1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Module.h"
37 #include <cstdarg>
38 
39 using namespace clang;
40 using namespace CodeGen;
41 using llvm::Value;
42 
43 //===----------------------------------------------------------------------===//
44 //                         Scalar Expression Emitter
45 //===----------------------------------------------------------------------===//
46 
47 namespace {
48 
49 /// Determine whether the given binary operation may overflow.
50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
52 /// the returned overflow check is precise. The returned value is 'true' for
53 /// all other opcodes, to be conservative.
54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
55                              BinaryOperator::Opcode Opcode, bool Signed,
56                              llvm::APInt &Result) {
57   // Assume overflow is possible, unless we can prove otherwise.
58   bool Overflow = true;
59   const auto &LHSAP = LHS->getValue();
60   const auto &RHSAP = RHS->getValue();
61   if (Opcode == BO_Add) {
62     if (Signed)
63       Result = LHSAP.sadd_ov(RHSAP, Overflow);
64     else
65       Result = LHSAP.uadd_ov(RHSAP, Overflow);
66   } else if (Opcode == BO_Sub) {
67     if (Signed)
68       Result = LHSAP.ssub_ov(RHSAP, Overflow);
69     else
70       Result = LHSAP.usub_ov(RHSAP, Overflow);
71   } else if (Opcode == BO_Mul) {
72     if (Signed)
73       Result = LHSAP.smul_ov(RHSAP, Overflow);
74     else
75       Result = LHSAP.umul_ov(RHSAP, Overflow);
76   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
77     if (Signed && !RHS->isZero())
78       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
79     else
80       return false;
81   }
82   return Overflow;
83 }
84 
85 struct BinOpInfo {
86   Value *LHS;
87   Value *RHS;
88   QualType Ty;  // Computation Type.
89   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
90   FPOptions FPFeatures;
91   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
92 
93   /// Check if the binop can result in integer overflow.
94   bool mayHaveIntegerOverflow() const {
95     // Without constant input, we can't rule out overflow.
96     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
97     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
98     if (!LHSCI || !RHSCI)
99       return true;
100 
101     llvm::APInt Result;
102     return ::mayHaveIntegerOverflow(
103         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
104   }
105 
106   /// Check if the binop computes a division or a remainder.
107   bool isDivremOp() const {
108     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
109            Opcode == BO_RemAssign;
110   }
111 
112   /// Check if the binop can result in an integer division by zero.
113   bool mayHaveIntegerDivisionByZero() const {
114     if (isDivremOp())
115       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
116         return CI->isZero();
117     return true;
118   }
119 
120   /// Check if the binop can result in a float division by zero.
121   bool mayHaveFloatDivisionByZero() const {
122     if (isDivremOp())
123       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
124         return CFP->isZero();
125     return true;
126   }
127 };
128 
129 static bool MustVisitNullValue(const Expr *E) {
130   // If a null pointer expression's type is the C++0x nullptr_t, then
131   // it's not necessarily a simple constant and it must be evaluated
132   // for its potential side effects.
133   return E->getType()->isNullPtrType();
134 }
135 
136 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
138                                                         const Expr *E) {
139   const Expr *Base = E->IgnoreImpCasts();
140   if (E == Base)
141     return llvm::None;
142 
143   QualType BaseTy = Base->getType();
144   if (!BaseTy->isPromotableIntegerType() ||
145       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
146     return llvm::None;
147 
148   return BaseTy;
149 }
150 
151 /// Check if \p E is a widened promoted integer.
152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
153   return getUnwidenedIntegerType(Ctx, E).hasValue();
154 }
155 
156 /// Check if we can skip the overflow check for \p Op.
157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
158   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
159          "Expected a unary or binary operator");
160 
161   // If the binop has constant inputs and we can prove there is no overflow,
162   // we can elide the overflow check.
163   if (!Op.mayHaveIntegerOverflow())
164     return true;
165 
166   // If a unary op has a widened operand, the op cannot overflow.
167   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
168     return !UO->canOverflow();
169 
170   // We usually don't need overflow checks for binops with widened operands.
171   // Multiplication with promoted unsigned operands is a special case.
172   const auto *BO = cast<BinaryOperator>(Op.E);
173   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
174   if (!OptionalLHSTy)
175     return false;
176 
177   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
178   if (!OptionalRHSTy)
179     return false;
180 
181   QualType LHSTy = *OptionalLHSTy;
182   QualType RHSTy = *OptionalRHSTy;
183 
184   // This is the simple case: binops without unsigned multiplication, and with
185   // widened operands. No overflow check is needed here.
186   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
187       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
188     return true;
189 
190   // For unsigned multiplication the overflow check can be elided if either one
191   // of the unpromoted types are less than half the size of the promoted type.
192   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
193   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
194          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
195 }
196 
197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
198 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
199                                 FPOptions FPFeatures) {
200   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
201 }
202 
203 /// Propagate fast-math flags from \p Op to the instruction in \p V.
204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
205   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
206     llvm::FastMathFlags FMF = I->getFastMathFlags();
207     updateFastMathFlags(FMF, Op.FPFeatures);
208     I->setFastMathFlags(FMF);
209   }
210   return V;
211 }
212 
213 class ScalarExprEmitter
214   : public StmtVisitor<ScalarExprEmitter, Value*> {
215   CodeGenFunction &CGF;
216   CGBuilderTy &Builder;
217   bool IgnoreResultAssign;
218   llvm::LLVMContext &VMContext;
219 public:
220 
221   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
222     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
223       VMContext(cgf.getLLVMContext()) {
224   }
225 
226   //===--------------------------------------------------------------------===//
227   //                               Utilities
228   //===--------------------------------------------------------------------===//
229 
230   bool TestAndClearIgnoreResultAssign() {
231     bool I = IgnoreResultAssign;
232     IgnoreResultAssign = false;
233     return I;
234   }
235 
236   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
237   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
238   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
239     return CGF.EmitCheckedLValue(E, TCK);
240   }
241 
242   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
243                       const BinOpInfo &Info);
244 
245   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
246     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
247   }
248 
249   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
250     const AlignValueAttr *AVAttr = nullptr;
251     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
252       const ValueDecl *VD = DRE->getDecl();
253 
254       if (VD->getType()->isReferenceType()) {
255         if (const auto *TTy =
256             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
257           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
258       } else {
259         // Assumptions for function parameters are emitted at the start of the
260         // function, so there is no need to repeat that here.
261         if (isa<ParmVarDecl>(VD))
262           return;
263 
264         AVAttr = VD->getAttr<AlignValueAttr>();
265       }
266     }
267 
268     if (!AVAttr)
269       if (const auto *TTy =
270           dyn_cast<TypedefType>(E->getType()))
271         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
272 
273     if (!AVAttr)
274       return;
275 
276     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
277     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
278     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
279   }
280 
281   /// EmitLoadOfLValue - Given an expression with complex type that represents a
282   /// value l-value, this method emits the address of the l-value, then loads
283   /// and returns the result.
284   Value *EmitLoadOfLValue(const Expr *E) {
285     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
286                                 E->getExprLoc());
287 
288     EmitLValueAlignmentAssumption(E, V);
289     return V;
290   }
291 
292   /// EmitConversionToBool - Convert the specified expression value to a
293   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
294   Value *EmitConversionToBool(Value *Src, QualType DstTy);
295 
296   /// Emit a check that a conversion to or from a floating-point type does not
297   /// overflow.
298   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
299                                 Value *Src, QualType SrcType, QualType DstType,
300                                 llvm::Type *DstTy, SourceLocation Loc);
301 
302   /// Emit a conversion from the specified type to the specified destination
303   /// type, both of which are LLVM scalar types.
304   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
305                               SourceLocation Loc);
306 
307   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
308                               SourceLocation Loc, bool TreatBooleanAsSigned);
309 
310   /// Emit a conversion from the specified complex type to the specified
311   /// destination type, where the destination type is an LLVM scalar type.
312   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
313                                        QualType SrcTy, QualType DstTy,
314                                        SourceLocation Loc);
315 
316   /// EmitNullValue - Emit a value that corresponds to null for the given type.
317   Value *EmitNullValue(QualType Ty);
318 
319   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
320   Value *EmitFloatToBoolConversion(Value *V) {
321     // Compare against 0.0 for fp scalars.
322     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
323     return Builder.CreateFCmpUNE(V, Zero, "tobool");
324   }
325 
326   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
327   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
328     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
329 
330     return Builder.CreateICmpNE(V, Zero, "tobool");
331   }
332 
333   Value *EmitIntToBoolConversion(Value *V) {
334     // Because of the type rules of C, we often end up computing a
335     // logical value, then zero extending it to int, then wanting it
336     // as a logical value again.  Optimize this common case.
337     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
338       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
339         Value *Result = ZI->getOperand(0);
340         // If there aren't any more uses, zap the instruction to save space.
341         // Note that there can be more uses, for example if this
342         // is the result of an assignment.
343         if (ZI->use_empty())
344           ZI->eraseFromParent();
345         return Result;
346       }
347     }
348 
349     return Builder.CreateIsNotNull(V, "tobool");
350   }
351 
352   //===--------------------------------------------------------------------===//
353   //                            Visitor Methods
354   //===--------------------------------------------------------------------===//
355 
356   Value *Visit(Expr *E) {
357     ApplyDebugLocation DL(CGF, E);
358     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
359   }
360 
361   Value *VisitStmt(Stmt *S) {
362     S->dump(CGF.getContext().getSourceManager());
363     llvm_unreachable("Stmt can't have complex result type!");
364   }
365   Value *VisitExpr(Expr *S);
366 
367   Value *VisitParenExpr(ParenExpr *PE) {
368     return Visit(PE->getSubExpr());
369   }
370   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
371     return Visit(E->getReplacement());
372   }
373   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
374     return Visit(GE->getResultExpr());
375   }
376   Value *VisitCoawaitExpr(CoawaitExpr *S) {
377     return CGF.EmitCoawaitExpr(*S).getScalarVal();
378   }
379   Value *VisitCoyieldExpr(CoyieldExpr *S) {
380     return CGF.EmitCoyieldExpr(*S).getScalarVal();
381   }
382   Value *VisitUnaryCoawait(const UnaryOperator *E) {
383     return Visit(E->getSubExpr());
384   }
385 
386   // Leaves.
387   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
388     return Builder.getInt(E->getValue());
389   }
390   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
391     return llvm::ConstantFP::get(VMContext, E->getValue());
392   }
393   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
394     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
395   }
396   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
397     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
398   }
399   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
400     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
401   }
402   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
403     return EmitNullValue(E->getType());
404   }
405   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
406     return EmitNullValue(E->getType());
407   }
408   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
409   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
410   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
411     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
412     return Builder.CreateBitCast(V, ConvertType(E->getType()));
413   }
414 
415   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
416     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
417   }
418 
419   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
420     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
421   }
422 
423   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
424     if (E->isGLValue())
425       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
426 
427     // Otherwise, assume the mapping is the scalar directly.
428     return CGF.getOpaqueRValueMapping(E).getScalarVal();
429   }
430 
431   Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant,
432                       Expr *E) {
433     assert(Constant && "not a constant");
434     if (Constant.isReference())
435       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
436                               E->getExprLoc());
437     return Constant.getValue();
438   }
439 
440   // l-values.
441   Value *VisitDeclRefExpr(DeclRefExpr *E) {
442     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
443       return emitConstant(Constant, E);
444     return EmitLoadOfLValue(E);
445   }
446 
447   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
448     return CGF.EmitObjCSelectorExpr(E);
449   }
450   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
451     return CGF.EmitObjCProtocolExpr(E);
452   }
453   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
454     return EmitLoadOfLValue(E);
455   }
456   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
457     if (E->getMethodDecl() &&
458         E->getMethodDecl()->getReturnType()->isReferenceType())
459       return EmitLoadOfLValue(E);
460     return CGF.EmitObjCMessageExpr(E).getScalarVal();
461   }
462 
463   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
464     LValue LV = CGF.EmitObjCIsaExpr(E);
465     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
466     return V;
467   }
468 
469   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
470     VersionTuple Version = E->getVersion();
471 
472     // If we're checking for a platform older than our minimum deployment
473     // target, we can fold the check away.
474     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
475       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
476 
477     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
478     llvm::Value *Args[] = {
479         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
480         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
481         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
482     };
483 
484     return CGF.EmitBuiltinAvailable(Args);
485   }
486 
487   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
488   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
489   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
490   Value *VisitMemberExpr(MemberExpr *E);
491   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
492   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
493     return EmitLoadOfLValue(E);
494   }
495 
496   Value *VisitInitListExpr(InitListExpr *E);
497 
498   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
499     assert(CGF.getArrayInitIndex() &&
500            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
501     return CGF.getArrayInitIndex();
502   }
503 
504   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
505     return EmitNullValue(E->getType());
506   }
507   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
508     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
509     return VisitCastExpr(E);
510   }
511   Value *VisitCastExpr(CastExpr *E);
512 
513   Value *VisitCallExpr(const CallExpr *E) {
514     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
515       return EmitLoadOfLValue(E);
516 
517     Value *V = CGF.EmitCallExpr(E).getScalarVal();
518 
519     EmitLValueAlignmentAssumption(E, V);
520     return V;
521   }
522 
523   Value *VisitStmtExpr(const StmtExpr *E);
524 
525   // Unary Operators.
526   Value *VisitUnaryPostDec(const UnaryOperator *E) {
527     LValue LV = EmitLValue(E->getSubExpr());
528     return EmitScalarPrePostIncDec(E, LV, false, false);
529   }
530   Value *VisitUnaryPostInc(const UnaryOperator *E) {
531     LValue LV = EmitLValue(E->getSubExpr());
532     return EmitScalarPrePostIncDec(E, LV, true, false);
533   }
534   Value *VisitUnaryPreDec(const UnaryOperator *E) {
535     LValue LV = EmitLValue(E->getSubExpr());
536     return EmitScalarPrePostIncDec(E, LV, false, true);
537   }
538   Value *VisitUnaryPreInc(const UnaryOperator *E) {
539     LValue LV = EmitLValue(E->getSubExpr());
540     return EmitScalarPrePostIncDec(E, LV, true, true);
541   }
542 
543   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
544                                                   llvm::Value *InVal,
545                                                   bool IsInc);
546 
547   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
548                                        bool isInc, bool isPre);
549 
550 
551   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
552     if (isa<MemberPointerType>(E->getType())) // never sugared
553       return CGF.CGM.getMemberPointerConstant(E);
554 
555     return EmitLValue(E->getSubExpr()).getPointer();
556   }
557   Value *VisitUnaryDeref(const UnaryOperator *E) {
558     if (E->getType()->isVoidType())
559       return Visit(E->getSubExpr()); // the actual value should be unused
560     return EmitLoadOfLValue(E);
561   }
562   Value *VisitUnaryPlus(const UnaryOperator *E) {
563     // This differs from gcc, though, most likely due to a bug in gcc.
564     TestAndClearIgnoreResultAssign();
565     return Visit(E->getSubExpr());
566   }
567   Value *VisitUnaryMinus    (const UnaryOperator *E);
568   Value *VisitUnaryNot      (const UnaryOperator *E);
569   Value *VisitUnaryLNot     (const UnaryOperator *E);
570   Value *VisitUnaryReal     (const UnaryOperator *E);
571   Value *VisitUnaryImag     (const UnaryOperator *E);
572   Value *VisitUnaryExtension(const UnaryOperator *E) {
573     return Visit(E->getSubExpr());
574   }
575 
576   // C++
577   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
578     return EmitLoadOfLValue(E);
579   }
580 
581   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
582     return Visit(DAE->getExpr());
583   }
584   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
585     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
586     return Visit(DIE->getExpr());
587   }
588   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
589     return CGF.LoadCXXThis();
590   }
591 
592   Value *VisitExprWithCleanups(ExprWithCleanups *E);
593   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
594     return CGF.EmitCXXNewExpr(E);
595   }
596   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
597     CGF.EmitCXXDeleteExpr(E);
598     return nullptr;
599   }
600 
601   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
602     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
603   }
604 
605   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
606     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
607   }
608 
609   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
610     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
611   }
612 
613   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
614     // C++ [expr.pseudo]p1:
615     //   The result shall only be used as the operand for the function call
616     //   operator (), and the result of such a call has type void. The only
617     //   effect is the evaluation of the postfix-expression before the dot or
618     //   arrow.
619     CGF.EmitScalarExpr(E->getBase());
620     return nullptr;
621   }
622 
623   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
624     return EmitNullValue(E->getType());
625   }
626 
627   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
628     CGF.EmitCXXThrowExpr(E);
629     return nullptr;
630   }
631 
632   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
633     return Builder.getInt1(E->getValue());
634   }
635 
636   // Binary Operators.
637   Value *EmitMul(const BinOpInfo &Ops) {
638     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
639       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
640       case LangOptions::SOB_Defined:
641         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
642       case LangOptions::SOB_Undefined:
643         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
644           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
645         // Fall through.
646       case LangOptions::SOB_Trapping:
647         if (CanElideOverflowCheck(CGF.getContext(), Ops))
648           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
649         return EmitOverflowCheckedBinOp(Ops);
650       }
651     }
652 
653     if (Ops.Ty->isUnsignedIntegerType() &&
654         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
655         !CanElideOverflowCheck(CGF.getContext(), Ops))
656       return EmitOverflowCheckedBinOp(Ops);
657 
658     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
659       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
660       return propagateFMFlags(V, Ops);
661     }
662     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
663   }
664   /// Create a binary op that checks for overflow.
665   /// Currently only supports +, - and *.
666   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
667 
668   // Check for undefined division and modulus behaviors.
669   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
670                                                   llvm::Value *Zero,bool isDiv);
671   // Common helper for getting how wide LHS of shift is.
672   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
673   Value *EmitDiv(const BinOpInfo &Ops);
674   Value *EmitRem(const BinOpInfo &Ops);
675   Value *EmitAdd(const BinOpInfo &Ops);
676   Value *EmitSub(const BinOpInfo &Ops);
677   Value *EmitShl(const BinOpInfo &Ops);
678   Value *EmitShr(const BinOpInfo &Ops);
679   Value *EmitAnd(const BinOpInfo &Ops) {
680     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
681   }
682   Value *EmitXor(const BinOpInfo &Ops) {
683     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
684   }
685   Value *EmitOr (const BinOpInfo &Ops) {
686     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
687   }
688 
689   BinOpInfo EmitBinOps(const BinaryOperator *E);
690   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
691                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
692                                   Value *&Result);
693 
694   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
695                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
696 
697   // Binary operators and binary compound assignment operators.
698 #define HANDLEBINOP(OP) \
699   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
700     return Emit ## OP(EmitBinOps(E));                                      \
701   }                                                                        \
702   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
703     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
704   }
705   HANDLEBINOP(Mul)
706   HANDLEBINOP(Div)
707   HANDLEBINOP(Rem)
708   HANDLEBINOP(Add)
709   HANDLEBINOP(Sub)
710   HANDLEBINOP(Shl)
711   HANDLEBINOP(Shr)
712   HANDLEBINOP(And)
713   HANDLEBINOP(Xor)
714   HANDLEBINOP(Or)
715 #undef HANDLEBINOP
716 
717   // Comparisons.
718   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
719                      llvm::CmpInst::Predicate SICmpOpc,
720                      llvm::CmpInst::Predicate FCmpOpc);
721 #define VISITCOMP(CODE, UI, SI, FP) \
722     Value *VisitBin##CODE(const BinaryOperator *E) { \
723       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
724                          llvm::FCmpInst::FP); }
725   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
726   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
727   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
728   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
729   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
730   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
731 #undef VISITCOMP
732 
733   Value *VisitBinAssign     (const BinaryOperator *E);
734 
735   Value *VisitBinLAnd       (const BinaryOperator *E);
736   Value *VisitBinLOr        (const BinaryOperator *E);
737   Value *VisitBinComma      (const BinaryOperator *E);
738 
739   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
740   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
741 
742   // Other Operators.
743   Value *VisitBlockExpr(const BlockExpr *BE);
744   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
745   Value *VisitChooseExpr(ChooseExpr *CE);
746   Value *VisitVAArgExpr(VAArgExpr *VE);
747   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
748     return CGF.EmitObjCStringLiteral(E);
749   }
750   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
751     return CGF.EmitObjCBoxedExpr(E);
752   }
753   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
754     return CGF.EmitObjCArrayLiteral(E);
755   }
756   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
757     return CGF.EmitObjCDictionaryLiteral(E);
758   }
759   Value *VisitAsTypeExpr(AsTypeExpr *CE);
760   Value *VisitAtomicExpr(AtomicExpr *AE);
761 };
762 }  // end anonymous namespace.
763 
764 //===----------------------------------------------------------------------===//
765 //                                Utilities
766 //===----------------------------------------------------------------------===//
767 
768 /// EmitConversionToBool - Convert the specified expression value to a
769 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
770 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
771   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
772 
773   if (SrcType->isRealFloatingType())
774     return EmitFloatToBoolConversion(Src);
775 
776   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
777     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
778 
779   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
780          "Unknown scalar type to convert");
781 
782   if (isa<llvm::IntegerType>(Src->getType()))
783     return EmitIntToBoolConversion(Src);
784 
785   assert(isa<llvm::PointerType>(Src->getType()));
786   return EmitPointerToBoolConversion(Src, SrcType);
787 }
788 
789 void ScalarExprEmitter::EmitFloatConversionCheck(
790     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
791     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
792   CodeGenFunction::SanitizerScope SanScope(&CGF);
793   using llvm::APFloat;
794   using llvm::APSInt;
795 
796   llvm::Type *SrcTy = Src->getType();
797 
798   llvm::Value *Check = nullptr;
799   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
800     // Integer to floating-point. This can fail for unsigned short -> __half
801     // or unsigned __int128 -> float.
802     assert(DstType->isFloatingType());
803     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
804 
805     APFloat LargestFloat =
806       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
807     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
808 
809     bool IsExact;
810     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
811                                       &IsExact) != APFloat::opOK)
812       // The range of representable values of this floating point type includes
813       // all values of this integer type. Don't need an overflow check.
814       return;
815 
816     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
817     if (SrcIsUnsigned)
818       Check = Builder.CreateICmpULE(Src, Max);
819     else {
820       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
821       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
822       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
823       Check = Builder.CreateAnd(GE, LE);
824     }
825   } else {
826     const llvm::fltSemantics &SrcSema =
827       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
828     if (isa<llvm::IntegerType>(DstTy)) {
829       // Floating-point to integer. This has undefined behavior if the source is
830       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
831       // to an integer).
832       unsigned Width = CGF.getContext().getIntWidth(DstType);
833       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
834 
835       APSInt Min = APSInt::getMinValue(Width, Unsigned);
836       APFloat MinSrc(SrcSema, APFloat::uninitialized);
837       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
838           APFloat::opOverflow)
839         // Don't need an overflow check for lower bound. Just check for
840         // -Inf/NaN.
841         MinSrc = APFloat::getInf(SrcSema, true);
842       else
843         // Find the largest value which is too small to represent (before
844         // truncation toward zero).
845         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
846 
847       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
848       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
849       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
850           APFloat::opOverflow)
851         // Don't need an overflow check for upper bound. Just check for
852         // +Inf/NaN.
853         MaxSrc = APFloat::getInf(SrcSema, false);
854       else
855         // Find the smallest value which is too large to represent (before
856         // truncation toward zero).
857         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
858 
859       // If we're converting from __half, convert the range to float to match
860       // the type of src.
861       if (OrigSrcType->isHalfType()) {
862         const llvm::fltSemantics &Sema =
863           CGF.getContext().getFloatTypeSemantics(SrcType);
864         bool IsInexact;
865         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
866         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
867       }
868 
869       llvm::Value *GE =
870         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
871       llvm::Value *LE =
872         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
873       Check = Builder.CreateAnd(GE, LE);
874     } else {
875       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
876       //
877       // Floating-point to floating-point. This has undefined behavior if the
878       // source is not in the range of representable values of the destination
879       // type. The C and C++ standards are spectacularly unclear here. We
880       // diagnose finite out-of-range conversions, but allow infinities and NaNs
881       // to convert to the corresponding value in the smaller type.
882       //
883       // C11 Annex F gives all such conversions defined behavior for IEC 60559
884       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
885       // does not.
886 
887       // Converting from a lower rank to a higher rank can never have
888       // undefined behavior, since higher-rank types must have a superset
889       // of values of lower-rank types.
890       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
891         return;
892 
893       assert(!OrigSrcType->isHalfType() &&
894              "should not check conversion from __half, it has the lowest rank");
895 
896       const llvm::fltSemantics &DstSema =
897         CGF.getContext().getFloatTypeSemantics(DstType);
898       APFloat MinBad = APFloat::getLargest(DstSema, false);
899       APFloat MaxBad = APFloat::getInf(DstSema, false);
900 
901       bool IsInexact;
902       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
903       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
904 
905       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
906         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
907       llvm::Value *GE =
908         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
909       llvm::Value *LE =
910         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
911       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
912     }
913   }
914 
915   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
916                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
917                                   CGF.EmitCheckTypeDescriptor(DstType)};
918   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
919                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
920 }
921 
922 /// Emit a conversion from the specified type to the specified destination type,
923 /// both of which are LLVM scalar types.
924 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
925                                                QualType DstType,
926                                                SourceLocation Loc) {
927   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
928 }
929 
930 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
931                                                QualType DstType,
932                                                SourceLocation Loc,
933                                                bool TreatBooleanAsSigned) {
934   SrcType = CGF.getContext().getCanonicalType(SrcType);
935   DstType = CGF.getContext().getCanonicalType(DstType);
936   if (SrcType == DstType) return Src;
937 
938   if (DstType->isVoidType()) return nullptr;
939 
940   llvm::Value *OrigSrc = Src;
941   QualType OrigSrcType = SrcType;
942   llvm::Type *SrcTy = Src->getType();
943 
944   // Handle conversions to bool first, they are special: comparisons against 0.
945   if (DstType->isBooleanType())
946     return EmitConversionToBool(Src, SrcType);
947 
948   llvm::Type *DstTy = ConvertType(DstType);
949 
950   // Cast from half through float if half isn't a native type.
951   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
952     // Cast to FP using the intrinsic if the half type itself isn't supported.
953     if (DstTy->isFloatingPointTy()) {
954       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
955         return Builder.CreateCall(
956             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
957             Src);
958     } else {
959       // Cast to other types through float, using either the intrinsic or FPExt,
960       // depending on whether the half type itself is supported
961       // (as opposed to operations on half, available with NativeHalfType).
962       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
963         Src = Builder.CreateCall(
964             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
965                                  CGF.CGM.FloatTy),
966             Src);
967       } else {
968         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
969       }
970       SrcType = CGF.getContext().FloatTy;
971       SrcTy = CGF.FloatTy;
972     }
973   }
974 
975   // Ignore conversions like int -> uint.
976   if (SrcTy == DstTy)
977     return Src;
978 
979   // Handle pointer conversions next: pointers can only be converted to/from
980   // other pointers and integers. Check for pointer types in terms of LLVM, as
981   // some native types (like Obj-C id) may map to a pointer type.
982   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
983     // The source value may be an integer, or a pointer.
984     if (isa<llvm::PointerType>(SrcTy))
985       return Builder.CreateBitCast(Src, DstTy, "conv");
986 
987     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
988     // First, convert to the correct width so that we control the kind of
989     // extension.
990     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
991     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
992     llvm::Value* IntResult =
993         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
994     // Then, cast to pointer.
995     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
996   }
997 
998   if (isa<llvm::PointerType>(SrcTy)) {
999     // Must be an ptr to int cast.
1000     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1001     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1002   }
1003 
1004   // A scalar can be splatted to an extended vector of the same element type
1005   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1006     // Sema should add casts to make sure that the source expression's type is
1007     // the same as the vector's element type (sans qualifiers)
1008     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1009                SrcType.getTypePtr() &&
1010            "Splatted expr doesn't match with vector element type?");
1011 
1012     // Splat the element across to all elements
1013     unsigned NumElements = DstTy->getVectorNumElements();
1014     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1015   }
1016 
1017   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1018     // Allow bitcast from vector to integer/fp of the same size.
1019     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1020     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1021     if (SrcSize == DstSize)
1022       return Builder.CreateBitCast(Src, DstTy, "conv");
1023 
1024     // Conversions between vectors of different sizes are not allowed except
1025     // when vectors of half are involved. Operations on storage-only half
1026     // vectors require promoting half vector operands to float vectors and
1027     // truncating the result, which is either an int or float vector, to a
1028     // short or half vector.
1029 
1030     // Source and destination are both expected to be vectors.
1031     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1032     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1033     (void)DstElementTy;
1034 
1035     assert(((SrcElementTy->isIntegerTy() &&
1036              DstElementTy->isIntegerTy()) ||
1037             (SrcElementTy->isFloatingPointTy() &&
1038              DstElementTy->isFloatingPointTy())) &&
1039            "unexpected conversion between a floating-point vector and an "
1040            "integer vector");
1041 
1042     // Truncate an i32 vector to an i16 vector.
1043     if (SrcElementTy->isIntegerTy())
1044       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1045 
1046     // Truncate a float vector to a half vector.
1047     if (SrcSize > DstSize)
1048       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1049 
1050     // Promote a half vector to a float vector.
1051     return Builder.CreateFPExt(Src, DstTy, "conv");
1052   }
1053 
1054   // Finally, we have the arithmetic types: real int/float.
1055   Value *Res = nullptr;
1056   llvm::Type *ResTy = DstTy;
1057 
1058   // An overflowing conversion has undefined behavior if either the source type
1059   // or the destination type is a floating-point type.
1060   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1061       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1062     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1063                              Loc);
1064 
1065   // Cast to half through float if half isn't a native type.
1066   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1067     // Make sure we cast in a single step if from another FP type.
1068     if (SrcTy->isFloatingPointTy()) {
1069       // Use the intrinsic if the half type itself isn't supported
1070       // (as opposed to operations on half, available with NativeHalfType).
1071       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1072         return Builder.CreateCall(
1073             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1074       // If the half type is supported, just use an fptrunc.
1075       return Builder.CreateFPTrunc(Src, DstTy);
1076     }
1077     DstTy = CGF.FloatTy;
1078   }
1079 
1080   if (isa<llvm::IntegerType>(SrcTy)) {
1081     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1082     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
1083       InputSigned = true;
1084     }
1085     if (isa<llvm::IntegerType>(DstTy))
1086       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1087     else if (InputSigned)
1088       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1089     else
1090       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1091   } else if (isa<llvm::IntegerType>(DstTy)) {
1092     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1093     if (DstType->isSignedIntegerOrEnumerationType())
1094       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1095     else
1096       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1097   } else {
1098     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1099            "Unknown real conversion");
1100     if (DstTy->getTypeID() < SrcTy->getTypeID())
1101       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1102     else
1103       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1104   }
1105 
1106   if (DstTy != ResTy) {
1107     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1108       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1109       Res = Builder.CreateCall(
1110         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1111         Res);
1112     } else {
1113       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1114     }
1115   }
1116 
1117   return Res;
1118 }
1119 
1120 /// Emit a conversion from the specified complex type to the specified
1121 /// destination type, where the destination type is an LLVM scalar type.
1122 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1123     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1124     SourceLocation Loc) {
1125   // Get the source element type.
1126   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1127 
1128   // Handle conversions to bool first, they are special: comparisons against 0.
1129   if (DstTy->isBooleanType()) {
1130     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1131     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1132     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1133     return Builder.CreateOr(Src.first, Src.second, "tobool");
1134   }
1135 
1136   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1137   // the imaginary part of the complex value is discarded and the value of the
1138   // real part is converted according to the conversion rules for the
1139   // corresponding real type.
1140   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1141 }
1142 
1143 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1144   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1145 }
1146 
1147 /// \brief Emit a sanitization check for the given "binary" operation (which
1148 /// might actually be a unary increment which has been lowered to a binary
1149 /// operation). The check passes if all values in \p Checks (which are \c i1),
1150 /// are \c true.
1151 void ScalarExprEmitter::EmitBinOpCheck(
1152     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1153   assert(CGF.IsSanitizerScope);
1154   SanitizerHandler Check;
1155   SmallVector<llvm::Constant *, 4> StaticData;
1156   SmallVector<llvm::Value *, 2> DynamicData;
1157 
1158   BinaryOperatorKind Opcode = Info.Opcode;
1159   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1160     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1161 
1162   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1163   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1164   if (UO && UO->getOpcode() == UO_Minus) {
1165     Check = SanitizerHandler::NegateOverflow;
1166     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1167     DynamicData.push_back(Info.RHS);
1168   } else {
1169     if (BinaryOperator::isShiftOp(Opcode)) {
1170       // Shift LHS negative or too large, or RHS out of bounds.
1171       Check = SanitizerHandler::ShiftOutOfBounds;
1172       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1173       StaticData.push_back(
1174         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1175       StaticData.push_back(
1176         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1177     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1178       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1179       Check = SanitizerHandler::DivremOverflow;
1180       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1181     } else {
1182       // Arithmetic overflow (+, -, *).
1183       switch (Opcode) {
1184       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1185       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1186       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1187       default: llvm_unreachable("unexpected opcode for bin op check");
1188       }
1189       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1190     }
1191     DynamicData.push_back(Info.LHS);
1192     DynamicData.push_back(Info.RHS);
1193   }
1194 
1195   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1196 }
1197 
1198 //===----------------------------------------------------------------------===//
1199 //                            Visitor Methods
1200 //===----------------------------------------------------------------------===//
1201 
1202 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1203   CGF.ErrorUnsupported(E, "scalar expression");
1204   if (E->getType()->isVoidType())
1205     return nullptr;
1206   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1207 }
1208 
1209 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1210   // Vector Mask Case
1211   if (E->getNumSubExprs() == 2) {
1212     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1213     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1214     Value *Mask;
1215 
1216     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1217     unsigned LHSElts = LTy->getNumElements();
1218 
1219     Mask = RHS;
1220 
1221     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1222 
1223     // Mask off the high bits of each shuffle index.
1224     Value *MaskBits =
1225         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1226     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1227 
1228     // newv = undef
1229     // mask = mask & maskbits
1230     // for each elt
1231     //   n = extract mask i
1232     //   x = extract val n
1233     //   newv = insert newv, x, i
1234     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1235                                                   MTy->getNumElements());
1236     Value* NewV = llvm::UndefValue::get(RTy);
1237     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1238       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1239       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1240 
1241       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1242       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1243     }
1244     return NewV;
1245   }
1246 
1247   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1248   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1249 
1250   SmallVector<llvm::Constant*, 32> indices;
1251   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1252     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1253     // Check for -1 and output it as undef in the IR.
1254     if (Idx.isSigned() && Idx.isAllOnesValue())
1255       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1256     else
1257       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1258   }
1259 
1260   Value *SV = llvm::ConstantVector::get(indices);
1261   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1262 }
1263 
1264 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1265   QualType SrcType = E->getSrcExpr()->getType(),
1266            DstType = E->getType();
1267 
1268   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1269 
1270   SrcType = CGF.getContext().getCanonicalType(SrcType);
1271   DstType = CGF.getContext().getCanonicalType(DstType);
1272   if (SrcType == DstType) return Src;
1273 
1274   assert(SrcType->isVectorType() &&
1275          "ConvertVector source type must be a vector");
1276   assert(DstType->isVectorType() &&
1277          "ConvertVector destination type must be a vector");
1278 
1279   llvm::Type *SrcTy = Src->getType();
1280   llvm::Type *DstTy = ConvertType(DstType);
1281 
1282   // Ignore conversions like int -> uint.
1283   if (SrcTy == DstTy)
1284     return Src;
1285 
1286   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1287            DstEltType = DstType->getAs<VectorType>()->getElementType();
1288 
1289   assert(SrcTy->isVectorTy() &&
1290          "ConvertVector source IR type must be a vector");
1291   assert(DstTy->isVectorTy() &&
1292          "ConvertVector destination IR type must be a vector");
1293 
1294   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1295              *DstEltTy = DstTy->getVectorElementType();
1296 
1297   if (DstEltType->isBooleanType()) {
1298     assert((SrcEltTy->isFloatingPointTy() ||
1299             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1300 
1301     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1302     if (SrcEltTy->isFloatingPointTy()) {
1303       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1304     } else {
1305       return Builder.CreateICmpNE(Src, Zero, "tobool");
1306     }
1307   }
1308 
1309   // We have the arithmetic types: real int/float.
1310   Value *Res = nullptr;
1311 
1312   if (isa<llvm::IntegerType>(SrcEltTy)) {
1313     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1314     if (isa<llvm::IntegerType>(DstEltTy))
1315       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1316     else if (InputSigned)
1317       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1318     else
1319       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1320   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1321     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1322     if (DstEltType->isSignedIntegerOrEnumerationType())
1323       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1324     else
1325       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1326   } else {
1327     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1328            "Unknown real conversion");
1329     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1330       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1331     else
1332       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1333   }
1334 
1335   return Res;
1336 }
1337 
1338 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1339   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1340     CGF.EmitIgnoredExpr(E->getBase());
1341     return emitConstant(Constant, E);
1342   } else {
1343     llvm::APSInt Value;
1344     if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1345       CGF.EmitIgnoredExpr(E->getBase());
1346       return Builder.getInt(Value);
1347     }
1348   }
1349 
1350   return EmitLoadOfLValue(E);
1351 }
1352 
1353 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1354   TestAndClearIgnoreResultAssign();
1355 
1356   // Emit subscript expressions in rvalue context's.  For most cases, this just
1357   // loads the lvalue formed by the subscript expr.  However, we have to be
1358   // careful, because the base of a vector subscript is occasionally an rvalue,
1359   // so we can't get it as an lvalue.
1360   if (!E->getBase()->getType()->isVectorType())
1361     return EmitLoadOfLValue(E);
1362 
1363   // Handle the vector case.  The base must be a vector, the index must be an
1364   // integer value.
1365   Value *Base = Visit(E->getBase());
1366   Value *Idx  = Visit(E->getIdx());
1367   QualType IdxTy = E->getIdx()->getType();
1368 
1369   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1370     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1371 
1372   return Builder.CreateExtractElement(Base, Idx, "vecext");
1373 }
1374 
1375 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1376                                   unsigned Off, llvm::Type *I32Ty) {
1377   int MV = SVI->getMaskValue(Idx);
1378   if (MV == -1)
1379     return llvm::UndefValue::get(I32Ty);
1380   return llvm::ConstantInt::get(I32Ty, Off+MV);
1381 }
1382 
1383 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1384   if (C->getBitWidth() != 32) {
1385       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1386                                                     C->getZExtValue()) &&
1387              "Index operand too large for shufflevector mask!");
1388       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1389   }
1390   return C;
1391 }
1392 
1393 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1394   bool Ignore = TestAndClearIgnoreResultAssign();
1395   (void)Ignore;
1396   assert (Ignore == false && "init list ignored");
1397   unsigned NumInitElements = E->getNumInits();
1398 
1399   if (E->hadArrayRangeDesignator())
1400     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1401 
1402   llvm::VectorType *VType =
1403     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1404 
1405   if (!VType) {
1406     if (NumInitElements == 0) {
1407       // C++11 value-initialization for the scalar.
1408       return EmitNullValue(E->getType());
1409     }
1410     // We have a scalar in braces. Just use the first element.
1411     return Visit(E->getInit(0));
1412   }
1413 
1414   unsigned ResElts = VType->getNumElements();
1415 
1416   // Loop over initializers collecting the Value for each, and remembering
1417   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1418   // us to fold the shuffle for the swizzle into the shuffle for the vector
1419   // initializer, since LLVM optimizers generally do not want to touch
1420   // shuffles.
1421   unsigned CurIdx = 0;
1422   bool VIsUndefShuffle = false;
1423   llvm::Value *V = llvm::UndefValue::get(VType);
1424   for (unsigned i = 0; i != NumInitElements; ++i) {
1425     Expr *IE = E->getInit(i);
1426     Value *Init = Visit(IE);
1427     SmallVector<llvm::Constant*, 16> Args;
1428 
1429     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1430 
1431     // Handle scalar elements.  If the scalar initializer is actually one
1432     // element of a different vector of the same width, use shuffle instead of
1433     // extract+insert.
1434     if (!VVT) {
1435       if (isa<ExtVectorElementExpr>(IE)) {
1436         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1437 
1438         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1439           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1440           Value *LHS = nullptr, *RHS = nullptr;
1441           if (CurIdx == 0) {
1442             // insert into undef -> shuffle (src, undef)
1443             // shufflemask must use an i32
1444             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1445             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1446 
1447             LHS = EI->getVectorOperand();
1448             RHS = V;
1449             VIsUndefShuffle = true;
1450           } else if (VIsUndefShuffle) {
1451             // insert into undefshuffle && size match -> shuffle (v, src)
1452             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1453             for (unsigned j = 0; j != CurIdx; ++j)
1454               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1455             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1456             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1457 
1458             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1459             RHS = EI->getVectorOperand();
1460             VIsUndefShuffle = false;
1461           }
1462           if (!Args.empty()) {
1463             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1464             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1465             ++CurIdx;
1466             continue;
1467           }
1468         }
1469       }
1470       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1471                                       "vecinit");
1472       VIsUndefShuffle = false;
1473       ++CurIdx;
1474       continue;
1475     }
1476 
1477     unsigned InitElts = VVT->getNumElements();
1478 
1479     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1480     // input is the same width as the vector being constructed, generate an
1481     // optimized shuffle of the swizzle input into the result.
1482     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1483     if (isa<ExtVectorElementExpr>(IE)) {
1484       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1485       Value *SVOp = SVI->getOperand(0);
1486       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1487 
1488       if (OpTy->getNumElements() == ResElts) {
1489         for (unsigned j = 0; j != CurIdx; ++j) {
1490           // If the current vector initializer is a shuffle with undef, merge
1491           // this shuffle directly into it.
1492           if (VIsUndefShuffle) {
1493             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1494                                       CGF.Int32Ty));
1495           } else {
1496             Args.push_back(Builder.getInt32(j));
1497           }
1498         }
1499         for (unsigned j = 0, je = InitElts; j != je; ++j)
1500           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1501         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1502 
1503         if (VIsUndefShuffle)
1504           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1505 
1506         Init = SVOp;
1507       }
1508     }
1509 
1510     // Extend init to result vector length, and then shuffle its contribution
1511     // to the vector initializer into V.
1512     if (Args.empty()) {
1513       for (unsigned j = 0; j != InitElts; ++j)
1514         Args.push_back(Builder.getInt32(j));
1515       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1516       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1517       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1518                                          Mask, "vext");
1519 
1520       Args.clear();
1521       for (unsigned j = 0; j != CurIdx; ++j)
1522         Args.push_back(Builder.getInt32(j));
1523       for (unsigned j = 0; j != InitElts; ++j)
1524         Args.push_back(Builder.getInt32(j+Offset));
1525       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1526     }
1527 
1528     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1529     // merging subsequent shuffles into this one.
1530     if (CurIdx == 0)
1531       std::swap(V, Init);
1532     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1533     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1534     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1535     CurIdx += InitElts;
1536   }
1537 
1538   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1539   // Emit remaining default initializers.
1540   llvm::Type *EltTy = VType->getElementType();
1541 
1542   // Emit remaining default initializers
1543   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1544     Value *Idx = Builder.getInt32(CurIdx);
1545     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1546     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1547   }
1548   return V;
1549 }
1550 
1551 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1552   const Expr *E = CE->getSubExpr();
1553 
1554   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1555     return false;
1556 
1557   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1558     // We always assume that 'this' is never null.
1559     return false;
1560   }
1561 
1562   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1563     // And that glvalue casts are never null.
1564     if (ICE->getValueKind() != VK_RValue)
1565       return false;
1566   }
1567 
1568   return true;
1569 }
1570 
1571 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1572 // have to handle a more broad range of conversions than explicit casts, as they
1573 // handle things like function to ptr-to-function decay etc.
1574 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1575   Expr *E = CE->getSubExpr();
1576   QualType DestTy = CE->getType();
1577   CastKind Kind = CE->getCastKind();
1578 
1579   // These cases are generally not written to ignore the result of
1580   // evaluating their sub-expressions, so we clear this now.
1581   bool Ignored = TestAndClearIgnoreResultAssign();
1582 
1583   // Since almost all cast kinds apply to scalars, this switch doesn't have
1584   // a default case, so the compiler will warn on a missing case.  The cases
1585   // are in the same order as in the CastKind enum.
1586   switch (Kind) {
1587   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1588   case CK_BuiltinFnToFnPtr:
1589     llvm_unreachable("builtin functions are handled elsewhere");
1590 
1591   case CK_LValueBitCast:
1592   case CK_ObjCObjectLValueCast: {
1593     Address Addr = EmitLValue(E).getAddress();
1594     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1595     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1596     return EmitLoadOfLValue(LV, CE->getExprLoc());
1597   }
1598 
1599   case CK_CPointerToObjCPointerCast:
1600   case CK_BlockPointerToObjCPointerCast:
1601   case CK_AnyPointerToBlockPointerCast:
1602   case CK_BitCast: {
1603     Value *Src = Visit(const_cast<Expr*>(E));
1604     llvm::Type *SrcTy = Src->getType();
1605     llvm::Type *DstTy = ConvertType(DestTy);
1606     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1607         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1608       llvm_unreachable("wrong cast for pointers in different address spaces"
1609                        "(must be an address space cast)!");
1610     }
1611 
1612     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1613       if (auto PT = DestTy->getAs<PointerType>())
1614         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1615                                       /*MayBeNull=*/true,
1616                                       CodeGenFunction::CFITCK_UnrelatedCast,
1617                                       CE->getLocStart());
1618     }
1619 
1620     return Builder.CreateBitCast(Src, DstTy);
1621   }
1622   case CK_AddressSpaceConversion: {
1623     Expr::EvalResult Result;
1624     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1625         Result.Val.isNullPointer()) {
1626       // If E has side effect, it is emitted even if its final result is a
1627       // null pointer. In that case, a DCE pass should be able to
1628       // eliminate the useless instructions emitted during translating E.
1629       if (Result.HasSideEffects)
1630         Visit(E);
1631       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1632           ConvertType(DestTy)), DestTy);
1633     }
1634     // Since target may map different address spaces in AST to the same address
1635     // space, an address space conversion may end up as a bitcast.
1636     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
1637         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
1638         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
1639   }
1640   case CK_AtomicToNonAtomic:
1641   case CK_NonAtomicToAtomic:
1642   case CK_NoOp:
1643   case CK_UserDefinedConversion:
1644     return Visit(const_cast<Expr*>(E));
1645 
1646   case CK_BaseToDerived: {
1647     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1648     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1649 
1650     Address Base = CGF.EmitPointerWithAlignment(E);
1651     Address Derived =
1652       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1653                                    CE->path_begin(), CE->path_end(),
1654                                    CGF.ShouldNullCheckClassCastValue(CE));
1655 
1656     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1657     // performed and the object is not of the derived type.
1658     if (CGF.sanitizePerformTypeCheck())
1659       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1660                         Derived.getPointer(), DestTy->getPointeeType());
1661 
1662     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1663       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1664                                     Derived.getPointer(),
1665                                     /*MayBeNull=*/true,
1666                                     CodeGenFunction::CFITCK_DerivedCast,
1667                                     CE->getLocStart());
1668 
1669     return Derived.getPointer();
1670   }
1671   case CK_UncheckedDerivedToBase:
1672   case CK_DerivedToBase: {
1673     // The EmitPointerWithAlignment path does this fine; just discard
1674     // the alignment.
1675     return CGF.EmitPointerWithAlignment(CE).getPointer();
1676   }
1677 
1678   case CK_Dynamic: {
1679     Address V = CGF.EmitPointerWithAlignment(E);
1680     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1681     return CGF.EmitDynamicCast(V, DCE);
1682   }
1683 
1684   case CK_ArrayToPointerDecay:
1685     return CGF.EmitArrayToPointerDecay(E).getPointer();
1686   case CK_FunctionToPointerDecay:
1687     return EmitLValue(E).getPointer();
1688 
1689   case CK_NullToPointer:
1690     if (MustVisitNullValue(E))
1691       (void) Visit(E);
1692 
1693     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1694                               DestTy);
1695 
1696   case CK_NullToMemberPointer: {
1697     if (MustVisitNullValue(E))
1698       (void) Visit(E);
1699 
1700     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1701     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1702   }
1703 
1704   case CK_ReinterpretMemberPointer:
1705   case CK_BaseToDerivedMemberPointer:
1706   case CK_DerivedToBaseMemberPointer: {
1707     Value *Src = Visit(E);
1708 
1709     // Note that the AST doesn't distinguish between checked and
1710     // unchecked member pointer conversions, so we always have to
1711     // implement checked conversions here.  This is inefficient when
1712     // actual control flow may be required in order to perform the
1713     // check, which it is for data member pointers (but not member
1714     // function pointers on Itanium and ARM).
1715     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1716   }
1717 
1718   case CK_ARCProduceObject:
1719     return CGF.EmitARCRetainScalarExpr(E);
1720   case CK_ARCConsumeObject:
1721     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1722   case CK_ARCReclaimReturnedObject:
1723     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1724   case CK_ARCExtendBlockObject:
1725     return CGF.EmitARCExtendBlockObject(E);
1726 
1727   case CK_CopyAndAutoreleaseBlockObject:
1728     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1729 
1730   case CK_FloatingRealToComplex:
1731   case CK_FloatingComplexCast:
1732   case CK_IntegralRealToComplex:
1733   case CK_IntegralComplexCast:
1734   case CK_IntegralComplexToFloatingComplex:
1735   case CK_FloatingComplexToIntegralComplex:
1736   case CK_ConstructorConversion:
1737   case CK_ToUnion:
1738     llvm_unreachable("scalar cast to non-scalar value");
1739 
1740   case CK_LValueToRValue:
1741     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1742     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1743     return Visit(const_cast<Expr*>(E));
1744 
1745   case CK_IntegralToPointer: {
1746     Value *Src = Visit(const_cast<Expr*>(E));
1747 
1748     // First, convert to the correct width so that we control the kind of
1749     // extension.
1750     auto DestLLVMTy = ConvertType(DestTy);
1751     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1752     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1753     llvm::Value* IntResult =
1754       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1755 
1756     return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1757   }
1758   case CK_PointerToIntegral:
1759     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1760     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1761 
1762   case CK_ToVoid: {
1763     CGF.EmitIgnoredExpr(E);
1764     return nullptr;
1765   }
1766   case CK_VectorSplat: {
1767     llvm::Type *DstTy = ConvertType(DestTy);
1768     Value *Elt = Visit(const_cast<Expr*>(E));
1769     // Splat the element across to all elements
1770     unsigned NumElements = DstTy->getVectorNumElements();
1771     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1772   }
1773 
1774   case CK_IntegralCast:
1775   case CK_IntegralToFloating:
1776   case CK_FloatingToIntegral:
1777   case CK_FloatingCast:
1778     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1779                                 CE->getExprLoc());
1780   case CK_BooleanToSignedIntegral:
1781     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1782                                 CE->getExprLoc(),
1783                                 /*TreatBooleanAsSigned=*/true);
1784   case CK_IntegralToBoolean:
1785     return EmitIntToBoolConversion(Visit(E));
1786   case CK_PointerToBoolean:
1787     return EmitPointerToBoolConversion(Visit(E), E->getType());
1788   case CK_FloatingToBoolean:
1789     return EmitFloatToBoolConversion(Visit(E));
1790   case CK_MemberPointerToBoolean: {
1791     llvm::Value *MemPtr = Visit(E);
1792     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1793     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1794   }
1795 
1796   case CK_FloatingComplexToReal:
1797   case CK_IntegralComplexToReal:
1798     return CGF.EmitComplexExpr(E, false, true).first;
1799 
1800   case CK_FloatingComplexToBoolean:
1801   case CK_IntegralComplexToBoolean: {
1802     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1803 
1804     // TODO: kill this function off, inline appropriate case here
1805     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1806                                          CE->getExprLoc());
1807   }
1808 
1809   case CK_ZeroToOCLEvent: {
1810     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1811     return llvm::Constant::getNullValue(ConvertType(DestTy));
1812   }
1813 
1814   case CK_ZeroToOCLQueue: {
1815     assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type");
1816     return llvm::Constant::getNullValue(ConvertType(DestTy));
1817   }
1818 
1819   case CK_IntToOCLSampler:
1820     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1821 
1822   } // end of switch
1823 
1824   llvm_unreachable("unknown scalar cast");
1825 }
1826 
1827 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1828   CodeGenFunction::StmtExprEvaluation eval(CGF);
1829   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1830                                            !E->getType()->isVoidType());
1831   if (!RetAlloca.isValid())
1832     return nullptr;
1833   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1834                               E->getExprLoc());
1835 }
1836 
1837 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1838   CGF.enterFullExpression(E);
1839   CodeGenFunction::RunCleanupsScope Scope(CGF);
1840   Value *V = Visit(E->getSubExpr());
1841   // Defend against dominance problems caused by jumps out of expression
1842   // evaluation through the shared cleanup block.
1843   Scope.ForceCleanup({&V});
1844   return V;
1845 }
1846 
1847 //===----------------------------------------------------------------------===//
1848 //                             Unary Operators
1849 //===----------------------------------------------------------------------===//
1850 
1851 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1852                                            llvm::Value *InVal, bool IsInc) {
1853   BinOpInfo BinOp;
1854   BinOp.LHS = InVal;
1855   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1856   BinOp.Ty = E->getType();
1857   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1858   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
1859   BinOp.E = E;
1860   return BinOp;
1861 }
1862 
1863 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1864     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1865   llvm::Value *Amount =
1866       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1867   StringRef Name = IsInc ? "inc" : "dec";
1868   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1869   case LangOptions::SOB_Defined:
1870     return Builder.CreateAdd(InVal, Amount, Name);
1871   case LangOptions::SOB_Undefined:
1872     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1873       return Builder.CreateNSWAdd(InVal, Amount, Name);
1874     // Fall through.
1875   case LangOptions::SOB_Trapping:
1876     if (!E->canOverflow())
1877       return Builder.CreateNSWAdd(InVal, Amount, Name);
1878     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1879   }
1880   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1881 }
1882 
1883 llvm::Value *
1884 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1885                                            bool isInc, bool isPre) {
1886 
1887   QualType type = E->getSubExpr()->getType();
1888   llvm::PHINode *atomicPHI = nullptr;
1889   llvm::Value *value;
1890   llvm::Value *input;
1891 
1892   int amount = (isInc ? 1 : -1);
1893   bool isSubtraction = !isInc;
1894 
1895   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1896     type = atomicTy->getValueType();
1897     if (isInc && type->isBooleanType()) {
1898       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1899       if (isPre) {
1900         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1901           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1902         return Builder.getTrue();
1903       }
1904       // For atomic bool increment, we just store true and return it for
1905       // preincrement, do an atomic swap with true for postincrement
1906       return Builder.CreateAtomicRMW(
1907           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1908           llvm::AtomicOrdering::SequentiallyConsistent);
1909     }
1910     // Special case for atomic increment / decrement on integers, emit
1911     // atomicrmw instructions.  We skip this if we want to be doing overflow
1912     // checking, and fall into the slow path with the atomic cmpxchg loop.
1913     if (!type->isBooleanType() && type->isIntegerType() &&
1914         !(type->isUnsignedIntegerType() &&
1915           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1916         CGF.getLangOpts().getSignedOverflowBehavior() !=
1917             LangOptions::SOB_Trapping) {
1918       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1919         llvm::AtomicRMWInst::Sub;
1920       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1921         llvm::Instruction::Sub;
1922       llvm::Value *amt = CGF.EmitToMemory(
1923           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1924       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1925           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1926       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1927     }
1928     value = EmitLoadOfLValue(LV, E->getExprLoc());
1929     input = value;
1930     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1931     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1932     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1933     value = CGF.EmitToMemory(value, type);
1934     Builder.CreateBr(opBB);
1935     Builder.SetInsertPoint(opBB);
1936     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1937     atomicPHI->addIncoming(value, startBB);
1938     value = atomicPHI;
1939   } else {
1940     value = EmitLoadOfLValue(LV, E->getExprLoc());
1941     input = value;
1942   }
1943 
1944   // Special case of integer increment that we have to check first: bool++.
1945   // Due to promotion rules, we get:
1946   //   bool++ -> bool = bool + 1
1947   //          -> bool = (int)bool + 1
1948   //          -> bool = ((int)bool + 1 != 0)
1949   // An interesting aspect of this is that increment is always true.
1950   // Decrement does not have this property.
1951   if (isInc && type->isBooleanType()) {
1952     value = Builder.getTrue();
1953 
1954   // Most common case by far: integer increment.
1955   } else if (type->isIntegerType()) {
1956     // Note that signed integer inc/dec with width less than int can't
1957     // overflow because of promotion rules; we're just eliding a few steps here.
1958     if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
1959       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1960     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
1961                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1962       value =
1963           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1964     } else {
1965       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1966       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1967     }
1968 
1969   // Next most common: pointer increment.
1970   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1971     QualType type = ptr->getPointeeType();
1972 
1973     // VLA types don't have constant size.
1974     if (const VariableArrayType *vla
1975           = CGF.getContext().getAsVariableArrayType(type)) {
1976       llvm::Value *numElts = CGF.getVLASize(vla).first;
1977       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1978       if (CGF.getLangOpts().isSignedOverflowDefined())
1979         value = Builder.CreateGEP(value, numElts, "vla.inc");
1980       else
1981         value = CGF.EmitCheckedInBoundsGEP(
1982             value, numElts, /*SignedIndices=*/false, isSubtraction,
1983             E->getExprLoc(), "vla.inc");
1984 
1985     // Arithmetic on function pointers (!) is just +-1.
1986     } else if (type->isFunctionType()) {
1987       llvm::Value *amt = Builder.getInt32(amount);
1988 
1989       value = CGF.EmitCastToVoidPtr(value);
1990       if (CGF.getLangOpts().isSignedOverflowDefined())
1991         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1992       else
1993         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
1994                                            isSubtraction, E->getExprLoc(),
1995                                            "incdec.funcptr");
1996       value = Builder.CreateBitCast(value, input->getType());
1997 
1998     // For everything else, we can just do a simple increment.
1999     } else {
2000       llvm::Value *amt = Builder.getInt32(amount);
2001       if (CGF.getLangOpts().isSignedOverflowDefined())
2002         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2003       else
2004         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2005                                            isSubtraction, E->getExprLoc(),
2006                                            "incdec.ptr");
2007     }
2008 
2009   // Vector increment/decrement.
2010   } else if (type->isVectorType()) {
2011     if (type->hasIntegerRepresentation()) {
2012       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2013 
2014       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2015     } else {
2016       value = Builder.CreateFAdd(
2017                   value,
2018                   llvm::ConstantFP::get(value->getType(), amount),
2019                   isInc ? "inc" : "dec");
2020     }
2021 
2022   // Floating point.
2023   } else if (type->isRealFloatingType()) {
2024     // Add the inc/dec to the real part.
2025     llvm::Value *amt;
2026 
2027     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2028       // Another special case: half FP increment should be done via float
2029       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2030         value = Builder.CreateCall(
2031             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2032                                  CGF.CGM.FloatTy),
2033             input, "incdec.conv");
2034       } else {
2035         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2036       }
2037     }
2038 
2039     if (value->getType()->isFloatTy())
2040       amt = llvm::ConstantFP::get(VMContext,
2041                                   llvm::APFloat(static_cast<float>(amount)));
2042     else if (value->getType()->isDoubleTy())
2043       amt = llvm::ConstantFP::get(VMContext,
2044                                   llvm::APFloat(static_cast<double>(amount)));
2045     else {
2046       // Remaining types are Half, LongDouble or __float128. Convert from float.
2047       llvm::APFloat F(static_cast<float>(amount));
2048       bool ignored;
2049       const llvm::fltSemantics *FS;
2050       // Don't use getFloatTypeSemantics because Half isn't
2051       // necessarily represented using the "half" LLVM type.
2052       if (value->getType()->isFP128Ty())
2053         FS = &CGF.getTarget().getFloat128Format();
2054       else if (value->getType()->isHalfTy())
2055         FS = &CGF.getTarget().getHalfFormat();
2056       else
2057         FS = &CGF.getTarget().getLongDoubleFormat();
2058       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2059       amt = llvm::ConstantFP::get(VMContext, F);
2060     }
2061     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2062 
2063     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2064       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2065         value = Builder.CreateCall(
2066             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2067                                  CGF.CGM.FloatTy),
2068             value, "incdec.conv");
2069       } else {
2070         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2071       }
2072     }
2073 
2074   // Objective-C pointer types.
2075   } else {
2076     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2077     value = CGF.EmitCastToVoidPtr(value);
2078 
2079     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2080     if (!isInc) size = -size;
2081     llvm::Value *sizeValue =
2082       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2083 
2084     if (CGF.getLangOpts().isSignedOverflowDefined())
2085       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2086     else
2087       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2088                                          /*SignedIndices=*/false, isSubtraction,
2089                                          E->getExprLoc(), "incdec.objptr");
2090     value = Builder.CreateBitCast(value, input->getType());
2091   }
2092 
2093   if (atomicPHI) {
2094     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2095     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2096     auto Pair = CGF.EmitAtomicCompareExchange(
2097         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2098     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2099     llvm::Value *success = Pair.second;
2100     atomicPHI->addIncoming(old, opBB);
2101     Builder.CreateCondBr(success, contBB, opBB);
2102     Builder.SetInsertPoint(contBB);
2103     return isPre ? value : input;
2104   }
2105 
2106   // Store the updated result through the lvalue.
2107   if (LV.isBitField())
2108     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2109   else
2110     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2111 
2112   // If this is a postinc, return the value read from memory, otherwise use the
2113   // updated value.
2114   return isPre ? value : input;
2115 }
2116 
2117 
2118 
2119 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2120   TestAndClearIgnoreResultAssign();
2121   // Emit unary minus with EmitSub so we handle overflow cases etc.
2122   BinOpInfo BinOp;
2123   BinOp.RHS = Visit(E->getSubExpr());
2124 
2125   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2126     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2127   else
2128     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2129   BinOp.Ty = E->getType();
2130   BinOp.Opcode = BO_Sub;
2131   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2132   BinOp.E = E;
2133   return EmitSub(BinOp);
2134 }
2135 
2136 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2137   TestAndClearIgnoreResultAssign();
2138   Value *Op = Visit(E->getSubExpr());
2139   return Builder.CreateNot(Op, "neg");
2140 }
2141 
2142 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2143   // Perform vector logical not on comparison with zero vector.
2144   if (E->getType()->isExtVectorType()) {
2145     Value *Oper = Visit(E->getSubExpr());
2146     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2147     Value *Result;
2148     if (Oper->getType()->isFPOrFPVectorTy())
2149       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2150     else
2151       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2152     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2153   }
2154 
2155   // Compare operand to zero.
2156   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2157 
2158   // Invert value.
2159   // TODO: Could dynamically modify easy computations here.  For example, if
2160   // the operand is an icmp ne, turn into icmp eq.
2161   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2162 
2163   // ZExt result to the expr type.
2164   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2165 }
2166 
2167 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2168   // Try folding the offsetof to a constant.
2169   llvm::APSInt Value;
2170   if (E->EvaluateAsInt(Value, CGF.getContext()))
2171     return Builder.getInt(Value);
2172 
2173   // Loop over the components of the offsetof to compute the value.
2174   unsigned n = E->getNumComponents();
2175   llvm::Type* ResultType = ConvertType(E->getType());
2176   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2177   QualType CurrentType = E->getTypeSourceInfo()->getType();
2178   for (unsigned i = 0; i != n; ++i) {
2179     OffsetOfNode ON = E->getComponent(i);
2180     llvm::Value *Offset = nullptr;
2181     switch (ON.getKind()) {
2182     case OffsetOfNode::Array: {
2183       // Compute the index
2184       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2185       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2186       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2187       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2188 
2189       // Save the element type
2190       CurrentType =
2191           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2192 
2193       // Compute the element size
2194       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2195           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2196 
2197       // Multiply out to compute the result
2198       Offset = Builder.CreateMul(Idx, ElemSize);
2199       break;
2200     }
2201 
2202     case OffsetOfNode::Field: {
2203       FieldDecl *MemberDecl = ON.getField();
2204       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2205       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2206 
2207       // Compute the index of the field in its parent.
2208       unsigned i = 0;
2209       // FIXME: It would be nice if we didn't have to loop here!
2210       for (RecordDecl::field_iterator Field = RD->field_begin(),
2211                                       FieldEnd = RD->field_end();
2212            Field != FieldEnd; ++Field, ++i) {
2213         if (*Field == MemberDecl)
2214           break;
2215       }
2216       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2217 
2218       // Compute the offset to the field
2219       int64_t OffsetInt = RL.getFieldOffset(i) /
2220                           CGF.getContext().getCharWidth();
2221       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2222 
2223       // Save the element type.
2224       CurrentType = MemberDecl->getType();
2225       break;
2226     }
2227 
2228     case OffsetOfNode::Identifier:
2229       llvm_unreachable("dependent __builtin_offsetof");
2230 
2231     case OffsetOfNode::Base: {
2232       if (ON.getBase()->isVirtual()) {
2233         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2234         continue;
2235       }
2236 
2237       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2238       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2239 
2240       // Save the element type.
2241       CurrentType = ON.getBase()->getType();
2242 
2243       // Compute the offset to the base.
2244       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2245       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2246       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2247       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2248       break;
2249     }
2250     }
2251     Result = Builder.CreateAdd(Result, Offset);
2252   }
2253   return Result;
2254 }
2255 
2256 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2257 /// argument of the sizeof expression as an integer.
2258 Value *
2259 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2260                               const UnaryExprOrTypeTraitExpr *E) {
2261   QualType TypeToSize = E->getTypeOfArgument();
2262   if (E->getKind() == UETT_SizeOf) {
2263     if (const VariableArrayType *VAT =
2264           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2265       if (E->isArgumentType()) {
2266         // sizeof(type) - make sure to emit the VLA size.
2267         CGF.EmitVariablyModifiedType(TypeToSize);
2268       } else {
2269         // C99 6.5.3.4p2: If the argument is an expression of type
2270         // VLA, it is evaluated.
2271         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2272       }
2273 
2274       QualType eltType;
2275       llvm::Value *numElts;
2276       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2277 
2278       llvm::Value *size = numElts;
2279 
2280       // Scale the number of non-VLA elements by the non-VLA element size.
2281       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2282       if (!eltSize.isOne())
2283         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2284 
2285       return size;
2286     }
2287   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2288     auto Alignment =
2289         CGF.getContext()
2290             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2291                 E->getTypeOfArgument()->getPointeeType()))
2292             .getQuantity();
2293     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2294   }
2295 
2296   // If this isn't sizeof(vla), the result must be constant; use the constant
2297   // folding logic so we don't have to duplicate it here.
2298   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2299 }
2300 
2301 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2302   Expr *Op = E->getSubExpr();
2303   if (Op->getType()->isAnyComplexType()) {
2304     // If it's an l-value, load through the appropriate subobject l-value.
2305     // Note that we have to ask E because Op might be an l-value that
2306     // this won't work for, e.g. an Obj-C property.
2307     if (E->isGLValue())
2308       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2309                                   E->getExprLoc()).getScalarVal();
2310 
2311     // Otherwise, calculate and project.
2312     return CGF.EmitComplexExpr(Op, false, true).first;
2313   }
2314 
2315   return Visit(Op);
2316 }
2317 
2318 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2319   Expr *Op = E->getSubExpr();
2320   if (Op->getType()->isAnyComplexType()) {
2321     // If it's an l-value, load through the appropriate subobject l-value.
2322     // Note that we have to ask E because Op might be an l-value that
2323     // this won't work for, e.g. an Obj-C property.
2324     if (Op->isGLValue())
2325       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2326                                   E->getExprLoc()).getScalarVal();
2327 
2328     // Otherwise, calculate and project.
2329     return CGF.EmitComplexExpr(Op, true, false).second;
2330   }
2331 
2332   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2333   // effects are evaluated, but not the actual value.
2334   if (Op->isGLValue())
2335     CGF.EmitLValue(Op);
2336   else
2337     CGF.EmitScalarExpr(Op, true);
2338   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2339 }
2340 
2341 //===----------------------------------------------------------------------===//
2342 //                           Binary Operators
2343 //===----------------------------------------------------------------------===//
2344 
2345 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2346   TestAndClearIgnoreResultAssign();
2347   BinOpInfo Result;
2348   Result.LHS = Visit(E->getLHS());
2349   Result.RHS = Visit(E->getRHS());
2350   Result.Ty  = E->getType();
2351   Result.Opcode = E->getOpcode();
2352   Result.FPFeatures = E->getFPFeatures();
2353   Result.E = E;
2354   return Result;
2355 }
2356 
2357 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2358                                               const CompoundAssignOperator *E,
2359                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2360                                                    Value *&Result) {
2361   QualType LHSTy = E->getLHS()->getType();
2362   BinOpInfo OpInfo;
2363 
2364   if (E->getComputationResultType()->isAnyComplexType())
2365     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2366 
2367   // Emit the RHS first.  __block variables need to have the rhs evaluated
2368   // first, plus this should improve codegen a little.
2369   OpInfo.RHS = Visit(E->getRHS());
2370   OpInfo.Ty = E->getComputationResultType();
2371   OpInfo.Opcode = E->getOpcode();
2372   OpInfo.FPFeatures = E->getFPFeatures();
2373   OpInfo.E = E;
2374   // Load/convert the LHS.
2375   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2376 
2377   llvm::PHINode *atomicPHI = nullptr;
2378   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2379     QualType type = atomicTy->getValueType();
2380     if (!type->isBooleanType() && type->isIntegerType() &&
2381         !(type->isUnsignedIntegerType() &&
2382           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2383         CGF.getLangOpts().getSignedOverflowBehavior() !=
2384             LangOptions::SOB_Trapping) {
2385       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2386       switch (OpInfo.Opcode) {
2387         // We don't have atomicrmw operands for *, %, /, <<, >>
2388         case BO_MulAssign: case BO_DivAssign:
2389         case BO_RemAssign:
2390         case BO_ShlAssign:
2391         case BO_ShrAssign:
2392           break;
2393         case BO_AddAssign:
2394           aop = llvm::AtomicRMWInst::Add;
2395           break;
2396         case BO_SubAssign:
2397           aop = llvm::AtomicRMWInst::Sub;
2398           break;
2399         case BO_AndAssign:
2400           aop = llvm::AtomicRMWInst::And;
2401           break;
2402         case BO_XorAssign:
2403           aop = llvm::AtomicRMWInst::Xor;
2404           break;
2405         case BO_OrAssign:
2406           aop = llvm::AtomicRMWInst::Or;
2407           break;
2408         default:
2409           llvm_unreachable("Invalid compound assignment type");
2410       }
2411       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2412         llvm::Value *amt = CGF.EmitToMemory(
2413             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2414                                  E->getExprLoc()),
2415             LHSTy);
2416         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2417             llvm::AtomicOrdering::SequentiallyConsistent);
2418         return LHSLV;
2419       }
2420     }
2421     // FIXME: For floating point types, we should be saving and restoring the
2422     // floating point environment in the loop.
2423     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2424     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2425     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2426     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2427     Builder.CreateBr(opBB);
2428     Builder.SetInsertPoint(opBB);
2429     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2430     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2431     OpInfo.LHS = atomicPHI;
2432   }
2433   else
2434     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2435 
2436   SourceLocation Loc = E->getExprLoc();
2437   OpInfo.LHS =
2438       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2439 
2440   // Expand the binary operator.
2441   Result = (this->*Func)(OpInfo);
2442 
2443   // Convert the result back to the LHS type.
2444   Result =
2445       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2446 
2447   if (atomicPHI) {
2448     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2449     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2450     auto Pair = CGF.EmitAtomicCompareExchange(
2451         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2452     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2453     llvm::Value *success = Pair.second;
2454     atomicPHI->addIncoming(old, opBB);
2455     Builder.CreateCondBr(success, contBB, opBB);
2456     Builder.SetInsertPoint(contBB);
2457     return LHSLV;
2458   }
2459 
2460   // Store the result value into the LHS lvalue. Bit-fields are handled
2461   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2462   // 'An assignment expression has the value of the left operand after the
2463   // assignment...'.
2464   if (LHSLV.isBitField())
2465     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2466   else
2467     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2468 
2469   return LHSLV;
2470 }
2471 
2472 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2473                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2474   bool Ignore = TestAndClearIgnoreResultAssign();
2475   Value *RHS;
2476   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2477 
2478   // If the result is clearly ignored, return now.
2479   if (Ignore)
2480     return nullptr;
2481 
2482   // The result of an assignment in C is the assigned r-value.
2483   if (!CGF.getLangOpts().CPlusPlus)
2484     return RHS;
2485 
2486   // If the lvalue is non-volatile, return the computed value of the assignment.
2487   if (!LHS.isVolatileQualified())
2488     return RHS;
2489 
2490   // Otherwise, reload the value.
2491   return EmitLoadOfLValue(LHS, E->getExprLoc());
2492 }
2493 
2494 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2495     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2496   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2497 
2498   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2499     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2500                                     SanitizerKind::IntegerDivideByZero));
2501   }
2502 
2503   const auto *BO = cast<BinaryOperator>(Ops.E);
2504   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2505       Ops.Ty->hasSignedIntegerRepresentation() &&
2506       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2507       Ops.mayHaveIntegerOverflow()) {
2508     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2509 
2510     llvm::Value *IntMin =
2511       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2512     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2513 
2514     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2515     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2516     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2517     Checks.push_back(
2518         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2519   }
2520 
2521   if (Checks.size() > 0)
2522     EmitBinOpCheck(Checks, Ops);
2523 }
2524 
2525 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2526   {
2527     CodeGenFunction::SanitizerScope SanScope(&CGF);
2528     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2529          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2530         Ops.Ty->isIntegerType() &&
2531         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2532       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2533       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2534     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2535                Ops.Ty->isRealFloatingType() &&
2536                Ops.mayHaveFloatDivisionByZero()) {
2537       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2538       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2539       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2540                      Ops);
2541     }
2542   }
2543 
2544   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2545     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2546     if (CGF.getLangOpts().OpenCL &&
2547         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2548       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2549       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2550       // build option allows an application to specify that single precision
2551       // floating-point divide (x/y and 1/x) and sqrt used in the program
2552       // source are correctly rounded.
2553       llvm::Type *ValTy = Val->getType();
2554       if (ValTy->isFloatTy() ||
2555           (isa<llvm::VectorType>(ValTy) &&
2556            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2557         CGF.SetFPAccuracy(Val, 2.5);
2558     }
2559     return Val;
2560   }
2561   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2562     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2563   else
2564     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2565 }
2566 
2567 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2568   // Rem in C can't be a floating point type: C99 6.5.5p2.
2569   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2570        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2571       Ops.Ty->isIntegerType() &&
2572       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2573     CodeGenFunction::SanitizerScope SanScope(&CGF);
2574     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2575     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2576   }
2577 
2578   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2579     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2580   else
2581     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2582 }
2583 
2584 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2585   unsigned IID;
2586   unsigned OpID = 0;
2587 
2588   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2589   switch (Ops.Opcode) {
2590   case BO_Add:
2591   case BO_AddAssign:
2592     OpID = 1;
2593     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2594                      llvm::Intrinsic::uadd_with_overflow;
2595     break;
2596   case BO_Sub:
2597   case BO_SubAssign:
2598     OpID = 2;
2599     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2600                      llvm::Intrinsic::usub_with_overflow;
2601     break;
2602   case BO_Mul:
2603   case BO_MulAssign:
2604     OpID = 3;
2605     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2606                      llvm::Intrinsic::umul_with_overflow;
2607     break;
2608   default:
2609     llvm_unreachable("Unsupported operation for overflow detection");
2610   }
2611   OpID <<= 1;
2612   if (isSigned)
2613     OpID |= 1;
2614 
2615   CodeGenFunction::SanitizerScope SanScope(&CGF);
2616   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2617 
2618   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2619 
2620   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2621   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2622   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2623 
2624   // Handle overflow with llvm.trap if no custom handler has been specified.
2625   const std::string *handlerName =
2626     &CGF.getLangOpts().OverflowHandler;
2627   if (handlerName->empty()) {
2628     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2629     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2630     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2631       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2632       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2633                               : SanitizerKind::UnsignedIntegerOverflow;
2634       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2635     } else
2636       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2637     return result;
2638   }
2639 
2640   // Branch in case of overflow.
2641   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2642   llvm::BasicBlock *continueBB =
2643       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2644   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2645 
2646   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2647 
2648   // If an overflow handler is set, then we want to call it and then use its
2649   // result, if it returns.
2650   Builder.SetInsertPoint(overflowBB);
2651 
2652   // Get the overflow handler.
2653   llvm::Type *Int8Ty = CGF.Int8Ty;
2654   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2655   llvm::FunctionType *handlerTy =
2656       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2657   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2658 
2659   // Sign extend the args to 64-bit, so that we can use the same handler for
2660   // all types of overflow.
2661   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2662   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2663 
2664   // Call the handler with the two arguments, the operation, and the size of
2665   // the result.
2666   llvm::Value *handlerArgs[] = {
2667     lhs,
2668     rhs,
2669     Builder.getInt8(OpID),
2670     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2671   };
2672   llvm::Value *handlerResult =
2673     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2674 
2675   // Truncate the result back to the desired size.
2676   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2677   Builder.CreateBr(continueBB);
2678 
2679   Builder.SetInsertPoint(continueBB);
2680   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2681   phi->addIncoming(result, initialBB);
2682   phi->addIncoming(handlerResult, overflowBB);
2683 
2684   return phi;
2685 }
2686 
2687 /// Emit pointer + index arithmetic.
2688 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2689                                     const BinOpInfo &op,
2690                                     bool isSubtraction) {
2691   // Must have binary (not unary) expr here.  Unary pointer
2692   // increment/decrement doesn't use this path.
2693   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2694 
2695   Value *pointer = op.LHS;
2696   Expr *pointerOperand = expr->getLHS();
2697   Value *index = op.RHS;
2698   Expr *indexOperand = expr->getRHS();
2699 
2700   // In a subtraction, the LHS is always the pointer.
2701   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2702     std::swap(pointer, index);
2703     std::swap(pointerOperand, indexOperand);
2704   }
2705 
2706   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2707 
2708   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2709   auto &DL = CGF.CGM.getDataLayout();
2710   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2711 
2712   // Some versions of glibc and gcc use idioms (particularly in their malloc
2713   // routines) that add a pointer-sized integer (known to be a pointer value)
2714   // to a null pointer in order to cast the value back to an integer or as
2715   // part of a pointer alignment algorithm.  This is undefined behavior, but
2716   // we'd like to be able to compile programs that use it.
2717   //
2718   // Normally, we'd generate a GEP with a null-pointer base here in response
2719   // to that code, but it's also UB to dereference a pointer created that
2720   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
2721   // generate a direct cast of the integer value to a pointer.
2722   //
2723   // The idiom (p = nullptr + N) is not met if any of the following are true:
2724   //
2725   //   The operation is subtraction.
2726   //   The index is not pointer-sized.
2727   //   The pointer type is not byte-sized.
2728   //
2729   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
2730                                                        op.Opcode,
2731                                                        expr->getLHS(),
2732                                                        expr->getRHS()))
2733     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
2734 
2735   if (width != DL.getTypeSizeInBits(PtrTy)) {
2736     // Zero-extend or sign-extend the pointer value according to
2737     // whether the index is signed or not.
2738     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2739                                       "idx.ext");
2740   }
2741 
2742   // If this is subtraction, negate the index.
2743   if (isSubtraction)
2744     index = CGF.Builder.CreateNeg(index, "idx.neg");
2745 
2746   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2747     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2748                         /*Accessed*/ false);
2749 
2750   const PointerType *pointerType
2751     = pointerOperand->getType()->getAs<PointerType>();
2752   if (!pointerType) {
2753     QualType objectType = pointerOperand->getType()
2754                                         ->castAs<ObjCObjectPointerType>()
2755                                         ->getPointeeType();
2756     llvm::Value *objectSize
2757       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2758 
2759     index = CGF.Builder.CreateMul(index, objectSize);
2760 
2761     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2762     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2763     return CGF.Builder.CreateBitCast(result, pointer->getType());
2764   }
2765 
2766   QualType elementType = pointerType->getPointeeType();
2767   if (const VariableArrayType *vla
2768         = CGF.getContext().getAsVariableArrayType(elementType)) {
2769     // The element count here is the total number of non-VLA elements.
2770     llvm::Value *numElements = CGF.getVLASize(vla).first;
2771 
2772     // Effectively, the multiply by the VLA size is part of the GEP.
2773     // GEP indexes are signed, and scaling an index isn't permitted to
2774     // signed-overflow, so we use the same semantics for our explicit
2775     // multiply.  We suppress this if overflow is not undefined behavior.
2776     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2777       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2778       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2779     } else {
2780       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2781       pointer =
2782           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2783                                      op.E->getExprLoc(), "add.ptr");
2784     }
2785     return pointer;
2786   }
2787 
2788   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2789   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2790   // future proof.
2791   if (elementType->isVoidType() || elementType->isFunctionType()) {
2792     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2793     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2794     return CGF.Builder.CreateBitCast(result, pointer->getType());
2795   }
2796 
2797   if (CGF.getLangOpts().isSignedOverflowDefined())
2798     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2799 
2800   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2801                                     op.E->getExprLoc(), "add.ptr");
2802 }
2803 
2804 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2805 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2806 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2807 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2808 // efficient operations.
2809 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2810                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2811                            bool negMul, bool negAdd) {
2812   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2813 
2814   Value *MulOp0 = MulOp->getOperand(0);
2815   Value *MulOp1 = MulOp->getOperand(1);
2816   if (negMul) {
2817     MulOp0 =
2818       Builder.CreateFSub(
2819         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2820         "neg");
2821   } else if (negAdd) {
2822     Addend =
2823       Builder.CreateFSub(
2824         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2825         "neg");
2826   }
2827 
2828   Value *FMulAdd = Builder.CreateCall(
2829       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2830       {MulOp0, MulOp1, Addend});
2831    MulOp->eraseFromParent();
2832 
2833    return FMulAdd;
2834 }
2835 
2836 // Check whether it would be legal to emit an fmuladd intrinsic call to
2837 // represent op and if so, build the fmuladd.
2838 //
2839 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2840 // Does NOT check the type of the operation - it's assumed that this function
2841 // will be called from contexts where it's known that the type is contractable.
2842 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2843                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2844                          bool isSub=false) {
2845 
2846   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2847           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2848          "Only fadd/fsub can be the root of an fmuladd.");
2849 
2850   // Check whether this op is marked as fusable.
2851   if (!op.FPFeatures.allowFPContractWithinStatement())
2852     return nullptr;
2853 
2854   // We have a potentially fusable op. Look for a mul on one of the operands.
2855   // Also, make sure that the mul result isn't used directly. In that case,
2856   // there's no point creating a muladd operation.
2857   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2858     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2859         LHSBinOp->use_empty())
2860       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2861   }
2862   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2863     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2864         RHSBinOp->use_empty())
2865       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2866   }
2867 
2868   return nullptr;
2869 }
2870 
2871 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2872   if (op.LHS->getType()->isPointerTy() ||
2873       op.RHS->getType()->isPointerTy())
2874     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
2875 
2876   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2877     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2878     case LangOptions::SOB_Defined:
2879       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2880     case LangOptions::SOB_Undefined:
2881       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2882         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2883       // Fall through.
2884     case LangOptions::SOB_Trapping:
2885       if (CanElideOverflowCheck(CGF.getContext(), op))
2886         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2887       return EmitOverflowCheckedBinOp(op);
2888     }
2889   }
2890 
2891   if (op.Ty->isUnsignedIntegerType() &&
2892       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2893       !CanElideOverflowCheck(CGF.getContext(), op))
2894     return EmitOverflowCheckedBinOp(op);
2895 
2896   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2897     // Try to form an fmuladd.
2898     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2899       return FMulAdd;
2900 
2901     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
2902     return propagateFMFlags(V, op);
2903   }
2904 
2905   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2906 }
2907 
2908 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2909   // The LHS is always a pointer if either side is.
2910   if (!op.LHS->getType()->isPointerTy()) {
2911     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2912       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2913       case LangOptions::SOB_Defined:
2914         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2915       case LangOptions::SOB_Undefined:
2916         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2917           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2918         // Fall through.
2919       case LangOptions::SOB_Trapping:
2920         if (CanElideOverflowCheck(CGF.getContext(), op))
2921           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2922         return EmitOverflowCheckedBinOp(op);
2923       }
2924     }
2925 
2926     if (op.Ty->isUnsignedIntegerType() &&
2927         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2928         !CanElideOverflowCheck(CGF.getContext(), op))
2929       return EmitOverflowCheckedBinOp(op);
2930 
2931     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2932       // Try to form an fmuladd.
2933       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2934         return FMulAdd;
2935       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
2936       return propagateFMFlags(V, op);
2937     }
2938 
2939     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2940   }
2941 
2942   // If the RHS is not a pointer, then we have normal pointer
2943   // arithmetic.
2944   if (!op.RHS->getType()->isPointerTy())
2945     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
2946 
2947   // Otherwise, this is a pointer subtraction.
2948 
2949   // Do the raw subtraction part.
2950   llvm::Value *LHS
2951     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2952   llvm::Value *RHS
2953     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2954   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2955 
2956   // Okay, figure out the element size.
2957   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2958   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2959 
2960   llvm::Value *divisor = nullptr;
2961 
2962   // For a variable-length array, this is going to be non-constant.
2963   if (const VariableArrayType *vla
2964         = CGF.getContext().getAsVariableArrayType(elementType)) {
2965     llvm::Value *numElements;
2966     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2967 
2968     divisor = numElements;
2969 
2970     // Scale the number of non-VLA elements by the non-VLA element size.
2971     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2972     if (!eltSize.isOne())
2973       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2974 
2975   // For everything elese, we can just compute it, safe in the
2976   // assumption that Sema won't let anything through that we can't
2977   // safely compute the size of.
2978   } else {
2979     CharUnits elementSize;
2980     // Handle GCC extension for pointer arithmetic on void* and
2981     // function pointer types.
2982     if (elementType->isVoidType() || elementType->isFunctionType())
2983       elementSize = CharUnits::One();
2984     else
2985       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2986 
2987     // Don't even emit the divide for element size of 1.
2988     if (elementSize.isOne())
2989       return diffInChars;
2990 
2991     divisor = CGF.CGM.getSize(elementSize);
2992   }
2993 
2994   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2995   // pointer difference in C is only defined in the case where both operands
2996   // are pointing to elements of an array.
2997   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2998 }
2999 
3000 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3001   llvm::IntegerType *Ty;
3002   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3003     Ty = cast<llvm::IntegerType>(VT->getElementType());
3004   else
3005     Ty = cast<llvm::IntegerType>(LHS->getType());
3006   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3007 }
3008 
3009 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3010   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3011   // RHS to the same size as the LHS.
3012   Value *RHS = Ops.RHS;
3013   if (Ops.LHS->getType() != RHS->getType())
3014     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3015 
3016   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3017                       Ops.Ty->hasSignedIntegerRepresentation() &&
3018                       !CGF.getLangOpts().isSignedOverflowDefined();
3019   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3020   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3021   if (CGF.getLangOpts().OpenCL)
3022     RHS =
3023         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3024   else if ((SanitizeBase || SanitizeExponent) &&
3025            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3026     CodeGenFunction::SanitizerScope SanScope(&CGF);
3027     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3028     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3029     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3030 
3031     if (SanitizeExponent) {
3032       Checks.push_back(
3033           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3034     }
3035 
3036     if (SanitizeBase) {
3037       // Check whether we are shifting any non-zero bits off the top of the
3038       // integer. We only emit this check if exponent is valid - otherwise
3039       // instructions below will have undefined behavior themselves.
3040       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3041       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3042       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3043       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3044       llvm::Value *PromotedWidthMinusOne =
3045           (RHS == Ops.RHS) ? WidthMinusOne
3046                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3047       CGF.EmitBlock(CheckShiftBase);
3048       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3049           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3050                                      /*NUW*/ true, /*NSW*/ true),
3051           "shl.check");
3052       if (CGF.getLangOpts().CPlusPlus) {
3053         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3054         // Under C++11's rules, shifting a 1 bit into the sign bit is
3055         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3056         // define signed left shifts, so we use the C99 and C++11 rules there).
3057         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3058         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3059       }
3060       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3061       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3062       CGF.EmitBlock(Cont);
3063       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3064       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3065       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3066       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3067     }
3068 
3069     assert(!Checks.empty());
3070     EmitBinOpCheck(Checks, Ops);
3071   }
3072 
3073   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3074 }
3075 
3076 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3077   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3078   // RHS to the same size as the LHS.
3079   Value *RHS = Ops.RHS;
3080   if (Ops.LHS->getType() != RHS->getType())
3081     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3082 
3083   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3084   if (CGF.getLangOpts().OpenCL)
3085     RHS =
3086         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3087   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3088            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3089     CodeGenFunction::SanitizerScope SanScope(&CGF);
3090     llvm::Value *Valid =
3091         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3092     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3093   }
3094 
3095   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3096     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3097   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3098 }
3099 
3100 enum IntrinsicType { VCMPEQ, VCMPGT };
3101 // return corresponding comparison intrinsic for given vector type
3102 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3103                                         BuiltinType::Kind ElemKind) {
3104   switch (ElemKind) {
3105   default: llvm_unreachable("unexpected element type");
3106   case BuiltinType::Char_U:
3107   case BuiltinType::UChar:
3108     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3109                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3110   case BuiltinType::Char_S:
3111   case BuiltinType::SChar:
3112     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3113                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3114   case BuiltinType::UShort:
3115     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3116                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3117   case BuiltinType::Short:
3118     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3119                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3120   case BuiltinType::UInt:
3121     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3122                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3123   case BuiltinType::Int:
3124     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3125                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3126   case BuiltinType::ULong:
3127   case BuiltinType::ULongLong:
3128     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3129                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3130   case BuiltinType::Long:
3131   case BuiltinType::LongLong:
3132     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3133                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3134   case BuiltinType::Float:
3135     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3136                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3137   case BuiltinType::Double:
3138     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3139                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3140   }
3141 }
3142 
3143 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3144                                       llvm::CmpInst::Predicate UICmpOpc,
3145                                       llvm::CmpInst::Predicate SICmpOpc,
3146                                       llvm::CmpInst::Predicate FCmpOpc) {
3147   TestAndClearIgnoreResultAssign();
3148   Value *Result;
3149   QualType LHSTy = E->getLHS()->getType();
3150   QualType RHSTy = E->getRHS()->getType();
3151   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3152     assert(E->getOpcode() == BO_EQ ||
3153            E->getOpcode() == BO_NE);
3154     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3155     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3156     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3157                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3158   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3159     Value *LHS = Visit(E->getLHS());
3160     Value *RHS = Visit(E->getRHS());
3161 
3162     // If AltiVec, the comparison results in a numeric type, so we use
3163     // intrinsics comparing vectors and giving 0 or 1 as a result
3164     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3165       // constants for mapping CR6 register bits to predicate result
3166       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3167 
3168       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3169 
3170       // in several cases vector arguments order will be reversed
3171       Value *FirstVecArg = LHS,
3172             *SecondVecArg = RHS;
3173 
3174       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3175       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3176       BuiltinType::Kind ElementKind = BTy->getKind();
3177 
3178       switch(E->getOpcode()) {
3179       default: llvm_unreachable("is not a comparison operation");
3180       case BO_EQ:
3181         CR6 = CR6_LT;
3182         ID = GetIntrinsic(VCMPEQ, ElementKind);
3183         break;
3184       case BO_NE:
3185         CR6 = CR6_EQ;
3186         ID = GetIntrinsic(VCMPEQ, ElementKind);
3187         break;
3188       case BO_LT:
3189         CR6 = CR6_LT;
3190         ID = GetIntrinsic(VCMPGT, ElementKind);
3191         std::swap(FirstVecArg, SecondVecArg);
3192         break;
3193       case BO_GT:
3194         CR6 = CR6_LT;
3195         ID = GetIntrinsic(VCMPGT, ElementKind);
3196         break;
3197       case BO_LE:
3198         if (ElementKind == BuiltinType::Float) {
3199           CR6 = CR6_LT;
3200           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3201           std::swap(FirstVecArg, SecondVecArg);
3202         }
3203         else {
3204           CR6 = CR6_EQ;
3205           ID = GetIntrinsic(VCMPGT, ElementKind);
3206         }
3207         break;
3208       case BO_GE:
3209         if (ElementKind == BuiltinType::Float) {
3210           CR6 = CR6_LT;
3211           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3212         }
3213         else {
3214           CR6 = CR6_EQ;
3215           ID = GetIntrinsic(VCMPGT, ElementKind);
3216           std::swap(FirstVecArg, SecondVecArg);
3217         }
3218         break;
3219       }
3220 
3221       Value *CR6Param = Builder.getInt32(CR6);
3222       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3223       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3224 
3225       // The result type of intrinsic may not be same as E->getType().
3226       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3227       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3228       // do nothing, if ResultTy is not i1 at the same time, it will cause
3229       // crash later.
3230       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3231       if (ResultTy->getBitWidth() > 1 &&
3232           E->getType() == CGF.getContext().BoolTy)
3233         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3234       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3235                                   E->getExprLoc());
3236     }
3237 
3238     if (LHS->getType()->isFPOrFPVectorTy()) {
3239       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3240     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3241       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3242     } else {
3243       // Unsigned integers and pointers.
3244       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3245     }
3246 
3247     // If this is a vector comparison, sign extend the result to the appropriate
3248     // vector integer type and return it (don't convert to bool).
3249     if (LHSTy->isVectorType())
3250       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3251 
3252   } else {
3253     // Complex Comparison: can only be an equality comparison.
3254     CodeGenFunction::ComplexPairTy LHS, RHS;
3255     QualType CETy;
3256     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3257       LHS = CGF.EmitComplexExpr(E->getLHS());
3258       CETy = CTy->getElementType();
3259     } else {
3260       LHS.first = Visit(E->getLHS());
3261       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3262       CETy = LHSTy;
3263     }
3264     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3265       RHS = CGF.EmitComplexExpr(E->getRHS());
3266       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3267                                                      CTy->getElementType()) &&
3268              "The element types must always match.");
3269       (void)CTy;
3270     } else {
3271       RHS.first = Visit(E->getRHS());
3272       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3273       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3274              "The element types must always match.");
3275     }
3276 
3277     Value *ResultR, *ResultI;
3278     if (CETy->isRealFloatingType()) {
3279       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3280       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3281     } else {
3282       // Complex comparisons can only be equality comparisons.  As such, signed
3283       // and unsigned opcodes are the same.
3284       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3285       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3286     }
3287 
3288     if (E->getOpcode() == BO_EQ) {
3289       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3290     } else {
3291       assert(E->getOpcode() == BO_NE &&
3292              "Complex comparison other than == or != ?");
3293       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3294     }
3295   }
3296 
3297   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3298                               E->getExprLoc());
3299 }
3300 
3301 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3302   bool Ignore = TestAndClearIgnoreResultAssign();
3303 
3304   Value *RHS;
3305   LValue LHS;
3306 
3307   switch (E->getLHS()->getType().getObjCLifetime()) {
3308   case Qualifiers::OCL_Strong:
3309     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3310     break;
3311 
3312   case Qualifiers::OCL_Autoreleasing:
3313     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3314     break;
3315 
3316   case Qualifiers::OCL_ExplicitNone:
3317     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3318     break;
3319 
3320   case Qualifiers::OCL_Weak:
3321     RHS = Visit(E->getRHS());
3322     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3323     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3324     break;
3325 
3326   case Qualifiers::OCL_None:
3327     // __block variables need to have the rhs evaluated first, plus
3328     // this should improve codegen just a little.
3329     RHS = Visit(E->getRHS());
3330     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3331 
3332     // Store the value into the LHS.  Bit-fields are handled specially
3333     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3334     // 'An assignment expression has the value of the left operand after
3335     // the assignment...'.
3336     if (LHS.isBitField()) {
3337       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3338     } else {
3339       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3340       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3341     }
3342   }
3343 
3344   // If the result is clearly ignored, return now.
3345   if (Ignore)
3346     return nullptr;
3347 
3348   // The result of an assignment in C is the assigned r-value.
3349   if (!CGF.getLangOpts().CPlusPlus)
3350     return RHS;
3351 
3352   // If the lvalue is non-volatile, return the computed value of the assignment.
3353   if (!LHS.isVolatileQualified())
3354     return RHS;
3355 
3356   // Otherwise, reload the value.
3357   return EmitLoadOfLValue(LHS, E->getExprLoc());
3358 }
3359 
3360 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3361   // Perform vector logical and on comparisons with zero vectors.
3362   if (E->getType()->isVectorType()) {
3363     CGF.incrementProfileCounter(E);
3364 
3365     Value *LHS = Visit(E->getLHS());
3366     Value *RHS = Visit(E->getRHS());
3367     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3368     if (LHS->getType()->isFPOrFPVectorTy()) {
3369       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3370       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3371     } else {
3372       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3373       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3374     }
3375     Value *And = Builder.CreateAnd(LHS, RHS);
3376     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3377   }
3378 
3379   llvm::Type *ResTy = ConvertType(E->getType());
3380 
3381   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3382   // If we have 1 && X, just emit X without inserting the control flow.
3383   bool LHSCondVal;
3384   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3385     if (LHSCondVal) { // If we have 1 && X, just emit X.
3386       CGF.incrementProfileCounter(E);
3387 
3388       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3389       // ZExt result to int or bool.
3390       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3391     }
3392 
3393     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3394     if (!CGF.ContainsLabel(E->getRHS()))
3395       return llvm::Constant::getNullValue(ResTy);
3396   }
3397 
3398   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3399   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3400 
3401   CodeGenFunction::ConditionalEvaluation eval(CGF);
3402 
3403   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3404   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3405                            CGF.getProfileCount(E->getRHS()));
3406 
3407   // Any edges into the ContBlock are now from an (indeterminate number of)
3408   // edges from this first condition.  All of these values will be false.  Start
3409   // setting up the PHI node in the Cont Block for this.
3410   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3411                                             "", ContBlock);
3412   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3413        PI != PE; ++PI)
3414     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3415 
3416   eval.begin(CGF);
3417   CGF.EmitBlock(RHSBlock);
3418   CGF.incrementProfileCounter(E);
3419   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3420   eval.end(CGF);
3421 
3422   // Reaquire the RHS block, as there may be subblocks inserted.
3423   RHSBlock = Builder.GetInsertBlock();
3424 
3425   // Emit an unconditional branch from this block to ContBlock.
3426   {
3427     // There is no need to emit line number for unconditional branch.
3428     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3429     CGF.EmitBlock(ContBlock);
3430   }
3431   // Insert an entry into the phi node for the edge with the value of RHSCond.
3432   PN->addIncoming(RHSCond, RHSBlock);
3433 
3434   // ZExt result to int.
3435   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3436 }
3437 
3438 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3439   // Perform vector logical or on comparisons with zero vectors.
3440   if (E->getType()->isVectorType()) {
3441     CGF.incrementProfileCounter(E);
3442 
3443     Value *LHS = Visit(E->getLHS());
3444     Value *RHS = Visit(E->getRHS());
3445     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3446     if (LHS->getType()->isFPOrFPVectorTy()) {
3447       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3448       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3449     } else {
3450       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3451       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3452     }
3453     Value *Or = Builder.CreateOr(LHS, RHS);
3454     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3455   }
3456 
3457   llvm::Type *ResTy = ConvertType(E->getType());
3458 
3459   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3460   // If we have 0 || X, just emit X without inserting the control flow.
3461   bool LHSCondVal;
3462   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3463     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3464       CGF.incrementProfileCounter(E);
3465 
3466       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3467       // ZExt result to int or bool.
3468       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3469     }
3470 
3471     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3472     if (!CGF.ContainsLabel(E->getRHS()))
3473       return llvm::ConstantInt::get(ResTy, 1);
3474   }
3475 
3476   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3477   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3478 
3479   CodeGenFunction::ConditionalEvaluation eval(CGF);
3480 
3481   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3482   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3483                            CGF.getCurrentProfileCount() -
3484                                CGF.getProfileCount(E->getRHS()));
3485 
3486   // Any edges into the ContBlock are now from an (indeterminate number of)
3487   // edges from this first condition.  All of these values will be true.  Start
3488   // setting up the PHI node in the Cont Block for this.
3489   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3490                                             "", ContBlock);
3491   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3492        PI != PE; ++PI)
3493     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3494 
3495   eval.begin(CGF);
3496 
3497   // Emit the RHS condition as a bool value.
3498   CGF.EmitBlock(RHSBlock);
3499   CGF.incrementProfileCounter(E);
3500   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3501 
3502   eval.end(CGF);
3503 
3504   // Reaquire the RHS block, as there may be subblocks inserted.
3505   RHSBlock = Builder.GetInsertBlock();
3506 
3507   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3508   // into the phi node for the edge with the value of RHSCond.
3509   CGF.EmitBlock(ContBlock);
3510   PN->addIncoming(RHSCond, RHSBlock);
3511 
3512   // ZExt result to int.
3513   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3514 }
3515 
3516 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3517   CGF.EmitIgnoredExpr(E->getLHS());
3518   CGF.EnsureInsertPoint();
3519   return Visit(E->getRHS());
3520 }
3521 
3522 //===----------------------------------------------------------------------===//
3523 //                             Other Operators
3524 //===----------------------------------------------------------------------===//
3525 
3526 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3527 /// expression is cheap enough and side-effect-free enough to evaluate
3528 /// unconditionally instead of conditionally.  This is used to convert control
3529 /// flow into selects in some cases.
3530 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3531                                                    CodeGenFunction &CGF) {
3532   // Anything that is an integer or floating point constant is fine.
3533   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3534 
3535   // Even non-volatile automatic variables can't be evaluated unconditionally.
3536   // Referencing a thread_local may cause non-trivial initialization work to
3537   // occur. If we're inside a lambda and one of the variables is from the scope
3538   // outside the lambda, that function may have returned already. Reading its
3539   // locals is a bad idea. Also, these reads may introduce races there didn't
3540   // exist in the source-level program.
3541 }
3542 
3543 
3544 Value *ScalarExprEmitter::
3545 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3546   TestAndClearIgnoreResultAssign();
3547 
3548   // Bind the common expression if necessary.
3549   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3550 
3551   Expr *condExpr = E->getCond();
3552   Expr *lhsExpr = E->getTrueExpr();
3553   Expr *rhsExpr = E->getFalseExpr();
3554 
3555   // If the condition constant folds and can be elided, try to avoid emitting
3556   // the condition and the dead arm.
3557   bool CondExprBool;
3558   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3559     Expr *live = lhsExpr, *dead = rhsExpr;
3560     if (!CondExprBool) std::swap(live, dead);
3561 
3562     // If the dead side doesn't have labels we need, just emit the Live part.
3563     if (!CGF.ContainsLabel(dead)) {
3564       if (CondExprBool)
3565         CGF.incrementProfileCounter(E);
3566       Value *Result = Visit(live);
3567 
3568       // If the live part is a throw expression, it acts like it has a void
3569       // type, so evaluating it returns a null Value*.  However, a conditional
3570       // with non-void type must return a non-null Value*.
3571       if (!Result && !E->getType()->isVoidType())
3572         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3573 
3574       return Result;
3575     }
3576   }
3577 
3578   // OpenCL: If the condition is a vector, we can treat this condition like
3579   // the select function.
3580   if (CGF.getLangOpts().OpenCL
3581       && condExpr->getType()->isVectorType()) {
3582     CGF.incrementProfileCounter(E);
3583 
3584     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3585     llvm::Value *LHS = Visit(lhsExpr);
3586     llvm::Value *RHS = Visit(rhsExpr);
3587 
3588     llvm::Type *condType = ConvertType(condExpr->getType());
3589     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3590 
3591     unsigned numElem = vecTy->getNumElements();
3592     llvm::Type *elemType = vecTy->getElementType();
3593 
3594     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3595     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3596     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3597                                           llvm::VectorType::get(elemType,
3598                                                                 numElem),
3599                                           "sext");
3600     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3601 
3602     // Cast float to int to perform ANDs if necessary.
3603     llvm::Value *RHSTmp = RHS;
3604     llvm::Value *LHSTmp = LHS;
3605     bool wasCast = false;
3606     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3607     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3608       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3609       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3610       wasCast = true;
3611     }
3612 
3613     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3614     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3615     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3616     if (wasCast)
3617       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3618 
3619     return tmp5;
3620   }
3621 
3622   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3623   // select instead of as control flow.  We can only do this if it is cheap and
3624   // safe to evaluate the LHS and RHS unconditionally.
3625   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3626       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3627     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3628     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
3629 
3630     CGF.incrementProfileCounter(E, StepV);
3631 
3632     llvm::Value *LHS = Visit(lhsExpr);
3633     llvm::Value *RHS = Visit(rhsExpr);
3634     if (!LHS) {
3635       // If the conditional has void type, make sure we return a null Value*.
3636       assert(!RHS && "LHS and RHS types must match");
3637       return nullptr;
3638     }
3639     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3640   }
3641 
3642   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3643   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3644   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3645 
3646   CodeGenFunction::ConditionalEvaluation eval(CGF);
3647   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3648                            CGF.getProfileCount(lhsExpr));
3649 
3650   CGF.EmitBlock(LHSBlock);
3651   CGF.incrementProfileCounter(E);
3652   eval.begin(CGF);
3653   Value *LHS = Visit(lhsExpr);
3654   eval.end(CGF);
3655 
3656   LHSBlock = Builder.GetInsertBlock();
3657   Builder.CreateBr(ContBlock);
3658 
3659   CGF.EmitBlock(RHSBlock);
3660   eval.begin(CGF);
3661   Value *RHS = Visit(rhsExpr);
3662   eval.end(CGF);
3663 
3664   RHSBlock = Builder.GetInsertBlock();
3665   CGF.EmitBlock(ContBlock);
3666 
3667   // If the LHS or RHS is a throw expression, it will be legitimately null.
3668   if (!LHS)
3669     return RHS;
3670   if (!RHS)
3671     return LHS;
3672 
3673   // Create a PHI node for the real part.
3674   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3675   PN->addIncoming(LHS, LHSBlock);
3676   PN->addIncoming(RHS, RHSBlock);
3677   return PN;
3678 }
3679 
3680 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3681   return Visit(E->getChosenSubExpr());
3682 }
3683 
3684 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3685   QualType Ty = VE->getType();
3686 
3687   if (Ty->isVariablyModifiedType())
3688     CGF.EmitVariablyModifiedType(Ty);
3689 
3690   Address ArgValue = Address::invalid();
3691   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3692 
3693   llvm::Type *ArgTy = ConvertType(VE->getType());
3694 
3695   // If EmitVAArg fails, emit an error.
3696   if (!ArgPtr.isValid()) {
3697     CGF.ErrorUnsupported(VE, "va_arg expression");
3698     return llvm::UndefValue::get(ArgTy);
3699   }
3700 
3701   // FIXME Volatility.
3702   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3703 
3704   // If EmitVAArg promoted the type, we must truncate it.
3705   if (ArgTy != Val->getType()) {
3706     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3707       Val = Builder.CreateIntToPtr(Val, ArgTy);
3708     else
3709       Val = Builder.CreateTrunc(Val, ArgTy);
3710   }
3711 
3712   return Val;
3713 }
3714 
3715 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3716   return CGF.EmitBlockLiteral(block);
3717 }
3718 
3719 // Convert a vec3 to vec4, or vice versa.
3720 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3721                                  Value *Src, unsigned NumElementsDst) {
3722   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3723   SmallVector<llvm::Constant*, 4> Args;
3724   Args.push_back(Builder.getInt32(0));
3725   Args.push_back(Builder.getInt32(1));
3726   Args.push_back(Builder.getInt32(2));
3727   if (NumElementsDst == 4)
3728     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3729   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3730   return Builder.CreateShuffleVector(Src, UnV, Mask);
3731 }
3732 
3733 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3734 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3735 // but could be scalar or vectors of different lengths, and either can be
3736 // pointer.
3737 // There are 4 cases:
3738 // 1. non-pointer -> non-pointer  : needs 1 bitcast
3739 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
3740 // 3. pointer -> non-pointer
3741 //   a) pointer -> intptr_t       : needs 1 ptrtoint
3742 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
3743 // 4. non-pointer -> pointer
3744 //   a) intptr_t -> pointer       : needs 1 inttoptr
3745 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
3746 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3747 // allow casting directly between pointer types and non-integer non-pointer
3748 // types.
3749 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3750                                            const llvm::DataLayout &DL,
3751                                            Value *Src, llvm::Type *DstTy,
3752                                            StringRef Name = "") {
3753   auto SrcTy = Src->getType();
3754 
3755   // Case 1.
3756   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3757     return Builder.CreateBitCast(Src, DstTy, Name);
3758 
3759   // Case 2.
3760   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3761     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3762 
3763   // Case 3.
3764   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3765     // Case 3b.
3766     if (!DstTy->isIntegerTy())
3767       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3768     // Cases 3a and 3b.
3769     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3770   }
3771 
3772   // Case 4b.
3773   if (!SrcTy->isIntegerTy())
3774     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3775   // Cases 4a and 4b.
3776   return Builder.CreateIntToPtr(Src, DstTy, Name);
3777 }
3778 
3779 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3780   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3781   llvm::Type *DstTy = ConvertType(E->getType());
3782 
3783   llvm::Type *SrcTy = Src->getType();
3784   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3785     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3786   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3787     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3788 
3789   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3790   // vector to get a vec4, then a bitcast if the target type is different.
3791   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3792     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3793 
3794     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3795       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3796                                          DstTy);
3797     }
3798 
3799     Src->setName("astype");
3800     return Src;
3801   }
3802 
3803   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3804   // to vec4 if the original type is not vec4, then a shuffle vector to
3805   // get a vec3.
3806   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3807     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3808       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3809       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3810                                          Vec4Ty);
3811     }
3812 
3813     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3814     Src->setName("astype");
3815     return Src;
3816   }
3817 
3818   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3819                                             Src, DstTy, "astype");
3820 }
3821 
3822 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3823   return CGF.EmitAtomicExpr(E).getScalarVal();
3824 }
3825 
3826 //===----------------------------------------------------------------------===//
3827 //                         Entry Point into this File
3828 //===----------------------------------------------------------------------===//
3829 
3830 /// Emit the computation of the specified expression of scalar type, ignoring
3831 /// the result.
3832 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3833   assert(E && hasScalarEvaluationKind(E->getType()) &&
3834          "Invalid scalar expression to emit");
3835 
3836   return ScalarExprEmitter(*this, IgnoreResultAssign)
3837       .Visit(const_cast<Expr *>(E));
3838 }
3839 
3840 /// Emit a conversion from the specified type to the specified destination type,
3841 /// both of which are LLVM scalar types.
3842 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3843                                              QualType DstTy,
3844                                              SourceLocation Loc) {
3845   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3846          "Invalid scalar expression to emit");
3847   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3848 }
3849 
3850 /// Emit a conversion from the specified complex type to the specified
3851 /// destination type, where the destination type is an LLVM scalar type.
3852 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3853                                                       QualType SrcTy,
3854                                                       QualType DstTy,
3855                                                       SourceLocation Loc) {
3856   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3857          "Invalid complex -> scalar conversion");
3858   return ScalarExprEmitter(*this)
3859       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3860 }
3861 
3862 
3863 llvm::Value *CodeGenFunction::
3864 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3865                         bool isInc, bool isPre) {
3866   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3867 }
3868 
3869 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3870   // object->isa or (*object).isa
3871   // Generate code as for: *(Class*)object
3872 
3873   Expr *BaseExpr = E->getBase();
3874   Address Addr = Address::invalid();
3875   if (BaseExpr->isRValue()) {
3876     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3877   } else {
3878     Addr = EmitLValue(BaseExpr).getAddress();
3879   }
3880 
3881   // Cast the address to Class*.
3882   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3883   return MakeAddrLValue(Addr, E->getType());
3884 }
3885 
3886 
3887 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3888                                             const CompoundAssignOperator *E) {
3889   ScalarExprEmitter Scalar(*this);
3890   Value *Result = nullptr;
3891   switch (E->getOpcode()) {
3892 #define COMPOUND_OP(Op)                                                       \
3893     case BO_##Op##Assign:                                                     \
3894       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3895                                              Result)
3896   COMPOUND_OP(Mul);
3897   COMPOUND_OP(Div);
3898   COMPOUND_OP(Rem);
3899   COMPOUND_OP(Add);
3900   COMPOUND_OP(Sub);
3901   COMPOUND_OP(Shl);
3902   COMPOUND_OP(Shr);
3903   COMPOUND_OP(And);
3904   COMPOUND_OP(Xor);
3905   COMPOUND_OP(Or);
3906 #undef COMPOUND_OP
3907 
3908   case BO_PtrMemD:
3909   case BO_PtrMemI:
3910   case BO_Mul:
3911   case BO_Div:
3912   case BO_Rem:
3913   case BO_Add:
3914   case BO_Sub:
3915   case BO_Shl:
3916   case BO_Shr:
3917   case BO_LT:
3918   case BO_GT:
3919   case BO_LE:
3920   case BO_GE:
3921   case BO_EQ:
3922   case BO_NE:
3923   case BO_Cmp:
3924   case BO_And:
3925   case BO_Xor:
3926   case BO_Or:
3927   case BO_LAnd:
3928   case BO_LOr:
3929   case BO_Assign:
3930   case BO_Comma:
3931     llvm_unreachable("Not valid compound assignment operators");
3932   }
3933 
3934   llvm_unreachable("Unhandled compound assignment operator");
3935 }
3936 
3937 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
3938                                                ArrayRef<Value *> IdxList,
3939                                                bool SignedIndices,
3940                                                bool IsSubtraction,
3941                                                SourceLocation Loc,
3942                                                const Twine &Name) {
3943   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
3944 
3945   // If the pointer overflow sanitizer isn't enabled, do nothing.
3946   if (!SanOpts.has(SanitizerKind::PointerOverflow))
3947     return GEPVal;
3948 
3949   // If the GEP has already been reduced to a constant, leave it be.
3950   if (isa<llvm::Constant>(GEPVal))
3951     return GEPVal;
3952 
3953   // Only check for overflows in the default address space.
3954   if (GEPVal->getType()->getPointerAddressSpace())
3955     return GEPVal;
3956 
3957   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
3958   assert(GEP->isInBounds() && "Expected inbounds GEP");
3959 
3960   SanitizerScope SanScope(this);
3961   auto &VMContext = getLLVMContext();
3962   const auto &DL = CGM.getDataLayout();
3963   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
3964 
3965   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
3966   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
3967   auto *SAddIntrinsic =
3968       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
3969   auto *SMulIntrinsic =
3970       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
3971 
3972   // The total (signed) byte offset for the GEP.
3973   llvm::Value *TotalOffset = nullptr;
3974   // The offset overflow flag - true if the total offset overflows.
3975   llvm::Value *OffsetOverflows = Builder.getFalse();
3976 
3977   /// Return the result of the given binary operation.
3978   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
3979                   llvm::Value *RHS) -> llvm::Value * {
3980     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
3981 
3982     // If the operands are constants, return a constant result.
3983     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
3984       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
3985         llvm::APInt N;
3986         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
3987                                                   /*Signed=*/true, N);
3988         if (HasOverflow)
3989           OffsetOverflows = Builder.getTrue();
3990         return llvm::ConstantInt::get(VMContext, N);
3991       }
3992     }
3993 
3994     // Otherwise, compute the result with checked arithmetic.
3995     auto *ResultAndOverflow = Builder.CreateCall(
3996         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
3997     OffsetOverflows = Builder.CreateOr(
3998         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
3999     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4000   };
4001 
4002   // Determine the total byte offset by looking at each GEP operand.
4003   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4004        GTI != GTE; ++GTI) {
4005     llvm::Value *LocalOffset;
4006     auto *Index = GTI.getOperand();
4007     // Compute the local offset contributed by this indexing step:
4008     if (auto *STy = GTI.getStructTypeOrNull()) {
4009       // For struct indexing, the local offset is the byte position of the
4010       // specified field.
4011       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4012       LocalOffset = llvm::ConstantInt::get(
4013           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4014     } else {
4015       // Otherwise this is array-like indexing. The local offset is the index
4016       // multiplied by the element size.
4017       auto *ElementSize = llvm::ConstantInt::get(
4018           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4019       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4020       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4021     }
4022 
4023     // If this is the first offset, set it as the total offset. Otherwise, add
4024     // the local offset into the running total.
4025     if (!TotalOffset || TotalOffset == Zero)
4026       TotalOffset = LocalOffset;
4027     else
4028       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4029   }
4030 
4031   // Common case: if the total offset is zero, don't emit a check.
4032   if (TotalOffset == Zero)
4033     return GEPVal;
4034 
4035   // Now that we've computed the total offset, add it to the base pointer (with
4036   // wrapping semantics).
4037   auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4038   auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4039 
4040   // The GEP is valid if:
4041   // 1) The total offset doesn't overflow, and
4042   // 2) The sign of the difference between the computed address and the base
4043   // pointer matches the sign of the total offset.
4044   llvm::Value *ValidGEP;
4045   auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4046   if (SignedIndices) {
4047     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4048     auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4049     llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4050     ValidGEP = Builder.CreateAnd(
4051         Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4052         NoOffsetOverflow);
4053   } else if (!SignedIndices && !IsSubtraction) {
4054     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4055     ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4056   } else {
4057     auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4058     ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4059   }
4060 
4061   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4062   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4063   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4064   EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4065             SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4066 
4067   return GEPVal;
4068 }
4069