1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
81   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
85   Value *EmitLoadOfLValue(LValue LV) {
86     return CGF.EmitLoadOfLValue(LV).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E));
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     return Builder.CreateIsNotNull(V, "tobool");
144   }
145 
146   //===--------------------------------------------------------------------===//
147   //                            Visitor Methods
148   //===--------------------------------------------------------------------===//
149 
150   Value *Visit(Expr *E) {
151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152   }
153 
154   Value *VisitStmt(Stmt *S) {
155     S->dump(CGF.getContext().getSourceManager());
156     llvm_unreachable("Stmt can't have complex result type!");
157   }
158   Value *VisitExpr(Expr *S);
159 
160   Value *VisitParenExpr(ParenExpr *PE) {
161     return Visit(PE->getSubExpr());
162   }
163   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164     return Visit(E->getReplacement());
165   }
166   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167     return Visit(GE->getResultExpr());
168   }
169 
170   // Leaves.
171   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172     return Builder.getInt(E->getValue());
173   }
174   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175     return llvm::ConstantFP::get(VMContext, E->getValue());
176   }
177   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179   }
180   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
181     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182   }
183   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
184     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
185   }
186   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
187     return EmitNullValue(E->getType());
188   }
189   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
190     return EmitNullValue(E->getType());
191   }
192   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
193   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
194   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
195     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
196     return Builder.CreateBitCast(V, ConvertType(E->getType()));
197   }
198 
199   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
200     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
201   }
202 
203   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
204     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
205   }
206 
207   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
208     if (E->isGLValue())
209       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
210 
211     // Otherwise, assume the mapping is the scalar directly.
212     return CGF.getOpaqueRValueMapping(E).getScalarVal();
213   }
214 
215   // l-values.
216   Value *VisitDeclRefExpr(DeclRefExpr *E) {
217     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
218       if (result.isReference())
219         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
220       return result.getValue();
221     }
222     return EmitLoadOfLValue(E);
223   }
224 
225   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
226     return CGF.EmitObjCSelectorExpr(E);
227   }
228   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
229     return CGF.EmitObjCProtocolExpr(E);
230   }
231   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
232     return EmitLoadOfLValue(E);
233   }
234   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
235     if (E->getMethodDecl() &&
236         E->getMethodDecl()->getResultType()->isReferenceType())
237       return EmitLoadOfLValue(E);
238     return CGF.EmitObjCMessageExpr(E).getScalarVal();
239   }
240 
241   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
242     LValue LV = CGF.EmitObjCIsaExpr(E);
243     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
244     return V;
245   }
246 
247   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
248   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
249   Value *VisitMemberExpr(MemberExpr *E);
250   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
251   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
252     return EmitLoadOfLValue(E);
253   }
254 
255   Value *VisitInitListExpr(InitListExpr *E);
256 
257   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
258     return CGF.CGM.EmitNullConstant(E->getType());
259   }
260   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
261     if (E->getType()->isVariablyModifiedType())
262       CGF.EmitVariablyModifiedType(E->getType());
263     return VisitCastExpr(E);
264   }
265   Value *VisitCastExpr(CastExpr *E);
266 
267   Value *VisitCallExpr(const CallExpr *E) {
268     if (E->getCallReturnType()->isReferenceType())
269       return EmitLoadOfLValue(E);
270 
271     return CGF.EmitCallExpr(E).getScalarVal();
272   }
273 
274   Value *VisitStmtExpr(const StmtExpr *E);
275 
276   // Unary Operators.
277   Value *VisitUnaryPostDec(const UnaryOperator *E) {
278     LValue LV = EmitLValue(E->getSubExpr());
279     return EmitScalarPrePostIncDec(E, LV, false, false);
280   }
281   Value *VisitUnaryPostInc(const UnaryOperator *E) {
282     LValue LV = EmitLValue(E->getSubExpr());
283     return EmitScalarPrePostIncDec(E, LV, true, false);
284   }
285   Value *VisitUnaryPreDec(const UnaryOperator *E) {
286     LValue LV = EmitLValue(E->getSubExpr());
287     return EmitScalarPrePostIncDec(E, LV, false, true);
288   }
289   Value *VisitUnaryPreInc(const UnaryOperator *E) {
290     LValue LV = EmitLValue(E->getSubExpr());
291     return EmitScalarPrePostIncDec(E, LV, true, true);
292   }
293 
294   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
295                                                llvm::Value *InVal,
296                                                llvm::Value *NextVal,
297                                                bool IsInc);
298 
299   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
300                                        bool isInc, bool isPre);
301 
302 
303   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
304     if (isa<MemberPointerType>(E->getType())) // never sugared
305       return CGF.CGM.getMemberPointerConstant(E);
306 
307     return EmitLValue(E->getSubExpr()).getAddress();
308   }
309   Value *VisitUnaryDeref(const UnaryOperator *E) {
310     if (E->getType()->isVoidType())
311       return Visit(E->getSubExpr()); // the actual value should be unused
312     return EmitLoadOfLValue(E);
313   }
314   Value *VisitUnaryPlus(const UnaryOperator *E) {
315     // This differs from gcc, though, most likely due to a bug in gcc.
316     TestAndClearIgnoreResultAssign();
317     return Visit(E->getSubExpr());
318   }
319   Value *VisitUnaryMinus    (const UnaryOperator *E);
320   Value *VisitUnaryNot      (const UnaryOperator *E);
321   Value *VisitUnaryLNot     (const UnaryOperator *E);
322   Value *VisitUnaryReal     (const UnaryOperator *E);
323   Value *VisitUnaryImag     (const UnaryOperator *E);
324   Value *VisitUnaryExtension(const UnaryOperator *E) {
325     return Visit(E->getSubExpr());
326   }
327 
328   // C++
329   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
330     return EmitLoadOfLValue(E);
331   }
332 
333   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
334     return Visit(DAE->getExpr());
335   }
336   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
337     return CGF.LoadCXXThis();
338   }
339 
340   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
341     CGF.enterFullExpression(E);
342     CodeGenFunction::RunCleanupsScope Scope(CGF);
343     return Visit(E->getSubExpr());
344   }
345   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
346     return CGF.EmitCXXNewExpr(E);
347   }
348   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
349     CGF.EmitCXXDeleteExpr(E);
350     return 0;
351   }
352   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
353     return Builder.getInt1(E->getValue());
354   }
355 
356   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
357     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
358   }
359 
360   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
361     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
362   }
363 
364   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
365     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
366   }
367 
368   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
369     // C++ [expr.pseudo]p1:
370     //   The result shall only be used as the operand for the function call
371     //   operator (), and the result of such a call has type void. The only
372     //   effect is the evaluation of the postfix-expression before the dot or
373     //   arrow.
374     CGF.EmitScalarExpr(E->getBase());
375     return 0;
376   }
377 
378   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
379     return EmitNullValue(E->getType());
380   }
381 
382   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
383     CGF.EmitCXXThrowExpr(E);
384     return 0;
385   }
386 
387   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
388     return Builder.getInt1(E->getValue());
389   }
390 
391   // Binary Operators.
392   Value *EmitMul(const BinOpInfo &Ops) {
393     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
394       switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
395       case LangOptions::SOB_Undefined:
396         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
397       case LangOptions::SOB_Defined:
398         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
399       case LangOptions::SOB_Trapping:
400         return EmitOverflowCheckedBinOp(Ops);
401       }
402     }
403 
404     if (Ops.LHS->getType()->isFPOrFPVectorTy())
405       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
406     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
407   }
408   bool isTrapvOverflowBehavior() {
409     return CGF.getContext().getLangOpts().getSignedOverflowBehavior()
410                == LangOptions::SOB_Trapping;
411   }
412   /// Create a binary op that checks for overflow.
413   /// Currently only supports +, - and *.
414   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
415   // Emit the overflow BB when -ftrapv option is activated.
416   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
417     Builder.SetInsertPoint(overflowBB);
418     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
419     Builder.CreateCall(Trap);
420     Builder.CreateUnreachable();
421   }
422   // Check for undefined division and modulus behaviors.
423   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
424                                                   llvm::Value *Zero,bool isDiv);
425   Value *EmitDiv(const BinOpInfo &Ops);
426   Value *EmitRem(const BinOpInfo &Ops);
427   Value *EmitAdd(const BinOpInfo &Ops);
428   Value *EmitSub(const BinOpInfo &Ops);
429   Value *EmitShl(const BinOpInfo &Ops);
430   Value *EmitShr(const BinOpInfo &Ops);
431   Value *EmitAnd(const BinOpInfo &Ops) {
432     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
433   }
434   Value *EmitXor(const BinOpInfo &Ops) {
435     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
436   }
437   Value *EmitOr (const BinOpInfo &Ops) {
438     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
439   }
440 
441   BinOpInfo EmitBinOps(const BinaryOperator *E);
442   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
443                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
444                                   Value *&Result);
445 
446   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
447                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
448 
449   // Binary operators and binary compound assignment operators.
450 #define HANDLEBINOP(OP) \
451   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
452     return Emit ## OP(EmitBinOps(E));                                      \
453   }                                                                        \
454   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
455     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
456   }
457   HANDLEBINOP(Mul)
458   HANDLEBINOP(Div)
459   HANDLEBINOP(Rem)
460   HANDLEBINOP(Add)
461   HANDLEBINOP(Sub)
462   HANDLEBINOP(Shl)
463   HANDLEBINOP(Shr)
464   HANDLEBINOP(And)
465   HANDLEBINOP(Xor)
466   HANDLEBINOP(Or)
467 #undef HANDLEBINOP
468 
469   // Comparisons.
470   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
471                      unsigned SICmpOpc, unsigned FCmpOpc);
472 #define VISITCOMP(CODE, UI, SI, FP) \
473     Value *VisitBin##CODE(const BinaryOperator *E) { \
474       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
475                          llvm::FCmpInst::FP); }
476   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
477   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
478   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
479   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
480   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
481   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
482 #undef VISITCOMP
483 
484   Value *VisitBinAssign     (const BinaryOperator *E);
485 
486   Value *VisitBinLAnd       (const BinaryOperator *E);
487   Value *VisitBinLOr        (const BinaryOperator *E);
488   Value *VisitBinComma      (const BinaryOperator *E);
489 
490   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
491   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
492 
493   // Other Operators.
494   Value *VisitBlockExpr(const BlockExpr *BE);
495   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
496   Value *VisitChooseExpr(ChooseExpr *CE);
497   Value *VisitVAArgExpr(VAArgExpr *VE);
498   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
499     return CGF.EmitObjCStringLiteral(E);
500   }
501   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
502     return CGF.EmitObjCBoxedExpr(E);
503   }
504   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
505     return CGF.EmitObjCArrayLiteral(E);
506   }
507   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
508     return CGF.EmitObjCDictionaryLiteral(E);
509   }
510   Value *VisitAsTypeExpr(AsTypeExpr *CE);
511   Value *VisitAtomicExpr(AtomicExpr *AE);
512 };
513 }  // end anonymous namespace.
514 
515 //===----------------------------------------------------------------------===//
516 //                                Utilities
517 //===----------------------------------------------------------------------===//
518 
519 /// EmitConversionToBool - Convert the specified expression value to a
520 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
521 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
522   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
523 
524   if (SrcType->isRealFloatingType())
525     return EmitFloatToBoolConversion(Src);
526 
527   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
528     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
529 
530   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
531          "Unknown scalar type to convert");
532 
533   if (isa<llvm::IntegerType>(Src->getType()))
534     return EmitIntToBoolConversion(Src);
535 
536   assert(isa<llvm::PointerType>(Src->getType()));
537   return EmitPointerToBoolConversion(Src);
538 }
539 
540 /// EmitScalarConversion - Emit a conversion from the specified type to the
541 /// specified destination type, both of which are LLVM scalar types.
542 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
543                                                QualType DstType) {
544   SrcType = CGF.getContext().getCanonicalType(SrcType);
545   DstType = CGF.getContext().getCanonicalType(DstType);
546   if (SrcType == DstType) return Src;
547 
548   if (DstType->isVoidType()) return 0;
549 
550   llvm::Type *SrcTy = Src->getType();
551 
552   // Floating casts might be a bit special: if we're doing casts to / from half
553   // FP, we should go via special intrinsics.
554   if (SrcType->isHalfType()) {
555     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
556     SrcType = CGF.getContext().FloatTy;
557     SrcTy = CGF.FloatTy;
558   }
559 
560   // Handle conversions to bool first, they are special: comparisons against 0.
561   if (DstType->isBooleanType())
562     return EmitConversionToBool(Src, SrcType);
563 
564   llvm::Type *DstTy = ConvertType(DstType);
565 
566   // Ignore conversions like int -> uint.
567   if (SrcTy == DstTy)
568     return Src;
569 
570   // Handle pointer conversions next: pointers can only be converted to/from
571   // other pointers and integers. Check for pointer types in terms of LLVM, as
572   // some native types (like Obj-C id) may map to a pointer type.
573   if (isa<llvm::PointerType>(DstTy)) {
574     // The source value may be an integer, or a pointer.
575     if (isa<llvm::PointerType>(SrcTy))
576       return Builder.CreateBitCast(Src, DstTy, "conv");
577 
578     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
579     // First, convert to the correct width so that we control the kind of
580     // extension.
581     llvm::Type *MiddleTy = CGF.IntPtrTy;
582     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
583     llvm::Value* IntResult =
584         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
585     // Then, cast to pointer.
586     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
587   }
588 
589   if (isa<llvm::PointerType>(SrcTy)) {
590     // Must be an ptr to int cast.
591     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
592     return Builder.CreatePtrToInt(Src, DstTy, "conv");
593   }
594 
595   // A scalar can be splatted to an extended vector of the same element type
596   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
597     // Cast the scalar to element type
598     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
599     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
600 
601     // Insert the element in element zero of an undef vector
602     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
603     llvm::Value *Idx = Builder.getInt32(0);
604     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
605 
606     // Splat the element across to all elements
607     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
608     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
609                                                           Builder.getInt32(0));
610     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
611     return Yay;
612   }
613 
614   // Allow bitcast from vector to integer/fp of the same size.
615   if (isa<llvm::VectorType>(SrcTy) ||
616       isa<llvm::VectorType>(DstTy))
617     return Builder.CreateBitCast(Src, DstTy, "conv");
618 
619   // Finally, we have the arithmetic types: real int/float.
620   Value *Res = NULL;
621   llvm::Type *ResTy = DstTy;
622 
623   // Cast to half via float
624   if (DstType->isHalfType())
625     DstTy = CGF.FloatTy;
626 
627   if (isa<llvm::IntegerType>(SrcTy)) {
628     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
629     if (isa<llvm::IntegerType>(DstTy))
630       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
631     else if (InputSigned)
632       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
633     else
634       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
635   } else if (isa<llvm::IntegerType>(DstTy)) {
636     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
637     if (DstType->isSignedIntegerOrEnumerationType())
638       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
639     else
640       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
641   } else {
642     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
643            "Unknown real conversion");
644     if (DstTy->getTypeID() < SrcTy->getTypeID())
645       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
646     else
647       Res = Builder.CreateFPExt(Src, DstTy, "conv");
648   }
649 
650   if (DstTy != ResTy) {
651     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
652     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
653   }
654 
655   return Res;
656 }
657 
658 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
659 /// type to the specified destination type, where the destination type is an
660 /// LLVM scalar type.
661 Value *ScalarExprEmitter::
662 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
663                               QualType SrcTy, QualType DstTy) {
664   // Get the source element type.
665   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
666 
667   // Handle conversions to bool first, they are special: comparisons against 0.
668   if (DstTy->isBooleanType()) {
669     //  Complex != 0  -> (Real != 0) | (Imag != 0)
670     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
671     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
672     return Builder.CreateOr(Src.first, Src.second, "tobool");
673   }
674 
675   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
676   // the imaginary part of the complex value is discarded and the value of the
677   // real part is converted according to the conversion rules for the
678   // corresponding real type.
679   return EmitScalarConversion(Src.first, SrcTy, DstTy);
680 }
681 
682 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
683   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
684     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
685 
686   return llvm::Constant::getNullValue(ConvertType(Ty));
687 }
688 
689 //===----------------------------------------------------------------------===//
690 //                            Visitor Methods
691 //===----------------------------------------------------------------------===//
692 
693 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
694   CGF.ErrorUnsupported(E, "scalar expression");
695   if (E->getType()->isVoidType())
696     return 0;
697   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
698 }
699 
700 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
701   // Vector Mask Case
702   if (E->getNumSubExprs() == 2 ||
703       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
704     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
705     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
706     Value *Mask;
707 
708     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
709     unsigned LHSElts = LTy->getNumElements();
710 
711     if (E->getNumSubExprs() == 3) {
712       Mask = CGF.EmitScalarExpr(E->getExpr(2));
713 
714       // Shuffle LHS & RHS into one input vector.
715       SmallVector<llvm::Constant*, 32> concat;
716       for (unsigned i = 0; i != LHSElts; ++i) {
717         concat.push_back(Builder.getInt32(2*i));
718         concat.push_back(Builder.getInt32(2*i+1));
719       }
720 
721       Value* CV = llvm::ConstantVector::get(concat);
722       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
723       LHSElts *= 2;
724     } else {
725       Mask = RHS;
726     }
727 
728     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
729     llvm::Constant* EltMask;
730 
731     // Treat vec3 like vec4.
732     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
733       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
734                                        (1 << llvm::Log2_32(LHSElts+2))-1);
735     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
736       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
737                                        (1 << llvm::Log2_32(LHSElts+1))-1);
738     else
739       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
740                                        (1 << llvm::Log2_32(LHSElts))-1);
741 
742     // Mask off the high bits of each shuffle index.
743     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
744                                                      EltMask);
745     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
746 
747     // newv = undef
748     // mask = mask & maskbits
749     // for each elt
750     //   n = extract mask i
751     //   x = extract val n
752     //   newv = insert newv, x, i
753     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
754                                                         MTy->getNumElements());
755     Value* NewV = llvm::UndefValue::get(RTy);
756     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
757       Value *IIndx = Builder.getInt32(i);
758       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
759       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
760 
761       // Handle vec3 special since the index will be off by one for the RHS.
762       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
763         Value *cmpIndx, *newIndx;
764         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
765                                         "cmp_shuf_idx");
766         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
767         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
768       }
769       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
770       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
771     }
772     return NewV;
773   }
774 
775   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
776   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
777 
778   // Handle vec3 special since the index will be off by one for the RHS.
779   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
780   SmallVector<llvm::Constant*, 32> indices;
781   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
782     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
783     if (VTy->getNumElements() == 3 && Idx > 3)
784       Idx -= 1;
785     indices.push_back(Builder.getInt32(Idx));
786   }
787 
788   Value *SV = llvm::ConstantVector::get(indices);
789   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
790 }
791 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
792   llvm::APSInt Value;
793   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
794     if (E->isArrow())
795       CGF.EmitScalarExpr(E->getBase());
796     else
797       EmitLValue(E->getBase());
798     return Builder.getInt(Value);
799   }
800 
801   // Emit debug info for aggregate now, if it was delayed to reduce
802   // debug info size.
803   CGDebugInfo *DI = CGF.getDebugInfo();
804   if (DI &&
805       CGF.CGM.getCodeGenOpts().DebugInfo == CodeGenOptions::LimitedDebugInfo) {
806     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
807     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
808       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
809         DI->getOrCreateRecordType(PTy->getPointeeType(),
810                                   M->getParent()->getLocation());
811   }
812   return EmitLoadOfLValue(E);
813 }
814 
815 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
816   TestAndClearIgnoreResultAssign();
817 
818   // Emit subscript expressions in rvalue context's.  For most cases, this just
819   // loads the lvalue formed by the subscript expr.  However, we have to be
820   // careful, because the base of a vector subscript is occasionally an rvalue,
821   // so we can't get it as an lvalue.
822   if (!E->getBase()->getType()->isVectorType())
823     return EmitLoadOfLValue(E);
824 
825   // Handle the vector case.  The base must be a vector, the index must be an
826   // integer value.
827   Value *Base = Visit(E->getBase());
828   Value *Idx  = Visit(E->getIdx());
829   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
830   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
831   return Builder.CreateExtractElement(Base, Idx, "vecext");
832 }
833 
834 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
835                                   unsigned Off, llvm::Type *I32Ty) {
836   int MV = SVI->getMaskValue(Idx);
837   if (MV == -1)
838     return llvm::UndefValue::get(I32Ty);
839   return llvm::ConstantInt::get(I32Ty, Off+MV);
840 }
841 
842 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
843   bool Ignore = TestAndClearIgnoreResultAssign();
844   (void)Ignore;
845   assert (Ignore == false && "init list ignored");
846   unsigned NumInitElements = E->getNumInits();
847 
848   if (E->hadArrayRangeDesignator())
849     CGF.ErrorUnsupported(E, "GNU array range designator extension");
850 
851   llvm::VectorType *VType =
852     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
853 
854   if (!VType) {
855     if (NumInitElements == 0) {
856       // C++11 value-initialization for the scalar.
857       return EmitNullValue(E->getType());
858     }
859     // We have a scalar in braces. Just use the first element.
860     return Visit(E->getInit(0));
861   }
862 
863   unsigned ResElts = VType->getNumElements();
864 
865   // Loop over initializers collecting the Value for each, and remembering
866   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
867   // us to fold the shuffle for the swizzle into the shuffle for the vector
868   // initializer, since LLVM optimizers generally do not want to touch
869   // shuffles.
870   unsigned CurIdx = 0;
871   bool VIsUndefShuffle = false;
872   llvm::Value *V = llvm::UndefValue::get(VType);
873   for (unsigned i = 0; i != NumInitElements; ++i) {
874     Expr *IE = E->getInit(i);
875     Value *Init = Visit(IE);
876     SmallVector<llvm::Constant*, 16> Args;
877 
878     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
879 
880     // Handle scalar elements.  If the scalar initializer is actually one
881     // element of a different vector of the same width, use shuffle instead of
882     // extract+insert.
883     if (!VVT) {
884       if (isa<ExtVectorElementExpr>(IE)) {
885         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
886 
887         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
888           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
889           Value *LHS = 0, *RHS = 0;
890           if (CurIdx == 0) {
891             // insert into undef -> shuffle (src, undef)
892             Args.push_back(C);
893             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
894 
895             LHS = EI->getVectorOperand();
896             RHS = V;
897             VIsUndefShuffle = true;
898           } else if (VIsUndefShuffle) {
899             // insert into undefshuffle && size match -> shuffle (v, src)
900             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
901             for (unsigned j = 0; j != CurIdx; ++j)
902               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
903             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
904             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
905 
906             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
907             RHS = EI->getVectorOperand();
908             VIsUndefShuffle = false;
909           }
910           if (!Args.empty()) {
911             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
912             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
913             ++CurIdx;
914             continue;
915           }
916         }
917       }
918       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
919                                       "vecinit");
920       VIsUndefShuffle = false;
921       ++CurIdx;
922       continue;
923     }
924 
925     unsigned InitElts = VVT->getNumElements();
926 
927     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
928     // input is the same width as the vector being constructed, generate an
929     // optimized shuffle of the swizzle input into the result.
930     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
931     if (isa<ExtVectorElementExpr>(IE)) {
932       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
933       Value *SVOp = SVI->getOperand(0);
934       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
935 
936       if (OpTy->getNumElements() == ResElts) {
937         for (unsigned j = 0; j != CurIdx; ++j) {
938           // If the current vector initializer is a shuffle with undef, merge
939           // this shuffle directly into it.
940           if (VIsUndefShuffle) {
941             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
942                                       CGF.Int32Ty));
943           } else {
944             Args.push_back(Builder.getInt32(j));
945           }
946         }
947         for (unsigned j = 0, je = InitElts; j != je; ++j)
948           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
949         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
950 
951         if (VIsUndefShuffle)
952           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
953 
954         Init = SVOp;
955       }
956     }
957 
958     // Extend init to result vector length, and then shuffle its contribution
959     // to the vector initializer into V.
960     if (Args.empty()) {
961       for (unsigned j = 0; j != InitElts; ++j)
962         Args.push_back(Builder.getInt32(j));
963       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
964       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
965       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
966                                          Mask, "vext");
967 
968       Args.clear();
969       for (unsigned j = 0; j != CurIdx; ++j)
970         Args.push_back(Builder.getInt32(j));
971       for (unsigned j = 0; j != InitElts; ++j)
972         Args.push_back(Builder.getInt32(j+Offset));
973       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
974     }
975 
976     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
977     // merging subsequent shuffles into this one.
978     if (CurIdx == 0)
979       std::swap(V, Init);
980     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
981     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
982     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
983     CurIdx += InitElts;
984   }
985 
986   // FIXME: evaluate codegen vs. shuffling against constant null vector.
987   // Emit remaining default initializers.
988   llvm::Type *EltTy = VType->getElementType();
989 
990   // Emit remaining default initializers
991   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
992     Value *Idx = Builder.getInt32(CurIdx);
993     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
994     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
995   }
996   return V;
997 }
998 
999 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1000   const Expr *E = CE->getSubExpr();
1001 
1002   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1003     return false;
1004 
1005   if (isa<CXXThisExpr>(E)) {
1006     // We always assume that 'this' is never null.
1007     return false;
1008   }
1009 
1010   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1011     // And that glvalue casts are never null.
1012     if (ICE->getValueKind() != VK_RValue)
1013       return false;
1014   }
1015 
1016   return true;
1017 }
1018 
1019 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1020 // have to handle a more broad range of conversions than explicit casts, as they
1021 // handle things like function to ptr-to-function decay etc.
1022 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1023   Expr *E = CE->getSubExpr();
1024   QualType DestTy = CE->getType();
1025   CastKind Kind = CE->getCastKind();
1026 
1027   if (!DestTy->isVoidType())
1028     TestAndClearIgnoreResultAssign();
1029 
1030   // Since almost all cast kinds apply to scalars, this switch doesn't have
1031   // a default case, so the compiler will warn on a missing case.  The cases
1032   // are in the same order as in the CastKind enum.
1033   switch (Kind) {
1034   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1035 
1036   case CK_LValueBitCast:
1037   case CK_ObjCObjectLValueCast: {
1038     Value *V = EmitLValue(E).getAddress();
1039     V = Builder.CreateBitCast(V,
1040                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1041     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1042   }
1043 
1044   case CK_CPointerToObjCPointerCast:
1045   case CK_BlockPointerToObjCPointerCast:
1046   case CK_AnyPointerToBlockPointerCast:
1047   case CK_BitCast: {
1048     Value *Src = Visit(const_cast<Expr*>(E));
1049     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1050   }
1051   case CK_AtomicToNonAtomic:
1052   case CK_NonAtomicToAtomic:
1053   case CK_NoOp:
1054   case CK_UserDefinedConversion:
1055     return Visit(const_cast<Expr*>(E));
1056 
1057   case CK_BaseToDerived: {
1058     const CXXRecordDecl *DerivedClassDecl =
1059       DestTy->getCXXRecordDeclForPointerType();
1060 
1061     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1062                                         CE->path_begin(), CE->path_end(),
1063                                         ShouldNullCheckClassCastValue(CE));
1064   }
1065   case CK_UncheckedDerivedToBase:
1066   case CK_DerivedToBase: {
1067     const RecordType *DerivedClassTy =
1068       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1069     CXXRecordDecl *DerivedClassDecl =
1070       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1071 
1072     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1073                                      CE->path_begin(), CE->path_end(),
1074                                      ShouldNullCheckClassCastValue(CE));
1075   }
1076   case CK_Dynamic: {
1077     Value *V = Visit(const_cast<Expr*>(E));
1078     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1079     return CGF.EmitDynamicCast(V, DCE);
1080   }
1081 
1082   case CK_ArrayToPointerDecay: {
1083     assert(E->getType()->isArrayType() &&
1084            "Array to pointer decay must have array source type!");
1085 
1086     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1087 
1088     // Note that VLA pointers are always decayed, so we don't need to do
1089     // anything here.
1090     if (!E->getType()->isVariableArrayType()) {
1091       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1092       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1093                                  ->getElementType()) &&
1094              "Expected pointer to array");
1095       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1096     }
1097 
1098     // Make sure the array decay ends up being the right type.  This matters if
1099     // the array type was of an incomplete type.
1100     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1101   }
1102   case CK_FunctionToPointerDecay:
1103     return EmitLValue(E).getAddress();
1104 
1105   case CK_NullToPointer:
1106     if (MustVisitNullValue(E))
1107       (void) Visit(E);
1108 
1109     return llvm::ConstantPointerNull::get(
1110                                cast<llvm::PointerType>(ConvertType(DestTy)));
1111 
1112   case CK_NullToMemberPointer: {
1113     if (MustVisitNullValue(E))
1114       (void) Visit(E);
1115 
1116     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1117     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1118   }
1119 
1120   case CK_ReinterpretMemberPointer:
1121   case CK_BaseToDerivedMemberPointer:
1122   case CK_DerivedToBaseMemberPointer: {
1123     Value *Src = Visit(E);
1124 
1125     // Note that the AST doesn't distinguish between checked and
1126     // unchecked member pointer conversions, so we always have to
1127     // implement checked conversions here.  This is inefficient when
1128     // actual control flow may be required in order to perform the
1129     // check, which it is for data member pointers (but not member
1130     // function pointers on Itanium and ARM).
1131     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1132   }
1133 
1134   case CK_ARCProduceObject:
1135     return CGF.EmitARCRetainScalarExpr(E);
1136   case CK_ARCConsumeObject:
1137     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1138   case CK_ARCReclaimReturnedObject: {
1139     llvm::Value *value = Visit(E);
1140     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1141     return CGF.EmitObjCConsumeObject(E->getType(), value);
1142   }
1143   case CK_ARCExtendBlockObject:
1144     return CGF.EmitARCExtendBlockObject(E);
1145 
1146   case CK_CopyAndAutoreleaseBlockObject:
1147     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1148 
1149   case CK_FloatingRealToComplex:
1150   case CK_FloatingComplexCast:
1151   case CK_IntegralRealToComplex:
1152   case CK_IntegralComplexCast:
1153   case CK_IntegralComplexToFloatingComplex:
1154   case CK_FloatingComplexToIntegralComplex:
1155   case CK_ConstructorConversion:
1156   case CK_ToUnion:
1157     llvm_unreachable("scalar cast to non-scalar value");
1158 
1159   case CK_LValueToRValue:
1160     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1161     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1162     return Visit(const_cast<Expr*>(E));
1163 
1164   case CK_IntegralToPointer: {
1165     Value *Src = Visit(const_cast<Expr*>(E));
1166 
1167     // First, convert to the correct width so that we control the kind of
1168     // extension.
1169     llvm::Type *MiddleTy = CGF.IntPtrTy;
1170     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1171     llvm::Value* IntResult =
1172       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1173 
1174     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1175   }
1176   case CK_PointerToIntegral:
1177     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1178     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1179 
1180   case CK_ToVoid: {
1181     CGF.EmitIgnoredExpr(E);
1182     return 0;
1183   }
1184   case CK_VectorSplat: {
1185     llvm::Type *DstTy = ConvertType(DestTy);
1186     Value *Elt = Visit(const_cast<Expr*>(E));
1187     Elt = EmitScalarConversion(Elt, E->getType(),
1188                                DestTy->getAs<VectorType>()->getElementType());
1189 
1190     // Insert the element in element zero of an undef vector
1191     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1192     llvm::Value *Idx = Builder.getInt32(0);
1193     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1194 
1195     // Splat the element across to all elements
1196     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1197     llvm::Constant *Zero = Builder.getInt32(0);
1198     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
1199     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1200     return Yay;
1201   }
1202 
1203   case CK_IntegralCast:
1204   case CK_IntegralToFloating:
1205   case CK_FloatingToIntegral:
1206   case CK_FloatingCast:
1207     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1208   case CK_IntegralToBoolean:
1209     return EmitIntToBoolConversion(Visit(E));
1210   case CK_PointerToBoolean:
1211     return EmitPointerToBoolConversion(Visit(E));
1212   case CK_FloatingToBoolean:
1213     return EmitFloatToBoolConversion(Visit(E));
1214   case CK_MemberPointerToBoolean: {
1215     llvm::Value *MemPtr = Visit(E);
1216     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1217     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1218   }
1219 
1220   case CK_FloatingComplexToReal:
1221   case CK_IntegralComplexToReal:
1222     return CGF.EmitComplexExpr(E, false, true).first;
1223 
1224   case CK_FloatingComplexToBoolean:
1225   case CK_IntegralComplexToBoolean: {
1226     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1227 
1228     // TODO: kill this function off, inline appropriate case here
1229     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1230   }
1231 
1232   }
1233 
1234   llvm_unreachable("unknown scalar cast");
1235 }
1236 
1237 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1238   CodeGenFunction::StmtExprEvaluation eval(CGF);
1239   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1240     .getScalarVal();
1241 }
1242 
1243 //===----------------------------------------------------------------------===//
1244 //                             Unary Operators
1245 //===----------------------------------------------------------------------===//
1246 
1247 llvm::Value *ScalarExprEmitter::
1248 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1249                                 llvm::Value *InVal,
1250                                 llvm::Value *NextVal, bool IsInc) {
1251   switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
1252   case LangOptions::SOB_Undefined:
1253     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1254   case LangOptions::SOB_Defined:
1255     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1256   case LangOptions::SOB_Trapping:
1257     BinOpInfo BinOp;
1258     BinOp.LHS = InVal;
1259     BinOp.RHS = NextVal;
1260     BinOp.Ty = E->getType();
1261     BinOp.Opcode = BO_Add;
1262     BinOp.E = E;
1263     return EmitOverflowCheckedBinOp(BinOp);
1264   }
1265   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1266 }
1267 
1268 llvm::Value *
1269 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1270                                            bool isInc, bool isPre) {
1271 
1272   QualType type = E->getSubExpr()->getType();
1273   llvm::Value *value = EmitLoadOfLValue(LV);
1274   llvm::Value *input = value;
1275   llvm::PHINode *atomicPHI = 0;
1276 
1277   int amount = (isInc ? 1 : -1);
1278 
1279   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1280     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1281     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1282     Builder.CreateBr(opBB);
1283     Builder.SetInsertPoint(opBB);
1284     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1285     atomicPHI->addIncoming(value, startBB);
1286     type = atomicTy->getValueType();
1287     value = atomicPHI;
1288   }
1289 
1290   // Special case of integer increment that we have to check first: bool++.
1291   // Due to promotion rules, we get:
1292   //   bool++ -> bool = bool + 1
1293   //          -> bool = (int)bool + 1
1294   //          -> bool = ((int)bool + 1 != 0)
1295   // An interesting aspect of this is that increment is always true.
1296   // Decrement does not have this property.
1297   if (isInc && type->isBooleanType()) {
1298     value = Builder.getTrue();
1299 
1300   // Most common case by far: integer increment.
1301   } else if (type->isIntegerType()) {
1302 
1303     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1304 
1305     // Note that signed integer inc/dec with width less than int can't
1306     // overflow because of promotion rules; we're just eliding a few steps here.
1307     if (type->isSignedIntegerOrEnumerationType() &&
1308         value->getType()->getPrimitiveSizeInBits() >=
1309             CGF.IntTy->getBitWidth())
1310       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1311     else
1312       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1313 
1314   // Next most common: pointer increment.
1315   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1316     QualType type = ptr->getPointeeType();
1317 
1318     // VLA types don't have constant size.
1319     if (const VariableArrayType *vla
1320           = CGF.getContext().getAsVariableArrayType(type)) {
1321       llvm::Value *numElts = CGF.getVLASize(vla).first;
1322       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1323       if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1324         value = Builder.CreateGEP(value, numElts, "vla.inc");
1325       else
1326         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1327 
1328     // Arithmetic on function pointers (!) is just +-1.
1329     } else if (type->isFunctionType()) {
1330       llvm::Value *amt = Builder.getInt32(amount);
1331 
1332       value = CGF.EmitCastToVoidPtr(value);
1333       if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1334         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1335       else
1336         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1337       value = Builder.CreateBitCast(value, input->getType());
1338 
1339     // For everything else, we can just do a simple increment.
1340     } else {
1341       llvm::Value *amt = Builder.getInt32(amount);
1342       if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1343         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1344       else
1345         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1346     }
1347 
1348   // Vector increment/decrement.
1349   } else if (type->isVectorType()) {
1350     if (type->hasIntegerRepresentation()) {
1351       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1352 
1353       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1354     } else {
1355       value = Builder.CreateFAdd(
1356                   value,
1357                   llvm::ConstantFP::get(value->getType(), amount),
1358                   isInc ? "inc" : "dec");
1359     }
1360 
1361   // Floating point.
1362   } else if (type->isRealFloatingType()) {
1363     // Add the inc/dec to the real part.
1364     llvm::Value *amt;
1365 
1366     if (type->isHalfType()) {
1367       // Another special case: half FP increment should be done via float
1368       value =
1369     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1370                        input);
1371     }
1372 
1373     if (value->getType()->isFloatTy())
1374       amt = llvm::ConstantFP::get(VMContext,
1375                                   llvm::APFloat(static_cast<float>(amount)));
1376     else if (value->getType()->isDoubleTy())
1377       amt = llvm::ConstantFP::get(VMContext,
1378                                   llvm::APFloat(static_cast<double>(amount)));
1379     else {
1380       llvm::APFloat F(static_cast<float>(amount));
1381       bool ignored;
1382       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1383                 &ignored);
1384       amt = llvm::ConstantFP::get(VMContext, F);
1385     }
1386     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1387 
1388     if (type->isHalfType())
1389       value =
1390        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1391                           value);
1392 
1393   // Objective-C pointer types.
1394   } else {
1395     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1396     value = CGF.EmitCastToVoidPtr(value);
1397 
1398     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1399     if (!isInc) size = -size;
1400     llvm::Value *sizeValue =
1401       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1402 
1403     if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1404       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1405     else
1406       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1407     value = Builder.CreateBitCast(value, input->getType());
1408   }
1409 
1410   if (atomicPHI) {
1411     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1412     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1413     llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1414         value, llvm::SequentiallyConsistent);
1415     atomicPHI->addIncoming(old, opBB);
1416     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1417     Builder.CreateCondBr(success, contBB, opBB);
1418     Builder.SetInsertPoint(contBB);
1419     return isPre ? value : input;
1420   }
1421 
1422   // Store the updated result through the lvalue.
1423   if (LV.isBitField())
1424     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1425   else
1426     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1427 
1428   // If this is a postinc, return the value read from memory, otherwise use the
1429   // updated value.
1430   return isPre ? value : input;
1431 }
1432 
1433 
1434 
1435 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1436   TestAndClearIgnoreResultAssign();
1437   // Emit unary minus with EmitSub so we handle overflow cases etc.
1438   BinOpInfo BinOp;
1439   BinOp.RHS = Visit(E->getSubExpr());
1440 
1441   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1442     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1443   else
1444     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1445   BinOp.Ty = E->getType();
1446   BinOp.Opcode = BO_Sub;
1447   BinOp.E = E;
1448   return EmitSub(BinOp);
1449 }
1450 
1451 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1452   TestAndClearIgnoreResultAssign();
1453   Value *Op = Visit(E->getSubExpr());
1454   return Builder.CreateNot(Op, "neg");
1455 }
1456 
1457 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1458 
1459   // Perform vector logical not on comparison with zero vector.
1460   if (E->getType()->isExtVectorType()) {
1461     Value *Oper = Visit(E->getSubExpr());
1462     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1463     Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1464     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1465   }
1466 
1467   // Compare operand to zero.
1468   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1469 
1470   // Invert value.
1471   // TODO: Could dynamically modify easy computations here.  For example, if
1472   // the operand is an icmp ne, turn into icmp eq.
1473   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1474 
1475   // ZExt result to the expr type.
1476   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1477 }
1478 
1479 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1480   // Try folding the offsetof to a constant.
1481   llvm::APSInt Value;
1482   if (E->EvaluateAsInt(Value, CGF.getContext()))
1483     return Builder.getInt(Value);
1484 
1485   // Loop over the components of the offsetof to compute the value.
1486   unsigned n = E->getNumComponents();
1487   llvm::Type* ResultType = ConvertType(E->getType());
1488   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1489   QualType CurrentType = E->getTypeSourceInfo()->getType();
1490   for (unsigned i = 0; i != n; ++i) {
1491     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1492     llvm::Value *Offset = 0;
1493     switch (ON.getKind()) {
1494     case OffsetOfExpr::OffsetOfNode::Array: {
1495       // Compute the index
1496       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1497       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1498       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1499       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1500 
1501       // Save the element type
1502       CurrentType =
1503           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1504 
1505       // Compute the element size
1506       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1507           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1508 
1509       // Multiply out to compute the result
1510       Offset = Builder.CreateMul(Idx, ElemSize);
1511       break;
1512     }
1513 
1514     case OffsetOfExpr::OffsetOfNode::Field: {
1515       FieldDecl *MemberDecl = ON.getField();
1516       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1517       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1518 
1519       // Compute the index of the field in its parent.
1520       unsigned i = 0;
1521       // FIXME: It would be nice if we didn't have to loop here!
1522       for (RecordDecl::field_iterator Field = RD->field_begin(),
1523                                       FieldEnd = RD->field_end();
1524            Field != FieldEnd; ++Field, ++i) {
1525         if (&*Field == MemberDecl)
1526           break;
1527       }
1528       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1529 
1530       // Compute the offset to the field
1531       int64_t OffsetInt = RL.getFieldOffset(i) /
1532                           CGF.getContext().getCharWidth();
1533       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1534 
1535       // Save the element type.
1536       CurrentType = MemberDecl->getType();
1537       break;
1538     }
1539 
1540     case OffsetOfExpr::OffsetOfNode::Identifier:
1541       llvm_unreachable("dependent __builtin_offsetof");
1542 
1543     case OffsetOfExpr::OffsetOfNode::Base: {
1544       if (ON.getBase()->isVirtual()) {
1545         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1546         continue;
1547       }
1548 
1549       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1550       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1551 
1552       // Save the element type.
1553       CurrentType = ON.getBase()->getType();
1554 
1555       // Compute the offset to the base.
1556       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1557       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1558       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1559                           CGF.getContext().getCharWidth();
1560       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1561       break;
1562     }
1563     }
1564     Result = Builder.CreateAdd(Result, Offset);
1565   }
1566   return Result;
1567 }
1568 
1569 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1570 /// argument of the sizeof expression as an integer.
1571 Value *
1572 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1573                               const UnaryExprOrTypeTraitExpr *E) {
1574   QualType TypeToSize = E->getTypeOfArgument();
1575   if (E->getKind() == UETT_SizeOf) {
1576     if (const VariableArrayType *VAT =
1577           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1578       if (E->isArgumentType()) {
1579         // sizeof(type) - make sure to emit the VLA size.
1580         CGF.EmitVariablyModifiedType(TypeToSize);
1581       } else {
1582         // C99 6.5.3.4p2: If the argument is an expression of type
1583         // VLA, it is evaluated.
1584         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1585       }
1586 
1587       QualType eltType;
1588       llvm::Value *numElts;
1589       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1590 
1591       llvm::Value *size = numElts;
1592 
1593       // Scale the number of non-VLA elements by the non-VLA element size.
1594       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1595       if (!eltSize.isOne())
1596         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1597 
1598       return size;
1599     }
1600   }
1601 
1602   // If this isn't sizeof(vla), the result must be constant; use the constant
1603   // folding logic so we don't have to duplicate it here.
1604   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1605 }
1606 
1607 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1608   Expr *Op = E->getSubExpr();
1609   if (Op->getType()->isAnyComplexType()) {
1610     // If it's an l-value, load through the appropriate subobject l-value.
1611     // Note that we have to ask E because Op might be an l-value that
1612     // this won't work for, e.g. an Obj-C property.
1613     if (E->isGLValue())
1614       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1615 
1616     // Otherwise, calculate and project.
1617     return CGF.EmitComplexExpr(Op, false, true).first;
1618   }
1619 
1620   return Visit(Op);
1621 }
1622 
1623 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1624   Expr *Op = E->getSubExpr();
1625   if (Op->getType()->isAnyComplexType()) {
1626     // If it's an l-value, load through the appropriate subobject l-value.
1627     // Note that we have to ask E because Op might be an l-value that
1628     // this won't work for, e.g. an Obj-C property.
1629     if (Op->isGLValue())
1630       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1631 
1632     // Otherwise, calculate and project.
1633     return CGF.EmitComplexExpr(Op, true, false).second;
1634   }
1635 
1636   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1637   // effects are evaluated, but not the actual value.
1638   if (Op->isGLValue())
1639     CGF.EmitLValue(Op);
1640   else
1641     CGF.EmitScalarExpr(Op, true);
1642   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1643 }
1644 
1645 //===----------------------------------------------------------------------===//
1646 //                           Binary Operators
1647 //===----------------------------------------------------------------------===//
1648 
1649 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1650   TestAndClearIgnoreResultAssign();
1651   BinOpInfo Result;
1652   Result.LHS = Visit(E->getLHS());
1653   Result.RHS = Visit(E->getRHS());
1654   Result.Ty  = E->getType();
1655   Result.Opcode = E->getOpcode();
1656   Result.E = E;
1657   return Result;
1658 }
1659 
1660 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1661                                               const CompoundAssignOperator *E,
1662                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1663                                                    Value *&Result) {
1664   QualType LHSTy = E->getLHS()->getType();
1665   BinOpInfo OpInfo;
1666 
1667   if (E->getComputationResultType()->isAnyComplexType()) {
1668     // This needs to go through the complex expression emitter, but it's a tad
1669     // complicated to do that... I'm leaving it out for now.  (Note that we do
1670     // actually need the imaginary part of the RHS for multiplication and
1671     // division.)
1672     CGF.ErrorUnsupported(E, "complex compound assignment");
1673     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1674     return LValue();
1675   }
1676 
1677   // Emit the RHS first.  __block variables need to have the rhs evaluated
1678   // first, plus this should improve codegen a little.
1679   OpInfo.RHS = Visit(E->getRHS());
1680   OpInfo.Ty = E->getComputationResultType();
1681   OpInfo.Opcode = E->getOpcode();
1682   OpInfo.E = E;
1683   // Load/convert the LHS.
1684   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1685   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1686   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1687                                     E->getComputationLHSType());
1688 
1689   llvm::PHINode *atomicPHI = 0;
1690   if (const AtomicType *atomicTy = OpInfo.Ty->getAs<AtomicType>()) {
1691     // FIXME: For floating point types, we should be saving and restoring the
1692     // floating point environment in the loop.
1693     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1694     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1695     Builder.CreateBr(opBB);
1696     Builder.SetInsertPoint(opBB);
1697     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1698     atomicPHI->addIncoming(OpInfo.LHS, startBB);
1699     OpInfo.Ty = atomicTy->getValueType();
1700     OpInfo.LHS = atomicPHI;
1701   }
1702 
1703   // Expand the binary operator.
1704   Result = (this->*Func)(OpInfo);
1705 
1706   // Convert the result back to the LHS type.
1707   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1708 
1709   if (atomicPHI) {
1710     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1711     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1712     llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1713         Result, llvm::SequentiallyConsistent);
1714     atomicPHI->addIncoming(old, opBB);
1715     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1716     Builder.CreateCondBr(success, contBB, opBB);
1717     Builder.SetInsertPoint(contBB);
1718     return LHSLV;
1719   }
1720 
1721   // Store the result value into the LHS lvalue. Bit-fields are handled
1722   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1723   // 'An assignment expression has the value of the left operand after the
1724   // assignment...'.
1725   if (LHSLV.isBitField())
1726     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1727   else
1728     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1729 
1730   return LHSLV;
1731 }
1732 
1733 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1734                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1735   bool Ignore = TestAndClearIgnoreResultAssign();
1736   Value *RHS;
1737   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1738 
1739   // If the result is clearly ignored, return now.
1740   if (Ignore)
1741     return 0;
1742 
1743   // The result of an assignment in C is the assigned r-value.
1744   if (!CGF.getContext().getLangOpts().CPlusPlus)
1745     return RHS;
1746 
1747   // If the lvalue is non-volatile, return the computed value of the assignment.
1748   if (!LHS.isVolatileQualified())
1749     return RHS;
1750 
1751   // Otherwise, reload the value.
1752   return EmitLoadOfLValue(LHS);
1753 }
1754 
1755 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1756      					    const BinOpInfo &Ops,
1757 				     	    llvm::Value *Zero, bool isDiv) {
1758   llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1759   llvm::BasicBlock *contBB =
1760     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1761                          llvm::next(insertPt));
1762   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1763 
1764   llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1765 
1766   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1767     llvm::Value *IntMin =
1768       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1769     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1770 
1771     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1772     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1773     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1774     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1775     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1776                          overflowBB, contBB);
1777   } else {
1778     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1779                              overflowBB, contBB);
1780   }
1781   EmitOverflowBB(overflowBB);
1782   Builder.SetInsertPoint(contBB);
1783 }
1784 
1785 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1786   if (isTrapvOverflowBehavior()) {
1787     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1788 
1789     if (Ops.Ty->isIntegerType())
1790       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1791     else if (Ops.Ty->isRealFloatingType()) {
1792       llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1793       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1794                                                        llvm::next(insertPt));
1795       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1796                                                           CGF.CurFn);
1797       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1798                                overflowBB, DivCont);
1799       EmitOverflowBB(overflowBB);
1800       Builder.SetInsertPoint(DivCont);
1801     }
1802   }
1803   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1804     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1805     if (CGF.getContext().getLangOpts().OpenCL) {
1806       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1807       llvm::Type *ValTy = Val->getType();
1808       if (ValTy->isFloatTy() ||
1809           (isa<llvm::VectorType>(ValTy) &&
1810            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1811         CGF.SetFPAccuracy(Val, 2.5);
1812     }
1813     return Val;
1814   }
1815   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1816     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1817   else
1818     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1819 }
1820 
1821 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1822   // Rem in C can't be a floating point type: C99 6.5.5p2.
1823   if (isTrapvOverflowBehavior()) {
1824     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1825 
1826     if (Ops.Ty->isIntegerType())
1827       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1828   }
1829 
1830   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1831     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1832   else
1833     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1834 }
1835 
1836 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1837   unsigned IID;
1838   unsigned OpID = 0;
1839 
1840   switch (Ops.Opcode) {
1841   case BO_Add:
1842   case BO_AddAssign:
1843     OpID = 1;
1844     IID = llvm::Intrinsic::sadd_with_overflow;
1845     break;
1846   case BO_Sub:
1847   case BO_SubAssign:
1848     OpID = 2;
1849     IID = llvm::Intrinsic::ssub_with_overflow;
1850     break;
1851   case BO_Mul:
1852   case BO_MulAssign:
1853     OpID = 3;
1854     IID = llvm::Intrinsic::smul_with_overflow;
1855     break;
1856   default:
1857     llvm_unreachable("Unsupported operation for overflow detection");
1858   }
1859   OpID <<= 1;
1860   OpID |= 1;
1861 
1862   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1863 
1864   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1865 
1866   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1867   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1868   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1869 
1870   // Branch in case of overflow.
1871   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1872   llvm::Function::iterator insertPt = initialBB;
1873   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1874                                                       llvm::next(insertPt));
1875   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1876 
1877   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1878 
1879   // Handle overflow with llvm.trap.
1880   const std::string *handlerName =
1881     &CGF.getContext().getLangOpts().OverflowHandler;
1882   if (handlerName->empty()) {
1883     EmitOverflowBB(overflowBB);
1884     Builder.SetInsertPoint(continueBB);
1885     return result;
1886   }
1887 
1888   // If an overflow handler is set, then we want to call it and then use its
1889   // result, if it returns.
1890   Builder.SetInsertPoint(overflowBB);
1891 
1892   // Get the overflow handler.
1893   llvm::Type *Int8Ty = CGF.Int8Ty;
1894   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1895   llvm::FunctionType *handlerTy =
1896       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1897   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1898 
1899   // Sign extend the args to 64-bit, so that we can use the same handler for
1900   // all types of overflow.
1901   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1902   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1903 
1904   // Call the handler with the two arguments, the operation, and the size of
1905   // the result.
1906   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1907       Builder.getInt8(OpID),
1908       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1909 
1910   // Truncate the result back to the desired size.
1911   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1912   Builder.CreateBr(continueBB);
1913 
1914   Builder.SetInsertPoint(continueBB);
1915   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1916   phi->addIncoming(result, initialBB);
1917   phi->addIncoming(handlerResult, overflowBB);
1918 
1919   return phi;
1920 }
1921 
1922 /// Emit pointer + index arithmetic.
1923 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1924                                     const BinOpInfo &op,
1925                                     bool isSubtraction) {
1926   // Must have binary (not unary) expr here.  Unary pointer
1927   // increment/decrement doesn't use this path.
1928   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1929 
1930   Value *pointer = op.LHS;
1931   Expr *pointerOperand = expr->getLHS();
1932   Value *index = op.RHS;
1933   Expr *indexOperand = expr->getRHS();
1934 
1935   // In a subtraction, the LHS is always the pointer.
1936   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1937     std::swap(pointer, index);
1938     std::swap(pointerOperand, indexOperand);
1939   }
1940 
1941   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1942   if (width != CGF.PointerWidthInBits) {
1943     // Zero-extend or sign-extend the pointer value according to
1944     // whether the index is signed or not.
1945     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1946     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1947                                       "idx.ext");
1948   }
1949 
1950   // If this is subtraction, negate the index.
1951   if (isSubtraction)
1952     index = CGF.Builder.CreateNeg(index, "idx.neg");
1953 
1954   const PointerType *pointerType
1955     = pointerOperand->getType()->getAs<PointerType>();
1956   if (!pointerType) {
1957     QualType objectType = pointerOperand->getType()
1958                                         ->castAs<ObjCObjectPointerType>()
1959                                         ->getPointeeType();
1960     llvm::Value *objectSize
1961       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1962 
1963     index = CGF.Builder.CreateMul(index, objectSize);
1964 
1965     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1966     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1967     return CGF.Builder.CreateBitCast(result, pointer->getType());
1968   }
1969 
1970   QualType elementType = pointerType->getPointeeType();
1971   if (const VariableArrayType *vla
1972         = CGF.getContext().getAsVariableArrayType(elementType)) {
1973     // The element count here is the total number of non-VLA elements.
1974     llvm::Value *numElements = CGF.getVLASize(vla).first;
1975 
1976     // Effectively, the multiply by the VLA size is part of the GEP.
1977     // GEP indexes are signed, and scaling an index isn't permitted to
1978     // signed-overflow, so we use the same semantics for our explicit
1979     // multiply.  We suppress this if overflow is not undefined behavior.
1980     if (CGF.getLangOpts().isSignedOverflowDefined()) {
1981       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1982       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1983     } else {
1984       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1985       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1986     }
1987     return pointer;
1988   }
1989 
1990   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1991   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1992   // future proof.
1993   if (elementType->isVoidType() || elementType->isFunctionType()) {
1994     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1995     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1996     return CGF.Builder.CreateBitCast(result, pointer->getType());
1997   }
1998 
1999   if (CGF.getLangOpts().isSignedOverflowDefined())
2000     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2001 
2002   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2003 }
2004 
2005 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2006   if (op.LHS->getType()->isPointerTy() ||
2007       op.RHS->getType()->isPointerTy())
2008     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2009 
2010   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2011     switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
2012     case LangOptions::SOB_Undefined:
2013       return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2014     case LangOptions::SOB_Defined:
2015       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2016     case LangOptions::SOB_Trapping:
2017       return EmitOverflowCheckedBinOp(op);
2018     }
2019   }
2020 
2021   if (op.LHS->getType()->isFPOrFPVectorTy())
2022     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2023 
2024   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2025 }
2026 
2027 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2028   // The LHS is always a pointer if either side is.
2029   if (!op.LHS->getType()->isPointerTy()) {
2030     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2031       switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
2032       case LangOptions::SOB_Undefined:
2033         return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2034       case LangOptions::SOB_Defined:
2035         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2036       case LangOptions::SOB_Trapping:
2037         return EmitOverflowCheckedBinOp(op);
2038       }
2039     }
2040 
2041     if (op.LHS->getType()->isFPOrFPVectorTy())
2042       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2043 
2044     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2045   }
2046 
2047   // If the RHS is not a pointer, then we have normal pointer
2048   // arithmetic.
2049   if (!op.RHS->getType()->isPointerTy())
2050     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2051 
2052   // Otherwise, this is a pointer subtraction.
2053 
2054   // Do the raw subtraction part.
2055   llvm::Value *LHS
2056     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2057   llvm::Value *RHS
2058     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2059   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2060 
2061   // Okay, figure out the element size.
2062   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2063   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2064 
2065   llvm::Value *divisor = 0;
2066 
2067   // For a variable-length array, this is going to be non-constant.
2068   if (const VariableArrayType *vla
2069         = CGF.getContext().getAsVariableArrayType(elementType)) {
2070     llvm::Value *numElements;
2071     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2072 
2073     divisor = numElements;
2074 
2075     // Scale the number of non-VLA elements by the non-VLA element size.
2076     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2077     if (!eltSize.isOne())
2078       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2079 
2080   // For everything elese, we can just compute it, safe in the
2081   // assumption that Sema won't let anything through that we can't
2082   // safely compute the size of.
2083   } else {
2084     CharUnits elementSize;
2085     // Handle GCC extension for pointer arithmetic on void* and
2086     // function pointer types.
2087     if (elementType->isVoidType() || elementType->isFunctionType())
2088       elementSize = CharUnits::One();
2089     else
2090       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2091 
2092     // Don't even emit the divide for element size of 1.
2093     if (elementSize.isOne())
2094       return diffInChars;
2095 
2096     divisor = CGF.CGM.getSize(elementSize);
2097   }
2098 
2099   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2100   // pointer difference in C is only defined in the case where both operands
2101   // are pointing to elements of an array.
2102   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2103 }
2104 
2105 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2106   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2107   // RHS to the same size as the LHS.
2108   Value *RHS = Ops.RHS;
2109   if (Ops.LHS->getType() != RHS->getType())
2110     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2111 
2112   if (CGF.CatchUndefined
2113       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2114     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2115     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2116     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2117                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2118                              Cont, CGF.getTrapBB());
2119     CGF.EmitBlock(Cont);
2120   }
2121 
2122   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2123 }
2124 
2125 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2126   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2127   // RHS to the same size as the LHS.
2128   Value *RHS = Ops.RHS;
2129   if (Ops.LHS->getType() != RHS->getType())
2130     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2131 
2132   if (CGF.CatchUndefined
2133       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2134     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2135     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2136     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2137                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2138                              Cont, CGF.getTrapBB());
2139     CGF.EmitBlock(Cont);
2140   }
2141 
2142   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2143     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2144   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2145 }
2146 
2147 enum IntrinsicType { VCMPEQ, VCMPGT };
2148 // return corresponding comparison intrinsic for given vector type
2149 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2150                                         BuiltinType::Kind ElemKind) {
2151   switch (ElemKind) {
2152   default: llvm_unreachable("unexpected element type");
2153   case BuiltinType::Char_U:
2154   case BuiltinType::UChar:
2155     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2156                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2157   case BuiltinType::Char_S:
2158   case BuiltinType::SChar:
2159     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2160                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2161   case BuiltinType::UShort:
2162     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2163                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2164   case BuiltinType::Short:
2165     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2166                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2167   case BuiltinType::UInt:
2168   case BuiltinType::ULong:
2169     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2170                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2171   case BuiltinType::Int:
2172   case BuiltinType::Long:
2173     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2174                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2175   case BuiltinType::Float:
2176     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2177                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2178   }
2179 }
2180 
2181 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2182                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2183   TestAndClearIgnoreResultAssign();
2184   Value *Result;
2185   QualType LHSTy = E->getLHS()->getType();
2186   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2187     assert(E->getOpcode() == BO_EQ ||
2188            E->getOpcode() == BO_NE);
2189     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2190     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2191     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2192                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2193   } else if (!LHSTy->isAnyComplexType()) {
2194     Value *LHS = Visit(E->getLHS());
2195     Value *RHS = Visit(E->getRHS());
2196 
2197     // If AltiVec, the comparison results in a numeric type, so we use
2198     // intrinsics comparing vectors and giving 0 or 1 as a result
2199     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2200       // constants for mapping CR6 register bits to predicate result
2201       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2202 
2203       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2204 
2205       // in several cases vector arguments order will be reversed
2206       Value *FirstVecArg = LHS,
2207             *SecondVecArg = RHS;
2208 
2209       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2210       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2211       BuiltinType::Kind ElementKind = BTy->getKind();
2212 
2213       switch(E->getOpcode()) {
2214       default: llvm_unreachable("is not a comparison operation");
2215       case BO_EQ:
2216         CR6 = CR6_LT;
2217         ID = GetIntrinsic(VCMPEQ, ElementKind);
2218         break;
2219       case BO_NE:
2220         CR6 = CR6_EQ;
2221         ID = GetIntrinsic(VCMPEQ, ElementKind);
2222         break;
2223       case BO_LT:
2224         CR6 = CR6_LT;
2225         ID = GetIntrinsic(VCMPGT, ElementKind);
2226         std::swap(FirstVecArg, SecondVecArg);
2227         break;
2228       case BO_GT:
2229         CR6 = CR6_LT;
2230         ID = GetIntrinsic(VCMPGT, ElementKind);
2231         break;
2232       case BO_LE:
2233         if (ElementKind == BuiltinType::Float) {
2234           CR6 = CR6_LT;
2235           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2236           std::swap(FirstVecArg, SecondVecArg);
2237         }
2238         else {
2239           CR6 = CR6_EQ;
2240           ID = GetIntrinsic(VCMPGT, ElementKind);
2241         }
2242         break;
2243       case BO_GE:
2244         if (ElementKind == BuiltinType::Float) {
2245           CR6 = CR6_LT;
2246           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2247         }
2248         else {
2249           CR6 = CR6_EQ;
2250           ID = GetIntrinsic(VCMPGT, ElementKind);
2251           std::swap(FirstVecArg, SecondVecArg);
2252         }
2253         break;
2254       }
2255 
2256       Value *CR6Param = Builder.getInt32(CR6);
2257       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2258       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2259       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2260     }
2261 
2262     if (LHS->getType()->isFPOrFPVectorTy()) {
2263       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2264                                   LHS, RHS, "cmp");
2265     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2266       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2267                                   LHS, RHS, "cmp");
2268     } else {
2269       // Unsigned integers and pointers.
2270       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2271                                   LHS, RHS, "cmp");
2272     }
2273 
2274     // If this is a vector comparison, sign extend the result to the appropriate
2275     // vector integer type and return it (don't convert to bool).
2276     if (LHSTy->isVectorType())
2277       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2278 
2279   } else {
2280     // Complex Comparison: can only be an equality comparison.
2281     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2282     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2283 
2284     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2285 
2286     Value *ResultR, *ResultI;
2287     if (CETy->isRealFloatingType()) {
2288       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2289                                    LHS.first, RHS.first, "cmp.r");
2290       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2291                                    LHS.second, RHS.second, "cmp.i");
2292     } else {
2293       // Complex comparisons can only be equality comparisons.  As such, signed
2294       // and unsigned opcodes are the same.
2295       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2296                                    LHS.first, RHS.first, "cmp.r");
2297       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2298                                    LHS.second, RHS.second, "cmp.i");
2299     }
2300 
2301     if (E->getOpcode() == BO_EQ) {
2302       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2303     } else {
2304       assert(E->getOpcode() == BO_NE &&
2305              "Complex comparison other than == or != ?");
2306       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2307     }
2308   }
2309 
2310   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2311 }
2312 
2313 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2314   bool Ignore = TestAndClearIgnoreResultAssign();
2315 
2316   Value *RHS;
2317   LValue LHS;
2318 
2319   switch (E->getLHS()->getType().getObjCLifetime()) {
2320   case Qualifiers::OCL_Strong:
2321     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2322     break;
2323 
2324   case Qualifiers::OCL_Autoreleasing:
2325     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2326     break;
2327 
2328   case Qualifiers::OCL_Weak:
2329     RHS = Visit(E->getRHS());
2330     LHS = EmitCheckedLValue(E->getLHS());
2331     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2332     break;
2333 
2334   // No reason to do any of these differently.
2335   case Qualifiers::OCL_None:
2336   case Qualifiers::OCL_ExplicitNone:
2337     // __block variables need to have the rhs evaluated first, plus
2338     // this should improve codegen just a little.
2339     RHS = Visit(E->getRHS());
2340     LHS = EmitCheckedLValue(E->getLHS());
2341 
2342     // Store the value into the LHS.  Bit-fields are handled specially
2343     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2344     // 'An assignment expression has the value of the left operand after
2345     // the assignment...'.
2346     if (LHS.isBitField())
2347       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2348     else
2349       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2350   }
2351 
2352   // If the result is clearly ignored, return now.
2353   if (Ignore)
2354     return 0;
2355 
2356   // The result of an assignment in C is the assigned r-value.
2357   if (!CGF.getContext().getLangOpts().CPlusPlus)
2358     return RHS;
2359 
2360   // If the lvalue is non-volatile, return the computed value of the assignment.
2361   if (!LHS.isVolatileQualified())
2362     return RHS;
2363 
2364   // Otherwise, reload the value.
2365   return EmitLoadOfLValue(LHS);
2366 }
2367 
2368 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2369 
2370   // Perform vector logical and on comparisons with zero vectors.
2371   if (E->getType()->isVectorType()) {
2372     Value *LHS = Visit(E->getLHS());
2373     Value *RHS = Visit(E->getRHS());
2374     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2375     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2376     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2377     Value *And = Builder.CreateAnd(LHS, RHS);
2378     return Builder.CreateSExt(And, Zero->getType(), "sext");
2379   }
2380 
2381   llvm::Type *ResTy = ConvertType(E->getType());
2382 
2383   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2384   // If we have 1 && X, just emit X without inserting the control flow.
2385   bool LHSCondVal;
2386   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2387     if (LHSCondVal) { // If we have 1 && X, just emit X.
2388       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2389       // ZExt result to int or bool.
2390       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2391     }
2392 
2393     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2394     if (!CGF.ContainsLabel(E->getRHS()))
2395       return llvm::Constant::getNullValue(ResTy);
2396   }
2397 
2398   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2399   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2400 
2401   CodeGenFunction::ConditionalEvaluation eval(CGF);
2402 
2403   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2404   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2405 
2406   // Any edges into the ContBlock are now from an (indeterminate number of)
2407   // edges from this first condition.  All of these values will be false.  Start
2408   // setting up the PHI node in the Cont Block for this.
2409   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2410                                             "", ContBlock);
2411   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2412        PI != PE; ++PI)
2413     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2414 
2415   eval.begin(CGF);
2416   CGF.EmitBlock(RHSBlock);
2417   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2418   eval.end(CGF);
2419 
2420   // Reaquire the RHS block, as there may be subblocks inserted.
2421   RHSBlock = Builder.GetInsertBlock();
2422 
2423   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2424   // into the phi node for the edge with the value of RHSCond.
2425   if (CGF.getDebugInfo())
2426     // There is no need to emit line number for unconditional branch.
2427     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2428   CGF.EmitBlock(ContBlock);
2429   PN->addIncoming(RHSCond, RHSBlock);
2430 
2431   // ZExt result to int.
2432   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2433 }
2434 
2435 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2436 
2437   // Perform vector logical or on comparisons with zero vectors.
2438   if (E->getType()->isVectorType()) {
2439     Value *LHS = Visit(E->getLHS());
2440     Value *RHS = Visit(E->getRHS());
2441     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2442     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2443     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2444     Value *Or = Builder.CreateOr(LHS, RHS);
2445     return Builder.CreateSExt(Or, Zero->getType(), "sext");
2446   }
2447 
2448   llvm::Type *ResTy = ConvertType(E->getType());
2449 
2450   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2451   // If we have 0 || X, just emit X without inserting the control flow.
2452   bool LHSCondVal;
2453   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2454     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2455       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2456       // ZExt result to int or bool.
2457       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2458     }
2459 
2460     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2461     if (!CGF.ContainsLabel(E->getRHS()))
2462       return llvm::ConstantInt::get(ResTy, 1);
2463   }
2464 
2465   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2466   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2467 
2468   CodeGenFunction::ConditionalEvaluation eval(CGF);
2469 
2470   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2471   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2472 
2473   // Any edges into the ContBlock are now from an (indeterminate number of)
2474   // edges from this first condition.  All of these values will be true.  Start
2475   // setting up the PHI node in the Cont Block for this.
2476   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2477                                             "", ContBlock);
2478   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2479        PI != PE; ++PI)
2480     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2481 
2482   eval.begin(CGF);
2483 
2484   // Emit the RHS condition as a bool value.
2485   CGF.EmitBlock(RHSBlock);
2486   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2487 
2488   eval.end(CGF);
2489 
2490   // Reaquire the RHS block, as there may be subblocks inserted.
2491   RHSBlock = Builder.GetInsertBlock();
2492 
2493   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2494   // into the phi node for the edge with the value of RHSCond.
2495   CGF.EmitBlock(ContBlock);
2496   PN->addIncoming(RHSCond, RHSBlock);
2497 
2498   // ZExt result to int.
2499   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2500 }
2501 
2502 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2503   CGF.EmitIgnoredExpr(E->getLHS());
2504   CGF.EnsureInsertPoint();
2505   return Visit(E->getRHS());
2506 }
2507 
2508 //===----------------------------------------------------------------------===//
2509 //                             Other Operators
2510 //===----------------------------------------------------------------------===//
2511 
2512 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2513 /// expression is cheap enough and side-effect-free enough to evaluate
2514 /// unconditionally instead of conditionally.  This is used to convert control
2515 /// flow into selects in some cases.
2516 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2517                                                    CodeGenFunction &CGF) {
2518   E = E->IgnoreParens();
2519 
2520   // Anything that is an integer or floating point constant is fine.
2521   if (E->isConstantInitializer(CGF.getContext(), false))
2522     return true;
2523 
2524   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2525   // X and Y are local variables.
2526   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2527     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2528       if (VD->hasLocalStorage() && !(CGF.getContext()
2529                                      .getCanonicalType(VD->getType())
2530                                      .isVolatileQualified()))
2531         return true;
2532 
2533   return false;
2534 }
2535 
2536 
2537 Value *ScalarExprEmitter::
2538 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2539   TestAndClearIgnoreResultAssign();
2540 
2541   // Bind the common expression if necessary.
2542   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2543 
2544   Expr *condExpr = E->getCond();
2545   Expr *lhsExpr = E->getTrueExpr();
2546   Expr *rhsExpr = E->getFalseExpr();
2547 
2548   // If the condition constant folds and can be elided, try to avoid emitting
2549   // the condition and the dead arm.
2550   bool CondExprBool;
2551   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2552     Expr *live = lhsExpr, *dead = rhsExpr;
2553     if (!CondExprBool) std::swap(live, dead);
2554 
2555     // If the dead side doesn't have labels we need, just emit the Live part.
2556     if (!CGF.ContainsLabel(dead)) {
2557       Value *Result = Visit(live);
2558 
2559       // If the live part is a throw expression, it acts like it has a void
2560       // type, so evaluating it returns a null Value*.  However, a conditional
2561       // with non-void type must return a non-null Value*.
2562       if (!Result && !E->getType()->isVoidType())
2563         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2564 
2565       return Result;
2566     }
2567   }
2568 
2569   // OpenCL: If the condition is a vector, we can treat this condition like
2570   // the select function.
2571   if (CGF.getContext().getLangOpts().OpenCL
2572       && condExpr->getType()->isVectorType()) {
2573     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2574     llvm::Value *LHS = Visit(lhsExpr);
2575     llvm::Value *RHS = Visit(rhsExpr);
2576 
2577     llvm::Type *condType = ConvertType(condExpr->getType());
2578     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2579 
2580     unsigned numElem = vecTy->getNumElements();
2581     llvm::Type *elemType = vecTy->getElementType();
2582 
2583     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
2584     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2585     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2586                                           llvm::VectorType::get(elemType,
2587                                                                 numElem),
2588                                           "sext");
2589     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2590 
2591     // Cast float to int to perform ANDs if necessary.
2592     llvm::Value *RHSTmp = RHS;
2593     llvm::Value *LHSTmp = LHS;
2594     bool wasCast = false;
2595     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2596     if (rhsVTy->getElementType()->isFloatingPointTy()) {
2597       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2598       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2599       wasCast = true;
2600     }
2601 
2602     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2603     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2604     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2605     if (wasCast)
2606       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2607 
2608     return tmp5;
2609   }
2610 
2611   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2612   // select instead of as control flow.  We can only do this if it is cheap and
2613   // safe to evaluate the LHS and RHS unconditionally.
2614   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2615       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2616     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2617     llvm::Value *LHS = Visit(lhsExpr);
2618     llvm::Value *RHS = Visit(rhsExpr);
2619     if (!LHS) {
2620       // If the conditional has void type, make sure we return a null Value*.
2621       assert(!RHS && "LHS and RHS types must match");
2622       return 0;
2623     }
2624     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2625   }
2626 
2627   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2628   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2629   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2630 
2631   CodeGenFunction::ConditionalEvaluation eval(CGF);
2632   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2633 
2634   CGF.EmitBlock(LHSBlock);
2635   eval.begin(CGF);
2636   Value *LHS = Visit(lhsExpr);
2637   eval.end(CGF);
2638 
2639   LHSBlock = Builder.GetInsertBlock();
2640   Builder.CreateBr(ContBlock);
2641 
2642   CGF.EmitBlock(RHSBlock);
2643   eval.begin(CGF);
2644   Value *RHS = Visit(rhsExpr);
2645   eval.end(CGF);
2646 
2647   RHSBlock = Builder.GetInsertBlock();
2648   CGF.EmitBlock(ContBlock);
2649 
2650   // If the LHS or RHS is a throw expression, it will be legitimately null.
2651   if (!LHS)
2652     return RHS;
2653   if (!RHS)
2654     return LHS;
2655 
2656   // Create a PHI node for the real part.
2657   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2658   PN->addIncoming(LHS, LHSBlock);
2659   PN->addIncoming(RHS, RHSBlock);
2660   return PN;
2661 }
2662 
2663 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2664   return Visit(E->getChosenSubExpr(CGF.getContext()));
2665 }
2666 
2667 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2668   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2669   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2670 
2671   // If EmitVAArg fails, we fall back to the LLVM instruction.
2672   if (!ArgPtr)
2673     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2674 
2675   // FIXME Volatility.
2676   return Builder.CreateLoad(ArgPtr);
2677 }
2678 
2679 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2680   return CGF.EmitBlockLiteral(block);
2681 }
2682 
2683 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2684   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2685   llvm::Type *DstTy = ConvertType(E->getType());
2686 
2687   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2688   // a shuffle vector instead of a bitcast.
2689   llvm::Type *SrcTy = Src->getType();
2690   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2691     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2692     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2693     if ((numElementsDst == 3 && numElementsSrc == 4)
2694         || (numElementsDst == 4 && numElementsSrc == 3)) {
2695 
2696 
2697       // In the case of going from int4->float3, a bitcast is needed before
2698       // doing a shuffle.
2699       llvm::Type *srcElemTy =
2700       cast<llvm::VectorType>(SrcTy)->getElementType();
2701       llvm::Type *dstElemTy =
2702       cast<llvm::VectorType>(DstTy)->getElementType();
2703 
2704       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2705           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2706         // Create a float type of the same size as the source or destination.
2707         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2708                                                                  numElementsSrc);
2709 
2710         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2711       }
2712 
2713       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2714 
2715       SmallVector<llvm::Constant*, 3> Args;
2716       Args.push_back(Builder.getInt32(0));
2717       Args.push_back(Builder.getInt32(1));
2718       Args.push_back(Builder.getInt32(2));
2719 
2720       if (numElementsDst == 4)
2721         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
2722 
2723       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2724 
2725       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2726     }
2727   }
2728 
2729   return Builder.CreateBitCast(Src, DstTy, "astype");
2730 }
2731 
2732 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2733   return CGF.EmitAtomicExpr(E).getScalarVal();
2734 }
2735 
2736 //===----------------------------------------------------------------------===//
2737 //                         Entry Point into this File
2738 //===----------------------------------------------------------------------===//
2739 
2740 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2741 /// type, ignoring the result.
2742 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2743   assert(E && !hasAggregateLLVMType(E->getType()) &&
2744          "Invalid scalar expression to emit");
2745 
2746   if (isa<CXXDefaultArgExpr>(E))
2747     disableDebugInfo();
2748   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2749     .Visit(const_cast<Expr*>(E));
2750   if (isa<CXXDefaultArgExpr>(E))
2751     enableDebugInfo();
2752   return V;
2753 }
2754 
2755 /// EmitScalarConversion - Emit a conversion from the specified type to the
2756 /// specified destination type, both of which are LLVM scalar types.
2757 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2758                                              QualType DstTy) {
2759   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2760          "Invalid scalar expression to emit");
2761   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2762 }
2763 
2764 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2765 /// type to the specified destination type, where the destination type is an
2766 /// LLVM scalar type.
2767 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2768                                                       QualType SrcTy,
2769                                                       QualType DstTy) {
2770   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2771          "Invalid complex -> scalar conversion");
2772   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2773                                                                 DstTy);
2774 }
2775 
2776 
2777 llvm::Value *CodeGenFunction::
2778 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2779                         bool isInc, bool isPre) {
2780   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2781 }
2782 
2783 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2784   llvm::Value *V;
2785   // object->isa or (*object).isa
2786   // Generate code as for: *(Class*)object
2787   // build Class* type
2788   llvm::Type *ClassPtrTy = ConvertType(E->getType());
2789 
2790   Expr *BaseExpr = E->getBase();
2791   if (BaseExpr->isRValue()) {
2792     V = CreateMemTemp(E->getType(), "resval");
2793     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2794     Builder.CreateStore(Src, V);
2795     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2796       MakeNaturalAlignAddrLValue(V, E->getType()));
2797   } else {
2798     if (E->isArrow())
2799       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2800     else
2801       V = EmitLValue(BaseExpr).getAddress();
2802   }
2803 
2804   // build Class* type
2805   ClassPtrTy = ClassPtrTy->getPointerTo();
2806   V = Builder.CreateBitCast(V, ClassPtrTy);
2807   return MakeNaturalAlignAddrLValue(V, E->getType());
2808 }
2809 
2810 
2811 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2812                                             const CompoundAssignOperator *E) {
2813   ScalarExprEmitter Scalar(*this);
2814   Value *Result = 0;
2815   switch (E->getOpcode()) {
2816 #define COMPOUND_OP(Op)                                                       \
2817     case BO_##Op##Assign:                                                     \
2818       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2819                                              Result)
2820   COMPOUND_OP(Mul);
2821   COMPOUND_OP(Div);
2822   COMPOUND_OP(Rem);
2823   COMPOUND_OP(Add);
2824   COMPOUND_OP(Sub);
2825   COMPOUND_OP(Shl);
2826   COMPOUND_OP(Shr);
2827   COMPOUND_OP(And);
2828   COMPOUND_OP(Xor);
2829   COMPOUND_OP(Or);
2830 #undef COMPOUND_OP
2831 
2832   case BO_PtrMemD:
2833   case BO_PtrMemI:
2834   case BO_Mul:
2835   case BO_Div:
2836   case BO_Rem:
2837   case BO_Add:
2838   case BO_Sub:
2839   case BO_Shl:
2840   case BO_Shr:
2841   case BO_LT:
2842   case BO_GT:
2843   case BO_LE:
2844   case BO_GE:
2845   case BO_EQ:
2846   case BO_NE:
2847   case BO_And:
2848   case BO_Xor:
2849   case BO_Or:
2850   case BO_LAnd:
2851   case BO_LOr:
2852   case BO_Assign:
2853   case BO_Comma:
2854     llvm_unreachable("Not valid compound assignment operators");
2855   }
2856 
2857   llvm_unreachable("Unhandled compound assignment operator");
2858 }
2859