1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/FixedPoint.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include <cstdarg> 39 40 using namespace clang; 41 using namespace CodeGen; 42 using llvm::Value; 43 44 //===----------------------------------------------------------------------===// 45 // Scalar Expression Emitter 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 50 /// Determine whether the given binary operation may overflow. 51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 53 /// the returned overflow check is precise. The returned value is 'true' for 54 /// all other opcodes, to be conservative. 55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 56 BinaryOperator::Opcode Opcode, bool Signed, 57 llvm::APInt &Result) { 58 // Assume overflow is possible, unless we can prove otherwise. 59 bool Overflow = true; 60 const auto &LHSAP = LHS->getValue(); 61 const auto &RHSAP = RHS->getValue(); 62 if (Opcode == BO_Add) { 63 if (Signed) 64 Result = LHSAP.sadd_ov(RHSAP, Overflow); 65 else 66 Result = LHSAP.uadd_ov(RHSAP, Overflow); 67 } else if (Opcode == BO_Sub) { 68 if (Signed) 69 Result = LHSAP.ssub_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.usub_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Mul) { 73 if (Signed) 74 Result = LHSAP.smul_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.umul_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 78 if (Signed && !RHS->isZero()) 79 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 80 else 81 return false; 82 } 83 return Overflow; 84 } 85 86 struct BinOpInfo { 87 Value *LHS; 88 Value *RHS; 89 QualType Ty; // Computation Type. 90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 91 FPOptions FPFeatures; 92 const Expr *E; // Entire expr, for error unsupported. May not be binop. 93 94 /// Check if the binop can result in integer overflow. 95 bool mayHaveIntegerOverflow() const { 96 // Without constant input, we can't rule out overflow. 97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 99 if (!LHSCI || !RHSCI) 100 return true; 101 102 llvm::APInt Result; 103 return ::mayHaveIntegerOverflow( 104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 105 } 106 107 /// Check if the binop computes a division or a remainder. 108 bool isDivremOp() const { 109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 110 Opcode == BO_RemAssign; 111 } 112 113 /// Check if the binop can result in an integer division by zero. 114 bool mayHaveIntegerDivisionByZero() const { 115 if (isDivremOp()) 116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 117 return CI->isZero(); 118 return true; 119 } 120 121 /// Check if the binop can result in a float division by zero. 122 bool mayHaveFloatDivisionByZero() const { 123 if (isDivremOp()) 124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 125 return CFP->isZero(); 126 return true; 127 } 128 129 /// Check if either operand is a fixed point type or integer type, with at 130 /// least one being a fixed point type. In any case, this 131 /// operation did not follow usual arithmetic conversion and both operands may 132 /// not be the same. 133 bool isFixedPointBinOp() const { 134 // We cannot simply check the result type since comparison operations return 135 // an int. 136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 137 QualType LHSType = BinOp->getLHS()->getType(); 138 QualType RHSType = BinOp->getRHS()->getType(); 139 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 140 } 141 return false; 142 } 143 }; 144 145 static bool MustVisitNullValue(const Expr *E) { 146 // If a null pointer expression's type is the C++0x nullptr_t, then 147 // it's not necessarily a simple constant and it must be evaluated 148 // for its potential side effects. 149 return E->getType()->isNullPtrType(); 150 } 151 152 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 154 const Expr *E) { 155 const Expr *Base = E->IgnoreImpCasts(); 156 if (E == Base) 157 return llvm::None; 158 159 QualType BaseTy = Base->getType(); 160 if (!BaseTy->isPromotableIntegerType() || 161 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 162 return llvm::None; 163 164 return BaseTy; 165 } 166 167 /// Check if \p E is a widened promoted integer. 168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 169 return getUnwidenedIntegerType(Ctx, E).hasValue(); 170 } 171 172 /// Check if we can skip the overflow check for \p Op. 173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 174 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 175 "Expected a unary or binary operator"); 176 177 // If the binop has constant inputs and we can prove there is no overflow, 178 // we can elide the overflow check. 179 if (!Op.mayHaveIntegerOverflow()) 180 return true; 181 182 // If a unary op has a widened operand, the op cannot overflow. 183 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 184 return !UO->canOverflow(); 185 186 // We usually don't need overflow checks for binops with widened operands. 187 // Multiplication with promoted unsigned operands is a special case. 188 const auto *BO = cast<BinaryOperator>(Op.E); 189 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 190 if (!OptionalLHSTy) 191 return false; 192 193 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 194 if (!OptionalRHSTy) 195 return false; 196 197 QualType LHSTy = *OptionalLHSTy; 198 QualType RHSTy = *OptionalRHSTy; 199 200 // This is the simple case: binops without unsigned multiplication, and with 201 // widened operands. No overflow check is needed here. 202 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 203 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 204 return true; 205 206 // For unsigned multiplication the overflow check can be elided if either one 207 // of the unpromoted types are less than half the size of the promoted type. 208 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 209 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 210 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 211 } 212 213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 214 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 215 FPOptions FPFeatures) { 216 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 217 } 218 219 /// Propagate fast-math flags from \p Op to the instruction in \p V. 220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 221 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 222 llvm::FastMathFlags FMF = I->getFastMathFlags(); 223 updateFastMathFlags(FMF, Op.FPFeatures); 224 I->setFastMathFlags(FMF); 225 } 226 return V; 227 } 228 229 class ScalarExprEmitter 230 : public StmtVisitor<ScalarExprEmitter, Value*> { 231 CodeGenFunction &CGF; 232 CGBuilderTy &Builder; 233 bool IgnoreResultAssign; 234 llvm::LLVMContext &VMContext; 235 public: 236 237 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 238 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 239 VMContext(cgf.getLLVMContext()) { 240 } 241 242 //===--------------------------------------------------------------------===// 243 // Utilities 244 //===--------------------------------------------------------------------===// 245 246 bool TestAndClearIgnoreResultAssign() { 247 bool I = IgnoreResultAssign; 248 IgnoreResultAssign = false; 249 return I; 250 } 251 252 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 253 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 254 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 255 return CGF.EmitCheckedLValue(E, TCK); 256 } 257 258 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 259 const BinOpInfo &Info); 260 261 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 262 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 263 } 264 265 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 266 const AlignValueAttr *AVAttr = nullptr; 267 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 268 const ValueDecl *VD = DRE->getDecl(); 269 270 if (VD->getType()->isReferenceType()) { 271 if (const auto *TTy = 272 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 273 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 274 } else { 275 // Assumptions for function parameters are emitted at the start of the 276 // function, so there is no need to repeat that here, 277 // unless the alignment-assumption sanitizer is enabled, 278 // then we prefer the assumption over alignment attribute 279 // on IR function param. 280 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 281 return; 282 283 AVAttr = VD->getAttr<AlignValueAttr>(); 284 } 285 } 286 287 if (!AVAttr) 288 if (const auto *TTy = 289 dyn_cast<TypedefType>(E->getType())) 290 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 291 292 if (!AVAttr) 293 return; 294 295 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 296 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 297 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 298 } 299 300 /// EmitLoadOfLValue - Given an expression with complex type that represents a 301 /// value l-value, this method emits the address of the l-value, then loads 302 /// and returns the result. 303 Value *EmitLoadOfLValue(const Expr *E) { 304 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 305 E->getExprLoc()); 306 307 EmitLValueAlignmentAssumption(E, V); 308 return V; 309 } 310 311 /// EmitConversionToBool - Convert the specified expression value to a 312 /// boolean (i1) truth value. This is equivalent to "Val != 0". 313 Value *EmitConversionToBool(Value *Src, QualType DstTy); 314 315 /// Emit a check that a conversion from a floating-point type does not 316 /// overflow. 317 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 318 Value *Src, QualType SrcType, QualType DstType, 319 llvm::Type *DstTy, SourceLocation Loc); 320 321 /// Known implicit conversion check kinds. 322 /// Keep in sync with the enum of the same name in ubsan_handlers.h 323 enum ImplicitConversionCheckKind : unsigned char { 324 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 325 ICCK_UnsignedIntegerTruncation = 1, 326 ICCK_SignedIntegerTruncation = 2, 327 ICCK_IntegerSignChange = 3, 328 ICCK_SignedIntegerTruncationOrSignChange = 4, 329 }; 330 331 /// Emit a check that an [implicit] truncation of an integer does not 332 /// discard any bits. It is not UB, so we use the value after truncation. 333 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 334 QualType DstType, SourceLocation Loc); 335 336 /// Emit a check that an [implicit] conversion of an integer does not change 337 /// the sign of the value. It is not UB, so we use the value after conversion. 338 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 339 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 340 QualType DstType, SourceLocation Loc); 341 342 /// Emit a conversion from the specified type to the specified destination 343 /// type, both of which are LLVM scalar types. 344 struct ScalarConversionOpts { 345 bool TreatBooleanAsSigned; 346 bool EmitImplicitIntegerTruncationChecks; 347 bool EmitImplicitIntegerSignChangeChecks; 348 349 ScalarConversionOpts() 350 : TreatBooleanAsSigned(false), 351 EmitImplicitIntegerTruncationChecks(false), 352 EmitImplicitIntegerSignChangeChecks(false) {} 353 354 ScalarConversionOpts(clang::SanitizerSet SanOpts) 355 : TreatBooleanAsSigned(false), 356 EmitImplicitIntegerTruncationChecks( 357 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 358 EmitImplicitIntegerSignChangeChecks( 359 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 360 }; 361 Value * 362 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 363 SourceLocation Loc, 364 ScalarConversionOpts Opts = ScalarConversionOpts()); 365 366 /// Convert between either a fixed point and other fixed point or fixed point 367 /// and an integer. 368 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 369 SourceLocation Loc); 370 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 371 FixedPointSemantics &DstFixedSema, 372 SourceLocation Loc, 373 bool DstIsInteger = false); 374 375 /// Emit a conversion from the specified complex type to the specified 376 /// destination type, where the destination type is an LLVM scalar type. 377 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 378 QualType SrcTy, QualType DstTy, 379 SourceLocation Loc); 380 381 /// EmitNullValue - Emit a value that corresponds to null for the given type. 382 Value *EmitNullValue(QualType Ty); 383 384 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 385 Value *EmitFloatToBoolConversion(Value *V) { 386 // Compare against 0.0 for fp scalars. 387 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 388 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 389 } 390 391 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 392 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 393 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 394 395 return Builder.CreateICmpNE(V, Zero, "tobool"); 396 } 397 398 Value *EmitIntToBoolConversion(Value *V) { 399 // Because of the type rules of C, we often end up computing a 400 // logical value, then zero extending it to int, then wanting it 401 // as a logical value again. Optimize this common case. 402 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 403 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 404 Value *Result = ZI->getOperand(0); 405 // If there aren't any more uses, zap the instruction to save space. 406 // Note that there can be more uses, for example if this 407 // is the result of an assignment. 408 if (ZI->use_empty()) 409 ZI->eraseFromParent(); 410 return Result; 411 } 412 } 413 414 return Builder.CreateIsNotNull(V, "tobool"); 415 } 416 417 //===--------------------------------------------------------------------===// 418 // Visitor Methods 419 //===--------------------------------------------------------------------===// 420 421 Value *Visit(Expr *E) { 422 ApplyDebugLocation DL(CGF, E); 423 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 424 } 425 426 Value *VisitStmt(Stmt *S) { 427 S->dump(CGF.getContext().getSourceManager()); 428 llvm_unreachable("Stmt can't have complex result type!"); 429 } 430 Value *VisitExpr(Expr *S); 431 432 Value *VisitConstantExpr(ConstantExpr *E) { 433 return Visit(E->getSubExpr()); 434 } 435 Value *VisitParenExpr(ParenExpr *PE) { 436 return Visit(PE->getSubExpr()); 437 } 438 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 439 return Visit(E->getReplacement()); 440 } 441 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 442 return Visit(GE->getResultExpr()); 443 } 444 Value *VisitCoawaitExpr(CoawaitExpr *S) { 445 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 446 } 447 Value *VisitCoyieldExpr(CoyieldExpr *S) { 448 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 449 } 450 Value *VisitUnaryCoawait(const UnaryOperator *E) { 451 return Visit(E->getSubExpr()); 452 } 453 454 // Leaves. 455 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 456 return Builder.getInt(E->getValue()); 457 } 458 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 459 return Builder.getInt(E->getValue()); 460 } 461 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 462 return llvm::ConstantFP::get(VMContext, E->getValue()); 463 } 464 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 466 } 467 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 469 } 470 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 472 } 473 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 474 return EmitNullValue(E->getType()); 475 } 476 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 477 return EmitNullValue(E->getType()); 478 } 479 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 480 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 481 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 482 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 483 return Builder.CreateBitCast(V, ConvertType(E->getType())); 484 } 485 486 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 487 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 488 } 489 490 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 491 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 492 } 493 494 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 495 if (E->isGLValue()) 496 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 497 E->getExprLoc()); 498 499 // Otherwise, assume the mapping is the scalar directly. 500 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 501 } 502 503 // l-values. 504 Value *VisitDeclRefExpr(DeclRefExpr *E) { 505 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 506 return CGF.emitScalarConstant(Constant, E); 507 return EmitLoadOfLValue(E); 508 } 509 510 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 511 return CGF.EmitObjCSelectorExpr(E); 512 } 513 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 514 return CGF.EmitObjCProtocolExpr(E); 515 } 516 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 517 return EmitLoadOfLValue(E); 518 } 519 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 520 if (E->getMethodDecl() && 521 E->getMethodDecl()->getReturnType()->isReferenceType()) 522 return EmitLoadOfLValue(E); 523 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 524 } 525 526 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 527 LValue LV = CGF.EmitObjCIsaExpr(E); 528 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 529 return V; 530 } 531 532 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 533 VersionTuple Version = E->getVersion(); 534 535 // If we're checking for a platform older than our minimum deployment 536 // target, we can fold the check away. 537 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 538 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 539 540 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 541 llvm::Value *Args[] = { 542 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 543 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 544 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 545 }; 546 547 return CGF.EmitBuiltinAvailable(Args); 548 } 549 550 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 551 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 552 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 553 Value *VisitMemberExpr(MemberExpr *E); 554 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 555 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 556 return EmitLoadOfLValue(E); 557 } 558 559 Value *VisitInitListExpr(InitListExpr *E); 560 561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 562 assert(CGF.getArrayInitIndex() && 563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 564 return CGF.getArrayInitIndex(); 565 } 566 567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 568 return EmitNullValue(E->getType()); 569 } 570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 571 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 572 return VisitCastExpr(E); 573 } 574 Value *VisitCastExpr(CastExpr *E); 575 576 Value *VisitCallExpr(const CallExpr *E) { 577 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 578 return EmitLoadOfLValue(E); 579 580 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 581 582 EmitLValueAlignmentAssumption(E, V); 583 return V; 584 } 585 586 Value *VisitStmtExpr(const StmtExpr *E); 587 588 // Unary Operators. 589 Value *VisitUnaryPostDec(const UnaryOperator *E) { 590 LValue LV = EmitLValue(E->getSubExpr()); 591 return EmitScalarPrePostIncDec(E, LV, false, false); 592 } 593 Value *VisitUnaryPostInc(const UnaryOperator *E) { 594 LValue LV = EmitLValue(E->getSubExpr()); 595 return EmitScalarPrePostIncDec(E, LV, true, false); 596 } 597 Value *VisitUnaryPreDec(const UnaryOperator *E) { 598 LValue LV = EmitLValue(E->getSubExpr()); 599 return EmitScalarPrePostIncDec(E, LV, false, true); 600 } 601 Value *VisitUnaryPreInc(const UnaryOperator *E) { 602 LValue LV = EmitLValue(E->getSubExpr()); 603 return EmitScalarPrePostIncDec(E, LV, true, true); 604 } 605 606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 607 llvm::Value *InVal, 608 bool IsInc); 609 610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 611 bool isInc, bool isPre); 612 613 614 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 615 if (isa<MemberPointerType>(E->getType())) // never sugared 616 return CGF.CGM.getMemberPointerConstant(E); 617 618 return EmitLValue(E->getSubExpr()).getPointer(); 619 } 620 Value *VisitUnaryDeref(const UnaryOperator *E) { 621 if (E->getType()->isVoidType()) 622 return Visit(E->getSubExpr()); // the actual value should be unused 623 return EmitLoadOfLValue(E); 624 } 625 Value *VisitUnaryPlus(const UnaryOperator *E) { 626 // This differs from gcc, though, most likely due to a bug in gcc. 627 TestAndClearIgnoreResultAssign(); 628 return Visit(E->getSubExpr()); 629 } 630 Value *VisitUnaryMinus (const UnaryOperator *E); 631 Value *VisitUnaryNot (const UnaryOperator *E); 632 Value *VisitUnaryLNot (const UnaryOperator *E); 633 Value *VisitUnaryReal (const UnaryOperator *E); 634 Value *VisitUnaryImag (const UnaryOperator *E); 635 Value *VisitUnaryExtension(const UnaryOperator *E) { 636 return Visit(E->getSubExpr()); 637 } 638 639 // C++ 640 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 641 return EmitLoadOfLValue(E); 642 } 643 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 644 auto &Ctx = CGF.getContext(); 645 APValue Evaluated = 646 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 647 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 648 SLE->getType()); 649 } 650 651 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 652 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 653 return Visit(DAE->getExpr()); 654 } 655 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 656 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 657 return Visit(DIE->getExpr()); 658 } 659 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 660 return CGF.LoadCXXThis(); 661 } 662 663 Value *VisitExprWithCleanups(ExprWithCleanups *E); 664 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 665 return CGF.EmitCXXNewExpr(E); 666 } 667 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 668 CGF.EmitCXXDeleteExpr(E); 669 return nullptr; 670 } 671 672 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 673 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 674 } 675 676 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 677 return Builder.getInt1(E->isSatisfied()); 678 } 679 680 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 681 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 682 } 683 684 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 685 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 686 } 687 688 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 689 // C++ [expr.pseudo]p1: 690 // The result shall only be used as the operand for the function call 691 // operator (), and the result of such a call has type void. The only 692 // effect is the evaluation of the postfix-expression before the dot or 693 // arrow. 694 CGF.EmitScalarExpr(E->getBase()); 695 return nullptr; 696 } 697 698 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 699 return EmitNullValue(E->getType()); 700 } 701 702 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 703 CGF.EmitCXXThrowExpr(E); 704 return nullptr; 705 } 706 707 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 708 return Builder.getInt1(E->getValue()); 709 } 710 711 // Binary Operators. 712 Value *EmitMul(const BinOpInfo &Ops) { 713 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 714 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 715 case LangOptions::SOB_Defined: 716 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 717 case LangOptions::SOB_Undefined: 718 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 719 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 720 LLVM_FALLTHROUGH; 721 case LangOptions::SOB_Trapping: 722 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 723 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 724 return EmitOverflowCheckedBinOp(Ops); 725 } 726 } 727 728 if (Ops.Ty->isUnsignedIntegerType() && 729 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 730 !CanElideOverflowCheck(CGF.getContext(), Ops)) 731 return EmitOverflowCheckedBinOp(Ops); 732 733 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 734 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 735 return propagateFMFlags(V, Ops); 736 } 737 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 738 } 739 /// Create a binary op that checks for overflow. 740 /// Currently only supports +, - and *. 741 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 742 743 // Check for undefined division and modulus behaviors. 744 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 745 llvm::Value *Zero,bool isDiv); 746 // Common helper for getting how wide LHS of shift is. 747 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 748 Value *EmitDiv(const BinOpInfo &Ops); 749 Value *EmitRem(const BinOpInfo &Ops); 750 Value *EmitAdd(const BinOpInfo &Ops); 751 Value *EmitSub(const BinOpInfo &Ops); 752 Value *EmitShl(const BinOpInfo &Ops); 753 Value *EmitShr(const BinOpInfo &Ops); 754 Value *EmitAnd(const BinOpInfo &Ops) { 755 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 756 } 757 Value *EmitXor(const BinOpInfo &Ops) { 758 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 759 } 760 Value *EmitOr (const BinOpInfo &Ops) { 761 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 762 } 763 764 // Helper functions for fixed point binary operations. 765 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 766 767 BinOpInfo EmitBinOps(const BinaryOperator *E); 768 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 769 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 770 Value *&Result); 771 772 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 773 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 774 775 // Binary operators and binary compound assignment operators. 776 #define HANDLEBINOP(OP) \ 777 Value *VisitBin ## OP(const BinaryOperator *E) { \ 778 return Emit ## OP(EmitBinOps(E)); \ 779 } \ 780 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 781 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 782 } 783 HANDLEBINOP(Mul) 784 HANDLEBINOP(Div) 785 HANDLEBINOP(Rem) 786 HANDLEBINOP(Add) 787 HANDLEBINOP(Sub) 788 HANDLEBINOP(Shl) 789 HANDLEBINOP(Shr) 790 HANDLEBINOP(And) 791 HANDLEBINOP(Xor) 792 HANDLEBINOP(Or) 793 #undef HANDLEBINOP 794 795 // Comparisons. 796 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 797 llvm::CmpInst::Predicate SICmpOpc, 798 llvm::CmpInst::Predicate FCmpOpc); 799 #define VISITCOMP(CODE, UI, SI, FP) \ 800 Value *VisitBin##CODE(const BinaryOperator *E) { \ 801 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 802 llvm::FCmpInst::FP); } 803 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 804 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 805 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 806 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 807 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 808 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 809 #undef VISITCOMP 810 811 Value *VisitBinAssign (const BinaryOperator *E); 812 813 Value *VisitBinLAnd (const BinaryOperator *E); 814 Value *VisitBinLOr (const BinaryOperator *E); 815 Value *VisitBinComma (const BinaryOperator *E); 816 817 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 818 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 819 820 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 821 return Visit(E->getSemanticForm()); 822 } 823 824 // Other Operators. 825 Value *VisitBlockExpr(const BlockExpr *BE); 826 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 827 Value *VisitChooseExpr(ChooseExpr *CE); 828 Value *VisitVAArgExpr(VAArgExpr *VE); 829 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 830 return CGF.EmitObjCStringLiteral(E); 831 } 832 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 833 return CGF.EmitObjCBoxedExpr(E); 834 } 835 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 836 return CGF.EmitObjCArrayLiteral(E); 837 } 838 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 839 return CGF.EmitObjCDictionaryLiteral(E); 840 } 841 Value *VisitAsTypeExpr(AsTypeExpr *CE); 842 Value *VisitAtomicExpr(AtomicExpr *AE); 843 }; 844 } // end anonymous namespace. 845 846 //===----------------------------------------------------------------------===// 847 // Utilities 848 //===----------------------------------------------------------------------===// 849 850 /// EmitConversionToBool - Convert the specified expression value to a 851 /// boolean (i1) truth value. This is equivalent to "Val != 0". 852 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 853 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 854 855 if (SrcType->isRealFloatingType()) 856 return EmitFloatToBoolConversion(Src); 857 858 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 859 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 860 861 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 862 "Unknown scalar type to convert"); 863 864 if (isa<llvm::IntegerType>(Src->getType())) 865 return EmitIntToBoolConversion(Src); 866 867 assert(isa<llvm::PointerType>(Src->getType())); 868 return EmitPointerToBoolConversion(Src, SrcType); 869 } 870 871 void ScalarExprEmitter::EmitFloatConversionCheck( 872 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 873 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 874 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 875 if (!isa<llvm::IntegerType>(DstTy)) 876 return; 877 878 CodeGenFunction::SanitizerScope SanScope(&CGF); 879 using llvm::APFloat; 880 using llvm::APSInt; 881 882 llvm::Value *Check = nullptr; 883 const llvm::fltSemantics &SrcSema = 884 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 885 886 // Floating-point to integer. This has undefined behavior if the source is 887 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 888 // to an integer). 889 unsigned Width = CGF.getContext().getIntWidth(DstType); 890 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 891 892 APSInt Min = APSInt::getMinValue(Width, Unsigned); 893 APFloat MinSrc(SrcSema, APFloat::uninitialized); 894 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 895 APFloat::opOverflow) 896 // Don't need an overflow check for lower bound. Just check for 897 // -Inf/NaN. 898 MinSrc = APFloat::getInf(SrcSema, true); 899 else 900 // Find the largest value which is too small to represent (before 901 // truncation toward zero). 902 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 903 904 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 905 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 906 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 907 APFloat::opOverflow) 908 // Don't need an overflow check for upper bound. Just check for 909 // +Inf/NaN. 910 MaxSrc = APFloat::getInf(SrcSema, false); 911 else 912 // Find the smallest value which is too large to represent (before 913 // truncation toward zero). 914 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 915 916 // If we're converting from __half, convert the range to float to match 917 // the type of src. 918 if (OrigSrcType->isHalfType()) { 919 const llvm::fltSemantics &Sema = 920 CGF.getContext().getFloatTypeSemantics(SrcType); 921 bool IsInexact; 922 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 923 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 924 } 925 926 llvm::Value *GE = 927 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 928 llvm::Value *LE = 929 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 930 Check = Builder.CreateAnd(GE, LE); 931 932 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 933 CGF.EmitCheckTypeDescriptor(OrigSrcType), 934 CGF.EmitCheckTypeDescriptor(DstType)}; 935 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 936 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 937 } 938 939 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 940 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 941 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 942 std::pair<llvm::Value *, SanitizerMask>> 943 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 944 QualType DstType, CGBuilderTy &Builder) { 945 llvm::Type *SrcTy = Src->getType(); 946 llvm::Type *DstTy = Dst->getType(); 947 (void)DstTy; // Only used in assert() 948 949 // This should be truncation of integral types. 950 assert(Src != Dst); 951 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 952 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 953 "non-integer llvm type"); 954 955 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 956 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 957 958 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 959 // Else, it is a signed truncation. 960 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 961 SanitizerMask Mask; 962 if (!SrcSigned && !DstSigned) { 963 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 964 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 965 } else { 966 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 967 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 968 } 969 970 llvm::Value *Check = nullptr; 971 // 1. Extend the truncated value back to the same width as the Src. 972 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 973 // 2. Equality-compare with the original source value 974 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 975 // If the comparison result is 'i1 false', then the truncation was lossy. 976 return std::make_pair(Kind, std::make_pair(Check, Mask)); 977 } 978 979 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 980 QualType SrcType, QualType DstType) { 981 return SrcType->isIntegerType() && DstType->isIntegerType(); 982 } 983 984 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 985 Value *Dst, QualType DstType, 986 SourceLocation Loc) { 987 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 988 return; 989 990 // We only care about int->int conversions here. 991 // We ignore conversions to/from pointer and/or bool. 992 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 993 DstType)) 994 return; 995 996 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 997 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 998 // This must be truncation. Else we do not care. 999 if (SrcBits <= DstBits) 1000 return; 1001 1002 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1003 1004 // If the integer sign change sanitizer is enabled, 1005 // and we are truncating from larger unsigned type to smaller signed type, 1006 // let that next sanitizer deal with it. 1007 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1008 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1009 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1010 (!SrcSigned && DstSigned)) 1011 return; 1012 1013 CodeGenFunction::SanitizerScope SanScope(&CGF); 1014 1015 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1016 std::pair<llvm::Value *, SanitizerMask>> 1017 Check = 1018 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1019 // If the comparison result is 'i1 false', then the truncation was lossy. 1020 1021 // Do we care about this type of truncation? 1022 if (!CGF.SanOpts.has(Check.second.second)) 1023 return; 1024 1025 llvm::Constant *StaticArgs[] = { 1026 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1027 CGF.EmitCheckTypeDescriptor(DstType), 1028 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1029 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1030 {Src, Dst}); 1031 } 1032 1033 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1034 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1035 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1036 std::pair<llvm::Value *, SanitizerMask>> 1037 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1038 QualType DstType, CGBuilderTy &Builder) { 1039 llvm::Type *SrcTy = Src->getType(); 1040 llvm::Type *DstTy = Dst->getType(); 1041 1042 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1043 "non-integer llvm type"); 1044 1045 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1046 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1047 (void)SrcSigned; // Only used in assert() 1048 (void)DstSigned; // Only used in assert() 1049 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1050 unsigned DstBits = DstTy->getScalarSizeInBits(); 1051 (void)SrcBits; // Only used in assert() 1052 (void)DstBits; // Only used in assert() 1053 1054 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1055 "either the widths should be different, or the signednesses."); 1056 1057 // NOTE: zero value is considered to be non-negative. 1058 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1059 const char *Name) -> Value * { 1060 // Is this value a signed type? 1061 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1062 llvm::Type *VTy = V->getType(); 1063 if (!VSigned) { 1064 // If the value is unsigned, then it is never negative. 1065 // FIXME: can we encounter non-scalar VTy here? 1066 return llvm::ConstantInt::getFalse(VTy->getContext()); 1067 } 1068 // Get the zero of the same type with which we will be comparing. 1069 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1070 // %V.isnegative = icmp slt %V, 0 1071 // I.e is %V *strictly* less than zero, does it have negative value? 1072 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1073 llvm::Twine(Name) + "." + V->getName() + 1074 ".negativitycheck"); 1075 }; 1076 1077 // 1. Was the old Value negative? 1078 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1079 // 2. Is the new Value negative? 1080 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1081 // 3. Now, was the 'negativity status' preserved during the conversion? 1082 // NOTE: conversion from negative to zero is considered to change the sign. 1083 // (We want to get 'false' when the conversion changed the sign) 1084 // So we should just equality-compare the negativity statuses. 1085 llvm::Value *Check = nullptr; 1086 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1087 // If the comparison result is 'false', then the conversion changed the sign. 1088 return std::make_pair( 1089 ScalarExprEmitter::ICCK_IntegerSignChange, 1090 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1091 } 1092 1093 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1094 Value *Dst, QualType DstType, 1095 SourceLocation Loc) { 1096 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1097 return; 1098 1099 llvm::Type *SrcTy = Src->getType(); 1100 llvm::Type *DstTy = Dst->getType(); 1101 1102 // We only care about int->int conversions here. 1103 // We ignore conversions to/from pointer and/or bool. 1104 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1105 DstType)) 1106 return; 1107 1108 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1109 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1110 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1111 unsigned DstBits = DstTy->getScalarSizeInBits(); 1112 1113 // Now, we do not need to emit the check in *all* of the cases. 1114 // We can avoid emitting it in some obvious cases where it would have been 1115 // dropped by the opt passes (instcombine) always anyways. 1116 // If it's a cast between effectively the same type, no check. 1117 // NOTE: this is *not* equivalent to checking the canonical types. 1118 if (SrcSigned == DstSigned && SrcBits == DstBits) 1119 return; 1120 // At least one of the values needs to have signed type. 1121 // If both are unsigned, then obviously, neither of them can be negative. 1122 if (!SrcSigned && !DstSigned) 1123 return; 1124 // If the conversion is to *larger* *signed* type, then no check is needed. 1125 // Because either sign-extension happens (so the sign will remain), 1126 // or zero-extension will happen (the sign bit will be zero.) 1127 if ((DstBits > SrcBits) && DstSigned) 1128 return; 1129 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1130 (SrcBits > DstBits) && SrcSigned) { 1131 // If the signed integer truncation sanitizer is enabled, 1132 // and this is a truncation from signed type, then no check is needed. 1133 // Because here sign change check is interchangeable with truncation check. 1134 return; 1135 } 1136 // That's it. We can't rule out any more cases with the data we have. 1137 1138 CodeGenFunction::SanitizerScope SanScope(&CGF); 1139 1140 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1141 std::pair<llvm::Value *, SanitizerMask>> 1142 Check; 1143 1144 // Each of these checks needs to return 'false' when an issue was detected. 1145 ImplicitConversionCheckKind CheckKind; 1146 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1147 // So we can 'and' all the checks together, and still get 'false', 1148 // if at least one of the checks detected an issue. 1149 1150 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1151 CheckKind = Check.first; 1152 Checks.emplace_back(Check.second); 1153 1154 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1155 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1156 // If the signed integer truncation sanitizer was enabled, 1157 // and we are truncating from larger unsigned type to smaller signed type, 1158 // let's handle the case we skipped in that check. 1159 Check = 1160 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1161 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1162 Checks.emplace_back(Check.second); 1163 // If the comparison result is 'i1 false', then the truncation was lossy. 1164 } 1165 1166 llvm::Constant *StaticArgs[] = { 1167 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1168 CGF.EmitCheckTypeDescriptor(DstType), 1169 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1170 // EmitCheck() will 'and' all the checks together. 1171 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1172 {Src, Dst}); 1173 } 1174 1175 /// Emit a conversion from the specified type to the specified destination type, 1176 /// both of which are LLVM scalar types. 1177 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1178 QualType DstType, 1179 SourceLocation Loc, 1180 ScalarConversionOpts Opts) { 1181 // All conversions involving fixed point types should be handled by the 1182 // EmitFixedPoint family functions. This is done to prevent bloating up this 1183 // function more, and although fixed point numbers are represented by 1184 // integers, we do not want to follow any logic that assumes they should be 1185 // treated as integers. 1186 // TODO(leonardchan): When necessary, add another if statement checking for 1187 // conversions to fixed point types from other types. 1188 if (SrcType->isFixedPointType()) { 1189 if (DstType->isBooleanType()) 1190 // It is important that we check this before checking if the dest type is 1191 // an integer because booleans are technically integer types. 1192 // We do not need to check the padding bit on unsigned types if unsigned 1193 // padding is enabled because overflow into this bit is undefined 1194 // behavior. 1195 return Builder.CreateIsNotNull(Src, "tobool"); 1196 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1197 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1198 1199 llvm_unreachable( 1200 "Unhandled scalar conversion from a fixed point type to another type."); 1201 } else if (DstType->isFixedPointType()) { 1202 if (SrcType->isIntegerType()) 1203 // This also includes converting booleans and enums to fixed point types. 1204 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1205 1206 llvm_unreachable( 1207 "Unhandled scalar conversion to a fixed point type from another type."); 1208 } 1209 1210 QualType NoncanonicalSrcType = SrcType; 1211 QualType NoncanonicalDstType = DstType; 1212 1213 SrcType = CGF.getContext().getCanonicalType(SrcType); 1214 DstType = CGF.getContext().getCanonicalType(DstType); 1215 if (SrcType == DstType) return Src; 1216 1217 if (DstType->isVoidType()) return nullptr; 1218 1219 llvm::Value *OrigSrc = Src; 1220 QualType OrigSrcType = SrcType; 1221 llvm::Type *SrcTy = Src->getType(); 1222 1223 // Handle conversions to bool first, they are special: comparisons against 0. 1224 if (DstType->isBooleanType()) 1225 return EmitConversionToBool(Src, SrcType); 1226 1227 llvm::Type *DstTy = ConvertType(DstType); 1228 1229 // Cast from half through float if half isn't a native type. 1230 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1231 // Cast to FP using the intrinsic if the half type itself isn't supported. 1232 if (DstTy->isFloatingPointTy()) { 1233 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1234 return Builder.CreateCall( 1235 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1236 Src); 1237 } else { 1238 // Cast to other types through float, using either the intrinsic or FPExt, 1239 // depending on whether the half type itself is supported 1240 // (as opposed to operations on half, available with NativeHalfType). 1241 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1242 Src = Builder.CreateCall( 1243 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1244 CGF.CGM.FloatTy), 1245 Src); 1246 } else { 1247 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1248 } 1249 SrcType = CGF.getContext().FloatTy; 1250 SrcTy = CGF.FloatTy; 1251 } 1252 } 1253 1254 // Ignore conversions like int -> uint. 1255 if (SrcTy == DstTy) { 1256 if (Opts.EmitImplicitIntegerSignChangeChecks) 1257 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1258 NoncanonicalDstType, Loc); 1259 1260 return Src; 1261 } 1262 1263 // Handle pointer conversions next: pointers can only be converted to/from 1264 // other pointers and integers. Check for pointer types in terms of LLVM, as 1265 // some native types (like Obj-C id) may map to a pointer type. 1266 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1267 // The source value may be an integer, or a pointer. 1268 if (isa<llvm::PointerType>(SrcTy)) 1269 return Builder.CreateBitCast(Src, DstTy, "conv"); 1270 1271 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1272 // First, convert to the correct width so that we control the kind of 1273 // extension. 1274 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1275 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1276 llvm::Value* IntResult = 1277 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1278 // Then, cast to pointer. 1279 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1280 } 1281 1282 if (isa<llvm::PointerType>(SrcTy)) { 1283 // Must be an ptr to int cast. 1284 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1285 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1286 } 1287 1288 // A scalar can be splatted to an extended vector of the same element type 1289 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1290 // Sema should add casts to make sure that the source expression's type is 1291 // the same as the vector's element type (sans qualifiers) 1292 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1293 SrcType.getTypePtr() && 1294 "Splatted expr doesn't match with vector element type?"); 1295 1296 // Splat the element across to all elements 1297 unsigned NumElements = DstTy->getVectorNumElements(); 1298 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1299 } 1300 1301 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1302 // Allow bitcast from vector to integer/fp of the same size. 1303 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1304 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1305 if (SrcSize == DstSize) 1306 return Builder.CreateBitCast(Src, DstTy, "conv"); 1307 1308 // Conversions between vectors of different sizes are not allowed except 1309 // when vectors of half are involved. Operations on storage-only half 1310 // vectors require promoting half vector operands to float vectors and 1311 // truncating the result, which is either an int or float vector, to a 1312 // short or half vector. 1313 1314 // Source and destination are both expected to be vectors. 1315 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1316 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1317 (void)DstElementTy; 1318 1319 assert(((SrcElementTy->isIntegerTy() && 1320 DstElementTy->isIntegerTy()) || 1321 (SrcElementTy->isFloatingPointTy() && 1322 DstElementTy->isFloatingPointTy())) && 1323 "unexpected conversion between a floating-point vector and an " 1324 "integer vector"); 1325 1326 // Truncate an i32 vector to an i16 vector. 1327 if (SrcElementTy->isIntegerTy()) 1328 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1329 1330 // Truncate a float vector to a half vector. 1331 if (SrcSize > DstSize) 1332 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1333 1334 // Promote a half vector to a float vector. 1335 return Builder.CreateFPExt(Src, DstTy, "conv"); 1336 } 1337 1338 // Finally, we have the arithmetic types: real int/float. 1339 Value *Res = nullptr; 1340 llvm::Type *ResTy = DstTy; 1341 1342 // An overflowing conversion has undefined behavior if either the source type 1343 // or the destination type is a floating-point type. However, we consider the 1344 // range of representable values for all floating-point types to be 1345 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1346 // floating-point type. 1347 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1348 OrigSrcType->isFloatingType()) 1349 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1350 Loc); 1351 1352 // Cast to half through float if half isn't a native type. 1353 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1354 // Make sure we cast in a single step if from another FP type. 1355 if (SrcTy->isFloatingPointTy()) { 1356 // Use the intrinsic if the half type itself isn't supported 1357 // (as opposed to operations on half, available with NativeHalfType). 1358 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1359 return Builder.CreateCall( 1360 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1361 // If the half type is supported, just use an fptrunc. 1362 return Builder.CreateFPTrunc(Src, DstTy); 1363 } 1364 DstTy = CGF.FloatTy; 1365 } 1366 1367 if (isa<llvm::IntegerType>(SrcTy)) { 1368 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1369 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1370 InputSigned = true; 1371 } 1372 if (isa<llvm::IntegerType>(DstTy)) 1373 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1374 else if (InputSigned) 1375 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1376 else 1377 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1378 } else if (isa<llvm::IntegerType>(DstTy)) { 1379 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1380 if (DstType->isSignedIntegerOrEnumerationType()) 1381 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1382 else 1383 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1384 } else { 1385 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1386 "Unknown real conversion"); 1387 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1388 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1389 else 1390 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1391 } 1392 1393 if (DstTy != ResTy) { 1394 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1395 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1396 Res = Builder.CreateCall( 1397 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1398 Res); 1399 } else { 1400 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1401 } 1402 } 1403 1404 if (Opts.EmitImplicitIntegerTruncationChecks) 1405 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1406 NoncanonicalDstType, Loc); 1407 1408 if (Opts.EmitImplicitIntegerSignChangeChecks) 1409 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1410 NoncanonicalDstType, Loc); 1411 1412 return Res; 1413 } 1414 1415 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1416 QualType DstTy, 1417 SourceLocation Loc) { 1418 FixedPointSemantics SrcFPSema = 1419 CGF.getContext().getFixedPointSemantics(SrcTy); 1420 FixedPointSemantics DstFPSema = 1421 CGF.getContext().getFixedPointSemantics(DstTy); 1422 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1423 DstTy->isIntegerType()); 1424 } 1425 1426 Value *ScalarExprEmitter::EmitFixedPointConversion( 1427 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1428 SourceLocation Loc, bool DstIsInteger) { 1429 using llvm::APInt; 1430 using llvm::ConstantInt; 1431 using llvm::Value; 1432 1433 unsigned SrcWidth = SrcFPSema.getWidth(); 1434 unsigned DstWidth = DstFPSema.getWidth(); 1435 unsigned SrcScale = SrcFPSema.getScale(); 1436 unsigned DstScale = DstFPSema.getScale(); 1437 bool SrcIsSigned = SrcFPSema.isSigned(); 1438 bool DstIsSigned = DstFPSema.isSigned(); 1439 1440 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1441 1442 Value *Result = Src; 1443 unsigned ResultWidth = SrcWidth; 1444 1445 // Downscale. 1446 if (DstScale < SrcScale) { 1447 // When converting to integers, we round towards zero. For negative numbers, 1448 // right shifting rounds towards negative infinity. In this case, we can 1449 // just round up before shifting. 1450 if (DstIsInteger && SrcIsSigned) { 1451 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1452 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1453 Value *LowBits = ConstantInt::get( 1454 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1455 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1456 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1457 } 1458 1459 Result = SrcIsSigned 1460 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1461 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1462 } 1463 1464 if (!DstFPSema.isSaturated()) { 1465 // Resize. 1466 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1467 1468 // Upscale. 1469 if (DstScale > SrcScale) 1470 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1471 } else { 1472 // Adjust the number of fractional bits. 1473 if (DstScale > SrcScale) { 1474 // Compare to DstWidth to prevent resizing twice. 1475 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1476 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1477 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1478 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1479 } 1480 1481 // Handle saturation. 1482 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1483 if (LessIntBits) { 1484 Value *Max = ConstantInt::get( 1485 CGF.getLLVMContext(), 1486 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1487 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1488 : Builder.CreateICmpUGT(Result, Max); 1489 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1490 } 1491 // Cannot overflow min to dest type if src is unsigned since all fixed 1492 // point types can cover the unsigned min of 0. 1493 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1494 Value *Min = ConstantInt::get( 1495 CGF.getLLVMContext(), 1496 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1497 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1498 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1499 } 1500 1501 // Resize the integer part to get the final destination size. 1502 if (ResultWidth != DstWidth) 1503 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1504 } 1505 return Result; 1506 } 1507 1508 /// Emit a conversion from the specified complex type to the specified 1509 /// destination type, where the destination type is an LLVM scalar type. 1510 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1511 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1512 SourceLocation Loc) { 1513 // Get the source element type. 1514 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1515 1516 // Handle conversions to bool first, they are special: comparisons against 0. 1517 if (DstTy->isBooleanType()) { 1518 // Complex != 0 -> (Real != 0) | (Imag != 0) 1519 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1520 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1521 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1522 } 1523 1524 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1525 // the imaginary part of the complex value is discarded and the value of the 1526 // real part is converted according to the conversion rules for the 1527 // corresponding real type. 1528 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1529 } 1530 1531 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1532 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1533 } 1534 1535 /// Emit a sanitization check for the given "binary" operation (which 1536 /// might actually be a unary increment which has been lowered to a binary 1537 /// operation). The check passes if all values in \p Checks (which are \c i1), 1538 /// are \c true. 1539 void ScalarExprEmitter::EmitBinOpCheck( 1540 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1541 assert(CGF.IsSanitizerScope); 1542 SanitizerHandler Check; 1543 SmallVector<llvm::Constant *, 4> StaticData; 1544 SmallVector<llvm::Value *, 2> DynamicData; 1545 1546 BinaryOperatorKind Opcode = Info.Opcode; 1547 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1548 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1549 1550 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1551 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1552 if (UO && UO->getOpcode() == UO_Minus) { 1553 Check = SanitizerHandler::NegateOverflow; 1554 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1555 DynamicData.push_back(Info.RHS); 1556 } else { 1557 if (BinaryOperator::isShiftOp(Opcode)) { 1558 // Shift LHS negative or too large, or RHS out of bounds. 1559 Check = SanitizerHandler::ShiftOutOfBounds; 1560 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1561 StaticData.push_back( 1562 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1563 StaticData.push_back( 1564 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1565 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1566 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1567 Check = SanitizerHandler::DivremOverflow; 1568 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1569 } else { 1570 // Arithmetic overflow (+, -, *). 1571 switch (Opcode) { 1572 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1573 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1574 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1575 default: llvm_unreachable("unexpected opcode for bin op check"); 1576 } 1577 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1578 } 1579 DynamicData.push_back(Info.LHS); 1580 DynamicData.push_back(Info.RHS); 1581 } 1582 1583 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1584 } 1585 1586 //===----------------------------------------------------------------------===// 1587 // Visitor Methods 1588 //===----------------------------------------------------------------------===// 1589 1590 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1591 CGF.ErrorUnsupported(E, "scalar expression"); 1592 if (E->getType()->isVoidType()) 1593 return nullptr; 1594 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1595 } 1596 1597 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1598 // Vector Mask Case 1599 if (E->getNumSubExprs() == 2) { 1600 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1601 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1602 Value *Mask; 1603 1604 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1605 unsigned LHSElts = LTy->getNumElements(); 1606 1607 Mask = RHS; 1608 1609 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1610 1611 // Mask off the high bits of each shuffle index. 1612 Value *MaskBits = 1613 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1614 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1615 1616 // newv = undef 1617 // mask = mask & maskbits 1618 // for each elt 1619 // n = extract mask i 1620 // x = extract val n 1621 // newv = insert newv, x, i 1622 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1623 MTy->getNumElements()); 1624 Value* NewV = llvm::UndefValue::get(RTy); 1625 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1626 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1627 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1628 1629 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1630 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1631 } 1632 return NewV; 1633 } 1634 1635 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1636 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1637 1638 SmallVector<llvm::Constant*, 32> indices; 1639 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1640 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1641 // Check for -1 and output it as undef in the IR. 1642 if (Idx.isSigned() && Idx.isAllOnesValue()) 1643 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1644 else 1645 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1646 } 1647 1648 Value *SV = llvm::ConstantVector::get(indices); 1649 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1650 } 1651 1652 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1653 QualType SrcType = E->getSrcExpr()->getType(), 1654 DstType = E->getType(); 1655 1656 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1657 1658 SrcType = CGF.getContext().getCanonicalType(SrcType); 1659 DstType = CGF.getContext().getCanonicalType(DstType); 1660 if (SrcType == DstType) return Src; 1661 1662 assert(SrcType->isVectorType() && 1663 "ConvertVector source type must be a vector"); 1664 assert(DstType->isVectorType() && 1665 "ConvertVector destination type must be a vector"); 1666 1667 llvm::Type *SrcTy = Src->getType(); 1668 llvm::Type *DstTy = ConvertType(DstType); 1669 1670 // Ignore conversions like int -> uint. 1671 if (SrcTy == DstTy) 1672 return Src; 1673 1674 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1675 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1676 1677 assert(SrcTy->isVectorTy() && 1678 "ConvertVector source IR type must be a vector"); 1679 assert(DstTy->isVectorTy() && 1680 "ConvertVector destination IR type must be a vector"); 1681 1682 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1683 *DstEltTy = DstTy->getVectorElementType(); 1684 1685 if (DstEltType->isBooleanType()) { 1686 assert((SrcEltTy->isFloatingPointTy() || 1687 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1688 1689 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1690 if (SrcEltTy->isFloatingPointTy()) { 1691 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1692 } else { 1693 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1694 } 1695 } 1696 1697 // We have the arithmetic types: real int/float. 1698 Value *Res = nullptr; 1699 1700 if (isa<llvm::IntegerType>(SrcEltTy)) { 1701 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1702 if (isa<llvm::IntegerType>(DstEltTy)) 1703 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1704 else if (InputSigned) 1705 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1706 else 1707 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1708 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1709 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1710 if (DstEltType->isSignedIntegerOrEnumerationType()) 1711 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1712 else 1713 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1714 } else { 1715 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1716 "Unknown real conversion"); 1717 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1718 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1719 else 1720 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1721 } 1722 1723 return Res; 1724 } 1725 1726 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1727 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1728 CGF.EmitIgnoredExpr(E->getBase()); 1729 return CGF.emitScalarConstant(Constant, E); 1730 } else { 1731 Expr::EvalResult Result; 1732 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1733 llvm::APSInt Value = Result.Val.getInt(); 1734 CGF.EmitIgnoredExpr(E->getBase()); 1735 return Builder.getInt(Value); 1736 } 1737 } 1738 1739 return EmitLoadOfLValue(E); 1740 } 1741 1742 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1743 TestAndClearIgnoreResultAssign(); 1744 1745 // Emit subscript expressions in rvalue context's. For most cases, this just 1746 // loads the lvalue formed by the subscript expr. However, we have to be 1747 // careful, because the base of a vector subscript is occasionally an rvalue, 1748 // so we can't get it as an lvalue. 1749 if (!E->getBase()->getType()->isVectorType()) 1750 return EmitLoadOfLValue(E); 1751 1752 // Handle the vector case. The base must be a vector, the index must be an 1753 // integer value. 1754 Value *Base = Visit(E->getBase()); 1755 Value *Idx = Visit(E->getIdx()); 1756 QualType IdxTy = E->getIdx()->getType(); 1757 1758 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1759 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1760 1761 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1762 } 1763 1764 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1765 unsigned Off, llvm::Type *I32Ty) { 1766 int MV = SVI->getMaskValue(Idx); 1767 if (MV == -1) 1768 return llvm::UndefValue::get(I32Ty); 1769 return llvm::ConstantInt::get(I32Ty, Off+MV); 1770 } 1771 1772 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1773 if (C->getBitWidth() != 32) { 1774 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1775 C->getZExtValue()) && 1776 "Index operand too large for shufflevector mask!"); 1777 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1778 } 1779 return C; 1780 } 1781 1782 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1783 bool Ignore = TestAndClearIgnoreResultAssign(); 1784 (void)Ignore; 1785 assert (Ignore == false && "init list ignored"); 1786 unsigned NumInitElements = E->getNumInits(); 1787 1788 if (E->hadArrayRangeDesignator()) 1789 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1790 1791 llvm::VectorType *VType = 1792 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1793 1794 if (!VType) { 1795 if (NumInitElements == 0) { 1796 // C++11 value-initialization for the scalar. 1797 return EmitNullValue(E->getType()); 1798 } 1799 // We have a scalar in braces. Just use the first element. 1800 return Visit(E->getInit(0)); 1801 } 1802 1803 unsigned ResElts = VType->getNumElements(); 1804 1805 // Loop over initializers collecting the Value for each, and remembering 1806 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1807 // us to fold the shuffle for the swizzle into the shuffle for the vector 1808 // initializer, since LLVM optimizers generally do not want to touch 1809 // shuffles. 1810 unsigned CurIdx = 0; 1811 bool VIsUndefShuffle = false; 1812 llvm::Value *V = llvm::UndefValue::get(VType); 1813 for (unsigned i = 0; i != NumInitElements; ++i) { 1814 Expr *IE = E->getInit(i); 1815 Value *Init = Visit(IE); 1816 SmallVector<llvm::Constant*, 16> Args; 1817 1818 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1819 1820 // Handle scalar elements. If the scalar initializer is actually one 1821 // element of a different vector of the same width, use shuffle instead of 1822 // extract+insert. 1823 if (!VVT) { 1824 if (isa<ExtVectorElementExpr>(IE)) { 1825 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1826 1827 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1828 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1829 Value *LHS = nullptr, *RHS = nullptr; 1830 if (CurIdx == 0) { 1831 // insert into undef -> shuffle (src, undef) 1832 // shufflemask must use an i32 1833 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1834 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1835 1836 LHS = EI->getVectorOperand(); 1837 RHS = V; 1838 VIsUndefShuffle = true; 1839 } else if (VIsUndefShuffle) { 1840 // insert into undefshuffle && size match -> shuffle (v, src) 1841 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1842 for (unsigned j = 0; j != CurIdx; ++j) 1843 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1844 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1845 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1846 1847 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1848 RHS = EI->getVectorOperand(); 1849 VIsUndefShuffle = false; 1850 } 1851 if (!Args.empty()) { 1852 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1853 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1854 ++CurIdx; 1855 continue; 1856 } 1857 } 1858 } 1859 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1860 "vecinit"); 1861 VIsUndefShuffle = false; 1862 ++CurIdx; 1863 continue; 1864 } 1865 1866 unsigned InitElts = VVT->getNumElements(); 1867 1868 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1869 // input is the same width as the vector being constructed, generate an 1870 // optimized shuffle of the swizzle input into the result. 1871 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1872 if (isa<ExtVectorElementExpr>(IE)) { 1873 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1874 Value *SVOp = SVI->getOperand(0); 1875 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1876 1877 if (OpTy->getNumElements() == ResElts) { 1878 for (unsigned j = 0; j != CurIdx; ++j) { 1879 // If the current vector initializer is a shuffle with undef, merge 1880 // this shuffle directly into it. 1881 if (VIsUndefShuffle) { 1882 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1883 CGF.Int32Ty)); 1884 } else { 1885 Args.push_back(Builder.getInt32(j)); 1886 } 1887 } 1888 for (unsigned j = 0, je = InitElts; j != je; ++j) 1889 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1890 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1891 1892 if (VIsUndefShuffle) 1893 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1894 1895 Init = SVOp; 1896 } 1897 } 1898 1899 // Extend init to result vector length, and then shuffle its contribution 1900 // to the vector initializer into V. 1901 if (Args.empty()) { 1902 for (unsigned j = 0; j != InitElts; ++j) 1903 Args.push_back(Builder.getInt32(j)); 1904 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1905 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1906 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1907 Mask, "vext"); 1908 1909 Args.clear(); 1910 for (unsigned j = 0; j != CurIdx; ++j) 1911 Args.push_back(Builder.getInt32(j)); 1912 for (unsigned j = 0; j != InitElts; ++j) 1913 Args.push_back(Builder.getInt32(j+Offset)); 1914 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1915 } 1916 1917 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1918 // merging subsequent shuffles into this one. 1919 if (CurIdx == 0) 1920 std::swap(V, Init); 1921 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1922 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1923 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1924 CurIdx += InitElts; 1925 } 1926 1927 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1928 // Emit remaining default initializers. 1929 llvm::Type *EltTy = VType->getElementType(); 1930 1931 // Emit remaining default initializers 1932 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1933 Value *Idx = Builder.getInt32(CurIdx); 1934 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1935 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1936 } 1937 return V; 1938 } 1939 1940 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1941 const Expr *E = CE->getSubExpr(); 1942 1943 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1944 return false; 1945 1946 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1947 // We always assume that 'this' is never null. 1948 return false; 1949 } 1950 1951 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1952 // And that glvalue casts are never null. 1953 if (ICE->getValueKind() != VK_RValue) 1954 return false; 1955 } 1956 1957 return true; 1958 } 1959 1960 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1961 // have to handle a more broad range of conversions than explicit casts, as they 1962 // handle things like function to ptr-to-function decay etc. 1963 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1964 Expr *E = CE->getSubExpr(); 1965 QualType DestTy = CE->getType(); 1966 CastKind Kind = CE->getCastKind(); 1967 1968 // These cases are generally not written to ignore the result of 1969 // evaluating their sub-expressions, so we clear this now. 1970 bool Ignored = TestAndClearIgnoreResultAssign(); 1971 1972 // Since almost all cast kinds apply to scalars, this switch doesn't have 1973 // a default case, so the compiler will warn on a missing case. The cases 1974 // are in the same order as in the CastKind enum. 1975 switch (Kind) { 1976 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1977 case CK_BuiltinFnToFnPtr: 1978 llvm_unreachable("builtin functions are handled elsewhere"); 1979 1980 case CK_LValueBitCast: 1981 case CK_ObjCObjectLValueCast: { 1982 Address Addr = EmitLValue(E).getAddress(); 1983 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1984 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1985 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1986 } 1987 1988 case CK_LValueToRValueBitCast: { 1989 LValue SourceLVal = CGF.EmitLValue(E); 1990 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(), 1991 CGF.ConvertTypeForMem(DestTy)); 1992 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 1993 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 1994 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 1995 } 1996 1997 case CK_CPointerToObjCPointerCast: 1998 case CK_BlockPointerToObjCPointerCast: 1999 case CK_AnyPointerToBlockPointerCast: 2000 case CK_BitCast: { 2001 Value *Src = Visit(const_cast<Expr*>(E)); 2002 llvm::Type *SrcTy = Src->getType(); 2003 llvm::Type *DstTy = ConvertType(DestTy); 2004 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2005 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2006 llvm_unreachable("wrong cast for pointers in different address spaces" 2007 "(must be an address space cast)!"); 2008 } 2009 2010 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2011 if (auto PT = DestTy->getAs<PointerType>()) 2012 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2013 /*MayBeNull=*/true, 2014 CodeGenFunction::CFITCK_UnrelatedCast, 2015 CE->getBeginLoc()); 2016 } 2017 2018 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2019 const QualType SrcType = E->getType(); 2020 2021 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2022 // Casting to pointer that could carry dynamic information (provided by 2023 // invariant.group) requires launder. 2024 Src = Builder.CreateLaunderInvariantGroup(Src); 2025 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2026 // Casting to pointer that does not carry dynamic information (provided 2027 // by invariant.group) requires stripping it. Note that we don't do it 2028 // if the source could not be dynamic type and destination could be 2029 // dynamic because dynamic information is already laundered. It is 2030 // because launder(strip(src)) == launder(src), so there is no need to 2031 // add extra strip before launder. 2032 Src = Builder.CreateStripInvariantGroup(Src); 2033 } 2034 } 2035 2036 // Update heapallocsite metadata when there is an explicit cast. 2037 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2038 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2039 CGF.getDebugInfo()-> 2040 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2041 2042 return Builder.CreateBitCast(Src, DstTy); 2043 } 2044 case CK_AddressSpaceConversion: { 2045 Expr::EvalResult Result; 2046 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2047 Result.Val.isNullPointer()) { 2048 // If E has side effect, it is emitted even if its final result is a 2049 // null pointer. In that case, a DCE pass should be able to 2050 // eliminate the useless instructions emitted during translating E. 2051 if (Result.HasSideEffects) 2052 Visit(E); 2053 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2054 ConvertType(DestTy)), DestTy); 2055 } 2056 // Since target may map different address spaces in AST to the same address 2057 // space, an address space conversion may end up as a bitcast. 2058 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2059 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2060 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2061 } 2062 case CK_AtomicToNonAtomic: 2063 case CK_NonAtomicToAtomic: 2064 case CK_NoOp: 2065 case CK_UserDefinedConversion: 2066 return Visit(const_cast<Expr*>(E)); 2067 2068 case CK_BaseToDerived: { 2069 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2070 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2071 2072 Address Base = CGF.EmitPointerWithAlignment(E); 2073 Address Derived = 2074 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2075 CE->path_begin(), CE->path_end(), 2076 CGF.ShouldNullCheckClassCastValue(CE)); 2077 2078 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2079 // performed and the object is not of the derived type. 2080 if (CGF.sanitizePerformTypeCheck()) 2081 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2082 Derived.getPointer(), DestTy->getPointeeType()); 2083 2084 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2085 CGF.EmitVTablePtrCheckForCast( 2086 DestTy->getPointeeType(), Derived.getPointer(), 2087 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2088 CE->getBeginLoc()); 2089 2090 return Derived.getPointer(); 2091 } 2092 case CK_UncheckedDerivedToBase: 2093 case CK_DerivedToBase: { 2094 // The EmitPointerWithAlignment path does this fine; just discard 2095 // the alignment. 2096 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2097 } 2098 2099 case CK_Dynamic: { 2100 Address V = CGF.EmitPointerWithAlignment(E); 2101 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2102 return CGF.EmitDynamicCast(V, DCE); 2103 } 2104 2105 case CK_ArrayToPointerDecay: 2106 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2107 case CK_FunctionToPointerDecay: 2108 return EmitLValue(E).getPointer(); 2109 2110 case CK_NullToPointer: 2111 if (MustVisitNullValue(E)) 2112 CGF.EmitIgnoredExpr(E); 2113 2114 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2115 DestTy); 2116 2117 case CK_NullToMemberPointer: { 2118 if (MustVisitNullValue(E)) 2119 CGF.EmitIgnoredExpr(E); 2120 2121 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2122 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2123 } 2124 2125 case CK_ReinterpretMemberPointer: 2126 case CK_BaseToDerivedMemberPointer: 2127 case CK_DerivedToBaseMemberPointer: { 2128 Value *Src = Visit(E); 2129 2130 // Note that the AST doesn't distinguish between checked and 2131 // unchecked member pointer conversions, so we always have to 2132 // implement checked conversions here. This is inefficient when 2133 // actual control flow may be required in order to perform the 2134 // check, which it is for data member pointers (but not member 2135 // function pointers on Itanium and ARM). 2136 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2137 } 2138 2139 case CK_ARCProduceObject: 2140 return CGF.EmitARCRetainScalarExpr(E); 2141 case CK_ARCConsumeObject: 2142 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2143 case CK_ARCReclaimReturnedObject: 2144 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2145 case CK_ARCExtendBlockObject: 2146 return CGF.EmitARCExtendBlockObject(E); 2147 2148 case CK_CopyAndAutoreleaseBlockObject: 2149 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2150 2151 case CK_FloatingRealToComplex: 2152 case CK_FloatingComplexCast: 2153 case CK_IntegralRealToComplex: 2154 case CK_IntegralComplexCast: 2155 case CK_IntegralComplexToFloatingComplex: 2156 case CK_FloatingComplexToIntegralComplex: 2157 case CK_ConstructorConversion: 2158 case CK_ToUnion: 2159 llvm_unreachable("scalar cast to non-scalar value"); 2160 2161 case CK_LValueToRValue: 2162 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2163 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2164 return Visit(const_cast<Expr*>(E)); 2165 2166 case CK_IntegralToPointer: { 2167 Value *Src = Visit(const_cast<Expr*>(E)); 2168 2169 // First, convert to the correct width so that we control the kind of 2170 // extension. 2171 auto DestLLVMTy = ConvertType(DestTy); 2172 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2173 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2174 llvm::Value* IntResult = 2175 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2176 2177 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2178 2179 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2180 // Going from integer to pointer that could be dynamic requires reloading 2181 // dynamic information from invariant.group. 2182 if (DestTy.mayBeDynamicClass()) 2183 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2184 } 2185 return IntToPtr; 2186 } 2187 case CK_PointerToIntegral: { 2188 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2189 auto *PtrExpr = Visit(E); 2190 2191 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2192 const QualType SrcType = E->getType(); 2193 2194 // Casting to integer requires stripping dynamic information as it does 2195 // not carries it. 2196 if (SrcType.mayBeDynamicClass()) 2197 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2198 } 2199 2200 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2201 } 2202 case CK_ToVoid: { 2203 CGF.EmitIgnoredExpr(E); 2204 return nullptr; 2205 } 2206 case CK_VectorSplat: { 2207 llvm::Type *DstTy = ConvertType(DestTy); 2208 Value *Elt = Visit(const_cast<Expr*>(E)); 2209 // Splat the element across to all elements 2210 unsigned NumElements = DstTy->getVectorNumElements(); 2211 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2212 } 2213 2214 case CK_FixedPointCast: 2215 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2216 CE->getExprLoc()); 2217 2218 case CK_FixedPointToBoolean: 2219 assert(E->getType()->isFixedPointType() && 2220 "Expected src type to be fixed point type"); 2221 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2222 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2223 CE->getExprLoc()); 2224 2225 case CK_FixedPointToIntegral: 2226 assert(E->getType()->isFixedPointType() && 2227 "Expected src type to be fixed point type"); 2228 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2229 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2230 CE->getExprLoc()); 2231 2232 case CK_IntegralToFixedPoint: 2233 assert(E->getType()->isIntegerType() && 2234 "Expected src type to be an integer"); 2235 assert(DestTy->isFixedPointType() && 2236 "Expected dest type to be fixed point type"); 2237 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2238 CE->getExprLoc()); 2239 2240 case CK_IntegralCast: { 2241 ScalarConversionOpts Opts; 2242 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2243 if (!ICE->isPartOfExplicitCast()) 2244 Opts = ScalarConversionOpts(CGF.SanOpts); 2245 } 2246 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2247 CE->getExprLoc(), Opts); 2248 } 2249 case CK_IntegralToFloating: 2250 case CK_FloatingToIntegral: 2251 case CK_FloatingCast: 2252 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2253 CE->getExprLoc()); 2254 case CK_BooleanToSignedIntegral: { 2255 ScalarConversionOpts Opts; 2256 Opts.TreatBooleanAsSigned = true; 2257 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2258 CE->getExprLoc(), Opts); 2259 } 2260 case CK_IntegralToBoolean: 2261 return EmitIntToBoolConversion(Visit(E)); 2262 case CK_PointerToBoolean: 2263 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2264 case CK_FloatingToBoolean: 2265 return EmitFloatToBoolConversion(Visit(E)); 2266 case CK_MemberPointerToBoolean: { 2267 llvm::Value *MemPtr = Visit(E); 2268 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2269 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2270 } 2271 2272 case CK_FloatingComplexToReal: 2273 case CK_IntegralComplexToReal: 2274 return CGF.EmitComplexExpr(E, false, true).first; 2275 2276 case CK_FloatingComplexToBoolean: 2277 case CK_IntegralComplexToBoolean: { 2278 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2279 2280 // TODO: kill this function off, inline appropriate case here 2281 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2282 CE->getExprLoc()); 2283 } 2284 2285 case CK_ZeroToOCLOpaqueType: { 2286 assert((DestTy->isEventT() || DestTy->isQueueT() || 2287 DestTy->isOCLIntelSubgroupAVCType()) && 2288 "CK_ZeroToOCLEvent cast on non-event type"); 2289 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2290 } 2291 2292 case CK_IntToOCLSampler: 2293 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2294 2295 } // end of switch 2296 2297 llvm_unreachable("unknown scalar cast"); 2298 } 2299 2300 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2301 CodeGenFunction::StmtExprEvaluation eval(CGF); 2302 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2303 !E->getType()->isVoidType()); 2304 if (!RetAlloca.isValid()) 2305 return nullptr; 2306 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2307 E->getExprLoc()); 2308 } 2309 2310 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2311 CGF.enterFullExpression(E); 2312 CodeGenFunction::RunCleanupsScope Scope(CGF); 2313 Value *V = Visit(E->getSubExpr()); 2314 // Defend against dominance problems caused by jumps out of expression 2315 // evaluation through the shared cleanup block. 2316 Scope.ForceCleanup({&V}); 2317 return V; 2318 } 2319 2320 //===----------------------------------------------------------------------===// 2321 // Unary Operators 2322 //===----------------------------------------------------------------------===// 2323 2324 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2325 llvm::Value *InVal, bool IsInc) { 2326 BinOpInfo BinOp; 2327 BinOp.LHS = InVal; 2328 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2329 BinOp.Ty = E->getType(); 2330 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2331 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2332 BinOp.E = E; 2333 return BinOp; 2334 } 2335 2336 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2337 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2338 llvm::Value *Amount = 2339 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2340 StringRef Name = IsInc ? "inc" : "dec"; 2341 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2342 case LangOptions::SOB_Defined: 2343 return Builder.CreateAdd(InVal, Amount, Name); 2344 case LangOptions::SOB_Undefined: 2345 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2346 return Builder.CreateNSWAdd(InVal, Amount, Name); 2347 LLVM_FALLTHROUGH; 2348 case LangOptions::SOB_Trapping: 2349 if (!E->canOverflow()) 2350 return Builder.CreateNSWAdd(InVal, Amount, Name); 2351 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2352 } 2353 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2354 } 2355 2356 llvm::Value * 2357 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2358 bool isInc, bool isPre) { 2359 2360 QualType type = E->getSubExpr()->getType(); 2361 llvm::PHINode *atomicPHI = nullptr; 2362 llvm::Value *value; 2363 llvm::Value *input; 2364 2365 int amount = (isInc ? 1 : -1); 2366 bool isSubtraction = !isInc; 2367 2368 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2369 type = atomicTy->getValueType(); 2370 if (isInc && type->isBooleanType()) { 2371 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2372 if (isPre) { 2373 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2374 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2375 return Builder.getTrue(); 2376 } 2377 // For atomic bool increment, we just store true and return it for 2378 // preincrement, do an atomic swap with true for postincrement 2379 return Builder.CreateAtomicRMW( 2380 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2381 llvm::AtomicOrdering::SequentiallyConsistent); 2382 } 2383 // Special case for atomic increment / decrement on integers, emit 2384 // atomicrmw instructions. We skip this if we want to be doing overflow 2385 // checking, and fall into the slow path with the atomic cmpxchg loop. 2386 if (!type->isBooleanType() && type->isIntegerType() && 2387 !(type->isUnsignedIntegerType() && 2388 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2389 CGF.getLangOpts().getSignedOverflowBehavior() != 2390 LangOptions::SOB_Trapping) { 2391 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2392 llvm::AtomicRMWInst::Sub; 2393 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2394 llvm::Instruction::Sub; 2395 llvm::Value *amt = CGF.EmitToMemory( 2396 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2397 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2398 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2399 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2400 } 2401 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2402 input = value; 2403 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2404 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2405 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2406 value = CGF.EmitToMemory(value, type); 2407 Builder.CreateBr(opBB); 2408 Builder.SetInsertPoint(opBB); 2409 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2410 atomicPHI->addIncoming(value, startBB); 2411 value = atomicPHI; 2412 } else { 2413 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2414 input = value; 2415 } 2416 2417 // Special case of integer increment that we have to check first: bool++. 2418 // Due to promotion rules, we get: 2419 // bool++ -> bool = bool + 1 2420 // -> bool = (int)bool + 1 2421 // -> bool = ((int)bool + 1 != 0) 2422 // An interesting aspect of this is that increment is always true. 2423 // Decrement does not have this property. 2424 if (isInc && type->isBooleanType()) { 2425 value = Builder.getTrue(); 2426 2427 // Most common case by far: integer increment. 2428 } else if (type->isIntegerType()) { 2429 QualType promotedType; 2430 bool canPerformLossyDemotionCheck = false; 2431 if (type->isPromotableIntegerType()) { 2432 promotedType = CGF.getContext().getPromotedIntegerType(type); 2433 assert(promotedType != type && "Shouldn't promote to the same type."); 2434 canPerformLossyDemotionCheck = true; 2435 canPerformLossyDemotionCheck &= 2436 CGF.getContext().getCanonicalType(type) != 2437 CGF.getContext().getCanonicalType(promotedType); 2438 canPerformLossyDemotionCheck &= 2439 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2440 type, promotedType); 2441 assert((!canPerformLossyDemotionCheck || 2442 type->isSignedIntegerOrEnumerationType() || 2443 promotedType->isSignedIntegerOrEnumerationType() || 2444 ConvertType(type)->getScalarSizeInBits() == 2445 ConvertType(promotedType)->getScalarSizeInBits()) && 2446 "The following check expects that if we do promotion to different " 2447 "underlying canonical type, at least one of the types (either " 2448 "base or promoted) will be signed, or the bitwidths will match."); 2449 } 2450 if (CGF.SanOpts.hasOneOf( 2451 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2452 canPerformLossyDemotionCheck) { 2453 // While `x += 1` (for `x` with width less than int) is modeled as 2454 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2455 // ease; inc/dec with width less than int can't overflow because of 2456 // promotion rules, so we omit promotion+demotion, which means that we can 2457 // not catch lossy "demotion". Because we still want to catch these cases 2458 // when the sanitizer is enabled, we perform the promotion, then perform 2459 // the increment/decrement in the wider type, and finally 2460 // perform the demotion. This will catch lossy demotions. 2461 2462 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2463 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2464 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2465 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2466 // emitted. 2467 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2468 ScalarConversionOpts(CGF.SanOpts)); 2469 2470 // Note that signed integer inc/dec with width less than int can't 2471 // overflow because of promotion rules; we're just eliding a few steps 2472 // here. 2473 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2474 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2475 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2476 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2477 value = 2478 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2479 } else { 2480 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2481 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2482 } 2483 2484 // Next most common: pointer increment. 2485 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2486 QualType type = ptr->getPointeeType(); 2487 2488 // VLA types don't have constant size. 2489 if (const VariableArrayType *vla 2490 = CGF.getContext().getAsVariableArrayType(type)) { 2491 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2492 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2493 if (CGF.getLangOpts().isSignedOverflowDefined()) 2494 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2495 else 2496 value = CGF.EmitCheckedInBoundsGEP( 2497 value, numElts, /*SignedIndices=*/false, isSubtraction, 2498 E->getExprLoc(), "vla.inc"); 2499 2500 // Arithmetic on function pointers (!) is just +-1. 2501 } else if (type->isFunctionType()) { 2502 llvm::Value *amt = Builder.getInt32(amount); 2503 2504 value = CGF.EmitCastToVoidPtr(value); 2505 if (CGF.getLangOpts().isSignedOverflowDefined()) 2506 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2507 else 2508 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2509 isSubtraction, E->getExprLoc(), 2510 "incdec.funcptr"); 2511 value = Builder.CreateBitCast(value, input->getType()); 2512 2513 // For everything else, we can just do a simple increment. 2514 } else { 2515 llvm::Value *amt = Builder.getInt32(amount); 2516 if (CGF.getLangOpts().isSignedOverflowDefined()) 2517 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2518 else 2519 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2520 isSubtraction, E->getExprLoc(), 2521 "incdec.ptr"); 2522 } 2523 2524 // Vector increment/decrement. 2525 } else if (type->isVectorType()) { 2526 if (type->hasIntegerRepresentation()) { 2527 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2528 2529 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2530 } else { 2531 value = Builder.CreateFAdd( 2532 value, 2533 llvm::ConstantFP::get(value->getType(), amount), 2534 isInc ? "inc" : "dec"); 2535 } 2536 2537 // Floating point. 2538 } else if (type->isRealFloatingType()) { 2539 // Add the inc/dec to the real part. 2540 llvm::Value *amt; 2541 2542 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2543 // Another special case: half FP increment should be done via float 2544 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2545 value = Builder.CreateCall( 2546 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2547 CGF.CGM.FloatTy), 2548 input, "incdec.conv"); 2549 } else { 2550 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2551 } 2552 } 2553 2554 if (value->getType()->isFloatTy()) 2555 amt = llvm::ConstantFP::get(VMContext, 2556 llvm::APFloat(static_cast<float>(amount))); 2557 else if (value->getType()->isDoubleTy()) 2558 amt = llvm::ConstantFP::get(VMContext, 2559 llvm::APFloat(static_cast<double>(amount))); 2560 else { 2561 // Remaining types are Half, LongDouble or __float128. Convert from float. 2562 llvm::APFloat F(static_cast<float>(amount)); 2563 bool ignored; 2564 const llvm::fltSemantics *FS; 2565 // Don't use getFloatTypeSemantics because Half isn't 2566 // necessarily represented using the "half" LLVM type. 2567 if (value->getType()->isFP128Ty()) 2568 FS = &CGF.getTarget().getFloat128Format(); 2569 else if (value->getType()->isHalfTy()) 2570 FS = &CGF.getTarget().getHalfFormat(); 2571 else 2572 FS = &CGF.getTarget().getLongDoubleFormat(); 2573 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2574 amt = llvm::ConstantFP::get(VMContext, F); 2575 } 2576 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2577 2578 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2579 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2580 value = Builder.CreateCall( 2581 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2582 CGF.CGM.FloatTy), 2583 value, "incdec.conv"); 2584 } else { 2585 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2586 } 2587 } 2588 2589 // Objective-C pointer types. 2590 } else { 2591 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2592 value = CGF.EmitCastToVoidPtr(value); 2593 2594 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2595 if (!isInc) size = -size; 2596 llvm::Value *sizeValue = 2597 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2598 2599 if (CGF.getLangOpts().isSignedOverflowDefined()) 2600 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2601 else 2602 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2603 /*SignedIndices=*/false, isSubtraction, 2604 E->getExprLoc(), "incdec.objptr"); 2605 value = Builder.CreateBitCast(value, input->getType()); 2606 } 2607 2608 if (atomicPHI) { 2609 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2610 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2611 auto Pair = CGF.EmitAtomicCompareExchange( 2612 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2613 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2614 llvm::Value *success = Pair.second; 2615 atomicPHI->addIncoming(old, curBlock); 2616 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2617 Builder.SetInsertPoint(contBB); 2618 return isPre ? value : input; 2619 } 2620 2621 // Store the updated result through the lvalue. 2622 if (LV.isBitField()) 2623 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2624 else 2625 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2626 2627 // If this is a postinc, return the value read from memory, otherwise use the 2628 // updated value. 2629 return isPre ? value : input; 2630 } 2631 2632 2633 2634 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2635 TestAndClearIgnoreResultAssign(); 2636 Value *Op = Visit(E->getSubExpr()); 2637 2638 // Generate a unary FNeg for FP ops. 2639 if (Op->getType()->isFPOrFPVectorTy()) 2640 return Builder.CreateFNeg(Op, "fneg"); 2641 2642 // Emit unary minus with EmitSub so we handle overflow cases etc. 2643 BinOpInfo BinOp; 2644 BinOp.RHS = Op; 2645 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2646 BinOp.Ty = E->getType(); 2647 BinOp.Opcode = BO_Sub; 2648 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2649 BinOp.E = E; 2650 return EmitSub(BinOp); 2651 } 2652 2653 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2654 TestAndClearIgnoreResultAssign(); 2655 Value *Op = Visit(E->getSubExpr()); 2656 return Builder.CreateNot(Op, "neg"); 2657 } 2658 2659 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2660 // Perform vector logical not on comparison with zero vector. 2661 if (E->getType()->isExtVectorType()) { 2662 Value *Oper = Visit(E->getSubExpr()); 2663 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2664 Value *Result; 2665 if (Oper->getType()->isFPOrFPVectorTy()) 2666 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2667 else 2668 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2669 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2670 } 2671 2672 // Compare operand to zero. 2673 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2674 2675 // Invert value. 2676 // TODO: Could dynamically modify easy computations here. For example, if 2677 // the operand is an icmp ne, turn into icmp eq. 2678 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2679 2680 // ZExt result to the expr type. 2681 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2682 } 2683 2684 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2685 // Try folding the offsetof to a constant. 2686 Expr::EvalResult EVResult; 2687 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2688 llvm::APSInt Value = EVResult.Val.getInt(); 2689 return Builder.getInt(Value); 2690 } 2691 2692 // Loop over the components of the offsetof to compute the value. 2693 unsigned n = E->getNumComponents(); 2694 llvm::Type* ResultType = ConvertType(E->getType()); 2695 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2696 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2697 for (unsigned i = 0; i != n; ++i) { 2698 OffsetOfNode ON = E->getComponent(i); 2699 llvm::Value *Offset = nullptr; 2700 switch (ON.getKind()) { 2701 case OffsetOfNode::Array: { 2702 // Compute the index 2703 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2704 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2705 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2706 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2707 2708 // Save the element type 2709 CurrentType = 2710 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2711 2712 // Compute the element size 2713 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2714 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2715 2716 // Multiply out to compute the result 2717 Offset = Builder.CreateMul(Idx, ElemSize); 2718 break; 2719 } 2720 2721 case OffsetOfNode::Field: { 2722 FieldDecl *MemberDecl = ON.getField(); 2723 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2724 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2725 2726 // Compute the index of the field in its parent. 2727 unsigned i = 0; 2728 // FIXME: It would be nice if we didn't have to loop here! 2729 for (RecordDecl::field_iterator Field = RD->field_begin(), 2730 FieldEnd = RD->field_end(); 2731 Field != FieldEnd; ++Field, ++i) { 2732 if (*Field == MemberDecl) 2733 break; 2734 } 2735 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2736 2737 // Compute the offset to the field 2738 int64_t OffsetInt = RL.getFieldOffset(i) / 2739 CGF.getContext().getCharWidth(); 2740 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2741 2742 // Save the element type. 2743 CurrentType = MemberDecl->getType(); 2744 break; 2745 } 2746 2747 case OffsetOfNode::Identifier: 2748 llvm_unreachable("dependent __builtin_offsetof"); 2749 2750 case OffsetOfNode::Base: { 2751 if (ON.getBase()->isVirtual()) { 2752 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2753 continue; 2754 } 2755 2756 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2757 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2758 2759 // Save the element type. 2760 CurrentType = ON.getBase()->getType(); 2761 2762 // Compute the offset to the base. 2763 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2764 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2765 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2766 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2767 break; 2768 } 2769 } 2770 Result = Builder.CreateAdd(Result, Offset); 2771 } 2772 return Result; 2773 } 2774 2775 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2776 /// argument of the sizeof expression as an integer. 2777 Value * 2778 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2779 const UnaryExprOrTypeTraitExpr *E) { 2780 QualType TypeToSize = E->getTypeOfArgument(); 2781 if (E->getKind() == UETT_SizeOf) { 2782 if (const VariableArrayType *VAT = 2783 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2784 if (E->isArgumentType()) { 2785 // sizeof(type) - make sure to emit the VLA size. 2786 CGF.EmitVariablyModifiedType(TypeToSize); 2787 } else { 2788 // C99 6.5.3.4p2: If the argument is an expression of type 2789 // VLA, it is evaluated. 2790 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2791 } 2792 2793 auto VlaSize = CGF.getVLASize(VAT); 2794 llvm::Value *size = VlaSize.NumElts; 2795 2796 // Scale the number of non-VLA elements by the non-VLA element size. 2797 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2798 if (!eltSize.isOne()) 2799 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2800 2801 return size; 2802 } 2803 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2804 auto Alignment = 2805 CGF.getContext() 2806 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2807 E->getTypeOfArgument()->getPointeeType())) 2808 .getQuantity(); 2809 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2810 } 2811 2812 // If this isn't sizeof(vla), the result must be constant; use the constant 2813 // folding logic so we don't have to duplicate it here. 2814 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2815 } 2816 2817 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2818 Expr *Op = E->getSubExpr(); 2819 if (Op->getType()->isAnyComplexType()) { 2820 // If it's an l-value, load through the appropriate subobject l-value. 2821 // Note that we have to ask E because Op might be an l-value that 2822 // this won't work for, e.g. an Obj-C property. 2823 if (E->isGLValue()) 2824 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2825 E->getExprLoc()).getScalarVal(); 2826 2827 // Otherwise, calculate and project. 2828 return CGF.EmitComplexExpr(Op, false, true).first; 2829 } 2830 2831 return Visit(Op); 2832 } 2833 2834 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2835 Expr *Op = E->getSubExpr(); 2836 if (Op->getType()->isAnyComplexType()) { 2837 // If it's an l-value, load through the appropriate subobject l-value. 2838 // Note that we have to ask E because Op might be an l-value that 2839 // this won't work for, e.g. an Obj-C property. 2840 if (Op->isGLValue()) 2841 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2842 E->getExprLoc()).getScalarVal(); 2843 2844 // Otherwise, calculate and project. 2845 return CGF.EmitComplexExpr(Op, true, false).second; 2846 } 2847 2848 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2849 // effects are evaluated, but not the actual value. 2850 if (Op->isGLValue()) 2851 CGF.EmitLValue(Op); 2852 else 2853 CGF.EmitScalarExpr(Op, true); 2854 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2855 } 2856 2857 //===----------------------------------------------------------------------===// 2858 // Binary Operators 2859 //===----------------------------------------------------------------------===// 2860 2861 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2862 TestAndClearIgnoreResultAssign(); 2863 BinOpInfo Result; 2864 Result.LHS = Visit(E->getLHS()); 2865 Result.RHS = Visit(E->getRHS()); 2866 Result.Ty = E->getType(); 2867 Result.Opcode = E->getOpcode(); 2868 Result.FPFeatures = E->getFPFeatures(); 2869 Result.E = E; 2870 return Result; 2871 } 2872 2873 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2874 const CompoundAssignOperator *E, 2875 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2876 Value *&Result) { 2877 QualType LHSTy = E->getLHS()->getType(); 2878 BinOpInfo OpInfo; 2879 2880 if (E->getComputationResultType()->isAnyComplexType()) 2881 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2882 2883 // Emit the RHS first. __block variables need to have the rhs evaluated 2884 // first, plus this should improve codegen a little. 2885 OpInfo.RHS = Visit(E->getRHS()); 2886 OpInfo.Ty = E->getComputationResultType(); 2887 OpInfo.Opcode = E->getOpcode(); 2888 OpInfo.FPFeatures = E->getFPFeatures(); 2889 OpInfo.E = E; 2890 // Load/convert the LHS. 2891 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2892 2893 llvm::PHINode *atomicPHI = nullptr; 2894 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2895 QualType type = atomicTy->getValueType(); 2896 if (!type->isBooleanType() && type->isIntegerType() && 2897 !(type->isUnsignedIntegerType() && 2898 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2899 CGF.getLangOpts().getSignedOverflowBehavior() != 2900 LangOptions::SOB_Trapping) { 2901 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 2902 llvm::Instruction::BinaryOps Op; 2903 switch (OpInfo.Opcode) { 2904 // We don't have atomicrmw operands for *, %, /, <<, >> 2905 case BO_MulAssign: case BO_DivAssign: 2906 case BO_RemAssign: 2907 case BO_ShlAssign: 2908 case BO_ShrAssign: 2909 break; 2910 case BO_AddAssign: 2911 AtomicOp = llvm::AtomicRMWInst::Add; 2912 Op = llvm::Instruction::Add; 2913 break; 2914 case BO_SubAssign: 2915 AtomicOp = llvm::AtomicRMWInst::Sub; 2916 Op = llvm::Instruction::Sub; 2917 break; 2918 case BO_AndAssign: 2919 AtomicOp = llvm::AtomicRMWInst::And; 2920 Op = llvm::Instruction::And; 2921 break; 2922 case BO_XorAssign: 2923 AtomicOp = llvm::AtomicRMWInst::Xor; 2924 Op = llvm::Instruction::Xor; 2925 break; 2926 case BO_OrAssign: 2927 AtomicOp = llvm::AtomicRMWInst::Or; 2928 Op = llvm::Instruction::Or; 2929 break; 2930 default: 2931 llvm_unreachable("Invalid compound assignment type"); 2932 } 2933 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 2934 llvm::Value *Amt = CGF.EmitToMemory( 2935 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2936 E->getExprLoc()), 2937 LHSTy); 2938 Value *OldVal = Builder.CreateAtomicRMW( 2939 AtomicOp, LHSLV.getPointer(), Amt, 2940 llvm::AtomicOrdering::SequentiallyConsistent); 2941 2942 // Since operation is atomic, the result type is guaranteed to be the 2943 // same as the input in LLVM terms. 2944 Result = Builder.CreateBinOp(Op, OldVal, Amt); 2945 return LHSLV; 2946 } 2947 } 2948 // FIXME: For floating point types, we should be saving and restoring the 2949 // floating point environment in the loop. 2950 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2951 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2952 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2953 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2954 Builder.CreateBr(opBB); 2955 Builder.SetInsertPoint(opBB); 2956 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2957 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2958 OpInfo.LHS = atomicPHI; 2959 } 2960 else 2961 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2962 2963 SourceLocation Loc = E->getExprLoc(); 2964 OpInfo.LHS = 2965 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2966 2967 // Expand the binary operator. 2968 Result = (this->*Func)(OpInfo); 2969 2970 // Convert the result back to the LHS type, 2971 // potentially with Implicit Conversion sanitizer check. 2972 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2973 Loc, ScalarConversionOpts(CGF.SanOpts)); 2974 2975 if (atomicPHI) { 2976 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2977 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2978 auto Pair = CGF.EmitAtomicCompareExchange( 2979 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2980 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2981 llvm::Value *success = Pair.second; 2982 atomicPHI->addIncoming(old, curBlock); 2983 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2984 Builder.SetInsertPoint(contBB); 2985 return LHSLV; 2986 } 2987 2988 // Store the result value into the LHS lvalue. Bit-fields are handled 2989 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2990 // 'An assignment expression has the value of the left operand after the 2991 // assignment...'. 2992 if (LHSLV.isBitField()) 2993 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2994 else 2995 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2996 2997 return LHSLV; 2998 } 2999 3000 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3001 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3002 bool Ignore = TestAndClearIgnoreResultAssign(); 3003 Value *RHS = nullptr; 3004 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3005 3006 // If the result is clearly ignored, return now. 3007 if (Ignore) 3008 return nullptr; 3009 3010 // The result of an assignment in C is the assigned r-value. 3011 if (!CGF.getLangOpts().CPlusPlus) 3012 return RHS; 3013 3014 // If the lvalue is non-volatile, return the computed value of the assignment. 3015 if (!LHS.isVolatileQualified()) 3016 return RHS; 3017 3018 // Otherwise, reload the value. 3019 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3020 } 3021 3022 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3023 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3024 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3025 3026 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3027 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3028 SanitizerKind::IntegerDivideByZero)); 3029 } 3030 3031 const auto *BO = cast<BinaryOperator>(Ops.E); 3032 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3033 Ops.Ty->hasSignedIntegerRepresentation() && 3034 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3035 Ops.mayHaveIntegerOverflow()) { 3036 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3037 3038 llvm::Value *IntMin = 3039 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3040 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 3041 3042 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3043 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3044 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3045 Checks.push_back( 3046 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3047 } 3048 3049 if (Checks.size() > 0) 3050 EmitBinOpCheck(Checks, Ops); 3051 } 3052 3053 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3054 { 3055 CodeGenFunction::SanitizerScope SanScope(&CGF); 3056 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3057 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3058 Ops.Ty->isIntegerType() && 3059 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3060 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3061 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3062 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3063 Ops.Ty->isRealFloatingType() && 3064 Ops.mayHaveFloatDivisionByZero()) { 3065 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3066 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3067 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3068 Ops); 3069 } 3070 } 3071 3072 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3073 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3074 if (CGF.getLangOpts().OpenCL && 3075 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3076 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3077 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3078 // build option allows an application to specify that single precision 3079 // floating-point divide (x/y and 1/x) and sqrt used in the program 3080 // source are correctly rounded. 3081 llvm::Type *ValTy = Val->getType(); 3082 if (ValTy->isFloatTy() || 3083 (isa<llvm::VectorType>(ValTy) && 3084 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3085 CGF.SetFPAccuracy(Val, 2.5); 3086 } 3087 return Val; 3088 } 3089 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3090 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3091 else 3092 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3093 } 3094 3095 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3096 // Rem in C can't be a floating point type: C99 6.5.5p2. 3097 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3098 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3099 Ops.Ty->isIntegerType() && 3100 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3101 CodeGenFunction::SanitizerScope SanScope(&CGF); 3102 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3103 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3104 } 3105 3106 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3107 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3108 else 3109 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3110 } 3111 3112 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3113 unsigned IID; 3114 unsigned OpID = 0; 3115 3116 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3117 switch (Ops.Opcode) { 3118 case BO_Add: 3119 case BO_AddAssign: 3120 OpID = 1; 3121 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3122 llvm::Intrinsic::uadd_with_overflow; 3123 break; 3124 case BO_Sub: 3125 case BO_SubAssign: 3126 OpID = 2; 3127 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3128 llvm::Intrinsic::usub_with_overflow; 3129 break; 3130 case BO_Mul: 3131 case BO_MulAssign: 3132 OpID = 3; 3133 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3134 llvm::Intrinsic::umul_with_overflow; 3135 break; 3136 default: 3137 llvm_unreachable("Unsupported operation for overflow detection"); 3138 } 3139 OpID <<= 1; 3140 if (isSigned) 3141 OpID |= 1; 3142 3143 CodeGenFunction::SanitizerScope SanScope(&CGF); 3144 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3145 3146 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3147 3148 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3149 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3150 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3151 3152 // Handle overflow with llvm.trap if no custom handler has been specified. 3153 const std::string *handlerName = 3154 &CGF.getLangOpts().OverflowHandler; 3155 if (handlerName->empty()) { 3156 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3157 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3158 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3159 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3160 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3161 : SanitizerKind::UnsignedIntegerOverflow; 3162 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3163 } else 3164 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3165 return result; 3166 } 3167 3168 // Branch in case of overflow. 3169 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3170 llvm::BasicBlock *continueBB = 3171 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3172 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3173 3174 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3175 3176 // If an overflow handler is set, then we want to call it and then use its 3177 // result, if it returns. 3178 Builder.SetInsertPoint(overflowBB); 3179 3180 // Get the overflow handler. 3181 llvm::Type *Int8Ty = CGF.Int8Ty; 3182 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3183 llvm::FunctionType *handlerTy = 3184 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3185 llvm::FunctionCallee handler = 3186 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3187 3188 // Sign extend the args to 64-bit, so that we can use the same handler for 3189 // all types of overflow. 3190 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3191 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3192 3193 // Call the handler with the two arguments, the operation, and the size of 3194 // the result. 3195 llvm::Value *handlerArgs[] = { 3196 lhs, 3197 rhs, 3198 Builder.getInt8(OpID), 3199 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3200 }; 3201 llvm::Value *handlerResult = 3202 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3203 3204 // Truncate the result back to the desired size. 3205 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3206 Builder.CreateBr(continueBB); 3207 3208 Builder.SetInsertPoint(continueBB); 3209 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3210 phi->addIncoming(result, initialBB); 3211 phi->addIncoming(handlerResult, overflowBB); 3212 3213 return phi; 3214 } 3215 3216 /// Emit pointer + index arithmetic. 3217 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3218 const BinOpInfo &op, 3219 bool isSubtraction) { 3220 // Must have binary (not unary) expr here. Unary pointer 3221 // increment/decrement doesn't use this path. 3222 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3223 3224 Value *pointer = op.LHS; 3225 Expr *pointerOperand = expr->getLHS(); 3226 Value *index = op.RHS; 3227 Expr *indexOperand = expr->getRHS(); 3228 3229 // In a subtraction, the LHS is always the pointer. 3230 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3231 std::swap(pointer, index); 3232 std::swap(pointerOperand, indexOperand); 3233 } 3234 3235 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3236 3237 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3238 auto &DL = CGF.CGM.getDataLayout(); 3239 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3240 3241 // Some versions of glibc and gcc use idioms (particularly in their malloc 3242 // routines) that add a pointer-sized integer (known to be a pointer value) 3243 // to a null pointer in order to cast the value back to an integer or as 3244 // part of a pointer alignment algorithm. This is undefined behavior, but 3245 // we'd like to be able to compile programs that use it. 3246 // 3247 // Normally, we'd generate a GEP with a null-pointer base here in response 3248 // to that code, but it's also UB to dereference a pointer created that 3249 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3250 // generate a direct cast of the integer value to a pointer. 3251 // 3252 // The idiom (p = nullptr + N) is not met if any of the following are true: 3253 // 3254 // The operation is subtraction. 3255 // The index is not pointer-sized. 3256 // The pointer type is not byte-sized. 3257 // 3258 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3259 op.Opcode, 3260 expr->getLHS(), 3261 expr->getRHS())) 3262 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3263 3264 if (width != DL.getTypeSizeInBits(PtrTy)) { 3265 // Zero-extend or sign-extend the pointer value according to 3266 // whether the index is signed or not. 3267 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3268 "idx.ext"); 3269 } 3270 3271 // If this is subtraction, negate the index. 3272 if (isSubtraction) 3273 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3274 3275 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3276 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3277 /*Accessed*/ false); 3278 3279 const PointerType *pointerType 3280 = pointerOperand->getType()->getAs<PointerType>(); 3281 if (!pointerType) { 3282 QualType objectType = pointerOperand->getType() 3283 ->castAs<ObjCObjectPointerType>() 3284 ->getPointeeType(); 3285 llvm::Value *objectSize 3286 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3287 3288 index = CGF.Builder.CreateMul(index, objectSize); 3289 3290 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3291 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3292 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3293 } 3294 3295 QualType elementType = pointerType->getPointeeType(); 3296 if (const VariableArrayType *vla 3297 = CGF.getContext().getAsVariableArrayType(elementType)) { 3298 // The element count here is the total number of non-VLA elements. 3299 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3300 3301 // Effectively, the multiply by the VLA size is part of the GEP. 3302 // GEP indexes are signed, and scaling an index isn't permitted to 3303 // signed-overflow, so we use the same semantics for our explicit 3304 // multiply. We suppress this if overflow is not undefined behavior. 3305 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3306 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3307 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3308 } else { 3309 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3310 pointer = 3311 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3312 op.E->getExprLoc(), "add.ptr"); 3313 } 3314 return pointer; 3315 } 3316 3317 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3318 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3319 // future proof. 3320 if (elementType->isVoidType() || elementType->isFunctionType()) { 3321 Value *result = CGF.EmitCastToVoidPtr(pointer); 3322 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3323 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3324 } 3325 3326 if (CGF.getLangOpts().isSignedOverflowDefined()) 3327 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3328 3329 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3330 op.E->getExprLoc(), "add.ptr"); 3331 } 3332 3333 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3334 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3335 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3336 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3337 // efficient operations. 3338 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3339 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3340 bool negMul, bool negAdd) { 3341 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3342 3343 Value *MulOp0 = MulOp->getOperand(0); 3344 Value *MulOp1 = MulOp->getOperand(1); 3345 if (negMul) { 3346 MulOp0 = 3347 Builder.CreateFSub( 3348 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3349 "neg"); 3350 } else if (negAdd) { 3351 Addend = 3352 Builder.CreateFSub( 3353 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3354 "neg"); 3355 } 3356 3357 Value *FMulAdd = Builder.CreateCall( 3358 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3359 {MulOp0, MulOp1, Addend}); 3360 MulOp->eraseFromParent(); 3361 3362 return FMulAdd; 3363 } 3364 3365 // Check whether it would be legal to emit an fmuladd intrinsic call to 3366 // represent op and if so, build the fmuladd. 3367 // 3368 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3369 // Does NOT check the type of the operation - it's assumed that this function 3370 // will be called from contexts where it's known that the type is contractable. 3371 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3372 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3373 bool isSub=false) { 3374 3375 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3376 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3377 "Only fadd/fsub can be the root of an fmuladd."); 3378 3379 // Check whether this op is marked as fusable. 3380 if (!op.FPFeatures.allowFPContractWithinStatement()) 3381 return nullptr; 3382 3383 // We have a potentially fusable op. Look for a mul on one of the operands. 3384 // Also, make sure that the mul result isn't used directly. In that case, 3385 // there's no point creating a muladd operation. 3386 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3387 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3388 LHSBinOp->use_empty()) 3389 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3390 } 3391 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3392 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3393 RHSBinOp->use_empty()) 3394 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3395 } 3396 3397 return nullptr; 3398 } 3399 3400 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3401 if (op.LHS->getType()->isPointerTy() || 3402 op.RHS->getType()->isPointerTy()) 3403 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3404 3405 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3406 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3407 case LangOptions::SOB_Defined: 3408 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3409 case LangOptions::SOB_Undefined: 3410 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3411 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3412 LLVM_FALLTHROUGH; 3413 case LangOptions::SOB_Trapping: 3414 if (CanElideOverflowCheck(CGF.getContext(), op)) 3415 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3416 return EmitOverflowCheckedBinOp(op); 3417 } 3418 } 3419 3420 if (op.Ty->isUnsignedIntegerType() && 3421 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3422 !CanElideOverflowCheck(CGF.getContext(), op)) 3423 return EmitOverflowCheckedBinOp(op); 3424 3425 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3426 // Try to form an fmuladd. 3427 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3428 return FMulAdd; 3429 3430 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3431 return propagateFMFlags(V, op); 3432 } 3433 3434 if (op.isFixedPointBinOp()) 3435 return EmitFixedPointBinOp(op); 3436 3437 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3438 } 3439 3440 /// The resulting value must be calculated with exact precision, so the operands 3441 /// may not be the same type. 3442 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3443 using llvm::APSInt; 3444 using llvm::ConstantInt; 3445 3446 const auto *BinOp = cast<BinaryOperator>(op.E); 3447 3448 // The result is a fixed point type and at least one of the operands is fixed 3449 // point while the other is either fixed point or an int. This resulting type 3450 // should be determined by Sema::handleFixedPointConversions(). 3451 QualType ResultTy = op.Ty; 3452 QualType LHSTy = BinOp->getLHS()->getType(); 3453 QualType RHSTy = BinOp->getRHS()->getType(); 3454 ASTContext &Ctx = CGF.getContext(); 3455 Value *LHS = op.LHS; 3456 Value *RHS = op.RHS; 3457 3458 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3459 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3460 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3461 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3462 3463 // Convert the operands to the full precision type. 3464 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3465 BinOp->getExprLoc()); 3466 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3467 BinOp->getExprLoc()); 3468 3469 // Perform the actual addition. 3470 Value *Result; 3471 switch (BinOp->getOpcode()) { 3472 case BO_Add: { 3473 if (ResultFixedSema.isSaturated()) { 3474 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3475 ? llvm::Intrinsic::sadd_sat 3476 : llvm::Intrinsic::uadd_sat; 3477 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3478 } else { 3479 Result = Builder.CreateAdd(FullLHS, FullRHS); 3480 } 3481 break; 3482 } 3483 case BO_Sub: { 3484 if (ResultFixedSema.isSaturated()) { 3485 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3486 ? llvm::Intrinsic::ssub_sat 3487 : llvm::Intrinsic::usub_sat; 3488 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3489 } else { 3490 Result = Builder.CreateSub(FullLHS, FullRHS); 3491 } 3492 break; 3493 } 3494 case BO_LT: 3495 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3496 : Builder.CreateICmpULT(FullLHS, FullRHS); 3497 case BO_GT: 3498 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3499 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3500 case BO_LE: 3501 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3502 : Builder.CreateICmpULE(FullLHS, FullRHS); 3503 case BO_GE: 3504 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3505 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3506 case BO_EQ: 3507 // For equality operations, we assume any padding bits on unsigned types are 3508 // zero'd out. They could be overwritten through non-saturating operations 3509 // that cause overflow, but this leads to undefined behavior. 3510 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3511 case BO_NE: 3512 return Builder.CreateICmpNE(FullLHS, FullRHS); 3513 case BO_Mul: 3514 case BO_Div: 3515 case BO_Shl: 3516 case BO_Shr: 3517 case BO_Cmp: 3518 case BO_LAnd: 3519 case BO_LOr: 3520 case BO_MulAssign: 3521 case BO_DivAssign: 3522 case BO_AddAssign: 3523 case BO_SubAssign: 3524 case BO_ShlAssign: 3525 case BO_ShrAssign: 3526 llvm_unreachable("Found unimplemented fixed point binary operation"); 3527 case BO_PtrMemD: 3528 case BO_PtrMemI: 3529 case BO_Rem: 3530 case BO_Xor: 3531 case BO_And: 3532 case BO_Or: 3533 case BO_Assign: 3534 case BO_RemAssign: 3535 case BO_AndAssign: 3536 case BO_XorAssign: 3537 case BO_OrAssign: 3538 case BO_Comma: 3539 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3540 } 3541 3542 // Convert to the result type. 3543 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3544 BinOp->getExprLoc()); 3545 } 3546 3547 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3548 // The LHS is always a pointer if either side is. 3549 if (!op.LHS->getType()->isPointerTy()) { 3550 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3551 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3552 case LangOptions::SOB_Defined: 3553 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3554 case LangOptions::SOB_Undefined: 3555 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3556 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3557 LLVM_FALLTHROUGH; 3558 case LangOptions::SOB_Trapping: 3559 if (CanElideOverflowCheck(CGF.getContext(), op)) 3560 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3561 return EmitOverflowCheckedBinOp(op); 3562 } 3563 } 3564 3565 if (op.Ty->isUnsignedIntegerType() && 3566 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3567 !CanElideOverflowCheck(CGF.getContext(), op)) 3568 return EmitOverflowCheckedBinOp(op); 3569 3570 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3571 // Try to form an fmuladd. 3572 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3573 return FMulAdd; 3574 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3575 return propagateFMFlags(V, op); 3576 } 3577 3578 if (op.isFixedPointBinOp()) 3579 return EmitFixedPointBinOp(op); 3580 3581 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3582 } 3583 3584 // If the RHS is not a pointer, then we have normal pointer 3585 // arithmetic. 3586 if (!op.RHS->getType()->isPointerTy()) 3587 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3588 3589 // Otherwise, this is a pointer subtraction. 3590 3591 // Do the raw subtraction part. 3592 llvm::Value *LHS 3593 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3594 llvm::Value *RHS 3595 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3596 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3597 3598 // Okay, figure out the element size. 3599 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3600 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3601 3602 llvm::Value *divisor = nullptr; 3603 3604 // For a variable-length array, this is going to be non-constant. 3605 if (const VariableArrayType *vla 3606 = CGF.getContext().getAsVariableArrayType(elementType)) { 3607 auto VlaSize = CGF.getVLASize(vla); 3608 elementType = VlaSize.Type; 3609 divisor = VlaSize.NumElts; 3610 3611 // Scale the number of non-VLA elements by the non-VLA element size. 3612 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3613 if (!eltSize.isOne()) 3614 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3615 3616 // For everything elese, we can just compute it, safe in the 3617 // assumption that Sema won't let anything through that we can't 3618 // safely compute the size of. 3619 } else { 3620 CharUnits elementSize; 3621 // Handle GCC extension for pointer arithmetic on void* and 3622 // function pointer types. 3623 if (elementType->isVoidType() || elementType->isFunctionType()) 3624 elementSize = CharUnits::One(); 3625 else 3626 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3627 3628 // Don't even emit the divide for element size of 1. 3629 if (elementSize.isOne()) 3630 return diffInChars; 3631 3632 divisor = CGF.CGM.getSize(elementSize); 3633 } 3634 3635 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3636 // pointer difference in C is only defined in the case where both operands 3637 // are pointing to elements of an array. 3638 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3639 } 3640 3641 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3642 llvm::IntegerType *Ty; 3643 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3644 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3645 else 3646 Ty = cast<llvm::IntegerType>(LHS->getType()); 3647 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3648 } 3649 3650 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3651 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3652 // RHS to the same size as the LHS. 3653 Value *RHS = Ops.RHS; 3654 if (Ops.LHS->getType() != RHS->getType()) 3655 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3656 3657 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3658 Ops.Ty->hasSignedIntegerRepresentation() && 3659 !CGF.getLangOpts().isSignedOverflowDefined() && 3660 !CGF.getLangOpts().CPlusPlus2a; 3661 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3662 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3663 if (CGF.getLangOpts().OpenCL) 3664 RHS = 3665 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3666 else if ((SanitizeBase || SanitizeExponent) && 3667 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3668 CodeGenFunction::SanitizerScope SanScope(&CGF); 3669 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3670 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3671 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3672 3673 if (SanitizeExponent) { 3674 Checks.push_back( 3675 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3676 } 3677 3678 if (SanitizeBase) { 3679 // Check whether we are shifting any non-zero bits off the top of the 3680 // integer. We only emit this check if exponent is valid - otherwise 3681 // instructions below will have undefined behavior themselves. 3682 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3683 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3684 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3685 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3686 llvm::Value *PromotedWidthMinusOne = 3687 (RHS == Ops.RHS) ? WidthMinusOne 3688 : GetWidthMinusOneValue(Ops.LHS, RHS); 3689 CGF.EmitBlock(CheckShiftBase); 3690 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3691 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3692 /*NUW*/ true, /*NSW*/ true), 3693 "shl.check"); 3694 if (CGF.getLangOpts().CPlusPlus) { 3695 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3696 // Under C++11's rules, shifting a 1 bit into the sign bit is 3697 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3698 // define signed left shifts, so we use the C99 and C++11 rules there). 3699 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3700 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3701 } 3702 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3703 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3704 CGF.EmitBlock(Cont); 3705 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3706 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3707 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3708 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3709 } 3710 3711 assert(!Checks.empty()); 3712 EmitBinOpCheck(Checks, Ops); 3713 } 3714 3715 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3716 } 3717 3718 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3719 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3720 // RHS to the same size as the LHS. 3721 Value *RHS = Ops.RHS; 3722 if (Ops.LHS->getType() != RHS->getType()) 3723 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3724 3725 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3726 if (CGF.getLangOpts().OpenCL) 3727 RHS = 3728 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3729 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3730 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3731 CodeGenFunction::SanitizerScope SanScope(&CGF); 3732 llvm::Value *Valid = 3733 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3734 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3735 } 3736 3737 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3738 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3739 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3740 } 3741 3742 enum IntrinsicType { VCMPEQ, VCMPGT }; 3743 // return corresponding comparison intrinsic for given vector type 3744 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3745 BuiltinType::Kind ElemKind) { 3746 switch (ElemKind) { 3747 default: llvm_unreachable("unexpected element type"); 3748 case BuiltinType::Char_U: 3749 case BuiltinType::UChar: 3750 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3751 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3752 case BuiltinType::Char_S: 3753 case BuiltinType::SChar: 3754 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3755 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3756 case BuiltinType::UShort: 3757 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3758 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3759 case BuiltinType::Short: 3760 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3761 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3762 case BuiltinType::UInt: 3763 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3764 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3765 case BuiltinType::Int: 3766 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3767 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3768 case BuiltinType::ULong: 3769 case BuiltinType::ULongLong: 3770 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3771 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3772 case BuiltinType::Long: 3773 case BuiltinType::LongLong: 3774 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3775 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3776 case BuiltinType::Float: 3777 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3778 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3779 case BuiltinType::Double: 3780 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3781 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3782 } 3783 } 3784 3785 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3786 llvm::CmpInst::Predicate UICmpOpc, 3787 llvm::CmpInst::Predicate SICmpOpc, 3788 llvm::CmpInst::Predicate FCmpOpc) { 3789 TestAndClearIgnoreResultAssign(); 3790 Value *Result; 3791 QualType LHSTy = E->getLHS()->getType(); 3792 QualType RHSTy = E->getRHS()->getType(); 3793 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3794 assert(E->getOpcode() == BO_EQ || 3795 E->getOpcode() == BO_NE); 3796 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3797 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3798 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3799 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3800 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3801 BinOpInfo BOInfo = EmitBinOps(E); 3802 Value *LHS = BOInfo.LHS; 3803 Value *RHS = BOInfo.RHS; 3804 3805 // If AltiVec, the comparison results in a numeric type, so we use 3806 // intrinsics comparing vectors and giving 0 or 1 as a result 3807 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3808 // constants for mapping CR6 register bits to predicate result 3809 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3810 3811 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3812 3813 // in several cases vector arguments order will be reversed 3814 Value *FirstVecArg = LHS, 3815 *SecondVecArg = RHS; 3816 3817 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3818 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3819 BuiltinType::Kind ElementKind = BTy->getKind(); 3820 3821 switch(E->getOpcode()) { 3822 default: llvm_unreachable("is not a comparison operation"); 3823 case BO_EQ: 3824 CR6 = CR6_LT; 3825 ID = GetIntrinsic(VCMPEQ, ElementKind); 3826 break; 3827 case BO_NE: 3828 CR6 = CR6_EQ; 3829 ID = GetIntrinsic(VCMPEQ, ElementKind); 3830 break; 3831 case BO_LT: 3832 CR6 = CR6_LT; 3833 ID = GetIntrinsic(VCMPGT, ElementKind); 3834 std::swap(FirstVecArg, SecondVecArg); 3835 break; 3836 case BO_GT: 3837 CR6 = CR6_LT; 3838 ID = GetIntrinsic(VCMPGT, ElementKind); 3839 break; 3840 case BO_LE: 3841 if (ElementKind == BuiltinType::Float) { 3842 CR6 = CR6_LT; 3843 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3844 std::swap(FirstVecArg, SecondVecArg); 3845 } 3846 else { 3847 CR6 = CR6_EQ; 3848 ID = GetIntrinsic(VCMPGT, ElementKind); 3849 } 3850 break; 3851 case BO_GE: 3852 if (ElementKind == BuiltinType::Float) { 3853 CR6 = CR6_LT; 3854 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3855 } 3856 else { 3857 CR6 = CR6_EQ; 3858 ID = GetIntrinsic(VCMPGT, ElementKind); 3859 std::swap(FirstVecArg, SecondVecArg); 3860 } 3861 break; 3862 } 3863 3864 Value *CR6Param = Builder.getInt32(CR6); 3865 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3866 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3867 3868 // The result type of intrinsic may not be same as E->getType(). 3869 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3870 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3871 // do nothing, if ResultTy is not i1 at the same time, it will cause 3872 // crash later. 3873 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3874 if (ResultTy->getBitWidth() > 1 && 3875 E->getType() == CGF.getContext().BoolTy) 3876 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3877 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3878 E->getExprLoc()); 3879 } 3880 3881 if (BOInfo.isFixedPointBinOp()) { 3882 Result = EmitFixedPointBinOp(BOInfo); 3883 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3884 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3885 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3886 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3887 } else { 3888 // Unsigned integers and pointers. 3889 3890 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3891 !isa<llvm::ConstantPointerNull>(LHS) && 3892 !isa<llvm::ConstantPointerNull>(RHS)) { 3893 3894 // Dynamic information is required to be stripped for comparisons, 3895 // because it could leak the dynamic information. Based on comparisons 3896 // of pointers to dynamic objects, the optimizer can replace one pointer 3897 // with another, which might be incorrect in presence of invariant 3898 // groups. Comparison with null is safe because null does not carry any 3899 // dynamic information. 3900 if (LHSTy.mayBeDynamicClass()) 3901 LHS = Builder.CreateStripInvariantGroup(LHS); 3902 if (RHSTy.mayBeDynamicClass()) 3903 RHS = Builder.CreateStripInvariantGroup(RHS); 3904 } 3905 3906 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3907 } 3908 3909 // If this is a vector comparison, sign extend the result to the appropriate 3910 // vector integer type and return it (don't convert to bool). 3911 if (LHSTy->isVectorType()) 3912 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3913 3914 } else { 3915 // Complex Comparison: can only be an equality comparison. 3916 CodeGenFunction::ComplexPairTy LHS, RHS; 3917 QualType CETy; 3918 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3919 LHS = CGF.EmitComplexExpr(E->getLHS()); 3920 CETy = CTy->getElementType(); 3921 } else { 3922 LHS.first = Visit(E->getLHS()); 3923 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3924 CETy = LHSTy; 3925 } 3926 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3927 RHS = CGF.EmitComplexExpr(E->getRHS()); 3928 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3929 CTy->getElementType()) && 3930 "The element types must always match."); 3931 (void)CTy; 3932 } else { 3933 RHS.first = Visit(E->getRHS()); 3934 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3935 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3936 "The element types must always match."); 3937 } 3938 3939 Value *ResultR, *ResultI; 3940 if (CETy->isRealFloatingType()) { 3941 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3942 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3943 } else { 3944 // Complex comparisons can only be equality comparisons. As such, signed 3945 // and unsigned opcodes are the same. 3946 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3947 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3948 } 3949 3950 if (E->getOpcode() == BO_EQ) { 3951 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3952 } else { 3953 assert(E->getOpcode() == BO_NE && 3954 "Complex comparison other than == or != ?"); 3955 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3956 } 3957 } 3958 3959 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3960 E->getExprLoc()); 3961 } 3962 3963 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3964 bool Ignore = TestAndClearIgnoreResultAssign(); 3965 3966 Value *RHS; 3967 LValue LHS; 3968 3969 switch (E->getLHS()->getType().getObjCLifetime()) { 3970 case Qualifiers::OCL_Strong: 3971 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3972 break; 3973 3974 case Qualifiers::OCL_Autoreleasing: 3975 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3976 break; 3977 3978 case Qualifiers::OCL_ExplicitNone: 3979 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3980 break; 3981 3982 case Qualifiers::OCL_Weak: 3983 RHS = Visit(E->getRHS()); 3984 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3985 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3986 break; 3987 3988 case Qualifiers::OCL_None: 3989 // __block variables need to have the rhs evaluated first, plus 3990 // this should improve codegen just a little. 3991 RHS = Visit(E->getRHS()); 3992 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3993 3994 // Store the value into the LHS. Bit-fields are handled specially 3995 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3996 // 'An assignment expression has the value of the left operand after 3997 // the assignment...'. 3998 if (LHS.isBitField()) { 3999 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4000 } else { 4001 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4002 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4003 } 4004 } 4005 4006 // If the result is clearly ignored, return now. 4007 if (Ignore) 4008 return nullptr; 4009 4010 // The result of an assignment in C is the assigned r-value. 4011 if (!CGF.getLangOpts().CPlusPlus) 4012 return RHS; 4013 4014 // If the lvalue is non-volatile, return the computed value of the assignment. 4015 if (!LHS.isVolatileQualified()) 4016 return RHS; 4017 4018 // Otherwise, reload the value. 4019 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4020 } 4021 4022 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4023 // Perform vector logical and on comparisons with zero vectors. 4024 if (E->getType()->isVectorType()) { 4025 CGF.incrementProfileCounter(E); 4026 4027 Value *LHS = Visit(E->getLHS()); 4028 Value *RHS = Visit(E->getRHS()); 4029 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4030 if (LHS->getType()->isFPOrFPVectorTy()) { 4031 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4032 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4033 } else { 4034 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4035 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4036 } 4037 Value *And = Builder.CreateAnd(LHS, RHS); 4038 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4039 } 4040 4041 llvm::Type *ResTy = ConvertType(E->getType()); 4042 4043 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4044 // If we have 1 && X, just emit X without inserting the control flow. 4045 bool LHSCondVal; 4046 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4047 if (LHSCondVal) { // If we have 1 && X, just emit X. 4048 CGF.incrementProfileCounter(E); 4049 4050 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4051 // ZExt result to int or bool. 4052 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4053 } 4054 4055 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4056 if (!CGF.ContainsLabel(E->getRHS())) 4057 return llvm::Constant::getNullValue(ResTy); 4058 } 4059 4060 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4061 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4062 4063 CodeGenFunction::ConditionalEvaluation eval(CGF); 4064 4065 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4066 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4067 CGF.getProfileCount(E->getRHS())); 4068 4069 // Any edges into the ContBlock are now from an (indeterminate number of) 4070 // edges from this first condition. All of these values will be false. Start 4071 // setting up the PHI node in the Cont Block for this. 4072 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4073 "", ContBlock); 4074 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4075 PI != PE; ++PI) 4076 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4077 4078 eval.begin(CGF); 4079 CGF.EmitBlock(RHSBlock); 4080 CGF.incrementProfileCounter(E); 4081 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4082 eval.end(CGF); 4083 4084 // Reaquire the RHS block, as there may be subblocks inserted. 4085 RHSBlock = Builder.GetInsertBlock(); 4086 4087 // Emit an unconditional branch from this block to ContBlock. 4088 { 4089 // There is no need to emit line number for unconditional branch. 4090 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4091 CGF.EmitBlock(ContBlock); 4092 } 4093 // Insert an entry into the phi node for the edge with the value of RHSCond. 4094 PN->addIncoming(RHSCond, RHSBlock); 4095 4096 // Artificial location to preserve the scope information 4097 { 4098 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4099 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4100 } 4101 4102 // ZExt result to int. 4103 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4104 } 4105 4106 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4107 // Perform vector logical or on comparisons with zero vectors. 4108 if (E->getType()->isVectorType()) { 4109 CGF.incrementProfileCounter(E); 4110 4111 Value *LHS = Visit(E->getLHS()); 4112 Value *RHS = Visit(E->getRHS()); 4113 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4114 if (LHS->getType()->isFPOrFPVectorTy()) { 4115 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4116 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4117 } else { 4118 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4119 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4120 } 4121 Value *Or = Builder.CreateOr(LHS, RHS); 4122 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4123 } 4124 4125 llvm::Type *ResTy = ConvertType(E->getType()); 4126 4127 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4128 // If we have 0 || X, just emit X without inserting the control flow. 4129 bool LHSCondVal; 4130 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4131 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4132 CGF.incrementProfileCounter(E); 4133 4134 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4135 // ZExt result to int or bool. 4136 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4137 } 4138 4139 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4140 if (!CGF.ContainsLabel(E->getRHS())) 4141 return llvm::ConstantInt::get(ResTy, 1); 4142 } 4143 4144 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4145 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4146 4147 CodeGenFunction::ConditionalEvaluation eval(CGF); 4148 4149 // Branch on the LHS first. If it is true, go to the success (cont) block. 4150 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4151 CGF.getCurrentProfileCount() - 4152 CGF.getProfileCount(E->getRHS())); 4153 4154 // Any edges into the ContBlock are now from an (indeterminate number of) 4155 // edges from this first condition. All of these values will be true. Start 4156 // setting up the PHI node in the Cont Block for this. 4157 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4158 "", ContBlock); 4159 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4160 PI != PE; ++PI) 4161 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4162 4163 eval.begin(CGF); 4164 4165 // Emit the RHS condition as a bool value. 4166 CGF.EmitBlock(RHSBlock); 4167 CGF.incrementProfileCounter(E); 4168 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4169 4170 eval.end(CGF); 4171 4172 // Reaquire the RHS block, as there may be subblocks inserted. 4173 RHSBlock = Builder.GetInsertBlock(); 4174 4175 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4176 // into the phi node for the edge with the value of RHSCond. 4177 CGF.EmitBlock(ContBlock); 4178 PN->addIncoming(RHSCond, RHSBlock); 4179 4180 // ZExt result to int. 4181 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4182 } 4183 4184 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4185 CGF.EmitIgnoredExpr(E->getLHS()); 4186 CGF.EnsureInsertPoint(); 4187 return Visit(E->getRHS()); 4188 } 4189 4190 //===----------------------------------------------------------------------===// 4191 // Other Operators 4192 //===----------------------------------------------------------------------===// 4193 4194 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4195 /// expression is cheap enough and side-effect-free enough to evaluate 4196 /// unconditionally instead of conditionally. This is used to convert control 4197 /// flow into selects in some cases. 4198 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4199 CodeGenFunction &CGF) { 4200 // Anything that is an integer or floating point constant is fine. 4201 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4202 4203 // Even non-volatile automatic variables can't be evaluated unconditionally. 4204 // Referencing a thread_local may cause non-trivial initialization work to 4205 // occur. If we're inside a lambda and one of the variables is from the scope 4206 // outside the lambda, that function may have returned already. Reading its 4207 // locals is a bad idea. Also, these reads may introduce races there didn't 4208 // exist in the source-level program. 4209 } 4210 4211 4212 Value *ScalarExprEmitter:: 4213 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4214 TestAndClearIgnoreResultAssign(); 4215 4216 // Bind the common expression if necessary. 4217 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4218 4219 Expr *condExpr = E->getCond(); 4220 Expr *lhsExpr = E->getTrueExpr(); 4221 Expr *rhsExpr = E->getFalseExpr(); 4222 4223 // If the condition constant folds and can be elided, try to avoid emitting 4224 // the condition and the dead arm. 4225 bool CondExprBool; 4226 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4227 Expr *live = lhsExpr, *dead = rhsExpr; 4228 if (!CondExprBool) std::swap(live, dead); 4229 4230 // If the dead side doesn't have labels we need, just emit the Live part. 4231 if (!CGF.ContainsLabel(dead)) { 4232 if (CondExprBool) 4233 CGF.incrementProfileCounter(E); 4234 Value *Result = Visit(live); 4235 4236 // If the live part is a throw expression, it acts like it has a void 4237 // type, so evaluating it returns a null Value*. However, a conditional 4238 // with non-void type must return a non-null Value*. 4239 if (!Result && !E->getType()->isVoidType()) 4240 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4241 4242 return Result; 4243 } 4244 } 4245 4246 // OpenCL: If the condition is a vector, we can treat this condition like 4247 // the select function. 4248 if (CGF.getLangOpts().OpenCL 4249 && condExpr->getType()->isVectorType()) { 4250 CGF.incrementProfileCounter(E); 4251 4252 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4253 llvm::Value *LHS = Visit(lhsExpr); 4254 llvm::Value *RHS = Visit(rhsExpr); 4255 4256 llvm::Type *condType = ConvertType(condExpr->getType()); 4257 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4258 4259 unsigned numElem = vecTy->getNumElements(); 4260 llvm::Type *elemType = vecTy->getElementType(); 4261 4262 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4263 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4264 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4265 llvm::VectorType::get(elemType, 4266 numElem), 4267 "sext"); 4268 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4269 4270 // Cast float to int to perform ANDs if necessary. 4271 llvm::Value *RHSTmp = RHS; 4272 llvm::Value *LHSTmp = LHS; 4273 bool wasCast = false; 4274 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4275 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4276 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4277 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4278 wasCast = true; 4279 } 4280 4281 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4282 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4283 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4284 if (wasCast) 4285 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4286 4287 return tmp5; 4288 } 4289 4290 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4291 // select instead of as control flow. We can only do this if it is cheap and 4292 // safe to evaluate the LHS and RHS unconditionally. 4293 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4294 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4295 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4296 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4297 4298 CGF.incrementProfileCounter(E, StepV); 4299 4300 llvm::Value *LHS = Visit(lhsExpr); 4301 llvm::Value *RHS = Visit(rhsExpr); 4302 if (!LHS) { 4303 // If the conditional has void type, make sure we return a null Value*. 4304 assert(!RHS && "LHS and RHS types must match"); 4305 return nullptr; 4306 } 4307 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4308 } 4309 4310 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4311 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4312 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4313 4314 CodeGenFunction::ConditionalEvaluation eval(CGF); 4315 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4316 CGF.getProfileCount(lhsExpr)); 4317 4318 CGF.EmitBlock(LHSBlock); 4319 CGF.incrementProfileCounter(E); 4320 eval.begin(CGF); 4321 Value *LHS = Visit(lhsExpr); 4322 eval.end(CGF); 4323 4324 LHSBlock = Builder.GetInsertBlock(); 4325 Builder.CreateBr(ContBlock); 4326 4327 CGF.EmitBlock(RHSBlock); 4328 eval.begin(CGF); 4329 Value *RHS = Visit(rhsExpr); 4330 eval.end(CGF); 4331 4332 RHSBlock = Builder.GetInsertBlock(); 4333 CGF.EmitBlock(ContBlock); 4334 4335 // If the LHS or RHS is a throw expression, it will be legitimately null. 4336 if (!LHS) 4337 return RHS; 4338 if (!RHS) 4339 return LHS; 4340 4341 // Create a PHI node for the real part. 4342 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4343 PN->addIncoming(LHS, LHSBlock); 4344 PN->addIncoming(RHS, RHSBlock); 4345 return PN; 4346 } 4347 4348 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4349 return Visit(E->getChosenSubExpr()); 4350 } 4351 4352 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4353 QualType Ty = VE->getType(); 4354 4355 if (Ty->isVariablyModifiedType()) 4356 CGF.EmitVariablyModifiedType(Ty); 4357 4358 Address ArgValue = Address::invalid(); 4359 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4360 4361 llvm::Type *ArgTy = ConvertType(VE->getType()); 4362 4363 // If EmitVAArg fails, emit an error. 4364 if (!ArgPtr.isValid()) { 4365 CGF.ErrorUnsupported(VE, "va_arg expression"); 4366 return llvm::UndefValue::get(ArgTy); 4367 } 4368 4369 // FIXME Volatility. 4370 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4371 4372 // If EmitVAArg promoted the type, we must truncate it. 4373 if (ArgTy != Val->getType()) { 4374 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4375 Val = Builder.CreateIntToPtr(Val, ArgTy); 4376 else 4377 Val = Builder.CreateTrunc(Val, ArgTy); 4378 } 4379 4380 return Val; 4381 } 4382 4383 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4384 return CGF.EmitBlockLiteral(block); 4385 } 4386 4387 // Convert a vec3 to vec4, or vice versa. 4388 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4389 Value *Src, unsigned NumElementsDst) { 4390 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4391 SmallVector<llvm::Constant*, 4> Args; 4392 Args.push_back(Builder.getInt32(0)); 4393 Args.push_back(Builder.getInt32(1)); 4394 Args.push_back(Builder.getInt32(2)); 4395 if (NumElementsDst == 4) 4396 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4397 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4398 return Builder.CreateShuffleVector(Src, UnV, Mask); 4399 } 4400 4401 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4402 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4403 // but could be scalar or vectors of different lengths, and either can be 4404 // pointer. 4405 // There are 4 cases: 4406 // 1. non-pointer -> non-pointer : needs 1 bitcast 4407 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4408 // 3. pointer -> non-pointer 4409 // a) pointer -> intptr_t : needs 1 ptrtoint 4410 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4411 // 4. non-pointer -> pointer 4412 // a) intptr_t -> pointer : needs 1 inttoptr 4413 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4414 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4415 // allow casting directly between pointer types and non-integer non-pointer 4416 // types. 4417 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4418 const llvm::DataLayout &DL, 4419 Value *Src, llvm::Type *DstTy, 4420 StringRef Name = "") { 4421 auto SrcTy = Src->getType(); 4422 4423 // Case 1. 4424 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4425 return Builder.CreateBitCast(Src, DstTy, Name); 4426 4427 // Case 2. 4428 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4429 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4430 4431 // Case 3. 4432 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4433 // Case 3b. 4434 if (!DstTy->isIntegerTy()) 4435 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4436 // Cases 3a and 3b. 4437 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4438 } 4439 4440 // Case 4b. 4441 if (!SrcTy->isIntegerTy()) 4442 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4443 // Cases 4a and 4b. 4444 return Builder.CreateIntToPtr(Src, DstTy, Name); 4445 } 4446 4447 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4448 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4449 llvm::Type *DstTy = ConvertType(E->getType()); 4450 4451 llvm::Type *SrcTy = Src->getType(); 4452 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4453 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4454 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4455 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4456 4457 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4458 // vector to get a vec4, then a bitcast if the target type is different. 4459 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4460 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4461 4462 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4463 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4464 DstTy); 4465 } 4466 4467 Src->setName("astype"); 4468 return Src; 4469 } 4470 4471 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4472 // to vec4 if the original type is not vec4, then a shuffle vector to 4473 // get a vec3. 4474 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4475 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4476 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4477 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4478 Vec4Ty); 4479 } 4480 4481 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4482 Src->setName("astype"); 4483 return Src; 4484 } 4485 4486 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4487 Src, DstTy, "astype"); 4488 } 4489 4490 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4491 return CGF.EmitAtomicExpr(E).getScalarVal(); 4492 } 4493 4494 //===----------------------------------------------------------------------===// 4495 // Entry Point into this File 4496 //===----------------------------------------------------------------------===// 4497 4498 /// Emit the computation of the specified expression of scalar type, ignoring 4499 /// the result. 4500 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4501 assert(E && hasScalarEvaluationKind(E->getType()) && 4502 "Invalid scalar expression to emit"); 4503 4504 return ScalarExprEmitter(*this, IgnoreResultAssign) 4505 .Visit(const_cast<Expr *>(E)); 4506 } 4507 4508 /// Emit a conversion from the specified type to the specified destination type, 4509 /// both of which are LLVM scalar types. 4510 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4511 QualType DstTy, 4512 SourceLocation Loc) { 4513 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4514 "Invalid scalar expression to emit"); 4515 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4516 } 4517 4518 /// Emit a conversion from the specified complex type to the specified 4519 /// destination type, where the destination type is an LLVM scalar type. 4520 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4521 QualType SrcTy, 4522 QualType DstTy, 4523 SourceLocation Loc) { 4524 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4525 "Invalid complex -> scalar conversion"); 4526 return ScalarExprEmitter(*this) 4527 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4528 } 4529 4530 4531 llvm::Value *CodeGenFunction:: 4532 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4533 bool isInc, bool isPre) { 4534 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4535 } 4536 4537 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4538 // object->isa or (*object).isa 4539 // Generate code as for: *(Class*)object 4540 4541 Expr *BaseExpr = E->getBase(); 4542 Address Addr = Address::invalid(); 4543 if (BaseExpr->isRValue()) { 4544 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4545 } else { 4546 Addr = EmitLValue(BaseExpr).getAddress(); 4547 } 4548 4549 // Cast the address to Class*. 4550 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4551 return MakeAddrLValue(Addr, E->getType()); 4552 } 4553 4554 4555 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4556 const CompoundAssignOperator *E) { 4557 ScalarExprEmitter Scalar(*this); 4558 Value *Result = nullptr; 4559 switch (E->getOpcode()) { 4560 #define COMPOUND_OP(Op) \ 4561 case BO_##Op##Assign: \ 4562 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4563 Result) 4564 COMPOUND_OP(Mul); 4565 COMPOUND_OP(Div); 4566 COMPOUND_OP(Rem); 4567 COMPOUND_OP(Add); 4568 COMPOUND_OP(Sub); 4569 COMPOUND_OP(Shl); 4570 COMPOUND_OP(Shr); 4571 COMPOUND_OP(And); 4572 COMPOUND_OP(Xor); 4573 COMPOUND_OP(Or); 4574 #undef COMPOUND_OP 4575 4576 case BO_PtrMemD: 4577 case BO_PtrMemI: 4578 case BO_Mul: 4579 case BO_Div: 4580 case BO_Rem: 4581 case BO_Add: 4582 case BO_Sub: 4583 case BO_Shl: 4584 case BO_Shr: 4585 case BO_LT: 4586 case BO_GT: 4587 case BO_LE: 4588 case BO_GE: 4589 case BO_EQ: 4590 case BO_NE: 4591 case BO_Cmp: 4592 case BO_And: 4593 case BO_Xor: 4594 case BO_Or: 4595 case BO_LAnd: 4596 case BO_LOr: 4597 case BO_Assign: 4598 case BO_Comma: 4599 llvm_unreachable("Not valid compound assignment operators"); 4600 } 4601 4602 llvm_unreachable("Unhandled compound assignment operator"); 4603 } 4604 4605 struct GEPOffsetAndOverflow { 4606 // The total (signed) byte offset for the GEP. 4607 llvm::Value *TotalOffset; 4608 // The offset overflow flag - true if the total offset overflows. 4609 llvm::Value *OffsetOverflows; 4610 }; 4611 4612 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4613 /// and compute the total offset it applies from it's base pointer BasePtr. 4614 /// Returns offset in bytes and a boolean flag whether an overflow happened 4615 /// during evaluation. 4616 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4617 llvm::LLVMContext &VMContext, 4618 CodeGenModule &CGM, 4619 CGBuilderTy Builder) { 4620 const auto &DL = CGM.getDataLayout(); 4621 4622 // The total (signed) byte offset for the GEP. 4623 llvm::Value *TotalOffset = nullptr; 4624 4625 // Was the GEP already reduced to a constant? 4626 if (isa<llvm::Constant>(GEPVal)) { 4627 // Compute the offset by casting both pointers to integers and subtracting: 4628 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4629 Value *BasePtr_int = 4630 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4631 Value *GEPVal_int = 4632 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4633 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4634 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4635 } 4636 4637 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4638 assert(GEP->getPointerOperand() == BasePtr && 4639 "BasePtr must be the the base of the GEP."); 4640 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4641 4642 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4643 4644 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4645 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4646 auto *SAddIntrinsic = 4647 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4648 auto *SMulIntrinsic = 4649 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4650 4651 // The offset overflow flag - true if the total offset overflows. 4652 llvm::Value *OffsetOverflows = Builder.getFalse(); 4653 4654 /// Return the result of the given binary operation. 4655 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4656 llvm::Value *RHS) -> llvm::Value * { 4657 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4658 4659 // If the operands are constants, return a constant result. 4660 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4661 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4662 llvm::APInt N; 4663 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4664 /*Signed=*/true, N); 4665 if (HasOverflow) 4666 OffsetOverflows = Builder.getTrue(); 4667 return llvm::ConstantInt::get(VMContext, N); 4668 } 4669 } 4670 4671 // Otherwise, compute the result with checked arithmetic. 4672 auto *ResultAndOverflow = Builder.CreateCall( 4673 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4674 OffsetOverflows = Builder.CreateOr( 4675 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4676 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4677 }; 4678 4679 // Determine the total byte offset by looking at each GEP operand. 4680 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4681 GTI != GTE; ++GTI) { 4682 llvm::Value *LocalOffset; 4683 auto *Index = GTI.getOperand(); 4684 // Compute the local offset contributed by this indexing step: 4685 if (auto *STy = GTI.getStructTypeOrNull()) { 4686 // For struct indexing, the local offset is the byte position of the 4687 // specified field. 4688 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4689 LocalOffset = llvm::ConstantInt::get( 4690 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4691 } else { 4692 // Otherwise this is array-like indexing. The local offset is the index 4693 // multiplied by the element size. 4694 auto *ElementSize = llvm::ConstantInt::get( 4695 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4696 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4697 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4698 } 4699 4700 // If this is the first offset, set it as the total offset. Otherwise, add 4701 // the local offset into the running total. 4702 if (!TotalOffset || TotalOffset == Zero) 4703 TotalOffset = LocalOffset; 4704 else 4705 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4706 } 4707 4708 return {TotalOffset, OffsetOverflows}; 4709 } 4710 4711 Value * 4712 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4713 bool SignedIndices, bool IsSubtraction, 4714 SourceLocation Loc, const Twine &Name) { 4715 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4716 4717 // If the pointer overflow sanitizer isn't enabled, do nothing. 4718 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4719 return GEPVal; 4720 4721 llvm::Type *PtrTy = Ptr->getType(); 4722 4723 // Perform nullptr-and-offset check unless the nullptr is defined. 4724 bool PerformNullCheck = !NullPointerIsDefined( 4725 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4726 // Check for overflows unless the GEP got constant-folded, 4727 // and only in the default address space 4728 bool PerformOverflowCheck = 4729 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4730 4731 if (!(PerformNullCheck || PerformOverflowCheck)) 4732 return GEPVal; 4733 4734 const auto &DL = CGM.getDataLayout(); 4735 4736 SanitizerScope SanScope(this); 4737 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4738 4739 GEPOffsetAndOverflow EvaluatedGEP = 4740 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4741 4742 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4743 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4744 "If the offset got constant-folded, we don't expect that there was an " 4745 "overflow."); 4746 4747 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4748 4749 // Common case: if the total offset is zero, and we are using C++ semantics, 4750 // where nullptr+0 is defined, don't emit a check. 4751 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4752 return GEPVal; 4753 4754 // Now that we've computed the total offset, add it to the base pointer (with 4755 // wrapping semantics). 4756 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4757 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4758 4759 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4760 4761 if (PerformNullCheck) { 4762 // In C++, if the base pointer evaluates to a null pointer value, 4763 // the only valid pointer this inbounds GEP can produce is also 4764 // a null pointer, so the offset must also evaluate to zero. 4765 // Likewise, if we have non-zero base pointer, we can not get null pointer 4766 // as a result, so the offset can not be -intptr_t(BasePtr). 4767 // In other words, both pointers are either null, or both are non-null, 4768 // or the behaviour is undefined. 4769 // 4770 // C, however, is more strict in this regard, and gives more 4771 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4772 // So both the input to the 'gep inbounds' AND the output must not be null. 4773 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4774 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4775 auto *Valid = 4776 CGM.getLangOpts().CPlusPlus 4777 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4778 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4779 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4780 } 4781 4782 if (PerformOverflowCheck) { 4783 // The GEP is valid if: 4784 // 1) The total offset doesn't overflow, and 4785 // 2) The sign of the difference between the computed address and the base 4786 // pointer matches the sign of the total offset. 4787 llvm::Value *ValidGEP; 4788 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4789 if (SignedIndices) { 4790 // GEP is computed as `unsigned base + signed offset`, therefore: 4791 // * If offset was positive, then the computed pointer can not be 4792 // [unsigned] less than the base pointer, unless it overflowed. 4793 // * If offset was negative, then the computed pointer can not be 4794 // [unsigned] greater than the bas pointere, unless it overflowed. 4795 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4796 auto *PosOrZeroOffset = 4797 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4798 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4799 ValidGEP = 4800 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4801 } else if (!IsSubtraction) { 4802 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4803 // computed pointer can not be [unsigned] less than base pointer, 4804 // unless there was an overflow. 4805 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4806 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4807 } else { 4808 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4809 // computed pointer can not be [unsigned] greater than base pointer, 4810 // unless there was an overflow. 4811 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4812 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4813 } 4814 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4815 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4816 } 4817 4818 assert(!Checks.empty() && "Should have produced some checks."); 4819 4820 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4821 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4822 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4823 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4824 4825 return GEPVal; 4826 } 4827