1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/FixedPoint.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicsPowerPC.h"
40 #include "llvm/IR/MatrixBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include <cstdarg>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 using llvm::Value;
47 
48 //===----------------------------------------------------------------------===//
49 //                         Scalar Expression Emitter
50 //===----------------------------------------------------------------------===//
51 
52 namespace {
53 
54 /// Determine whether the given binary operation may overflow.
55 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
56 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
57 /// the returned overflow check is precise. The returned value is 'true' for
58 /// all other opcodes, to be conservative.
59 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
60                              BinaryOperator::Opcode Opcode, bool Signed,
61                              llvm::APInt &Result) {
62   // Assume overflow is possible, unless we can prove otherwise.
63   bool Overflow = true;
64   const auto &LHSAP = LHS->getValue();
65   const auto &RHSAP = RHS->getValue();
66   if (Opcode == BO_Add) {
67     if (Signed)
68       Result = LHSAP.sadd_ov(RHSAP, Overflow);
69     else
70       Result = LHSAP.uadd_ov(RHSAP, Overflow);
71   } else if (Opcode == BO_Sub) {
72     if (Signed)
73       Result = LHSAP.ssub_ov(RHSAP, Overflow);
74     else
75       Result = LHSAP.usub_ov(RHSAP, Overflow);
76   } else if (Opcode == BO_Mul) {
77     if (Signed)
78       Result = LHSAP.smul_ov(RHSAP, Overflow);
79     else
80       Result = LHSAP.umul_ov(RHSAP, Overflow);
81   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
82     if (Signed && !RHS->isZero())
83       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
84     else
85       return false;
86   }
87   return Overflow;
88 }
89 
90 struct BinOpInfo {
91   Value *LHS;
92   Value *RHS;
93   QualType Ty;  // Computation Type.
94   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
95   FPOptions FPFeatures;
96   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
97 
98   /// Check if the binop can result in integer overflow.
99   bool mayHaveIntegerOverflow() const {
100     // Without constant input, we can't rule out overflow.
101     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
102     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
103     if (!LHSCI || !RHSCI)
104       return true;
105 
106     llvm::APInt Result;
107     return ::mayHaveIntegerOverflow(
108         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
109   }
110 
111   /// Check if the binop computes a division or a remainder.
112   bool isDivremOp() const {
113     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
114            Opcode == BO_RemAssign;
115   }
116 
117   /// Check if the binop can result in an integer division by zero.
118   bool mayHaveIntegerDivisionByZero() const {
119     if (isDivremOp())
120       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
121         return CI->isZero();
122     return true;
123   }
124 
125   /// Check if the binop can result in a float division by zero.
126   bool mayHaveFloatDivisionByZero() const {
127     if (isDivremOp())
128       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
129         return CFP->isZero();
130     return true;
131   }
132 
133   /// Check if at least one operand is a fixed point type. In such cases, this
134   /// operation did not follow usual arithmetic conversion and both operands
135   /// might not be of the same type.
136   bool isFixedPointOp() const {
137     // We cannot simply check the result type since comparison operations return
138     // an int.
139     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
140       QualType LHSType = BinOp->getLHS()->getType();
141       QualType RHSType = BinOp->getRHS()->getType();
142       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
143     }
144     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
145       return UnOp->getSubExpr()->getType()->isFixedPointType();
146     return false;
147   }
148 };
149 
150 static bool MustVisitNullValue(const Expr *E) {
151   // If a null pointer expression's type is the C++0x nullptr_t, then
152   // it's not necessarily a simple constant and it must be evaluated
153   // for its potential side effects.
154   return E->getType()->isNullPtrType();
155 }
156 
157 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
158 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
159                                                         const Expr *E) {
160   const Expr *Base = E->IgnoreImpCasts();
161   if (E == Base)
162     return llvm::None;
163 
164   QualType BaseTy = Base->getType();
165   if (!BaseTy->isPromotableIntegerType() ||
166       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
167     return llvm::None;
168 
169   return BaseTy;
170 }
171 
172 /// Check if \p E is a widened promoted integer.
173 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
174   return getUnwidenedIntegerType(Ctx, E).hasValue();
175 }
176 
177 /// Check if we can skip the overflow check for \p Op.
178 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
179   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
180          "Expected a unary or binary operator");
181 
182   // If the binop has constant inputs and we can prove there is no overflow,
183   // we can elide the overflow check.
184   if (!Op.mayHaveIntegerOverflow())
185     return true;
186 
187   // If a unary op has a widened operand, the op cannot overflow.
188   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
189     return !UO->canOverflow();
190 
191   // We usually don't need overflow checks for binops with widened operands.
192   // Multiplication with promoted unsigned operands is a special case.
193   const auto *BO = cast<BinaryOperator>(Op.E);
194   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
195   if (!OptionalLHSTy)
196     return false;
197 
198   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
199   if (!OptionalRHSTy)
200     return false;
201 
202   QualType LHSTy = *OptionalLHSTy;
203   QualType RHSTy = *OptionalRHSTy;
204 
205   // This is the simple case: binops without unsigned multiplication, and with
206   // widened operands. No overflow check is needed here.
207   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
208       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
209     return true;
210 
211   // For unsigned multiplication the overflow check can be elided if either one
212   // of the unpromoted types are less than half the size of the promoted type.
213   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
214   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
215          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
216 }
217 
218 class ScalarExprEmitter
219   : public StmtVisitor<ScalarExprEmitter, Value*> {
220   CodeGenFunction &CGF;
221   CGBuilderTy &Builder;
222   bool IgnoreResultAssign;
223   llvm::LLVMContext &VMContext;
224 public:
225 
226   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
227     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
228       VMContext(cgf.getLLVMContext()) {
229   }
230 
231   //===--------------------------------------------------------------------===//
232   //                               Utilities
233   //===--------------------------------------------------------------------===//
234 
235   bool TestAndClearIgnoreResultAssign() {
236     bool I = IgnoreResultAssign;
237     IgnoreResultAssign = false;
238     return I;
239   }
240 
241   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
242   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
243   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
244     return CGF.EmitCheckedLValue(E, TCK);
245   }
246 
247   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
248                       const BinOpInfo &Info);
249 
250   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
251     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
252   }
253 
254   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
255     const AlignValueAttr *AVAttr = nullptr;
256     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
257       const ValueDecl *VD = DRE->getDecl();
258 
259       if (VD->getType()->isReferenceType()) {
260         if (const auto *TTy =
261             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
262           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
263       } else {
264         // Assumptions for function parameters are emitted at the start of the
265         // function, so there is no need to repeat that here,
266         // unless the alignment-assumption sanitizer is enabled,
267         // then we prefer the assumption over alignment attribute
268         // on IR function param.
269         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
270           return;
271 
272         AVAttr = VD->getAttr<AlignValueAttr>();
273       }
274     }
275 
276     if (!AVAttr)
277       if (const auto *TTy =
278           dyn_cast<TypedefType>(E->getType()))
279         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
280 
281     if (!AVAttr)
282       return;
283 
284     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
285     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
286     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
287   }
288 
289   /// EmitLoadOfLValue - Given an expression with complex type that represents a
290   /// value l-value, this method emits the address of the l-value, then loads
291   /// and returns the result.
292   Value *EmitLoadOfLValue(const Expr *E) {
293     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
294                                 E->getExprLoc());
295 
296     EmitLValueAlignmentAssumption(E, V);
297     return V;
298   }
299 
300   /// EmitConversionToBool - Convert the specified expression value to a
301   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
302   Value *EmitConversionToBool(Value *Src, QualType DstTy);
303 
304   /// Emit a check that a conversion from a floating-point type does not
305   /// overflow.
306   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
307                                 Value *Src, QualType SrcType, QualType DstType,
308                                 llvm::Type *DstTy, SourceLocation Loc);
309 
310   /// Known implicit conversion check kinds.
311   /// Keep in sync with the enum of the same name in ubsan_handlers.h
312   enum ImplicitConversionCheckKind : unsigned char {
313     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
314     ICCK_UnsignedIntegerTruncation = 1,
315     ICCK_SignedIntegerTruncation = 2,
316     ICCK_IntegerSignChange = 3,
317     ICCK_SignedIntegerTruncationOrSignChange = 4,
318   };
319 
320   /// Emit a check that an [implicit] truncation of an integer  does not
321   /// discard any bits. It is not UB, so we use the value after truncation.
322   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
323                                   QualType DstType, SourceLocation Loc);
324 
325   /// Emit a check that an [implicit] conversion of an integer does not change
326   /// the sign of the value. It is not UB, so we use the value after conversion.
327   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
328   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
329                                   QualType DstType, SourceLocation Loc);
330 
331   /// Emit a conversion from the specified type to the specified destination
332   /// type, both of which are LLVM scalar types.
333   struct ScalarConversionOpts {
334     bool TreatBooleanAsSigned;
335     bool EmitImplicitIntegerTruncationChecks;
336     bool EmitImplicitIntegerSignChangeChecks;
337 
338     ScalarConversionOpts()
339         : TreatBooleanAsSigned(false),
340           EmitImplicitIntegerTruncationChecks(false),
341           EmitImplicitIntegerSignChangeChecks(false) {}
342 
343     ScalarConversionOpts(clang::SanitizerSet SanOpts)
344         : TreatBooleanAsSigned(false),
345           EmitImplicitIntegerTruncationChecks(
346               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
347           EmitImplicitIntegerSignChangeChecks(
348               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
349   };
350   Value *
351   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
352                        SourceLocation Loc,
353                        ScalarConversionOpts Opts = ScalarConversionOpts());
354 
355   /// Convert between either a fixed point and other fixed point or fixed point
356   /// and an integer.
357   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
358                                   SourceLocation Loc);
359   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
360                                   FixedPointSemantics &DstFixedSema,
361                                   SourceLocation Loc,
362                                   bool DstIsInteger = false);
363 
364   /// Emit a conversion from the specified complex type to the specified
365   /// destination type, where the destination type is an LLVM scalar type.
366   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367                                        QualType SrcTy, QualType DstTy,
368                                        SourceLocation Loc);
369 
370   /// EmitNullValue - Emit a value that corresponds to null for the given type.
371   Value *EmitNullValue(QualType Ty);
372 
373   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
374   Value *EmitFloatToBoolConversion(Value *V) {
375     // Compare against 0.0 for fp scalars.
376     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377     return Builder.CreateFCmpUNE(V, Zero, "tobool");
378   }
379 
380   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
381   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384     return Builder.CreateICmpNE(V, Zero, "tobool");
385   }
386 
387   Value *EmitIntToBoolConversion(Value *V) {
388     // Because of the type rules of C, we often end up computing a
389     // logical value, then zero extending it to int, then wanting it
390     // as a logical value again.  Optimize this common case.
391     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393         Value *Result = ZI->getOperand(0);
394         // If there aren't any more uses, zap the instruction to save space.
395         // Note that there can be more uses, for example if this
396         // is the result of an assignment.
397         if (ZI->use_empty())
398           ZI->eraseFromParent();
399         return Result;
400       }
401     }
402 
403     return Builder.CreateIsNotNull(V, "tobool");
404   }
405 
406   //===--------------------------------------------------------------------===//
407   //                            Visitor Methods
408   //===--------------------------------------------------------------------===//
409 
410   Value *Visit(Expr *E) {
411     ApplyDebugLocation DL(CGF, E);
412     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
413   }
414 
415   Value *VisitStmt(Stmt *S) {
416     S->dump(CGF.getContext().getSourceManager());
417     llvm_unreachable("Stmt can't have complex result type!");
418   }
419   Value *VisitExpr(Expr *S);
420 
421   Value *VisitConstantExpr(ConstantExpr *E) {
422     return Visit(E->getSubExpr());
423   }
424   Value *VisitParenExpr(ParenExpr *PE) {
425     return Visit(PE->getSubExpr());
426   }
427   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
428     return Visit(E->getReplacement());
429   }
430   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
431     return Visit(GE->getResultExpr());
432   }
433   Value *VisitCoawaitExpr(CoawaitExpr *S) {
434     return CGF.EmitCoawaitExpr(*S).getScalarVal();
435   }
436   Value *VisitCoyieldExpr(CoyieldExpr *S) {
437     return CGF.EmitCoyieldExpr(*S).getScalarVal();
438   }
439   Value *VisitUnaryCoawait(const UnaryOperator *E) {
440     return Visit(E->getSubExpr());
441   }
442 
443   // Leaves.
444   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
445     return Builder.getInt(E->getValue());
446   }
447   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
448     return Builder.getInt(E->getValue());
449   }
450   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
451     return llvm::ConstantFP::get(VMContext, E->getValue());
452   }
453   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
454     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
455   }
456   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
457     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
458   }
459   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
463     return EmitNullValue(E->getType());
464   }
465   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
466     return EmitNullValue(E->getType());
467   }
468   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
469   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
470   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
471     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
472     return Builder.CreateBitCast(V, ConvertType(E->getType()));
473   }
474 
475   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
476     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
477   }
478 
479   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
480     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
481   }
482 
483   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
484     if (E->isGLValue())
485       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
486                               E->getExprLoc());
487 
488     // Otherwise, assume the mapping is the scalar directly.
489     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
490   }
491 
492   // l-values.
493   Value *VisitDeclRefExpr(DeclRefExpr *E) {
494     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
495       return CGF.emitScalarConstant(Constant, E);
496     return EmitLoadOfLValue(E);
497   }
498 
499   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
500     return CGF.EmitObjCSelectorExpr(E);
501   }
502   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
503     return CGF.EmitObjCProtocolExpr(E);
504   }
505   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
506     return EmitLoadOfLValue(E);
507   }
508   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
509     if (E->getMethodDecl() &&
510         E->getMethodDecl()->getReturnType()->isReferenceType())
511       return EmitLoadOfLValue(E);
512     return CGF.EmitObjCMessageExpr(E).getScalarVal();
513   }
514 
515   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
516     LValue LV = CGF.EmitObjCIsaExpr(E);
517     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
518     return V;
519   }
520 
521   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
522     VersionTuple Version = E->getVersion();
523 
524     // If we're checking for a platform older than our minimum deployment
525     // target, we can fold the check away.
526     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
527       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
528 
529     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
530     llvm::Value *Args[] = {
531         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
532         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
533         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
534     };
535 
536     return CGF.EmitBuiltinAvailable(Args);
537   }
538 
539   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
540   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
541   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
542   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
543   Value *VisitMemberExpr(MemberExpr *E);
544   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
545   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
546     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
547     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
548     // literals aren't l-values in C++. We do so simply because that's the
549     // cleanest way to handle compound literals in C++.
550     // See the discussion here: https://reviews.llvm.org/D64464
551     return EmitLoadOfLValue(E);
552   }
553 
554   Value *VisitInitListExpr(InitListExpr *E);
555 
556   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
557     assert(CGF.getArrayInitIndex() &&
558            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
559     return CGF.getArrayInitIndex();
560   }
561 
562   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
563     return EmitNullValue(E->getType());
564   }
565   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
566     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
567     return VisitCastExpr(E);
568   }
569   Value *VisitCastExpr(CastExpr *E);
570 
571   Value *VisitCallExpr(const CallExpr *E) {
572     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
573       return EmitLoadOfLValue(E);
574 
575     Value *V = CGF.EmitCallExpr(E).getScalarVal();
576 
577     EmitLValueAlignmentAssumption(E, V);
578     return V;
579   }
580 
581   Value *VisitStmtExpr(const StmtExpr *E);
582 
583   // Unary Operators.
584   Value *VisitUnaryPostDec(const UnaryOperator *E) {
585     LValue LV = EmitLValue(E->getSubExpr());
586     return EmitScalarPrePostIncDec(E, LV, false, false);
587   }
588   Value *VisitUnaryPostInc(const UnaryOperator *E) {
589     LValue LV = EmitLValue(E->getSubExpr());
590     return EmitScalarPrePostIncDec(E, LV, true, false);
591   }
592   Value *VisitUnaryPreDec(const UnaryOperator *E) {
593     LValue LV = EmitLValue(E->getSubExpr());
594     return EmitScalarPrePostIncDec(E, LV, false, true);
595   }
596   Value *VisitUnaryPreInc(const UnaryOperator *E) {
597     LValue LV = EmitLValue(E->getSubExpr());
598     return EmitScalarPrePostIncDec(E, LV, true, true);
599   }
600 
601   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
602                                                   llvm::Value *InVal,
603                                                   bool IsInc);
604 
605   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
606                                        bool isInc, bool isPre);
607 
608 
609   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
610     if (isa<MemberPointerType>(E->getType())) // never sugared
611       return CGF.CGM.getMemberPointerConstant(E);
612 
613     return EmitLValue(E->getSubExpr()).getPointer(CGF);
614   }
615   Value *VisitUnaryDeref(const UnaryOperator *E) {
616     if (E->getType()->isVoidType())
617       return Visit(E->getSubExpr()); // the actual value should be unused
618     return EmitLoadOfLValue(E);
619   }
620   Value *VisitUnaryPlus(const UnaryOperator *E) {
621     // This differs from gcc, though, most likely due to a bug in gcc.
622     TestAndClearIgnoreResultAssign();
623     return Visit(E->getSubExpr());
624   }
625   Value *VisitUnaryMinus    (const UnaryOperator *E);
626   Value *VisitUnaryNot      (const UnaryOperator *E);
627   Value *VisitUnaryLNot     (const UnaryOperator *E);
628   Value *VisitUnaryReal     (const UnaryOperator *E);
629   Value *VisitUnaryImag     (const UnaryOperator *E);
630   Value *VisitUnaryExtension(const UnaryOperator *E) {
631     return Visit(E->getSubExpr());
632   }
633 
634   // C++
635   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
636     return EmitLoadOfLValue(E);
637   }
638   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
639     auto &Ctx = CGF.getContext();
640     APValue Evaluated =
641         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
642     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
643                                              SLE->getType());
644   }
645 
646   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
647     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
648     return Visit(DAE->getExpr());
649   }
650   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
651     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
652     return Visit(DIE->getExpr());
653   }
654   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
655     return CGF.LoadCXXThis();
656   }
657 
658   Value *VisitExprWithCleanups(ExprWithCleanups *E);
659   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
660     return CGF.EmitCXXNewExpr(E);
661   }
662   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
663     CGF.EmitCXXDeleteExpr(E);
664     return nullptr;
665   }
666 
667   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
668     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
669   }
670 
671   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
672     return Builder.getInt1(E->isSatisfied());
673   }
674 
675   Value *VisitRequiresExpr(const RequiresExpr *E) {
676     return Builder.getInt1(E->isSatisfied());
677   }
678 
679   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
680     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
681   }
682 
683   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
684     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
685   }
686 
687   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
688     // C++ [expr.pseudo]p1:
689     //   The result shall only be used as the operand for the function call
690     //   operator (), and the result of such a call has type void. The only
691     //   effect is the evaluation of the postfix-expression before the dot or
692     //   arrow.
693     CGF.EmitScalarExpr(E->getBase());
694     return nullptr;
695   }
696 
697   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
698     return EmitNullValue(E->getType());
699   }
700 
701   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
702     CGF.EmitCXXThrowExpr(E);
703     return nullptr;
704   }
705 
706   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
707     return Builder.getInt1(E->getValue());
708   }
709 
710   // Binary Operators.
711   Value *EmitMul(const BinOpInfo &Ops) {
712     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
713       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
714       case LangOptions::SOB_Defined:
715         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
716       case LangOptions::SOB_Undefined:
717         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
718           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
719         LLVM_FALLTHROUGH;
720       case LangOptions::SOB_Trapping:
721         if (CanElideOverflowCheck(CGF.getContext(), Ops))
722           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
723         return EmitOverflowCheckedBinOp(Ops);
724       }
725     }
726 
727     if (Ops.Ty->isConstantMatrixType()) {
728       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
729       // We need to check the types of the operands of the operator to get the
730       // correct matrix dimensions.
731       auto *BO = cast<BinaryOperator>(Ops.E);
732       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
733           BO->getLHS()->getType().getCanonicalType());
734       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
735           BO->getRHS()->getType().getCanonicalType());
736       if (LHSMatTy && RHSMatTy)
737         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
738                                        LHSMatTy->getNumColumns(),
739                                        RHSMatTy->getNumColumns());
740       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
741     }
742 
743     if (Ops.Ty->isUnsignedIntegerType() &&
744         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
745         !CanElideOverflowCheck(CGF.getContext(), Ops))
746       return EmitOverflowCheckedBinOp(Ops);
747 
748     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
749       //  Preserve the old values
750       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
751       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
752     }
753     if (Ops.isFixedPointOp())
754       return EmitFixedPointBinOp(Ops);
755     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
756   }
757   /// Create a binary op that checks for overflow.
758   /// Currently only supports +, - and *.
759   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
760 
761   // Check for undefined division and modulus behaviors.
762   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
763                                                   llvm::Value *Zero,bool isDiv);
764   // Common helper for getting how wide LHS of shift is.
765   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
766 
767   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
768   // non powers of two.
769   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
770 
771   Value *EmitDiv(const BinOpInfo &Ops);
772   Value *EmitRem(const BinOpInfo &Ops);
773   Value *EmitAdd(const BinOpInfo &Ops);
774   Value *EmitSub(const BinOpInfo &Ops);
775   Value *EmitShl(const BinOpInfo &Ops);
776   Value *EmitShr(const BinOpInfo &Ops);
777   Value *EmitAnd(const BinOpInfo &Ops) {
778     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
779   }
780   Value *EmitXor(const BinOpInfo &Ops) {
781     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
782   }
783   Value *EmitOr (const BinOpInfo &Ops) {
784     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
785   }
786 
787   // Helper functions for fixed point binary operations.
788   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
789 
790   BinOpInfo EmitBinOps(const BinaryOperator *E);
791   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
792                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
793                                   Value *&Result);
794 
795   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
796                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
797 
798   // Binary operators and binary compound assignment operators.
799 #define HANDLEBINOP(OP) \
800   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
801     return Emit ## OP(EmitBinOps(E));                                      \
802   }                                                                        \
803   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
804     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
805   }
806   HANDLEBINOP(Mul)
807   HANDLEBINOP(Div)
808   HANDLEBINOP(Rem)
809   HANDLEBINOP(Add)
810   HANDLEBINOP(Sub)
811   HANDLEBINOP(Shl)
812   HANDLEBINOP(Shr)
813   HANDLEBINOP(And)
814   HANDLEBINOP(Xor)
815   HANDLEBINOP(Or)
816 #undef HANDLEBINOP
817 
818   // Comparisons.
819   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
820                      llvm::CmpInst::Predicate SICmpOpc,
821                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
822 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
823     Value *VisitBin##CODE(const BinaryOperator *E) { \
824       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
825                          llvm::FCmpInst::FP, SIG); }
826   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
827   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
828   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
829   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
830   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
831   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
832 #undef VISITCOMP
833 
834   Value *VisitBinAssign     (const BinaryOperator *E);
835 
836   Value *VisitBinLAnd       (const BinaryOperator *E);
837   Value *VisitBinLOr        (const BinaryOperator *E);
838   Value *VisitBinComma      (const BinaryOperator *E);
839 
840   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
841   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
842 
843   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
844     return Visit(E->getSemanticForm());
845   }
846 
847   // Other Operators.
848   Value *VisitBlockExpr(const BlockExpr *BE);
849   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
850   Value *VisitChooseExpr(ChooseExpr *CE);
851   Value *VisitVAArgExpr(VAArgExpr *VE);
852   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
853     return CGF.EmitObjCStringLiteral(E);
854   }
855   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
856     return CGF.EmitObjCBoxedExpr(E);
857   }
858   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
859     return CGF.EmitObjCArrayLiteral(E);
860   }
861   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
862     return CGF.EmitObjCDictionaryLiteral(E);
863   }
864   Value *VisitAsTypeExpr(AsTypeExpr *CE);
865   Value *VisitAtomicExpr(AtomicExpr *AE);
866 };
867 }  // end anonymous namespace.
868 
869 //===----------------------------------------------------------------------===//
870 //                                Utilities
871 //===----------------------------------------------------------------------===//
872 
873 /// EmitConversionToBool - Convert the specified expression value to a
874 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
875 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
876   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
877 
878   if (SrcType->isRealFloatingType())
879     return EmitFloatToBoolConversion(Src);
880 
881   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
882     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
883 
884   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
885          "Unknown scalar type to convert");
886 
887   if (isa<llvm::IntegerType>(Src->getType()))
888     return EmitIntToBoolConversion(Src);
889 
890   assert(isa<llvm::PointerType>(Src->getType()));
891   return EmitPointerToBoolConversion(Src, SrcType);
892 }
893 
894 void ScalarExprEmitter::EmitFloatConversionCheck(
895     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
896     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
897   assert(SrcType->isFloatingType() && "not a conversion from floating point");
898   if (!isa<llvm::IntegerType>(DstTy))
899     return;
900 
901   CodeGenFunction::SanitizerScope SanScope(&CGF);
902   using llvm::APFloat;
903   using llvm::APSInt;
904 
905   llvm::Value *Check = nullptr;
906   const llvm::fltSemantics &SrcSema =
907     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
908 
909   // Floating-point to integer. This has undefined behavior if the source is
910   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
911   // to an integer).
912   unsigned Width = CGF.getContext().getIntWidth(DstType);
913   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
914 
915   APSInt Min = APSInt::getMinValue(Width, Unsigned);
916   APFloat MinSrc(SrcSema, APFloat::uninitialized);
917   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
918       APFloat::opOverflow)
919     // Don't need an overflow check for lower bound. Just check for
920     // -Inf/NaN.
921     MinSrc = APFloat::getInf(SrcSema, true);
922   else
923     // Find the largest value which is too small to represent (before
924     // truncation toward zero).
925     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
926 
927   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
928   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
929   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
930       APFloat::opOverflow)
931     // Don't need an overflow check for upper bound. Just check for
932     // +Inf/NaN.
933     MaxSrc = APFloat::getInf(SrcSema, false);
934   else
935     // Find the smallest value which is too large to represent (before
936     // truncation toward zero).
937     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
938 
939   // If we're converting from __half, convert the range to float to match
940   // the type of src.
941   if (OrigSrcType->isHalfType()) {
942     const llvm::fltSemantics &Sema =
943       CGF.getContext().getFloatTypeSemantics(SrcType);
944     bool IsInexact;
945     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
946     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
947   }
948 
949   llvm::Value *GE =
950     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
951   llvm::Value *LE =
952     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
953   Check = Builder.CreateAnd(GE, LE);
954 
955   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
956                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
957                                   CGF.EmitCheckTypeDescriptor(DstType)};
958   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
959                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
960 }
961 
962 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
963 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
964 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
965                  std::pair<llvm::Value *, SanitizerMask>>
966 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
967                                  QualType DstType, CGBuilderTy &Builder) {
968   llvm::Type *SrcTy = Src->getType();
969   llvm::Type *DstTy = Dst->getType();
970   (void)DstTy; // Only used in assert()
971 
972   // This should be truncation of integral types.
973   assert(Src != Dst);
974   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
975   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
976          "non-integer llvm type");
977 
978   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
979   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
980 
981   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
982   // Else, it is a signed truncation.
983   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
984   SanitizerMask Mask;
985   if (!SrcSigned && !DstSigned) {
986     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
987     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
988   } else {
989     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
990     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
991   }
992 
993   llvm::Value *Check = nullptr;
994   // 1. Extend the truncated value back to the same width as the Src.
995   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
996   // 2. Equality-compare with the original source value
997   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
998   // If the comparison result is 'i1 false', then the truncation was lossy.
999   return std::make_pair(Kind, std::make_pair(Check, Mask));
1000 }
1001 
1002 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1003     QualType SrcType, QualType DstType) {
1004   return SrcType->isIntegerType() && DstType->isIntegerType();
1005 }
1006 
1007 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1008                                                    Value *Dst, QualType DstType,
1009                                                    SourceLocation Loc) {
1010   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1011     return;
1012 
1013   // We only care about int->int conversions here.
1014   // We ignore conversions to/from pointer and/or bool.
1015   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1016                                                                        DstType))
1017     return;
1018 
1019   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1020   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1021   // This must be truncation. Else we do not care.
1022   if (SrcBits <= DstBits)
1023     return;
1024 
1025   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1026 
1027   // If the integer sign change sanitizer is enabled,
1028   // and we are truncating from larger unsigned type to smaller signed type,
1029   // let that next sanitizer deal with it.
1030   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1031   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1032   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1033       (!SrcSigned && DstSigned))
1034     return;
1035 
1036   CodeGenFunction::SanitizerScope SanScope(&CGF);
1037 
1038   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1039             std::pair<llvm::Value *, SanitizerMask>>
1040       Check =
1041           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1042   // If the comparison result is 'i1 false', then the truncation was lossy.
1043 
1044   // Do we care about this type of truncation?
1045   if (!CGF.SanOpts.has(Check.second.second))
1046     return;
1047 
1048   llvm::Constant *StaticArgs[] = {
1049       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1050       CGF.EmitCheckTypeDescriptor(DstType),
1051       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1052   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1053                 {Src, Dst});
1054 }
1055 
1056 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1057 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1058 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1059                  std::pair<llvm::Value *, SanitizerMask>>
1060 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1061                                  QualType DstType, CGBuilderTy &Builder) {
1062   llvm::Type *SrcTy = Src->getType();
1063   llvm::Type *DstTy = Dst->getType();
1064 
1065   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1066          "non-integer llvm type");
1067 
1068   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1069   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1070   (void)SrcSigned; // Only used in assert()
1071   (void)DstSigned; // Only used in assert()
1072   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1073   unsigned DstBits = DstTy->getScalarSizeInBits();
1074   (void)SrcBits; // Only used in assert()
1075   (void)DstBits; // Only used in assert()
1076 
1077   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1078          "either the widths should be different, or the signednesses.");
1079 
1080   // NOTE: zero value is considered to be non-negative.
1081   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1082                                        const char *Name) -> Value * {
1083     // Is this value a signed type?
1084     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1085     llvm::Type *VTy = V->getType();
1086     if (!VSigned) {
1087       // If the value is unsigned, then it is never negative.
1088       // FIXME: can we encounter non-scalar VTy here?
1089       return llvm::ConstantInt::getFalse(VTy->getContext());
1090     }
1091     // Get the zero of the same type with which we will be comparing.
1092     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1093     // %V.isnegative = icmp slt %V, 0
1094     // I.e is %V *strictly* less than zero, does it have negative value?
1095     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1096                               llvm::Twine(Name) + "." + V->getName() +
1097                                   ".negativitycheck");
1098   };
1099 
1100   // 1. Was the old Value negative?
1101   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1102   // 2. Is the new Value negative?
1103   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1104   // 3. Now, was the 'negativity status' preserved during the conversion?
1105   //    NOTE: conversion from negative to zero is considered to change the sign.
1106   //    (We want to get 'false' when the conversion changed the sign)
1107   //    So we should just equality-compare the negativity statuses.
1108   llvm::Value *Check = nullptr;
1109   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1110   // If the comparison result is 'false', then the conversion changed the sign.
1111   return std::make_pair(
1112       ScalarExprEmitter::ICCK_IntegerSignChange,
1113       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1114 }
1115 
1116 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1117                                                    Value *Dst, QualType DstType,
1118                                                    SourceLocation Loc) {
1119   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1120     return;
1121 
1122   llvm::Type *SrcTy = Src->getType();
1123   llvm::Type *DstTy = Dst->getType();
1124 
1125   // We only care about int->int conversions here.
1126   // We ignore conversions to/from pointer and/or bool.
1127   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1128                                                                        DstType))
1129     return;
1130 
1131   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1132   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1133   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1134   unsigned DstBits = DstTy->getScalarSizeInBits();
1135 
1136   // Now, we do not need to emit the check in *all* of the cases.
1137   // We can avoid emitting it in some obvious cases where it would have been
1138   // dropped by the opt passes (instcombine) always anyways.
1139   // If it's a cast between effectively the same type, no check.
1140   // NOTE: this is *not* equivalent to checking the canonical types.
1141   if (SrcSigned == DstSigned && SrcBits == DstBits)
1142     return;
1143   // At least one of the values needs to have signed type.
1144   // If both are unsigned, then obviously, neither of them can be negative.
1145   if (!SrcSigned && !DstSigned)
1146     return;
1147   // If the conversion is to *larger* *signed* type, then no check is needed.
1148   // Because either sign-extension happens (so the sign will remain),
1149   // or zero-extension will happen (the sign bit will be zero.)
1150   if ((DstBits > SrcBits) && DstSigned)
1151     return;
1152   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1153       (SrcBits > DstBits) && SrcSigned) {
1154     // If the signed integer truncation sanitizer is enabled,
1155     // and this is a truncation from signed type, then no check is needed.
1156     // Because here sign change check is interchangeable with truncation check.
1157     return;
1158   }
1159   // That's it. We can't rule out any more cases with the data we have.
1160 
1161   CodeGenFunction::SanitizerScope SanScope(&CGF);
1162 
1163   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1164             std::pair<llvm::Value *, SanitizerMask>>
1165       Check;
1166 
1167   // Each of these checks needs to return 'false' when an issue was detected.
1168   ImplicitConversionCheckKind CheckKind;
1169   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1170   // So we can 'and' all the checks together, and still get 'false',
1171   // if at least one of the checks detected an issue.
1172 
1173   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1174   CheckKind = Check.first;
1175   Checks.emplace_back(Check.second);
1176 
1177   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1178       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1179     // If the signed integer truncation sanitizer was enabled,
1180     // and we are truncating from larger unsigned type to smaller signed type,
1181     // let's handle the case we skipped in that check.
1182     Check =
1183         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1184     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1185     Checks.emplace_back(Check.second);
1186     // If the comparison result is 'i1 false', then the truncation was lossy.
1187   }
1188 
1189   llvm::Constant *StaticArgs[] = {
1190       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1191       CGF.EmitCheckTypeDescriptor(DstType),
1192       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1193   // EmitCheck() will 'and' all the checks together.
1194   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1195                 {Src, Dst});
1196 }
1197 
1198 /// Emit a conversion from the specified type to the specified destination type,
1199 /// both of which are LLVM scalar types.
1200 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1201                                                QualType DstType,
1202                                                SourceLocation Loc,
1203                                                ScalarConversionOpts Opts) {
1204   // All conversions involving fixed point types should be handled by the
1205   // EmitFixedPoint family functions. This is done to prevent bloating up this
1206   // function more, and although fixed point numbers are represented by
1207   // integers, we do not want to follow any logic that assumes they should be
1208   // treated as integers.
1209   // TODO(leonardchan): When necessary, add another if statement checking for
1210   // conversions to fixed point types from other types.
1211   if (SrcType->isFixedPointType()) {
1212     if (DstType->isBooleanType())
1213       // It is important that we check this before checking if the dest type is
1214       // an integer because booleans are technically integer types.
1215       // We do not need to check the padding bit on unsigned types if unsigned
1216       // padding is enabled because overflow into this bit is undefined
1217       // behavior.
1218       return Builder.CreateIsNotNull(Src, "tobool");
1219     if (DstType->isFixedPointType() || DstType->isIntegerType())
1220       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1221 
1222     llvm_unreachable(
1223         "Unhandled scalar conversion from a fixed point type to another type.");
1224   } else if (DstType->isFixedPointType()) {
1225     if (SrcType->isIntegerType())
1226       // This also includes converting booleans and enums to fixed point types.
1227       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1228 
1229     llvm_unreachable(
1230         "Unhandled scalar conversion to a fixed point type from another type.");
1231   }
1232 
1233   QualType NoncanonicalSrcType = SrcType;
1234   QualType NoncanonicalDstType = DstType;
1235 
1236   SrcType = CGF.getContext().getCanonicalType(SrcType);
1237   DstType = CGF.getContext().getCanonicalType(DstType);
1238   if (SrcType == DstType) return Src;
1239 
1240   if (DstType->isVoidType()) return nullptr;
1241 
1242   llvm::Value *OrigSrc = Src;
1243   QualType OrigSrcType = SrcType;
1244   llvm::Type *SrcTy = Src->getType();
1245 
1246   // Handle conversions to bool first, they are special: comparisons against 0.
1247   if (DstType->isBooleanType())
1248     return EmitConversionToBool(Src, SrcType);
1249 
1250   llvm::Type *DstTy = ConvertType(DstType);
1251 
1252   // Cast from half through float if half isn't a native type.
1253   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1254     // Cast to FP using the intrinsic if the half type itself isn't supported.
1255     if (DstTy->isFloatingPointTy()) {
1256       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1257         return Builder.CreateCall(
1258             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1259             Src);
1260     } else {
1261       // Cast to other types through float, using either the intrinsic or FPExt,
1262       // depending on whether the half type itself is supported
1263       // (as opposed to operations on half, available with NativeHalfType).
1264       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1265         Src = Builder.CreateCall(
1266             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1267                                  CGF.CGM.FloatTy),
1268             Src);
1269       } else {
1270         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1271       }
1272       SrcType = CGF.getContext().FloatTy;
1273       SrcTy = CGF.FloatTy;
1274     }
1275   }
1276 
1277   // Ignore conversions like int -> uint.
1278   if (SrcTy == DstTy) {
1279     if (Opts.EmitImplicitIntegerSignChangeChecks)
1280       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1281                                  NoncanonicalDstType, Loc);
1282 
1283     return Src;
1284   }
1285 
1286   // Handle pointer conversions next: pointers can only be converted to/from
1287   // other pointers and integers. Check for pointer types in terms of LLVM, as
1288   // some native types (like Obj-C id) may map to a pointer type.
1289   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1290     // The source value may be an integer, or a pointer.
1291     if (isa<llvm::PointerType>(SrcTy))
1292       return Builder.CreateBitCast(Src, DstTy, "conv");
1293 
1294     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1295     // First, convert to the correct width so that we control the kind of
1296     // extension.
1297     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1298     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1299     llvm::Value* IntResult =
1300         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1301     // Then, cast to pointer.
1302     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1303   }
1304 
1305   if (isa<llvm::PointerType>(SrcTy)) {
1306     // Must be an ptr to int cast.
1307     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1308     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1309   }
1310 
1311   // A scalar can be splatted to an extended vector of the same element type
1312   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1313     // Sema should add casts to make sure that the source expression's type is
1314     // the same as the vector's element type (sans qualifiers)
1315     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1316                SrcType.getTypePtr() &&
1317            "Splatted expr doesn't match with vector element type?");
1318 
1319     // Splat the element across to all elements
1320     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1321     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1322   }
1323 
1324   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1325     // Allow bitcast from vector to integer/fp of the same size.
1326     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1327     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1328     if (SrcSize == DstSize)
1329       return Builder.CreateBitCast(Src, DstTy, "conv");
1330 
1331     // Conversions between vectors of different sizes are not allowed except
1332     // when vectors of half are involved. Operations on storage-only half
1333     // vectors require promoting half vector operands to float vectors and
1334     // truncating the result, which is either an int or float vector, to a
1335     // short or half vector.
1336 
1337     // Source and destination are both expected to be vectors.
1338     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1339     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1340     (void)DstElementTy;
1341 
1342     assert(((SrcElementTy->isIntegerTy() &&
1343              DstElementTy->isIntegerTy()) ||
1344             (SrcElementTy->isFloatingPointTy() &&
1345              DstElementTy->isFloatingPointTy())) &&
1346            "unexpected conversion between a floating-point vector and an "
1347            "integer vector");
1348 
1349     // Truncate an i32 vector to an i16 vector.
1350     if (SrcElementTy->isIntegerTy())
1351       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1352 
1353     // Truncate a float vector to a half vector.
1354     if (SrcSize > DstSize)
1355       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1356 
1357     // Promote a half vector to a float vector.
1358     return Builder.CreateFPExt(Src, DstTy, "conv");
1359   }
1360 
1361   // Finally, we have the arithmetic types: real int/float.
1362   Value *Res = nullptr;
1363   llvm::Type *ResTy = DstTy;
1364 
1365   // An overflowing conversion has undefined behavior if either the source type
1366   // or the destination type is a floating-point type. However, we consider the
1367   // range of representable values for all floating-point types to be
1368   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1369   // floating-point type.
1370   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1371       OrigSrcType->isFloatingType())
1372     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1373                              Loc);
1374 
1375   // Cast to half through float if half isn't a native type.
1376   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1377     // Make sure we cast in a single step if from another FP type.
1378     if (SrcTy->isFloatingPointTy()) {
1379       // Use the intrinsic if the half type itself isn't supported
1380       // (as opposed to operations on half, available with NativeHalfType).
1381       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1382         return Builder.CreateCall(
1383             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1384       // If the half type is supported, just use an fptrunc.
1385       return Builder.CreateFPTrunc(Src, DstTy);
1386     }
1387     DstTy = CGF.FloatTy;
1388   }
1389 
1390   if (isa<llvm::IntegerType>(SrcTy)) {
1391     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1392     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1393       InputSigned = true;
1394     }
1395     if (isa<llvm::IntegerType>(DstTy))
1396       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1397     else if (InputSigned)
1398       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1399     else
1400       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1401   } else if (isa<llvm::IntegerType>(DstTy)) {
1402     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1403     if (DstType->isSignedIntegerOrEnumerationType())
1404       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1405     else
1406       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1407   } else {
1408     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1409            "Unknown real conversion");
1410     if (DstTy->getTypeID() < SrcTy->getTypeID())
1411       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1412     else
1413       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1414   }
1415 
1416   if (DstTy != ResTy) {
1417     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1418       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1419       Res = Builder.CreateCall(
1420         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1421         Res);
1422     } else {
1423       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1424     }
1425   }
1426 
1427   if (Opts.EmitImplicitIntegerTruncationChecks)
1428     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1429                                NoncanonicalDstType, Loc);
1430 
1431   if (Opts.EmitImplicitIntegerSignChangeChecks)
1432     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1433                                NoncanonicalDstType, Loc);
1434 
1435   return Res;
1436 }
1437 
1438 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1439                                                    QualType DstTy,
1440                                                    SourceLocation Loc) {
1441   FixedPointSemantics SrcFPSema =
1442       CGF.getContext().getFixedPointSemantics(SrcTy);
1443   FixedPointSemantics DstFPSema =
1444       CGF.getContext().getFixedPointSemantics(DstTy);
1445   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1446                                   DstTy->isIntegerType());
1447 }
1448 
1449 Value *ScalarExprEmitter::EmitFixedPointConversion(
1450     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1451     SourceLocation Loc, bool DstIsInteger) {
1452   using llvm::APInt;
1453   using llvm::ConstantInt;
1454   using llvm::Value;
1455 
1456   unsigned SrcWidth = SrcFPSema.getWidth();
1457   unsigned DstWidth = DstFPSema.getWidth();
1458   unsigned SrcScale = SrcFPSema.getScale();
1459   unsigned DstScale = DstFPSema.getScale();
1460   bool SrcIsSigned = SrcFPSema.isSigned();
1461   bool DstIsSigned = DstFPSema.isSigned();
1462 
1463   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1464 
1465   Value *Result = Src;
1466   unsigned ResultWidth = SrcWidth;
1467 
1468   // Downscale.
1469   if (DstScale < SrcScale) {
1470     // When converting to integers, we round towards zero. For negative numbers,
1471     // right shifting rounds towards negative infinity. In this case, we can
1472     // just round up before shifting.
1473     if (DstIsInteger && SrcIsSigned) {
1474       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1475       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1476       Value *LowBits = ConstantInt::get(
1477           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1478       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1479       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1480     }
1481 
1482     Result = SrcIsSigned
1483                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1484                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1485   }
1486 
1487   if (!DstFPSema.isSaturated()) {
1488     // Resize.
1489     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1490 
1491     // Upscale.
1492     if (DstScale > SrcScale)
1493       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1494   } else {
1495     // Adjust the number of fractional bits.
1496     if (DstScale > SrcScale) {
1497       // Compare to DstWidth to prevent resizing twice.
1498       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1499       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1500       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1501       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1502     }
1503 
1504     // Handle saturation.
1505     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1506     if (LessIntBits) {
1507       Value *Max = ConstantInt::get(
1508           CGF.getLLVMContext(),
1509           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1510       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1511                                    : Builder.CreateICmpUGT(Result, Max);
1512       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1513     }
1514     // Cannot overflow min to dest type if src is unsigned since all fixed
1515     // point types can cover the unsigned min of 0.
1516     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1517       Value *Min = ConstantInt::get(
1518           CGF.getLLVMContext(),
1519           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1520       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1521       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1522     }
1523 
1524     // Resize the integer part to get the final destination size.
1525     if (ResultWidth != DstWidth)
1526       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1527   }
1528   return Result;
1529 }
1530 
1531 /// Emit a conversion from the specified complex type to the specified
1532 /// destination type, where the destination type is an LLVM scalar type.
1533 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1534     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1535     SourceLocation Loc) {
1536   // Get the source element type.
1537   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1538 
1539   // Handle conversions to bool first, they are special: comparisons against 0.
1540   if (DstTy->isBooleanType()) {
1541     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1542     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1543     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1544     return Builder.CreateOr(Src.first, Src.second, "tobool");
1545   }
1546 
1547   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1548   // the imaginary part of the complex value is discarded and the value of the
1549   // real part is converted according to the conversion rules for the
1550   // corresponding real type.
1551   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1552 }
1553 
1554 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1555   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1556 }
1557 
1558 /// Emit a sanitization check for the given "binary" operation (which
1559 /// might actually be a unary increment which has been lowered to a binary
1560 /// operation). The check passes if all values in \p Checks (which are \c i1),
1561 /// are \c true.
1562 void ScalarExprEmitter::EmitBinOpCheck(
1563     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1564   assert(CGF.IsSanitizerScope);
1565   SanitizerHandler Check;
1566   SmallVector<llvm::Constant *, 4> StaticData;
1567   SmallVector<llvm::Value *, 2> DynamicData;
1568 
1569   BinaryOperatorKind Opcode = Info.Opcode;
1570   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1571     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1572 
1573   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1574   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1575   if (UO && UO->getOpcode() == UO_Minus) {
1576     Check = SanitizerHandler::NegateOverflow;
1577     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1578     DynamicData.push_back(Info.RHS);
1579   } else {
1580     if (BinaryOperator::isShiftOp(Opcode)) {
1581       // Shift LHS negative or too large, or RHS out of bounds.
1582       Check = SanitizerHandler::ShiftOutOfBounds;
1583       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1584       StaticData.push_back(
1585         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1586       StaticData.push_back(
1587         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1588     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1589       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1590       Check = SanitizerHandler::DivremOverflow;
1591       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1592     } else {
1593       // Arithmetic overflow (+, -, *).
1594       switch (Opcode) {
1595       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1596       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1597       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1598       default: llvm_unreachable("unexpected opcode for bin op check");
1599       }
1600       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1601     }
1602     DynamicData.push_back(Info.LHS);
1603     DynamicData.push_back(Info.RHS);
1604   }
1605 
1606   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1607 }
1608 
1609 //===----------------------------------------------------------------------===//
1610 //                            Visitor Methods
1611 //===----------------------------------------------------------------------===//
1612 
1613 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1614   CGF.ErrorUnsupported(E, "scalar expression");
1615   if (E->getType()->isVoidType())
1616     return nullptr;
1617   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1618 }
1619 
1620 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1621   // Vector Mask Case
1622   if (E->getNumSubExprs() == 2) {
1623     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1624     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1625     Value *Mask;
1626 
1627     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1628     unsigned LHSElts = LTy->getNumElements();
1629 
1630     Mask = RHS;
1631 
1632     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1633 
1634     // Mask off the high bits of each shuffle index.
1635     Value *MaskBits =
1636         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1637     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1638 
1639     // newv = undef
1640     // mask = mask & maskbits
1641     // for each elt
1642     //   n = extract mask i
1643     //   x = extract val n
1644     //   newv = insert newv, x, i
1645     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1646                                            MTy->getNumElements());
1647     Value* NewV = llvm::UndefValue::get(RTy);
1648     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1649       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1650       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1651 
1652       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1653       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1654     }
1655     return NewV;
1656   }
1657 
1658   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1659   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1660 
1661   SmallVector<int, 32> Indices;
1662   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1663     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1664     // Check for -1 and output it as undef in the IR.
1665     if (Idx.isSigned() && Idx.isAllOnesValue())
1666       Indices.push_back(-1);
1667     else
1668       Indices.push_back(Idx.getZExtValue());
1669   }
1670 
1671   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1672 }
1673 
1674 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1675   QualType SrcType = E->getSrcExpr()->getType(),
1676            DstType = E->getType();
1677 
1678   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1679 
1680   SrcType = CGF.getContext().getCanonicalType(SrcType);
1681   DstType = CGF.getContext().getCanonicalType(DstType);
1682   if (SrcType == DstType) return Src;
1683 
1684   assert(SrcType->isVectorType() &&
1685          "ConvertVector source type must be a vector");
1686   assert(DstType->isVectorType() &&
1687          "ConvertVector destination type must be a vector");
1688 
1689   llvm::Type *SrcTy = Src->getType();
1690   llvm::Type *DstTy = ConvertType(DstType);
1691 
1692   // Ignore conversions like int -> uint.
1693   if (SrcTy == DstTy)
1694     return Src;
1695 
1696   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1697            DstEltType = DstType->castAs<VectorType>()->getElementType();
1698 
1699   assert(SrcTy->isVectorTy() &&
1700          "ConvertVector source IR type must be a vector");
1701   assert(DstTy->isVectorTy() &&
1702          "ConvertVector destination IR type must be a vector");
1703 
1704   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1705              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1706 
1707   if (DstEltType->isBooleanType()) {
1708     assert((SrcEltTy->isFloatingPointTy() ||
1709             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1710 
1711     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1712     if (SrcEltTy->isFloatingPointTy()) {
1713       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1714     } else {
1715       return Builder.CreateICmpNE(Src, Zero, "tobool");
1716     }
1717   }
1718 
1719   // We have the arithmetic types: real int/float.
1720   Value *Res = nullptr;
1721 
1722   if (isa<llvm::IntegerType>(SrcEltTy)) {
1723     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1724     if (isa<llvm::IntegerType>(DstEltTy))
1725       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1726     else if (InputSigned)
1727       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1728     else
1729       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1730   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1731     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1732     if (DstEltType->isSignedIntegerOrEnumerationType())
1733       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1734     else
1735       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1736   } else {
1737     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1738            "Unknown real conversion");
1739     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1740       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1741     else
1742       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1743   }
1744 
1745   return Res;
1746 }
1747 
1748 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1749   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1750     CGF.EmitIgnoredExpr(E->getBase());
1751     return CGF.emitScalarConstant(Constant, E);
1752   } else {
1753     Expr::EvalResult Result;
1754     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1755       llvm::APSInt Value = Result.Val.getInt();
1756       CGF.EmitIgnoredExpr(E->getBase());
1757       return Builder.getInt(Value);
1758     }
1759   }
1760 
1761   return EmitLoadOfLValue(E);
1762 }
1763 
1764 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1765   TestAndClearIgnoreResultAssign();
1766 
1767   // Emit subscript expressions in rvalue context's.  For most cases, this just
1768   // loads the lvalue formed by the subscript expr.  However, we have to be
1769   // careful, because the base of a vector subscript is occasionally an rvalue,
1770   // so we can't get it as an lvalue.
1771   if (!E->getBase()->getType()->isVectorType())
1772     return EmitLoadOfLValue(E);
1773 
1774   // Handle the vector case.  The base must be a vector, the index must be an
1775   // integer value.
1776   Value *Base = Visit(E->getBase());
1777   Value *Idx  = Visit(E->getIdx());
1778   QualType IdxTy = E->getIdx()->getType();
1779 
1780   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1781     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1782 
1783   return Builder.CreateExtractElement(Base, Idx, "vecext");
1784 }
1785 
1786 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1787   TestAndClearIgnoreResultAssign();
1788 
1789   // Handle the vector case.  The base must be a vector, the index must be an
1790   // integer value.
1791   Value *RowIdx = Visit(E->getRowIdx());
1792   Value *ColumnIdx = Visit(E->getColumnIdx());
1793   Value *Matrix = Visit(E->getBase());
1794 
1795   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1796   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1797   return MB.CreateExtractElement(
1798       Matrix, RowIdx, ColumnIdx,
1799       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
1800 }
1801 
1802 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1803                       unsigned Off) {
1804   int MV = SVI->getMaskValue(Idx);
1805   if (MV == -1)
1806     return -1;
1807   return Off + MV;
1808 }
1809 
1810 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1811   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1812          "Index operand too large for shufflevector mask!");
1813   return C->getZExtValue();
1814 }
1815 
1816 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1817   bool Ignore = TestAndClearIgnoreResultAssign();
1818   (void)Ignore;
1819   assert (Ignore == false && "init list ignored");
1820   unsigned NumInitElements = E->getNumInits();
1821 
1822   if (E->hadArrayRangeDesignator())
1823     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1824 
1825   llvm::VectorType *VType =
1826     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1827 
1828   if (!VType) {
1829     if (NumInitElements == 0) {
1830       // C++11 value-initialization for the scalar.
1831       return EmitNullValue(E->getType());
1832     }
1833     // We have a scalar in braces. Just use the first element.
1834     return Visit(E->getInit(0));
1835   }
1836 
1837   unsigned ResElts = VType->getNumElements();
1838 
1839   // Loop over initializers collecting the Value for each, and remembering
1840   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1841   // us to fold the shuffle for the swizzle into the shuffle for the vector
1842   // initializer, since LLVM optimizers generally do not want to touch
1843   // shuffles.
1844   unsigned CurIdx = 0;
1845   bool VIsUndefShuffle = false;
1846   llvm::Value *V = llvm::UndefValue::get(VType);
1847   for (unsigned i = 0; i != NumInitElements; ++i) {
1848     Expr *IE = E->getInit(i);
1849     Value *Init = Visit(IE);
1850     SmallVector<int, 16> Args;
1851 
1852     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1853 
1854     // Handle scalar elements.  If the scalar initializer is actually one
1855     // element of a different vector of the same width, use shuffle instead of
1856     // extract+insert.
1857     if (!VVT) {
1858       if (isa<ExtVectorElementExpr>(IE)) {
1859         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1860 
1861         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1862           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1863           Value *LHS = nullptr, *RHS = nullptr;
1864           if (CurIdx == 0) {
1865             // insert into undef -> shuffle (src, undef)
1866             // shufflemask must use an i32
1867             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1868             Args.resize(ResElts, -1);
1869 
1870             LHS = EI->getVectorOperand();
1871             RHS = V;
1872             VIsUndefShuffle = true;
1873           } else if (VIsUndefShuffle) {
1874             // insert into undefshuffle && size match -> shuffle (v, src)
1875             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1876             for (unsigned j = 0; j != CurIdx; ++j)
1877               Args.push_back(getMaskElt(SVV, j, 0));
1878             Args.push_back(ResElts + C->getZExtValue());
1879             Args.resize(ResElts, -1);
1880 
1881             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1882             RHS = EI->getVectorOperand();
1883             VIsUndefShuffle = false;
1884           }
1885           if (!Args.empty()) {
1886             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1887             ++CurIdx;
1888             continue;
1889           }
1890         }
1891       }
1892       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1893                                       "vecinit");
1894       VIsUndefShuffle = false;
1895       ++CurIdx;
1896       continue;
1897     }
1898 
1899     unsigned InitElts = VVT->getNumElements();
1900 
1901     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1902     // input is the same width as the vector being constructed, generate an
1903     // optimized shuffle of the swizzle input into the result.
1904     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1905     if (isa<ExtVectorElementExpr>(IE)) {
1906       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1907       Value *SVOp = SVI->getOperand(0);
1908       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1909 
1910       if (OpTy->getNumElements() == ResElts) {
1911         for (unsigned j = 0; j != CurIdx; ++j) {
1912           // If the current vector initializer is a shuffle with undef, merge
1913           // this shuffle directly into it.
1914           if (VIsUndefShuffle) {
1915             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1916           } else {
1917             Args.push_back(j);
1918           }
1919         }
1920         for (unsigned j = 0, je = InitElts; j != je; ++j)
1921           Args.push_back(getMaskElt(SVI, j, Offset));
1922         Args.resize(ResElts, -1);
1923 
1924         if (VIsUndefShuffle)
1925           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1926 
1927         Init = SVOp;
1928       }
1929     }
1930 
1931     // Extend init to result vector length, and then shuffle its contribution
1932     // to the vector initializer into V.
1933     if (Args.empty()) {
1934       for (unsigned j = 0; j != InitElts; ++j)
1935         Args.push_back(j);
1936       Args.resize(ResElts, -1);
1937       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args,
1938                                          "vext");
1939 
1940       Args.clear();
1941       for (unsigned j = 0; j != CurIdx; ++j)
1942         Args.push_back(j);
1943       for (unsigned j = 0; j != InitElts; ++j)
1944         Args.push_back(j + Offset);
1945       Args.resize(ResElts, -1);
1946     }
1947 
1948     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1949     // merging subsequent shuffles into this one.
1950     if (CurIdx == 0)
1951       std::swap(V, Init);
1952     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1953     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1954     CurIdx += InitElts;
1955   }
1956 
1957   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1958   // Emit remaining default initializers.
1959   llvm::Type *EltTy = VType->getElementType();
1960 
1961   // Emit remaining default initializers
1962   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1963     Value *Idx = Builder.getInt32(CurIdx);
1964     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1965     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1966   }
1967   return V;
1968 }
1969 
1970 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1971   const Expr *E = CE->getSubExpr();
1972 
1973   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1974     return false;
1975 
1976   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1977     // We always assume that 'this' is never null.
1978     return false;
1979   }
1980 
1981   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1982     // And that glvalue casts are never null.
1983     if (ICE->getValueKind() != VK_RValue)
1984       return false;
1985   }
1986 
1987   return true;
1988 }
1989 
1990 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1991 // have to handle a more broad range of conversions than explicit casts, as they
1992 // handle things like function to ptr-to-function decay etc.
1993 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1994   Expr *E = CE->getSubExpr();
1995   QualType DestTy = CE->getType();
1996   CastKind Kind = CE->getCastKind();
1997 
1998   // These cases are generally not written to ignore the result of
1999   // evaluating their sub-expressions, so we clear this now.
2000   bool Ignored = TestAndClearIgnoreResultAssign();
2001 
2002   // Since almost all cast kinds apply to scalars, this switch doesn't have
2003   // a default case, so the compiler will warn on a missing case.  The cases
2004   // are in the same order as in the CastKind enum.
2005   switch (Kind) {
2006   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2007   case CK_BuiltinFnToFnPtr:
2008     llvm_unreachable("builtin functions are handled elsewhere");
2009 
2010   case CK_LValueBitCast:
2011   case CK_ObjCObjectLValueCast: {
2012     Address Addr = EmitLValue(E).getAddress(CGF);
2013     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2014     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2015     return EmitLoadOfLValue(LV, CE->getExprLoc());
2016   }
2017 
2018   case CK_LValueToRValueBitCast: {
2019     LValue SourceLVal = CGF.EmitLValue(E);
2020     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2021                                                 CGF.ConvertTypeForMem(DestTy));
2022     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2023     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2024     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2025   }
2026 
2027   case CK_CPointerToObjCPointerCast:
2028   case CK_BlockPointerToObjCPointerCast:
2029   case CK_AnyPointerToBlockPointerCast:
2030   case CK_BitCast: {
2031     Value *Src = Visit(const_cast<Expr*>(E));
2032     llvm::Type *SrcTy = Src->getType();
2033     llvm::Type *DstTy = ConvertType(DestTy);
2034     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2035         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2036       llvm_unreachable("wrong cast for pointers in different address spaces"
2037                        "(must be an address space cast)!");
2038     }
2039 
2040     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2041       if (auto PT = DestTy->getAs<PointerType>())
2042         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2043                                       /*MayBeNull=*/true,
2044                                       CodeGenFunction::CFITCK_UnrelatedCast,
2045                                       CE->getBeginLoc());
2046     }
2047 
2048     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2049       const QualType SrcType = E->getType();
2050 
2051       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2052         // Casting to pointer that could carry dynamic information (provided by
2053         // invariant.group) requires launder.
2054         Src = Builder.CreateLaunderInvariantGroup(Src);
2055       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2056         // Casting to pointer that does not carry dynamic information (provided
2057         // by invariant.group) requires stripping it.  Note that we don't do it
2058         // if the source could not be dynamic type and destination could be
2059         // dynamic because dynamic information is already laundered.  It is
2060         // because launder(strip(src)) == launder(src), so there is no need to
2061         // add extra strip before launder.
2062         Src = Builder.CreateStripInvariantGroup(Src);
2063       }
2064     }
2065 
2066     // Update heapallocsite metadata when there is an explicit pointer cast.
2067     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2068       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2069         QualType PointeeType = DestTy->getPointeeType();
2070         if (!PointeeType.isNull())
2071           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2072                                                        CE->getExprLoc());
2073       }
2074     }
2075 
2076     return Builder.CreateBitCast(Src, DstTy);
2077   }
2078   case CK_AddressSpaceConversion: {
2079     Expr::EvalResult Result;
2080     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2081         Result.Val.isNullPointer()) {
2082       // If E has side effect, it is emitted even if its final result is a
2083       // null pointer. In that case, a DCE pass should be able to
2084       // eliminate the useless instructions emitted during translating E.
2085       if (Result.HasSideEffects)
2086         Visit(E);
2087       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2088           ConvertType(DestTy)), DestTy);
2089     }
2090     // Since target may map different address spaces in AST to the same address
2091     // space, an address space conversion may end up as a bitcast.
2092     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2093         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2094         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2095   }
2096   case CK_AtomicToNonAtomic:
2097   case CK_NonAtomicToAtomic:
2098   case CK_NoOp:
2099   case CK_UserDefinedConversion:
2100     return Visit(const_cast<Expr*>(E));
2101 
2102   case CK_BaseToDerived: {
2103     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2104     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2105 
2106     Address Base = CGF.EmitPointerWithAlignment(E);
2107     Address Derived =
2108       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2109                                    CE->path_begin(), CE->path_end(),
2110                                    CGF.ShouldNullCheckClassCastValue(CE));
2111 
2112     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2113     // performed and the object is not of the derived type.
2114     if (CGF.sanitizePerformTypeCheck())
2115       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2116                         Derived.getPointer(), DestTy->getPointeeType());
2117 
2118     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2119       CGF.EmitVTablePtrCheckForCast(
2120           DestTy->getPointeeType(), Derived.getPointer(),
2121           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2122           CE->getBeginLoc());
2123 
2124     return Derived.getPointer();
2125   }
2126   case CK_UncheckedDerivedToBase:
2127   case CK_DerivedToBase: {
2128     // The EmitPointerWithAlignment path does this fine; just discard
2129     // the alignment.
2130     return CGF.EmitPointerWithAlignment(CE).getPointer();
2131   }
2132 
2133   case CK_Dynamic: {
2134     Address V = CGF.EmitPointerWithAlignment(E);
2135     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2136     return CGF.EmitDynamicCast(V, DCE);
2137   }
2138 
2139   case CK_ArrayToPointerDecay:
2140     return CGF.EmitArrayToPointerDecay(E).getPointer();
2141   case CK_FunctionToPointerDecay:
2142     return EmitLValue(E).getPointer(CGF);
2143 
2144   case CK_NullToPointer:
2145     if (MustVisitNullValue(E))
2146       CGF.EmitIgnoredExpr(E);
2147 
2148     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2149                               DestTy);
2150 
2151   case CK_NullToMemberPointer: {
2152     if (MustVisitNullValue(E))
2153       CGF.EmitIgnoredExpr(E);
2154 
2155     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2156     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2157   }
2158 
2159   case CK_ReinterpretMemberPointer:
2160   case CK_BaseToDerivedMemberPointer:
2161   case CK_DerivedToBaseMemberPointer: {
2162     Value *Src = Visit(E);
2163 
2164     // Note that the AST doesn't distinguish between checked and
2165     // unchecked member pointer conversions, so we always have to
2166     // implement checked conversions here.  This is inefficient when
2167     // actual control flow may be required in order to perform the
2168     // check, which it is for data member pointers (but not member
2169     // function pointers on Itanium and ARM).
2170     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2171   }
2172 
2173   case CK_ARCProduceObject:
2174     return CGF.EmitARCRetainScalarExpr(E);
2175   case CK_ARCConsumeObject:
2176     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2177   case CK_ARCReclaimReturnedObject:
2178     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2179   case CK_ARCExtendBlockObject:
2180     return CGF.EmitARCExtendBlockObject(E);
2181 
2182   case CK_CopyAndAutoreleaseBlockObject:
2183     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2184 
2185   case CK_FloatingRealToComplex:
2186   case CK_FloatingComplexCast:
2187   case CK_IntegralRealToComplex:
2188   case CK_IntegralComplexCast:
2189   case CK_IntegralComplexToFloatingComplex:
2190   case CK_FloatingComplexToIntegralComplex:
2191   case CK_ConstructorConversion:
2192   case CK_ToUnion:
2193     llvm_unreachable("scalar cast to non-scalar value");
2194 
2195   case CK_LValueToRValue:
2196     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2197     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2198     return Visit(const_cast<Expr*>(E));
2199 
2200   case CK_IntegralToPointer: {
2201     Value *Src = Visit(const_cast<Expr*>(E));
2202 
2203     // First, convert to the correct width so that we control the kind of
2204     // extension.
2205     auto DestLLVMTy = ConvertType(DestTy);
2206     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2207     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2208     llvm::Value* IntResult =
2209       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2210 
2211     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2212 
2213     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2214       // Going from integer to pointer that could be dynamic requires reloading
2215       // dynamic information from invariant.group.
2216       if (DestTy.mayBeDynamicClass())
2217         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2218     }
2219     return IntToPtr;
2220   }
2221   case CK_PointerToIntegral: {
2222     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2223     auto *PtrExpr = Visit(E);
2224 
2225     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2226       const QualType SrcType = E->getType();
2227 
2228       // Casting to integer requires stripping dynamic information as it does
2229       // not carries it.
2230       if (SrcType.mayBeDynamicClass())
2231         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2232     }
2233 
2234     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2235   }
2236   case CK_ToVoid: {
2237     CGF.EmitIgnoredExpr(E);
2238     return nullptr;
2239   }
2240   case CK_VectorSplat: {
2241     llvm::Type *DstTy = ConvertType(DestTy);
2242     Value *Elt = Visit(const_cast<Expr*>(E));
2243     // Splat the element across to all elements
2244     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
2245     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2246   }
2247 
2248   case CK_FixedPointCast:
2249     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2250                                 CE->getExprLoc());
2251 
2252   case CK_FixedPointToBoolean:
2253     assert(E->getType()->isFixedPointType() &&
2254            "Expected src type to be fixed point type");
2255     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2256     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2257                                 CE->getExprLoc());
2258 
2259   case CK_FixedPointToIntegral:
2260     assert(E->getType()->isFixedPointType() &&
2261            "Expected src type to be fixed point type");
2262     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2263     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2264                                 CE->getExprLoc());
2265 
2266   case CK_IntegralToFixedPoint:
2267     assert(E->getType()->isIntegerType() &&
2268            "Expected src type to be an integer");
2269     assert(DestTy->isFixedPointType() &&
2270            "Expected dest type to be fixed point type");
2271     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2272                                 CE->getExprLoc());
2273 
2274   case CK_IntegralCast: {
2275     ScalarConversionOpts Opts;
2276     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2277       if (!ICE->isPartOfExplicitCast())
2278         Opts = ScalarConversionOpts(CGF.SanOpts);
2279     }
2280     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2281                                 CE->getExprLoc(), Opts);
2282   }
2283   case CK_IntegralToFloating:
2284   case CK_FloatingToIntegral:
2285   case CK_FloatingCast:
2286     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2287                                 CE->getExprLoc());
2288   case CK_BooleanToSignedIntegral: {
2289     ScalarConversionOpts Opts;
2290     Opts.TreatBooleanAsSigned = true;
2291     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2292                                 CE->getExprLoc(), Opts);
2293   }
2294   case CK_IntegralToBoolean:
2295     return EmitIntToBoolConversion(Visit(E));
2296   case CK_PointerToBoolean:
2297     return EmitPointerToBoolConversion(Visit(E), E->getType());
2298   case CK_FloatingToBoolean:
2299     return EmitFloatToBoolConversion(Visit(E));
2300   case CK_MemberPointerToBoolean: {
2301     llvm::Value *MemPtr = Visit(E);
2302     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2303     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2304   }
2305 
2306   case CK_FloatingComplexToReal:
2307   case CK_IntegralComplexToReal:
2308     return CGF.EmitComplexExpr(E, false, true).first;
2309 
2310   case CK_FloatingComplexToBoolean:
2311   case CK_IntegralComplexToBoolean: {
2312     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2313 
2314     // TODO: kill this function off, inline appropriate case here
2315     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2316                                          CE->getExprLoc());
2317   }
2318 
2319   case CK_ZeroToOCLOpaqueType: {
2320     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2321             DestTy->isOCLIntelSubgroupAVCType()) &&
2322            "CK_ZeroToOCLEvent cast on non-event type");
2323     return llvm::Constant::getNullValue(ConvertType(DestTy));
2324   }
2325 
2326   case CK_IntToOCLSampler:
2327     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2328 
2329   } // end of switch
2330 
2331   llvm_unreachable("unknown scalar cast");
2332 }
2333 
2334 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2335   CodeGenFunction::StmtExprEvaluation eval(CGF);
2336   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2337                                            !E->getType()->isVoidType());
2338   if (!RetAlloca.isValid())
2339     return nullptr;
2340   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2341                               E->getExprLoc());
2342 }
2343 
2344 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2345   CodeGenFunction::RunCleanupsScope Scope(CGF);
2346   Value *V = Visit(E->getSubExpr());
2347   // Defend against dominance problems caused by jumps out of expression
2348   // evaluation through the shared cleanup block.
2349   Scope.ForceCleanup({&V});
2350   return V;
2351 }
2352 
2353 //===----------------------------------------------------------------------===//
2354 //                             Unary Operators
2355 //===----------------------------------------------------------------------===//
2356 
2357 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2358                                            llvm::Value *InVal, bool IsInc,
2359                                            FPOptions FPFeatures) {
2360   BinOpInfo BinOp;
2361   BinOp.LHS = InVal;
2362   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2363   BinOp.Ty = E->getType();
2364   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2365   BinOp.FPFeatures = FPFeatures;
2366   BinOp.E = E;
2367   return BinOp;
2368 }
2369 
2370 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2371     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2372   llvm::Value *Amount =
2373       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2374   StringRef Name = IsInc ? "inc" : "dec";
2375   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2376   case LangOptions::SOB_Defined:
2377     return Builder.CreateAdd(InVal, Amount, Name);
2378   case LangOptions::SOB_Undefined:
2379     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2380       return Builder.CreateNSWAdd(InVal, Amount, Name);
2381     LLVM_FALLTHROUGH;
2382   case LangOptions::SOB_Trapping:
2383     if (!E->canOverflow())
2384       return Builder.CreateNSWAdd(InVal, Amount, Name);
2385     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2386         E, InVal, IsInc, E->getFPFeatures(CGF.getLangOpts())));
2387   }
2388   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2389 }
2390 
2391 namespace {
2392 /// Handles check and update for lastprivate conditional variables.
2393 class OMPLastprivateConditionalUpdateRAII {
2394 private:
2395   CodeGenFunction &CGF;
2396   const UnaryOperator *E;
2397 
2398 public:
2399   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2400                                       const UnaryOperator *E)
2401       : CGF(CGF), E(E) {}
2402   ~OMPLastprivateConditionalUpdateRAII() {
2403     if (CGF.getLangOpts().OpenMP)
2404       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2405           CGF, E->getSubExpr());
2406   }
2407 };
2408 } // namespace
2409 
2410 llvm::Value *
2411 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2412                                            bool isInc, bool isPre) {
2413   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2414   QualType type = E->getSubExpr()->getType();
2415   llvm::PHINode *atomicPHI = nullptr;
2416   llvm::Value *value;
2417   llvm::Value *input;
2418 
2419   int amount = (isInc ? 1 : -1);
2420   bool isSubtraction = !isInc;
2421 
2422   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2423     type = atomicTy->getValueType();
2424     if (isInc && type->isBooleanType()) {
2425       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2426       if (isPre) {
2427         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2428             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2429         return Builder.getTrue();
2430       }
2431       // For atomic bool increment, we just store true and return it for
2432       // preincrement, do an atomic swap with true for postincrement
2433       return Builder.CreateAtomicRMW(
2434           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2435           llvm::AtomicOrdering::SequentiallyConsistent);
2436     }
2437     // Special case for atomic increment / decrement on integers, emit
2438     // atomicrmw instructions.  We skip this if we want to be doing overflow
2439     // checking, and fall into the slow path with the atomic cmpxchg loop.
2440     if (!type->isBooleanType() && type->isIntegerType() &&
2441         !(type->isUnsignedIntegerType() &&
2442           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2443         CGF.getLangOpts().getSignedOverflowBehavior() !=
2444             LangOptions::SOB_Trapping) {
2445       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2446         llvm::AtomicRMWInst::Sub;
2447       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2448         llvm::Instruction::Sub;
2449       llvm::Value *amt = CGF.EmitToMemory(
2450           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2451       llvm::Value *old =
2452           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2453                                   llvm::AtomicOrdering::SequentiallyConsistent);
2454       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2455     }
2456     value = EmitLoadOfLValue(LV, E->getExprLoc());
2457     input = value;
2458     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2459     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2460     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2461     value = CGF.EmitToMemory(value, type);
2462     Builder.CreateBr(opBB);
2463     Builder.SetInsertPoint(opBB);
2464     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2465     atomicPHI->addIncoming(value, startBB);
2466     value = atomicPHI;
2467   } else {
2468     value = EmitLoadOfLValue(LV, E->getExprLoc());
2469     input = value;
2470   }
2471 
2472   // Special case of integer increment that we have to check first: bool++.
2473   // Due to promotion rules, we get:
2474   //   bool++ -> bool = bool + 1
2475   //          -> bool = (int)bool + 1
2476   //          -> bool = ((int)bool + 1 != 0)
2477   // An interesting aspect of this is that increment is always true.
2478   // Decrement does not have this property.
2479   if (isInc && type->isBooleanType()) {
2480     value = Builder.getTrue();
2481 
2482   // Most common case by far: integer increment.
2483   } else if (type->isIntegerType()) {
2484     QualType promotedType;
2485     bool canPerformLossyDemotionCheck = false;
2486     if (type->isPromotableIntegerType()) {
2487       promotedType = CGF.getContext().getPromotedIntegerType(type);
2488       assert(promotedType != type && "Shouldn't promote to the same type.");
2489       canPerformLossyDemotionCheck = true;
2490       canPerformLossyDemotionCheck &=
2491           CGF.getContext().getCanonicalType(type) !=
2492           CGF.getContext().getCanonicalType(promotedType);
2493       canPerformLossyDemotionCheck &=
2494           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2495               type, promotedType);
2496       assert((!canPerformLossyDemotionCheck ||
2497               type->isSignedIntegerOrEnumerationType() ||
2498               promotedType->isSignedIntegerOrEnumerationType() ||
2499               ConvertType(type)->getScalarSizeInBits() ==
2500                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2501              "The following check expects that if we do promotion to different "
2502              "underlying canonical type, at least one of the types (either "
2503              "base or promoted) will be signed, or the bitwidths will match.");
2504     }
2505     if (CGF.SanOpts.hasOneOf(
2506             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2507         canPerformLossyDemotionCheck) {
2508       // While `x += 1` (for `x` with width less than int) is modeled as
2509       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2510       // ease; inc/dec with width less than int can't overflow because of
2511       // promotion rules, so we omit promotion+demotion, which means that we can
2512       // not catch lossy "demotion". Because we still want to catch these cases
2513       // when the sanitizer is enabled, we perform the promotion, then perform
2514       // the increment/decrement in the wider type, and finally
2515       // perform the demotion. This will catch lossy demotions.
2516 
2517       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2518       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2519       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2520       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2521       // emitted.
2522       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2523                                    ScalarConversionOpts(CGF.SanOpts));
2524 
2525       // Note that signed integer inc/dec with width less than int can't
2526       // overflow because of promotion rules; we're just eliding a few steps
2527       // here.
2528     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2529       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2530     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2531                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2532       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2533           E, value, isInc, E->getFPFeatures(CGF.getLangOpts())));
2534     } else {
2535       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2536       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2537     }
2538 
2539   // Next most common: pointer increment.
2540   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2541     QualType type = ptr->getPointeeType();
2542 
2543     // VLA types don't have constant size.
2544     if (const VariableArrayType *vla
2545           = CGF.getContext().getAsVariableArrayType(type)) {
2546       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2547       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2548       if (CGF.getLangOpts().isSignedOverflowDefined())
2549         value = Builder.CreateGEP(value, numElts, "vla.inc");
2550       else
2551         value = CGF.EmitCheckedInBoundsGEP(
2552             value, numElts, /*SignedIndices=*/false, isSubtraction,
2553             E->getExprLoc(), "vla.inc");
2554 
2555     // Arithmetic on function pointers (!) is just +-1.
2556     } else if (type->isFunctionType()) {
2557       llvm::Value *amt = Builder.getInt32(amount);
2558 
2559       value = CGF.EmitCastToVoidPtr(value);
2560       if (CGF.getLangOpts().isSignedOverflowDefined())
2561         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2562       else
2563         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2564                                            isSubtraction, E->getExprLoc(),
2565                                            "incdec.funcptr");
2566       value = Builder.CreateBitCast(value, input->getType());
2567 
2568     // For everything else, we can just do a simple increment.
2569     } else {
2570       llvm::Value *amt = Builder.getInt32(amount);
2571       if (CGF.getLangOpts().isSignedOverflowDefined())
2572         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2573       else
2574         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2575                                            isSubtraction, E->getExprLoc(),
2576                                            "incdec.ptr");
2577     }
2578 
2579   // Vector increment/decrement.
2580   } else if (type->isVectorType()) {
2581     if (type->hasIntegerRepresentation()) {
2582       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2583 
2584       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2585     } else {
2586       value = Builder.CreateFAdd(
2587                   value,
2588                   llvm::ConstantFP::get(value->getType(), amount),
2589                   isInc ? "inc" : "dec");
2590     }
2591 
2592   // Floating point.
2593   } else if (type->isRealFloatingType()) {
2594     // Add the inc/dec to the real part.
2595     llvm::Value *amt;
2596 
2597     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2598       // Another special case: half FP increment should be done via float
2599       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2600         value = Builder.CreateCall(
2601             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2602                                  CGF.CGM.FloatTy),
2603             input, "incdec.conv");
2604       } else {
2605         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2606       }
2607     }
2608 
2609     if (value->getType()->isFloatTy())
2610       amt = llvm::ConstantFP::get(VMContext,
2611                                   llvm::APFloat(static_cast<float>(amount)));
2612     else if (value->getType()->isDoubleTy())
2613       amt = llvm::ConstantFP::get(VMContext,
2614                                   llvm::APFloat(static_cast<double>(amount)));
2615     else {
2616       // Remaining types are Half, LongDouble or __float128. Convert from float.
2617       llvm::APFloat F(static_cast<float>(amount));
2618       bool ignored;
2619       const llvm::fltSemantics *FS;
2620       // Don't use getFloatTypeSemantics because Half isn't
2621       // necessarily represented using the "half" LLVM type.
2622       if (value->getType()->isFP128Ty())
2623         FS = &CGF.getTarget().getFloat128Format();
2624       else if (value->getType()->isHalfTy())
2625         FS = &CGF.getTarget().getHalfFormat();
2626       else
2627         FS = &CGF.getTarget().getLongDoubleFormat();
2628       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2629       amt = llvm::ConstantFP::get(VMContext, F);
2630     }
2631     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2632 
2633     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2634       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2635         value = Builder.CreateCall(
2636             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2637                                  CGF.CGM.FloatTy),
2638             value, "incdec.conv");
2639       } else {
2640         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2641       }
2642     }
2643 
2644   // Fixed-point types.
2645   } else if (type->isFixedPointType()) {
2646     // Fixed-point types are tricky. In some cases, it isn't possible to
2647     // represent a 1 or a -1 in the type at all. Piggyback off of
2648     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2649     BinOpInfo Info;
2650     Info.E = E;
2651     Info.Ty = E->getType();
2652     Info.Opcode = isInc ? BO_Add : BO_Sub;
2653     Info.LHS = value;
2654     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2655     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2656     // since -1 is guaranteed to be representable.
2657     if (type->isSignedFixedPointType()) {
2658       Info.Opcode = isInc ? BO_Sub : BO_Add;
2659       Info.RHS = Builder.CreateNeg(Info.RHS);
2660     }
2661     // Now, convert from our invented integer literal to the type of the unary
2662     // op. This will upscale and saturate if necessary. This value can become
2663     // undef in some cases.
2664     FixedPointSemantics SrcSema =
2665         FixedPointSemantics::GetIntegerSemantics(value->getType()
2666                                                       ->getScalarSizeInBits(),
2667                                                  /*IsSigned=*/true);
2668     FixedPointSemantics DstSema =
2669         CGF.getContext().getFixedPointSemantics(Info.Ty);
2670     Info.RHS = EmitFixedPointConversion(Info.RHS, SrcSema, DstSema,
2671                                         E->getExprLoc());
2672     value = EmitFixedPointBinOp(Info);
2673 
2674   // Objective-C pointer types.
2675   } else {
2676     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2677     value = CGF.EmitCastToVoidPtr(value);
2678 
2679     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2680     if (!isInc) size = -size;
2681     llvm::Value *sizeValue =
2682       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2683 
2684     if (CGF.getLangOpts().isSignedOverflowDefined())
2685       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2686     else
2687       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2688                                          /*SignedIndices=*/false, isSubtraction,
2689                                          E->getExprLoc(), "incdec.objptr");
2690     value = Builder.CreateBitCast(value, input->getType());
2691   }
2692 
2693   if (atomicPHI) {
2694     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2695     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2696     auto Pair = CGF.EmitAtomicCompareExchange(
2697         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2698     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2699     llvm::Value *success = Pair.second;
2700     atomicPHI->addIncoming(old, curBlock);
2701     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2702     Builder.SetInsertPoint(contBB);
2703     return isPre ? value : input;
2704   }
2705 
2706   // Store the updated result through the lvalue.
2707   if (LV.isBitField())
2708     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2709   else
2710     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2711 
2712   // If this is a postinc, return the value read from memory, otherwise use the
2713   // updated value.
2714   return isPre ? value : input;
2715 }
2716 
2717 
2718 
2719 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2720   TestAndClearIgnoreResultAssign();
2721   Value *Op = Visit(E->getSubExpr());
2722 
2723   // Generate a unary FNeg for FP ops.
2724   if (Op->getType()->isFPOrFPVectorTy())
2725     return Builder.CreateFNeg(Op, "fneg");
2726 
2727   // Emit unary minus with EmitSub so we handle overflow cases etc.
2728   BinOpInfo BinOp;
2729   BinOp.RHS = Op;
2730   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2731   BinOp.Ty = E->getType();
2732   BinOp.Opcode = BO_Sub;
2733   BinOp.FPFeatures = E->getFPFeatures(CGF.getLangOpts());
2734   BinOp.E = E;
2735   return EmitSub(BinOp);
2736 }
2737 
2738 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2739   TestAndClearIgnoreResultAssign();
2740   Value *Op = Visit(E->getSubExpr());
2741   return Builder.CreateNot(Op, "neg");
2742 }
2743 
2744 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2745   // Perform vector logical not on comparison with zero vector.
2746   if (E->getType()->isVectorType() &&
2747       E->getType()->castAs<VectorType>()->getVectorKind() ==
2748           VectorType::GenericVector) {
2749     Value *Oper = Visit(E->getSubExpr());
2750     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2751     Value *Result;
2752     if (Oper->getType()->isFPOrFPVectorTy()) {
2753       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2754           CGF, E->getFPFeatures(CGF.getLangOpts()));
2755       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2756     } else
2757       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2758     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2759   }
2760 
2761   // Compare operand to zero.
2762   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2763 
2764   // Invert value.
2765   // TODO: Could dynamically modify easy computations here.  For example, if
2766   // the operand is an icmp ne, turn into icmp eq.
2767   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2768 
2769   // ZExt result to the expr type.
2770   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2771 }
2772 
2773 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2774   // Try folding the offsetof to a constant.
2775   Expr::EvalResult EVResult;
2776   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2777     llvm::APSInt Value = EVResult.Val.getInt();
2778     return Builder.getInt(Value);
2779   }
2780 
2781   // Loop over the components of the offsetof to compute the value.
2782   unsigned n = E->getNumComponents();
2783   llvm::Type* ResultType = ConvertType(E->getType());
2784   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2785   QualType CurrentType = E->getTypeSourceInfo()->getType();
2786   for (unsigned i = 0; i != n; ++i) {
2787     OffsetOfNode ON = E->getComponent(i);
2788     llvm::Value *Offset = nullptr;
2789     switch (ON.getKind()) {
2790     case OffsetOfNode::Array: {
2791       // Compute the index
2792       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2793       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2794       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2795       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2796 
2797       // Save the element type
2798       CurrentType =
2799           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2800 
2801       // Compute the element size
2802       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2803           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2804 
2805       // Multiply out to compute the result
2806       Offset = Builder.CreateMul(Idx, ElemSize);
2807       break;
2808     }
2809 
2810     case OffsetOfNode::Field: {
2811       FieldDecl *MemberDecl = ON.getField();
2812       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2813       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2814 
2815       // Compute the index of the field in its parent.
2816       unsigned i = 0;
2817       // FIXME: It would be nice if we didn't have to loop here!
2818       for (RecordDecl::field_iterator Field = RD->field_begin(),
2819                                       FieldEnd = RD->field_end();
2820            Field != FieldEnd; ++Field, ++i) {
2821         if (*Field == MemberDecl)
2822           break;
2823       }
2824       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2825 
2826       // Compute the offset to the field
2827       int64_t OffsetInt = RL.getFieldOffset(i) /
2828                           CGF.getContext().getCharWidth();
2829       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2830 
2831       // Save the element type.
2832       CurrentType = MemberDecl->getType();
2833       break;
2834     }
2835 
2836     case OffsetOfNode::Identifier:
2837       llvm_unreachable("dependent __builtin_offsetof");
2838 
2839     case OffsetOfNode::Base: {
2840       if (ON.getBase()->isVirtual()) {
2841         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2842         continue;
2843       }
2844 
2845       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2846       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2847 
2848       // Save the element type.
2849       CurrentType = ON.getBase()->getType();
2850 
2851       // Compute the offset to the base.
2852       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2853       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2854       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2855       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2856       break;
2857     }
2858     }
2859     Result = Builder.CreateAdd(Result, Offset);
2860   }
2861   return Result;
2862 }
2863 
2864 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2865 /// argument of the sizeof expression as an integer.
2866 Value *
2867 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2868                               const UnaryExprOrTypeTraitExpr *E) {
2869   QualType TypeToSize = E->getTypeOfArgument();
2870   if (E->getKind() == UETT_SizeOf) {
2871     if (const VariableArrayType *VAT =
2872           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2873       if (E->isArgumentType()) {
2874         // sizeof(type) - make sure to emit the VLA size.
2875         CGF.EmitVariablyModifiedType(TypeToSize);
2876       } else {
2877         // C99 6.5.3.4p2: If the argument is an expression of type
2878         // VLA, it is evaluated.
2879         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2880       }
2881 
2882       auto VlaSize = CGF.getVLASize(VAT);
2883       llvm::Value *size = VlaSize.NumElts;
2884 
2885       // Scale the number of non-VLA elements by the non-VLA element size.
2886       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2887       if (!eltSize.isOne())
2888         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2889 
2890       return size;
2891     }
2892   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2893     auto Alignment =
2894         CGF.getContext()
2895             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2896                 E->getTypeOfArgument()->getPointeeType()))
2897             .getQuantity();
2898     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2899   }
2900 
2901   // If this isn't sizeof(vla), the result must be constant; use the constant
2902   // folding logic so we don't have to duplicate it here.
2903   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2904 }
2905 
2906 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2907   Expr *Op = E->getSubExpr();
2908   if (Op->getType()->isAnyComplexType()) {
2909     // If it's an l-value, load through the appropriate subobject l-value.
2910     // Note that we have to ask E because Op might be an l-value that
2911     // this won't work for, e.g. an Obj-C property.
2912     if (E->isGLValue())
2913       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2914                                   E->getExprLoc()).getScalarVal();
2915 
2916     // Otherwise, calculate and project.
2917     return CGF.EmitComplexExpr(Op, false, true).first;
2918   }
2919 
2920   return Visit(Op);
2921 }
2922 
2923 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2924   Expr *Op = E->getSubExpr();
2925   if (Op->getType()->isAnyComplexType()) {
2926     // If it's an l-value, load through the appropriate subobject l-value.
2927     // Note that we have to ask E because Op might be an l-value that
2928     // this won't work for, e.g. an Obj-C property.
2929     if (Op->isGLValue())
2930       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2931                                   E->getExprLoc()).getScalarVal();
2932 
2933     // Otherwise, calculate and project.
2934     return CGF.EmitComplexExpr(Op, true, false).second;
2935   }
2936 
2937   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2938   // effects are evaluated, but not the actual value.
2939   if (Op->isGLValue())
2940     CGF.EmitLValue(Op);
2941   else
2942     CGF.EmitScalarExpr(Op, true);
2943   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2944 }
2945 
2946 //===----------------------------------------------------------------------===//
2947 //                           Binary Operators
2948 //===----------------------------------------------------------------------===//
2949 
2950 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2951   TestAndClearIgnoreResultAssign();
2952   BinOpInfo Result;
2953   Result.LHS = Visit(E->getLHS());
2954   Result.RHS = Visit(E->getRHS());
2955   Result.Ty  = E->getType();
2956   Result.Opcode = E->getOpcode();
2957   Result.FPFeatures = E->getFPFeatures(CGF.getLangOpts());
2958   Result.E = E;
2959   return Result;
2960 }
2961 
2962 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2963                                               const CompoundAssignOperator *E,
2964                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2965                                                    Value *&Result) {
2966   QualType LHSTy = E->getLHS()->getType();
2967   BinOpInfo OpInfo;
2968 
2969   if (E->getComputationResultType()->isAnyComplexType())
2970     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2971 
2972   // Emit the RHS first.  __block variables need to have the rhs evaluated
2973   // first, plus this should improve codegen a little.
2974   OpInfo.RHS = Visit(E->getRHS());
2975   OpInfo.Ty = E->getComputationResultType();
2976   OpInfo.Opcode = E->getOpcode();
2977   OpInfo.FPFeatures = E->getFPFeatures(CGF.getLangOpts());
2978   OpInfo.E = E;
2979   // Load/convert the LHS.
2980   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2981 
2982   llvm::PHINode *atomicPHI = nullptr;
2983   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2984     QualType type = atomicTy->getValueType();
2985     if (!type->isBooleanType() && type->isIntegerType() &&
2986         !(type->isUnsignedIntegerType() &&
2987           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2988         CGF.getLangOpts().getSignedOverflowBehavior() !=
2989             LangOptions::SOB_Trapping) {
2990       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2991       llvm::Instruction::BinaryOps Op;
2992       switch (OpInfo.Opcode) {
2993         // We don't have atomicrmw operands for *, %, /, <<, >>
2994         case BO_MulAssign: case BO_DivAssign:
2995         case BO_RemAssign:
2996         case BO_ShlAssign:
2997         case BO_ShrAssign:
2998           break;
2999         case BO_AddAssign:
3000           AtomicOp = llvm::AtomicRMWInst::Add;
3001           Op = llvm::Instruction::Add;
3002           break;
3003         case BO_SubAssign:
3004           AtomicOp = llvm::AtomicRMWInst::Sub;
3005           Op = llvm::Instruction::Sub;
3006           break;
3007         case BO_AndAssign:
3008           AtomicOp = llvm::AtomicRMWInst::And;
3009           Op = llvm::Instruction::And;
3010           break;
3011         case BO_XorAssign:
3012           AtomicOp = llvm::AtomicRMWInst::Xor;
3013           Op = llvm::Instruction::Xor;
3014           break;
3015         case BO_OrAssign:
3016           AtomicOp = llvm::AtomicRMWInst::Or;
3017           Op = llvm::Instruction::Or;
3018           break;
3019         default:
3020           llvm_unreachable("Invalid compound assignment type");
3021       }
3022       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3023         llvm::Value *Amt = CGF.EmitToMemory(
3024             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3025                                  E->getExprLoc()),
3026             LHSTy);
3027         Value *OldVal = Builder.CreateAtomicRMW(
3028             AtomicOp, LHSLV.getPointer(CGF), Amt,
3029             llvm::AtomicOrdering::SequentiallyConsistent);
3030 
3031         // Since operation is atomic, the result type is guaranteed to be the
3032         // same as the input in LLVM terms.
3033         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3034         return LHSLV;
3035       }
3036     }
3037     // FIXME: For floating point types, we should be saving and restoring the
3038     // floating point environment in the loop.
3039     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3040     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3041     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3042     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3043     Builder.CreateBr(opBB);
3044     Builder.SetInsertPoint(opBB);
3045     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3046     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3047     OpInfo.LHS = atomicPHI;
3048   }
3049   else
3050     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3051 
3052   SourceLocation Loc = E->getExprLoc();
3053   OpInfo.LHS =
3054       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3055 
3056   // Expand the binary operator.
3057   Result = (this->*Func)(OpInfo);
3058 
3059   // Convert the result back to the LHS type,
3060   // potentially with Implicit Conversion sanitizer check.
3061   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3062                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3063 
3064   if (atomicPHI) {
3065     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3066     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3067     auto Pair = CGF.EmitAtomicCompareExchange(
3068         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3069     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3070     llvm::Value *success = Pair.second;
3071     atomicPHI->addIncoming(old, curBlock);
3072     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3073     Builder.SetInsertPoint(contBB);
3074     return LHSLV;
3075   }
3076 
3077   // Store the result value into the LHS lvalue. Bit-fields are handled
3078   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3079   // 'An assignment expression has the value of the left operand after the
3080   // assignment...'.
3081   if (LHSLV.isBitField())
3082     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3083   else
3084     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3085 
3086   if (CGF.getLangOpts().OpenMP)
3087     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3088                                                                   E->getLHS());
3089   return LHSLV;
3090 }
3091 
3092 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3093                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3094   bool Ignore = TestAndClearIgnoreResultAssign();
3095   Value *RHS = nullptr;
3096   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3097 
3098   // If the result is clearly ignored, return now.
3099   if (Ignore)
3100     return nullptr;
3101 
3102   // The result of an assignment in C is the assigned r-value.
3103   if (!CGF.getLangOpts().CPlusPlus)
3104     return RHS;
3105 
3106   // If the lvalue is non-volatile, return the computed value of the assignment.
3107   if (!LHS.isVolatileQualified())
3108     return RHS;
3109 
3110   // Otherwise, reload the value.
3111   return EmitLoadOfLValue(LHS, E->getExprLoc());
3112 }
3113 
3114 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3115     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3116   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3117 
3118   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3119     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3120                                     SanitizerKind::IntegerDivideByZero));
3121   }
3122 
3123   const auto *BO = cast<BinaryOperator>(Ops.E);
3124   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3125       Ops.Ty->hasSignedIntegerRepresentation() &&
3126       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3127       Ops.mayHaveIntegerOverflow()) {
3128     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3129 
3130     llvm::Value *IntMin =
3131       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3132     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3133 
3134     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3135     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3136     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3137     Checks.push_back(
3138         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3139   }
3140 
3141   if (Checks.size() > 0)
3142     EmitBinOpCheck(Checks, Ops);
3143 }
3144 
3145 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3146   {
3147     CodeGenFunction::SanitizerScope SanScope(&CGF);
3148     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3149          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3150         Ops.Ty->isIntegerType() &&
3151         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3152       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3153       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3154     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3155                Ops.Ty->isRealFloatingType() &&
3156                Ops.mayHaveFloatDivisionByZero()) {
3157       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3158       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3159       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3160                      Ops);
3161     }
3162   }
3163 
3164   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3165     llvm::Value *Val;
3166     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3167     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3168     if (CGF.getLangOpts().OpenCL &&
3169         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3170       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3171       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3172       // build option allows an application to specify that single precision
3173       // floating-point divide (x/y and 1/x) and sqrt used in the program
3174       // source are correctly rounded.
3175       llvm::Type *ValTy = Val->getType();
3176       if (ValTy->isFloatTy() ||
3177           (isa<llvm::VectorType>(ValTy) &&
3178            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3179         CGF.SetFPAccuracy(Val, 2.5);
3180     }
3181     return Val;
3182   }
3183   else if (Ops.isFixedPointOp())
3184     return EmitFixedPointBinOp(Ops);
3185   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3186     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3187   else
3188     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3189 }
3190 
3191 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3192   // Rem in C can't be a floating point type: C99 6.5.5p2.
3193   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3194        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3195       Ops.Ty->isIntegerType() &&
3196       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3197     CodeGenFunction::SanitizerScope SanScope(&CGF);
3198     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3199     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3200   }
3201 
3202   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3203     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3204   else
3205     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3206 }
3207 
3208 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3209   unsigned IID;
3210   unsigned OpID = 0;
3211 
3212   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3213   switch (Ops.Opcode) {
3214   case BO_Add:
3215   case BO_AddAssign:
3216     OpID = 1;
3217     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3218                      llvm::Intrinsic::uadd_with_overflow;
3219     break;
3220   case BO_Sub:
3221   case BO_SubAssign:
3222     OpID = 2;
3223     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3224                      llvm::Intrinsic::usub_with_overflow;
3225     break;
3226   case BO_Mul:
3227   case BO_MulAssign:
3228     OpID = 3;
3229     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3230                      llvm::Intrinsic::umul_with_overflow;
3231     break;
3232   default:
3233     llvm_unreachable("Unsupported operation for overflow detection");
3234   }
3235   OpID <<= 1;
3236   if (isSigned)
3237     OpID |= 1;
3238 
3239   CodeGenFunction::SanitizerScope SanScope(&CGF);
3240   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3241 
3242   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3243 
3244   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3245   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3246   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3247 
3248   // Handle overflow with llvm.trap if no custom handler has been specified.
3249   const std::string *handlerName =
3250     &CGF.getLangOpts().OverflowHandler;
3251   if (handlerName->empty()) {
3252     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3253     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3254     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3255       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3256       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3257                               : SanitizerKind::UnsignedIntegerOverflow;
3258       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3259     } else
3260       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3261     return result;
3262   }
3263 
3264   // Branch in case of overflow.
3265   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3266   llvm::BasicBlock *continueBB =
3267       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3268   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3269 
3270   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3271 
3272   // If an overflow handler is set, then we want to call it and then use its
3273   // result, if it returns.
3274   Builder.SetInsertPoint(overflowBB);
3275 
3276   // Get the overflow handler.
3277   llvm::Type *Int8Ty = CGF.Int8Ty;
3278   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3279   llvm::FunctionType *handlerTy =
3280       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3281   llvm::FunctionCallee handler =
3282       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3283 
3284   // Sign extend the args to 64-bit, so that we can use the same handler for
3285   // all types of overflow.
3286   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3287   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3288 
3289   // Call the handler with the two arguments, the operation, and the size of
3290   // the result.
3291   llvm::Value *handlerArgs[] = {
3292     lhs,
3293     rhs,
3294     Builder.getInt8(OpID),
3295     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3296   };
3297   llvm::Value *handlerResult =
3298     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3299 
3300   // Truncate the result back to the desired size.
3301   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3302   Builder.CreateBr(continueBB);
3303 
3304   Builder.SetInsertPoint(continueBB);
3305   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3306   phi->addIncoming(result, initialBB);
3307   phi->addIncoming(handlerResult, overflowBB);
3308 
3309   return phi;
3310 }
3311 
3312 /// Emit pointer + index arithmetic.
3313 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3314                                     const BinOpInfo &op,
3315                                     bool isSubtraction) {
3316   // Must have binary (not unary) expr here.  Unary pointer
3317   // increment/decrement doesn't use this path.
3318   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3319 
3320   Value *pointer = op.LHS;
3321   Expr *pointerOperand = expr->getLHS();
3322   Value *index = op.RHS;
3323   Expr *indexOperand = expr->getRHS();
3324 
3325   // In a subtraction, the LHS is always the pointer.
3326   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3327     std::swap(pointer, index);
3328     std::swap(pointerOperand, indexOperand);
3329   }
3330 
3331   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3332 
3333   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3334   auto &DL = CGF.CGM.getDataLayout();
3335   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3336 
3337   // Some versions of glibc and gcc use idioms (particularly in their malloc
3338   // routines) that add a pointer-sized integer (known to be a pointer value)
3339   // to a null pointer in order to cast the value back to an integer or as
3340   // part of a pointer alignment algorithm.  This is undefined behavior, but
3341   // we'd like to be able to compile programs that use it.
3342   //
3343   // Normally, we'd generate a GEP with a null-pointer base here in response
3344   // to that code, but it's also UB to dereference a pointer created that
3345   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3346   // generate a direct cast of the integer value to a pointer.
3347   //
3348   // The idiom (p = nullptr + N) is not met if any of the following are true:
3349   //
3350   //   The operation is subtraction.
3351   //   The index is not pointer-sized.
3352   //   The pointer type is not byte-sized.
3353   //
3354   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3355                                                        op.Opcode,
3356                                                        expr->getLHS(),
3357                                                        expr->getRHS()))
3358     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3359 
3360   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3361     // Zero-extend or sign-extend the pointer value according to
3362     // whether the index is signed or not.
3363     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3364                                       "idx.ext");
3365   }
3366 
3367   // If this is subtraction, negate the index.
3368   if (isSubtraction)
3369     index = CGF.Builder.CreateNeg(index, "idx.neg");
3370 
3371   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3372     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3373                         /*Accessed*/ false);
3374 
3375   const PointerType *pointerType
3376     = pointerOperand->getType()->getAs<PointerType>();
3377   if (!pointerType) {
3378     QualType objectType = pointerOperand->getType()
3379                                         ->castAs<ObjCObjectPointerType>()
3380                                         ->getPointeeType();
3381     llvm::Value *objectSize
3382       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3383 
3384     index = CGF.Builder.CreateMul(index, objectSize);
3385 
3386     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3387     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3388     return CGF.Builder.CreateBitCast(result, pointer->getType());
3389   }
3390 
3391   QualType elementType = pointerType->getPointeeType();
3392   if (const VariableArrayType *vla
3393         = CGF.getContext().getAsVariableArrayType(elementType)) {
3394     // The element count here is the total number of non-VLA elements.
3395     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3396 
3397     // Effectively, the multiply by the VLA size is part of the GEP.
3398     // GEP indexes are signed, and scaling an index isn't permitted to
3399     // signed-overflow, so we use the same semantics for our explicit
3400     // multiply.  We suppress this if overflow is not undefined behavior.
3401     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3402       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3403       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3404     } else {
3405       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3406       pointer =
3407           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3408                                      op.E->getExprLoc(), "add.ptr");
3409     }
3410     return pointer;
3411   }
3412 
3413   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3414   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3415   // future proof.
3416   if (elementType->isVoidType() || elementType->isFunctionType()) {
3417     Value *result = CGF.EmitCastToVoidPtr(pointer);
3418     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3419     return CGF.Builder.CreateBitCast(result, pointer->getType());
3420   }
3421 
3422   if (CGF.getLangOpts().isSignedOverflowDefined())
3423     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3424 
3425   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3426                                     op.E->getExprLoc(), "add.ptr");
3427 }
3428 
3429 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3430 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3431 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3432 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3433 // efficient operations.
3434 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3435                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3436                            bool negMul, bool negAdd) {
3437   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3438 
3439   Value *MulOp0 = MulOp->getOperand(0);
3440   Value *MulOp1 = MulOp->getOperand(1);
3441   if (negMul)
3442     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3443   if (negAdd)
3444     Addend = Builder.CreateFNeg(Addend, "neg");
3445 
3446   Value *FMulAdd = nullptr;
3447   if (Builder.getIsFPConstrained()) {
3448     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3449            "Only constrained operation should be created when Builder is in FP "
3450            "constrained mode");
3451     FMulAdd = Builder.CreateConstrainedFPCall(
3452         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3453                              Addend->getType()),
3454         {MulOp0, MulOp1, Addend});
3455   } else {
3456     FMulAdd = Builder.CreateCall(
3457         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3458         {MulOp0, MulOp1, Addend});
3459   }
3460   MulOp->eraseFromParent();
3461 
3462   return FMulAdd;
3463 }
3464 
3465 // Check whether it would be legal to emit an fmuladd intrinsic call to
3466 // represent op and if so, build the fmuladd.
3467 //
3468 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3469 // Does NOT check the type of the operation - it's assumed that this function
3470 // will be called from contexts where it's known that the type is contractable.
3471 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3472                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3473                          bool isSub=false) {
3474 
3475   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3476           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3477          "Only fadd/fsub can be the root of an fmuladd.");
3478 
3479   // Check whether this op is marked as fusable.
3480   if (!op.FPFeatures.allowFPContractWithinStatement())
3481     return nullptr;
3482 
3483   // We have a potentially fusable op. Look for a mul on one of the operands.
3484   // Also, make sure that the mul result isn't used directly. In that case,
3485   // there's no point creating a muladd operation.
3486   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3487     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3488         LHSBinOp->use_empty())
3489       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3490   }
3491   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3492     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3493         RHSBinOp->use_empty())
3494       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3495   }
3496 
3497   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3498     if (LHSBinOp->getIntrinsicID() ==
3499             llvm::Intrinsic::experimental_constrained_fmul &&
3500         LHSBinOp->use_empty())
3501       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3502   }
3503   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3504     if (RHSBinOp->getIntrinsicID() ==
3505             llvm::Intrinsic::experimental_constrained_fmul &&
3506         RHSBinOp->use_empty())
3507       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3508   }
3509 
3510   return nullptr;
3511 }
3512 
3513 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3514   if (op.LHS->getType()->isPointerTy() ||
3515       op.RHS->getType()->isPointerTy())
3516     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3517 
3518   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3519     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3520     case LangOptions::SOB_Defined:
3521       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3522     case LangOptions::SOB_Undefined:
3523       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3524         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3525       LLVM_FALLTHROUGH;
3526     case LangOptions::SOB_Trapping:
3527       if (CanElideOverflowCheck(CGF.getContext(), op))
3528         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3529       return EmitOverflowCheckedBinOp(op);
3530     }
3531   }
3532 
3533   if (op.Ty->isConstantMatrixType()) {
3534     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3535     return MB.CreateAdd(op.LHS, op.RHS);
3536   }
3537 
3538   if (op.Ty->isUnsignedIntegerType() &&
3539       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3540       !CanElideOverflowCheck(CGF.getContext(), op))
3541     return EmitOverflowCheckedBinOp(op);
3542 
3543   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3544     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3545     // Try to form an fmuladd.
3546     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3547       return FMulAdd;
3548 
3549     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3550   }
3551 
3552   if (op.isFixedPointOp())
3553     return EmitFixedPointBinOp(op);
3554 
3555   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3556 }
3557 
3558 /// The resulting value must be calculated with exact precision, so the operands
3559 /// may not be the same type.
3560 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3561   using llvm::APSInt;
3562   using llvm::ConstantInt;
3563 
3564   // This is either a binary operation where at least one of the operands is
3565   // a fixed-point type, or a unary operation where the operand is a fixed-point
3566   // type. The result type of a binary operation is determined by
3567   // Sema::handleFixedPointConversions().
3568   QualType ResultTy = op.Ty;
3569   QualType LHSTy, RHSTy;
3570   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3571     RHSTy = BinOp->getRHS()->getType();
3572     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3573       // For compound assignment, the effective type of the LHS at this point
3574       // is the computation LHS type, not the actual LHS type, and the final
3575       // result type is not the type of the expression but rather the
3576       // computation result type.
3577       LHSTy = CAO->getComputationLHSType();
3578       ResultTy = CAO->getComputationResultType();
3579     } else
3580       LHSTy = BinOp->getLHS()->getType();
3581   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3582     LHSTy = UnOp->getSubExpr()->getType();
3583     RHSTy = UnOp->getSubExpr()->getType();
3584   }
3585   ASTContext &Ctx = CGF.getContext();
3586   Value *LHS = op.LHS;
3587   Value *RHS = op.RHS;
3588 
3589   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3590   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3591   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3592   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3593 
3594   // Convert the operands to the full precision type.
3595   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3596                                             op.E->getExprLoc());
3597   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3598                                             op.E->getExprLoc());
3599 
3600   // Perform the actual operation.
3601   Value *Result;
3602   switch (op.Opcode) {
3603   case BO_AddAssign:
3604   case BO_Add: {
3605     if (ResultFixedSema.isSaturated()) {
3606       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3607                                     ? llvm::Intrinsic::sadd_sat
3608                                     : llvm::Intrinsic::uadd_sat;
3609       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3610     } else {
3611       Result = Builder.CreateAdd(FullLHS, FullRHS);
3612     }
3613     break;
3614   }
3615   case BO_SubAssign:
3616   case BO_Sub: {
3617     if (ResultFixedSema.isSaturated()) {
3618       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3619                                     ? llvm::Intrinsic::ssub_sat
3620                                     : llvm::Intrinsic::usub_sat;
3621       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3622     } else {
3623       Result = Builder.CreateSub(FullLHS, FullRHS);
3624     }
3625     break;
3626   }
3627   case BO_MulAssign:
3628   case BO_Mul: {
3629     llvm::Intrinsic::ID IID;
3630     if (ResultFixedSema.isSaturated())
3631       IID = ResultFixedSema.isSigned()
3632                 ? llvm::Intrinsic::smul_fix_sat
3633                 : llvm::Intrinsic::umul_fix_sat;
3634     else
3635       IID = ResultFixedSema.isSigned()
3636                 ? llvm::Intrinsic::smul_fix
3637                 : llvm::Intrinsic::umul_fix;
3638     Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()},
3639         {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())});
3640     break;
3641   }
3642   case BO_DivAssign:
3643   case BO_Div: {
3644     llvm::Intrinsic::ID IID;
3645     if (ResultFixedSema.isSaturated())
3646       IID = ResultFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix_sat
3647                                        : llvm::Intrinsic::udiv_fix_sat;
3648     else
3649       IID = ResultFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix
3650                                        : llvm::Intrinsic::udiv_fix;
3651     Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()},
3652         {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())});
3653     break;
3654   }
3655   case BO_LT:
3656     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3657                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3658   case BO_GT:
3659     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3660                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3661   case BO_LE:
3662     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3663                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3664   case BO_GE:
3665     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3666                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3667   case BO_EQ:
3668     // For equality operations, we assume any padding bits on unsigned types are
3669     // zero'd out. They could be overwritten through non-saturating operations
3670     // that cause overflow, but this leads to undefined behavior.
3671     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3672   case BO_NE:
3673     return Builder.CreateICmpNE(FullLHS, FullRHS);
3674   case BO_Shl:
3675   case BO_Shr:
3676   case BO_Cmp:
3677   case BO_LAnd:
3678   case BO_LOr:
3679   case BO_ShlAssign:
3680   case BO_ShrAssign:
3681     llvm_unreachable("Found unimplemented fixed point binary operation");
3682   case BO_PtrMemD:
3683   case BO_PtrMemI:
3684   case BO_Rem:
3685   case BO_Xor:
3686   case BO_And:
3687   case BO_Or:
3688   case BO_Assign:
3689   case BO_RemAssign:
3690   case BO_AndAssign:
3691   case BO_XorAssign:
3692   case BO_OrAssign:
3693   case BO_Comma:
3694     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3695   }
3696 
3697   // Convert to the result type.
3698   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3699                                   op.E->getExprLoc());
3700 }
3701 
3702 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3703   // The LHS is always a pointer if either side is.
3704   if (!op.LHS->getType()->isPointerTy()) {
3705     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3706       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3707       case LangOptions::SOB_Defined:
3708         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3709       case LangOptions::SOB_Undefined:
3710         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3711           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3712         LLVM_FALLTHROUGH;
3713       case LangOptions::SOB_Trapping:
3714         if (CanElideOverflowCheck(CGF.getContext(), op))
3715           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3716         return EmitOverflowCheckedBinOp(op);
3717       }
3718     }
3719 
3720     if (op.Ty->isConstantMatrixType()) {
3721       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3722       return MB.CreateSub(op.LHS, op.RHS);
3723     }
3724 
3725     if (op.Ty->isUnsignedIntegerType() &&
3726         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3727         !CanElideOverflowCheck(CGF.getContext(), op))
3728       return EmitOverflowCheckedBinOp(op);
3729 
3730     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3731       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3732       // Try to form an fmuladd.
3733       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3734         return FMulAdd;
3735       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3736     }
3737 
3738     if (op.isFixedPointOp())
3739       return EmitFixedPointBinOp(op);
3740 
3741     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3742   }
3743 
3744   // If the RHS is not a pointer, then we have normal pointer
3745   // arithmetic.
3746   if (!op.RHS->getType()->isPointerTy())
3747     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3748 
3749   // Otherwise, this is a pointer subtraction.
3750 
3751   // Do the raw subtraction part.
3752   llvm::Value *LHS
3753     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3754   llvm::Value *RHS
3755     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3756   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3757 
3758   // Okay, figure out the element size.
3759   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3760   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3761 
3762   llvm::Value *divisor = nullptr;
3763 
3764   // For a variable-length array, this is going to be non-constant.
3765   if (const VariableArrayType *vla
3766         = CGF.getContext().getAsVariableArrayType(elementType)) {
3767     auto VlaSize = CGF.getVLASize(vla);
3768     elementType = VlaSize.Type;
3769     divisor = VlaSize.NumElts;
3770 
3771     // Scale the number of non-VLA elements by the non-VLA element size.
3772     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3773     if (!eltSize.isOne())
3774       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3775 
3776   // For everything elese, we can just compute it, safe in the
3777   // assumption that Sema won't let anything through that we can't
3778   // safely compute the size of.
3779   } else {
3780     CharUnits elementSize;
3781     // Handle GCC extension for pointer arithmetic on void* and
3782     // function pointer types.
3783     if (elementType->isVoidType() || elementType->isFunctionType())
3784       elementSize = CharUnits::One();
3785     else
3786       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3787 
3788     // Don't even emit the divide for element size of 1.
3789     if (elementSize.isOne())
3790       return diffInChars;
3791 
3792     divisor = CGF.CGM.getSize(elementSize);
3793   }
3794 
3795   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3796   // pointer difference in C is only defined in the case where both operands
3797   // are pointing to elements of an array.
3798   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3799 }
3800 
3801 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3802   llvm::IntegerType *Ty;
3803   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3804     Ty = cast<llvm::IntegerType>(VT->getElementType());
3805   else
3806     Ty = cast<llvm::IntegerType>(LHS->getType());
3807   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3808 }
3809 
3810 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3811                                               const Twine &Name) {
3812   llvm::IntegerType *Ty;
3813   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3814     Ty = cast<llvm::IntegerType>(VT->getElementType());
3815   else
3816     Ty = cast<llvm::IntegerType>(LHS->getType());
3817 
3818   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3819         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3820 
3821   return Builder.CreateURem(
3822       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3823 }
3824 
3825 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3826   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3827   // RHS to the same size as the LHS.
3828   Value *RHS = Ops.RHS;
3829   if (Ops.LHS->getType() != RHS->getType())
3830     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3831 
3832   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3833                       Ops.Ty->hasSignedIntegerRepresentation() &&
3834                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3835                       !CGF.getLangOpts().CPlusPlus20;
3836   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3837   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3838   if (CGF.getLangOpts().OpenCL)
3839     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3840   else if ((SanitizeBase || SanitizeExponent) &&
3841            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3842     CodeGenFunction::SanitizerScope SanScope(&CGF);
3843     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3844     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3845     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3846 
3847     if (SanitizeExponent) {
3848       Checks.push_back(
3849           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3850     }
3851 
3852     if (SanitizeBase) {
3853       // Check whether we are shifting any non-zero bits off the top of the
3854       // integer. We only emit this check if exponent is valid - otherwise
3855       // instructions below will have undefined behavior themselves.
3856       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3857       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3858       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3859       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3860       llvm::Value *PromotedWidthMinusOne =
3861           (RHS == Ops.RHS) ? WidthMinusOne
3862                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3863       CGF.EmitBlock(CheckShiftBase);
3864       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3865           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3866                                      /*NUW*/ true, /*NSW*/ true),
3867           "shl.check");
3868       if (CGF.getLangOpts().CPlusPlus) {
3869         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3870         // Under C++11's rules, shifting a 1 bit into the sign bit is
3871         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3872         // define signed left shifts, so we use the C99 and C++11 rules there).
3873         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3874         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3875       }
3876       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3877       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3878       CGF.EmitBlock(Cont);
3879       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3880       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3881       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3882       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3883     }
3884 
3885     assert(!Checks.empty());
3886     EmitBinOpCheck(Checks, Ops);
3887   }
3888 
3889   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3890 }
3891 
3892 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3893   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3894   // RHS to the same size as the LHS.
3895   Value *RHS = Ops.RHS;
3896   if (Ops.LHS->getType() != RHS->getType())
3897     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3898 
3899   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3900   if (CGF.getLangOpts().OpenCL)
3901     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3902   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3903            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3904     CodeGenFunction::SanitizerScope SanScope(&CGF);
3905     llvm::Value *Valid =
3906         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3907     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3908   }
3909 
3910   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3911     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3912   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3913 }
3914 
3915 enum IntrinsicType { VCMPEQ, VCMPGT };
3916 // return corresponding comparison intrinsic for given vector type
3917 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3918                                         BuiltinType::Kind ElemKind) {
3919   switch (ElemKind) {
3920   default: llvm_unreachable("unexpected element type");
3921   case BuiltinType::Char_U:
3922   case BuiltinType::UChar:
3923     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3924                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3925   case BuiltinType::Char_S:
3926   case BuiltinType::SChar:
3927     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3928                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3929   case BuiltinType::UShort:
3930     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3931                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3932   case BuiltinType::Short:
3933     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3934                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3935   case BuiltinType::UInt:
3936     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3937                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3938   case BuiltinType::Int:
3939     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3940                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3941   case BuiltinType::ULong:
3942   case BuiltinType::ULongLong:
3943     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3944                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3945   case BuiltinType::Long:
3946   case BuiltinType::LongLong:
3947     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3948                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3949   case BuiltinType::Float:
3950     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3951                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3952   case BuiltinType::Double:
3953     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3954                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3955   }
3956 }
3957 
3958 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3959                                       llvm::CmpInst::Predicate UICmpOpc,
3960                                       llvm::CmpInst::Predicate SICmpOpc,
3961                                       llvm::CmpInst::Predicate FCmpOpc,
3962                                       bool IsSignaling) {
3963   TestAndClearIgnoreResultAssign();
3964   Value *Result;
3965   QualType LHSTy = E->getLHS()->getType();
3966   QualType RHSTy = E->getRHS()->getType();
3967   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3968     assert(E->getOpcode() == BO_EQ ||
3969            E->getOpcode() == BO_NE);
3970     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3971     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3972     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3973                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3974   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3975     BinOpInfo BOInfo = EmitBinOps(E);
3976     Value *LHS = BOInfo.LHS;
3977     Value *RHS = BOInfo.RHS;
3978 
3979     // If AltiVec, the comparison results in a numeric type, so we use
3980     // intrinsics comparing vectors and giving 0 or 1 as a result
3981     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3982       // constants for mapping CR6 register bits to predicate result
3983       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3984 
3985       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3986 
3987       // in several cases vector arguments order will be reversed
3988       Value *FirstVecArg = LHS,
3989             *SecondVecArg = RHS;
3990 
3991       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3992       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3993 
3994       switch(E->getOpcode()) {
3995       default: llvm_unreachable("is not a comparison operation");
3996       case BO_EQ:
3997         CR6 = CR6_LT;
3998         ID = GetIntrinsic(VCMPEQ, ElementKind);
3999         break;
4000       case BO_NE:
4001         CR6 = CR6_EQ;
4002         ID = GetIntrinsic(VCMPEQ, ElementKind);
4003         break;
4004       case BO_LT:
4005         CR6 = CR6_LT;
4006         ID = GetIntrinsic(VCMPGT, ElementKind);
4007         std::swap(FirstVecArg, SecondVecArg);
4008         break;
4009       case BO_GT:
4010         CR6 = CR6_LT;
4011         ID = GetIntrinsic(VCMPGT, ElementKind);
4012         break;
4013       case BO_LE:
4014         if (ElementKind == BuiltinType::Float) {
4015           CR6 = CR6_LT;
4016           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4017           std::swap(FirstVecArg, SecondVecArg);
4018         }
4019         else {
4020           CR6 = CR6_EQ;
4021           ID = GetIntrinsic(VCMPGT, ElementKind);
4022         }
4023         break;
4024       case BO_GE:
4025         if (ElementKind == BuiltinType::Float) {
4026           CR6 = CR6_LT;
4027           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4028         }
4029         else {
4030           CR6 = CR6_EQ;
4031           ID = GetIntrinsic(VCMPGT, ElementKind);
4032           std::swap(FirstVecArg, SecondVecArg);
4033         }
4034         break;
4035       }
4036 
4037       Value *CR6Param = Builder.getInt32(CR6);
4038       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4039       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4040 
4041       // The result type of intrinsic may not be same as E->getType().
4042       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4043       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4044       // do nothing, if ResultTy is not i1 at the same time, it will cause
4045       // crash later.
4046       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4047       if (ResultTy->getBitWidth() > 1 &&
4048           E->getType() == CGF.getContext().BoolTy)
4049         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4050       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4051                                   E->getExprLoc());
4052     }
4053 
4054     if (BOInfo.isFixedPointOp()) {
4055       Result = EmitFixedPointBinOp(BOInfo);
4056     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4057       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4058       if (!IsSignaling)
4059         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4060       else
4061         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4062     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4063       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4064     } else {
4065       // Unsigned integers and pointers.
4066 
4067       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4068           !isa<llvm::ConstantPointerNull>(LHS) &&
4069           !isa<llvm::ConstantPointerNull>(RHS)) {
4070 
4071         // Dynamic information is required to be stripped for comparisons,
4072         // because it could leak the dynamic information.  Based on comparisons
4073         // of pointers to dynamic objects, the optimizer can replace one pointer
4074         // with another, which might be incorrect in presence of invariant
4075         // groups. Comparison with null is safe because null does not carry any
4076         // dynamic information.
4077         if (LHSTy.mayBeDynamicClass())
4078           LHS = Builder.CreateStripInvariantGroup(LHS);
4079         if (RHSTy.mayBeDynamicClass())
4080           RHS = Builder.CreateStripInvariantGroup(RHS);
4081       }
4082 
4083       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4084     }
4085 
4086     // If this is a vector comparison, sign extend the result to the appropriate
4087     // vector integer type and return it (don't convert to bool).
4088     if (LHSTy->isVectorType())
4089       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4090 
4091   } else {
4092     // Complex Comparison: can only be an equality comparison.
4093     CodeGenFunction::ComplexPairTy LHS, RHS;
4094     QualType CETy;
4095     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4096       LHS = CGF.EmitComplexExpr(E->getLHS());
4097       CETy = CTy->getElementType();
4098     } else {
4099       LHS.first = Visit(E->getLHS());
4100       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4101       CETy = LHSTy;
4102     }
4103     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4104       RHS = CGF.EmitComplexExpr(E->getRHS());
4105       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4106                                                      CTy->getElementType()) &&
4107              "The element types must always match.");
4108       (void)CTy;
4109     } else {
4110       RHS.first = Visit(E->getRHS());
4111       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4112       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4113              "The element types must always match.");
4114     }
4115 
4116     Value *ResultR, *ResultI;
4117     if (CETy->isRealFloatingType()) {
4118       // As complex comparisons can only be equality comparisons, they
4119       // are never signaling comparisons.
4120       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4121       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4122     } else {
4123       // Complex comparisons can only be equality comparisons.  As such, signed
4124       // and unsigned opcodes are the same.
4125       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4126       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4127     }
4128 
4129     if (E->getOpcode() == BO_EQ) {
4130       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4131     } else {
4132       assert(E->getOpcode() == BO_NE &&
4133              "Complex comparison other than == or != ?");
4134       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4135     }
4136   }
4137 
4138   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4139                               E->getExprLoc());
4140 }
4141 
4142 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4143   bool Ignore = TestAndClearIgnoreResultAssign();
4144 
4145   Value *RHS;
4146   LValue LHS;
4147 
4148   switch (E->getLHS()->getType().getObjCLifetime()) {
4149   case Qualifiers::OCL_Strong:
4150     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4151     break;
4152 
4153   case Qualifiers::OCL_Autoreleasing:
4154     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4155     break;
4156 
4157   case Qualifiers::OCL_ExplicitNone:
4158     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4159     break;
4160 
4161   case Qualifiers::OCL_Weak:
4162     RHS = Visit(E->getRHS());
4163     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4164     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4165     break;
4166 
4167   case Qualifiers::OCL_None:
4168     // __block variables need to have the rhs evaluated first, plus
4169     // this should improve codegen just a little.
4170     RHS = Visit(E->getRHS());
4171     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4172 
4173     // Store the value into the LHS.  Bit-fields are handled specially
4174     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4175     // 'An assignment expression has the value of the left operand after
4176     // the assignment...'.
4177     if (LHS.isBitField()) {
4178       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4179     } else {
4180       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4181       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4182     }
4183   }
4184 
4185   // If the result is clearly ignored, return now.
4186   if (Ignore)
4187     return nullptr;
4188 
4189   // The result of an assignment in C is the assigned r-value.
4190   if (!CGF.getLangOpts().CPlusPlus)
4191     return RHS;
4192 
4193   // If the lvalue is non-volatile, return the computed value of the assignment.
4194   if (!LHS.isVolatileQualified())
4195     return RHS;
4196 
4197   // Otherwise, reload the value.
4198   return EmitLoadOfLValue(LHS, E->getExprLoc());
4199 }
4200 
4201 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4202   // Perform vector logical and on comparisons with zero vectors.
4203   if (E->getType()->isVectorType()) {
4204     CGF.incrementProfileCounter(E);
4205 
4206     Value *LHS = Visit(E->getLHS());
4207     Value *RHS = Visit(E->getRHS());
4208     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4209     if (LHS->getType()->isFPOrFPVectorTy()) {
4210       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4211           CGF, E->getFPFeatures(CGF.getLangOpts()));
4212       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4213       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4214     } else {
4215       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4216       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4217     }
4218     Value *And = Builder.CreateAnd(LHS, RHS);
4219     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4220   }
4221 
4222   llvm::Type *ResTy = ConvertType(E->getType());
4223 
4224   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4225   // If we have 1 && X, just emit X without inserting the control flow.
4226   bool LHSCondVal;
4227   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4228     if (LHSCondVal) { // If we have 1 && X, just emit X.
4229       CGF.incrementProfileCounter(E);
4230 
4231       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4232       // ZExt result to int or bool.
4233       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4234     }
4235 
4236     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4237     if (!CGF.ContainsLabel(E->getRHS()))
4238       return llvm::Constant::getNullValue(ResTy);
4239   }
4240 
4241   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4242   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4243 
4244   CodeGenFunction::ConditionalEvaluation eval(CGF);
4245 
4246   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4247   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4248                            CGF.getProfileCount(E->getRHS()));
4249 
4250   // Any edges into the ContBlock are now from an (indeterminate number of)
4251   // edges from this first condition.  All of these values will be false.  Start
4252   // setting up the PHI node in the Cont Block for this.
4253   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4254                                             "", ContBlock);
4255   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4256        PI != PE; ++PI)
4257     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4258 
4259   eval.begin(CGF);
4260   CGF.EmitBlock(RHSBlock);
4261   CGF.incrementProfileCounter(E);
4262   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4263   eval.end(CGF);
4264 
4265   // Reaquire the RHS block, as there may be subblocks inserted.
4266   RHSBlock = Builder.GetInsertBlock();
4267 
4268   // Emit an unconditional branch from this block to ContBlock.
4269   {
4270     // There is no need to emit line number for unconditional branch.
4271     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4272     CGF.EmitBlock(ContBlock);
4273   }
4274   // Insert an entry into the phi node for the edge with the value of RHSCond.
4275   PN->addIncoming(RHSCond, RHSBlock);
4276 
4277   // Artificial location to preserve the scope information
4278   {
4279     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4280     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4281   }
4282 
4283   // ZExt result to int.
4284   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4285 }
4286 
4287 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4288   // Perform vector logical or on comparisons with zero vectors.
4289   if (E->getType()->isVectorType()) {
4290     CGF.incrementProfileCounter(E);
4291 
4292     Value *LHS = Visit(E->getLHS());
4293     Value *RHS = Visit(E->getRHS());
4294     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4295     if (LHS->getType()->isFPOrFPVectorTy()) {
4296       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4297           CGF, E->getFPFeatures(CGF.getLangOpts()));
4298       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4299       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4300     } else {
4301       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4302       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4303     }
4304     Value *Or = Builder.CreateOr(LHS, RHS);
4305     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4306   }
4307 
4308   llvm::Type *ResTy = ConvertType(E->getType());
4309 
4310   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4311   // If we have 0 || X, just emit X without inserting the control flow.
4312   bool LHSCondVal;
4313   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4314     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4315       CGF.incrementProfileCounter(E);
4316 
4317       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4318       // ZExt result to int or bool.
4319       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4320     }
4321 
4322     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4323     if (!CGF.ContainsLabel(E->getRHS()))
4324       return llvm::ConstantInt::get(ResTy, 1);
4325   }
4326 
4327   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4328   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4329 
4330   CodeGenFunction::ConditionalEvaluation eval(CGF);
4331 
4332   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4333   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4334                            CGF.getCurrentProfileCount() -
4335                                CGF.getProfileCount(E->getRHS()));
4336 
4337   // Any edges into the ContBlock are now from an (indeterminate number of)
4338   // edges from this first condition.  All of these values will be true.  Start
4339   // setting up the PHI node in the Cont Block for this.
4340   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4341                                             "", ContBlock);
4342   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4343        PI != PE; ++PI)
4344     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4345 
4346   eval.begin(CGF);
4347 
4348   // Emit the RHS condition as a bool value.
4349   CGF.EmitBlock(RHSBlock);
4350   CGF.incrementProfileCounter(E);
4351   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4352 
4353   eval.end(CGF);
4354 
4355   // Reaquire the RHS block, as there may be subblocks inserted.
4356   RHSBlock = Builder.GetInsertBlock();
4357 
4358   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4359   // into the phi node for the edge with the value of RHSCond.
4360   CGF.EmitBlock(ContBlock);
4361   PN->addIncoming(RHSCond, RHSBlock);
4362 
4363   // ZExt result to int.
4364   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4365 }
4366 
4367 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4368   CGF.EmitIgnoredExpr(E->getLHS());
4369   CGF.EnsureInsertPoint();
4370   return Visit(E->getRHS());
4371 }
4372 
4373 //===----------------------------------------------------------------------===//
4374 //                             Other Operators
4375 //===----------------------------------------------------------------------===//
4376 
4377 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4378 /// expression is cheap enough and side-effect-free enough to evaluate
4379 /// unconditionally instead of conditionally.  This is used to convert control
4380 /// flow into selects in some cases.
4381 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4382                                                    CodeGenFunction &CGF) {
4383   // Anything that is an integer or floating point constant is fine.
4384   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4385 
4386   // Even non-volatile automatic variables can't be evaluated unconditionally.
4387   // Referencing a thread_local may cause non-trivial initialization work to
4388   // occur. If we're inside a lambda and one of the variables is from the scope
4389   // outside the lambda, that function may have returned already. Reading its
4390   // locals is a bad idea. Also, these reads may introduce races there didn't
4391   // exist in the source-level program.
4392 }
4393 
4394 
4395 Value *ScalarExprEmitter::
4396 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4397   TestAndClearIgnoreResultAssign();
4398 
4399   // Bind the common expression if necessary.
4400   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4401 
4402   Expr *condExpr = E->getCond();
4403   Expr *lhsExpr = E->getTrueExpr();
4404   Expr *rhsExpr = E->getFalseExpr();
4405 
4406   // If the condition constant folds and can be elided, try to avoid emitting
4407   // the condition and the dead arm.
4408   bool CondExprBool;
4409   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4410     Expr *live = lhsExpr, *dead = rhsExpr;
4411     if (!CondExprBool) std::swap(live, dead);
4412 
4413     // If the dead side doesn't have labels we need, just emit the Live part.
4414     if (!CGF.ContainsLabel(dead)) {
4415       if (CondExprBool)
4416         CGF.incrementProfileCounter(E);
4417       Value *Result = Visit(live);
4418 
4419       // If the live part is a throw expression, it acts like it has a void
4420       // type, so evaluating it returns a null Value*.  However, a conditional
4421       // with non-void type must return a non-null Value*.
4422       if (!Result && !E->getType()->isVoidType())
4423         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4424 
4425       return Result;
4426     }
4427   }
4428 
4429   // OpenCL: If the condition is a vector, we can treat this condition like
4430   // the select function.
4431   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4432       condExpr->getType()->isExtVectorType()) {
4433     CGF.incrementProfileCounter(E);
4434 
4435     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4436     llvm::Value *LHS = Visit(lhsExpr);
4437     llvm::Value *RHS = Visit(rhsExpr);
4438 
4439     llvm::Type *condType = ConvertType(condExpr->getType());
4440     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4441 
4442     unsigned numElem = vecTy->getNumElements();
4443     llvm::Type *elemType = vecTy->getElementType();
4444 
4445     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4446     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4447     llvm::Value *tmp = Builder.CreateSExt(
4448         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4449     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4450 
4451     // Cast float to int to perform ANDs if necessary.
4452     llvm::Value *RHSTmp = RHS;
4453     llvm::Value *LHSTmp = LHS;
4454     bool wasCast = false;
4455     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4456     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4457       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4458       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4459       wasCast = true;
4460     }
4461 
4462     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4463     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4464     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4465     if (wasCast)
4466       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4467 
4468     return tmp5;
4469   }
4470 
4471   if (condExpr->getType()->isVectorType()) {
4472     CGF.incrementProfileCounter(E);
4473 
4474     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4475     llvm::Value *LHS = Visit(lhsExpr);
4476     llvm::Value *RHS = Visit(rhsExpr);
4477 
4478     llvm::Type *CondType = ConvertType(condExpr->getType());
4479     auto *VecTy = cast<llvm::VectorType>(CondType);
4480     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4481 
4482     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4483     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4484   }
4485 
4486   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4487   // select instead of as control flow.  We can only do this if it is cheap and
4488   // safe to evaluate the LHS and RHS unconditionally.
4489   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4490       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4491     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4492     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4493 
4494     CGF.incrementProfileCounter(E, StepV);
4495 
4496     llvm::Value *LHS = Visit(lhsExpr);
4497     llvm::Value *RHS = Visit(rhsExpr);
4498     if (!LHS) {
4499       // If the conditional has void type, make sure we return a null Value*.
4500       assert(!RHS && "LHS and RHS types must match");
4501       return nullptr;
4502     }
4503     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4504   }
4505 
4506   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4507   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4508   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4509 
4510   CodeGenFunction::ConditionalEvaluation eval(CGF);
4511   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4512                            CGF.getProfileCount(lhsExpr));
4513 
4514   CGF.EmitBlock(LHSBlock);
4515   CGF.incrementProfileCounter(E);
4516   eval.begin(CGF);
4517   Value *LHS = Visit(lhsExpr);
4518   eval.end(CGF);
4519 
4520   LHSBlock = Builder.GetInsertBlock();
4521   Builder.CreateBr(ContBlock);
4522 
4523   CGF.EmitBlock(RHSBlock);
4524   eval.begin(CGF);
4525   Value *RHS = Visit(rhsExpr);
4526   eval.end(CGF);
4527 
4528   RHSBlock = Builder.GetInsertBlock();
4529   CGF.EmitBlock(ContBlock);
4530 
4531   // If the LHS or RHS is a throw expression, it will be legitimately null.
4532   if (!LHS)
4533     return RHS;
4534   if (!RHS)
4535     return LHS;
4536 
4537   // Create a PHI node for the real part.
4538   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4539   PN->addIncoming(LHS, LHSBlock);
4540   PN->addIncoming(RHS, RHSBlock);
4541   return PN;
4542 }
4543 
4544 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4545   return Visit(E->getChosenSubExpr());
4546 }
4547 
4548 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4549   QualType Ty = VE->getType();
4550 
4551   if (Ty->isVariablyModifiedType())
4552     CGF.EmitVariablyModifiedType(Ty);
4553 
4554   Address ArgValue = Address::invalid();
4555   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4556 
4557   llvm::Type *ArgTy = ConvertType(VE->getType());
4558 
4559   // If EmitVAArg fails, emit an error.
4560   if (!ArgPtr.isValid()) {
4561     CGF.ErrorUnsupported(VE, "va_arg expression");
4562     return llvm::UndefValue::get(ArgTy);
4563   }
4564 
4565   // FIXME Volatility.
4566   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4567 
4568   // If EmitVAArg promoted the type, we must truncate it.
4569   if (ArgTy != Val->getType()) {
4570     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4571       Val = Builder.CreateIntToPtr(Val, ArgTy);
4572     else
4573       Val = Builder.CreateTrunc(Val, ArgTy);
4574   }
4575 
4576   return Val;
4577 }
4578 
4579 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4580   return CGF.EmitBlockLiteral(block);
4581 }
4582 
4583 // Convert a vec3 to vec4, or vice versa.
4584 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4585                                  Value *Src, unsigned NumElementsDst) {
4586   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4587   static constexpr int Mask[] = {0, 1, 2, -1};
4588   return Builder.CreateShuffleVector(Src, UnV,
4589                                      llvm::makeArrayRef(Mask, NumElementsDst));
4590 }
4591 
4592 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4593 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4594 // but could be scalar or vectors of different lengths, and either can be
4595 // pointer.
4596 // There are 4 cases:
4597 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4598 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4599 // 3. pointer -> non-pointer
4600 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4601 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4602 // 4. non-pointer -> pointer
4603 //   a) intptr_t -> pointer       : needs 1 inttoptr
4604 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4605 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4606 // allow casting directly between pointer types and non-integer non-pointer
4607 // types.
4608 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4609                                            const llvm::DataLayout &DL,
4610                                            Value *Src, llvm::Type *DstTy,
4611                                            StringRef Name = "") {
4612   auto SrcTy = Src->getType();
4613 
4614   // Case 1.
4615   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4616     return Builder.CreateBitCast(Src, DstTy, Name);
4617 
4618   // Case 2.
4619   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4620     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4621 
4622   // Case 3.
4623   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4624     // Case 3b.
4625     if (!DstTy->isIntegerTy())
4626       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4627     // Cases 3a and 3b.
4628     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4629   }
4630 
4631   // Case 4b.
4632   if (!SrcTy->isIntegerTy())
4633     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4634   // Cases 4a and 4b.
4635   return Builder.CreateIntToPtr(Src, DstTy, Name);
4636 }
4637 
4638 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4639   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4640   llvm::Type *DstTy = ConvertType(E->getType());
4641 
4642   llvm::Type *SrcTy = Src->getType();
4643   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4644     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4645   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4646     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4647 
4648   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4649   // vector to get a vec4, then a bitcast if the target type is different.
4650   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4651     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4652 
4653     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4654       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4655                                          DstTy);
4656     }
4657 
4658     Src->setName("astype");
4659     return Src;
4660   }
4661 
4662   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4663   // to vec4 if the original type is not vec4, then a shuffle vector to
4664   // get a vec3.
4665   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4666     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4667       auto *Vec4Ty = llvm::FixedVectorType::get(
4668           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4669       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4670                                          Vec4Ty);
4671     }
4672 
4673     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4674     Src->setName("astype");
4675     return Src;
4676   }
4677 
4678   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4679                                       Src, DstTy, "astype");
4680 }
4681 
4682 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4683   return CGF.EmitAtomicExpr(E).getScalarVal();
4684 }
4685 
4686 //===----------------------------------------------------------------------===//
4687 //                         Entry Point into this File
4688 //===----------------------------------------------------------------------===//
4689 
4690 /// Emit the computation of the specified expression of scalar type, ignoring
4691 /// the result.
4692 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4693   assert(E && hasScalarEvaluationKind(E->getType()) &&
4694          "Invalid scalar expression to emit");
4695 
4696   return ScalarExprEmitter(*this, IgnoreResultAssign)
4697       .Visit(const_cast<Expr *>(E));
4698 }
4699 
4700 /// Emit a conversion from the specified type to the specified destination type,
4701 /// both of which are LLVM scalar types.
4702 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4703                                              QualType DstTy,
4704                                              SourceLocation Loc) {
4705   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4706          "Invalid scalar expression to emit");
4707   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4708 }
4709 
4710 /// Emit a conversion from the specified complex type to the specified
4711 /// destination type, where the destination type is an LLVM scalar type.
4712 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4713                                                       QualType SrcTy,
4714                                                       QualType DstTy,
4715                                                       SourceLocation Loc) {
4716   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4717          "Invalid complex -> scalar conversion");
4718   return ScalarExprEmitter(*this)
4719       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4720 }
4721 
4722 
4723 llvm::Value *CodeGenFunction::
4724 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4725                         bool isInc, bool isPre) {
4726   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4727 }
4728 
4729 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4730   // object->isa or (*object).isa
4731   // Generate code as for: *(Class*)object
4732 
4733   Expr *BaseExpr = E->getBase();
4734   Address Addr = Address::invalid();
4735   if (BaseExpr->isRValue()) {
4736     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4737   } else {
4738     Addr = EmitLValue(BaseExpr).getAddress(*this);
4739   }
4740 
4741   // Cast the address to Class*.
4742   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4743   return MakeAddrLValue(Addr, E->getType());
4744 }
4745 
4746 
4747 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4748                                             const CompoundAssignOperator *E) {
4749   ScalarExprEmitter Scalar(*this);
4750   Value *Result = nullptr;
4751   switch (E->getOpcode()) {
4752 #define COMPOUND_OP(Op)                                                       \
4753     case BO_##Op##Assign:                                                     \
4754       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4755                                              Result)
4756   COMPOUND_OP(Mul);
4757   COMPOUND_OP(Div);
4758   COMPOUND_OP(Rem);
4759   COMPOUND_OP(Add);
4760   COMPOUND_OP(Sub);
4761   COMPOUND_OP(Shl);
4762   COMPOUND_OP(Shr);
4763   COMPOUND_OP(And);
4764   COMPOUND_OP(Xor);
4765   COMPOUND_OP(Or);
4766 #undef COMPOUND_OP
4767 
4768   case BO_PtrMemD:
4769   case BO_PtrMemI:
4770   case BO_Mul:
4771   case BO_Div:
4772   case BO_Rem:
4773   case BO_Add:
4774   case BO_Sub:
4775   case BO_Shl:
4776   case BO_Shr:
4777   case BO_LT:
4778   case BO_GT:
4779   case BO_LE:
4780   case BO_GE:
4781   case BO_EQ:
4782   case BO_NE:
4783   case BO_Cmp:
4784   case BO_And:
4785   case BO_Xor:
4786   case BO_Or:
4787   case BO_LAnd:
4788   case BO_LOr:
4789   case BO_Assign:
4790   case BO_Comma:
4791     llvm_unreachable("Not valid compound assignment operators");
4792   }
4793 
4794   llvm_unreachable("Unhandled compound assignment operator");
4795 }
4796 
4797 struct GEPOffsetAndOverflow {
4798   // The total (signed) byte offset for the GEP.
4799   llvm::Value *TotalOffset;
4800   // The offset overflow flag - true if the total offset overflows.
4801   llvm::Value *OffsetOverflows;
4802 };
4803 
4804 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4805 /// and compute the total offset it applies from it's base pointer BasePtr.
4806 /// Returns offset in bytes and a boolean flag whether an overflow happened
4807 /// during evaluation.
4808 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4809                                                  llvm::LLVMContext &VMContext,
4810                                                  CodeGenModule &CGM,
4811                                                  CGBuilderTy &Builder) {
4812   const auto &DL = CGM.getDataLayout();
4813 
4814   // The total (signed) byte offset for the GEP.
4815   llvm::Value *TotalOffset = nullptr;
4816 
4817   // Was the GEP already reduced to a constant?
4818   if (isa<llvm::Constant>(GEPVal)) {
4819     // Compute the offset by casting both pointers to integers and subtracting:
4820     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4821     Value *BasePtr_int =
4822         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4823     Value *GEPVal_int =
4824         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4825     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4826     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4827   }
4828 
4829   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4830   assert(GEP->getPointerOperand() == BasePtr &&
4831          "BasePtr must be the the base of the GEP.");
4832   assert(GEP->isInBounds() && "Expected inbounds GEP");
4833 
4834   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4835 
4836   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4837   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4838   auto *SAddIntrinsic =
4839       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4840   auto *SMulIntrinsic =
4841       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4842 
4843   // The offset overflow flag - true if the total offset overflows.
4844   llvm::Value *OffsetOverflows = Builder.getFalse();
4845 
4846   /// Return the result of the given binary operation.
4847   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4848                   llvm::Value *RHS) -> llvm::Value * {
4849     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4850 
4851     // If the operands are constants, return a constant result.
4852     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4853       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4854         llvm::APInt N;
4855         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4856                                                   /*Signed=*/true, N);
4857         if (HasOverflow)
4858           OffsetOverflows = Builder.getTrue();
4859         return llvm::ConstantInt::get(VMContext, N);
4860       }
4861     }
4862 
4863     // Otherwise, compute the result with checked arithmetic.
4864     auto *ResultAndOverflow = Builder.CreateCall(
4865         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4866     OffsetOverflows = Builder.CreateOr(
4867         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4868     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4869   };
4870 
4871   // Determine the total byte offset by looking at each GEP operand.
4872   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4873        GTI != GTE; ++GTI) {
4874     llvm::Value *LocalOffset;
4875     auto *Index = GTI.getOperand();
4876     // Compute the local offset contributed by this indexing step:
4877     if (auto *STy = GTI.getStructTypeOrNull()) {
4878       // For struct indexing, the local offset is the byte position of the
4879       // specified field.
4880       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4881       LocalOffset = llvm::ConstantInt::get(
4882           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4883     } else {
4884       // Otherwise this is array-like indexing. The local offset is the index
4885       // multiplied by the element size.
4886       auto *ElementSize = llvm::ConstantInt::get(
4887           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4888       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4889       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4890     }
4891 
4892     // If this is the first offset, set it as the total offset. Otherwise, add
4893     // the local offset into the running total.
4894     if (!TotalOffset || TotalOffset == Zero)
4895       TotalOffset = LocalOffset;
4896     else
4897       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4898   }
4899 
4900   return {TotalOffset, OffsetOverflows};
4901 }
4902 
4903 Value *
4904 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4905                                         bool SignedIndices, bool IsSubtraction,
4906                                         SourceLocation Loc, const Twine &Name) {
4907   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4908 
4909   // If the pointer overflow sanitizer isn't enabled, do nothing.
4910   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4911     return GEPVal;
4912 
4913   llvm::Type *PtrTy = Ptr->getType();
4914 
4915   // Perform nullptr-and-offset check unless the nullptr is defined.
4916   bool PerformNullCheck = !NullPointerIsDefined(
4917       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4918   // Check for overflows unless the GEP got constant-folded,
4919   // and only in the default address space
4920   bool PerformOverflowCheck =
4921       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4922 
4923   if (!(PerformNullCheck || PerformOverflowCheck))
4924     return GEPVal;
4925 
4926   const auto &DL = CGM.getDataLayout();
4927 
4928   SanitizerScope SanScope(this);
4929   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4930 
4931   GEPOffsetAndOverflow EvaluatedGEP =
4932       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4933 
4934   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4935           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4936          "If the offset got constant-folded, we don't expect that there was an "
4937          "overflow.");
4938 
4939   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4940 
4941   // Common case: if the total offset is zero, and we are using C++ semantics,
4942   // where nullptr+0 is defined, don't emit a check.
4943   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4944     return GEPVal;
4945 
4946   // Now that we've computed the total offset, add it to the base pointer (with
4947   // wrapping semantics).
4948   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4949   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4950 
4951   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4952 
4953   if (PerformNullCheck) {
4954     // In C++, if the base pointer evaluates to a null pointer value,
4955     // the only valid  pointer this inbounds GEP can produce is also
4956     // a null pointer, so the offset must also evaluate to zero.
4957     // Likewise, if we have non-zero base pointer, we can not get null pointer
4958     // as a result, so the offset can not be -intptr_t(BasePtr).
4959     // In other words, both pointers are either null, or both are non-null,
4960     // or the behaviour is undefined.
4961     //
4962     // C, however, is more strict in this regard, and gives more
4963     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4964     // So both the input to the 'gep inbounds' AND the output must not be null.
4965     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4966     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4967     auto *Valid =
4968         CGM.getLangOpts().CPlusPlus
4969             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4970             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4971     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4972   }
4973 
4974   if (PerformOverflowCheck) {
4975     // The GEP is valid if:
4976     // 1) The total offset doesn't overflow, and
4977     // 2) The sign of the difference between the computed address and the base
4978     // pointer matches the sign of the total offset.
4979     llvm::Value *ValidGEP;
4980     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4981     if (SignedIndices) {
4982       // GEP is computed as `unsigned base + signed offset`, therefore:
4983       // * If offset was positive, then the computed pointer can not be
4984       //   [unsigned] less than the base pointer, unless it overflowed.
4985       // * If offset was negative, then the computed pointer can not be
4986       //   [unsigned] greater than the bas pointere, unless it overflowed.
4987       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4988       auto *PosOrZeroOffset =
4989           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4990       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4991       ValidGEP =
4992           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4993     } else if (!IsSubtraction) {
4994       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4995       // computed pointer can not be [unsigned] less than base pointer,
4996       // unless there was an overflow.
4997       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4998       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4999     } else {
5000       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5001       // computed pointer can not be [unsigned] greater than base pointer,
5002       // unless there was an overflow.
5003       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5004       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5005     }
5006     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5007     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5008   }
5009 
5010   assert(!Checks.empty() && "Should have produced some checks.");
5011 
5012   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5013   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5014   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5015   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5016 
5017   return GEPVal;
5018 }
5019