1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Module.h" 33 #include <cstdarg> 34 35 using namespace clang; 36 using namespace CodeGen; 37 using llvm::Value; 38 39 //===----------------------------------------------------------------------===// 40 // Scalar Expression Emitter 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 struct BinOpInfo { 45 Value *LHS; 46 Value *RHS; 47 QualType Ty; // Computation Type. 48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 49 bool FPContractable; 50 const Expr *E; // Entire expr, for error unsupported. May not be binop. 51 }; 52 53 static bool MustVisitNullValue(const Expr *E) { 54 // If a null pointer expression's type is the C++0x nullptr_t, then 55 // it's not necessarily a simple constant and it must be evaluated 56 // for its potential side effects. 57 return E->getType()->isNullPtrType(); 58 } 59 60 class ScalarExprEmitter 61 : public StmtVisitor<ScalarExprEmitter, Value*> { 62 CodeGenFunction &CGF; 63 CGBuilderTy &Builder; 64 bool IgnoreResultAssign; 65 llvm::LLVMContext &VMContext; 66 public: 67 68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 70 VMContext(cgf.getLLVMContext()) { 71 } 72 73 //===--------------------------------------------------------------------===// 74 // Utilities 75 //===--------------------------------------------------------------------===// 76 77 bool TestAndClearIgnoreResultAssign() { 78 bool I = IgnoreResultAssign; 79 IgnoreResultAssign = false; 80 return I; 81 } 82 83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 86 return CGF.EmitCheckedLValue(E, TCK); 87 } 88 89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 90 const BinOpInfo &Info); 91 92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 94 } 95 96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 97 const AlignValueAttr *AVAttr = nullptr; 98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 99 const ValueDecl *VD = DRE->getDecl(); 100 101 if (VD->getType()->isReferenceType()) { 102 if (const auto *TTy = 103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 105 } else { 106 // Assumptions for function parameters are emitted at the start of the 107 // function, so there is no need to repeat that here. 108 if (isa<ParmVarDecl>(VD)) 109 return; 110 111 AVAttr = VD->getAttr<AlignValueAttr>(); 112 } 113 } 114 115 if (!AVAttr) 116 if (const auto *TTy = 117 dyn_cast<TypedefType>(E->getType())) 118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 119 120 if (!AVAttr) 121 return; 122 123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 126 } 127 128 /// EmitLoadOfLValue - Given an expression with complex type that represents a 129 /// value l-value, this method emits the address of the l-value, then loads 130 /// and returns the result. 131 Value *EmitLoadOfLValue(const Expr *E) { 132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 133 E->getExprLoc()); 134 135 EmitLValueAlignmentAssumption(E, V); 136 return V; 137 } 138 139 /// EmitConversionToBool - Convert the specified expression value to a 140 /// boolean (i1) truth value. This is equivalent to "Val != 0". 141 Value *EmitConversionToBool(Value *Src, QualType DstTy); 142 143 /// Emit a check that a conversion to or from a floating-point type does not 144 /// overflow. 145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 146 Value *Src, QualType SrcType, QualType DstType, 147 llvm::Type *DstTy, SourceLocation Loc); 148 149 /// Emit a conversion from the specified type to the specified destination 150 /// type, both of which are LLVM scalar types. 151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 152 SourceLocation Loc); 153 154 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 155 SourceLocation Loc, bool TreatBooleanAsSigned); 156 157 /// Emit a conversion from the specified complex type to the specified 158 /// destination type, where the destination type is an LLVM scalar type. 159 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 160 QualType SrcTy, QualType DstTy, 161 SourceLocation Loc); 162 163 /// EmitNullValue - Emit a value that corresponds to null for the given type. 164 Value *EmitNullValue(QualType Ty); 165 166 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 167 Value *EmitFloatToBoolConversion(Value *V) { 168 // Compare against 0.0 for fp scalars. 169 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 170 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 171 } 172 173 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 174 Value *EmitPointerToBoolConversion(Value *V) { 175 Value *Zero = llvm::ConstantPointerNull::get( 176 cast<llvm::PointerType>(V->getType())); 177 return Builder.CreateICmpNE(V, Zero, "tobool"); 178 } 179 180 Value *EmitIntToBoolConversion(Value *V) { 181 // Because of the type rules of C, we often end up computing a 182 // logical value, then zero extending it to int, then wanting it 183 // as a logical value again. Optimize this common case. 184 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 185 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 186 Value *Result = ZI->getOperand(0); 187 // If there aren't any more uses, zap the instruction to save space. 188 // Note that there can be more uses, for example if this 189 // is the result of an assignment. 190 if (ZI->use_empty()) 191 ZI->eraseFromParent(); 192 return Result; 193 } 194 } 195 196 return Builder.CreateIsNotNull(V, "tobool"); 197 } 198 199 //===--------------------------------------------------------------------===// 200 // Visitor Methods 201 //===--------------------------------------------------------------------===// 202 203 Value *Visit(Expr *E) { 204 ApplyDebugLocation DL(CGF, E); 205 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 206 } 207 208 Value *VisitStmt(Stmt *S) { 209 S->dump(CGF.getContext().getSourceManager()); 210 llvm_unreachable("Stmt can't have complex result type!"); 211 } 212 Value *VisitExpr(Expr *S); 213 214 Value *VisitParenExpr(ParenExpr *PE) { 215 return Visit(PE->getSubExpr()); 216 } 217 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 218 return Visit(E->getReplacement()); 219 } 220 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 221 return Visit(GE->getResultExpr()); 222 } 223 224 // Leaves. 225 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 226 return Builder.getInt(E->getValue()); 227 } 228 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 229 return llvm::ConstantFP::get(VMContext, E->getValue()); 230 } 231 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 232 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 233 } 234 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 235 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 236 } 237 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 238 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 239 } 240 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 241 return EmitNullValue(E->getType()); 242 } 243 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 244 return EmitNullValue(E->getType()); 245 } 246 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 247 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 248 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 249 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 250 return Builder.CreateBitCast(V, ConvertType(E->getType())); 251 } 252 253 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 254 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 255 } 256 257 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 258 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 259 } 260 261 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 262 if (E->isGLValue()) 263 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 264 265 // Otherwise, assume the mapping is the scalar directly. 266 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 267 } 268 269 // l-values. 270 Value *VisitDeclRefExpr(DeclRefExpr *E) { 271 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 272 if (result.isReference()) 273 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 274 E->getExprLoc()); 275 return result.getValue(); 276 } 277 return EmitLoadOfLValue(E); 278 } 279 280 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 281 return CGF.EmitObjCSelectorExpr(E); 282 } 283 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 284 return CGF.EmitObjCProtocolExpr(E); 285 } 286 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 287 return EmitLoadOfLValue(E); 288 } 289 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 290 if (E->getMethodDecl() && 291 E->getMethodDecl()->getReturnType()->isReferenceType()) 292 return EmitLoadOfLValue(E); 293 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 294 } 295 296 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 297 LValue LV = CGF.EmitObjCIsaExpr(E); 298 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 299 return V; 300 } 301 302 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 303 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 304 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 305 Value *VisitMemberExpr(MemberExpr *E); 306 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 307 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 308 return EmitLoadOfLValue(E); 309 } 310 311 Value *VisitInitListExpr(InitListExpr *E); 312 313 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 314 return EmitNullValue(E->getType()); 315 } 316 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 317 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 318 return VisitCastExpr(E); 319 } 320 Value *VisitCastExpr(CastExpr *E); 321 322 Value *VisitCallExpr(const CallExpr *E) { 323 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 324 return EmitLoadOfLValue(E); 325 326 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 327 328 EmitLValueAlignmentAssumption(E, V); 329 return V; 330 } 331 332 Value *VisitStmtExpr(const StmtExpr *E); 333 334 // Unary Operators. 335 Value *VisitUnaryPostDec(const UnaryOperator *E) { 336 LValue LV = EmitLValue(E->getSubExpr()); 337 return EmitScalarPrePostIncDec(E, LV, false, false); 338 } 339 Value *VisitUnaryPostInc(const UnaryOperator *E) { 340 LValue LV = EmitLValue(E->getSubExpr()); 341 return EmitScalarPrePostIncDec(E, LV, true, false); 342 } 343 Value *VisitUnaryPreDec(const UnaryOperator *E) { 344 LValue LV = EmitLValue(E->getSubExpr()); 345 return EmitScalarPrePostIncDec(E, LV, false, true); 346 } 347 Value *VisitUnaryPreInc(const UnaryOperator *E) { 348 LValue LV = EmitLValue(E->getSubExpr()); 349 return EmitScalarPrePostIncDec(E, LV, true, true); 350 } 351 352 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 353 llvm::Value *InVal, 354 bool IsInc); 355 356 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 357 bool isInc, bool isPre); 358 359 360 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 361 if (isa<MemberPointerType>(E->getType())) // never sugared 362 return CGF.CGM.getMemberPointerConstant(E); 363 364 return EmitLValue(E->getSubExpr()).getPointer(); 365 } 366 Value *VisitUnaryDeref(const UnaryOperator *E) { 367 if (E->getType()->isVoidType()) 368 return Visit(E->getSubExpr()); // the actual value should be unused 369 return EmitLoadOfLValue(E); 370 } 371 Value *VisitUnaryPlus(const UnaryOperator *E) { 372 // This differs from gcc, though, most likely due to a bug in gcc. 373 TestAndClearIgnoreResultAssign(); 374 return Visit(E->getSubExpr()); 375 } 376 Value *VisitUnaryMinus (const UnaryOperator *E); 377 Value *VisitUnaryNot (const UnaryOperator *E); 378 Value *VisitUnaryLNot (const UnaryOperator *E); 379 Value *VisitUnaryReal (const UnaryOperator *E); 380 Value *VisitUnaryImag (const UnaryOperator *E); 381 Value *VisitUnaryExtension(const UnaryOperator *E) { 382 return Visit(E->getSubExpr()); 383 } 384 385 // C++ 386 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 387 return EmitLoadOfLValue(E); 388 } 389 390 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 391 return Visit(DAE->getExpr()); 392 } 393 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 394 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 395 return Visit(DIE->getExpr()); 396 } 397 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 398 return CGF.LoadCXXThis(); 399 } 400 401 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 402 CGF.enterFullExpression(E); 403 CodeGenFunction::RunCleanupsScope Scope(CGF); 404 return Visit(E->getSubExpr()); 405 } 406 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 407 return CGF.EmitCXXNewExpr(E); 408 } 409 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 410 CGF.EmitCXXDeleteExpr(E); 411 return nullptr; 412 } 413 414 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 415 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 416 } 417 418 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 419 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 420 } 421 422 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 423 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 424 } 425 426 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 427 // C++ [expr.pseudo]p1: 428 // The result shall only be used as the operand for the function call 429 // operator (), and the result of such a call has type void. The only 430 // effect is the evaluation of the postfix-expression before the dot or 431 // arrow. 432 CGF.EmitScalarExpr(E->getBase()); 433 return nullptr; 434 } 435 436 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 437 return EmitNullValue(E->getType()); 438 } 439 440 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 441 CGF.EmitCXXThrowExpr(E); 442 return nullptr; 443 } 444 445 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 446 return Builder.getInt1(E->getValue()); 447 } 448 449 // Binary Operators. 450 Value *EmitMul(const BinOpInfo &Ops) { 451 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 452 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 453 case LangOptions::SOB_Defined: 454 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 455 case LangOptions::SOB_Undefined: 456 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 457 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 458 // Fall through. 459 case LangOptions::SOB_Trapping: 460 return EmitOverflowCheckedBinOp(Ops); 461 } 462 } 463 464 if (Ops.Ty->isUnsignedIntegerType() && 465 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 466 return EmitOverflowCheckedBinOp(Ops); 467 468 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 469 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 470 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 471 } 472 /// Create a binary op that checks for overflow. 473 /// Currently only supports +, - and *. 474 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 475 476 // Check for undefined division and modulus behaviors. 477 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 478 llvm::Value *Zero,bool isDiv); 479 // Common helper for getting how wide LHS of shift is. 480 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 481 Value *EmitDiv(const BinOpInfo &Ops); 482 Value *EmitRem(const BinOpInfo &Ops); 483 Value *EmitAdd(const BinOpInfo &Ops); 484 Value *EmitSub(const BinOpInfo &Ops); 485 Value *EmitShl(const BinOpInfo &Ops); 486 Value *EmitShr(const BinOpInfo &Ops); 487 Value *EmitAnd(const BinOpInfo &Ops) { 488 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 489 } 490 Value *EmitXor(const BinOpInfo &Ops) { 491 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 492 } 493 Value *EmitOr (const BinOpInfo &Ops) { 494 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 495 } 496 497 BinOpInfo EmitBinOps(const BinaryOperator *E); 498 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 499 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 500 Value *&Result); 501 502 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 503 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 504 505 // Binary operators and binary compound assignment operators. 506 #define HANDLEBINOP(OP) \ 507 Value *VisitBin ## OP(const BinaryOperator *E) { \ 508 return Emit ## OP(EmitBinOps(E)); \ 509 } \ 510 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 511 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 512 } 513 HANDLEBINOP(Mul) 514 HANDLEBINOP(Div) 515 HANDLEBINOP(Rem) 516 HANDLEBINOP(Add) 517 HANDLEBINOP(Sub) 518 HANDLEBINOP(Shl) 519 HANDLEBINOP(Shr) 520 HANDLEBINOP(And) 521 HANDLEBINOP(Xor) 522 HANDLEBINOP(Or) 523 #undef HANDLEBINOP 524 525 // Comparisons. 526 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 527 unsigned SICmpOpc, unsigned FCmpOpc); 528 #define VISITCOMP(CODE, UI, SI, FP) \ 529 Value *VisitBin##CODE(const BinaryOperator *E) { \ 530 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 531 llvm::FCmpInst::FP); } 532 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 533 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 534 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 535 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 536 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 537 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 538 #undef VISITCOMP 539 540 Value *VisitBinAssign (const BinaryOperator *E); 541 542 Value *VisitBinLAnd (const BinaryOperator *E); 543 Value *VisitBinLOr (const BinaryOperator *E); 544 Value *VisitBinComma (const BinaryOperator *E); 545 546 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 547 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 548 549 // Other Operators. 550 Value *VisitBlockExpr(const BlockExpr *BE); 551 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 552 Value *VisitChooseExpr(ChooseExpr *CE); 553 Value *VisitVAArgExpr(VAArgExpr *VE); 554 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 555 return CGF.EmitObjCStringLiteral(E); 556 } 557 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 558 return CGF.EmitObjCBoxedExpr(E); 559 } 560 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 561 return CGF.EmitObjCArrayLiteral(E); 562 } 563 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 564 return CGF.EmitObjCDictionaryLiteral(E); 565 } 566 Value *VisitAsTypeExpr(AsTypeExpr *CE); 567 Value *VisitAtomicExpr(AtomicExpr *AE); 568 }; 569 } // end anonymous namespace. 570 571 //===----------------------------------------------------------------------===// 572 // Utilities 573 //===----------------------------------------------------------------------===// 574 575 /// EmitConversionToBool - Convert the specified expression value to a 576 /// boolean (i1) truth value. This is equivalent to "Val != 0". 577 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 578 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 579 580 if (SrcType->isRealFloatingType()) 581 return EmitFloatToBoolConversion(Src); 582 583 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 584 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 585 586 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 587 "Unknown scalar type to convert"); 588 589 if (isa<llvm::IntegerType>(Src->getType())) 590 return EmitIntToBoolConversion(Src); 591 592 assert(isa<llvm::PointerType>(Src->getType())); 593 return EmitPointerToBoolConversion(Src); 594 } 595 596 void ScalarExprEmitter::EmitFloatConversionCheck( 597 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 598 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 599 CodeGenFunction::SanitizerScope SanScope(&CGF); 600 using llvm::APFloat; 601 using llvm::APSInt; 602 603 llvm::Type *SrcTy = Src->getType(); 604 605 llvm::Value *Check = nullptr; 606 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 607 // Integer to floating-point. This can fail for unsigned short -> __half 608 // or unsigned __int128 -> float. 609 assert(DstType->isFloatingType()); 610 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 611 612 APFloat LargestFloat = 613 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 614 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 615 616 bool IsExact; 617 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 618 &IsExact) != APFloat::opOK) 619 // The range of representable values of this floating point type includes 620 // all values of this integer type. Don't need an overflow check. 621 return; 622 623 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 624 if (SrcIsUnsigned) 625 Check = Builder.CreateICmpULE(Src, Max); 626 else { 627 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 628 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 629 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 630 Check = Builder.CreateAnd(GE, LE); 631 } 632 } else { 633 const llvm::fltSemantics &SrcSema = 634 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 635 if (isa<llvm::IntegerType>(DstTy)) { 636 // Floating-point to integer. This has undefined behavior if the source is 637 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 638 // to an integer). 639 unsigned Width = CGF.getContext().getIntWidth(DstType); 640 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 641 642 APSInt Min = APSInt::getMinValue(Width, Unsigned); 643 APFloat MinSrc(SrcSema, APFloat::uninitialized); 644 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 645 APFloat::opOverflow) 646 // Don't need an overflow check for lower bound. Just check for 647 // -Inf/NaN. 648 MinSrc = APFloat::getInf(SrcSema, true); 649 else 650 // Find the largest value which is too small to represent (before 651 // truncation toward zero). 652 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 653 654 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 655 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 656 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 657 APFloat::opOverflow) 658 // Don't need an overflow check for upper bound. Just check for 659 // +Inf/NaN. 660 MaxSrc = APFloat::getInf(SrcSema, false); 661 else 662 // Find the smallest value which is too large to represent (before 663 // truncation toward zero). 664 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 665 666 // If we're converting from __half, convert the range to float to match 667 // the type of src. 668 if (OrigSrcType->isHalfType()) { 669 const llvm::fltSemantics &Sema = 670 CGF.getContext().getFloatTypeSemantics(SrcType); 671 bool IsInexact; 672 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 673 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 674 } 675 676 llvm::Value *GE = 677 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 678 llvm::Value *LE = 679 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 680 Check = Builder.CreateAnd(GE, LE); 681 } else { 682 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 683 // 684 // Floating-point to floating-point. This has undefined behavior if the 685 // source is not in the range of representable values of the destination 686 // type. The C and C++ standards are spectacularly unclear here. We 687 // diagnose finite out-of-range conversions, but allow infinities and NaNs 688 // to convert to the corresponding value in the smaller type. 689 // 690 // C11 Annex F gives all such conversions defined behavior for IEC 60559 691 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 692 // does not. 693 694 // Converting from a lower rank to a higher rank can never have 695 // undefined behavior, since higher-rank types must have a superset 696 // of values of lower-rank types. 697 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 698 return; 699 700 assert(!OrigSrcType->isHalfType() && 701 "should not check conversion from __half, it has the lowest rank"); 702 703 const llvm::fltSemantics &DstSema = 704 CGF.getContext().getFloatTypeSemantics(DstType); 705 APFloat MinBad = APFloat::getLargest(DstSema, false); 706 APFloat MaxBad = APFloat::getInf(DstSema, false); 707 708 bool IsInexact; 709 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 710 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 711 712 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 713 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 714 llvm::Value *GE = 715 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 716 llvm::Value *LE = 717 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 718 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 719 } 720 } 721 722 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 723 CGF.EmitCheckTypeDescriptor(OrigSrcType), 724 CGF.EmitCheckTypeDescriptor(DstType)}; 725 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 726 "float_cast_overflow", StaticArgs, OrigSrc); 727 } 728 729 /// Emit a conversion from the specified type to the specified destination type, 730 /// both of which are LLVM scalar types. 731 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 732 QualType DstType, 733 SourceLocation Loc) { 734 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 735 } 736 737 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 738 QualType DstType, 739 SourceLocation Loc, 740 bool TreatBooleanAsSigned) { 741 SrcType = CGF.getContext().getCanonicalType(SrcType); 742 DstType = CGF.getContext().getCanonicalType(DstType); 743 if (SrcType == DstType) return Src; 744 745 if (DstType->isVoidType()) return nullptr; 746 747 llvm::Value *OrigSrc = Src; 748 QualType OrigSrcType = SrcType; 749 llvm::Type *SrcTy = Src->getType(); 750 751 // Handle conversions to bool first, they are special: comparisons against 0. 752 if (DstType->isBooleanType()) 753 return EmitConversionToBool(Src, SrcType); 754 755 llvm::Type *DstTy = ConvertType(DstType); 756 757 // Cast from half through float if half isn't a native type. 758 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 759 // Cast to FP using the intrinsic if the half type itself isn't supported. 760 if (DstTy->isFloatingPointTy()) { 761 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 762 return Builder.CreateCall( 763 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 764 Src); 765 } else { 766 // Cast to other types through float, using either the intrinsic or FPExt, 767 // depending on whether the half type itself is supported 768 // (as opposed to operations on half, available with NativeHalfType). 769 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 770 Src = Builder.CreateCall( 771 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 772 CGF.CGM.FloatTy), 773 Src); 774 } else { 775 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 776 } 777 SrcType = CGF.getContext().FloatTy; 778 SrcTy = CGF.FloatTy; 779 } 780 } 781 782 // Ignore conversions like int -> uint. 783 if (SrcTy == DstTy) 784 return Src; 785 786 // Handle pointer conversions next: pointers can only be converted to/from 787 // other pointers and integers. Check for pointer types in terms of LLVM, as 788 // some native types (like Obj-C id) may map to a pointer type. 789 if (isa<llvm::PointerType>(DstTy)) { 790 // The source value may be an integer, or a pointer. 791 if (isa<llvm::PointerType>(SrcTy)) 792 return Builder.CreateBitCast(Src, DstTy, "conv"); 793 794 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 795 // First, convert to the correct width so that we control the kind of 796 // extension. 797 llvm::Type *MiddleTy = CGF.IntPtrTy; 798 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 799 llvm::Value* IntResult = 800 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 801 // Then, cast to pointer. 802 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 803 } 804 805 if (isa<llvm::PointerType>(SrcTy)) { 806 // Must be an ptr to int cast. 807 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 808 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 809 } 810 811 // A scalar can be splatted to an extended vector of the same element type 812 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 813 // Cast the scalar to element type 814 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 815 llvm::Value *Elt = EmitScalarConversion( 816 Src, SrcType, EltTy, Loc, CGF.getContext().getLangOpts().OpenCL); 817 818 // Splat the element across to all elements 819 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 820 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 821 } 822 823 // Allow bitcast from vector to integer/fp of the same size. 824 if (isa<llvm::VectorType>(SrcTy) || 825 isa<llvm::VectorType>(DstTy)) 826 return Builder.CreateBitCast(Src, DstTy, "conv"); 827 828 // Finally, we have the arithmetic types: real int/float. 829 Value *Res = nullptr; 830 llvm::Type *ResTy = DstTy; 831 832 // An overflowing conversion has undefined behavior if either the source type 833 // or the destination type is a floating-point type. 834 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 835 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 836 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 837 Loc); 838 839 // Cast to half through float if half isn't a native type. 840 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 841 // Make sure we cast in a single step if from another FP type. 842 if (SrcTy->isFloatingPointTy()) { 843 // Use the intrinsic if the half type itself isn't supported 844 // (as opposed to operations on half, available with NativeHalfType). 845 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 846 return Builder.CreateCall( 847 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 848 // If the half type is supported, just use an fptrunc. 849 return Builder.CreateFPTrunc(Src, DstTy); 850 } 851 DstTy = CGF.FloatTy; 852 } 853 854 if (isa<llvm::IntegerType>(SrcTy)) { 855 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 856 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 857 InputSigned = true; 858 } 859 if (isa<llvm::IntegerType>(DstTy)) 860 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 861 else if (InputSigned) 862 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 863 else 864 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 865 } else if (isa<llvm::IntegerType>(DstTy)) { 866 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 867 if (DstType->isSignedIntegerOrEnumerationType()) 868 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 869 else 870 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 871 } else { 872 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 873 "Unknown real conversion"); 874 if (DstTy->getTypeID() < SrcTy->getTypeID()) 875 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 876 else 877 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 878 } 879 880 if (DstTy != ResTy) { 881 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 882 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 883 Res = Builder.CreateCall( 884 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 885 Res); 886 } else { 887 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 888 } 889 } 890 891 return Res; 892 } 893 894 /// Emit a conversion from the specified complex type to the specified 895 /// destination type, where the destination type is an LLVM scalar type. 896 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 897 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 898 SourceLocation Loc) { 899 // Get the source element type. 900 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 901 902 // Handle conversions to bool first, they are special: comparisons against 0. 903 if (DstTy->isBooleanType()) { 904 // Complex != 0 -> (Real != 0) | (Imag != 0) 905 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 906 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 907 return Builder.CreateOr(Src.first, Src.second, "tobool"); 908 } 909 910 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 911 // the imaginary part of the complex value is discarded and the value of the 912 // real part is converted according to the conversion rules for the 913 // corresponding real type. 914 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 915 } 916 917 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 918 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 919 } 920 921 /// \brief Emit a sanitization check for the given "binary" operation (which 922 /// might actually be a unary increment which has been lowered to a binary 923 /// operation). The check passes if all values in \p Checks (which are \c i1), 924 /// are \c true. 925 void ScalarExprEmitter::EmitBinOpCheck( 926 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 927 assert(CGF.IsSanitizerScope); 928 StringRef CheckName; 929 SmallVector<llvm::Constant *, 4> StaticData; 930 SmallVector<llvm::Value *, 2> DynamicData; 931 932 BinaryOperatorKind Opcode = Info.Opcode; 933 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 934 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 935 936 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 937 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 938 if (UO && UO->getOpcode() == UO_Minus) { 939 CheckName = "negate_overflow"; 940 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 941 DynamicData.push_back(Info.RHS); 942 } else { 943 if (BinaryOperator::isShiftOp(Opcode)) { 944 // Shift LHS negative or too large, or RHS out of bounds. 945 CheckName = "shift_out_of_bounds"; 946 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 947 StaticData.push_back( 948 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 949 StaticData.push_back( 950 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 951 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 952 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 953 CheckName = "divrem_overflow"; 954 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 955 } else { 956 // Arithmetic overflow (+, -, *). 957 switch (Opcode) { 958 case BO_Add: CheckName = "add_overflow"; break; 959 case BO_Sub: CheckName = "sub_overflow"; break; 960 case BO_Mul: CheckName = "mul_overflow"; break; 961 default: llvm_unreachable("unexpected opcode for bin op check"); 962 } 963 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 964 } 965 DynamicData.push_back(Info.LHS); 966 DynamicData.push_back(Info.RHS); 967 } 968 969 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 970 } 971 972 //===----------------------------------------------------------------------===// 973 // Visitor Methods 974 //===----------------------------------------------------------------------===// 975 976 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 977 CGF.ErrorUnsupported(E, "scalar expression"); 978 if (E->getType()->isVoidType()) 979 return nullptr; 980 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 981 } 982 983 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 984 // Vector Mask Case 985 if (E->getNumSubExprs() == 2 || 986 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 987 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 988 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 989 Value *Mask; 990 991 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 992 unsigned LHSElts = LTy->getNumElements(); 993 994 if (E->getNumSubExprs() == 3) { 995 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 996 997 // Shuffle LHS & RHS into one input vector. 998 SmallVector<llvm::Constant*, 32> concat; 999 for (unsigned i = 0; i != LHSElts; ++i) { 1000 concat.push_back(Builder.getInt32(2*i)); 1001 concat.push_back(Builder.getInt32(2*i+1)); 1002 } 1003 1004 Value* CV = llvm::ConstantVector::get(concat); 1005 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 1006 LHSElts *= 2; 1007 } else { 1008 Mask = RHS; 1009 } 1010 1011 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1012 1013 // Mask off the high bits of each shuffle index. 1014 Value *MaskBits = 1015 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1016 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1017 1018 // newv = undef 1019 // mask = mask & maskbits 1020 // for each elt 1021 // n = extract mask i 1022 // x = extract val n 1023 // newv = insert newv, x, i 1024 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1025 MTy->getNumElements()); 1026 Value* NewV = llvm::UndefValue::get(RTy); 1027 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1028 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1029 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1030 1031 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1032 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1033 } 1034 return NewV; 1035 } 1036 1037 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1038 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1039 1040 SmallVector<llvm::Constant*, 32> indices; 1041 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1042 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1043 // Check for -1 and output it as undef in the IR. 1044 if (Idx.isSigned() && Idx.isAllOnesValue()) 1045 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1046 else 1047 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1048 } 1049 1050 Value *SV = llvm::ConstantVector::get(indices); 1051 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1052 } 1053 1054 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1055 QualType SrcType = E->getSrcExpr()->getType(), 1056 DstType = E->getType(); 1057 1058 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1059 1060 SrcType = CGF.getContext().getCanonicalType(SrcType); 1061 DstType = CGF.getContext().getCanonicalType(DstType); 1062 if (SrcType == DstType) return Src; 1063 1064 assert(SrcType->isVectorType() && 1065 "ConvertVector source type must be a vector"); 1066 assert(DstType->isVectorType() && 1067 "ConvertVector destination type must be a vector"); 1068 1069 llvm::Type *SrcTy = Src->getType(); 1070 llvm::Type *DstTy = ConvertType(DstType); 1071 1072 // Ignore conversions like int -> uint. 1073 if (SrcTy == DstTy) 1074 return Src; 1075 1076 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1077 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1078 1079 assert(SrcTy->isVectorTy() && 1080 "ConvertVector source IR type must be a vector"); 1081 assert(DstTy->isVectorTy() && 1082 "ConvertVector destination IR type must be a vector"); 1083 1084 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1085 *DstEltTy = DstTy->getVectorElementType(); 1086 1087 if (DstEltType->isBooleanType()) { 1088 assert((SrcEltTy->isFloatingPointTy() || 1089 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1090 1091 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1092 if (SrcEltTy->isFloatingPointTy()) { 1093 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1094 } else { 1095 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1096 } 1097 } 1098 1099 // We have the arithmetic types: real int/float. 1100 Value *Res = nullptr; 1101 1102 if (isa<llvm::IntegerType>(SrcEltTy)) { 1103 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1104 if (isa<llvm::IntegerType>(DstEltTy)) 1105 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1106 else if (InputSigned) 1107 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1108 else 1109 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1110 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1111 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1112 if (DstEltType->isSignedIntegerOrEnumerationType()) 1113 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1114 else 1115 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1116 } else { 1117 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1118 "Unknown real conversion"); 1119 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1120 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1121 else 1122 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1123 } 1124 1125 return Res; 1126 } 1127 1128 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1129 llvm::APSInt Value; 1130 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1131 if (E->isArrow()) 1132 CGF.EmitScalarExpr(E->getBase()); 1133 else 1134 EmitLValue(E->getBase()); 1135 return Builder.getInt(Value); 1136 } 1137 1138 return EmitLoadOfLValue(E); 1139 } 1140 1141 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1142 TestAndClearIgnoreResultAssign(); 1143 1144 // Emit subscript expressions in rvalue context's. For most cases, this just 1145 // loads the lvalue formed by the subscript expr. However, we have to be 1146 // careful, because the base of a vector subscript is occasionally an rvalue, 1147 // so we can't get it as an lvalue. 1148 if (!E->getBase()->getType()->isVectorType()) 1149 return EmitLoadOfLValue(E); 1150 1151 // Handle the vector case. The base must be a vector, the index must be an 1152 // integer value. 1153 Value *Base = Visit(E->getBase()); 1154 Value *Idx = Visit(E->getIdx()); 1155 QualType IdxTy = E->getIdx()->getType(); 1156 1157 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1158 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1159 1160 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1161 } 1162 1163 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1164 unsigned Off, llvm::Type *I32Ty) { 1165 int MV = SVI->getMaskValue(Idx); 1166 if (MV == -1) 1167 return llvm::UndefValue::get(I32Ty); 1168 return llvm::ConstantInt::get(I32Ty, Off+MV); 1169 } 1170 1171 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1172 if (C->getBitWidth() != 32) { 1173 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1174 C->getZExtValue()) && 1175 "Index operand too large for shufflevector mask!"); 1176 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1177 } 1178 return C; 1179 } 1180 1181 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1182 bool Ignore = TestAndClearIgnoreResultAssign(); 1183 (void)Ignore; 1184 assert (Ignore == false && "init list ignored"); 1185 unsigned NumInitElements = E->getNumInits(); 1186 1187 if (E->hadArrayRangeDesignator()) 1188 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1189 1190 llvm::VectorType *VType = 1191 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1192 1193 if (!VType) { 1194 if (NumInitElements == 0) { 1195 // C++11 value-initialization for the scalar. 1196 return EmitNullValue(E->getType()); 1197 } 1198 // We have a scalar in braces. Just use the first element. 1199 return Visit(E->getInit(0)); 1200 } 1201 1202 unsigned ResElts = VType->getNumElements(); 1203 1204 // Loop over initializers collecting the Value for each, and remembering 1205 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1206 // us to fold the shuffle for the swizzle into the shuffle for the vector 1207 // initializer, since LLVM optimizers generally do not want to touch 1208 // shuffles. 1209 unsigned CurIdx = 0; 1210 bool VIsUndefShuffle = false; 1211 llvm::Value *V = llvm::UndefValue::get(VType); 1212 for (unsigned i = 0; i != NumInitElements; ++i) { 1213 Expr *IE = E->getInit(i); 1214 Value *Init = Visit(IE); 1215 SmallVector<llvm::Constant*, 16> Args; 1216 1217 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1218 1219 // Handle scalar elements. If the scalar initializer is actually one 1220 // element of a different vector of the same width, use shuffle instead of 1221 // extract+insert. 1222 if (!VVT) { 1223 if (isa<ExtVectorElementExpr>(IE)) { 1224 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1225 1226 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1227 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1228 Value *LHS = nullptr, *RHS = nullptr; 1229 if (CurIdx == 0) { 1230 // insert into undef -> shuffle (src, undef) 1231 // shufflemask must use an i32 1232 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1233 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1234 1235 LHS = EI->getVectorOperand(); 1236 RHS = V; 1237 VIsUndefShuffle = true; 1238 } else if (VIsUndefShuffle) { 1239 // insert into undefshuffle && size match -> shuffle (v, src) 1240 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1241 for (unsigned j = 0; j != CurIdx; ++j) 1242 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1243 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1244 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1245 1246 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1247 RHS = EI->getVectorOperand(); 1248 VIsUndefShuffle = false; 1249 } 1250 if (!Args.empty()) { 1251 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1252 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1253 ++CurIdx; 1254 continue; 1255 } 1256 } 1257 } 1258 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1259 "vecinit"); 1260 VIsUndefShuffle = false; 1261 ++CurIdx; 1262 continue; 1263 } 1264 1265 unsigned InitElts = VVT->getNumElements(); 1266 1267 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1268 // input is the same width as the vector being constructed, generate an 1269 // optimized shuffle of the swizzle input into the result. 1270 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1271 if (isa<ExtVectorElementExpr>(IE)) { 1272 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1273 Value *SVOp = SVI->getOperand(0); 1274 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1275 1276 if (OpTy->getNumElements() == ResElts) { 1277 for (unsigned j = 0; j != CurIdx; ++j) { 1278 // If the current vector initializer is a shuffle with undef, merge 1279 // this shuffle directly into it. 1280 if (VIsUndefShuffle) { 1281 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1282 CGF.Int32Ty)); 1283 } else { 1284 Args.push_back(Builder.getInt32(j)); 1285 } 1286 } 1287 for (unsigned j = 0, je = InitElts; j != je; ++j) 1288 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1289 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1290 1291 if (VIsUndefShuffle) 1292 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1293 1294 Init = SVOp; 1295 } 1296 } 1297 1298 // Extend init to result vector length, and then shuffle its contribution 1299 // to the vector initializer into V. 1300 if (Args.empty()) { 1301 for (unsigned j = 0; j != InitElts; ++j) 1302 Args.push_back(Builder.getInt32(j)); 1303 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1304 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1305 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1306 Mask, "vext"); 1307 1308 Args.clear(); 1309 for (unsigned j = 0; j != CurIdx; ++j) 1310 Args.push_back(Builder.getInt32(j)); 1311 for (unsigned j = 0; j != InitElts; ++j) 1312 Args.push_back(Builder.getInt32(j+Offset)); 1313 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1314 } 1315 1316 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1317 // merging subsequent shuffles into this one. 1318 if (CurIdx == 0) 1319 std::swap(V, Init); 1320 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1321 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1322 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1323 CurIdx += InitElts; 1324 } 1325 1326 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1327 // Emit remaining default initializers. 1328 llvm::Type *EltTy = VType->getElementType(); 1329 1330 // Emit remaining default initializers 1331 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1332 Value *Idx = Builder.getInt32(CurIdx); 1333 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1334 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1335 } 1336 return V; 1337 } 1338 1339 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1340 const Expr *E = CE->getSubExpr(); 1341 1342 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1343 return false; 1344 1345 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1346 // We always assume that 'this' is never null. 1347 return false; 1348 } 1349 1350 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1351 // And that glvalue casts are never null. 1352 if (ICE->getValueKind() != VK_RValue) 1353 return false; 1354 } 1355 1356 return true; 1357 } 1358 1359 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1360 // have to handle a more broad range of conversions than explicit casts, as they 1361 // handle things like function to ptr-to-function decay etc. 1362 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1363 Expr *E = CE->getSubExpr(); 1364 QualType DestTy = CE->getType(); 1365 CastKind Kind = CE->getCastKind(); 1366 1367 if (!DestTy->isVoidType()) 1368 TestAndClearIgnoreResultAssign(); 1369 1370 // Since almost all cast kinds apply to scalars, this switch doesn't have 1371 // a default case, so the compiler will warn on a missing case. The cases 1372 // are in the same order as in the CastKind enum. 1373 switch (Kind) { 1374 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1375 case CK_BuiltinFnToFnPtr: 1376 llvm_unreachable("builtin functions are handled elsewhere"); 1377 1378 case CK_LValueBitCast: 1379 case CK_ObjCObjectLValueCast: { 1380 Address Addr = EmitLValue(E).getAddress(); 1381 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1382 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1383 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1384 } 1385 1386 case CK_CPointerToObjCPointerCast: 1387 case CK_BlockPointerToObjCPointerCast: 1388 case CK_AnyPointerToBlockPointerCast: 1389 case CK_BitCast: { 1390 Value *Src = Visit(const_cast<Expr*>(E)); 1391 llvm::Type *SrcTy = Src->getType(); 1392 llvm::Type *DstTy = ConvertType(DestTy); 1393 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1394 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1395 llvm_unreachable("wrong cast for pointers in different address spaces" 1396 "(must be an address space cast)!"); 1397 } 1398 1399 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1400 if (auto PT = DestTy->getAs<PointerType>()) 1401 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1402 /*MayBeNull=*/true, 1403 CodeGenFunction::CFITCK_UnrelatedCast, 1404 CE->getLocStart()); 1405 } 1406 1407 return Builder.CreateBitCast(Src, DstTy); 1408 } 1409 case CK_AddressSpaceConversion: { 1410 Value *Src = Visit(const_cast<Expr*>(E)); 1411 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1412 } 1413 case CK_AtomicToNonAtomic: 1414 case CK_NonAtomicToAtomic: 1415 case CK_NoOp: 1416 case CK_UserDefinedConversion: 1417 return Visit(const_cast<Expr*>(E)); 1418 1419 case CK_BaseToDerived: { 1420 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1421 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1422 1423 Address Base = CGF.EmitPointerWithAlignment(E); 1424 Address Derived = 1425 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1426 CE->path_begin(), CE->path_end(), 1427 CGF.ShouldNullCheckClassCastValue(CE)); 1428 1429 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1430 // performed and the object is not of the derived type. 1431 if (CGF.sanitizePerformTypeCheck()) 1432 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1433 Derived.getPointer(), DestTy->getPointeeType()); 1434 1435 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1436 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1437 Derived.getPointer(), 1438 /*MayBeNull=*/true, 1439 CodeGenFunction::CFITCK_DerivedCast, 1440 CE->getLocStart()); 1441 1442 return Derived.getPointer(); 1443 } 1444 case CK_UncheckedDerivedToBase: 1445 case CK_DerivedToBase: { 1446 // The EmitPointerWithAlignment path does this fine; just discard 1447 // the alignment. 1448 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1449 } 1450 1451 case CK_Dynamic: { 1452 Address V = CGF.EmitPointerWithAlignment(E); 1453 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1454 return CGF.EmitDynamicCast(V, DCE); 1455 } 1456 1457 case CK_ArrayToPointerDecay: 1458 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1459 case CK_FunctionToPointerDecay: 1460 return EmitLValue(E).getPointer(); 1461 1462 case CK_NullToPointer: 1463 if (MustVisitNullValue(E)) 1464 (void) Visit(E); 1465 1466 return llvm::ConstantPointerNull::get( 1467 cast<llvm::PointerType>(ConvertType(DestTy))); 1468 1469 case CK_NullToMemberPointer: { 1470 if (MustVisitNullValue(E)) 1471 (void) Visit(E); 1472 1473 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1474 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1475 } 1476 1477 case CK_ReinterpretMemberPointer: 1478 case CK_BaseToDerivedMemberPointer: 1479 case CK_DerivedToBaseMemberPointer: { 1480 Value *Src = Visit(E); 1481 1482 // Note that the AST doesn't distinguish between checked and 1483 // unchecked member pointer conversions, so we always have to 1484 // implement checked conversions here. This is inefficient when 1485 // actual control flow may be required in order to perform the 1486 // check, which it is for data member pointers (but not member 1487 // function pointers on Itanium and ARM). 1488 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1489 } 1490 1491 case CK_ARCProduceObject: 1492 return CGF.EmitARCRetainScalarExpr(E); 1493 case CK_ARCConsumeObject: 1494 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1495 case CK_ARCReclaimReturnedObject: { 1496 llvm::Value *value = Visit(E); 1497 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1498 return CGF.EmitObjCConsumeObject(E->getType(), value); 1499 } 1500 case CK_ARCExtendBlockObject: 1501 return CGF.EmitARCExtendBlockObject(E); 1502 1503 case CK_CopyAndAutoreleaseBlockObject: 1504 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1505 1506 case CK_FloatingRealToComplex: 1507 case CK_FloatingComplexCast: 1508 case CK_IntegralRealToComplex: 1509 case CK_IntegralComplexCast: 1510 case CK_IntegralComplexToFloatingComplex: 1511 case CK_FloatingComplexToIntegralComplex: 1512 case CK_ConstructorConversion: 1513 case CK_ToUnion: 1514 llvm_unreachable("scalar cast to non-scalar value"); 1515 1516 case CK_LValueToRValue: 1517 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1518 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1519 return Visit(const_cast<Expr*>(E)); 1520 1521 case CK_IntegralToPointer: { 1522 Value *Src = Visit(const_cast<Expr*>(E)); 1523 1524 // First, convert to the correct width so that we control the kind of 1525 // extension. 1526 llvm::Type *MiddleTy = CGF.IntPtrTy; 1527 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1528 llvm::Value* IntResult = 1529 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1530 1531 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1532 } 1533 case CK_PointerToIntegral: 1534 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1535 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1536 1537 case CK_ToVoid: { 1538 CGF.EmitIgnoredExpr(E); 1539 return nullptr; 1540 } 1541 case CK_VectorSplat: { 1542 llvm::Type *DstTy = ConvertType(DestTy); 1543 // Need an IgnoreImpCasts here as by default a boolean will be promoted to 1544 // an int, which will not perform the sign extension, so if we know we are 1545 // going to cast to a vector we have to strip the implicit cast off. 1546 Value *Elt = Visit(const_cast<Expr*>(E->IgnoreImpCasts())); 1547 Elt = EmitScalarConversion(Elt, E->IgnoreImpCasts()->getType(), 1548 DestTy->getAs<VectorType>()->getElementType(), 1549 CE->getExprLoc(), 1550 CGF.getContext().getLangOpts().OpenCL); 1551 1552 // Splat the element across to all elements 1553 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1554 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1555 } 1556 1557 case CK_IntegralCast: 1558 case CK_IntegralToFloating: 1559 case CK_FloatingToIntegral: 1560 case CK_FloatingCast: 1561 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1562 CE->getExprLoc()); 1563 case CK_IntegralToBoolean: 1564 return EmitIntToBoolConversion(Visit(E)); 1565 case CK_PointerToBoolean: 1566 return EmitPointerToBoolConversion(Visit(E)); 1567 case CK_FloatingToBoolean: 1568 return EmitFloatToBoolConversion(Visit(E)); 1569 case CK_MemberPointerToBoolean: { 1570 llvm::Value *MemPtr = Visit(E); 1571 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1572 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1573 } 1574 1575 case CK_FloatingComplexToReal: 1576 case CK_IntegralComplexToReal: 1577 return CGF.EmitComplexExpr(E, false, true).first; 1578 1579 case CK_FloatingComplexToBoolean: 1580 case CK_IntegralComplexToBoolean: { 1581 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1582 1583 // TODO: kill this function off, inline appropriate case here 1584 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1585 CE->getExprLoc()); 1586 } 1587 1588 case CK_ZeroToOCLEvent: { 1589 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1590 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1591 } 1592 1593 } 1594 1595 llvm_unreachable("unknown scalar cast"); 1596 } 1597 1598 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1599 CodeGenFunction::StmtExprEvaluation eval(CGF); 1600 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1601 !E->getType()->isVoidType()); 1602 if (!RetAlloca.isValid()) 1603 return nullptr; 1604 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1605 E->getExprLoc()); 1606 } 1607 1608 //===----------------------------------------------------------------------===// 1609 // Unary Operators 1610 //===----------------------------------------------------------------------===// 1611 1612 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1613 llvm::Value *InVal, bool IsInc) { 1614 BinOpInfo BinOp; 1615 BinOp.LHS = InVal; 1616 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1617 BinOp.Ty = E->getType(); 1618 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1619 BinOp.FPContractable = false; 1620 BinOp.E = E; 1621 return BinOp; 1622 } 1623 1624 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1625 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1626 llvm::Value *Amount = 1627 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1628 StringRef Name = IsInc ? "inc" : "dec"; 1629 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1630 case LangOptions::SOB_Defined: 1631 return Builder.CreateAdd(InVal, Amount, Name); 1632 case LangOptions::SOB_Undefined: 1633 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1634 return Builder.CreateNSWAdd(InVal, Amount, Name); 1635 // Fall through. 1636 case LangOptions::SOB_Trapping: 1637 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1638 } 1639 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1640 } 1641 1642 llvm::Value * 1643 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1644 bool isInc, bool isPre) { 1645 1646 QualType type = E->getSubExpr()->getType(); 1647 llvm::PHINode *atomicPHI = nullptr; 1648 llvm::Value *value; 1649 llvm::Value *input; 1650 1651 int amount = (isInc ? 1 : -1); 1652 1653 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1654 type = atomicTy->getValueType(); 1655 if (isInc && type->isBooleanType()) { 1656 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1657 if (isPre) { 1658 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1659 ->setAtomic(llvm::SequentiallyConsistent); 1660 return Builder.getTrue(); 1661 } 1662 // For atomic bool increment, we just store true and return it for 1663 // preincrement, do an atomic swap with true for postincrement 1664 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1665 LV.getPointer(), True, llvm::SequentiallyConsistent); 1666 } 1667 // Special case for atomic increment / decrement on integers, emit 1668 // atomicrmw instructions. We skip this if we want to be doing overflow 1669 // checking, and fall into the slow path with the atomic cmpxchg loop. 1670 if (!type->isBooleanType() && type->isIntegerType() && 1671 !(type->isUnsignedIntegerType() && 1672 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1673 CGF.getLangOpts().getSignedOverflowBehavior() != 1674 LangOptions::SOB_Trapping) { 1675 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1676 llvm::AtomicRMWInst::Sub; 1677 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1678 llvm::Instruction::Sub; 1679 llvm::Value *amt = CGF.EmitToMemory( 1680 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1681 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1682 LV.getPointer(), amt, llvm::SequentiallyConsistent); 1683 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1684 } 1685 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1686 input = value; 1687 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1688 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1689 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1690 value = CGF.EmitToMemory(value, type); 1691 Builder.CreateBr(opBB); 1692 Builder.SetInsertPoint(opBB); 1693 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1694 atomicPHI->addIncoming(value, startBB); 1695 value = atomicPHI; 1696 } else { 1697 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1698 input = value; 1699 } 1700 1701 // Special case of integer increment that we have to check first: bool++. 1702 // Due to promotion rules, we get: 1703 // bool++ -> bool = bool + 1 1704 // -> bool = (int)bool + 1 1705 // -> bool = ((int)bool + 1 != 0) 1706 // An interesting aspect of this is that increment is always true. 1707 // Decrement does not have this property. 1708 if (isInc && type->isBooleanType()) { 1709 value = Builder.getTrue(); 1710 1711 // Most common case by far: integer increment. 1712 } else if (type->isIntegerType()) { 1713 // Note that signed integer inc/dec with width less than int can't 1714 // overflow because of promotion rules; we're just eliding a few steps here. 1715 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1716 CGF.IntTy->getIntegerBitWidth(); 1717 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1718 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1719 } else if (CanOverflow && type->isUnsignedIntegerType() && 1720 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1721 value = 1722 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1723 } else { 1724 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1725 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1726 } 1727 1728 // Next most common: pointer increment. 1729 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1730 QualType type = ptr->getPointeeType(); 1731 1732 // VLA types don't have constant size. 1733 if (const VariableArrayType *vla 1734 = CGF.getContext().getAsVariableArrayType(type)) { 1735 llvm::Value *numElts = CGF.getVLASize(vla).first; 1736 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1737 if (CGF.getLangOpts().isSignedOverflowDefined()) 1738 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1739 else 1740 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1741 1742 // Arithmetic on function pointers (!) is just +-1. 1743 } else if (type->isFunctionType()) { 1744 llvm::Value *amt = Builder.getInt32(amount); 1745 1746 value = CGF.EmitCastToVoidPtr(value); 1747 if (CGF.getLangOpts().isSignedOverflowDefined()) 1748 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1749 else 1750 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1751 value = Builder.CreateBitCast(value, input->getType()); 1752 1753 // For everything else, we can just do a simple increment. 1754 } else { 1755 llvm::Value *amt = Builder.getInt32(amount); 1756 if (CGF.getLangOpts().isSignedOverflowDefined()) 1757 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1758 else 1759 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1760 } 1761 1762 // Vector increment/decrement. 1763 } else if (type->isVectorType()) { 1764 if (type->hasIntegerRepresentation()) { 1765 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1766 1767 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1768 } else { 1769 value = Builder.CreateFAdd( 1770 value, 1771 llvm::ConstantFP::get(value->getType(), amount), 1772 isInc ? "inc" : "dec"); 1773 } 1774 1775 // Floating point. 1776 } else if (type->isRealFloatingType()) { 1777 // Add the inc/dec to the real part. 1778 llvm::Value *amt; 1779 1780 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1781 // Another special case: half FP increment should be done via float 1782 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1783 value = Builder.CreateCall( 1784 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1785 CGF.CGM.FloatTy), 1786 input, "incdec.conv"); 1787 } else { 1788 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1789 } 1790 } 1791 1792 if (value->getType()->isFloatTy()) 1793 amt = llvm::ConstantFP::get(VMContext, 1794 llvm::APFloat(static_cast<float>(amount))); 1795 else if (value->getType()->isDoubleTy()) 1796 amt = llvm::ConstantFP::get(VMContext, 1797 llvm::APFloat(static_cast<double>(amount))); 1798 else { 1799 // Remaining types are either Half or LongDouble. Convert from float. 1800 llvm::APFloat F(static_cast<float>(amount)); 1801 bool ignored; 1802 // Don't use getFloatTypeSemantics because Half isn't 1803 // necessarily represented using the "half" LLVM type. 1804 F.convert(value->getType()->isHalfTy() 1805 ? CGF.getTarget().getHalfFormat() 1806 : CGF.getTarget().getLongDoubleFormat(), 1807 llvm::APFloat::rmTowardZero, &ignored); 1808 amt = llvm::ConstantFP::get(VMContext, F); 1809 } 1810 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1811 1812 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1813 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1814 value = Builder.CreateCall( 1815 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1816 CGF.CGM.FloatTy), 1817 value, "incdec.conv"); 1818 } else { 1819 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1820 } 1821 } 1822 1823 // Objective-C pointer types. 1824 } else { 1825 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1826 value = CGF.EmitCastToVoidPtr(value); 1827 1828 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1829 if (!isInc) size = -size; 1830 llvm::Value *sizeValue = 1831 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1832 1833 if (CGF.getLangOpts().isSignedOverflowDefined()) 1834 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1835 else 1836 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1837 value = Builder.CreateBitCast(value, input->getType()); 1838 } 1839 1840 if (atomicPHI) { 1841 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1842 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1843 auto Pair = CGF.EmitAtomicCompareExchange( 1844 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1845 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1846 llvm::Value *success = Pair.second; 1847 atomicPHI->addIncoming(old, opBB); 1848 Builder.CreateCondBr(success, contBB, opBB); 1849 Builder.SetInsertPoint(contBB); 1850 return isPre ? value : input; 1851 } 1852 1853 // Store the updated result through the lvalue. 1854 if (LV.isBitField()) 1855 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1856 else 1857 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1858 1859 // If this is a postinc, return the value read from memory, otherwise use the 1860 // updated value. 1861 return isPre ? value : input; 1862 } 1863 1864 1865 1866 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1867 TestAndClearIgnoreResultAssign(); 1868 // Emit unary minus with EmitSub so we handle overflow cases etc. 1869 BinOpInfo BinOp; 1870 BinOp.RHS = Visit(E->getSubExpr()); 1871 1872 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1873 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1874 else 1875 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1876 BinOp.Ty = E->getType(); 1877 BinOp.Opcode = BO_Sub; 1878 BinOp.FPContractable = false; 1879 BinOp.E = E; 1880 return EmitSub(BinOp); 1881 } 1882 1883 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1884 TestAndClearIgnoreResultAssign(); 1885 Value *Op = Visit(E->getSubExpr()); 1886 return Builder.CreateNot(Op, "neg"); 1887 } 1888 1889 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1890 // Perform vector logical not on comparison with zero vector. 1891 if (E->getType()->isExtVectorType()) { 1892 Value *Oper = Visit(E->getSubExpr()); 1893 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1894 Value *Result; 1895 if (Oper->getType()->isFPOrFPVectorTy()) 1896 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1897 else 1898 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1899 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1900 } 1901 1902 // Compare operand to zero. 1903 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1904 1905 // Invert value. 1906 // TODO: Could dynamically modify easy computations here. For example, if 1907 // the operand is an icmp ne, turn into icmp eq. 1908 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1909 1910 // ZExt result to the expr type. 1911 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1912 } 1913 1914 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1915 // Try folding the offsetof to a constant. 1916 llvm::APSInt Value; 1917 if (E->EvaluateAsInt(Value, CGF.getContext())) 1918 return Builder.getInt(Value); 1919 1920 // Loop over the components of the offsetof to compute the value. 1921 unsigned n = E->getNumComponents(); 1922 llvm::Type* ResultType = ConvertType(E->getType()); 1923 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1924 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1925 for (unsigned i = 0; i != n; ++i) { 1926 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1927 llvm::Value *Offset = nullptr; 1928 switch (ON.getKind()) { 1929 case OffsetOfExpr::OffsetOfNode::Array: { 1930 // Compute the index 1931 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1932 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1933 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1934 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1935 1936 // Save the element type 1937 CurrentType = 1938 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1939 1940 // Compute the element size 1941 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1942 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1943 1944 // Multiply out to compute the result 1945 Offset = Builder.CreateMul(Idx, ElemSize); 1946 break; 1947 } 1948 1949 case OffsetOfExpr::OffsetOfNode::Field: { 1950 FieldDecl *MemberDecl = ON.getField(); 1951 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1952 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1953 1954 // Compute the index of the field in its parent. 1955 unsigned i = 0; 1956 // FIXME: It would be nice if we didn't have to loop here! 1957 for (RecordDecl::field_iterator Field = RD->field_begin(), 1958 FieldEnd = RD->field_end(); 1959 Field != FieldEnd; ++Field, ++i) { 1960 if (*Field == MemberDecl) 1961 break; 1962 } 1963 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1964 1965 // Compute the offset to the field 1966 int64_t OffsetInt = RL.getFieldOffset(i) / 1967 CGF.getContext().getCharWidth(); 1968 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1969 1970 // Save the element type. 1971 CurrentType = MemberDecl->getType(); 1972 break; 1973 } 1974 1975 case OffsetOfExpr::OffsetOfNode::Identifier: 1976 llvm_unreachable("dependent __builtin_offsetof"); 1977 1978 case OffsetOfExpr::OffsetOfNode::Base: { 1979 if (ON.getBase()->isVirtual()) { 1980 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1981 continue; 1982 } 1983 1984 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1985 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1986 1987 // Save the element type. 1988 CurrentType = ON.getBase()->getType(); 1989 1990 // Compute the offset to the base. 1991 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1992 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1993 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1994 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1995 break; 1996 } 1997 } 1998 Result = Builder.CreateAdd(Result, Offset); 1999 } 2000 return Result; 2001 } 2002 2003 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2004 /// argument of the sizeof expression as an integer. 2005 Value * 2006 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2007 const UnaryExprOrTypeTraitExpr *E) { 2008 QualType TypeToSize = E->getTypeOfArgument(); 2009 if (E->getKind() == UETT_SizeOf) { 2010 if (const VariableArrayType *VAT = 2011 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2012 if (E->isArgumentType()) { 2013 // sizeof(type) - make sure to emit the VLA size. 2014 CGF.EmitVariablyModifiedType(TypeToSize); 2015 } else { 2016 // C99 6.5.3.4p2: If the argument is an expression of type 2017 // VLA, it is evaluated. 2018 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2019 } 2020 2021 QualType eltType; 2022 llvm::Value *numElts; 2023 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2024 2025 llvm::Value *size = numElts; 2026 2027 // Scale the number of non-VLA elements by the non-VLA element size. 2028 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2029 if (!eltSize.isOne()) 2030 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2031 2032 return size; 2033 } 2034 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2035 auto Alignment = 2036 CGF.getContext() 2037 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2038 E->getTypeOfArgument()->getPointeeType())) 2039 .getQuantity(); 2040 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2041 } 2042 2043 // If this isn't sizeof(vla), the result must be constant; use the constant 2044 // folding logic so we don't have to duplicate it here. 2045 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2046 } 2047 2048 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2049 Expr *Op = E->getSubExpr(); 2050 if (Op->getType()->isAnyComplexType()) { 2051 // If it's an l-value, load through the appropriate subobject l-value. 2052 // Note that we have to ask E because Op might be an l-value that 2053 // this won't work for, e.g. an Obj-C property. 2054 if (E->isGLValue()) 2055 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2056 E->getExprLoc()).getScalarVal(); 2057 2058 // Otherwise, calculate and project. 2059 return CGF.EmitComplexExpr(Op, false, true).first; 2060 } 2061 2062 return Visit(Op); 2063 } 2064 2065 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2066 Expr *Op = E->getSubExpr(); 2067 if (Op->getType()->isAnyComplexType()) { 2068 // If it's an l-value, load through the appropriate subobject l-value. 2069 // Note that we have to ask E because Op might be an l-value that 2070 // this won't work for, e.g. an Obj-C property. 2071 if (Op->isGLValue()) 2072 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2073 E->getExprLoc()).getScalarVal(); 2074 2075 // Otherwise, calculate and project. 2076 return CGF.EmitComplexExpr(Op, true, false).second; 2077 } 2078 2079 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2080 // effects are evaluated, but not the actual value. 2081 if (Op->isGLValue()) 2082 CGF.EmitLValue(Op); 2083 else 2084 CGF.EmitScalarExpr(Op, true); 2085 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2086 } 2087 2088 //===----------------------------------------------------------------------===// 2089 // Binary Operators 2090 //===----------------------------------------------------------------------===// 2091 2092 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2093 TestAndClearIgnoreResultAssign(); 2094 BinOpInfo Result; 2095 Result.LHS = Visit(E->getLHS()); 2096 Result.RHS = Visit(E->getRHS()); 2097 Result.Ty = E->getType(); 2098 Result.Opcode = E->getOpcode(); 2099 Result.FPContractable = E->isFPContractable(); 2100 Result.E = E; 2101 return Result; 2102 } 2103 2104 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2105 const CompoundAssignOperator *E, 2106 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2107 Value *&Result) { 2108 QualType LHSTy = E->getLHS()->getType(); 2109 BinOpInfo OpInfo; 2110 2111 if (E->getComputationResultType()->isAnyComplexType()) 2112 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2113 2114 // Emit the RHS first. __block variables need to have the rhs evaluated 2115 // first, plus this should improve codegen a little. 2116 OpInfo.RHS = Visit(E->getRHS()); 2117 OpInfo.Ty = E->getComputationResultType(); 2118 OpInfo.Opcode = E->getOpcode(); 2119 OpInfo.FPContractable = E->isFPContractable(); 2120 OpInfo.E = E; 2121 // Load/convert the LHS. 2122 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2123 2124 llvm::PHINode *atomicPHI = nullptr; 2125 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2126 QualType type = atomicTy->getValueType(); 2127 if (!type->isBooleanType() && type->isIntegerType() && 2128 !(type->isUnsignedIntegerType() && 2129 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2130 CGF.getLangOpts().getSignedOverflowBehavior() != 2131 LangOptions::SOB_Trapping) { 2132 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2133 switch (OpInfo.Opcode) { 2134 // We don't have atomicrmw operands for *, %, /, <<, >> 2135 case BO_MulAssign: case BO_DivAssign: 2136 case BO_RemAssign: 2137 case BO_ShlAssign: 2138 case BO_ShrAssign: 2139 break; 2140 case BO_AddAssign: 2141 aop = llvm::AtomicRMWInst::Add; 2142 break; 2143 case BO_SubAssign: 2144 aop = llvm::AtomicRMWInst::Sub; 2145 break; 2146 case BO_AndAssign: 2147 aop = llvm::AtomicRMWInst::And; 2148 break; 2149 case BO_XorAssign: 2150 aop = llvm::AtomicRMWInst::Xor; 2151 break; 2152 case BO_OrAssign: 2153 aop = llvm::AtomicRMWInst::Or; 2154 break; 2155 default: 2156 llvm_unreachable("Invalid compound assignment type"); 2157 } 2158 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2159 llvm::Value *amt = CGF.EmitToMemory( 2160 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2161 E->getExprLoc()), 2162 LHSTy); 2163 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2164 llvm::SequentiallyConsistent); 2165 return LHSLV; 2166 } 2167 } 2168 // FIXME: For floating point types, we should be saving and restoring the 2169 // floating point environment in the loop. 2170 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2171 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2172 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2173 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2174 Builder.CreateBr(opBB); 2175 Builder.SetInsertPoint(opBB); 2176 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2177 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2178 OpInfo.LHS = atomicPHI; 2179 } 2180 else 2181 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2182 2183 SourceLocation Loc = E->getExprLoc(); 2184 OpInfo.LHS = 2185 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2186 2187 // Expand the binary operator. 2188 Result = (this->*Func)(OpInfo); 2189 2190 // Convert the result back to the LHS type. 2191 Result = 2192 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2193 2194 if (atomicPHI) { 2195 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2196 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2197 auto Pair = CGF.EmitAtomicCompareExchange( 2198 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2199 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2200 llvm::Value *success = Pair.second; 2201 atomicPHI->addIncoming(old, opBB); 2202 Builder.CreateCondBr(success, contBB, opBB); 2203 Builder.SetInsertPoint(contBB); 2204 return LHSLV; 2205 } 2206 2207 // Store the result value into the LHS lvalue. Bit-fields are handled 2208 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2209 // 'An assignment expression has the value of the left operand after the 2210 // assignment...'. 2211 if (LHSLV.isBitField()) 2212 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2213 else 2214 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2215 2216 return LHSLV; 2217 } 2218 2219 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2220 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2221 bool Ignore = TestAndClearIgnoreResultAssign(); 2222 Value *RHS; 2223 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2224 2225 // If the result is clearly ignored, return now. 2226 if (Ignore) 2227 return nullptr; 2228 2229 // The result of an assignment in C is the assigned r-value. 2230 if (!CGF.getLangOpts().CPlusPlus) 2231 return RHS; 2232 2233 // If the lvalue is non-volatile, return the computed value of the assignment. 2234 if (!LHS.isVolatileQualified()) 2235 return RHS; 2236 2237 // Otherwise, reload the value. 2238 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2239 } 2240 2241 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2242 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2243 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2244 2245 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2246 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2247 SanitizerKind::IntegerDivideByZero)); 2248 } 2249 2250 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2251 Ops.Ty->hasSignedIntegerRepresentation()) { 2252 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2253 2254 llvm::Value *IntMin = 2255 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2256 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2257 2258 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2259 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2260 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2261 Checks.push_back( 2262 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2263 } 2264 2265 if (Checks.size() > 0) 2266 EmitBinOpCheck(Checks, Ops); 2267 } 2268 2269 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2270 { 2271 CodeGenFunction::SanitizerScope SanScope(&CGF); 2272 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2273 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2274 Ops.Ty->isIntegerType()) { 2275 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2276 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2277 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2278 Ops.Ty->isRealFloatingType()) { 2279 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2280 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2281 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2282 Ops); 2283 } 2284 } 2285 2286 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2287 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2288 if (CGF.getLangOpts().OpenCL) { 2289 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2290 llvm::Type *ValTy = Val->getType(); 2291 if (ValTy->isFloatTy() || 2292 (isa<llvm::VectorType>(ValTy) && 2293 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2294 CGF.SetFPAccuracy(Val, 2.5); 2295 } 2296 return Val; 2297 } 2298 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2299 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2300 else 2301 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2302 } 2303 2304 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2305 // Rem in C can't be a floating point type: C99 6.5.5p2. 2306 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2307 CodeGenFunction::SanitizerScope SanScope(&CGF); 2308 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2309 2310 if (Ops.Ty->isIntegerType()) 2311 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2312 } 2313 2314 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2315 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2316 else 2317 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2318 } 2319 2320 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2321 unsigned IID; 2322 unsigned OpID = 0; 2323 2324 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2325 switch (Ops.Opcode) { 2326 case BO_Add: 2327 case BO_AddAssign: 2328 OpID = 1; 2329 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2330 llvm::Intrinsic::uadd_with_overflow; 2331 break; 2332 case BO_Sub: 2333 case BO_SubAssign: 2334 OpID = 2; 2335 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2336 llvm::Intrinsic::usub_with_overflow; 2337 break; 2338 case BO_Mul: 2339 case BO_MulAssign: 2340 OpID = 3; 2341 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2342 llvm::Intrinsic::umul_with_overflow; 2343 break; 2344 default: 2345 llvm_unreachable("Unsupported operation for overflow detection"); 2346 } 2347 OpID <<= 1; 2348 if (isSigned) 2349 OpID |= 1; 2350 2351 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2352 2353 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2354 2355 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2356 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2357 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2358 2359 // Handle overflow with llvm.trap if no custom handler has been specified. 2360 const std::string *handlerName = 2361 &CGF.getLangOpts().OverflowHandler; 2362 if (handlerName->empty()) { 2363 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2364 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2365 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2366 CodeGenFunction::SanitizerScope SanScope(&CGF); 2367 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2368 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2369 : SanitizerKind::UnsignedIntegerOverflow; 2370 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2371 } else 2372 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2373 return result; 2374 } 2375 2376 // Branch in case of overflow. 2377 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2378 llvm::Function::iterator insertPt = initialBB->getIterator(); 2379 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2380 &*std::next(insertPt)); 2381 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2382 2383 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2384 2385 // If an overflow handler is set, then we want to call it and then use its 2386 // result, if it returns. 2387 Builder.SetInsertPoint(overflowBB); 2388 2389 // Get the overflow handler. 2390 llvm::Type *Int8Ty = CGF.Int8Ty; 2391 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2392 llvm::FunctionType *handlerTy = 2393 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2394 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2395 2396 // Sign extend the args to 64-bit, so that we can use the same handler for 2397 // all types of overflow. 2398 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2399 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2400 2401 // Call the handler with the two arguments, the operation, and the size of 2402 // the result. 2403 llvm::Value *handlerArgs[] = { 2404 lhs, 2405 rhs, 2406 Builder.getInt8(OpID), 2407 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2408 }; 2409 llvm::Value *handlerResult = 2410 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2411 2412 // Truncate the result back to the desired size. 2413 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2414 Builder.CreateBr(continueBB); 2415 2416 Builder.SetInsertPoint(continueBB); 2417 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2418 phi->addIncoming(result, initialBB); 2419 phi->addIncoming(handlerResult, overflowBB); 2420 2421 return phi; 2422 } 2423 2424 /// Emit pointer + index arithmetic. 2425 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2426 const BinOpInfo &op, 2427 bool isSubtraction) { 2428 // Must have binary (not unary) expr here. Unary pointer 2429 // increment/decrement doesn't use this path. 2430 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2431 2432 Value *pointer = op.LHS; 2433 Expr *pointerOperand = expr->getLHS(); 2434 Value *index = op.RHS; 2435 Expr *indexOperand = expr->getRHS(); 2436 2437 // In a subtraction, the LHS is always the pointer. 2438 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2439 std::swap(pointer, index); 2440 std::swap(pointerOperand, indexOperand); 2441 } 2442 2443 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2444 if (width != CGF.PointerWidthInBits) { 2445 // Zero-extend or sign-extend the pointer value according to 2446 // whether the index is signed or not. 2447 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2448 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2449 "idx.ext"); 2450 } 2451 2452 // If this is subtraction, negate the index. 2453 if (isSubtraction) 2454 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2455 2456 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2457 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2458 /*Accessed*/ false); 2459 2460 const PointerType *pointerType 2461 = pointerOperand->getType()->getAs<PointerType>(); 2462 if (!pointerType) { 2463 QualType objectType = pointerOperand->getType() 2464 ->castAs<ObjCObjectPointerType>() 2465 ->getPointeeType(); 2466 llvm::Value *objectSize 2467 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2468 2469 index = CGF.Builder.CreateMul(index, objectSize); 2470 2471 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2472 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2473 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2474 } 2475 2476 QualType elementType = pointerType->getPointeeType(); 2477 if (const VariableArrayType *vla 2478 = CGF.getContext().getAsVariableArrayType(elementType)) { 2479 // The element count here is the total number of non-VLA elements. 2480 llvm::Value *numElements = CGF.getVLASize(vla).first; 2481 2482 // Effectively, the multiply by the VLA size is part of the GEP. 2483 // GEP indexes are signed, and scaling an index isn't permitted to 2484 // signed-overflow, so we use the same semantics for our explicit 2485 // multiply. We suppress this if overflow is not undefined behavior. 2486 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2487 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2488 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2489 } else { 2490 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2491 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2492 } 2493 return pointer; 2494 } 2495 2496 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2497 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2498 // future proof. 2499 if (elementType->isVoidType() || elementType->isFunctionType()) { 2500 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2501 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2502 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2503 } 2504 2505 if (CGF.getLangOpts().isSignedOverflowDefined()) 2506 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2507 2508 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2509 } 2510 2511 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2512 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2513 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2514 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2515 // efficient operations. 2516 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2517 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2518 bool negMul, bool negAdd) { 2519 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2520 2521 Value *MulOp0 = MulOp->getOperand(0); 2522 Value *MulOp1 = MulOp->getOperand(1); 2523 if (negMul) { 2524 MulOp0 = 2525 Builder.CreateFSub( 2526 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2527 "neg"); 2528 } else if (negAdd) { 2529 Addend = 2530 Builder.CreateFSub( 2531 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2532 "neg"); 2533 } 2534 2535 Value *FMulAdd = Builder.CreateCall( 2536 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2537 {MulOp0, MulOp1, Addend}); 2538 MulOp->eraseFromParent(); 2539 2540 return FMulAdd; 2541 } 2542 2543 // Check whether it would be legal to emit an fmuladd intrinsic call to 2544 // represent op and if so, build the fmuladd. 2545 // 2546 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2547 // Does NOT check the type of the operation - it's assumed that this function 2548 // will be called from contexts where it's known that the type is contractable. 2549 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2550 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2551 bool isSub=false) { 2552 2553 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2554 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2555 "Only fadd/fsub can be the root of an fmuladd."); 2556 2557 // Check whether this op is marked as fusable. 2558 if (!op.FPContractable) 2559 return nullptr; 2560 2561 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2562 // either disabled, or handled entirely by the LLVM backend). 2563 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2564 return nullptr; 2565 2566 // We have a potentially fusable op. Look for a mul on one of the operands. 2567 // Also, make sure that the mul result isn't used directly. In that case, 2568 // there's no point creating a muladd operation. 2569 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2570 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2571 LHSBinOp->use_empty()) 2572 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2573 } 2574 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2575 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2576 RHSBinOp->use_empty()) 2577 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2578 } 2579 2580 return nullptr; 2581 } 2582 2583 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2584 if (op.LHS->getType()->isPointerTy() || 2585 op.RHS->getType()->isPointerTy()) 2586 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2587 2588 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2589 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2590 case LangOptions::SOB_Defined: 2591 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2592 case LangOptions::SOB_Undefined: 2593 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2594 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2595 // Fall through. 2596 case LangOptions::SOB_Trapping: 2597 return EmitOverflowCheckedBinOp(op); 2598 } 2599 } 2600 2601 if (op.Ty->isUnsignedIntegerType() && 2602 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2603 return EmitOverflowCheckedBinOp(op); 2604 2605 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2606 // Try to form an fmuladd. 2607 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2608 return FMulAdd; 2609 2610 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2611 } 2612 2613 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2614 } 2615 2616 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2617 // The LHS is always a pointer if either side is. 2618 if (!op.LHS->getType()->isPointerTy()) { 2619 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2620 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2621 case LangOptions::SOB_Defined: 2622 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2623 case LangOptions::SOB_Undefined: 2624 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2625 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2626 // Fall through. 2627 case LangOptions::SOB_Trapping: 2628 return EmitOverflowCheckedBinOp(op); 2629 } 2630 } 2631 2632 if (op.Ty->isUnsignedIntegerType() && 2633 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2634 return EmitOverflowCheckedBinOp(op); 2635 2636 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2637 // Try to form an fmuladd. 2638 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2639 return FMulAdd; 2640 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2641 } 2642 2643 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2644 } 2645 2646 // If the RHS is not a pointer, then we have normal pointer 2647 // arithmetic. 2648 if (!op.RHS->getType()->isPointerTy()) 2649 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2650 2651 // Otherwise, this is a pointer subtraction. 2652 2653 // Do the raw subtraction part. 2654 llvm::Value *LHS 2655 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2656 llvm::Value *RHS 2657 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2658 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2659 2660 // Okay, figure out the element size. 2661 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2662 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2663 2664 llvm::Value *divisor = nullptr; 2665 2666 // For a variable-length array, this is going to be non-constant. 2667 if (const VariableArrayType *vla 2668 = CGF.getContext().getAsVariableArrayType(elementType)) { 2669 llvm::Value *numElements; 2670 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2671 2672 divisor = numElements; 2673 2674 // Scale the number of non-VLA elements by the non-VLA element size. 2675 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2676 if (!eltSize.isOne()) 2677 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2678 2679 // For everything elese, we can just compute it, safe in the 2680 // assumption that Sema won't let anything through that we can't 2681 // safely compute the size of. 2682 } else { 2683 CharUnits elementSize; 2684 // Handle GCC extension for pointer arithmetic on void* and 2685 // function pointer types. 2686 if (elementType->isVoidType() || elementType->isFunctionType()) 2687 elementSize = CharUnits::One(); 2688 else 2689 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2690 2691 // Don't even emit the divide for element size of 1. 2692 if (elementSize.isOne()) 2693 return diffInChars; 2694 2695 divisor = CGF.CGM.getSize(elementSize); 2696 } 2697 2698 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2699 // pointer difference in C is only defined in the case where both operands 2700 // are pointing to elements of an array. 2701 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2702 } 2703 2704 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2705 llvm::IntegerType *Ty; 2706 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2707 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2708 else 2709 Ty = cast<llvm::IntegerType>(LHS->getType()); 2710 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2711 } 2712 2713 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2714 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2715 // RHS to the same size as the LHS. 2716 Value *RHS = Ops.RHS; 2717 if (Ops.LHS->getType() != RHS->getType()) 2718 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2719 2720 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2721 Ops.Ty->hasSignedIntegerRepresentation(); 2722 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2723 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2724 if (CGF.getLangOpts().OpenCL) 2725 RHS = 2726 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2727 else if ((SanitizeBase || SanitizeExponent) && 2728 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2729 CodeGenFunction::SanitizerScope SanScope(&CGF); 2730 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2731 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2732 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2733 2734 if (SanitizeExponent) { 2735 Checks.push_back( 2736 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2737 } 2738 2739 if (SanitizeBase) { 2740 // Check whether we are shifting any non-zero bits off the top of the 2741 // integer. We only emit this check if exponent is valid - otherwise 2742 // instructions below will have undefined behavior themselves. 2743 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2744 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2745 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2746 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2747 CGF.EmitBlock(CheckShiftBase); 2748 llvm::Value *BitsShiftedOff = 2749 Builder.CreateLShr(Ops.LHS, 2750 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2751 /*NUW*/true, /*NSW*/true), 2752 "shl.check"); 2753 if (CGF.getLangOpts().CPlusPlus) { 2754 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2755 // Under C++11's rules, shifting a 1 bit into the sign bit is 2756 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2757 // define signed left shifts, so we use the C99 and C++11 rules there). 2758 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2759 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2760 } 2761 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2762 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2763 CGF.EmitBlock(Cont); 2764 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2765 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2766 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2767 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2768 } 2769 2770 assert(!Checks.empty()); 2771 EmitBinOpCheck(Checks, Ops); 2772 } 2773 2774 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2775 } 2776 2777 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2778 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2779 // RHS to the same size as the LHS. 2780 Value *RHS = Ops.RHS; 2781 if (Ops.LHS->getType() != RHS->getType()) 2782 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2783 2784 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2785 if (CGF.getLangOpts().OpenCL) 2786 RHS = 2787 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2788 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2789 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2790 CodeGenFunction::SanitizerScope SanScope(&CGF); 2791 llvm::Value *Valid = 2792 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2793 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2794 } 2795 2796 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2797 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2798 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2799 } 2800 2801 enum IntrinsicType { VCMPEQ, VCMPGT }; 2802 // return corresponding comparison intrinsic for given vector type 2803 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2804 BuiltinType::Kind ElemKind) { 2805 switch (ElemKind) { 2806 default: llvm_unreachable("unexpected element type"); 2807 case BuiltinType::Char_U: 2808 case BuiltinType::UChar: 2809 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2810 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2811 case BuiltinType::Char_S: 2812 case BuiltinType::SChar: 2813 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2814 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2815 case BuiltinType::UShort: 2816 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2817 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2818 case BuiltinType::Short: 2819 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2820 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2821 case BuiltinType::UInt: 2822 case BuiltinType::ULong: 2823 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2824 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2825 case BuiltinType::Int: 2826 case BuiltinType::Long: 2827 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2828 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2829 case BuiltinType::Float: 2830 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2831 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2832 } 2833 } 2834 2835 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2836 unsigned SICmpOpc, unsigned FCmpOpc) { 2837 TestAndClearIgnoreResultAssign(); 2838 Value *Result; 2839 QualType LHSTy = E->getLHS()->getType(); 2840 QualType RHSTy = E->getRHS()->getType(); 2841 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2842 assert(E->getOpcode() == BO_EQ || 2843 E->getOpcode() == BO_NE); 2844 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2845 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2846 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2847 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2848 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2849 Value *LHS = Visit(E->getLHS()); 2850 Value *RHS = Visit(E->getRHS()); 2851 2852 // If AltiVec, the comparison results in a numeric type, so we use 2853 // intrinsics comparing vectors and giving 0 or 1 as a result 2854 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2855 // constants for mapping CR6 register bits to predicate result 2856 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2857 2858 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2859 2860 // in several cases vector arguments order will be reversed 2861 Value *FirstVecArg = LHS, 2862 *SecondVecArg = RHS; 2863 2864 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2865 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2866 BuiltinType::Kind ElementKind = BTy->getKind(); 2867 2868 switch(E->getOpcode()) { 2869 default: llvm_unreachable("is not a comparison operation"); 2870 case BO_EQ: 2871 CR6 = CR6_LT; 2872 ID = GetIntrinsic(VCMPEQ, ElementKind); 2873 break; 2874 case BO_NE: 2875 CR6 = CR6_EQ; 2876 ID = GetIntrinsic(VCMPEQ, ElementKind); 2877 break; 2878 case BO_LT: 2879 CR6 = CR6_LT; 2880 ID = GetIntrinsic(VCMPGT, ElementKind); 2881 std::swap(FirstVecArg, SecondVecArg); 2882 break; 2883 case BO_GT: 2884 CR6 = CR6_LT; 2885 ID = GetIntrinsic(VCMPGT, ElementKind); 2886 break; 2887 case BO_LE: 2888 if (ElementKind == BuiltinType::Float) { 2889 CR6 = CR6_LT; 2890 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2891 std::swap(FirstVecArg, SecondVecArg); 2892 } 2893 else { 2894 CR6 = CR6_EQ; 2895 ID = GetIntrinsic(VCMPGT, ElementKind); 2896 } 2897 break; 2898 case BO_GE: 2899 if (ElementKind == BuiltinType::Float) { 2900 CR6 = CR6_LT; 2901 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2902 } 2903 else { 2904 CR6 = CR6_EQ; 2905 ID = GetIntrinsic(VCMPGT, ElementKind); 2906 std::swap(FirstVecArg, SecondVecArg); 2907 } 2908 break; 2909 } 2910 2911 Value *CR6Param = Builder.getInt32(CR6); 2912 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2913 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2914 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2915 E->getExprLoc()); 2916 } 2917 2918 if (LHS->getType()->isFPOrFPVectorTy()) { 2919 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2920 LHS, RHS, "cmp"); 2921 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2922 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2923 LHS, RHS, "cmp"); 2924 } else { 2925 // Unsigned integers and pointers. 2926 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2927 LHS, RHS, "cmp"); 2928 } 2929 2930 // If this is a vector comparison, sign extend the result to the appropriate 2931 // vector integer type and return it (don't convert to bool). 2932 if (LHSTy->isVectorType()) 2933 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2934 2935 } else { 2936 // Complex Comparison: can only be an equality comparison. 2937 CodeGenFunction::ComplexPairTy LHS, RHS; 2938 QualType CETy; 2939 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2940 LHS = CGF.EmitComplexExpr(E->getLHS()); 2941 CETy = CTy->getElementType(); 2942 } else { 2943 LHS.first = Visit(E->getLHS()); 2944 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2945 CETy = LHSTy; 2946 } 2947 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2948 RHS = CGF.EmitComplexExpr(E->getRHS()); 2949 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2950 CTy->getElementType()) && 2951 "The element types must always match."); 2952 (void)CTy; 2953 } else { 2954 RHS.first = Visit(E->getRHS()); 2955 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2956 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2957 "The element types must always match."); 2958 } 2959 2960 Value *ResultR, *ResultI; 2961 if (CETy->isRealFloatingType()) { 2962 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2963 LHS.first, RHS.first, "cmp.r"); 2964 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2965 LHS.second, RHS.second, "cmp.i"); 2966 } else { 2967 // Complex comparisons can only be equality comparisons. As such, signed 2968 // and unsigned opcodes are the same. 2969 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2970 LHS.first, RHS.first, "cmp.r"); 2971 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2972 LHS.second, RHS.second, "cmp.i"); 2973 } 2974 2975 if (E->getOpcode() == BO_EQ) { 2976 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2977 } else { 2978 assert(E->getOpcode() == BO_NE && 2979 "Complex comparison other than == or != ?"); 2980 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2981 } 2982 } 2983 2984 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2985 E->getExprLoc()); 2986 } 2987 2988 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2989 bool Ignore = TestAndClearIgnoreResultAssign(); 2990 2991 Value *RHS; 2992 LValue LHS; 2993 2994 switch (E->getLHS()->getType().getObjCLifetime()) { 2995 case Qualifiers::OCL_Strong: 2996 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2997 break; 2998 2999 case Qualifiers::OCL_Autoreleasing: 3000 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3001 break; 3002 3003 case Qualifiers::OCL_Weak: 3004 RHS = Visit(E->getRHS()); 3005 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3006 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3007 break; 3008 3009 // No reason to do any of these differently. 3010 case Qualifiers::OCL_None: 3011 case Qualifiers::OCL_ExplicitNone: 3012 // __block variables need to have the rhs evaluated first, plus 3013 // this should improve codegen just a little. 3014 RHS = Visit(E->getRHS()); 3015 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3016 3017 // Store the value into the LHS. Bit-fields are handled specially 3018 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3019 // 'An assignment expression has the value of the left operand after 3020 // the assignment...'. 3021 if (LHS.isBitField()) 3022 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3023 else 3024 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3025 } 3026 3027 // If the result is clearly ignored, return now. 3028 if (Ignore) 3029 return nullptr; 3030 3031 // The result of an assignment in C is the assigned r-value. 3032 if (!CGF.getLangOpts().CPlusPlus) 3033 return RHS; 3034 3035 // If the lvalue is non-volatile, return the computed value of the assignment. 3036 if (!LHS.isVolatileQualified()) 3037 return RHS; 3038 3039 // Otherwise, reload the value. 3040 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3041 } 3042 3043 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3044 // Perform vector logical and on comparisons with zero vectors. 3045 if (E->getType()->isVectorType()) { 3046 CGF.incrementProfileCounter(E); 3047 3048 Value *LHS = Visit(E->getLHS()); 3049 Value *RHS = Visit(E->getRHS()); 3050 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3051 if (LHS->getType()->isFPOrFPVectorTy()) { 3052 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3053 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3054 } else { 3055 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3056 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3057 } 3058 Value *And = Builder.CreateAnd(LHS, RHS); 3059 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3060 } 3061 3062 llvm::Type *ResTy = ConvertType(E->getType()); 3063 3064 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3065 // If we have 1 && X, just emit X without inserting the control flow. 3066 bool LHSCondVal; 3067 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3068 if (LHSCondVal) { // If we have 1 && X, just emit X. 3069 CGF.incrementProfileCounter(E); 3070 3071 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3072 // ZExt result to int or bool. 3073 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3074 } 3075 3076 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3077 if (!CGF.ContainsLabel(E->getRHS())) 3078 return llvm::Constant::getNullValue(ResTy); 3079 } 3080 3081 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3082 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3083 3084 CodeGenFunction::ConditionalEvaluation eval(CGF); 3085 3086 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3087 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3088 CGF.getProfileCount(E->getRHS())); 3089 3090 // Any edges into the ContBlock are now from an (indeterminate number of) 3091 // edges from this first condition. All of these values will be false. Start 3092 // setting up the PHI node in the Cont Block for this. 3093 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3094 "", ContBlock); 3095 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3096 PI != PE; ++PI) 3097 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3098 3099 eval.begin(CGF); 3100 CGF.EmitBlock(RHSBlock); 3101 CGF.incrementProfileCounter(E); 3102 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3103 eval.end(CGF); 3104 3105 // Reaquire the RHS block, as there may be subblocks inserted. 3106 RHSBlock = Builder.GetInsertBlock(); 3107 3108 // Emit an unconditional branch from this block to ContBlock. 3109 { 3110 // There is no need to emit line number for unconditional branch. 3111 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3112 CGF.EmitBlock(ContBlock); 3113 } 3114 // Insert an entry into the phi node for the edge with the value of RHSCond. 3115 PN->addIncoming(RHSCond, RHSBlock); 3116 3117 // ZExt result to int. 3118 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3119 } 3120 3121 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3122 // Perform vector logical or on comparisons with zero vectors. 3123 if (E->getType()->isVectorType()) { 3124 CGF.incrementProfileCounter(E); 3125 3126 Value *LHS = Visit(E->getLHS()); 3127 Value *RHS = Visit(E->getRHS()); 3128 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3129 if (LHS->getType()->isFPOrFPVectorTy()) { 3130 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3131 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3132 } else { 3133 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3134 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3135 } 3136 Value *Or = Builder.CreateOr(LHS, RHS); 3137 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3138 } 3139 3140 llvm::Type *ResTy = ConvertType(E->getType()); 3141 3142 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3143 // If we have 0 || X, just emit X without inserting the control flow. 3144 bool LHSCondVal; 3145 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3146 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3147 CGF.incrementProfileCounter(E); 3148 3149 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3150 // ZExt result to int or bool. 3151 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3152 } 3153 3154 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3155 if (!CGF.ContainsLabel(E->getRHS())) 3156 return llvm::ConstantInt::get(ResTy, 1); 3157 } 3158 3159 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3160 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3161 3162 CodeGenFunction::ConditionalEvaluation eval(CGF); 3163 3164 // Branch on the LHS first. If it is true, go to the success (cont) block. 3165 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3166 CGF.getCurrentProfileCount() - 3167 CGF.getProfileCount(E->getRHS())); 3168 3169 // Any edges into the ContBlock are now from an (indeterminate number of) 3170 // edges from this first condition. All of these values will be true. Start 3171 // setting up the PHI node in the Cont Block for this. 3172 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3173 "", ContBlock); 3174 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3175 PI != PE; ++PI) 3176 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3177 3178 eval.begin(CGF); 3179 3180 // Emit the RHS condition as a bool value. 3181 CGF.EmitBlock(RHSBlock); 3182 CGF.incrementProfileCounter(E); 3183 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3184 3185 eval.end(CGF); 3186 3187 // Reaquire the RHS block, as there may be subblocks inserted. 3188 RHSBlock = Builder.GetInsertBlock(); 3189 3190 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3191 // into the phi node for the edge with the value of RHSCond. 3192 CGF.EmitBlock(ContBlock); 3193 PN->addIncoming(RHSCond, RHSBlock); 3194 3195 // ZExt result to int. 3196 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3197 } 3198 3199 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3200 CGF.EmitIgnoredExpr(E->getLHS()); 3201 CGF.EnsureInsertPoint(); 3202 return Visit(E->getRHS()); 3203 } 3204 3205 //===----------------------------------------------------------------------===// 3206 // Other Operators 3207 //===----------------------------------------------------------------------===// 3208 3209 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3210 /// expression is cheap enough and side-effect-free enough to evaluate 3211 /// unconditionally instead of conditionally. This is used to convert control 3212 /// flow into selects in some cases. 3213 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3214 CodeGenFunction &CGF) { 3215 // Anything that is an integer or floating point constant is fine. 3216 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3217 3218 // Even non-volatile automatic variables can't be evaluated unconditionally. 3219 // Referencing a thread_local may cause non-trivial initialization work to 3220 // occur. If we're inside a lambda and one of the variables is from the scope 3221 // outside the lambda, that function may have returned already. Reading its 3222 // locals is a bad idea. Also, these reads may introduce races there didn't 3223 // exist in the source-level program. 3224 } 3225 3226 3227 Value *ScalarExprEmitter:: 3228 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3229 TestAndClearIgnoreResultAssign(); 3230 3231 // Bind the common expression if necessary. 3232 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3233 3234 Expr *condExpr = E->getCond(); 3235 Expr *lhsExpr = E->getTrueExpr(); 3236 Expr *rhsExpr = E->getFalseExpr(); 3237 3238 // If the condition constant folds and can be elided, try to avoid emitting 3239 // the condition and the dead arm. 3240 bool CondExprBool; 3241 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3242 Expr *live = lhsExpr, *dead = rhsExpr; 3243 if (!CondExprBool) std::swap(live, dead); 3244 3245 // If the dead side doesn't have labels we need, just emit the Live part. 3246 if (!CGF.ContainsLabel(dead)) { 3247 if (CondExprBool) 3248 CGF.incrementProfileCounter(E); 3249 Value *Result = Visit(live); 3250 3251 // If the live part is a throw expression, it acts like it has a void 3252 // type, so evaluating it returns a null Value*. However, a conditional 3253 // with non-void type must return a non-null Value*. 3254 if (!Result && !E->getType()->isVoidType()) 3255 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3256 3257 return Result; 3258 } 3259 } 3260 3261 // OpenCL: If the condition is a vector, we can treat this condition like 3262 // the select function. 3263 if (CGF.getLangOpts().OpenCL 3264 && condExpr->getType()->isVectorType()) { 3265 CGF.incrementProfileCounter(E); 3266 3267 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3268 llvm::Value *LHS = Visit(lhsExpr); 3269 llvm::Value *RHS = Visit(rhsExpr); 3270 3271 llvm::Type *condType = ConvertType(condExpr->getType()); 3272 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3273 3274 unsigned numElem = vecTy->getNumElements(); 3275 llvm::Type *elemType = vecTy->getElementType(); 3276 3277 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3278 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3279 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3280 llvm::VectorType::get(elemType, 3281 numElem), 3282 "sext"); 3283 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3284 3285 // Cast float to int to perform ANDs if necessary. 3286 llvm::Value *RHSTmp = RHS; 3287 llvm::Value *LHSTmp = LHS; 3288 bool wasCast = false; 3289 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3290 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3291 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3292 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3293 wasCast = true; 3294 } 3295 3296 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3297 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3298 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3299 if (wasCast) 3300 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3301 3302 return tmp5; 3303 } 3304 3305 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3306 // select instead of as control flow. We can only do this if it is cheap and 3307 // safe to evaluate the LHS and RHS unconditionally. 3308 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3309 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3310 CGF.incrementProfileCounter(E); 3311 3312 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3313 llvm::Value *LHS = Visit(lhsExpr); 3314 llvm::Value *RHS = Visit(rhsExpr); 3315 if (!LHS) { 3316 // If the conditional has void type, make sure we return a null Value*. 3317 assert(!RHS && "LHS and RHS types must match"); 3318 return nullptr; 3319 } 3320 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3321 } 3322 3323 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3324 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3325 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3326 3327 CodeGenFunction::ConditionalEvaluation eval(CGF); 3328 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3329 CGF.getProfileCount(lhsExpr)); 3330 3331 CGF.EmitBlock(LHSBlock); 3332 CGF.incrementProfileCounter(E); 3333 eval.begin(CGF); 3334 Value *LHS = Visit(lhsExpr); 3335 eval.end(CGF); 3336 3337 LHSBlock = Builder.GetInsertBlock(); 3338 Builder.CreateBr(ContBlock); 3339 3340 CGF.EmitBlock(RHSBlock); 3341 eval.begin(CGF); 3342 Value *RHS = Visit(rhsExpr); 3343 eval.end(CGF); 3344 3345 RHSBlock = Builder.GetInsertBlock(); 3346 CGF.EmitBlock(ContBlock); 3347 3348 // If the LHS or RHS is a throw expression, it will be legitimately null. 3349 if (!LHS) 3350 return RHS; 3351 if (!RHS) 3352 return LHS; 3353 3354 // Create a PHI node for the real part. 3355 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3356 PN->addIncoming(LHS, LHSBlock); 3357 PN->addIncoming(RHS, RHSBlock); 3358 return PN; 3359 } 3360 3361 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3362 return Visit(E->getChosenSubExpr()); 3363 } 3364 3365 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3366 QualType Ty = VE->getType(); 3367 3368 if (Ty->isVariablyModifiedType()) 3369 CGF.EmitVariablyModifiedType(Ty); 3370 3371 Address ArgValue = Address::invalid(); 3372 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3373 3374 llvm::Type *ArgTy = ConvertType(VE->getType()); 3375 3376 // If EmitVAArg fails, we fall back to the LLVM instruction. 3377 if (!ArgPtr.isValid()) 3378 return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy); 3379 3380 // FIXME Volatility. 3381 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3382 3383 // If EmitVAArg promoted the type, we must truncate it. 3384 if (ArgTy != Val->getType()) { 3385 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3386 Val = Builder.CreateIntToPtr(Val, ArgTy); 3387 else 3388 Val = Builder.CreateTrunc(Val, ArgTy); 3389 } 3390 3391 return Val; 3392 } 3393 3394 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3395 return CGF.EmitBlockLiteral(block); 3396 } 3397 3398 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3399 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3400 llvm::Type *DstTy = ConvertType(E->getType()); 3401 3402 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3403 // a shuffle vector instead of a bitcast. 3404 llvm::Type *SrcTy = Src->getType(); 3405 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3406 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3407 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3408 if ((numElementsDst == 3 && numElementsSrc == 4) 3409 || (numElementsDst == 4 && numElementsSrc == 3)) { 3410 3411 3412 // In the case of going from int4->float3, a bitcast is needed before 3413 // doing a shuffle. 3414 llvm::Type *srcElemTy = 3415 cast<llvm::VectorType>(SrcTy)->getElementType(); 3416 llvm::Type *dstElemTy = 3417 cast<llvm::VectorType>(DstTy)->getElementType(); 3418 3419 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3420 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3421 // Create a float type of the same size as the source or destination. 3422 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3423 numElementsSrc); 3424 3425 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3426 } 3427 3428 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3429 3430 SmallVector<llvm::Constant*, 3> Args; 3431 Args.push_back(Builder.getInt32(0)); 3432 Args.push_back(Builder.getInt32(1)); 3433 Args.push_back(Builder.getInt32(2)); 3434 3435 if (numElementsDst == 4) 3436 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3437 3438 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3439 3440 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3441 } 3442 } 3443 3444 return Builder.CreateBitCast(Src, DstTy, "astype"); 3445 } 3446 3447 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3448 return CGF.EmitAtomicExpr(E).getScalarVal(); 3449 } 3450 3451 //===----------------------------------------------------------------------===// 3452 // Entry Point into this File 3453 //===----------------------------------------------------------------------===// 3454 3455 /// Emit the computation of the specified expression of scalar type, ignoring 3456 /// the result. 3457 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3458 assert(E && hasScalarEvaluationKind(E->getType()) && 3459 "Invalid scalar expression to emit"); 3460 3461 return ScalarExprEmitter(*this, IgnoreResultAssign) 3462 .Visit(const_cast<Expr *>(E)); 3463 } 3464 3465 /// Emit a conversion from the specified type to the specified destination type, 3466 /// both of which are LLVM scalar types. 3467 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3468 QualType DstTy, 3469 SourceLocation Loc) { 3470 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3471 "Invalid scalar expression to emit"); 3472 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3473 } 3474 3475 /// Emit a conversion from the specified complex type to the specified 3476 /// destination type, where the destination type is an LLVM scalar type. 3477 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3478 QualType SrcTy, 3479 QualType DstTy, 3480 SourceLocation Loc) { 3481 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3482 "Invalid complex -> scalar conversion"); 3483 return ScalarExprEmitter(*this) 3484 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3485 } 3486 3487 3488 llvm::Value *CodeGenFunction:: 3489 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3490 bool isInc, bool isPre) { 3491 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3492 } 3493 3494 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3495 // object->isa or (*object).isa 3496 // Generate code as for: *(Class*)object 3497 3498 Expr *BaseExpr = E->getBase(); 3499 Address Addr = Address::invalid(); 3500 if (BaseExpr->isRValue()) { 3501 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3502 } else { 3503 Addr = EmitLValue(BaseExpr).getAddress(); 3504 } 3505 3506 // Cast the address to Class*. 3507 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3508 return MakeAddrLValue(Addr, E->getType()); 3509 } 3510 3511 3512 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3513 const CompoundAssignOperator *E) { 3514 ScalarExprEmitter Scalar(*this); 3515 Value *Result = nullptr; 3516 switch (E->getOpcode()) { 3517 #define COMPOUND_OP(Op) \ 3518 case BO_##Op##Assign: \ 3519 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3520 Result) 3521 COMPOUND_OP(Mul); 3522 COMPOUND_OP(Div); 3523 COMPOUND_OP(Rem); 3524 COMPOUND_OP(Add); 3525 COMPOUND_OP(Sub); 3526 COMPOUND_OP(Shl); 3527 COMPOUND_OP(Shr); 3528 COMPOUND_OP(And); 3529 COMPOUND_OP(Xor); 3530 COMPOUND_OP(Or); 3531 #undef COMPOUND_OP 3532 3533 case BO_PtrMemD: 3534 case BO_PtrMemI: 3535 case BO_Mul: 3536 case BO_Div: 3537 case BO_Rem: 3538 case BO_Add: 3539 case BO_Sub: 3540 case BO_Shl: 3541 case BO_Shr: 3542 case BO_LT: 3543 case BO_GT: 3544 case BO_LE: 3545 case BO_GE: 3546 case BO_EQ: 3547 case BO_NE: 3548 case BO_And: 3549 case BO_Xor: 3550 case BO_Or: 3551 case BO_LAnd: 3552 case BO_LOr: 3553 case BO_Assign: 3554 case BO_Comma: 3555 llvm_unreachable("Not valid compound assignment operators"); 3556 } 3557 3558 llvm_unreachable("Unhandled compound assignment operator"); 3559 } 3560