3188   llvm::Value *handlerArgs[] = {
3189     lhs,
3190     rhs,
3191     Builder.getInt8(OpID),
3192     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3193   };
3194   llvm::Value *handlerResult =
3195     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3196 
3197   // Truncate the result back to the desired size.
3198   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3199   Builder.CreateBr(continueBB);
3200 
3201   Builder.SetInsertPoint(continueBB);
3202   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3203   phi->addIncoming(result, initialBB);
3204   phi->addIncoming(handlerResult, overflowBB);
3205 
3206   return phi;
3207 }
3208 
3209 /// Emit pointer + index arithmetic.
3210 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3211                                     const BinOpInfo &op,
3212                                     bool isSubtraction) {
3213   // Must have binary (not unary) expr here.  Unary pointer
3214   // increment/decrement doesn't use this path.
3215   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3216 
3217   Value *pointer = op.LHS;
3218   Expr *pointerOperand = expr->getLHS();
3219   Value *index = op.RHS;
3220   Expr *indexOperand = expr->getRHS();
3221 
3222   // In a subtraction, the LHS is always the pointer.
3223   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3224     std::swap(pointer, index);
3225     std::swap(pointerOperand, indexOperand);
3226   }
3227 
3228   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3229 
3230   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3231   auto &DL = CGF.CGM.getDataLayout();
3232   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3233 
3234   // Some versions of glibc and gcc use idioms (particularly in their malloc
3235   // routines) that add a pointer-sized integer (known to be a pointer value)
3236   // to a null pointer in order to cast the value back to an integer or as
3237   // part of a pointer alignment algorithm.  This is undefined behavior, but
3238   // we'd like to be able to compile programs that use it.
3239   //
3240   // Normally, we'd generate a GEP with a null-pointer base here in response
3241   // to that code, but it's also UB to dereference a pointer created that
3242   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3243   // generate a direct cast of the integer value to a pointer.
3244   //
3245   // The idiom (p = nullptr + N) is not met if any of the following are true:
3246   //
3247   //   The operation is subtraction.
3248   //   The index is not pointer-sized.
3249   //   The pointer type is not byte-sized.
3250   //
3251   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3252                                                        op.Opcode,
3253                                                        expr->getLHS(),
3254                                                        expr->getRHS()))
3255     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3256 
3257   if (width != DL.getTypeSizeInBits(PtrTy)) {
3258     // Zero-extend or sign-extend the pointer value according to
3259     // whether the index is signed or not.
3260     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3261                                       "idx.ext");
3262   }
3263 
3264   // If this is subtraction, negate the index.
3265   if (isSubtraction)
3266     index = CGF.Builder.CreateNeg(index, "idx.neg");
3267 
3268   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3269     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3270                         /*Accessed*/ false);
3271 
3272   const PointerType *pointerType
3273     = pointerOperand->getType()->getAs<PointerType>();
3274   if (!pointerType) {
3275     QualType objectType = pointerOperand->getType()
3276                                         ->castAs<ObjCObjectPointerType>()
3277                                         ->getPointeeType();
3278     llvm::Value *objectSize
3279       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3280 
3281     index = CGF.Builder.CreateMul(index, objectSize);
3282 
3283     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3284     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3285     return CGF.Builder.CreateBitCast(result, pointer->getType());
3286   }
3287 
3288   QualType elementType = pointerType->getPointeeType();
3289   if (const VariableArrayType *vla
3290         = CGF.getContext().getAsVariableArrayType(elementType)) {
3291     // The element count here is the total number of non-VLA elements.
3292     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3293 
3294     // Effectively, the multiply by the VLA size is part of the GEP.
3295     // GEP indexes are signed, and scaling an index isn't permitted to
3296     // signed-overflow, so we use the same semantics for our explicit
3297     // multiply.  We suppress this if overflow is not undefined behavior.
3298     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3299       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3300       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3301     } else {
3302       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3303       pointer =
3304           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3305                                      op.E->getExprLoc(), "add.ptr");
3306     }
3307     return pointer;
3308   }
3309 
3310   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3311   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3312   // future proof.
3313   if (elementType->isVoidType() || elementType->isFunctionType()) {
3314     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3315     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3316     return CGF.Builder.CreateBitCast(result, pointer->getType());
3317   }
3318 
3319   if (CGF.getLangOpts().isSignedOverflowDefined())
3320     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3321 
3322   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3323                                     op.E->getExprLoc(), "add.ptr");
3324 }
3325 
3326 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3327 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3328 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3329 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3330 // efficient operations.
3331 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3332                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3333                            bool negMul, bool negAdd) {
3334   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3335 
3336   Value *MulOp0 = MulOp->getOperand(0);
3337   Value *MulOp1 = MulOp->getOperand(1);
3338   if (negMul) {
3339     MulOp0 =
3340       Builder.CreateFSub(
3341         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3342         "neg");
3343   } else if (negAdd) {
3344     Addend =
3345       Builder.CreateFSub(
3346         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3347         "neg");
3348   }
3349 
3350   Value *FMulAdd = Builder.CreateCall(
3351       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3352       {MulOp0, MulOp1, Addend});
3353    MulOp->eraseFromParent();
3354 
3355    return FMulAdd;
3356 }
3357 
3358 // Check whether it would be legal to emit an fmuladd intrinsic call to
3359 // represent op and if so, build the fmuladd.
3360 //
3361 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3362 // Does NOT check the type of the operation - it's assumed that this function
3363 // will be called from contexts where it's known that the type is contractable.
3364 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3365                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3366                          bool isSub=false) {
3367 
3368   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3369           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3370          "Only fadd/fsub can be the root of an fmuladd.");
3371 
3372   // Check whether this op is marked as fusable.
3373   if (!op.FPFeatures.allowFPContractWithinStatement())
3374     return nullptr;
3375 
3376   // We have a potentially fusable op. Look for a mul on one of the operands.
3377   // Also, make sure that the mul result isn't used directly. In that case,
3378   // there's no point creating a muladd operation.
3379   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3380     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3381         LHSBinOp->use_empty())
3382       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3383   }
3384   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3385     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3386         RHSBinOp->use_empty())
3387       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3388   }
3389 
3390   return nullptr;
3391 }
3392 
3393 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3394   if (op.LHS->getType()->isPointerTy() ||
3395       op.RHS->getType()->isPointerTy())
3396     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3397 
3398   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3399     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3400     case LangOptions::SOB_Defined:
3401       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3402     case LangOptions::SOB_Undefined:
3403       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3404         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3405       LLVM_FALLTHROUGH;
3406     case LangOptions::SOB_Trapping:
3407       if (CanElideOverflowCheck(CGF.getContext(), op))
3408         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3409       return EmitOverflowCheckedBinOp(op);
3410     }
3411   }
3412 
3413   if (op.Ty->isUnsignedIntegerType() &&
3414       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3415       !CanElideOverflowCheck(CGF.getContext(), op))
3416     return EmitOverflowCheckedBinOp(op);
3417 
3418   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3419     // Try to form an fmuladd.
3420     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3421       return FMulAdd;
3422 
3423     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3424     return propagateFMFlags(V, op);
3425   }
3426 
3427   if (op.isFixedPointBinOp())
3428     return EmitFixedPointBinOp(op);
3429 
3430   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3431 }
3432 
3433 /// The resulting value must be calculated with exact precision, so the operands
3434 /// may not be the same type.
3435 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3436   using llvm::APSInt;
3437   using llvm::ConstantInt;
3438 
3439   const auto *BinOp = cast<BinaryOperator>(op.E);
3440 
3441   // The result is a fixed point type and at least one of the operands is fixed
3442   // point while the other is either fixed point or an int. This resulting type
3443   // should be determined by Sema::handleFixedPointConversions().
3444   QualType ResultTy = op.Ty;
3445   QualType LHSTy = BinOp->getLHS()->getType();
3446   QualType RHSTy = BinOp->getRHS()->getType();
3447   ASTContext &Ctx = CGF.getContext();
3448   Value *LHS = op.LHS;
3449   Value *RHS = op.RHS;
3450 
3451   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3452   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3453   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3454   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3455 
3456   // Convert the operands to the full precision type.
3457   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3458                                             BinOp->getExprLoc());
3459   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3460                                             BinOp->getExprLoc());
3461 
3462   // Perform the actual addition.
3463   Value *Result;
3464   switch (BinOp->getOpcode()) {
3465   case BO_Add: {
3466     if (ResultFixedSema.isSaturated()) {
3467       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3468                                     ? llvm::Intrinsic::sadd_sat
3469                                     : llvm::Intrinsic::uadd_sat;
3470       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3471     } else {
3472       Result = Builder.CreateAdd(FullLHS, FullRHS);
3473     }
3474     break;
3475   }
3476   case BO_Sub: {
3477     if (ResultFixedSema.isSaturated()) {
3478       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3479                                     ? llvm::Intrinsic::ssub_sat
3480                                     : llvm::Intrinsic::usub_sat;
3481       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3482     } else {
3483       Result = Builder.CreateSub(FullLHS, FullRHS);
3484     }
3485     break;
3486   }
3487   case BO_LT:
3488     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3489                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3490   case BO_GT:
3491     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3492                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3493   case BO_LE:
3494     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3495                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3496   case BO_GE:
3497     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3498                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3499   case BO_EQ:
3500     // For equality operations, we assume any padding bits on unsigned types are
3501     // zero'd out. They could be overwritten through non-saturating operations
3502     // that cause overflow, but this leads to undefined behavior.
3503     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3504   case BO_NE:
3505     return Builder.CreateICmpNE(FullLHS, FullRHS);
3506   case BO_Mul:
3507   case BO_Div:
3508   case BO_Shl:
3509   case BO_Shr:
3510   case BO_Cmp:
3511   case BO_LAnd:
3512   case BO_LOr:
3513   case BO_MulAssign:
3514   case BO_DivAssign:
3515   case BO_AddAssign:
3516   case BO_SubAssign:
3517   case BO_ShlAssign:
3518   case BO_ShrAssign:
3519     llvm_unreachable("Found unimplemented fixed point binary operation");
3520   case BO_PtrMemD:
3521   case BO_PtrMemI:
3522   case BO_Rem:
3523   case BO_Xor:
3524   case BO_And:
3525   case BO_Or:
3526   case BO_Assign:
3527   case BO_RemAssign:
3528   case BO_AndAssign:
3529   case BO_XorAssign:
3530   case BO_OrAssign:
3531   case BO_Comma:
3532     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3533   }
3534 
3535   // Convert to the result type.
3536   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3537                                   BinOp->getExprLoc());
3538 }
3539 
3540 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3541   // The LHS is always a pointer if either side is.
3542   if (!op.LHS->getType()->isPointerTy()) {
3543     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3544       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3545       case LangOptions::SOB_Defined:
3546         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3547       case LangOptions::SOB_Undefined:
3548         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3549           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3550         LLVM_FALLTHROUGH;
3551       case LangOptions::SOB_Trapping:
3552         if (CanElideOverflowCheck(CGF.getContext(), op))
3553           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3554         return EmitOverflowCheckedBinOp(op);
3555       }
3556     }
3557 
3558     if (op.Ty->isUnsignedIntegerType() &&
3559         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3560         !CanElideOverflowCheck(CGF.getContext(), op))
3561       return EmitOverflowCheckedBinOp(op);
3562 
3563     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3564       // Try to form an fmuladd.
3565       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3566         return FMulAdd;
3567       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3568       return propagateFMFlags(V, op);
3569     }
3570 
3571     if (op.isFixedPointBinOp())
3572       return EmitFixedPointBinOp(op);
3573 
3574     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3575   }
3576 
3577   // If the RHS is not a pointer, then we have normal pointer
3578   // arithmetic.
3579   if (!op.RHS->getType()->isPointerTy())
3580     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3581 
3582   // Otherwise, this is a pointer subtraction.
3583 
3584   // Do the raw subtraction part.
3585   llvm::Value *LHS
3586     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3587   llvm::Value *RHS
3588     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3589   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3590 
3591   // Okay, figure out the element size.
3592   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3593   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3594 
3595   llvm::Value *divisor = nullptr;
3596 
3597   // For a variable-length array, this is going to be non-constant.
3598   if (const VariableArrayType *vla
3599         = CGF.getContext().getAsVariableArrayType(elementType)) {
3600     auto VlaSize = CGF.getVLASize(vla);
3601     elementType = VlaSize.Type;
3602     divisor = VlaSize.NumElts;
3603 
3604     // Scale the number of non-VLA elements by the non-VLA element size.
3605     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3606     if (!eltSize.isOne())
3607       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3608 
3609   // For everything elese, we can just compute it, safe in the
3610   // assumption that Sema won't let anything through that we can't
3611   // safely compute the size of.
3612   } else {
3613     CharUnits elementSize;
3614     // Handle GCC extension for pointer arithmetic on void* and
3615     // function pointer types.
3616     if (elementType->isVoidType() || elementType->isFunctionType())
3617       elementSize = CharUnits::One();
3618     else
3619       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3620 
3621     // Don't even emit the divide for element size of 1.
3622     if (elementSize.isOne())
3623       return diffInChars;
3624 
3625     divisor = CGF.CGM.getSize(elementSize);
3626   }
3627 
3628   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3629   // pointer difference in C is only defined in the case where both operands
3630   // are pointing to elements of an array.
3631   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3632 }
3633 
3634 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3635   llvm::IntegerType *Ty;
3636   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3637     Ty = cast<llvm::IntegerType>(VT->getElementType());
3638   else
3639     Ty = cast<llvm::IntegerType>(LHS->getType());
3640   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3641 }
3642 
3643 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3644   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3645   // RHS to the same size as the LHS.
3646   Value *RHS = Ops.RHS;
3647   if (Ops.LHS->getType() != RHS->getType())
3648     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3649 
3650   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3651                       Ops.Ty->hasSignedIntegerRepresentation() &&
3652                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3653                       !CGF.getLangOpts().CPlusPlus2a;
3654   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3655   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3656   if (CGF.getLangOpts().OpenCL)
3657     RHS =
3658         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3659   else if ((SanitizeBase || SanitizeExponent) &&
3660            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3661     CodeGenFunction::SanitizerScope SanScope(&CGF);
3662     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3663     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3664     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3665 
3666     if (SanitizeExponent) {
3667       Checks.push_back(
3668           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3669     }
3670 
3671     if (SanitizeBase) {
3672       // Check whether we are shifting any non-zero bits off the top of the
3673       // integer. We only emit this check if exponent is valid - otherwise
3674       // instructions below will have undefined behavior themselves.
3675       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3676       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3677       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3678       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3679       llvm::Value *PromotedWidthMinusOne =
3680           (RHS == Ops.RHS) ? WidthMinusOne
3681                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3682       CGF.EmitBlock(CheckShiftBase);
3683       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3684           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3685                                      /*NUW*/ true, /*NSW*/ true),
3686           "shl.check");
3687       if (CGF.getLangOpts().CPlusPlus) {
3688         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3689         // Under C++11's rules, shifting a 1 bit into the sign bit is
3690         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3691         // define signed left shifts, so we use the C99 and C++11 rules there).
3692         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3693         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3694       }
3695       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3696       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3697       CGF.EmitBlock(Cont);
3698       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3699       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3700       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3701       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3702     }
3703 
3704     assert(!Checks.empty());
3705     EmitBinOpCheck(Checks, Ops);
3706   }
3707 
3708   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3709 }
3710 
3711 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3712   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3713   // RHS to the same size as the LHS.
3714   Value *RHS = Ops.RHS;
3715   if (Ops.LHS->getType() != RHS->getType())
3716     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3717 
3718   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3719   if (CGF.getLangOpts().OpenCL)
3720     RHS =
3721         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3722   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3723            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3724     CodeGenFunction::SanitizerScope SanScope(&CGF);
3725     llvm::Value *Valid =
3726         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3727     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3728   }
3729 
3730   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3731     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3732   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3733 }
3734 
3735 enum IntrinsicType { VCMPEQ, VCMPGT };
3736 // return corresponding comparison intrinsic for given vector type
3737 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3738                                         BuiltinType::Kind ElemKind) {
3739   switch (ElemKind) {
3740   default: llvm_unreachable("unexpected element type");
3741   case BuiltinType::Char_U:
3742   case BuiltinType::UChar:
3743     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3744                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3745   case BuiltinType::Char_S:
3746   case BuiltinType::SChar:
3747     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3748                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3749   case BuiltinType::UShort:
3750     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3751                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3752   case BuiltinType::Short:
3753     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3754                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3755   case BuiltinType::UInt:
3756     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3757                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3758   case BuiltinType::Int:
3759     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3760                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3761   case BuiltinType::ULong:
3762   case BuiltinType::ULongLong:
3763     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3764                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3765   case BuiltinType::Long:
3766   case BuiltinType::LongLong:
3767     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3768                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3769   case BuiltinType::Float:
3770     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3771                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3772   case BuiltinType::Double:
3773     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3774                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3775   }
3776 }
3777 
3778 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3779                                       llvm::CmpInst::Predicate UICmpOpc,
3780                                       llvm::CmpInst::Predicate SICmpOpc,
3781                                       llvm::CmpInst::Predicate FCmpOpc) {
3782   TestAndClearIgnoreResultAssign();
3783   Value *Result;
3784   QualType LHSTy = E->getLHS()->getType();
3785   QualType RHSTy = E->getRHS()->getType();
3786   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3787     assert(E->getOpcode() == BO_EQ ||
3788            E->getOpcode() == BO_NE);
3789     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3790     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3791     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3792                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3793   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3794     BinOpInfo BOInfo = EmitBinOps(E);
3795     Value *LHS = BOInfo.LHS;
3796     Value *RHS = BOInfo.RHS;
3797 
3798     // If AltiVec, the comparison results in a numeric type, so we use
3799     // intrinsics comparing vectors and giving 0 or 1 as a result
3800     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3801       // constants for mapping CR6 register bits to predicate result
3802       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3803 
3804       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3805 
3806       // in several cases vector arguments order will be reversed
3807       Value *FirstVecArg = LHS,
3808             *SecondVecArg = RHS;
3809 
3810       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3811       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3812       BuiltinType::Kind ElementKind = BTy->getKind();
3813 
3814       switch(E->getOpcode()) {
3815       default: llvm_unreachable("is not a comparison operation");
3816       case BO_EQ:
3817         CR6 = CR6_LT;
3818         ID = GetIntrinsic(VCMPEQ, ElementKind);
3819         break;
3820       case BO_NE:
3821         CR6 = CR6_EQ;
3822         ID = GetIntrinsic(VCMPEQ, ElementKind);
3823         break;
3824       case BO_LT:
3825         CR6 = CR6_LT;
3826         ID = GetIntrinsic(VCMPGT, ElementKind);
3827         std::swap(FirstVecArg, SecondVecArg);
3828         break;
3829       case BO_GT:
3830         CR6 = CR6_LT;
3831         ID = GetIntrinsic(VCMPGT, ElementKind);
3832         break;
3833       case BO_LE:
3834         if (ElementKind == BuiltinType::Float) {
3835           CR6 = CR6_LT;
3836           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3837           std::swap(FirstVecArg, SecondVecArg);
3838         }
3839         else {
3840           CR6 = CR6_EQ;
3841           ID = GetIntrinsic(VCMPGT, ElementKind);
3842         }
3843         break;
3844       case BO_GE:
3845         if (ElementKind == BuiltinType::Float) {
3846           CR6 = CR6_LT;
3847           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3848         }
3849         else {
3850           CR6 = CR6_EQ;
3851           ID = GetIntrinsic(VCMPGT, ElementKind);
3852           std::swap(FirstVecArg, SecondVecArg);
3853         }
3854         break;
3855       }
3856 
3857       Value *CR6Param = Builder.getInt32(CR6);
3858       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3859       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3860 
3861       // The result type of intrinsic may not be same as E->getType().
3862       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3863       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3864       // do nothing, if ResultTy is not i1 at the same time, it will cause
3865       // crash later.
3866       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3867       if (ResultTy->getBitWidth() > 1 &&
3868           E->getType() == CGF.getContext().BoolTy)
3869         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3870       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3871                                   E->getExprLoc());
3872     }
3873 
3874     if (BOInfo.isFixedPointBinOp()) {
3875       Result = EmitFixedPointBinOp(BOInfo);
3876     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3877       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3878     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3879       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3880     } else {
3881       // Unsigned integers and pointers.
3882 
3883       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3884           !isa<llvm::ConstantPointerNull>(LHS) &&
3885           !isa<llvm::ConstantPointerNull>(RHS)) {
3886 
3887         // Dynamic information is required to be stripped for comparisons,
3888         // because it could leak the dynamic information.  Based on comparisons
3889         // of pointers to dynamic objects, the optimizer can replace one pointer
3890         // with another, which might be incorrect in presence of invariant
3891         // groups. Comparison with null is safe because null does not carry any
3892         // dynamic information.
3893         if (LHSTy.mayBeDynamicClass())
3894           LHS = Builder.CreateStripInvariantGroup(LHS);
3895         if (RHSTy.mayBeDynamicClass())
3896           RHS = Builder.CreateStripInvariantGroup(RHS);
3897       }
3898 
3899       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3900     }
3901 
3902     // If this is a vector comparison, sign extend the result to the appropriate
3903     // vector integer type and return it (don't convert to bool).
3904     if (LHSTy->isVectorType())
3905       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3906 
3907   } else {
3908     // Complex Comparison: can only be an equality comparison.
3909     CodeGenFunction::ComplexPairTy LHS, RHS;
3910     QualType CETy;
3911     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3912       LHS = CGF.EmitComplexExpr(E->getLHS());
3913       CETy = CTy->getElementType();
3914     } else {
3915       LHS.first = Visit(E->getLHS());
3916       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3917       CETy = LHSTy;
3918     }
3919     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3920       RHS = CGF.EmitComplexExpr(E->getRHS());
3921       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3922                                                      CTy->getElementType()) &&
3923              "The element types must always match.");
3924       (void)CTy;
3925     } else {
3926       RHS.first = Visit(E->getRHS());
3927       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3928       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3929              "The element types must always match.");
3930     }
3931 
3932     Value *ResultR, *ResultI;
3933     if (CETy->isRealFloatingType()) {
3934       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3935       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3936     } else {
3937       // Complex comparisons can only be equality comparisons.  As such, signed
3938       // and unsigned opcodes are the same.
3939       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3940       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3941     }
3942 
3943     if (E->getOpcode() == BO_EQ) {
3944       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3945     } else {
3946       assert(E->getOpcode() == BO_NE &&
3947              "Complex comparison other than == or != ?");
3948       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3949     }
3950   }
3951 
3952   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3953                               E->getExprLoc());
3954 }
3955 
3956 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3957   bool Ignore = TestAndClearIgnoreResultAssign();
3958 
3959   Value *RHS;
3960   LValue LHS;
3961 
3962   switch (E->getLHS()->getType().getObjCLifetime()) {
3963   case Qualifiers::OCL_Strong:
3964     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3965     break;
3966 
3967   case Qualifiers::OCL_Autoreleasing:
3968     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3969     break;
3970 
3971   case Qualifiers::OCL_ExplicitNone:
3972     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3973     break;
3974 
3975   case Qualifiers::OCL_Weak:
3976     RHS = Visit(E->getRHS());
3977     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3978     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3979     break;
3980 
3981   case Qualifiers::OCL_None:
3982     // __block variables need to have the rhs evaluated first, plus
3983     // this should improve codegen just a little.
3984     RHS = Visit(E->getRHS());
3985     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3986 
3987     // Store the value into the LHS.  Bit-fields are handled specially
3988     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3989     // 'An assignment expression has the value of the left operand after
3990     // the assignment...'.
3991     if (LHS.isBitField()) {
3992       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3993     } else {
3994       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3995       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3996     }
3997   }
3998 
3999   // If the result is clearly ignored, return now.
4000   if (Ignore)
4001     return nullptr;
4002 
4003   // The result of an assignment in C is the assigned r-value.
4004   if (!CGF.getLangOpts().CPlusPlus)
4005     return RHS;
4006 
4007   // If the lvalue is non-volatile, return the computed value of the assignment.
4008   if (!LHS.isVolatileQualified())
4009     return RHS;
4010 
4011   // Otherwise, reload the value.
4012   return EmitLoadOfLValue(LHS, E->getExprLoc());
4013 }
4014 
4015 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4016   // Perform vector logical and on comparisons with zero vectors.
4017   if (E->getType()->isVectorType()) {
4018     CGF.incrementProfileCounter(E);
4019 
4020     Value *LHS = Visit(E->getLHS());
4021     Value *RHS = Visit(E->getRHS());
4022     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4023     if (LHS->getType()->isFPOrFPVectorTy()) {
4024       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4025       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4026     } else {
4027       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4028       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4029     }
4030     Value *And = Builder.CreateAnd(LHS, RHS);
4031     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4032   }
4033 
4034   llvm::Type *ResTy = ConvertType(E->getType());
4035 
4036   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4037   // If we have 1 && X, just emit X without inserting the control flow.
4038   bool LHSCondVal;
4039   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4040     if (LHSCondVal) { // If we have 1 && X, just emit X.
4041       CGF.incrementProfileCounter(E);
4042 
4043       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4044       // ZExt result to int or bool.
4045       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4046     }
4047 
4048     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4049     if (!CGF.ContainsLabel(E->getRHS()))
4050       return llvm::Constant::getNullValue(ResTy);
4051   }
4052 
4053   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4054   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4055 
4056   CodeGenFunction::ConditionalEvaluation eval(CGF);
4057 
4058   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4059   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4060                            CGF.getProfileCount(E->getRHS()));
4061 
4062   // Any edges into the ContBlock are now from an (indeterminate number of)
4063   // edges from this first condition.  All of these values will be false.  Start
4064   // setting up the PHI node in the Cont Block for this.
4065   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4066                                             "", ContBlock);
4067   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4068        PI != PE; ++PI)
4069     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4070 
4071   eval.begin(CGF);
4072   CGF.EmitBlock(RHSBlock);
4073   CGF.incrementProfileCounter(E);
4074   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4075   eval.end(CGF);
4076 
4077   // Reaquire the RHS block, as there may be subblocks inserted.
4078   RHSBlock = Builder.GetInsertBlock();
4079 
4080   // Emit an unconditional branch from this block to ContBlock.
4081   {
4082     // There is no need to emit line number for unconditional branch.
4083     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4084     CGF.EmitBlock(ContBlock);
4085   }
4086   // Insert an entry into the phi node for the edge with the value of RHSCond.
4087   PN->addIncoming(RHSCond, RHSBlock);
4088 
4089   // Artificial location to preserve the scope information
4090   {
4091     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4092     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4093   }
4094 
4095   // ZExt result to int.
4096   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4097 }
4098 
4099 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4100   // Perform vector logical or on comparisons with zero vectors.
4101   if (E->getType()->isVectorType()) {
4102     CGF.incrementProfileCounter(E);
4103 
4104     Value *LHS = Visit(E->getLHS());
4105     Value *RHS = Visit(E->getRHS());
4106     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4107     if (LHS->getType()->isFPOrFPVectorTy()) {
4108       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4109       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4110     } else {
4111       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4112       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4113     }
4114     Value *Or = Builder.CreateOr(LHS, RHS);
4115     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4116   }
4117 
4118   llvm::Type *ResTy = ConvertType(E->getType());
4119 
4120   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4121   // If we have 0 || X, just emit X without inserting the control flow.
4122   bool LHSCondVal;
4123   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4124     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4125       CGF.incrementProfileCounter(E);
4126 
4127       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4128       // ZExt result to int or bool.
4129       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4130     }
4131 
4132     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4133     if (!CGF.ContainsLabel(E->getRHS()))
4134       return llvm::ConstantInt::get(ResTy, 1);
4135   }
4136 
4137   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4138   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4139 
4140   CodeGenFunction::ConditionalEvaluation eval(CGF);
4141 
4142   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4143   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4144                            CGF.getCurrentProfileCount() -
4145                                CGF.getProfileCount(E->getRHS()));
4146 
4147   // Any edges into the ContBlock are now from an (indeterminate number of)
4148   // edges from this first condition.  All of these values will be true.  Start
4149   // setting up the PHI node in the Cont Block for this.
4150   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4151                                             "", ContBlock);
4152   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4153        PI != PE; ++PI)
4154     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4155 
4156   eval.begin(CGF);
4157 
4158   // Emit the RHS condition as a bool value.
4159   CGF.EmitBlock(RHSBlock);
4160   CGF.incrementProfileCounter(E);
4161   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4162 
4163   eval.end(CGF);
4164 
4165   // Reaquire the RHS block, as there may be subblocks inserted.
4166   RHSBlock = Builder.GetInsertBlock();
4167 
4168   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4169   // into the phi node for the edge with the value of RHSCond.
4170   CGF.EmitBlock(ContBlock);
4171   PN->addIncoming(RHSCond, RHSBlock);
4172 
4173   // ZExt result to int.
4174   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4175 }
4176 
4177 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4178   CGF.EmitIgnoredExpr(E->getLHS());
4179   CGF.EnsureInsertPoint();
4180   return Visit(E->getRHS());
4181 }
4182 
4183 //===----------------------------------------------------------------------===//
4184 //                             Other Operators
4185 //===----------------------------------------------------------------------===//
4186 
4187 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4188 /// expression is cheap enough and side-effect-free enough to evaluate
4189 /// unconditionally instead of conditionally.  This is used to convert control
4190 /// flow into selects in some cases.
4191 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4192                                                    CodeGenFunction &CGF) {
4193   // Anything that is an integer or floating point constant is fine.
4194   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4195 
4196   // Even non-volatile automatic variables can't be evaluated unconditionally.
4197   // Referencing a thread_local may cause non-trivial initialization work to
4198   // occur. If we're inside a lambda and one of the variables is from the scope
4199   // outside the lambda, that function may have returned already. Reading its
4200   // locals is a bad idea. Also, these reads may introduce races there didn't
4201   // exist in the source-level program.
4202 }
4203 
4204 
4205 Value *ScalarExprEmitter::
4206 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4207   TestAndClearIgnoreResultAssign();
4208 
4209   // Bind the common expression if necessary.
4210   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4211 
4212   Expr *condExpr = E->getCond();
4213   Expr *lhsExpr = E->getTrueExpr();
4214   Expr *rhsExpr = E->getFalseExpr();
4215 
4216   // If the condition constant folds and can be elided, try to avoid emitting
4217   // the condition and the dead arm.
4218   bool CondExprBool;
4219   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4220     Expr *live = lhsExpr, *dead = rhsExpr;
4221     if (!CondExprBool) std::swap(live, dead);
4222 
4223     // If the dead side doesn't have labels we need, just emit the Live part.
4224     if (!CGF.ContainsLabel(dead)) {
4225       if (CondExprBool)
4226         CGF.incrementProfileCounter(E);
4227       Value *Result = Visit(live);
4228 
4229       // If the live part is a throw expression, it acts like it has a void
4230       // type, so evaluating it returns a null Value*.  However, a conditional
4231       // with non-void type must return a non-null Value*.
4232       if (!Result && !E->getType()->isVoidType())
4233         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4234 
4235       return Result;
4236     }
4237   }
4238 
4239   // OpenCL: If the condition is a vector, we can treat this condition like
4240   // the select function.
4241   if (CGF.getLangOpts().OpenCL
4242       && condExpr->getType()->isVectorType()) {
4243     CGF.incrementProfileCounter(E);
4244 
4245     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4246     llvm::Value *LHS = Visit(lhsExpr);
4247     llvm::Value *RHS = Visit(rhsExpr);
4248 
4249     llvm::Type *condType = ConvertType(condExpr->getType());
4250     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4251 
4252     unsigned numElem = vecTy->getNumElements();
4253     llvm::Type *elemType = vecTy->getElementType();
4254 
4255     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4256     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4257     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4258                                           llvm::VectorType::get(elemType,
4259                                                                 numElem),
4260                                           "sext");
4261     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4262 
4263     // Cast float to int to perform ANDs if necessary.
4264     llvm::Value *RHSTmp = RHS;
4265     llvm::Value *LHSTmp = LHS;
4266     bool wasCast = false;
4267     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4268     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4269       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4270       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4271       wasCast = true;
4272     }
4273 
4274     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4275     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4276     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4277     if (wasCast)
4278       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4279 
4280     return tmp5;
4281   }
4282 
4283   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4284   // select instead of as control flow.  We can only do this if it is cheap and
4285   // safe to evaluate the LHS and RHS unconditionally.
4286   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4287       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4288     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4289     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4290 
4291     CGF.incrementProfileCounter(E, StepV);
4292 
4293     llvm::Value *LHS = Visit(lhsExpr);
4294     llvm::Value *RHS = Visit(rhsExpr);
4295     if (!LHS) {
4296       // If the conditional has void type, make sure we return a null Value*.
4297       assert(!RHS && "LHS and RHS types must match");
4298       return nullptr;
4299     }
4300     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4301   }
4302 
4303   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4304   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4305   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4306 
4307   CodeGenFunction::ConditionalEvaluation eval(CGF);
4308   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4309                            CGF.getProfileCount(lhsExpr));
4310 
4311   CGF.EmitBlock(LHSBlock);
4312   CGF.incrementProfileCounter(E);
4313   eval.begin(CGF);
4314   Value *LHS = Visit(lhsExpr);
4315   eval.end(CGF);
4316 
4317   LHSBlock = Builder.GetInsertBlock();
4318   Builder.CreateBr(ContBlock);
4319 
4320   CGF.EmitBlock(RHSBlock);
4321   eval.begin(CGF);
4322   Value *RHS = Visit(rhsExpr);
4323   eval.end(CGF);
4324 
4325   RHSBlock = Builder.GetInsertBlock();
4326   CGF.EmitBlock(ContBlock);
4327 
4328   // If the LHS or RHS is a throw expression, it will be legitimately null.
4329   if (!LHS)
4330     return RHS;
4331   if (!RHS)
4332     return LHS;
4333 
4334   // Create a PHI node for the real part.
4335   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4336   PN->addIncoming(LHS, LHSBlock);
4337   PN->addIncoming(RHS, RHSBlock);
4338   return PN;
4339 }
4340 
4341 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4342   return Visit(E->getChosenSubExpr());
4343 }
4344 
4345 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4346   QualType Ty = VE->getType();
4347 
4348   if (Ty->isVariablyModifiedType())
4349     CGF.EmitVariablyModifiedType(Ty);
4350 
4351   Address ArgValue = Address::invalid();
4352   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4353 
4354   llvm::Type *ArgTy = ConvertType(VE->getType());
4355 
4356   // If EmitVAArg fails, emit an error.
4357   if (!ArgPtr.isValid()) {
4358     CGF.ErrorUnsupported(VE, "va_arg expression");
4359     return llvm::UndefValue::get(ArgTy);
4360   }
4361 
4362   // FIXME Volatility.
4363   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4364 
4365   // If EmitVAArg promoted the type, we must truncate it.
4366   if (ArgTy != Val->getType()) {
4367     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4368       Val = Builder.CreateIntToPtr(Val, ArgTy);
4369     else
4370       Val = Builder.CreateTrunc(Val, ArgTy);
4371   }
4372 
4373   return Val;
4374 }
4375 
4376 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4377   return CGF.EmitBlockLiteral(block);
4378 }
4379 
4380 // Convert a vec3 to vec4, or vice versa.
4381 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4382                                  Value *Src, unsigned NumElementsDst) {
4383   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4384   SmallVector<llvm::Constant*, 4> Args;
4385   Args.push_back(Builder.getInt32(0));
4386   Args.push_back(Builder.getInt32(1));
4387   Args.push_back(Builder.getInt32(2));
4388   if (NumElementsDst == 4)
4389     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4390   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4391   return Builder.CreateShuffleVector(Src, UnV, Mask);
4392 }
4393 
4394 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4395 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4396 // but could be scalar or vectors of different lengths, and either can be
4397 // pointer.
4398 // There are 4 cases:
4399 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4400 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4401 // 3. pointer -> non-pointer
4402 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4403 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4404 // 4. non-pointer -> pointer
4405 //   a) intptr_t -> pointer       : needs 1 inttoptr
4406 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4407 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4408 // allow casting directly between pointer types and non-integer non-pointer
4409 // types.
4410 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4411                                            const llvm::DataLayout &DL,
4412                                            Value *Src, llvm::Type *DstTy,
4413                                            StringRef Name = "") {
4414   auto SrcTy = Src->getType();
4415 
4416   // Case 1.
4417   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4418     return Builder.CreateBitCast(Src, DstTy, Name);
4419 
4420   // Case 2.
4421   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4422     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4423 
4424   // Case 3.
4425   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4426     // Case 3b.
4427     if (!DstTy->isIntegerTy())
4428       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4429     // Cases 3a and 3b.
4430     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4431   }
4432 
4433   // Case 4b.
4434   if (!SrcTy->isIntegerTy())
4435     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4436   // Cases 4a and 4b.
4437   return Builder.CreateIntToPtr(Src, DstTy, Name);
4438 }
4439 
4440 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4441   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4442   llvm::Type *DstTy = ConvertType(E->getType());
4443 
4444   llvm::Type *SrcTy = Src->getType();
4445   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4446     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4447   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4448     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4449 
4450   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4451   // vector to get a vec4, then a bitcast if the target type is different.
4452   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4453     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4454 
4455     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4456       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4457                                          DstTy);
4458     }
4459 
4460     Src->setName("astype");
4461     return Src;
4462   }
4463 
4464   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4465   // to vec4 if the original type is not vec4, then a shuffle vector to
4466   // get a vec3.
4467   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4468     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4469       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4470       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4471                                          Vec4Ty);
4472     }
4473 
4474     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4475     Src->setName("astype");
4476     return Src;
4477   }
4478 
4479   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4480                                             Src, DstTy, "astype");
4481 }
4482 
4483 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4484   return CGF.EmitAtomicExpr(E).getScalarVal();
4485 }
4486 
4487 //===----------------------------------------------------------------------===//
4488 //                         Entry Point into this File
4489 //===----------------------------------------------------------------------===//
4490 
4491 /// Emit the computation of the specified expression of scalar type, ignoring
4492 /// the result.
4493 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4494   assert(E && hasScalarEvaluationKind(E->getType()) &&
4495          "Invalid scalar expression to emit");
4496 
4497   return ScalarExprEmitter(*this, IgnoreResultAssign)
4498       .Visit(const_cast<Expr *>(E));
4499 }
4500 
4501 /// Emit a conversion from the specified type to the specified destination type,
4502 /// both of which are LLVM scalar types.
4503 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4504                                              QualType DstTy,
4505                                              SourceLocation Loc) {
4506   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4507          "Invalid scalar expression to emit");
4508   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4509 }
4510 
4511 /// Emit a conversion from the specified complex type to the specified
4512 /// destination type, where the destination type is an LLVM scalar type.
4513 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4514                                                       QualType SrcTy,
4515                                                       QualType DstTy,
4516                                                       SourceLocation Loc) {
4517   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4518          "Invalid complex -> scalar conversion");
4519   return ScalarExprEmitter(*this)
4520       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4521 }
4522 
4523 
4524 llvm::Value *CodeGenFunction::
4525 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4526                         bool isInc, bool isPre) {
4527   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4528 }
4529 
4530 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4531   // object->isa or (*object).isa
4532   // Generate code as for: *(Class*)object
4533 
4534   Expr *BaseExpr = E->getBase();
4535   Address Addr = Address::invalid();
4536   if (BaseExpr->isRValue()) {
4537     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4538   } else {
4539     Addr = EmitLValue(BaseExpr).getAddress();
4540   }
4541 
4542   // Cast the address to Class*.
4543   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4544   return MakeAddrLValue(Addr, E->getType());
4545 }
4546 
4547 
4548 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4549                                             const CompoundAssignOperator *E) {
4550   ScalarExprEmitter Scalar(*this);
4551   Value *Result = nullptr;
4552   switch (E->getOpcode()) {
4553 #define COMPOUND_OP(Op)                                                       \
4554     case BO_##Op##Assign:                                                     \
4555       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4556                                              Result)
4557   COMPOUND_OP(Mul);
4558   COMPOUND_OP(Div);
4559   COMPOUND_OP(Rem);
4560   COMPOUND_OP(Add);
4561   COMPOUND_OP(Sub);
4562   COMPOUND_OP(Shl);
4563   COMPOUND_OP(Shr);
4564   COMPOUND_OP(And);
4565   COMPOUND_OP(Xor);
4566   COMPOUND_OP(Or);
4567 #undef COMPOUND_OP
4568 
4569   case BO_PtrMemD:
4570   case BO_PtrMemI:
4571   case BO_Mul:
4572   case BO_Div:
4573   case BO_Rem:
4574   case BO_Add:
4575   case BO_Sub:
4576   case BO_Shl:
4577   case BO_Shr:
4578   case BO_LT:
4579   case BO_GT:
4580   case BO_LE:
4581   case BO_GE:
4582   case BO_EQ:
4583   case BO_NE:
4584   case BO_Cmp:
4585   case BO_And:
4586   case BO_Xor:
4587   case BO_Or:
4588   case BO_LAnd:
4589   case BO_LOr:
4590   case BO_Assign:
4591   case BO_Comma:
4592     llvm_unreachable("Not valid compound assignment operators");
4593   }
4594 
4595   llvm_unreachable("Unhandled compound assignment operator");
4596 }
4597 
4598 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
4599                                                ArrayRef<Value *> IdxList,
4600                                                bool SignedIndices,
4601                                                bool IsSubtraction,
4602                                                SourceLocation Loc,
4603                                                const Twine &Name) {
4604   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4605 
4606   // If the pointer overflow sanitizer isn't enabled, do nothing.
4607   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4608     return GEPVal;
4609 
4610   // If the GEP has already been reduced to a constant, leave it be.
4611   if (isa<llvm::Constant>(GEPVal))
4612     return GEPVal;
4613 
4614   // Only check for overflows in the default address space.
4615   if (GEPVal->getType()->getPointerAddressSpace())
4616     return GEPVal;
4617 
4618   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4619   assert(GEP->isInBounds() && "Expected inbounds GEP");
4620 
4621   SanitizerScope SanScope(this);
4622   auto &VMContext = getLLVMContext();
4623   const auto &DL = CGM.getDataLayout();
4624   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4625 
4626   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4627   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4628   auto *SAddIntrinsic =
4629       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4630   auto *SMulIntrinsic =
4631       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4632 
4633   // The total (signed) byte offset for the GEP.
4634   llvm::Value *TotalOffset = nullptr;
4635   // The offset overflow flag - true if the total offset overflows.
4636   llvm::Value *OffsetOverflows = Builder.getFalse();
4637 
4638   /// Return the result of the given binary operation.
4639   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4640                   llvm::Value *RHS) -> llvm::Value * {
4641     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4642 
4643     // If the operands are constants, return a constant result.
4644     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4645       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4646         llvm::APInt N;
4647         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4648                                                   /*Signed=*/true, N);
4649         if (HasOverflow)
4650           OffsetOverflows = Builder.getTrue();
4651         return llvm::ConstantInt::get(VMContext, N);
4652       }
4653     }
4654 
4655     // Otherwise, compute the result with checked arithmetic.
4656     auto *ResultAndOverflow = Builder.CreateCall(
4657         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4658     OffsetOverflows = Builder.CreateOr(
4659         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4660     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4661   };
4662 
4663   // Determine the total byte offset by looking at each GEP operand.
4664   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4665        GTI != GTE; ++GTI) {
4666     llvm::Value *LocalOffset;
4667     auto *Index = GTI.getOperand();
4668     // Compute the local offset contributed by this indexing step:
4669     if (auto *STy = GTI.getStructTypeOrNull()) {
4670       // For struct indexing, the local offset is the byte position of the
4671       // specified field.
4672       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4673       LocalOffset = llvm::ConstantInt::get(
4674           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4675     } else {
4676       // Otherwise this is array-like indexing. The local offset is the index
4677       // multiplied by the element size.
4678       auto *ElementSize = llvm::ConstantInt::get(
4679           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4680       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4681       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4682     }
4683 
4684     // If this is the first offset, set it as the total offset. Otherwise, add
4685     // the local offset into the running total.
4686     if (!TotalOffset || TotalOffset == Zero)
4687       TotalOffset = LocalOffset;
4688     else
4689       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4690   }
4691 
4692   // Common case: if the total offset is zero, don't emit a check.
4693   if (TotalOffset == Zero)
4694     return GEPVal;
4695 
4696   // Now that we've computed the total offset, add it to the base pointer (with
4697   // wrapping semantics).
4698   auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4699   auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4700 
4701   // The GEP is valid if:
4702   // 1) The total offset doesn't overflow, and
4703   // 2) The sign of the difference between the computed address and the base
4704   // pointer matches the sign of the total offset.
4705   llvm::Value *ValidGEP;
4706   auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4707   if (SignedIndices) {
4708     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4709     auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4710     llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4711     ValidGEP = Builder.CreateAnd(
4712         Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4713         NoOffsetOverflow);
4714   } else if (!SignedIndices && !IsSubtraction) {
4715     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4716     ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4717   } else {
4718     auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4719     ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4720   }
4721 
4722   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4723   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4724   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4725   EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4726             SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4727 
4728   return GEPVal;
4729 }
4730