1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(Value *Check, const BinOpInfo &Info); 89 90 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 91 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 92 } 93 94 /// EmitLoadOfLValue - Given an expression with complex type that represents a 95 /// value l-value, this method emits the address of the l-value, then loads 96 /// and returns the result. 97 Value *EmitLoadOfLValue(const Expr *E) { 98 return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 99 E->getExprLoc()); 100 } 101 102 /// EmitConversionToBool - Convert the specified expression value to a 103 /// boolean (i1) truth value. This is equivalent to "Val != 0". 104 Value *EmitConversionToBool(Value *Src, QualType DstTy); 105 106 /// \brief Emit a check that a conversion to or from a floating-point type 107 /// does not overflow. 108 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 109 Value *Src, QualType SrcType, 110 QualType DstType, llvm::Type *DstTy); 111 112 /// EmitScalarConversion - Emit a conversion from the specified type to the 113 /// specified destination type, both of which are LLVM scalar types. 114 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 115 116 /// EmitComplexToScalarConversion - Emit a conversion from the specified 117 /// complex type to the specified destination type, where the destination type 118 /// is an LLVM scalar type. 119 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 120 QualType SrcTy, QualType DstTy); 121 122 /// EmitNullValue - Emit a value that corresponds to null for the given type. 123 Value *EmitNullValue(QualType Ty); 124 125 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 126 Value *EmitFloatToBoolConversion(Value *V) { 127 // Compare against 0.0 for fp scalars. 128 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 129 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 130 } 131 132 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 133 Value *EmitPointerToBoolConversion(Value *V) { 134 Value *Zero = llvm::ConstantPointerNull::get( 135 cast<llvm::PointerType>(V->getType())); 136 return Builder.CreateICmpNE(V, Zero, "tobool"); 137 } 138 139 Value *EmitIntToBoolConversion(Value *V) { 140 // Because of the type rules of C, we often end up computing a 141 // logical value, then zero extending it to int, then wanting it 142 // as a logical value again. Optimize this common case. 143 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 144 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 145 Value *Result = ZI->getOperand(0); 146 // If there aren't any more uses, zap the instruction to save space. 147 // Note that there can be more uses, for example if this 148 // is the result of an assignment. 149 if (ZI->use_empty()) 150 ZI->eraseFromParent(); 151 return Result; 152 } 153 } 154 155 return Builder.CreateIsNotNull(V, "tobool"); 156 } 157 158 //===--------------------------------------------------------------------===// 159 // Visitor Methods 160 //===--------------------------------------------------------------------===// 161 162 Value *Visit(Expr *E) { 163 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 164 } 165 166 Value *VisitStmt(Stmt *S) { 167 S->dump(CGF.getContext().getSourceManager()); 168 llvm_unreachable("Stmt can't have complex result type!"); 169 } 170 Value *VisitExpr(Expr *S); 171 172 Value *VisitParenExpr(ParenExpr *PE) { 173 return Visit(PE->getSubExpr()); 174 } 175 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 176 return Visit(E->getReplacement()); 177 } 178 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 179 return Visit(GE->getResultExpr()); 180 } 181 182 // Leaves. 183 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 184 return Builder.getInt(E->getValue()); 185 } 186 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 187 return llvm::ConstantFP::get(VMContext, E->getValue()); 188 } 189 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 190 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 191 } 192 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 193 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 194 } 195 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 196 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 197 } 198 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 199 return EmitNullValue(E->getType()); 200 } 201 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 202 return EmitNullValue(E->getType()); 203 } 204 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 205 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 206 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 207 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 208 return Builder.CreateBitCast(V, ConvertType(E->getType())); 209 } 210 211 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 212 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 213 } 214 215 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 216 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 217 } 218 219 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 220 if (E->isGLValue()) 221 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 222 223 // Otherwise, assume the mapping is the scalar directly. 224 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 225 } 226 227 // l-values. 228 Value *VisitDeclRefExpr(DeclRefExpr *E) { 229 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 230 if (result.isReference()) 231 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 232 E->getExprLoc()); 233 return result.getValue(); 234 } 235 return EmitLoadOfLValue(E); 236 } 237 238 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 239 return CGF.EmitObjCSelectorExpr(E); 240 } 241 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 242 return CGF.EmitObjCProtocolExpr(E); 243 } 244 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 245 return EmitLoadOfLValue(E); 246 } 247 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 248 if (E->getMethodDecl() && 249 E->getMethodDecl()->getReturnType()->isReferenceType()) 250 return EmitLoadOfLValue(E); 251 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 252 } 253 254 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 255 LValue LV = CGF.EmitObjCIsaExpr(E); 256 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 257 return V; 258 } 259 260 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 261 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 262 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 263 Value *VisitMemberExpr(MemberExpr *E); 264 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 265 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 266 return EmitLoadOfLValue(E); 267 } 268 269 Value *VisitInitListExpr(InitListExpr *E); 270 271 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 272 return EmitNullValue(E->getType()); 273 } 274 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 275 if (E->getType()->isVariablyModifiedType()) 276 CGF.EmitVariablyModifiedType(E->getType()); 277 return VisitCastExpr(E); 278 } 279 Value *VisitCastExpr(CastExpr *E); 280 281 Value *VisitCallExpr(const CallExpr *E) { 282 if (E->getCallReturnType()->isReferenceType()) 283 return EmitLoadOfLValue(E); 284 285 return CGF.EmitCallExpr(E).getScalarVal(); 286 } 287 288 Value *VisitStmtExpr(const StmtExpr *E); 289 290 // Unary Operators. 291 Value *VisitUnaryPostDec(const UnaryOperator *E) { 292 LValue LV = EmitLValue(E->getSubExpr()); 293 return EmitScalarPrePostIncDec(E, LV, false, false); 294 } 295 Value *VisitUnaryPostInc(const UnaryOperator *E) { 296 LValue LV = EmitLValue(E->getSubExpr()); 297 return EmitScalarPrePostIncDec(E, LV, true, false); 298 } 299 Value *VisitUnaryPreDec(const UnaryOperator *E) { 300 LValue LV = EmitLValue(E->getSubExpr()); 301 return EmitScalarPrePostIncDec(E, LV, false, true); 302 } 303 Value *VisitUnaryPreInc(const UnaryOperator *E) { 304 LValue LV = EmitLValue(E->getSubExpr()); 305 return EmitScalarPrePostIncDec(E, LV, true, true); 306 } 307 308 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 309 llvm::Value *InVal, 310 llvm::Value *NextVal, 311 bool IsInc); 312 313 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 314 bool isInc, bool isPre); 315 316 317 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 318 if (isa<MemberPointerType>(E->getType())) // never sugared 319 return CGF.CGM.getMemberPointerConstant(E); 320 321 return EmitLValue(E->getSubExpr()).getAddress(); 322 } 323 Value *VisitUnaryDeref(const UnaryOperator *E) { 324 if (E->getType()->isVoidType()) 325 return Visit(E->getSubExpr()); // the actual value should be unused 326 return EmitLoadOfLValue(E); 327 } 328 Value *VisitUnaryPlus(const UnaryOperator *E) { 329 // This differs from gcc, though, most likely due to a bug in gcc. 330 TestAndClearIgnoreResultAssign(); 331 return Visit(E->getSubExpr()); 332 } 333 Value *VisitUnaryMinus (const UnaryOperator *E); 334 Value *VisitUnaryNot (const UnaryOperator *E); 335 Value *VisitUnaryLNot (const UnaryOperator *E); 336 Value *VisitUnaryReal (const UnaryOperator *E); 337 Value *VisitUnaryImag (const UnaryOperator *E); 338 Value *VisitUnaryExtension(const UnaryOperator *E) { 339 return Visit(E->getSubExpr()); 340 } 341 342 // C++ 343 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 344 return EmitLoadOfLValue(E); 345 } 346 347 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 348 return Visit(DAE->getExpr()); 349 } 350 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 351 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 352 return Visit(DIE->getExpr()); 353 } 354 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 355 return CGF.LoadCXXThis(); 356 } 357 358 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 359 CGF.enterFullExpression(E); 360 CodeGenFunction::RunCleanupsScope Scope(CGF); 361 return Visit(E->getSubExpr()); 362 } 363 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 364 return CGF.EmitCXXNewExpr(E); 365 } 366 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 367 CGF.EmitCXXDeleteExpr(E); 368 return 0; 369 } 370 371 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 372 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 373 } 374 375 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 376 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 377 } 378 379 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 380 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 381 } 382 383 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 384 // C++ [expr.pseudo]p1: 385 // The result shall only be used as the operand for the function call 386 // operator (), and the result of such a call has type void. The only 387 // effect is the evaluation of the postfix-expression before the dot or 388 // arrow. 389 CGF.EmitScalarExpr(E->getBase()); 390 return 0; 391 } 392 393 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 394 return EmitNullValue(E->getType()); 395 } 396 397 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 398 CGF.EmitCXXThrowExpr(E); 399 return 0; 400 } 401 402 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 403 return Builder.getInt1(E->getValue()); 404 } 405 406 // Binary Operators. 407 Value *EmitMul(const BinOpInfo &Ops) { 408 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 409 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 410 case LangOptions::SOB_Defined: 411 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 412 case LangOptions::SOB_Undefined: 413 if (!CGF.SanOpts->SignedIntegerOverflow) 414 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 415 // Fall through. 416 case LangOptions::SOB_Trapping: 417 return EmitOverflowCheckedBinOp(Ops); 418 } 419 } 420 421 if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 422 return EmitOverflowCheckedBinOp(Ops); 423 424 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 425 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 426 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 427 } 428 /// Create a binary op that checks for overflow. 429 /// Currently only supports +, - and *. 430 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 431 432 // Check for undefined division and modulus behaviors. 433 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 434 llvm::Value *Zero,bool isDiv); 435 // Common helper for getting how wide LHS of shift is. 436 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 437 Value *EmitDiv(const BinOpInfo &Ops); 438 Value *EmitRem(const BinOpInfo &Ops); 439 Value *EmitAdd(const BinOpInfo &Ops); 440 Value *EmitSub(const BinOpInfo &Ops); 441 Value *EmitShl(const BinOpInfo &Ops); 442 Value *EmitShr(const BinOpInfo &Ops); 443 Value *EmitAnd(const BinOpInfo &Ops) { 444 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 445 } 446 Value *EmitXor(const BinOpInfo &Ops) { 447 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 448 } 449 Value *EmitOr (const BinOpInfo &Ops) { 450 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 451 } 452 453 BinOpInfo EmitBinOps(const BinaryOperator *E); 454 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 455 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 456 Value *&Result); 457 458 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 459 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 460 461 // Binary operators and binary compound assignment operators. 462 #define HANDLEBINOP(OP) \ 463 Value *VisitBin ## OP(const BinaryOperator *E) { \ 464 return Emit ## OP(EmitBinOps(E)); \ 465 } \ 466 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 467 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 468 } 469 HANDLEBINOP(Mul) 470 HANDLEBINOP(Div) 471 HANDLEBINOP(Rem) 472 HANDLEBINOP(Add) 473 HANDLEBINOP(Sub) 474 HANDLEBINOP(Shl) 475 HANDLEBINOP(Shr) 476 HANDLEBINOP(And) 477 HANDLEBINOP(Xor) 478 HANDLEBINOP(Or) 479 #undef HANDLEBINOP 480 481 // Comparisons. 482 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 483 unsigned SICmpOpc, unsigned FCmpOpc); 484 #define VISITCOMP(CODE, UI, SI, FP) \ 485 Value *VisitBin##CODE(const BinaryOperator *E) { \ 486 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 487 llvm::FCmpInst::FP); } 488 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 489 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 490 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 491 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 492 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 493 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 494 #undef VISITCOMP 495 496 Value *VisitBinAssign (const BinaryOperator *E); 497 498 Value *VisitBinLAnd (const BinaryOperator *E); 499 Value *VisitBinLOr (const BinaryOperator *E); 500 Value *VisitBinComma (const BinaryOperator *E); 501 502 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 503 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 504 505 // Other Operators. 506 Value *VisitBlockExpr(const BlockExpr *BE); 507 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 508 Value *VisitChooseExpr(ChooseExpr *CE); 509 Value *VisitVAArgExpr(VAArgExpr *VE); 510 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 511 return CGF.EmitObjCStringLiteral(E); 512 } 513 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 514 return CGF.EmitObjCBoxedExpr(E); 515 } 516 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 517 return CGF.EmitObjCArrayLiteral(E); 518 } 519 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 520 return CGF.EmitObjCDictionaryLiteral(E); 521 } 522 Value *VisitAsTypeExpr(AsTypeExpr *CE); 523 Value *VisitAtomicExpr(AtomicExpr *AE); 524 }; 525 } // end anonymous namespace. 526 527 //===----------------------------------------------------------------------===// 528 // Utilities 529 //===----------------------------------------------------------------------===// 530 531 /// EmitConversionToBool - Convert the specified expression value to a 532 /// boolean (i1) truth value. This is equivalent to "Val != 0". 533 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 534 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 535 536 if (SrcType->isRealFloatingType()) 537 return EmitFloatToBoolConversion(Src); 538 539 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 540 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 541 542 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 543 "Unknown scalar type to convert"); 544 545 if (isa<llvm::IntegerType>(Src->getType())) 546 return EmitIntToBoolConversion(Src); 547 548 assert(isa<llvm::PointerType>(Src->getType())); 549 return EmitPointerToBoolConversion(Src); 550 } 551 552 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 553 QualType OrigSrcType, 554 Value *Src, QualType SrcType, 555 QualType DstType, 556 llvm::Type *DstTy) { 557 using llvm::APFloat; 558 using llvm::APSInt; 559 560 llvm::Type *SrcTy = Src->getType(); 561 562 llvm::Value *Check = 0; 563 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 564 // Integer to floating-point. This can fail for unsigned short -> __half 565 // or unsigned __int128 -> float. 566 assert(DstType->isFloatingType()); 567 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 568 569 APFloat LargestFloat = 570 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 571 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 572 573 bool IsExact; 574 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 575 &IsExact) != APFloat::opOK) 576 // The range of representable values of this floating point type includes 577 // all values of this integer type. Don't need an overflow check. 578 return; 579 580 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 581 if (SrcIsUnsigned) 582 Check = Builder.CreateICmpULE(Src, Max); 583 else { 584 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 585 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 586 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 587 Check = Builder.CreateAnd(GE, LE); 588 } 589 } else { 590 const llvm::fltSemantics &SrcSema = 591 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 592 if (isa<llvm::IntegerType>(DstTy)) { 593 // Floating-point to integer. This has undefined behavior if the source is 594 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 595 // to an integer). 596 unsigned Width = CGF.getContext().getIntWidth(DstType); 597 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 598 599 APSInt Min = APSInt::getMinValue(Width, Unsigned); 600 APFloat MinSrc(SrcSema, APFloat::uninitialized); 601 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 602 APFloat::opOverflow) 603 // Don't need an overflow check for lower bound. Just check for 604 // -Inf/NaN. 605 MinSrc = APFloat::getInf(SrcSema, true); 606 else 607 // Find the largest value which is too small to represent (before 608 // truncation toward zero). 609 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 610 611 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 612 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 613 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 614 APFloat::opOverflow) 615 // Don't need an overflow check for upper bound. Just check for 616 // +Inf/NaN. 617 MaxSrc = APFloat::getInf(SrcSema, false); 618 else 619 // Find the smallest value which is too large to represent (before 620 // truncation toward zero). 621 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 622 623 // If we're converting from __half, convert the range to float to match 624 // the type of src. 625 if (OrigSrcType->isHalfType()) { 626 const llvm::fltSemantics &Sema = 627 CGF.getContext().getFloatTypeSemantics(SrcType); 628 bool IsInexact; 629 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 630 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 631 } 632 633 llvm::Value *GE = 634 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 635 llvm::Value *LE = 636 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 637 Check = Builder.CreateAnd(GE, LE); 638 } else { 639 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 640 // 641 // Floating-point to floating-point. This has undefined behavior if the 642 // source is not in the range of representable values of the destination 643 // type. The C and C++ standards are spectacularly unclear here. We 644 // diagnose finite out-of-range conversions, but allow infinities and NaNs 645 // to convert to the corresponding value in the smaller type. 646 // 647 // C11 Annex F gives all such conversions defined behavior for IEC 60559 648 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 649 // does not. 650 651 // Converting from a lower rank to a higher rank can never have 652 // undefined behavior, since higher-rank types must have a superset 653 // of values of lower-rank types. 654 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 655 return; 656 657 assert(!OrigSrcType->isHalfType() && 658 "should not check conversion from __half, it has the lowest rank"); 659 660 const llvm::fltSemantics &DstSema = 661 CGF.getContext().getFloatTypeSemantics(DstType); 662 APFloat MinBad = APFloat::getLargest(DstSema, false); 663 APFloat MaxBad = APFloat::getInf(DstSema, false); 664 665 bool IsInexact; 666 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 667 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 668 669 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 670 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 671 llvm::Value *GE = 672 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 673 llvm::Value *LE = 674 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 675 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 676 } 677 } 678 679 // FIXME: Provide a SourceLocation. 680 llvm::Constant *StaticArgs[] = { 681 CGF.EmitCheckTypeDescriptor(OrigSrcType), 682 CGF.EmitCheckTypeDescriptor(DstType) 683 }; 684 CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc, 685 CodeGenFunction::CRK_Recoverable); 686 } 687 688 /// EmitScalarConversion - Emit a conversion from the specified type to the 689 /// specified destination type, both of which are LLVM scalar types. 690 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 691 QualType DstType) { 692 SrcType = CGF.getContext().getCanonicalType(SrcType); 693 DstType = CGF.getContext().getCanonicalType(DstType); 694 if (SrcType == DstType) return Src; 695 696 if (DstType->isVoidType()) return 0; 697 698 llvm::Value *OrigSrc = Src; 699 QualType OrigSrcType = SrcType; 700 llvm::Type *SrcTy = Src->getType(); 701 702 // If casting to/from storage-only half FP, use special intrinsics. 703 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 704 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src); 705 SrcType = CGF.getContext().FloatTy; 706 SrcTy = CGF.FloatTy; 707 } 708 709 // Handle conversions to bool first, they are special: comparisons against 0. 710 if (DstType->isBooleanType()) 711 return EmitConversionToBool(Src, SrcType); 712 713 llvm::Type *DstTy = ConvertType(DstType); 714 715 // Ignore conversions like int -> uint. 716 if (SrcTy == DstTy) 717 return Src; 718 719 // Handle pointer conversions next: pointers can only be converted to/from 720 // other pointers and integers. Check for pointer types in terms of LLVM, as 721 // some native types (like Obj-C id) may map to a pointer type. 722 if (isa<llvm::PointerType>(DstTy)) { 723 // The source value may be an integer, or a pointer. 724 if (isa<llvm::PointerType>(SrcTy)) 725 return Builder.CreateBitCast(Src, DstTy, "conv"); 726 727 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 728 // First, convert to the correct width so that we control the kind of 729 // extension. 730 llvm::Type *MiddleTy = CGF.IntPtrTy; 731 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 732 llvm::Value* IntResult = 733 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 734 // Then, cast to pointer. 735 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 736 } 737 738 if (isa<llvm::PointerType>(SrcTy)) { 739 // Must be an ptr to int cast. 740 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 741 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 742 } 743 744 // A scalar can be splatted to an extended vector of the same element type 745 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 746 // Cast the scalar to element type 747 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 748 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 749 750 // Splat the element across to all elements 751 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 752 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 753 } 754 755 // Allow bitcast from vector to integer/fp of the same size. 756 if (isa<llvm::VectorType>(SrcTy) || 757 isa<llvm::VectorType>(DstTy)) 758 return Builder.CreateBitCast(Src, DstTy, "conv"); 759 760 // Finally, we have the arithmetic types: real int/float. 761 Value *Res = NULL; 762 llvm::Type *ResTy = DstTy; 763 764 // An overflowing conversion has undefined behavior if either the source type 765 // or the destination type is a floating-point type. 766 if (CGF.SanOpts->FloatCastOverflow && 767 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 768 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 769 DstTy); 770 771 // Cast to half via float 772 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 773 DstTy = CGF.FloatTy; 774 775 if (isa<llvm::IntegerType>(SrcTy)) { 776 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 777 if (isa<llvm::IntegerType>(DstTy)) 778 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 779 else if (InputSigned) 780 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 781 else 782 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 783 } else if (isa<llvm::IntegerType>(DstTy)) { 784 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 785 if (DstType->isSignedIntegerOrEnumerationType()) 786 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 787 else 788 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 789 } else { 790 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 791 "Unknown real conversion"); 792 if (DstTy->getTypeID() < SrcTy->getTypeID()) 793 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 794 else 795 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 796 } 797 798 if (DstTy != ResTy) { 799 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 800 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res); 801 } 802 803 return Res; 804 } 805 806 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 807 /// type to the specified destination type, where the destination type is an 808 /// LLVM scalar type. 809 Value *ScalarExprEmitter:: 810 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 811 QualType SrcTy, QualType DstTy) { 812 // Get the source element type. 813 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 814 815 // Handle conversions to bool first, they are special: comparisons against 0. 816 if (DstTy->isBooleanType()) { 817 // Complex != 0 -> (Real != 0) | (Imag != 0) 818 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 819 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 820 return Builder.CreateOr(Src.first, Src.second, "tobool"); 821 } 822 823 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 824 // the imaginary part of the complex value is discarded and the value of the 825 // real part is converted according to the conversion rules for the 826 // corresponding real type. 827 return EmitScalarConversion(Src.first, SrcTy, DstTy); 828 } 829 830 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 831 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 832 } 833 834 /// \brief Emit a sanitization check for the given "binary" operation (which 835 /// might actually be a unary increment which has been lowered to a binary 836 /// operation). The check passes if \p Check, which is an \c i1, is \c true. 837 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) { 838 StringRef CheckName; 839 SmallVector<llvm::Constant *, 4> StaticData; 840 SmallVector<llvm::Value *, 2> DynamicData; 841 842 BinaryOperatorKind Opcode = Info.Opcode; 843 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 844 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 845 846 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 847 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 848 if (UO && UO->getOpcode() == UO_Minus) { 849 CheckName = "negate_overflow"; 850 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 851 DynamicData.push_back(Info.RHS); 852 } else { 853 if (BinaryOperator::isShiftOp(Opcode)) { 854 // Shift LHS negative or too large, or RHS out of bounds. 855 CheckName = "shift_out_of_bounds"; 856 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 857 StaticData.push_back( 858 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 859 StaticData.push_back( 860 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 861 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 862 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 863 CheckName = "divrem_overflow"; 864 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 865 } else { 866 // Signed arithmetic overflow (+, -, *). 867 switch (Opcode) { 868 case BO_Add: CheckName = "add_overflow"; break; 869 case BO_Sub: CheckName = "sub_overflow"; break; 870 case BO_Mul: CheckName = "mul_overflow"; break; 871 default: llvm_unreachable("unexpected opcode for bin op check"); 872 } 873 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 874 } 875 DynamicData.push_back(Info.LHS); 876 DynamicData.push_back(Info.RHS); 877 } 878 879 CGF.EmitCheck(Check, CheckName, StaticData, DynamicData, 880 CodeGenFunction::CRK_Recoverable); 881 } 882 883 //===----------------------------------------------------------------------===// 884 // Visitor Methods 885 //===----------------------------------------------------------------------===// 886 887 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 888 CGF.ErrorUnsupported(E, "scalar expression"); 889 if (E->getType()->isVoidType()) 890 return 0; 891 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 892 } 893 894 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 895 // Vector Mask Case 896 if (E->getNumSubExprs() == 2 || 897 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 898 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 899 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 900 Value *Mask; 901 902 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 903 unsigned LHSElts = LTy->getNumElements(); 904 905 if (E->getNumSubExprs() == 3) { 906 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 907 908 // Shuffle LHS & RHS into one input vector. 909 SmallVector<llvm::Constant*, 32> concat; 910 for (unsigned i = 0; i != LHSElts; ++i) { 911 concat.push_back(Builder.getInt32(2*i)); 912 concat.push_back(Builder.getInt32(2*i+1)); 913 } 914 915 Value* CV = llvm::ConstantVector::get(concat); 916 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 917 LHSElts *= 2; 918 } else { 919 Mask = RHS; 920 } 921 922 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 923 llvm::Constant* EltMask; 924 925 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 926 llvm::NextPowerOf2(LHSElts-1)-1); 927 928 // Mask off the high bits of each shuffle index. 929 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 930 EltMask); 931 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 932 933 // newv = undef 934 // mask = mask & maskbits 935 // for each elt 936 // n = extract mask i 937 // x = extract val n 938 // newv = insert newv, x, i 939 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 940 MTy->getNumElements()); 941 Value* NewV = llvm::UndefValue::get(RTy); 942 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 943 Value *IIndx = Builder.getInt32(i); 944 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 945 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext"); 946 947 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 948 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 949 } 950 return NewV; 951 } 952 953 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 954 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 955 956 SmallVector<llvm::Constant*, 32> indices; 957 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 958 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 959 // Check for -1 and output it as undef in the IR. 960 if (Idx.isSigned() && Idx.isAllOnesValue()) 961 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 962 else 963 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 964 } 965 966 Value *SV = llvm::ConstantVector::get(indices); 967 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 968 } 969 970 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 971 QualType SrcType = E->getSrcExpr()->getType(), 972 DstType = E->getType(); 973 974 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 975 976 SrcType = CGF.getContext().getCanonicalType(SrcType); 977 DstType = CGF.getContext().getCanonicalType(DstType); 978 if (SrcType == DstType) return Src; 979 980 assert(SrcType->isVectorType() && 981 "ConvertVector source type must be a vector"); 982 assert(DstType->isVectorType() && 983 "ConvertVector destination type must be a vector"); 984 985 llvm::Type *SrcTy = Src->getType(); 986 llvm::Type *DstTy = ConvertType(DstType); 987 988 // Ignore conversions like int -> uint. 989 if (SrcTy == DstTy) 990 return Src; 991 992 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 993 DstEltType = DstType->getAs<VectorType>()->getElementType(); 994 995 assert(SrcTy->isVectorTy() && 996 "ConvertVector source IR type must be a vector"); 997 assert(DstTy->isVectorTy() && 998 "ConvertVector destination IR type must be a vector"); 999 1000 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1001 *DstEltTy = DstTy->getVectorElementType(); 1002 1003 if (DstEltType->isBooleanType()) { 1004 assert((SrcEltTy->isFloatingPointTy() || 1005 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1006 1007 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1008 if (SrcEltTy->isFloatingPointTy()) { 1009 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1010 } else { 1011 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1012 } 1013 } 1014 1015 // We have the arithmetic types: real int/float. 1016 Value *Res = NULL; 1017 1018 if (isa<llvm::IntegerType>(SrcEltTy)) { 1019 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1020 if (isa<llvm::IntegerType>(DstEltTy)) 1021 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1022 else if (InputSigned) 1023 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1024 else 1025 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1026 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1027 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1028 if (DstEltType->isSignedIntegerOrEnumerationType()) 1029 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1030 else 1031 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1032 } else { 1033 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1034 "Unknown real conversion"); 1035 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1036 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1037 else 1038 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1039 } 1040 1041 return Res; 1042 } 1043 1044 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1045 llvm::APSInt Value; 1046 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1047 if (E->isArrow()) 1048 CGF.EmitScalarExpr(E->getBase()); 1049 else 1050 EmitLValue(E->getBase()); 1051 return Builder.getInt(Value); 1052 } 1053 1054 return EmitLoadOfLValue(E); 1055 } 1056 1057 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1058 TestAndClearIgnoreResultAssign(); 1059 1060 // Emit subscript expressions in rvalue context's. For most cases, this just 1061 // loads the lvalue formed by the subscript expr. However, we have to be 1062 // careful, because the base of a vector subscript is occasionally an rvalue, 1063 // so we can't get it as an lvalue. 1064 if (!E->getBase()->getType()->isVectorType()) 1065 return EmitLoadOfLValue(E); 1066 1067 // Handle the vector case. The base must be a vector, the index must be an 1068 // integer value. 1069 Value *Base = Visit(E->getBase()); 1070 Value *Idx = Visit(E->getIdx()); 1071 QualType IdxTy = E->getIdx()->getType(); 1072 1073 if (CGF.SanOpts->ArrayBounds) 1074 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1075 1076 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1077 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast"); 1078 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1079 } 1080 1081 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1082 unsigned Off, llvm::Type *I32Ty) { 1083 int MV = SVI->getMaskValue(Idx); 1084 if (MV == -1) 1085 return llvm::UndefValue::get(I32Ty); 1086 return llvm::ConstantInt::get(I32Ty, Off+MV); 1087 } 1088 1089 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1090 bool Ignore = TestAndClearIgnoreResultAssign(); 1091 (void)Ignore; 1092 assert (Ignore == false && "init list ignored"); 1093 unsigned NumInitElements = E->getNumInits(); 1094 1095 if (E->hadArrayRangeDesignator()) 1096 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1097 1098 llvm::VectorType *VType = 1099 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1100 1101 if (!VType) { 1102 if (NumInitElements == 0) { 1103 // C++11 value-initialization for the scalar. 1104 return EmitNullValue(E->getType()); 1105 } 1106 // We have a scalar in braces. Just use the first element. 1107 return Visit(E->getInit(0)); 1108 } 1109 1110 unsigned ResElts = VType->getNumElements(); 1111 1112 // Loop over initializers collecting the Value for each, and remembering 1113 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1114 // us to fold the shuffle for the swizzle into the shuffle for the vector 1115 // initializer, since LLVM optimizers generally do not want to touch 1116 // shuffles. 1117 unsigned CurIdx = 0; 1118 bool VIsUndefShuffle = false; 1119 llvm::Value *V = llvm::UndefValue::get(VType); 1120 for (unsigned i = 0; i != NumInitElements; ++i) { 1121 Expr *IE = E->getInit(i); 1122 Value *Init = Visit(IE); 1123 SmallVector<llvm::Constant*, 16> Args; 1124 1125 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1126 1127 // Handle scalar elements. If the scalar initializer is actually one 1128 // element of a different vector of the same width, use shuffle instead of 1129 // extract+insert. 1130 if (!VVT) { 1131 if (isa<ExtVectorElementExpr>(IE)) { 1132 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1133 1134 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1135 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1136 Value *LHS = 0, *RHS = 0; 1137 if (CurIdx == 0) { 1138 // insert into undef -> shuffle (src, undef) 1139 Args.push_back(C); 1140 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1141 1142 LHS = EI->getVectorOperand(); 1143 RHS = V; 1144 VIsUndefShuffle = true; 1145 } else if (VIsUndefShuffle) { 1146 // insert into undefshuffle && size match -> shuffle (v, src) 1147 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1148 for (unsigned j = 0; j != CurIdx; ++j) 1149 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1150 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1151 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1152 1153 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1154 RHS = EI->getVectorOperand(); 1155 VIsUndefShuffle = false; 1156 } 1157 if (!Args.empty()) { 1158 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1159 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1160 ++CurIdx; 1161 continue; 1162 } 1163 } 1164 } 1165 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1166 "vecinit"); 1167 VIsUndefShuffle = false; 1168 ++CurIdx; 1169 continue; 1170 } 1171 1172 unsigned InitElts = VVT->getNumElements(); 1173 1174 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1175 // input is the same width as the vector being constructed, generate an 1176 // optimized shuffle of the swizzle input into the result. 1177 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1178 if (isa<ExtVectorElementExpr>(IE)) { 1179 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1180 Value *SVOp = SVI->getOperand(0); 1181 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1182 1183 if (OpTy->getNumElements() == ResElts) { 1184 for (unsigned j = 0; j != CurIdx; ++j) { 1185 // If the current vector initializer is a shuffle with undef, merge 1186 // this shuffle directly into it. 1187 if (VIsUndefShuffle) { 1188 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1189 CGF.Int32Ty)); 1190 } else { 1191 Args.push_back(Builder.getInt32(j)); 1192 } 1193 } 1194 for (unsigned j = 0, je = InitElts; j != je; ++j) 1195 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1196 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1197 1198 if (VIsUndefShuffle) 1199 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1200 1201 Init = SVOp; 1202 } 1203 } 1204 1205 // Extend init to result vector length, and then shuffle its contribution 1206 // to the vector initializer into V. 1207 if (Args.empty()) { 1208 for (unsigned j = 0; j != InitElts; ++j) 1209 Args.push_back(Builder.getInt32(j)); 1210 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1211 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1212 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1213 Mask, "vext"); 1214 1215 Args.clear(); 1216 for (unsigned j = 0; j != CurIdx; ++j) 1217 Args.push_back(Builder.getInt32(j)); 1218 for (unsigned j = 0; j != InitElts; ++j) 1219 Args.push_back(Builder.getInt32(j+Offset)); 1220 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1221 } 1222 1223 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1224 // merging subsequent shuffles into this one. 1225 if (CurIdx == 0) 1226 std::swap(V, Init); 1227 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1228 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1229 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1230 CurIdx += InitElts; 1231 } 1232 1233 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1234 // Emit remaining default initializers. 1235 llvm::Type *EltTy = VType->getElementType(); 1236 1237 // Emit remaining default initializers 1238 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1239 Value *Idx = Builder.getInt32(CurIdx); 1240 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1241 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1242 } 1243 return V; 1244 } 1245 1246 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1247 const Expr *E = CE->getSubExpr(); 1248 1249 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1250 return false; 1251 1252 if (isa<CXXThisExpr>(E)) { 1253 // We always assume that 'this' is never null. 1254 return false; 1255 } 1256 1257 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1258 // And that glvalue casts are never null. 1259 if (ICE->getValueKind() != VK_RValue) 1260 return false; 1261 } 1262 1263 return true; 1264 } 1265 1266 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1267 // have to handle a more broad range of conversions than explicit casts, as they 1268 // handle things like function to ptr-to-function decay etc. 1269 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1270 Expr *E = CE->getSubExpr(); 1271 QualType DestTy = CE->getType(); 1272 CastKind Kind = CE->getCastKind(); 1273 1274 if (!DestTy->isVoidType()) 1275 TestAndClearIgnoreResultAssign(); 1276 1277 // Since almost all cast kinds apply to scalars, this switch doesn't have 1278 // a default case, so the compiler will warn on a missing case. The cases 1279 // are in the same order as in the CastKind enum. 1280 switch (Kind) { 1281 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1282 case CK_BuiltinFnToFnPtr: 1283 llvm_unreachable("builtin functions are handled elsewhere"); 1284 1285 case CK_LValueBitCast: 1286 case CK_ObjCObjectLValueCast: { 1287 Value *V = EmitLValue(E).getAddress(); 1288 V = Builder.CreateBitCast(V, 1289 ConvertType(CGF.getContext().getPointerType(DestTy))); 1290 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy), 1291 CE->getExprLoc()); 1292 } 1293 1294 case CK_CPointerToObjCPointerCast: 1295 case CK_BlockPointerToObjCPointerCast: 1296 case CK_AnyPointerToBlockPointerCast: 1297 case CK_BitCast: { 1298 Value *Src = Visit(const_cast<Expr*>(E)); 1299 llvm::Type *SrcTy = Src->getType(); 1300 llvm::Type *DstTy = ConvertType(DestTy); 1301 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1302 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1303 llvm::Type *MidTy = CGF.CGM.getDataLayout().getIntPtrType(SrcTy); 1304 return Builder.CreateIntToPtr(Builder.CreatePtrToInt(Src, MidTy), DstTy); 1305 } 1306 return Builder.CreateBitCast(Src, DstTy); 1307 } 1308 case CK_AddressSpaceConversion: { 1309 Value *Src = Visit(const_cast<Expr*>(E)); 1310 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1311 } 1312 case CK_AtomicToNonAtomic: 1313 case CK_NonAtomicToAtomic: 1314 case CK_NoOp: 1315 case CK_UserDefinedConversion: 1316 return Visit(const_cast<Expr*>(E)); 1317 1318 case CK_BaseToDerived: { 1319 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1320 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1321 1322 llvm::Value *V = Visit(E); 1323 1324 llvm::Value *Derived = 1325 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1326 CE->path_begin(), CE->path_end(), 1327 ShouldNullCheckClassCastValue(CE)); 1328 1329 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1330 // performed and the object is not of the derived type. 1331 if (CGF.SanitizePerformTypeCheck) 1332 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1333 Derived, DestTy->getPointeeType()); 1334 1335 return Derived; 1336 } 1337 case CK_UncheckedDerivedToBase: 1338 case CK_DerivedToBase: { 1339 const CXXRecordDecl *DerivedClassDecl = 1340 E->getType()->getPointeeCXXRecordDecl(); 1341 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1342 1343 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 1344 CE->path_begin(), CE->path_end(), 1345 ShouldNullCheckClassCastValue(CE)); 1346 } 1347 case CK_Dynamic: { 1348 Value *V = Visit(const_cast<Expr*>(E)); 1349 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1350 return CGF.EmitDynamicCast(V, DCE); 1351 } 1352 1353 case CK_ArrayToPointerDecay: { 1354 assert(E->getType()->isArrayType() && 1355 "Array to pointer decay must have array source type!"); 1356 1357 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1358 1359 // Note that VLA pointers are always decayed, so we don't need to do 1360 // anything here. 1361 if (!E->getType()->isVariableArrayType()) { 1362 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1363 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1364 ->getElementType()) && 1365 "Expected pointer to array"); 1366 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1367 } 1368 1369 // Make sure the array decay ends up being the right type. This matters if 1370 // the array type was of an incomplete type. 1371 return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType())); 1372 } 1373 case CK_FunctionToPointerDecay: 1374 return EmitLValue(E).getAddress(); 1375 1376 case CK_NullToPointer: 1377 if (MustVisitNullValue(E)) 1378 (void) Visit(E); 1379 1380 return llvm::ConstantPointerNull::get( 1381 cast<llvm::PointerType>(ConvertType(DestTy))); 1382 1383 case CK_NullToMemberPointer: { 1384 if (MustVisitNullValue(E)) 1385 (void) Visit(E); 1386 1387 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1388 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1389 } 1390 1391 case CK_ReinterpretMemberPointer: 1392 case CK_BaseToDerivedMemberPointer: 1393 case CK_DerivedToBaseMemberPointer: { 1394 Value *Src = Visit(E); 1395 1396 // Note that the AST doesn't distinguish between checked and 1397 // unchecked member pointer conversions, so we always have to 1398 // implement checked conversions here. This is inefficient when 1399 // actual control flow may be required in order to perform the 1400 // check, which it is for data member pointers (but not member 1401 // function pointers on Itanium and ARM). 1402 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1403 } 1404 1405 case CK_ARCProduceObject: 1406 return CGF.EmitARCRetainScalarExpr(E); 1407 case CK_ARCConsumeObject: 1408 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1409 case CK_ARCReclaimReturnedObject: { 1410 llvm::Value *value = Visit(E); 1411 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1412 return CGF.EmitObjCConsumeObject(E->getType(), value); 1413 } 1414 case CK_ARCExtendBlockObject: 1415 return CGF.EmitARCExtendBlockObject(E); 1416 1417 case CK_CopyAndAutoreleaseBlockObject: 1418 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1419 1420 case CK_FloatingRealToComplex: 1421 case CK_FloatingComplexCast: 1422 case CK_IntegralRealToComplex: 1423 case CK_IntegralComplexCast: 1424 case CK_IntegralComplexToFloatingComplex: 1425 case CK_FloatingComplexToIntegralComplex: 1426 case CK_ConstructorConversion: 1427 case CK_ToUnion: 1428 llvm_unreachable("scalar cast to non-scalar value"); 1429 1430 case CK_LValueToRValue: 1431 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1432 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1433 return Visit(const_cast<Expr*>(E)); 1434 1435 case CK_IntegralToPointer: { 1436 Value *Src = Visit(const_cast<Expr*>(E)); 1437 1438 // First, convert to the correct width so that we control the kind of 1439 // extension. 1440 llvm::Type *MiddleTy = CGF.IntPtrTy; 1441 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1442 llvm::Value* IntResult = 1443 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1444 1445 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1446 } 1447 case CK_PointerToIntegral: 1448 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1449 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1450 1451 case CK_ToVoid: { 1452 CGF.EmitIgnoredExpr(E); 1453 return 0; 1454 } 1455 case CK_VectorSplat: { 1456 llvm::Type *DstTy = ConvertType(DestTy); 1457 Value *Elt = Visit(const_cast<Expr*>(E)); 1458 Elt = EmitScalarConversion(Elt, E->getType(), 1459 DestTy->getAs<VectorType>()->getElementType()); 1460 1461 // Splat the element across to all elements 1462 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1463 return Builder.CreateVectorSplat(NumElements, Elt, "splat");; 1464 } 1465 1466 case CK_IntegralCast: 1467 case CK_IntegralToFloating: 1468 case CK_FloatingToIntegral: 1469 case CK_FloatingCast: 1470 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1471 case CK_IntegralToBoolean: 1472 return EmitIntToBoolConversion(Visit(E)); 1473 case CK_PointerToBoolean: 1474 return EmitPointerToBoolConversion(Visit(E)); 1475 case CK_FloatingToBoolean: 1476 return EmitFloatToBoolConversion(Visit(E)); 1477 case CK_MemberPointerToBoolean: { 1478 llvm::Value *MemPtr = Visit(E); 1479 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1480 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1481 } 1482 1483 case CK_FloatingComplexToReal: 1484 case CK_IntegralComplexToReal: 1485 return CGF.EmitComplexExpr(E, false, true).first; 1486 1487 case CK_FloatingComplexToBoolean: 1488 case CK_IntegralComplexToBoolean: { 1489 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1490 1491 // TODO: kill this function off, inline appropriate case here 1492 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1493 } 1494 1495 case CK_ZeroToOCLEvent: { 1496 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1497 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1498 } 1499 1500 } 1501 1502 llvm_unreachable("unknown scalar cast"); 1503 } 1504 1505 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1506 CodeGenFunction::StmtExprEvaluation eval(CGF); 1507 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1508 !E->getType()->isVoidType()); 1509 if (!RetAlloca) 1510 return 0; 1511 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1512 E->getExprLoc()); 1513 } 1514 1515 //===----------------------------------------------------------------------===// 1516 // Unary Operators 1517 //===----------------------------------------------------------------------===// 1518 1519 llvm::Value *ScalarExprEmitter:: 1520 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1521 llvm::Value *InVal, 1522 llvm::Value *NextVal, bool IsInc) { 1523 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1524 case LangOptions::SOB_Defined: 1525 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1526 case LangOptions::SOB_Undefined: 1527 if (!CGF.SanOpts->SignedIntegerOverflow) 1528 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1529 // Fall through. 1530 case LangOptions::SOB_Trapping: 1531 BinOpInfo BinOp; 1532 BinOp.LHS = InVal; 1533 BinOp.RHS = NextVal; 1534 BinOp.Ty = E->getType(); 1535 BinOp.Opcode = BO_Add; 1536 BinOp.FPContractable = false; 1537 BinOp.E = E; 1538 return EmitOverflowCheckedBinOp(BinOp); 1539 } 1540 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1541 } 1542 1543 llvm::Value * 1544 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1545 bool isInc, bool isPre) { 1546 1547 QualType type = E->getSubExpr()->getType(); 1548 llvm::PHINode *atomicPHI = 0; 1549 llvm::Value *value; 1550 llvm::Value *input; 1551 1552 int amount = (isInc ? 1 : -1); 1553 1554 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1555 type = atomicTy->getValueType(); 1556 if (isInc && type->isBooleanType()) { 1557 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1558 if (isPre) { 1559 Builder.Insert(new llvm::StoreInst(True, 1560 LV.getAddress(), LV.isVolatileQualified(), 1561 LV.getAlignment().getQuantity(), 1562 llvm::SequentiallyConsistent)); 1563 return Builder.getTrue(); 1564 } 1565 // For atomic bool increment, we just store true and return it for 1566 // preincrement, do an atomic swap with true for postincrement 1567 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1568 LV.getAddress(), True, llvm::SequentiallyConsistent); 1569 } 1570 // Special case for atomic increment / decrement on integers, emit 1571 // atomicrmw instructions. We skip this if we want to be doing overflow 1572 // checking, and fall into the slow path with the atomic cmpxchg loop. 1573 if (!type->isBooleanType() && type->isIntegerType() && 1574 !(type->isUnsignedIntegerType() && 1575 CGF.SanOpts->UnsignedIntegerOverflow) && 1576 CGF.getLangOpts().getSignedOverflowBehavior() != 1577 LangOptions::SOB_Trapping) { 1578 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1579 llvm::AtomicRMWInst::Sub; 1580 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1581 llvm::Instruction::Sub; 1582 llvm::Value *amt = CGF.EmitToMemory( 1583 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1584 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1585 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1586 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1587 } 1588 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1589 input = value; 1590 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1591 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1592 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1593 value = CGF.EmitToMemory(value, type); 1594 Builder.CreateBr(opBB); 1595 Builder.SetInsertPoint(opBB); 1596 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1597 atomicPHI->addIncoming(value, startBB); 1598 value = atomicPHI; 1599 } else { 1600 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1601 input = value; 1602 } 1603 1604 // Special case of integer increment that we have to check first: bool++. 1605 // Due to promotion rules, we get: 1606 // bool++ -> bool = bool + 1 1607 // -> bool = (int)bool + 1 1608 // -> bool = ((int)bool + 1 != 0) 1609 // An interesting aspect of this is that increment is always true. 1610 // Decrement does not have this property. 1611 if (isInc && type->isBooleanType()) { 1612 value = Builder.getTrue(); 1613 1614 // Most common case by far: integer increment. 1615 } else if (type->isIntegerType()) { 1616 1617 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1618 1619 // Note that signed integer inc/dec with width less than int can't 1620 // overflow because of promotion rules; we're just eliding a few steps here. 1621 if (value->getType()->getPrimitiveSizeInBits() >= 1622 CGF.IntTy->getBitWidth() && 1623 type->isSignedIntegerOrEnumerationType()) { 1624 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1625 } else if (value->getType()->getPrimitiveSizeInBits() >= 1626 CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() && 1627 CGF.SanOpts->UnsignedIntegerOverflow) { 1628 BinOpInfo BinOp; 1629 BinOp.LHS = value; 1630 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1631 BinOp.Ty = E->getType(); 1632 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1633 BinOp.FPContractable = false; 1634 BinOp.E = E; 1635 value = EmitOverflowCheckedBinOp(BinOp); 1636 } else 1637 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1638 1639 // Next most common: pointer increment. 1640 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1641 QualType type = ptr->getPointeeType(); 1642 1643 // VLA types don't have constant size. 1644 if (const VariableArrayType *vla 1645 = CGF.getContext().getAsVariableArrayType(type)) { 1646 llvm::Value *numElts = CGF.getVLASize(vla).first; 1647 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1648 if (CGF.getLangOpts().isSignedOverflowDefined()) 1649 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1650 else 1651 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1652 1653 // Arithmetic on function pointers (!) is just +-1. 1654 } else if (type->isFunctionType()) { 1655 llvm::Value *amt = Builder.getInt32(amount); 1656 1657 value = CGF.EmitCastToVoidPtr(value); 1658 if (CGF.getLangOpts().isSignedOverflowDefined()) 1659 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1660 else 1661 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1662 value = Builder.CreateBitCast(value, input->getType()); 1663 1664 // For everything else, we can just do a simple increment. 1665 } else { 1666 llvm::Value *amt = Builder.getInt32(amount); 1667 if (CGF.getLangOpts().isSignedOverflowDefined()) 1668 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1669 else 1670 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1671 } 1672 1673 // Vector increment/decrement. 1674 } else if (type->isVectorType()) { 1675 if (type->hasIntegerRepresentation()) { 1676 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1677 1678 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1679 } else { 1680 value = Builder.CreateFAdd( 1681 value, 1682 llvm::ConstantFP::get(value->getType(), amount), 1683 isInc ? "inc" : "dec"); 1684 } 1685 1686 // Floating point. 1687 } else if (type->isRealFloatingType()) { 1688 // Add the inc/dec to the real part. 1689 llvm::Value *amt; 1690 1691 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1692 // Another special case: half FP increment should be done via float 1693 value = 1694 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), 1695 input); 1696 } 1697 1698 if (value->getType()->isFloatTy()) 1699 amt = llvm::ConstantFP::get(VMContext, 1700 llvm::APFloat(static_cast<float>(amount))); 1701 else if (value->getType()->isDoubleTy()) 1702 amt = llvm::ConstantFP::get(VMContext, 1703 llvm::APFloat(static_cast<double>(amount))); 1704 else { 1705 llvm::APFloat F(static_cast<float>(amount)); 1706 bool ignored; 1707 F.convert(CGF.getTarget().getLongDoubleFormat(), 1708 llvm::APFloat::rmTowardZero, &ignored); 1709 amt = llvm::ConstantFP::get(VMContext, F); 1710 } 1711 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1712 1713 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 1714 value = 1715 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), 1716 value); 1717 1718 // Objective-C pointer types. 1719 } else { 1720 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1721 value = CGF.EmitCastToVoidPtr(value); 1722 1723 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1724 if (!isInc) size = -size; 1725 llvm::Value *sizeValue = 1726 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1727 1728 if (CGF.getLangOpts().isSignedOverflowDefined()) 1729 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1730 else 1731 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1732 value = Builder.CreateBitCast(value, input->getType()); 1733 } 1734 1735 if (atomicPHI) { 1736 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1737 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1738 llvm::Value *old = Builder.CreateAtomicCmpXchg( 1739 LV.getAddress(), atomicPHI, CGF.EmitToMemory(value, type), 1740 llvm::SequentiallyConsistent, llvm::SequentiallyConsistent); 1741 atomicPHI->addIncoming(old, opBB); 1742 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1743 Builder.CreateCondBr(success, contBB, opBB); 1744 Builder.SetInsertPoint(contBB); 1745 return isPre ? value : input; 1746 } 1747 1748 // Store the updated result through the lvalue. 1749 if (LV.isBitField()) 1750 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1751 else 1752 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1753 1754 // If this is a postinc, return the value read from memory, otherwise use the 1755 // updated value. 1756 return isPre ? value : input; 1757 } 1758 1759 1760 1761 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1762 TestAndClearIgnoreResultAssign(); 1763 // Emit unary minus with EmitSub so we handle overflow cases etc. 1764 BinOpInfo BinOp; 1765 BinOp.RHS = Visit(E->getSubExpr()); 1766 1767 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1768 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1769 else 1770 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1771 BinOp.Ty = E->getType(); 1772 BinOp.Opcode = BO_Sub; 1773 BinOp.FPContractable = false; 1774 BinOp.E = E; 1775 return EmitSub(BinOp); 1776 } 1777 1778 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1779 TestAndClearIgnoreResultAssign(); 1780 Value *Op = Visit(E->getSubExpr()); 1781 return Builder.CreateNot(Op, "neg"); 1782 } 1783 1784 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1785 // Perform vector logical not on comparison with zero vector. 1786 if (E->getType()->isExtVectorType()) { 1787 Value *Oper = Visit(E->getSubExpr()); 1788 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1789 Value *Result; 1790 if (Oper->getType()->isFPOrFPVectorTy()) 1791 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1792 else 1793 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1794 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1795 } 1796 1797 // Compare operand to zero. 1798 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1799 1800 // Invert value. 1801 // TODO: Could dynamically modify easy computations here. For example, if 1802 // the operand is an icmp ne, turn into icmp eq. 1803 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1804 1805 // ZExt result to the expr type. 1806 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1807 } 1808 1809 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1810 // Try folding the offsetof to a constant. 1811 llvm::APSInt Value; 1812 if (E->EvaluateAsInt(Value, CGF.getContext())) 1813 return Builder.getInt(Value); 1814 1815 // Loop over the components of the offsetof to compute the value. 1816 unsigned n = E->getNumComponents(); 1817 llvm::Type* ResultType = ConvertType(E->getType()); 1818 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1819 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1820 for (unsigned i = 0; i != n; ++i) { 1821 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1822 llvm::Value *Offset = 0; 1823 switch (ON.getKind()) { 1824 case OffsetOfExpr::OffsetOfNode::Array: { 1825 // Compute the index 1826 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1827 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1828 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1829 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1830 1831 // Save the element type 1832 CurrentType = 1833 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1834 1835 // Compute the element size 1836 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1837 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1838 1839 // Multiply out to compute the result 1840 Offset = Builder.CreateMul(Idx, ElemSize); 1841 break; 1842 } 1843 1844 case OffsetOfExpr::OffsetOfNode::Field: { 1845 FieldDecl *MemberDecl = ON.getField(); 1846 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1847 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1848 1849 // Compute the index of the field in its parent. 1850 unsigned i = 0; 1851 // FIXME: It would be nice if we didn't have to loop here! 1852 for (RecordDecl::field_iterator Field = RD->field_begin(), 1853 FieldEnd = RD->field_end(); 1854 Field != FieldEnd; ++Field, ++i) { 1855 if (*Field == MemberDecl) 1856 break; 1857 } 1858 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1859 1860 // Compute the offset to the field 1861 int64_t OffsetInt = RL.getFieldOffset(i) / 1862 CGF.getContext().getCharWidth(); 1863 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1864 1865 // Save the element type. 1866 CurrentType = MemberDecl->getType(); 1867 break; 1868 } 1869 1870 case OffsetOfExpr::OffsetOfNode::Identifier: 1871 llvm_unreachable("dependent __builtin_offsetof"); 1872 1873 case OffsetOfExpr::OffsetOfNode::Base: { 1874 if (ON.getBase()->isVirtual()) { 1875 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1876 continue; 1877 } 1878 1879 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1880 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1881 1882 // Save the element type. 1883 CurrentType = ON.getBase()->getType(); 1884 1885 // Compute the offset to the base. 1886 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1887 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1888 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1889 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1890 break; 1891 } 1892 } 1893 Result = Builder.CreateAdd(Result, Offset); 1894 } 1895 return Result; 1896 } 1897 1898 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1899 /// argument of the sizeof expression as an integer. 1900 Value * 1901 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1902 const UnaryExprOrTypeTraitExpr *E) { 1903 QualType TypeToSize = E->getTypeOfArgument(); 1904 if (E->getKind() == UETT_SizeOf) { 1905 if (const VariableArrayType *VAT = 1906 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1907 if (E->isArgumentType()) { 1908 // sizeof(type) - make sure to emit the VLA size. 1909 CGF.EmitVariablyModifiedType(TypeToSize); 1910 } else { 1911 // C99 6.5.3.4p2: If the argument is an expression of type 1912 // VLA, it is evaluated. 1913 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1914 } 1915 1916 QualType eltType; 1917 llvm::Value *numElts; 1918 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 1919 1920 llvm::Value *size = numElts; 1921 1922 // Scale the number of non-VLA elements by the non-VLA element size. 1923 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1924 if (!eltSize.isOne()) 1925 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1926 1927 return size; 1928 } 1929 } 1930 1931 // If this isn't sizeof(vla), the result must be constant; use the constant 1932 // folding logic so we don't have to duplicate it here. 1933 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1934 } 1935 1936 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1937 Expr *Op = E->getSubExpr(); 1938 if (Op->getType()->isAnyComplexType()) { 1939 // If it's an l-value, load through the appropriate subobject l-value. 1940 // Note that we have to ask E because Op might be an l-value that 1941 // this won't work for, e.g. an Obj-C property. 1942 if (E->isGLValue()) 1943 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 1944 E->getExprLoc()).getScalarVal(); 1945 1946 // Otherwise, calculate and project. 1947 return CGF.EmitComplexExpr(Op, false, true).first; 1948 } 1949 1950 return Visit(Op); 1951 } 1952 1953 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1954 Expr *Op = E->getSubExpr(); 1955 if (Op->getType()->isAnyComplexType()) { 1956 // If it's an l-value, load through the appropriate subobject l-value. 1957 // Note that we have to ask E because Op might be an l-value that 1958 // this won't work for, e.g. an Obj-C property. 1959 if (Op->isGLValue()) 1960 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 1961 E->getExprLoc()).getScalarVal(); 1962 1963 // Otherwise, calculate and project. 1964 return CGF.EmitComplexExpr(Op, true, false).second; 1965 } 1966 1967 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1968 // effects are evaluated, but not the actual value. 1969 if (Op->isGLValue()) 1970 CGF.EmitLValue(Op); 1971 else 1972 CGF.EmitScalarExpr(Op, true); 1973 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1974 } 1975 1976 //===----------------------------------------------------------------------===// 1977 // Binary Operators 1978 //===----------------------------------------------------------------------===// 1979 1980 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1981 TestAndClearIgnoreResultAssign(); 1982 BinOpInfo Result; 1983 Result.LHS = Visit(E->getLHS()); 1984 Result.RHS = Visit(E->getRHS()); 1985 Result.Ty = E->getType(); 1986 Result.Opcode = E->getOpcode(); 1987 Result.FPContractable = E->isFPContractable(); 1988 Result.E = E; 1989 return Result; 1990 } 1991 1992 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 1993 const CompoundAssignOperator *E, 1994 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 1995 Value *&Result) { 1996 QualType LHSTy = E->getLHS()->getType(); 1997 BinOpInfo OpInfo; 1998 1999 if (E->getComputationResultType()->isAnyComplexType()) 2000 return CGF.EmitScalarCompooundAssignWithComplex(E, Result); 2001 2002 // Emit the RHS first. __block variables need to have the rhs evaluated 2003 // first, plus this should improve codegen a little. 2004 OpInfo.RHS = Visit(E->getRHS()); 2005 OpInfo.Ty = E->getComputationResultType(); 2006 OpInfo.Opcode = E->getOpcode(); 2007 OpInfo.FPContractable = false; 2008 OpInfo.E = E; 2009 // Load/convert the LHS. 2010 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2011 2012 llvm::PHINode *atomicPHI = 0; 2013 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2014 QualType type = atomicTy->getValueType(); 2015 if (!type->isBooleanType() && type->isIntegerType() && 2016 !(type->isUnsignedIntegerType() && 2017 CGF.SanOpts->UnsignedIntegerOverflow) && 2018 CGF.getLangOpts().getSignedOverflowBehavior() != 2019 LangOptions::SOB_Trapping) { 2020 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2021 switch (OpInfo.Opcode) { 2022 // We don't have atomicrmw operands for *, %, /, <<, >> 2023 case BO_MulAssign: case BO_DivAssign: 2024 case BO_RemAssign: 2025 case BO_ShlAssign: 2026 case BO_ShrAssign: 2027 break; 2028 case BO_AddAssign: 2029 aop = llvm::AtomicRMWInst::Add; 2030 break; 2031 case BO_SubAssign: 2032 aop = llvm::AtomicRMWInst::Sub; 2033 break; 2034 case BO_AndAssign: 2035 aop = llvm::AtomicRMWInst::And; 2036 break; 2037 case BO_XorAssign: 2038 aop = llvm::AtomicRMWInst::Xor; 2039 break; 2040 case BO_OrAssign: 2041 aop = llvm::AtomicRMWInst::Or; 2042 break; 2043 default: 2044 llvm_unreachable("Invalid compound assignment type"); 2045 } 2046 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2047 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 2048 E->getRHS()->getType(), LHSTy), LHSTy); 2049 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 2050 llvm::SequentiallyConsistent); 2051 return LHSLV; 2052 } 2053 } 2054 // FIXME: For floating point types, we should be saving and restoring the 2055 // floating point environment in the loop. 2056 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2057 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2058 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2059 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2060 Builder.CreateBr(opBB); 2061 Builder.SetInsertPoint(opBB); 2062 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2063 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2064 OpInfo.LHS = atomicPHI; 2065 } 2066 else 2067 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2068 2069 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 2070 E->getComputationLHSType()); 2071 2072 // Expand the binary operator. 2073 Result = (this->*Func)(OpInfo); 2074 2075 // Convert the result back to the LHS type. 2076 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 2077 2078 if (atomicPHI) { 2079 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2080 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2081 llvm::Value *old = Builder.CreateAtomicCmpXchg( 2082 LHSLV.getAddress(), atomicPHI, CGF.EmitToMemory(Result, LHSTy), 2083 llvm::SequentiallyConsistent, llvm::SequentiallyConsistent); 2084 atomicPHI->addIncoming(old, opBB); 2085 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 2086 Builder.CreateCondBr(success, contBB, opBB); 2087 Builder.SetInsertPoint(contBB); 2088 return LHSLV; 2089 } 2090 2091 // Store the result value into the LHS lvalue. Bit-fields are handled 2092 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2093 // 'An assignment expression has the value of the left operand after the 2094 // assignment...'. 2095 if (LHSLV.isBitField()) 2096 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2097 else 2098 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2099 2100 return LHSLV; 2101 } 2102 2103 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2104 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2105 bool Ignore = TestAndClearIgnoreResultAssign(); 2106 Value *RHS; 2107 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2108 2109 // If the result is clearly ignored, return now. 2110 if (Ignore) 2111 return 0; 2112 2113 // The result of an assignment in C is the assigned r-value. 2114 if (!CGF.getLangOpts().CPlusPlus) 2115 return RHS; 2116 2117 // If the lvalue is non-volatile, return the computed value of the assignment. 2118 if (!LHS.isVolatileQualified()) 2119 return RHS; 2120 2121 // Otherwise, reload the value. 2122 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2123 } 2124 2125 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2126 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2127 llvm::Value *Cond = 0; 2128 2129 if (CGF.SanOpts->IntegerDivideByZero) 2130 Cond = Builder.CreateICmpNE(Ops.RHS, Zero); 2131 2132 if (CGF.SanOpts->SignedIntegerOverflow && 2133 Ops.Ty->hasSignedIntegerRepresentation()) { 2134 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2135 2136 llvm::Value *IntMin = 2137 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2138 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2139 2140 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2141 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2142 llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2143 Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow; 2144 } 2145 2146 if (Cond) 2147 EmitBinOpCheck(Cond, Ops); 2148 } 2149 2150 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2151 if ((CGF.SanOpts->IntegerDivideByZero || 2152 CGF.SanOpts->SignedIntegerOverflow) && 2153 Ops.Ty->isIntegerType()) { 2154 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2155 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2156 } else if (CGF.SanOpts->FloatDivideByZero && 2157 Ops.Ty->isRealFloatingType()) { 2158 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2159 EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops); 2160 } 2161 2162 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2163 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2164 if (CGF.getLangOpts().OpenCL) { 2165 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2166 llvm::Type *ValTy = Val->getType(); 2167 if (ValTy->isFloatTy() || 2168 (isa<llvm::VectorType>(ValTy) && 2169 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2170 CGF.SetFPAccuracy(Val, 2.5); 2171 } 2172 return Val; 2173 } 2174 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2175 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2176 else 2177 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2178 } 2179 2180 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2181 // Rem in C can't be a floating point type: C99 6.5.5p2. 2182 if (CGF.SanOpts->IntegerDivideByZero) { 2183 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2184 2185 if (Ops.Ty->isIntegerType()) 2186 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2187 } 2188 2189 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2190 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2191 else 2192 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2193 } 2194 2195 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2196 unsigned IID; 2197 unsigned OpID = 0; 2198 2199 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2200 switch (Ops.Opcode) { 2201 case BO_Add: 2202 case BO_AddAssign: 2203 OpID = 1; 2204 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2205 llvm::Intrinsic::uadd_with_overflow; 2206 break; 2207 case BO_Sub: 2208 case BO_SubAssign: 2209 OpID = 2; 2210 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2211 llvm::Intrinsic::usub_with_overflow; 2212 break; 2213 case BO_Mul: 2214 case BO_MulAssign: 2215 OpID = 3; 2216 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2217 llvm::Intrinsic::umul_with_overflow; 2218 break; 2219 default: 2220 llvm_unreachable("Unsupported operation for overflow detection"); 2221 } 2222 OpID <<= 1; 2223 if (isSigned) 2224 OpID |= 1; 2225 2226 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2227 2228 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2229 2230 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2231 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2232 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2233 2234 // Handle overflow with llvm.trap if no custom handler has been specified. 2235 const std::string *handlerName = 2236 &CGF.getLangOpts().OverflowHandler; 2237 if (handlerName->empty()) { 2238 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2239 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2240 if (!isSigned || CGF.SanOpts->SignedIntegerOverflow) 2241 EmitBinOpCheck(Builder.CreateNot(overflow), Ops); 2242 else 2243 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2244 return result; 2245 } 2246 2247 // Branch in case of overflow. 2248 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2249 llvm::Function::iterator insertPt = initialBB; 2250 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2251 std::next(insertPt)); 2252 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2253 2254 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2255 2256 // If an overflow handler is set, then we want to call it and then use its 2257 // result, if it returns. 2258 Builder.SetInsertPoint(overflowBB); 2259 2260 // Get the overflow handler. 2261 llvm::Type *Int8Ty = CGF.Int8Ty; 2262 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2263 llvm::FunctionType *handlerTy = 2264 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2265 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2266 2267 // Sign extend the args to 64-bit, so that we can use the same handler for 2268 // all types of overflow. 2269 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2270 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2271 2272 // Call the handler with the two arguments, the operation, and the size of 2273 // the result. 2274 llvm::Value *handlerArgs[] = { 2275 lhs, 2276 rhs, 2277 Builder.getInt8(OpID), 2278 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2279 }; 2280 llvm::Value *handlerResult = 2281 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2282 2283 // Truncate the result back to the desired size. 2284 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2285 Builder.CreateBr(continueBB); 2286 2287 Builder.SetInsertPoint(continueBB); 2288 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2289 phi->addIncoming(result, initialBB); 2290 phi->addIncoming(handlerResult, overflowBB); 2291 2292 return phi; 2293 } 2294 2295 /// Emit pointer + index arithmetic. 2296 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2297 const BinOpInfo &op, 2298 bool isSubtraction) { 2299 // Must have binary (not unary) expr here. Unary pointer 2300 // increment/decrement doesn't use this path. 2301 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2302 2303 Value *pointer = op.LHS; 2304 Expr *pointerOperand = expr->getLHS(); 2305 Value *index = op.RHS; 2306 Expr *indexOperand = expr->getRHS(); 2307 2308 // In a subtraction, the LHS is always the pointer. 2309 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2310 std::swap(pointer, index); 2311 std::swap(pointerOperand, indexOperand); 2312 } 2313 2314 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2315 if (width != CGF.PointerWidthInBits) { 2316 // Zero-extend or sign-extend the pointer value according to 2317 // whether the index is signed or not. 2318 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2319 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2320 "idx.ext"); 2321 } 2322 2323 // If this is subtraction, negate the index. 2324 if (isSubtraction) 2325 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2326 2327 if (CGF.SanOpts->ArrayBounds) 2328 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2329 /*Accessed*/ false); 2330 2331 const PointerType *pointerType 2332 = pointerOperand->getType()->getAs<PointerType>(); 2333 if (!pointerType) { 2334 QualType objectType = pointerOperand->getType() 2335 ->castAs<ObjCObjectPointerType>() 2336 ->getPointeeType(); 2337 llvm::Value *objectSize 2338 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2339 2340 index = CGF.Builder.CreateMul(index, objectSize); 2341 2342 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2343 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2344 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2345 } 2346 2347 QualType elementType = pointerType->getPointeeType(); 2348 if (const VariableArrayType *vla 2349 = CGF.getContext().getAsVariableArrayType(elementType)) { 2350 // The element count here is the total number of non-VLA elements. 2351 llvm::Value *numElements = CGF.getVLASize(vla).first; 2352 2353 // Effectively, the multiply by the VLA size is part of the GEP. 2354 // GEP indexes are signed, and scaling an index isn't permitted to 2355 // signed-overflow, so we use the same semantics for our explicit 2356 // multiply. We suppress this if overflow is not undefined behavior. 2357 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2358 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2359 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2360 } else { 2361 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2362 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2363 } 2364 return pointer; 2365 } 2366 2367 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2368 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2369 // future proof. 2370 if (elementType->isVoidType() || elementType->isFunctionType()) { 2371 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2372 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2373 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2374 } 2375 2376 if (CGF.getLangOpts().isSignedOverflowDefined()) 2377 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2378 2379 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2380 } 2381 2382 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2383 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2384 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2385 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2386 // efficient operations. 2387 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2388 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2389 bool negMul, bool negAdd) { 2390 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2391 2392 Value *MulOp0 = MulOp->getOperand(0); 2393 Value *MulOp1 = MulOp->getOperand(1); 2394 if (negMul) { 2395 MulOp0 = 2396 Builder.CreateFSub( 2397 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2398 "neg"); 2399 } else if (negAdd) { 2400 Addend = 2401 Builder.CreateFSub( 2402 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2403 "neg"); 2404 } 2405 2406 Value *FMulAdd = 2407 Builder.CreateCall3( 2408 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2409 MulOp0, MulOp1, Addend); 2410 MulOp->eraseFromParent(); 2411 2412 return FMulAdd; 2413 } 2414 2415 // Check whether it would be legal to emit an fmuladd intrinsic call to 2416 // represent op and if so, build the fmuladd. 2417 // 2418 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2419 // Does NOT check the type of the operation - it's assumed that this function 2420 // will be called from contexts where it's known that the type is contractable. 2421 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2422 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2423 bool isSub=false) { 2424 2425 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2426 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2427 "Only fadd/fsub can be the root of an fmuladd."); 2428 2429 // Check whether this op is marked as fusable. 2430 if (!op.FPContractable) 2431 return 0; 2432 2433 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2434 // either disabled, or handled entirely by the LLVM backend). 2435 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2436 return 0; 2437 2438 // We have a potentially fusable op. Look for a mul on one of the operands. 2439 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2440 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2441 assert(LHSBinOp->getNumUses() == 0 && 2442 "Operations with multiple uses shouldn't be contracted."); 2443 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2444 } 2445 } else if (llvm::BinaryOperator* RHSBinOp = 2446 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2447 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2448 assert(RHSBinOp->getNumUses() == 0 && 2449 "Operations with multiple uses shouldn't be contracted."); 2450 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2451 } 2452 } 2453 2454 return 0; 2455 } 2456 2457 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2458 if (op.LHS->getType()->isPointerTy() || 2459 op.RHS->getType()->isPointerTy()) 2460 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2461 2462 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2463 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2464 case LangOptions::SOB_Defined: 2465 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2466 case LangOptions::SOB_Undefined: 2467 if (!CGF.SanOpts->SignedIntegerOverflow) 2468 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2469 // Fall through. 2470 case LangOptions::SOB_Trapping: 2471 return EmitOverflowCheckedBinOp(op); 2472 } 2473 } 2474 2475 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2476 return EmitOverflowCheckedBinOp(op); 2477 2478 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2479 // Try to form an fmuladd. 2480 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2481 return FMulAdd; 2482 2483 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2484 } 2485 2486 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2487 } 2488 2489 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2490 // The LHS is always a pointer if either side is. 2491 if (!op.LHS->getType()->isPointerTy()) { 2492 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2493 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2494 case LangOptions::SOB_Defined: 2495 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2496 case LangOptions::SOB_Undefined: 2497 if (!CGF.SanOpts->SignedIntegerOverflow) 2498 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2499 // Fall through. 2500 case LangOptions::SOB_Trapping: 2501 return EmitOverflowCheckedBinOp(op); 2502 } 2503 } 2504 2505 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2506 return EmitOverflowCheckedBinOp(op); 2507 2508 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2509 // Try to form an fmuladd. 2510 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2511 return FMulAdd; 2512 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2513 } 2514 2515 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2516 } 2517 2518 // If the RHS is not a pointer, then we have normal pointer 2519 // arithmetic. 2520 if (!op.RHS->getType()->isPointerTy()) 2521 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2522 2523 // Otherwise, this is a pointer subtraction. 2524 2525 // Do the raw subtraction part. 2526 llvm::Value *LHS 2527 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2528 llvm::Value *RHS 2529 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2530 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2531 2532 // Okay, figure out the element size. 2533 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2534 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2535 2536 llvm::Value *divisor = 0; 2537 2538 // For a variable-length array, this is going to be non-constant. 2539 if (const VariableArrayType *vla 2540 = CGF.getContext().getAsVariableArrayType(elementType)) { 2541 llvm::Value *numElements; 2542 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2543 2544 divisor = numElements; 2545 2546 // Scale the number of non-VLA elements by the non-VLA element size. 2547 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2548 if (!eltSize.isOne()) 2549 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2550 2551 // For everything elese, we can just compute it, safe in the 2552 // assumption that Sema won't let anything through that we can't 2553 // safely compute the size of. 2554 } else { 2555 CharUnits elementSize; 2556 // Handle GCC extension for pointer arithmetic on void* and 2557 // function pointer types. 2558 if (elementType->isVoidType() || elementType->isFunctionType()) 2559 elementSize = CharUnits::One(); 2560 else 2561 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2562 2563 // Don't even emit the divide for element size of 1. 2564 if (elementSize.isOne()) 2565 return diffInChars; 2566 2567 divisor = CGF.CGM.getSize(elementSize); 2568 } 2569 2570 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2571 // pointer difference in C is only defined in the case where both operands 2572 // are pointing to elements of an array. 2573 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2574 } 2575 2576 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2577 llvm::IntegerType *Ty; 2578 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2579 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2580 else 2581 Ty = cast<llvm::IntegerType>(LHS->getType()); 2582 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2583 } 2584 2585 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2586 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2587 // RHS to the same size as the LHS. 2588 Value *RHS = Ops.RHS; 2589 if (Ops.LHS->getType() != RHS->getType()) 2590 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2591 2592 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2593 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2594 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2595 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne); 2596 2597 if (Ops.Ty->hasSignedIntegerRepresentation()) { 2598 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2599 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2600 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check"); 2601 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont); 2602 2603 // Check whether we are shifting any non-zero bits off the top of the 2604 // integer. 2605 CGF.EmitBlock(CheckBitsShifted); 2606 llvm::Value *BitsShiftedOff = 2607 Builder.CreateLShr(Ops.LHS, 2608 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2609 /*NUW*/true, /*NSW*/true), 2610 "shl.check"); 2611 if (CGF.getLangOpts().CPlusPlus) { 2612 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2613 // Under C++11's rules, shifting a 1 bit into the sign bit is 2614 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2615 // define signed left shifts, so we use the C99 and C++11 rules there). 2616 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2617 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2618 } 2619 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2620 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2621 CGF.EmitBlock(Cont); 2622 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2); 2623 P->addIncoming(Valid, Orig); 2624 P->addIncoming(SecondCheck, CheckBitsShifted); 2625 Valid = P; 2626 } 2627 2628 EmitBinOpCheck(Valid, Ops); 2629 } 2630 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2631 if (CGF.getLangOpts().OpenCL) 2632 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2633 2634 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2635 } 2636 2637 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2638 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2639 // RHS to the same size as the LHS. 2640 Value *RHS = Ops.RHS; 2641 if (Ops.LHS->getType() != RHS->getType()) 2642 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2643 2644 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2645 isa<llvm::IntegerType>(Ops.LHS->getType())) 2646 EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops); 2647 2648 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2649 if (CGF.getLangOpts().OpenCL) 2650 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2651 2652 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2653 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2654 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2655 } 2656 2657 enum IntrinsicType { VCMPEQ, VCMPGT }; 2658 // return corresponding comparison intrinsic for given vector type 2659 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2660 BuiltinType::Kind ElemKind) { 2661 switch (ElemKind) { 2662 default: llvm_unreachable("unexpected element type"); 2663 case BuiltinType::Char_U: 2664 case BuiltinType::UChar: 2665 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2666 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2667 case BuiltinType::Char_S: 2668 case BuiltinType::SChar: 2669 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2670 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2671 case BuiltinType::UShort: 2672 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2673 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2674 case BuiltinType::Short: 2675 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2676 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2677 case BuiltinType::UInt: 2678 case BuiltinType::ULong: 2679 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2680 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2681 case BuiltinType::Int: 2682 case BuiltinType::Long: 2683 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2684 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2685 case BuiltinType::Float: 2686 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2687 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2688 } 2689 } 2690 2691 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2692 unsigned SICmpOpc, unsigned FCmpOpc) { 2693 TestAndClearIgnoreResultAssign(); 2694 Value *Result; 2695 QualType LHSTy = E->getLHS()->getType(); 2696 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2697 assert(E->getOpcode() == BO_EQ || 2698 E->getOpcode() == BO_NE); 2699 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2700 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2701 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2702 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2703 } else if (!LHSTy->isAnyComplexType()) { 2704 Value *LHS = Visit(E->getLHS()); 2705 Value *RHS = Visit(E->getRHS()); 2706 2707 // If AltiVec, the comparison results in a numeric type, so we use 2708 // intrinsics comparing vectors and giving 0 or 1 as a result 2709 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2710 // constants for mapping CR6 register bits to predicate result 2711 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2712 2713 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2714 2715 // in several cases vector arguments order will be reversed 2716 Value *FirstVecArg = LHS, 2717 *SecondVecArg = RHS; 2718 2719 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2720 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2721 BuiltinType::Kind ElementKind = BTy->getKind(); 2722 2723 switch(E->getOpcode()) { 2724 default: llvm_unreachable("is not a comparison operation"); 2725 case BO_EQ: 2726 CR6 = CR6_LT; 2727 ID = GetIntrinsic(VCMPEQ, ElementKind); 2728 break; 2729 case BO_NE: 2730 CR6 = CR6_EQ; 2731 ID = GetIntrinsic(VCMPEQ, ElementKind); 2732 break; 2733 case BO_LT: 2734 CR6 = CR6_LT; 2735 ID = GetIntrinsic(VCMPGT, ElementKind); 2736 std::swap(FirstVecArg, SecondVecArg); 2737 break; 2738 case BO_GT: 2739 CR6 = CR6_LT; 2740 ID = GetIntrinsic(VCMPGT, ElementKind); 2741 break; 2742 case BO_LE: 2743 if (ElementKind == BuiltinType::Float) { 2744 CR6 = CR6_LT; 2745 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2746 std::swap(FirstVecArg, SecondVecArg); 2747 } 2748 else { 2749 CR6 = CR6_EQ; 2750 ID = GetIntrinsic(VCMPGT, ElementKind); 2751 } 2752 break; 2753 case BO_GE: 2754 if (ElementKind == BuiltinType::Float) { 2755 CR6 = CR6_LT; 2756 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2757 } 2758 else { 2759 CR6 = CR6_EQ; 2760 ID = GetIntrinsic(VCMPGT, ElementKind); 2761 std::swap(FirstVecArg, SecondVecArg); 2762 } 2763 break; 2764 } 2765 2766 Value *CR6Param = Builder.getInt32(CR6); 2767 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2768 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2769 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2770 } 2771 2772 if (LHS->getType()->isFPOrFPVectorTy()) { 2773 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2774 LHS, RHS, "cmp"); 2775 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2776 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2777 LHS, RHS, "cmp"); 2778 } else { 2779 // Unsigned integers and pointers. 2780 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2781 LHS, RHS, "cmp"); 2782 } 2783 2784 // If this is a vector comparison, sign extend the result to the appropriate 2785 // vector integer type and return it (don't convert to bool). 2786 if (LHSTy->isVectorType()) 2787 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2788 2789 } else { 2790 // Complex Comparison: can only be an equality comparison. 2791 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 2792 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 2793 2794 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 2795 2796 Value *ResultR, *ResultI; 2797 if (CETy->isRealFloatingType()) { 2798 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2799 LHS.first, RHS.first, "cmp.r"); 2800 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2801 LHS.second, RHS.second, "cmp.i"); 2802 } else { 2803 // Complex comparisons can only be equality comparisons. As such, signed 2804 // and unsigned opcodes are the same. 2805 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2806 LHS.first, RHS.first, "cmp.r"); 2807 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2808 LHS.second, RHS.second, "cmp.i"); 2809 } 2810 2811 if (E->getOpcode() == BO_EQ) { 2812 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2813 } else { 2814 assert(E->getOpcode() == BO_NE && 2815 "Complex comparison other than == or != ?"); 2816 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2817 } 2818 } 2819 2820 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2821 } 2822 2823 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2824 bool Ignore = TestAndClearIgnoreResultAssign(); 2825 2826 Value *RHS; 2827 LValue LHS; 2828 2829 switch (E->getLHS()->getType().getObjCLifetime()) { 2830 case Qualifiers::OCL_Strong: 2831 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2832 break; 2833 2834 case Qualifiers::OCL_Autoreleasing: 2835 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2836 break; 2837 2838 case Qualifiers::OCL_Weak: 2839 RHS = Visit(E->getRHS()); 2840 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2841 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2842 break; 2843 2844 // No reason to do any of these differently. 2845 case Qualifiers::OCL_None: 2846 case Qualifiers::OCL_ExplicitNone: 2847 // __block variables need to have the rhs evaluated first, plus 2848 // this should improve codegen just a little. 2849 RHS = Visit(E->getRHS()); 2850 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2851 2852 // Store the value into the LHS. Bit-fields are handled specially 2853 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2854 // 'An assignment expression has the value of the left operand after 2855 // the assignment...'. 2856 if (LHS.isBitField()) 2857 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2858 else 2859 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2860 } 2861 2862 // If the result is clearly ignored, return now. 2863 if (Ignore) 2864 return 0; 2865 2866 // The result of an assignment in C is the assigned r-value. 2867 if (!CGF.getLangOpts().CPlusPlus) 2868 return RHS; 2869 2870 // If the lvalue is non-volatile, return the computed value of the assignment. 2871 if (!LHS.isVolatileQualified()) 2872 return RHS; 2873 2874 // Otherwise, reload the value. 2875 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2876 } 2877 2878 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2879 RegionCounter Cnt = CGF.getPGORegionCounter(E); 2880 2881 // Perform vector logical and on comparisons with zero vectors. 2882 if (E->getType()->isVectorType()) { 2883 Cnt.beginRegion(Builder); 2884 2885 Value *LHS = Visit(E->getLHS()); 2886 Value *RHS = Visit(E->getRHS()); 2887 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2888 if (LHS->getType()->isFPOrFPVectorTy()) { 2889 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2890 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2891 } else { 2892 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2893 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2894 } 2895 Value *And = Builder.CreateAnd(LHS, RHS); 2896 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 2897 } 2898 2899 llvm::Type *ResTy = ConvertType(E->getType()); 2900 2901 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2902 // If we have 1 && X, just emit X without inserting the control flow. 2903 bool LHSCondVal; 2904 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2905 if (LHSCondVal) { // If we have 1 && X, just emit X. 2906 Cnt.beginRegion(Builder); 2907 2908 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2909 // ZExt result to int or bool. 2910 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2911 } 2912 2913 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2914 if (!CGF.ContainsLabel(E->getRHS())) 2915 return llvm::Constant::getNullValue(ResTy); 2916 } 2917 2918 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2919 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 2920 2921 CodeGenFunction::ConditionalEvaluation eval(CGF); 2922 2923 // Branch on the LHS first. If it is false, go to the failure (cont) block. 2924 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount()); 2925 2926 // Any edges into the ContBlock are now from an (indeterminate number of) 2927 // edges from this first condition. All of these values will be false. Start 2928 // setting up the PHI node in the Cont Block for this. 2929 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2930 "", ContBlock); 2931 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2932 PI != PE; ++PI) 2933 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 2934 2935 eval.begin(CGF); 2936 CGF.EmitBlock(RHSBlock); 2937 Cnt.beginRegion(Builder); 2938 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2939 eval.end(CGF); 2940 2941 // Reaquire the RHS block, as there may be subblocks inserted. 2942 RHSBlock = Builder.GetInsertBlock(); 2943 2944 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2945 // into the phi node for the edge with the value of RHSCond. 2946 if (CGF.getDebugInfo()) 2947 // There is no need to emit line number for unconditional branch. 2948 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 2949 CGF.EmitBlock(ContBlock); 2950 PN->addIncoming(RHSCond, RHSBlock); 2951 2952 // ZExt result to int. 2953 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 2954 } 2955 2956 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 2957 RegionCounter Cnt = CGF.getPGORegionCounter(E); 2958 2959 // Perform vector logical or on comparisons with zero vectors. 2960 if (E->getType()->isVectorType()) { 2961 Cnt.beginRegion(Builder); 2962 2963 Value *LHS = Visit(E->getLHS()); 2964 Value *RHS = Visit(E->getRHS()); 2965 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2966 if (LHS->getType()->isFPOrFPVectorTy()) { 2967 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2968 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2969 } else { 2970 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2971 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2972 } 2973 Value *Or = Builder.CreateOr(LHS, RHS); 2974 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 2975 } 2976 2977 llvm::Type *ResTy = ConvertType(E->getType()); 2978 2979 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 2980 // If we have 0 || X, just emit X without inserting the control flow. 2981 bool LHSCondVal; 2982 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2983 if (!LHSCondVal) { // If we have 0 || X, just emit X. 2984 Cnt.beginRegion(Builder); 2985 2986 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2987 // ZExt result to int or bool. 2988 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 2989 } 2990 2991 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 2992 if (!CGF.ContainsLabel(E->getRHS())) 2993 return llvm::ConstantInt::get(ResTy, 1); 2994 } 2995 2996 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 2997 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 2998 2999 CodeGenFunction::ConditionalEvaluation eval(CGF); 3000 3001 // Branch on the LHS first. If it is true, go to the success (cont) block. 3002 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3003 Cnt.getParentCount() - Cnt.getCount()); 3004 3005 // Any edges into the ContBlock are now from an (indeterminate number of) 3006 // edges from this first condition. All of these values will be true. Start 3007 // setting up the PHI node in the Cont Block for this. 3008 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3009 "", ContBlock); 3010 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3011 PI != PE; ++PI) 3012 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3013 3014 eval.begin(CGF); 3015 3016 // Emit the RHS condition as a bool value. 3017 CGF.EmitBlock(RHSBlock); 3018 Cnt.beginRegion(Builder); 3019 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3020 3021 eval.end(CGF); 3022 3023 // Reaquire the RHS block, as there may be subblocks inserted. 3024 RHSBlock = Builder.GetInsertBlock(); 3025 3026 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3027 // into the phi node for the edge with the value of RHSCond. 3028 CGF.EmitBlock(ContBlock); 3029 PN->addIncoming(RHSCond, RHSBlock); 3030 3031 // ZExt result to int. 3032 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3033 } 3034 3035 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3036 CGF.EmitIgnoredExpr(E->getLHS()); 3037 CGF.EnsureInsertPoint(); 3038 return Visit(E->getRHS()); 3039 } 3040 3041 //===----------------------------------------------------------------------===// 3042 // Other Operators 3043 //===----------------------------------------------------------------------===// 3044 3045 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3046 /// expression is cheap enough and side-effect-free enough to evaluate 3047 /// unconditionally instead of conditionally. This is used to convert control 3048 /// flow into selects in some cases. 3049 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3050 CodeGenFunction &CGF) { 3051 // Anything that is an integer or floating point constant is fine. 3052 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3053 3054 // Even non-volatile automatic variables can't be evaluated unconditionally. 3055 // Referencing a thread_local may cause non-trivial initialization work to 3056 // occur. If we're inside a lambda and one of the variables is from the scope 3057 // outside the lambda, that function may have returned already. Reading its 3058 // locals is a bad idea. Also, these reads may introduce races there didn't 3059 // exist in the source-level program. 3060 } 3061 3062 3063 Value *ScalarExprEmitter:: 3064 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3065 TestAndClearIgnoreResultAssign(); 3066 3067 // Bind the common expression if necessary. 3068 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3069 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3070 3071 Expr *condExpr = E->getCond(); 3072 Expr *lhsExpr = E->getTrueExpr(); 3073 Expr *rhsExpr = E->getFalseExpr(); 3074 3075 // If the condition constant folds and can be elided, try to avoid emitting 3076 // the condition and the dead arm. 3077 bool CondExprBool; 3078 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3079 Expr *live = lhsExpr, *dead = rhsExpr; 3080 if (!CondExprBool) std::swap(live, dead); 3081 3082 // If the dead side doesn't have labels we need, just emit the Live part. 3083 if (!CGF.ContainsLabel(dead)) { 3084 if (CondExprBool) 3085 Cnt.beginRegion(Builder); 3086 Value *Result = Visit(live); 3087 3088 // If the live part is a throw expression, it acts like it has a void 3089 // type, so evaluating it returns a null Value*. However, a conditional 3090 // with non-void type must return a non-null Value*. 3091 if (!Result && !E->getType()->isVoidType()) 3092 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3093 3094 return Result; 3095 } 3096 } 3097 3098 // OpenCL: If the condition is a vector, we can treat this condition like 3099 // the select function. 3100 if (CGF.getLangOpts().OpenCL 3101 && condExpr->getType()->isVectorType()) { 3102 Cnt.beginRegion(Builder); 3103 3104 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3105 llvm::Value *LHS = Visit(lhsExpr); 3106 llvm::Value *RHS = Visit(rhsExpr); 3107 3108 llvm::Type *condType = ConvertType(condExpr->getType()); 3109 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3110 3111 unsigned numElem = vecTy->getNumElements(); 3112 llvm::Type *elemType = vecTy->getElementType(); 3113 3114 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3115 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3116 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3117 llvm::VectorType::get(elemType, 3118 numElem), 3119 "sext"); 3120 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3121 3122 // Cast float to int to perform ANDs if necessary. 3123 llvm::Value *RHSTmp = RHS; 3124 llvm::Value *LHSTmp = LHS; 3125 bool wasCast = false; 3126 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3127 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3128 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3129 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3130 wasCast = true; 3131 } 3132 3133 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3134 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3135 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3136 if (wasCast) 3137 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3138 3139 return tmp5; 3140 } 3141 3142 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3143 // select instead of as control flow. We can only do this if it is cheap and 3144 // safe to evaluate the LHS and RHS unconditionally. 3145 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3146 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3147 Cnt.beginRegion(Builder); 3148 3149 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3150 llvm::Value *LHS = Visit(lhsExpr); 3151 llvm::Value *RHS = Visit(rhsExpr); 3152 if (!LHS) { 3153 // If the conditional has void type, make sure we return a null Value*. 3154 assert(!RHS && "LHS and RHS types must match"); 3155 return 0; 3156 } 3157 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3158 } 3159 3160 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3161 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3162 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3163 3164 CodeGenFunction::ConditionalEvaluation eval(CGF); 3165 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount()); 3166 3167 CGF.EmitBlock(LHSBlock); 3168 Cnt.beginRegion(Builder); 3169 eval.begin(CGF); 3170 Value *LHS = Visit(lhsExpr); 3171 eval.end(CGF); 3172 3173 LHSBlock = Builder.GetInsertBlock(); 3174 Builder.CreateBr(ContBlock); 3175 3176 CGF.EmitBlock(RHSBlock); 3177 eval.begin(CGF); 3178 Value *RHS = Visit(rhsExpr); 3179 eval.end(CGF); 3180 3181 RHSBlock = Builder.GetInsertBlock(); 3182 CGF.EmitBlock(ContBlock); 3183 3184 // If the LHS or RHS is a throw expression, it will be legitimately null. 3185 if (!LHS) 3186 return RHS; 3187 if (!RHS) 3188 return LHS; 3189 3190 // Create a PHI node for the real part. 3191 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3192 PN->addIncoming(LHS, LHSBlock); 3193 PN->addIncoming(RHS, RHSBlock); 3194 return PN; 3195 } 3196 3197 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3198 return Visit(E->getChosenSubExpr()); 3199 } 3200 3201 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3202 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3203 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3204 3205 // If EmitVAArg fails, we fall back to the LLVM instruction. 3206 if (!ArgPtr) 3207 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 3208 3209 // FIXME Volatility. 3210 return Builder.CreateLoad(ArgPtr); 3211 } 3212 3213 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3214 return CGF.EmitBlockLiteral(block); 3215 } 3216 3217 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3218 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3219 llvm::Type *DstTy = ConvertType(E->getType()); 3220 3221 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3222 // a shuffle vector instead of a bitcast. 3223 llvm::Type *SrcTy = Src->getType(); 3224 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3225 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3226 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3227 if ((numElementsDst == 3 && numElementsSrc == 4) 3228 || (numElementsDst == 4 && numElementsSrc == 3)) { 3229 3230 3231 // In the case of going from int4->float3, a bitcast is needed before 3232 // doing a shuffle. 3233 llvm::Type *srcElemTy = 3234 cast<llvm::VectorType>(SrcTy)->getElementType(); 3235 llvm::Type *dstElemTy = 3236 cast<llvm::VectorType>(DstTy)->getElementType(); 3237 3238 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3239 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3240 // Create a float type of the same size as the source or destination. 3241 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3242 numElementsSrc); 3243 3244 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3245 } 3246 3247 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3248 3249 SmallVector<llvm::Constant*, 3> Args; 3250 Args.push_back(Builder.getInt32(0)); 3251 Args.push_back(Builder.getInt32(1)); 3252 Args.push_back(Builder.getInt32(2)); 3253 3254 if (numElementsDst == 4) 3255 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3256 3257 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3258 3259 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3260 } 3261 } 3262 3263 return Builder.CreateBitCast(Src, DstTy, "astype"); 3264 } 3265 3266 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3267 return CGF.EmitAtomicExpr(E).getScalarVal(); 3268 } 3269 3270 //===----------------------------------------------------------------------===// 3271 // Entry Point into this File 3272 //===----------------------------------------------------------------------===// 3273 3274 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3275 /// type, ignoring the result. 3276 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3277 assert(E && hasScalarEvaluationKind(E->getType()) && 3278 "Invalid scalar expression to emit"); 3279 3280 if (isa<CXXDefaultArgExpr>(E)) 3281 disableDebugInfo(); 3282 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 3283 .Visit(const_cast<Expr*>(E)); 3284 if (isa<CXXDefaultArgExpr>(E)) 3285 enableDebugInfo(); 3286 return V; 3287 } 3288 3289 /// EmitScalarConversion - Emit a conversion from the specified type to the 3290 /// specified destination type, both of which are LLVM scalar types. 3291 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3292 QualType DstTy) { 3293 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3294 "Invalid scalar expression to emit"); 3295 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3296 } 3297 3298 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3299 /// type to the specified destination type, where the destination type is an 3300 /// LLVM scalar type. 3301 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3302 QualType SrcTy, 3303 QualType DstTy) { 3304 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3305 "Invalid complex -> scalar conversion"); 3306 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3307 DstTy); 3308 } 3309 3310 3311 llvm::Value *CodeGenFunction:: 3312 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3313 bool isInc, bool isPre) { 3314 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3315 } 3316 3317 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3318 llvm::Value *V; 3319 // object->isa or (*object).isa 3320 // Generate code as for: *(Class*)object 3321 // build Class* type 3322 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3323 3324 Expr *BaseExpr = E->getBase(); 3325 if (BaseExpr->isRValue()) { 3326 V = CreateMemTemp(E->getType(), "resval"); 3327 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3328 Builder.CreateStore(Src, V); 3329 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3330 MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc()); 3331 } else { 3332 if (E->isArrow()) 3333 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3334 else 3335 V = EmitLValue(BaseExpr).getAddress(); 3336 } 3337 3338 // build Class* type 3339 ClassPtrTy = ClassPtrTy->getPointerTo(); 3340 V = Builder.CreateBitCast(V, ClassPtrTy); 3341 return MakeNaturalAlignAddrLValue(V, E->getType()); 3342 } 3343 3344 3345 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3346 const CompoundAssignOperator *E) { 3347 ScalarExprEmitter Scalar(*this); 3348 Value *Result = 0; 3349 switch (E->getOpcode()) { 3350 #define COMPOUND_OP(Op) \ 3351 case BO_##Op##Assign: \ 3352 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3353 Result) 3354 COMPOUND_OP(Mul); 3355 COMPOUND_OP(Div); 3356 COMPOUND_OP(Rem); 3357 COMPOUND_OP(Add); 3358 COMPOUND_OP(Sub); 3359 COMPOUND_OP(Shl); 3360 COMPOUND_OP(Shr); 3361 COMPOUND_OP(And); 3362 COMPOUND_OP(Xor); 3363 COMPOUND_OP(Or); 3364 #undef COMPOUND_OP 3365 3366 case BO_PtrMemD: 3367 case BO_PtrMemI: 3368 case BO_Mul: 3369 case BO_Div: 3370 case BO_Rem: 3371 case BO_Add: 3372 case BO_Sub: 3373 case BO_Shl: 3374 case BO_Shr: 3375 case BO_LT: 3376 case BO_GT: 3377 case BO_LE: 3378 case BO_GE: 3379 case BO_EQ: 3380 case BO_NE: 3381 case BO_And: 3382 case BO_Xor: 3383 case BO_Or: 3384 case BO_LAnd: 3385 case BO_LOr: 3386 case BO_Assign: 3387 case BO_Comma: 3388 llvm_unreachable("Not valid compound assignment operators"); 3389 } 3390 3391 llvm_unreachable("Unhandled compound assignment operator"); 3392 } 3393