1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
352                         llvm::Type *SrcTy, llvm::Type *DstTy,
353                         ScalarConversionOpts Opts);
354   Value *
355   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
356                        SourceLocation Loc,
357                        ScalarConversionOpts Opts = ScalarConversionOpts());
358 
359   /// Convert between either a fixed point and other fixed point or fixed point
360   /// and an integer.
361   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
362                                   SourceLocation Loc);
363 
364   /// Emit a conversion from the specified complex type to the specified
365   /// destination type, where the destination type is an LLVM scalar type.
366   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367                                        QualType SrcTy, QualType DstTy,
368                                        SourceLocation Loc);
369 
370   /// EmitNullValue - Emit a value that corresponds to null for the given type.
371   Value *EmitNullValue(QualType Ty);
372 
373   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
374   Value *EmitFloatToBoolConversion(Value *V) {
375     // Compare against 0.0 for fp scalars.
376     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377     return Builder.CreateFCmpUNE(V, Zero, "tobool");
378   }
379 
380   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
381   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384     return Builder.CreateICmpNE(V, Zero, "tobool");
385   }
386 
387   Value *EmitIntToBoolConversion(Value *V) {
388     // Because of the type rules of C, we often end up computing a
389     // logical value, then zero extending it to int, then wanting it
390     // as a logical value again.  Optimize this common case.
391     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393         Value *Result = ZI->getOperand(0);
394         // If there aren't any more uses, zap the instruction to save space.
395         // Note that there can be more uses, for example if this
396         // is the result of an assignment.
397         if (ZI->use_empty())
398           ZI->eraseFromParent();
399         return Result;
400       }
401     }
402 
403     return Builder.CreateIsNotNull(V, "tobool");
404   }
405 
406   //===--------------------------------------------------------------------===//
407   //                            Visitor Methods
408   //===--------------------------------------------------------------------===//
409 
410   Value *Visit(Expr *E) {
411     ApplyDebugLocation DL(CGF, E);
412     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
413   }
414 
415   Value *VisitStmt(Stmt *S) {
416     S->dump(llvm::errs(), CGF.getContext());
417     llvm_unreachable("Stmt can't have complex result type!");
418   }
419   Value *VisitExpr(Expr *S);
420 
421   Value *VisitConstantExpr(ConstantExpr *E) {
422     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423       if (E->isGLValue())
424         return CGF.Builder.CreateLoad(Address(
425             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
426       return Result;
427     }
428     return Visit(E->getSubExpr());
429   }
430   Value *VisitParenExpr(ParenExpr *PE) {
431     return Visit(PE->getSubExpr());
432   }
433   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
434     return Visit(E->getReplacement());
435   }
436   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
437     return Visit(GE->getResultExpr());
438   }
439   Value *VisitCoawaitExpr(CoawaitExpr *S) {
440     return CGF.EmitCoawaitExpr(*S).getScalarVal();
441   }
442   Value *VisitCoyieldExpr(CoyieldExpr *S) {
443     return CGF.EmitCoyieldExpr(*S).getScalarVal();
444   }
445   Value *VisitUnaryCoawait(const UnaryOperator *E) {
446     return Visit(E->getSubExpr());
447   }
448 
449   // Leaves.
450   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
454     return Builder.getInt(E->getValue());
455   }
456   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
457     return llvm::ConstantFP::get(VMContext, E->getValue());
458   }
459   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
466     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467   }
468   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
472     return EmitNullValue(E->getType());
473   }
474   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
475   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
476   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
477     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
478     return Builder.CreateBitCast(V, ConvertType(E->getType()));
479   }
480 
481   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
482     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
483   }
484 
485   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
486     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
487   }
488 
489   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
490     if (E->isGLValue())
491       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
492                               E->getExprLoc());
493 
494     // Otherwise, assume the mapping is the scalar directly.
495     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
496   }
497 
498   // l-values.
499   Value *VisitDeclRefExpr(DeclRefExpr *E) {
500     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
501       return CGF.emitScalarConstant(Constant, E);
502     return EmitLoadOfLValue(E);
503   }
504 
505   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
506     return CGF.EmitObjCSelectorExpr(E);
507   }
508   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
509     return CGF.EmitObjCProtocolExpr(E);
510   }
511   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
512     return EmitLoadOfLValue(E);
513   }
514   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
515     if (E->getMethodDecl() &&
516         E->getMethodDecl()->getReturnType()->isReferenceType())
517       return EmitLoadOfLValue(E);
518     return CGF.EmitObjCMessageExpr(E).getScalarVal();
519   }
520 
521   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
522     LValue LV = CGF.EmitObjCIsaExpr(E);
523     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
524     return V;
525   }
526 
527   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
528     VersionTuple Version = E->getVersion();
529 
530     // If we're checking for a platform older than our minimum deployment
531     // target, we can fold the check away.
532     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
533       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
534 
535     return CGF.EmitBuiltinAvailable(Version);
536   }
537 
538   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
539   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
540   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
541   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
542   Value *VisitMemberExpr(MemberExpr *E);
543   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
544   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
545     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
546     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
547     // literals aren't l-values in C++. We do so simply because that's the
548     // cleanest way to handle compound literals in C++.
549     // See the discussion here: https://reviews.llvm.org/D64464
550     return EmitLoadOfLValue(E);
551   }
552 
553   Value *VisitInitListExpr(InitListExpr *E);
554 
555   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
556     assert(CGF.getArrayInitIndex() &&
557            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
558     return CGF.getArrayInitIndex();
559   }
560 
561   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
562     return EmitNullValue(E->getType());
563   }
564   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
565     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
566     return VisitCastExpr(E);
567   }
568   Value *VisitCastExpr(CastExpr *E);
569 
570   Value *VisitCallExpr(const CallExpr *E) {
571     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
572       return EmitLoadOfLValue(E);
573 
574     Value *V = CGF.EmitCallExpr(E).getScalarVal();
575 
576     EmitLValueAlignmentAssumption(E, V);
577     return V;
578   }
579 
580   Value *VisitStmtExpr(const StmtExpr *E);
581 
582   // Unary Operators.
583   Value *VisitUnaryPostDec(const UnaryOperator *E) {
584     LValue LV = EmitLValue(E->getSubExpr());
585     return EmitScalarPrePostIncDec(E, LV, false, false);
586   }
587   Value *VisitUnaryPostInc(const UnaryOperator *E) {
588     LValue LV = EmitLValue(E->getSubExpr());
589     return EmitScalarPrePostIncDec(E, LV, true, false);
590   }
591   Value *VisitUnaryPreDec(const UnaryOperator *E) {
592     LValue LV = EmitLValue(E->getSubExpr());
593     return EmitScalarPrePostIncDec(E, LV, false, true);
594   }
595   Value *VisitUnaryPreInc(const UnaryOperator *E) {
596     LValue LV = EmitLValue(E->getSubExpr());
597     return EmitScalarPrePostIncDec(E, LV, true, true);
598   }
599 
600   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
601                                                   llvm::Value *InVal,
602                                                   bool IsInc);
603 
604   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
605                                        bool isInc, bool isPre);
606 
607 
608   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
609     if (isa<MemberPointerType>(E->getType())) // never sugared
610       return CGF.CGM.getMemberPointerConstant(E);
611 
612     return EmitLValue(E->getSubExpr()).getPointer(CGF);
613   }
614   Value *VisitUnaryDeref(const UnaryOperator *E) {
615     if (E->getType()->isVoidType())
616       return Visit(E->getSubExpr()); // the actual value should be unused
617     return EmitLoadOfLValue(E);
618   }
619   Value *VisitUnaryPlus(const UnaryOperator *E) {
620     // This differs from gcc, though, most likely due to a bug in gcc.
621     TestAndClearIgnoreResultAssign();
622     return Visit(E->getSubExpr());
623   }
624   Value *VisitUnaryMinus    (const UnaryOperator *E);
625   Value *VisitUnaryNot      (const UnaryOperator *E);
626   Value *VisitUnaryLNot     (const UnaryOperator *E);
627   Value *VisitUnaryReal     (const UnaryOperator *E);
628   Value *VisitUnaryImag     (const UnaryOperator *E);
629   Value *VisitUnaryExtension(const UnaryOperator *E) {
630     return Visit(E->getSubExpr());
631   }
632 
633   // C++
634   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
635     return EmitLoadOfLValue(E);
636   }
637   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
638     auto &Ctx = CGF.getContext();
639     APValue Evaluated =
640         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
641     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
642                                              SLE->getType());
643   }
644 
645   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
646     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
647     return Visit(DAE->getExpr());
648   }
649   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
650     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
651     return Visit(DIE->getExpr());
652   }
653   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
654     return CGF.LoadCXXThis();
655   }
656 
657   Value *VisitExprWithCleanups(ExprWithCleanups *E);
658   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
659     return CGF.EmitCXXNewExpr(E);
660   }
661   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
662     CGF.EmitCXXDeleteExpr(E);
663     return nullptr;
664   }
665 
666   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
667     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
668   }
669 
670   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
671     return Builder.getInt1(E->isSatisfied());
672   }
673 
674   Value *VisitRequiresExpr(const RequiresExpr *E) {
675     return Builder.getInt1(E->isSatisfied());
676   }
677 
678   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
679     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
680   }
681 
682   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
683     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
684   }
685 
686   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
687     // C++ [expr.pseudo]p1:
688     //   The result shall only be used as the operand for the function call
689     //   operator (), and the result of such a call has type void. The only
690     //   effect is the evaluation of the postfix-expression before the dot or
691     //   arrow.
692     CGF.EmitScalarExpr(E->getBase());
693     return nullptr;
694   }
695 
696   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
697     return EmitNullValue(E->getType());
698   }
699 
700   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
701     CGF.EmitCXXThrowExpr(E);
702     return nullptr;
703   }
704 
705   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
706     return Builder.getInt1(E->getValue());
707   }
708 
709   // Binary Operators.
710   Value *EmitMul(const BinOpInfo &Ops) {
711     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
712       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
713       case LangOptions::SOB_Defined:
714         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
715       case LangOptions::SOB_Undefined:
716         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
717           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
718         LLVM_FALLTHROUGH;
719       case LangOptions::SOB_Trapping:
720         if (CanElideOverflowCheck(CGF.getContext(), Ops))
721           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
722         return EmitOverflowCheckedBinOp(Ops);
723       }
724     }
725 
726     if (Ops.Ty->isConstantMatrixType()) {
727       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
728       // We need to check the types of the operands of the operator to get the
729       // correct matrix dimensions.
730       auto *BO = cast<BinaryOperator>(Ops.E);
731       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
732           BO->getLHS()->getType().getCanonicalType());
733       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
734           BO->getRHS()->getType().getCanonicalType());
735       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
736       if (LHSMatTy && RHSMatTy)
737         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
738                                        LHSMatTy->getNumColumns(),
739                                        RHSMatTy->getNumColumns());
740       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
741     }
742 
743     if (Ops.Ty->isUnsignedIntegerType() &&
744         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
745         !CanElideOverflowCheck(CGF.getContext(), Ops))
746       return EmitOverflowCheckedBinOp(Ops);
747 
748     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
749       //  Preserve the old values
750       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
751       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
752     }
753     if (Ops.isFixedPointOp())
754       return EmitFixedPointBinOp(Ops);
755     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
756   }
757   /// Create a binary op that checks for overflow.
758   /// Currently only supports +, - and *.
759   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
760 
761   // Check for undefined division and modulus behaviors.
762   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
763                                                   llvm::Value *Zero,bool isDiv);
764   // Common helper for getting how wide LHS of shift is.
765   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
766 
767   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
768   // non powers of two.
769   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
770 
771   Value *EmitDiv(const BinOpInfo &Ops);
772   Value *EmitRem(const BinOpInfo &Ops);
773   Value *EmitAdd(const BinOpInfo &Ops);
774   Value *EmitSub(const BinOpInfo &Ops);
775   Value *EmitShl(const BinOpInfo &Ops);
776   Value *EmitShr(const BinOpInfo &Ops);
777   Value *EmitAnd(const BinOpInfo &Ops) {
778     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
779   }
780   Value *EmitXor(const BinOpInfo &Ops) {
781     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
782   }
783   Value *EmitOr (const BinOpInfo &Ops) {
784     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
785   }
786 
787   // Helper functions for fixed point binary operations.
788   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
789 
790   BinOpInfo EmitBinOps(const BinaryOperator *E);
791   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
792                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
793                                   Value *&Result);
794 
795   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
796                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
797 
798   // Binary operators and binary compound assignment operators.
799 #define HANDLEBINOP(OP) \
800   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
801     return Emit ## OP(EmitBinOps(E));                                      \
802   }                                                                        \
803   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
804     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
805   }
806   HANDLEBINOP(Mul)
807   HANDLEBINOP(Div)
808   HANDLEBINOP(Rem)
809   HANDLEBINOP(Add)
810   HANDLEBINOP(Sub)
811   HANDLEBINOP(Shl)
812   HANDLEBINOP(Shr)
813   HANDLEBINOP(And)
814   HANDLEBINOP(Xor)
815   HANDLEBINOP(Or)
816 #undef HANDLEBINOP
817 
818   // Comparisons.
819   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
820                      llvm::CmpInst::Predicate SICmpOpc,
821                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
822 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
823     Value *VisitBin##CODE(const BinaryOperator *E) { \
824       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
825                          llvm::FCmpInst::FP, SIG); }
826   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
827   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
828   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
829   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
830   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
831   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
832 #undef VISITCOMP
833 
834   Value *VisitBinAssign     (const BinaryOperator *E);
835 
836   Value *VisitBinLAnd       (const BinaryOperator *E);
837   Value *VisitBinLOr        (const BinaryOperator *E);
838   Value *VisitBinComma      (const BinaryOperator *E);
839 
840   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
841   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
842 
843   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
844     return Visit(E->getSemanticForm());
845   }
846 
847   // Other Operators.
848   Value *VisitBlockExpr(const BlockExpr *BE);
849   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
850   Value *VisitChooseExpr(ChooseExpr *CE);
851   Value *VisitVAArgExpr(VAArgExpr *VE);
852   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
853     return CGF.EmitObjCStringLiteral(E);
854   }
855   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
856     return CGF.EmitObjCBoxedExpr(E);
857   }
858   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
859     return CGF.EmitObjCArrayLiteral(E);
860   }
861   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
862     return CGF.EmitObjCDictionaryLiteral(E);
863   }
864   Value *VisitAsTypeExpr(AsTypeExpr *CE);
865   Value *VisitAtomicExpr(AtomicExpr *AE);
866 };
867 }  // end anonymous namespace.
868 
869 //===----------------------------------------------------------------------===//
870 //                                Utilities
871 //===----------------------------------------------------------------------===//
872 
873 /// EmitConversionToBool - Convert the specified expression value to a
874 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
875 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
876   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
877 
878   if (SrcType->isRealFloatingType())
879     return EmitFloatToBoolConversion(Src);
880 
881   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
882     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
883 
884   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
885          "Unknown scalar type to convert");
886 
887   if (isa<llvm::IntegerType>(Src->getType()))
888     return EmitIntToBoolConversion(Src);
889 
890   assert(isa<llvm::PointerType>(Src->getType()));
891   return EmitPointerToBoolConversion(Src, SrcType);
892 }
893 
894 void ScalarExprEmitter::EmitFloatConversionCheck(
895     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
896     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
897   assert(SrcType->isFloatingType() && "not a conversion from floating point");
898   if (!isa<llvm::IntegerType>(DstTy))
899     return;
900 
901   CodeGenFunction::SanitizerScope SanScope(&CGF);
902   using llvm::APFloat;
903   using llvm::APSInt;
904 
905   llvm::Value *Check = nullptr;
906   const llvm::fltSemantics &SrcSema =
907     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
908 
909   // Floating-point to integer. This has undefined behavior if the source is
910   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
911   // to an integer).
912   unsigned Width = CGF.getContext().getIntWidth(DstType);
913   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
914 
915   APSInt Min = APSInt::getMinValue(Width, Unsigned);
916   APFloat MinSrc(SrcSema, APFloat::uninitialized);
917   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
918       APFloat::opOverflow)
919     // Don't need an overflow check for lower bound. Just check for
920     // -Inf/NaN.
921     MinSrc = APFloat::getInf(SrcSema, true);
922   else
923     // Find the largest value which is too small to represent (before
924     // truncation toward zero).
925     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
926 
927   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
928   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
929   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
930       APFloat::opOverflow)
931     // Don't need an overflow check for upper bound. Just check for
932     // +Inf/NaN.
933     MaxSrc = APFloat::getInf(SrcSema, false);
934   else
935     // Find the smallest value which is too large to represent (before
936     // truncation toward zero).
937     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
938 
939   // If we're converting from __half, convert the range to float to match
940   // the type of src.
941   if (OrigSrcType->isHalfType()) {
942     const llvm::fltSemantics &Sema =
943       CGF.getContext().getFloatTypeSemantics(SrcType);
944     bool IsInexact;
945     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
946     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
947   }
948 
949   llvm::Value *GE =
950     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
951   llvm::Value *LE =
952     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
953   Check = Builder.CreateAnd(GE, LE);
954 
955   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
956                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
957                                   CGF.EmitCheckTypeDescriptor(DstType)};
958   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
959                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
960 }
961 
962 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
963 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
964 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
965                  std::pair<llvm::Value *, SanitizerMask>>
966 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
967                                  QualType DstType, CGBuilderTy &Builder) {
968   llvm::Type *SrcTy = Src->getType();
969   llvm::Type *DstTy = Dst->getType();
970   (void)DstTy; // Only used in assert()
971 
972   // This should be truncation of integral types.
973   assert(Src != Dst);
974   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
975   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
976          "non-integer llvm type");
977 
978   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
979   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
980 
981   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
982   // Else, it is a signed truncation.
983   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
984   SanitizerMask Mask;
985   if (!SrcSigned && !DstSigned) {
986     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
987     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
988   } else {
989     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
990     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
991   }
992 
993   llvm::Value *Check = nullptr;
994   // 1. Extend the truncated value back to the same width as the Src.
995   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
996   // 2. Equality-compare with the original source value
997   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
998   // If the comparison result is 'i1 false', then the truncation was lossy.
999   return std::make_pair(Kind, std::make_pair(Check, Mask));
1000 }
1001 
1002 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1003     QualType SrcType, QualType DstType) {
1004   return SrcType->isIntegerType() && DstType->isIntegerType();
1005 }
1006 
1007 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1008                                                    Value *Dst, QualType DstType,
1009                                                    SourceLocation Loc) {
1010   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1011     return;
1012 
1013   // We only care about int->int conversions here.
1014   // We ignore conversions to/from pointer and/or bool.
1015   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1016                                                                        DstType))
1017     return;
1018 
1019   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1020   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1021   // This must be truncation. Else we do not care.
1022   if (SrcBits <= DstBits)
1023     return;
1024 
1025   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1026 
1027   // If the integer sign change sanitizer is enabled,
1028   // and we are truncating from larger unsigned type to smaller signed type,
1029   // let that next sanitizer deal with it.
1030   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1031   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1032   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1033       (!SrcSigned && DstSigned))
1034     return;
1035 
1036   CodeGenFunction::SanitizerScope SanScope(&CGF);
1037 
1038   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1039             std::pair<llvm::Value *, SanitizerMask>>
1040       Check =
1041           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1042   // If the comparison result is 'i1 false', then the truncation was lossy.
1043 
1044   // Do we care about this type of truncation?
1045   if (!CGF.SanOpts.has(Check.second.second))
1046     return;
1047 
1048   llvm::Constant *StaticArgs[] = {
1049       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1050       CGF.EmitCheckTypeDescriptor(DstType),
1051       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1052   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1053                 {Src, Dst});
1054 }
1055 
1056 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1057 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1058 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1059                  std::pair<llvm::Value *, SanitizerMask>>
1060 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1061                                  QualType DstType, CGBuilderTy &Builder) {
1062   llvm::Type *SrcTy = Src->getType();
1063   llvm::Type *DstTy = Dst->getType();
1064 
1065   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1066          "non-integer llvm type");
1067 
1068   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1069   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1070   (void)SrcSigned; // Only used in assert()
1071   (void)DstSigned; // Only used in assert()
1072   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1073   unsigned DstBits = DstTy->getScalarSizeInBits();
1074   (void)SrcBits; // Only used in assert()
1075   (void)DstBits; // Only used in assert()
1076 
1077   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1078          "either the widths should be different, or the signednesses.");
1079 
1080   // NOTE: zero value is considered to be non-negative.
1081   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1082                                        const char *Name) -> Value * {
1083     // Is this value a signed type?
1084     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1085     llvm::Type *VTy = V->getType();
1086     if (!VSigned) {
1087       // If the value is unsigned, then it is never negative.
1088       // FIXME: can we encounter non-scalar VTy here?
1089       return llvm::ConstantInt::getFalse(VTy->getContext());
1090     }
1091     // Get the zero of the same type with which we will be comparing.
1092     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1093     // %V.isnegative = icmp slt %V, 0
1094     // I.e is %V *strictly* less than zero, does it have negative value?
1095     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1096                               llvm::Twine(Name) + "." + V->getName() +
1097                                   ".negativitycheck");
1098   };
1099 
1100   // 1. Was the old Value negative?
1101   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1102   // 2. Is the new Value negative?
1103   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1104   // 3. Now, was the 'negativity status' preserved during the conversion?
1105   //    NOTE: conversion from negative to zero is considered to change the sign.
1106   //    (We want to get 'false' when the conversion changed the sign)
1107   //    So we should just equality-compare the negativity statuses.
1108   llvm::Value *Check = nullptr;
1109   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1110   // If the comparison result is 'false', then the conversion changed the sign.
1111   return std::make_pair(
1112       ScalarExprEmitter::ICCK_IntegerSignChange,
1113       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1114 }
1115 
1116 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1117                                                    Value *Dst, QualType DstType,
1118                                                    SourceLocation Loc) {
1119   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1120     return;
1121 
1122   llvm::Type *SrcTy = Src->getType();
1123   llvm::Type *DstTy = Dst->getType();
1124 
1125   // We only care about int->int conversions here.
1126   // We ignore conversions to/from pointer and/or bool.
1127   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1128                                                                        DstType))
1129     return;
1130 
1131   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1132   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1133   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1134   unsigned DstBits = DstTy->getScalarSizeInBits();
1135 
1136   // Now, we do not need to emit the check in *all* of the cases.
1137   // We can avoid emitting it in some obvious cases where it would have been
1138   // dropped by the opt passes (instcombine) always anyways.
1139   // If it's a cast between effectively the same type, no check.
1140   // NOTE: this is *not* equivalent to checking the canonical types.
1141   if (SrcSigned == DstSigned && SrcBits == DstBits)
1142     return;
1143   // At least one of the values needs to have signed type.
1144   // If both are unsigned, then obviously, neither of them can be negative.
1145   if (!SrcSigned && !DstSigned)
1146     return;
1147   // If the conversion is to *larger* *signed* type, then no check is needed.
1148   // Because either sign-extension happens (so the sign will remain),
1149   // or zero-extension will happen (the sign bit will be zero.)
1150   if ((DstBits > SrcBits) && DstSigned)
1151     return;
1152   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1153       (SrcBits > DstBits) && SrcSigned) {
1154     // If the signed integer truncation sanitizer is enabled,
1155     // and this is a truncation from signed type, then no check is needed.
1156     // Because here sign change check is interchangeable with truncation check.
1157     return;
1158   }
1159   // That's it. We can't rule out any more cases with the data we have.
1160 
1161   CodeGenFunction::SanitizerScope SanScope(&CGF);
1162 
1163   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1164             std::pair<llvm::Value *, SanitizerMask>>
1165       Check;
1166 
1167   // Each of these checks needs to return 'false' when an issue was detected.
1168   ImplicitConversionCheckKind CheckKind;
1169   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1170   // So we can 'and' all the checks together, and still get 'false',
1171   // if at least one of the checks detected an issue.
1172 
1173   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1174   CheckKind = Check.first;
1175   Checks.emplace_back(Check.second);
1176 
1177   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1178       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1179     // If the signed integer truncation sanitizer was enabled,
1180     // and we are truncating from larger unsigned type to smaller signed type,
1181     // let's handle the case we skipped in that check.
1182     Check =
1183         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1184     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1185     Checks.emplace_back(Check.second);
1186     // If the comparison result is 'i1 false', then the truncation was lossy.
1187   }
1188 
1189   llvm::Constant *StaticArgs[] = {
1190       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1191       CGF.EmitCheckTypeDescriptor(DstType),
1192       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1193   // EmitCheck() will 'and' all the checks together.
1194   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1195                 {Src, Dst});
1196 }
1197 
1198 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1199                                          QualType DstType, llvm::Type *SrcTy,
1200                                          llvm::Type *DstTy,
1201                                          ScalarConversionOpts Opts) {
1202   // The Element types determine the type of cast to perform.
1203   llvm::Type *SrcElementTy;
1204   llvm::Type *DstElementTy;
1205   QualType SrcElementType;
1206   QualType DstElementType;
1207   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1208     // Allow bitcast between matrixes of the same size.
1209     if (SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits())
1210       return Builder.CreateBitCast(Src, DstTy, "conv");
1211 
1212     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1213     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1214     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1215     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1216   } else {
1217     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1218            "cannot cast between matrix and non-matrix types");
1219     SrcElementTy = SrcTy;
1220     DstElementTy = DstTy;
1221     SrcElementType = SrcType;
1222     DstElementType = DstType;
1223   }
1224 
1225   if (isa<llvm::IntegerType>(SrcElementTy)) {
1226     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1227     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1228       InputSigned = true;
1229     }
1230 
1231     if (isa<llvm::IntegerType>(DstElementTy))
1232       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1233     if (InputSigned)
1234       return Builder.CreateSIToFP(Src, DstTy, "conv");
1235     return Builder.CreateUIToFP(Src, DstTy, "conv");
1236   }
1237 
1238   if (isa<llvm::IntegerType>(DstElementTy)) {
1239     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1240     if (DstElementType->isSignedIntegerOrEnumerationType())
1241       return Builder.CreateFPToSI(Src, DstTy, "conv");
1242     return Builder.CreateFPToUI(Src, DstTy, "conv");
1243   }
1244 
1245   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1246     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1247   return Builder.CreateFPExt(Src, DstTy, "conv");
1248 }
1249 
1250 /// Emit a conversion from the specified type to the specified destination type,
1251 /// both of which are LLVM scalar types.
1252 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1253                                                QualType DstType,
1254                                                SourceLocation Loc,
1255                                                ScalarConversionOpts Opts) {
1256   // All conversions involving fixed point types should be handled by the
1257   // EmitFixedPoint family functions. This is done to prevent bloating up this
1258   // function more, and although fixed point numbers are represented by
1259   // integers, we do not want to follow any logic that assumes they should be
1260   // treated as integers.
1261   // TODO(leonardchan): When necessary, add another if statement checking for
1262   // conversions to fixed point types from other types.
1263   if (SrcType->isFixedPointType()) {
1264     if (DstType->isBooleanType())
1265       // It is important that we check this before checking if the dest type is
1266       // an integer because booleans are technically integer types.
1267       // We do not need to check the padding bit on unsigned types if unsigned
1268       // padding is enabled because overflow into this bit is undefined
1269       // behavior.
1270       return Builder.CreateIsNotNull(Src, "tobool");
1271     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1272         DstType->isRealFloatingType())
1273       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1274 
1275     llvm_unreachable(
1276         "Unhandled scalar conversion from a fixed point type to another type.");
1277   } else if (DstType->isFixedPointType()) {
1278     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1279       // This also includes converting booleans and enums to fixed point types.
1280       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1281 
1282     llvm_unreachable(
1283         "Unhandled scalar conversion to a fixed point type from another type.");
1284   }
1285 
1286   QualType NoncanonicalSrcType = SrcType;
1287   QualType NoncanonicalDstType = DstType;
1288 
1289   SrcType = CGF.getContext().getCanonicalType(SrcType);
1290   DstType = CGF.getContext().getCanonicalType(DstType);
1291   if (SrcType == DstType) return Src;
1292 
1293   if (DstType->isVoidType()) return nullptr;
1294 
1295   llvm::Value *OrigSrc = Src;
1296   QualType OrigSrcType = SrcType;
1297   llvm::Type *SrcTy = Src->getType();
1298 
1299   // Handle conversions to bool first, they are special: comparisons against 0.
1300   if (DstType->isBooleanType())
1301     return EmitConversionToBool(Src, SrcType);
1302 
1303   llvm::Type *DstTy = ConvertType(DstType);
1304 
1305   // Cast from half through float if half isn't a native type.
1306   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1307     // Cast to FP using the intrinsic if the half type itself isn't supported.
1308     if (DstTy->isFloatingPointTy()) {
1309       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1310         return Builder.CreateCall(
1311             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1312             Src);
1313     } else {
1314       // Cast to other types through float, using either the intrinsic or FPExt,
1315       // depending on whether the half type itself is supported
1316       // (as opposed to operations on half, available with NativeHalfType).
1317       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1318         Src = Builder.CreateCall(
1319             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1320                                  CGF.CGM.FloatTy),
1321             Src);
1322       } else {
1323         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1324       }
1325       SrcType = CGF.getContext().FloatTy;
1326       SrcTy = CGF.FloatTy;
1327     }
1328   }
1329 
1330   // Ignore conversions like int -> uint.
1331   if (SrcTy == DstTy) {
1332     if (Opts.EmitImplicitIntegerSignChangeChecks)
1333       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1334                                  NoncanonicalDstType, Loc);
1335 
1336     return Src;
1337   }
1338 
1339   // Handle pointer conversions next: pointers can only be converted to/from
1340   // other pointers and integers. Check for pointer types in terms of LLVM, as
1341   // some native types (like Obj-C id) may map to a pointer type.
1342   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1343     // The source value may be an integer, or a pointer.
1344     if (isa<llvm::PointerType>(SrcTy))
1345       return Builder.CreateBitCast(Src, DstTy, "conv");
1346 
1347     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1348     // First, convert to the correct width so that we control the kind of
1349     // extension.
1350     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1351     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1352     llvm::Value* IntResult =
1353         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1354     // Then, cast to pointer.
1355     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1356   }
1357 
1358   if (isa<llvm::PointerType>(SrcTy)) {
1359     // Must be an ptr to int cast.
1360     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1361     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1362   }
1363 
1364   // A scalar can be splatted to an extended vector of the same element type
1365   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1366     // Sema should add casts to make sure that the source expression's type is
1367     // the same as the vector's element type (sans qualifiers)
1368     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1369                SrcType.getTypePtr() &&
1370            "Splatted expr doesn't match with vector element type?");
1371 
1372     // Splat the element across to all elements
1373     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1374     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1375   }
1376 
1377   if (SrcType->isMatrixType() && DstType->isMatrixType())
1378     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1379 
1380   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1381     // Allow bitcast from vector to integer/fp of the same size.
1382     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1383     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1384     if (SrcSize == DstSize)
1385       return Builder.CreateBitCast(Src, DstTy, "conv");
1386 
1387     // Conversions between vectors of different sizes are not allowed except
1388     // when vectors of half are involved. Operations on storage-only half
1389     // vectors require promoting half vector operands to float vectors and
1390     // truncating the result, which is either an int or float vector, to a
1391     // short or half vector.
1392 
1393     // Source and destination are both expected to be vectors.
1394     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1395     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1396     (void)DstElementTy;
1397 
1398     assert(((SrcElementTy->isIntegerTy() &&
1399              DstElementTy->isIntegerTy()) ||
1400             (SrcElementTy->isFloatingPointTy() &&
1401              DstElementTy->isFloatingPointTy())) &&
1402            "unexpected conversion between a floating-point vector and an "
1403            "integer vector");
1404 
1405     // Truncate an i32 vector to an i16 vector.
1406     if (SrcElementTy->isIntegerTy())
1407       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1408 
1409     // Truncate a float vector to a half vector.
1410     if (SrcSize > DstSize)
1411       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1412 
1413     // Promote a half vector to a float vector.
1414     return Builder.CreateFPExt(Src, DstTy, "conv");
1415   }
1416 
1417   // Finally, we have the arithmetic types: real int/float.
1418   Value *Res = nullptr;
1419   llvm::Type *ResTy = DstTy;
1420 
1421   // An overflowing conversion has undefined behavior if either the source type
1422   // or the destination type is a floating-point type. However, we consider the
1423   // range of representable values for all floating-point types to be
1424   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1425   // floating-point type.
1426   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1427       OrigSrcType->isFloatingType())
1428     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1429                              Loc);
1430 
1431   // Cast to half through float if half isn't a native type.
1432   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1433     // Make sure we cast in a single step if from another FP type.
1434     if (SrcTy->isFloatingPointTy()) {
1435       // Use the intrinsic if the half type itself isn't supported
1436       // (as opposed to operations on half, available with NativeHalfType).
1437       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1438         return Builder.CreateCall(
1439             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1440       // If the half type is supported, just use an fptrunc.
1441       return Builder.CreateFPTrunc(Src, DstTy);
1442     }
1443     DstTy = CGF.FloatTy;
1444   }
1445 
1446   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1447 
1448   if (DstTy != ResTy) {
1449     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1450       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1451       Res = Builder.CreateCall(
1452         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1453         Res);
1454     } else {
1455       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1456     }
1457   }
1458 
1459   if (Opts.EmitImplicitIntegerTruncationChecks)
1460     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1461                                NoncanonicalDstType, Loc);
1462 
1463   if (Opts.EmitImplicitIntegerSignChangeChecks)
1464     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1465                                NoncanonicalDstType, Loc);
1466 
1467   return Res;
1468 }
1469 
1470 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1471                                                    QualType DstTy,
1472                                                    SourceLocation Loc) {
1473   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1474   llvm::Value *Result;
1475   if (SrcTy->isRealFloatingType())
1476     Result = FPBuilder.CreateFloatingToFixed(Src,
1477         CGF.getContext().getFixedPointSemantics(DstTy));
1478   else if (DstTy->isRealFloatingType())
1479     Result = FPBuilder.CreateFixedToFloating(Src,
1480         CGF.getContext().getFixedPointSemantics(SrcTy),
1481         ConvertType(DstTy));
1482   else {
1483     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1484     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1485 
1486     if (DstTy->isIntegerType())
1487       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1488                                               DstFPSema.getWidth(),
1489                                               DstFPSema.isSigned());
1490     else if (SrcTy->isIntegerType())
1491       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1492                                                DstFPSema);
1493     else
1494       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1495   }
1496   return Result;
1497 }
1498 
1499 /// Emit a conversion from the specified complex type to the specified
1500 /// destination type, where the destination type is an LLVM scalar type.
1501 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1502     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1503     SourceLocation Loc) {
1504   // Get the source element type.
1505   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1506 
1507   // Handle conversions to bool first, they are special: comparisons against 0.
1508   if (DstTy->isBooleanType()) {
1509     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1510     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1511     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1512     return Builder.CreateOr(Src.first, Src.second, "tobool");
1513   }
1514 
1515   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1516   // the imaginary part of the complex value is discarded and the value of the
1517   // real part is converted according to the conversion rules for the
1518   // corresponding real type.
1519   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1520 }
1521 
1522 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1523   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1524 }
1525 
1526 /// Emit a sanitization check for the given "binary" operation (which
1527 /// might actually be a unary increment which has been lowered to a binary
1528 /// operation). The check passes if all values in \p Checks (which are \c i1),
1529 /// are \c true.
1530 void ScalarExprEmitter::EmitBinOpCheck(
1531     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1532   assert(CGF.IsSanitizerScope);
1533   SanitizerHandler Check;
1534   SmallVector<llvm::Constant *, 4> StaticData;
1535   SmallVector<llvm::Value *, 2> DynamicData;
1536 
1537   BinaryOperatorKind Opcode = Info.Opcode;
1538   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1539     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1540 
1541   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1542   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1543   if (UO && UO->getOpcode() == UO_Minus) {
1544     Check = SanitizerHandler::NegateOverflow;
1545     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1546     DynamicData.push_back(Info.RHS);
1547   } else {
1548     if (BinaryOperator::isShiftOp(Opcode)) {
1549       // Shift LHS negative or too large, or RHS out of bounds.
1550       Check = SanitizerHandler::ShiftOutOfBounds;
1551       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1552       StaticData.push_back(
1553         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1554       StaticData.push_back(
1555         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1556     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1557       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1558       Check = SanitizerHandler::DivremOverflow;
1559       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1560     } else {
1561       // Arithmetic overflow (+, -, *).
1562       switch (Opcode) {
1563       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1564       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1565       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1566       default: llvm_unreachable("unexpected opcode for bin op check");
1567       }
1568       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1569     }
1570     DynamicData.push_back(Info.LHS);
1571     DynamicData.push_back(Info.RHS);
1572   }
1573 
1574   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1575 }
1576 
1577 //===----------------------------------------------------------------------===//
1578 //                            Visitor Methods
1579 //===----------------------------------------------------------------------===//
1580 
1581 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1582   CGF.ErrorUnsupported(E, "scalar expression");
1583   if (E->getType()->isVoidType())
1584     return nullptr;
1585   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1586 }
1587 
1588 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1589   // Vector Mask Case
1590   if (E->getNumSubExprs() == 2) {
1591     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1592     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1593     Value *Mask;
1594 
1595     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1596     unsigned LHSElts = LTy->getNumElements();
1597 
1598     Mask = RHS;
1599 
1600     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1601 
1602     // Mask off the high bits of each shuffle index.
1603     Value *MaskBits =
1604         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1605     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1606 
1607     // newv = undef
1608     // mask = mask & maskbits
1609     // for each elt
1610     //   n = extract mask i
1611     //   x = extract val n
1612     //   newv = insert newv, x, i
1613     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1614                                            MTy->getNumElements());
1615     Value* NewV = llvm::UndefValue::get(RTy);
1616     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1617       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1618       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1619 
1620       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1621       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1622     }
1623     return NewV;
1624   }
1625 
1626   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1627   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1628 
1629   SmallVector<int, 32> Indices;
1630   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1631     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1632     // Check for -1 and output it as undef in the IR.
1633     if (Idx.isSigned() && Idx.isAllOnesValue())
1634       Indices.push_back(-1);
1635     else
1636       Indices.push_back(Idx.getZExtValue());
1637   }
1638 
1639   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1640 }
1641 
1642 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1643   QualType SrcType = E->getSrcExpr()->getType(),
1644            DstType = E->getType();
1645 
1646   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1647 
1648   SrcType = CGF.getContext().getCanonicalType(SrcType);
1649   DstType = CGF.getContext().getCanonicalType(DstType);
1650   if (SrcType == DstType) return Src;
1651 
1652   assert(SrcType->isVectorType() &&
1653          "ConvertVector source type must be a vector");
1654   assert(DstType->isVectorType() &&
1655          "ConvertVector destination type must be a vector");
1656 
1657   llvm::Type *SrcTy = Src->getType();
1658   llvm::Type *DstTy = ConvertType(DstType);
1659 
1660   // Ignore conversions like int -> uint.
1661   if (SrcTy == DstTy)
1662     return Src;
1663 
1664   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1665            DstEltType = DstType->castAs<VectorType>()->getElementType();
1666 
1667   assert(SrcTy->isVectorTy() &&
1668          "ConvertVector source IR type must be a vector");
1669   assert(DstTy->isVectorTy() &&
1670          "ConvertVector destination IR type must be a vector");
1671 
1672   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1673              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1674 
1675   if (DstEltType->isBooleanType()) {
1676     assert((SrcEltTy->isFloatingPointTy() ||
1677             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1678 
1679     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1680     if (SrcEltTy->isFloatingPointTy()) {
1681       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1682     } else {
1683       return Builder.CreateICmpNE(Src, Zero, "tobool");
1684     }
1685   }
1686 
1687   // We have the arithmetic types: real int/float.
1688   Value *Res = nullptr;
1689 
1690   if (isa<llvm::IntegerType>(SrcEltTy)) {
1691     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1692     if (isa<llvm::IntegerType>(DstEltTy))
1693       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1694     else if (InputSigned)
1695       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1696     else
1697       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1698   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1699     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1700     if (DstEltType->isSignedIntegerOrEnumerationType())
1701       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1702     else
1703       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1704   } else {
1705     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1706            "Unknown real conversion");
1707     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1708       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1709     else
1710       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1711   }
1712 
1713   return Res;
1714 }
1715 
1716 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1717   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1718     CGF.EmitIgnoredExpr(E->getBase());
1719     return CGF.emitScalarConstant(Constant, E);
1720   } else {
1721     Expr::EvalResult Result;
1722     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1723       llvm::APSInt Value = Result.Val.getInt();
1724       CGF.EmitIgnoredExpr(E->getBase());
1725       return Builder.getInt(Value);
1726     }
1727   }
1728 
1729   return EmitLoadOfLValue(E);
1730 }
1731 
1732 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1733   TestAndClearIgnoreResultAssign();
1734 
1735   // Emit subscript expressions in rvalue context's.  For most cases, this just
1736   // loads the lvalue formed by the subscript expr.  However, we have to be
1737   // careful, because the base of a vector subscript is occasionally an rvalue,
1738   // so we can't get it as an lvalue.
1739   if (!E->getBase()->getType()->isVectorType())
1740     return EmitLoadOfLValue(E);
1741 
1742   // Handle the vector case.  The base must be a vector, the index must be an
1743   // integer value.
1744   Value *Base = Visit(E->getBase());
1745   Value *Idx  = Visit(E->getIdx());
1746   QualType IdxTy = E->getIdx()->getType();
1747 
1748   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1749     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1750 
1751   return Builder.CreateExtractElement(Base, Idx, "vecext");
1752 }
1753 
1754 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1755   TestAndClearIgnoreResultAssign();
1756 
1757   // Handle the vector case.  The base must be a vector, the index must be an
1758   // integer value.
1759   Value *RowIdx = Visit(E->getRowIdx());
1760   Value *ColumnIdx = Visit(E->getColumnIdx());
1761   Value *Matrix = Visit(E->getBase());
1762 
1763   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1764   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1765   return MB.CreateExtractElement(
1766       Matrix, RowIdx, ColumnIdx,
1767       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
1768 }
1769 
1770 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1771                       unsigned Off) {
1772   int MV = SVI->getMaskValue(Idx);
1773   if (MV == -1)
1774     return -1;
1775   return Off + MV;
1776 }
1777 
1778 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1779   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1780          "Index operand too large for shufflevector mask!");
1781   return C->getZExtValue();
1782 }
1783 
1784 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1785   bool Ignore = TestAndClearIgnoreResultAssign();
1786   (void)Ignore;
1787   assert (Ignore == false && "init list ignored");
1788   unsigned NumInitElements = E->getNumInits();
1789 
1790   if (E->hadArrayRangeDesignator())
1791     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1792 
1793   llvm::VectorType *VType =
1794     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1795 
1796   if (!VType) {
1797     if (NumInitElements == 0) {
1798       // C++11 value-initialization for the scalar.
1799       return EmitNullValue(E->getType());
1800     }
1801     // We have a scalar in braces. Just use the first element.
1802     return Visit(E->getInit(0));
1803   }
1804 
1805   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1806 
1807   // Loop over initializers collecting the Value for each, and remembering
1808   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1809   // us to fold the shuffle for the swizzle into the shuffle for the vector
1810   // initializer, since LLVM optimizers generally do not want to touch
1811   // shuffles.
1812   unsigned CurIdx = 0;
1813   bool VIsUndefShuffle = false;
1814   llvm::Value *V = llvm::UndefValue::get(VType);
1815   for (unsigned i = 0; i != NumInitElements; ++i) {
1816     Expr *IE = E->getInit(i);
1817     Value *Init = Visit(IE);
1818     SmallVector<int, 16> Args;
1819 
1820     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1821 
1822     // Handle scalar elements.  If the scalar initializer is actually one
1823     // element of a different vector of the same width, use shuffle instead of
1824     // extract+insert.
1825     if (!VVT) {
1826       if (isa<ExtVectorElementExpr>(IE)) {
1827         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1828 
1829         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1830                 ->getNumElements() == ResElts) {
1831           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1832           Value *LHS = nullptr, *RHS = nullptr;
1833           if (CurIdx == 0) {
1834             // insert into undef -> shuffle (src, undef)
1835             // shufflemask must use an i32
1836             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1837             Args.resize(ResElts, -1);
1838 
1839             LHS = EI->getVectorOperand();
1840             RHS = V;
1841             VIsUndefShuffle = true;
1842           } else if (VIsUndefShuffle) {
1843             // insert into undefshuffle && size match -> shuffle (v, src)
1844             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1845             for (unsigned j = 0; j != CurIdx; ++j)
1846               Args.push_back(getMaskElt(SVV, j, 0));
1847             Args.push_back(ResElts + C->getZExtValue());
1848             Args.resize(ResElts, -1);
1849 
1850             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1851             RHS = EI->getVectorOperand();
1852             VIsUndefShuffle = false;
1853           }
1854           if (!Args.empty()) {
1855             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1856             ++CurIdx;
1857             continue;
1858           }
1859         }
1860       }
1861       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1862                                       "vecinit");
1863       VIsUndefShuffle = false;
1864       ++CurIdx;
1865       continue;
1866     }
1867 
1868     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1869 
1870     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1871     // input is the same width as the vector being constructed, generate an
1872     // optimized shuffle of the swizzle input into the result.
1873     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1874     if (isa<ExtVectorElementExpr>(IE)) {
1875       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1876       Value *SVOp = SVI->getOperand(0);
1877       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1878 
1879       if (OpTy->getNumElements() == ResElts) {
1880         for (unsigned j = 0; j != CurIdx; ++j) {
1881           // If the current vector initializer is a shuffle with undef, merge
1882           // this shuffle directly into it.
1883           if (VIsUndefShuffle) {
1884             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1885           } else {
1886             Args.push_back(j);
1887           }
1888         }
1889         for (unsigned j = 0, je = InitElts; j != je; ++j)
1890           Args.push_back(getMaskElt(SVI, j, Offset));
1891         Args.resize(ResElts, -1);
1892 
1893         if (VIsUndefShuffle)
1894           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1895 
1896         Init = SVOp;
1897       }
1898     }
1899 
1900     // Extend init to result vector length, and then shuffle its contribution
1901     // to the vector initializer into V.
1902     if (Args.empty()) {
1903       for (unsigned j = 0; j != InitElts; ++j)
1904         Args.push_back(j);
1905       Args.resize(ResElts, -1);
1906       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1907 
1908       Args.clear();
1909       for (unsigned j = 0; j != CurIdx; ++j)
1910         Args.push_back(j);
1911       for (unsigned j = 0; j != InitElts; ++j)
1912         Args.push_back(j + Offset);
1913       Args.resize(ResElts, -1);
1914     }
1915 
1916     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1917     // merging subsequent shuffles into this one.
1918     if (CurIdx == 0)
1919       std::swap(V, Init);
1920     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1921     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1922     CurIdx += InitElts;
1923   }
1924 
1925   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1926   // Emit remaining default initializers.
1927   llvm::Type *EltTy = VType->getElementType();
1928 
1929   // Emit remaining default initializers
1930   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1931     Value *Idx = Builder.getInt32(CurIdx);
1932     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1933     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1934   }
1935   return V;
1936 }
1937 
1938 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1939   const Expr *E = CE->getSubExpr();
1940 
1941   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1942     return false;
1943 
1944   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1945     // We always assume that 'this' is never null.
1946     return false;
1947   }
1948 
1949   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1950     // And that glvalue casts are never null.
1951     if (ICE->getValueKind() != VK_RValue)
1952       return false;
1953   }
1954 
1955   return true;
1956 }
1957 
1958 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1959 // have to handle a more broad range of conversions than explicit casts, as they
1960 // handle things like function to ptr-to-function decay etc.
1961 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1962   Expr *E = CE->getSubExpr();
1963   QualType DestTy = CE->getType();
1964   CastKind Kind = CE->getCastKind();
1965 
1966   // These cases are generally not written to ignore the result of
1967   // evaluating their sub-expressions, so we clear this now.
1968   bool Ignored = TestAndClearIgnoreResultAssign();
1969 
1970   // Since almost all cast kinds apply to scalars, this switch doesn't have
1971   // a default case, so the compiler will warn on a missing case.  The cases
1972   // are in the same order as in the CastKind enum.
1973   switch (Kind) {
1974   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1975   case CK_BuiltinFnToFnPtr:
1976     llvm_unreachable("builtin functions are handled elsewhere");
1977 
1978   case CK_LValueBitCast:
1979   case CK_ObjCObjectLValueCast: {
1980     Address Addr = EmitLValue(E).getAddress(CGF);
1981     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1982     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1983     return EmitLoadOfLValue(LV, CE->getExprLoc());
1984   }
1985 
1986   case CK_LValueToRValueBitCast: {
1987     LValue SourceLVal = CGF.EmitLValue(E);
1988     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1989                                                 CGF.ConvertTypeForMem(DestTy));
1990     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1991     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1992     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1993   }
1994 
1995   case CK_CPointerToObjCPointerCast:
1996   case CK_BlockPointerToObjCPointerCast:
1997   case CK_AnyPointerToBlockPointerCast:
1998   case CK_BitCast: {
1999     Value *Src = Visit(const_cast<Expr*>(E));
2000     llvm::Type *SrcTy = Src->getType();
2001     llvm::Type *DstTy = ConvertType(DestTy);
2002     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2003         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2004       llvm_unreachable("wrong cast for pointers in different address spaces"
2005                        "(must be an address space cast)!");
2006     }
2007 
2008     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2009       if (auto PT = DestTy->getAs<PointerType>())
2010         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2011                                       /*MayBeNull=*/true,
2012                                       CodeGenFunction::CFITCK_UnrelatedCast,
2013                                       CE->getBeginLoc());
2014     }
2015 
2016     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2017       const QualType SrcType = E->getType();
2018 
2019       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2020         // Casting to pointer that could carry dynamic information (provided by
2021         // invariant.group) requires launder.
2022         Src = Builder.CreateLaunderInvariantGroup(Src);
2023       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2024         // Casting to pointer that does not carry dynamic information (provided
2025         // by invariant.group) requires stripping it.  Note that we don't do it
2026         // if the source could not be dynamic type and destination could be
2027         // dynamic because dynamic information is already laundered.  It is
2028         // because launder(strip(src)) == launder(src), so there is no need to
2029         // add extra strip before launder.
2030         Src = Builder.CreateStripInvariantGroup(Src);
2031       }
2032     }
2033 
2034     // Update heapallocsite metadata when there is an explicit pointer cast.
2035     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2036       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2037         QualType PointeeType = DestTy->getPointeeType();
2038         if (!PointeeType.isNull())
2039           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2040                                                        CE->getExprLoc());
2041       }
2042     }
2043 
2044     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2045     // same element type, use the llvm.experimental.vector.insert intrinsic to
2046     // perform the bitcast.
2047     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2048       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2049         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2050           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2051           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2052           return Builder.CreateInsertVector(DstTy, UndefVec, Src, Zero,
2053                                             "castScalableSve");
2054         }
2055       }
2056     }
2057 
2058     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2059     // same element type, use the llvm.experimental.vector.extract intrinsic to
2060     // perform the bitcast.
2061     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2062       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2063         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2064           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2065           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2066         }
2067       }
2068     }
2069 
2070     // Perform VLAT <-> VLST bitcast through memory.
2071     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2072     //       require the element types of the vectors to be the same, we
2073     //       need to keep this around for casting between predicates, or more
2074     //       generally for bitcasts between VLAT <-> VLST where the element
2075     //       types of the vectors are not the same, until we figure out a better
2076     //       way of doing these casts.
2077     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2078          isa<llvm::ScalableVectorType>(DstTy)) ||
2079         (isa<llvm::ScalableVectorType>(SrcTy) &&
2080          isa<llvm::FixedVectorType>(DstTy))) {
2081       if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2082         // Call expressions can't have a scalar return unless the return type
2083         // is a reference type so an lvalue can't be emitted. Create a temp
2084         // alloca to store the call, bitcast the address then load.
2085         QualType RetTy = CE->getCallReturnType(CGF.getContext());
2086         Address Addr =
2087             CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue");
2088         LValue LV = CGF.MakeAddrLValue(Addr, RetTy);
2089         CGF.EmitStoreOfScalar(Src, LV);
2090         Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2091                                             "castFixedSve");
2092         LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2093         DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2094         return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2095       }
2096 
2097       Address Addr = EmitLValue(E).getAddress(CGF);
2098       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2099       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2100       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2101       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2102     }
2103 
2104     return Builder.CreateBitCast(Src, DstTy);
2105   }
2106   case CK_AddressSpaceConversion: {
2107     Expr::EvalResult Result;
2108     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2109         Result.Val.isNullPointer()) {
2110       // If E has side effect, it is emitted even if its final result is a
2111       // null pointer. In that case, a DCE pass should be able to
2112       // eliminate the useless instructions emitted during translating E.
2113       if (Result.HasSideEffects)
2114         Visit(E);
2115       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2116           ConvertType(DestTy)), DestTy);
2117     }
2118     // Since target may map different address spaces in AST to the same address
2119     // space, an address space conversion may end up as a bitcast.
2120     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2121         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2122         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2123   }
2124   case CK_AtomicToNonAtomic:
2125   case CK_NonAtomicToAtomic:
2126   case CK_NoOp:
2127   case CK_UserDefinedConversion:
2128     return Visit(const_cast<Expr*>(E));
2129 
2130   case CK_BaseToDerived: {
2131     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2132     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2133 
2134     Address Base = CGF.EmitPointerWithAlignment(E);
2135     Address Derived =
2136       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2137                                    CE->path_begin(), CE->path_end(),
2138                                    CGF.ShouldNullCheckClassCastValue(CE));
2139 
2140     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2141     // performed and the object is not of the derived type.
2142     if (CGF.sanitizePerformTypeCheck())
2143       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2144                         Derived.getPointer(), DestTy->getPointeeType());
2145 
2146     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2147       CGF.EmitVTablePtrCheckForCast(
2148           DestTy->getPointeeType(), Derived.getPointer(),
2149           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2150           CE->getBeginLoc());
2151 
2152     return Derived.getPointer();
2153   }
2154   case CK_UncheckedDerivedToBase:
2155   case CK_DerivedToBase: {
2156     // The EmitPointerWithAlignment path does this fine; just discard
2157     // the alignment.
2158     return CGF.EmitPointerWithAlignment(CE).getPointer();
2159   }
2160 
2161   case CK_Dynamic: {
2162     Address V = CGF.EmitPointerWithAlignment(E);
2163     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2164     return CGF.EmitDynamicCast(V, DCE);
2165   }
2166 
2167   case CK_ArrayToPointerDecay:
2168     return CGF.EmitArrayToPointerDecay(E).getPointer();
2169   case CK_FunctionToPointerDecay:
2170     return EmitLValue(E).getPointer(CGF);
2171 
2172   case CK_NullToPointer:
2173     if (MustVisitNullValue(E))
2174       CGF.EmitIgnoredExpr(E);
2175 
2176     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2177                               DestTy);
2178 
2179   case CK_NullToMemberPointer: {
2180     if (MustVisitNullValue(E))
2181       CGF.EmitIgnoredExpr(E);
2182 
2183     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2184     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2185   }
2186 
2187   case CK_ReinterpretMemberPointer:
2188   case CK_BaseToDerivedMemberPointer:
2189   case CK_DerivedToBaseMemberPointer: {
2190     Value *Src = Visit(E);
2191 
2192     // Note that the AST doesn't distinguish between checked and
2193     // unchecked member pointer conversions, so we always have to
2194     // implement checked conversions here.  This is inefficient when
2195     // actual control flow may be required in order to perform the
2196     // check, which it is for data member pointers (but not member
2197     // function pointers on Itanium and ARM).
2198     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2199   }
2200 
2201   case CK_ARCProduceObject:
2202     return CGF.EmitARCRetainScalarExpr(E);
2203   case CK_ARCConsumeObject:
2204     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2205   case CK_ARCReclaimReturnedObject:
2206     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2207   case CK_ARCExtendBlockObject:
2208     return CGF.EmitARCExtendBlockObject(E);
2209 
2210   case CK_CopyAndAutoreleaseBlockObject:
2211     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2212 
2213   case CK_FloatingRealToComplex:
2214   case CK_FloatingComplexCast:
2215   case CK_IntegralRealToComplex:
2216   case CK_IntegralComplexCast:
2217   case CK_IntegralComplexToFloatingComplex:
2218   case CK_FloatingComplexToIntegralComplex:
2219   case CK_ConstructorConversion:
2220   case CK_ToUnion:
2221     llvm_unreachable("scalar cast to non-scalar value");
2222 
2223   case CK_LValueToRValue:
2224     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2225     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2226     return Visit(const_cast<Expr*>(E));
2227 
2228   case CK_IntegralToPointer: {
2229     Value *Src = Visit(const_cast<Expr*>(E));
2230 
2231     // First, convert to the correct width so that we control the kind of
2232     // extension.
2233     auto DestLLVMTy = ConvertType(DestTy);
2234     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2235     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2236     llvm::Value* IntResult =
2237       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2238 
2239     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2240 
2241     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2242       // Going from integer to pointer that could be dynamic requires reloading
2243       // dynamic information from invariant.group.
2244       if (DestTy.mayBeDynamicClass())
2245         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2246     }
2247     return IntToPtr;
2248   }
2249   case CK_PointerToIntegral: {
2250     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2251     auto *PtrExpr = Visit(E);
2252 
2253     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2254       const QualType SrcType = E->getType();
2255 
2256       // Casting to integer requires stripping dynamic information as it does
2257       // not carries it.
2258       if (SrcType.mayBeDynamicClass())
2259         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2260     }
2261 
2262     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2263   }
2264   case CK_ToVoid: {
2265     CGF.EmitIgnoredExpr(E);
2266     return nullptr;
2267   }
2268   case CK_MatrixCast: {
2269     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2270                                 CE->getExprLoc());
2271   }
2272   case CK_VectorSplat: {
2273     llvm::Type *DstTy = ConvertType(DestTy);
2274     Value *Elt = Visit(const_cast<Expr*>(E));
2275     // Splat the element across to all elements
2276     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2277     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2278   }
2279 
2280   case CK_FixedPointCast:
2281     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2282                                 CE->getExprLoc());
2283 
2284   case CK_FixedPointToBoolean:
2285     assert(E->getType()->isFixedPointType() &&
2286            "Expected src type to be fixed point type");
2287     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2288     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2289                                 CE->getExprLoc());
2290 
2291   case CK_FixedPointToIntegral:
2292     assert(E->getType()->isFixedPointType() &&
2293            "Expected src type to be fixed point type");
2294     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2295     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2296                                 CE->getExprLoc());
2297 
2298   case CK_IntegralToFixedPoint:
2299     assert(E->getType()->isIntegerType() &&
2300            "Expected src type to be an integer");
2301     assert(DestTy->isFixedPointType() &&
2302            "Expected dest type to be fixed point type");
2303     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2304                                 CE->getExprLoc());
2305 
2306   case CK_IntegralCast: {
2307     ScalarConversionOpts Opts;
2308     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2309       if (!ICE->isPartOfExplicitCast())
2310         Opts = ScalarConversionOpts(CGF.SanOpts);
2311     }
2312     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2313                                 CE->getExprLoc(), Opts);
2314   }
2315   case CK_IntegralToFloating:
2316   case CK_FloatingToIntegral:
2317   case CK_FloatingCast:
2318   case CK_FixedPointToFloating:
2319   case CK_FloatingToFixedPoint: {
2320     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2321     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2322                                 CE->getExprLoc());
2323   }
2324   case CK_BooleanToSignedIntegral: {
2325     ScalarConversionOpts Opts;
2326     Opts.TreatBooleanAsSigned = true;
2327     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2328                                 CE->getExprLoc(), Opts);
2329   }
2330   case CK_IntegralToBoolean:
2331     return EmitIntToBoolConversion(Visit(E));
2332   case CK_PointerToBoolean:
2333     return EmitPointerToBoolConversion(Visit(E), E->getType());
2334   case CK_FloatingToBoolean: {
2335     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2336     return EmitFloatToBoolConversion(Visit(E));
2337   }
2338   case CK_MemberPointerToBoolean: {
2339     llvm::Value *MemPtr = Visit(E);
2340     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2341     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2342   }
2343 
2344   case CK_FloatingComplexToReal:
2345   case CK_IntegralComplexToReal:
2346     return CGF.EmitComplexExpr(E, false, true).first;
2347 
2348   case CK_FloatingComplexToBoolean:
2349   case CK_IntegralComplexToBoolean: {
2350     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2351 
2352     // TODO: kill this function off, inline appropriate case here
2353     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2354                                          CE->getExprLoc());
2355   }
2356 
2357   case CK_ZeroToOCLOpaqueType: {
2358     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2359             DestTy->isOCLIntelSubgroupAVCType()) &&
2360            "CK_ZeroToOCLEvent cast on non-event type");
2361     return llvm::Constant::getNullValue(ConvertType(DestTy));
2362   }
2363 
2364   case CK_IntToOCLSampler:
2365     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2366 
2367   } // end of switch
2368 
2369   llvm_unreachable("unknown scalar cast");
2370 }
2371 
2372 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2373   CodeGenFunction::StmtExprEvaluation eval(CGF);
2374   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2375                                            !E->getType()->isVoidType());
2376   if (!RetAlloca.isValid())
2377     return nullptr;
2378   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2379                               E->getExprLoc());
2380 }
2381 
2382 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2383   CodeGenFunction::RunCleanupsScope Scope(CGF);
2384   Value *V = Visit(E->getSubExpr());
2385   // Defend against dominance problems caused by jumps out of expression
2386   // evaluation through the shared cleanup block.
2387   Scope.ForceCleanup({&V});
2388   return V;
2389 }
2390 
2391 //===----------------------------------------------------------------------===//
2392 //                             Unary Operators
2393 //===----------------------------------------------------------------------===//
2394 
2395 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2396                                            llvm::Value *InVal, bool IsInc,
2397                                            FPOptions FPFeatures) {
2398   BinOpInfo BinOp;
2399   BinOp.LHS = InVal;
2400   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2401   BinOp.Ty = E->getType();
2402   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2403   BinOp.FPFeatures = FPFeatures;
2404   BinOp.E = E;
2405   return BinOp;
2406 }
2407 
2408 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2409     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2410   llvm::Value *Amount =
2411       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2412   StringRef Name = IsInc ? "inc" : "dec";
2413   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2414   case LangOptions::SOB_Defined:
2415     return Builder.CreateAdd(InVal, Amount, Name);
2416   case LangOptions::SOB_Undefined:
2417     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2418       return Builder.CreateNSWAdd(InVal, Amount, Name);
2419     LLVM_FALLTHROUGH;
2420   case LangOptions::SOB_Trapping:
2421     if (!E->canOverflow())
2422       return Builder.CreateNSWAdd(InVal, Amount, Name);
2423     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2424         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2425   }
2426   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2427 }
2428 
2429 namespace {
2430 /// Handles check and update for lastprivate conditional variables.
2431 class OMPLastprivateConditionalUpdateRAII {
2432 private:
2433   CodeGenFunction &CGF;
2434   const UnaryOperator *E;
2435 
2436 public:
2437   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2438                                       const UnaryOperator *E)
2439       : CGF(CGF), E(E) {}
2440   ~OMPLastprivateConditionalUpdateRAII() {
2441     if (CGF.getLangOpts().OpenMP)
2442       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2443           CGF, E->getSubExpr());
2444   }
2445 };
2446 } // namespace
2447 
2448 llvm::Value *
2449 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2450                                            bool isInc, bool isPre) {
2451   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2452   QualType type = E->getSubExpr()->getType();
2453   llvm::PHINode *atomicPHI = nullptr;
2454   llvm::Value *value;
2455   llvm::Value *input;
2456 
2457   int amount = (isInc ? 1 : -1);
2458   bool isSubtraction = !isInc;
2459 
2460   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2461     type = atomicTy->getValueType();
2462     if (isInc && type->isBooleanType()) {
2463       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2464       if (isPre) {
2465         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2466             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2467         return Builder.getTrue();
2468       }
2469       // For atomic bool increment, we just store true and return it for
2470       // preincrement, do an atomic swap with true for postincrement
2471       return Builder.CreateAtomicRMW(
2472           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2473           llvm::AtomicOrdering::SequentiallyConsistent);
2474     }
2475     // Special case for atomic increment / decrement on integers, emit
2476     // atomicrmw instructions.  We skip this if we want to be doing overflow
2477     // checking, and fall into the slow path with the atomic cmpxchg loop.
2478     if (!type->isBooleanType() && type->isIntegerType() &&
2479         !(type->isUnsignedIntegerType() &&
2480           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2481         CGF.getLangOpts().getSignedOverflowBehavior() !=
2482             LangOptions::SOB_Trapping) {
2483       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2484         llvm::AtomicRMWInst::Sub;
2485       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2486         llvm::Instruction::Sub;
2487       llvm::Value *amt = CGF.EmitToMemory(
2488           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2489       llvm::Value *old =
2490           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2491                                   llvm::AtomicOrdering::SequentiallyConsistent);
2492       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2493     }
2494     value = EmitLoadOfLValue(LV, E->getExprLoc());
2495     input = value;
2496     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2497     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2498     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2499     value = CGF.EmitToMemory(value, type);
2500     Builder.CreateBr(opBB);
2501     Builder.SetInsertPoint(opBB);
2502     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2503     atomicPHI->addIncoming(value, startBB);
2504     value = atomicPHI;
2505   } else {
2506     value = EmitLoadOfLValue(LV, E->getExprLoc());
2507     input = value;
2508   }
2509 
2510   // Special case of integer increment that we have to check first: bool++.
2511   // Due to promotion rules, we get:
2512   //   bool++ -> bool = bool + 1
2513   //          -> bool = (int)bool + 1
2514   //          -> bool = ((int)bool + 1 != 0)
2515   // An interesting aspect of this is that increment is always true.
2516   // Decrement does not have this property.
2517   if (isInc && type->isBooleanType()) {
2518     value = Builder.getTrue();
2519 
2520   // Most common case by far: integer increment.
2521   } else if (type->isIntegerType()) {
2522     QualType promotedType;
2523     bool canPerformLossyDemotionCheck = false;
2524     if (type->isPromotableIntegerType()) {
2525       promotedType = CGF.getContext().getPromotedIntegerType(type);
2526       assert(promotedType != type && "Shouldn't promote to the same type.");
2527       canPerformLossyDemotionCheck = true;
2528       canPerformLossyDemotionCheck &=
2529           CGF.getContext().getCanonicalType(type) !=
2530           CGF.getContext().getCanonicalType(promotedType);
2531       canPerformLossyDemotionCheck &=
2532           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2533               type, promotedType);
2534       assert((!canPerformLossyDemotionCheck ||
2535               type->isSignedIntegerOrEnumerationType() ||
2536               promotedType->isSignedIntegerOrEnumerationType() ||
2537               ConvertType(type)->getScalarSizeInBits() ==
2538                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2539              "The following check expects that if we do promotion to different "
2540              "underlying canonical type, at least one of the types (either "
2541              "base or promoted) will be signed, or the bitwidths will match.");
2542     }
2543     if (CGF.SanOpts.hasOneOf(
2544             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2545         canPerformLossyDemotionCheck) {
2546       // While `x += 1` (for `x` with width less than int) is modeled as
2547       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2548       // ease; inc/dec with width less than int can't overflow because of
2549       // promotion rules, so we omit promotion+demotion, which means that we can
2550       // not catch lossy "demotion". Because we still want to catch these cases
2551       // when the sanitizer is enabled, we perform the promotion, then perform
2552       // the increment/decrement in the wider type, and finally
2553       // perform the demotion. This will catch lossy demotions.
2554 
2555       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2556       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2557       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2558       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2559       // emitted.
2560       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2561                                    ScalarConversionOpts(CGF.SanOpts));
2562 
2563       // Note that signed integer inc/dec with width less than int can't
2564       // overflow because of promotion rules; we're just eliding a few steps
2565       // here.
2566     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2567       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2568     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2569                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2570       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2571           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2572     } else {
2573       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2574       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2575     }
2576 
2577   // Next most common: pointer increment.
2578   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2579     QualType type = ptr->getPointeeType();
2580 
2581     // VLA types don't have constant size.
2582     if (const VariableArrayType *vla
2583           = CGF.getContext().getAsVariableArrayType(type)) {
2584       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2585       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2586       if (CGF.getLangOpts().isSignedOverflowDefined())
2587         value = Builder.CreateGEP(value, numElts, "vla.inc");
2588       else
2589         value = CGF.EmitCheckedInBoundsGEP(
2590             value, numElts, /*SignedIndices=*/false, isSubtraction,
2591             E->getExprLoc(), "vla.inc");
2592 
2593     // Arithmetic on function pointers (!) is just +-1.
2594     } else if (type->isFunctionType()) {
2595       llvm::Value *amt = Builder.getInt32(amount);
2596 
2597       value = CGF.EmitCastToVoidPtr(value);
2598       if (CGF.getLangOpts().isSignedOverflowDefined())
2599         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2600       else
2601         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2602                                            isSubtraction, E->getExprLoc(),
2603                                            "incdec.funcptr");
2604       value = Builder.CreateBitCast(value, input->getType());
2605 
2606     // For everything else, we can just do a simple increment.
2607     } else {
2608       llvm::Value *amt = Builder.getInt32(amount);
2609       if (CGF.getLangOpts().isSignedOverflowDefined())
2610         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2611       else
2612         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2613                                            isSubtraction, E->getExprLoc(),
2614                                            "incdec.ptr");
2615     }
2616 
2617   // Vector increment/decrement.
2618   } else if (type->isVectorType()) {
2619     if (type->hasIntegerRepresentation()) {
2620       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2621 
2622       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2623     } else {
2624       value = Builder.CreateFAdd(
2625                   value,
2626                   llvm::ConstantFP::get(value->getType(), amount),
2627                   isInc ? "inc" : "dec");
2628     }
2629 
2630   // Floating point.
2631   } else if (type->isRealFloatingType()) {
2632     // Add the inc/dec to the real part.
2633     llvm::Value *amt;
2634     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2635 
2636     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2637       // Another special case: half FP increment should be done via float
2638       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2639         value = Builder.CreateCall(
2640             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2641                                  CGF.CGM.FloatTy),
2642             input, "incdec.conv");
2643       } else {
2644         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2645       }
2646     }
2647 
2648     if (value->getType()->isFloatTy())
2649       amt = llvm::ConstantFP::get(VMContext,
2650                                   llvm::APFloat(static_cast<float>(amount)));
2651     else if (value->getType()->isDoubleTy())
2652       amt = llvm::ConstantFP::get(VMContext,
2653                                   llvm::APFloat(static_cast<double>(amount)));
2654     else {
2655       // Remaining types are Half, LongDouble or __float128. Convert from float.
2656       llvm::APFloat F(static_cast<float>(amount));
2657       bool ignored;
2658       const llvm::fltSemantics *FS;
2659       // Don't use getFloatTypeSemantics because Half isn't
2660       // necessarily represented using the "half" LLVM type.
2661       if (value->getType()->isFP128Ty())
2662         FS = &CGF.getTarget().getFloat128Format();
2663       else if (value->getType()->isHalfTy())
2664         FS = &CGF.getTarget().getHalfFormat();
2665       else
2666         FS = &CGF.getTarget().getLongDoubleFormat();
2667       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2668       amt = llvm::ConstantFP::get(VMContext, F);
2669     }
2670     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2671 
2672     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2673       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2674         value = Builder.CreateCall(
2675             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2676                                  CGF.CGM.FloatTy),
2677             value, "incdec.conv");
2678       } else {
2679         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2680       }
2681     }
2682 
2683   // Fixed-point types.
2684   } else if (type->isFixedPointType()) {
2685     // Fixed-point types are tricky. In some cases, it isn't possible to
2686     // represent a 1 or a -1 in the type at all. Piggyback off of
2687     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2688     BinOpInfo Info;
2689     Info.E = E;
2690     Info.Ty = E->getType();
2691     Info.Opcode = isInc ? BO_Add : BO_Sub;
2692     Info.LHS = value;
2693     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2694     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2695     // since -1 is guaranteed to be representable.
2696     if (type->isSignedFixedPointType()) {
2697       Info.Opcode = isInc ? BO_Sub : BO_Add;
2698       Info.RHS = Builder.CreateNeg(Info.RHS);
2699     }
2700     // Now, convert from our invented integer literal to the type of the unary
2701     // op. This will upscale and saturate if necessary. This value can become
2702     // undef in some cases.
2703     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2704     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2705     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2706     value = EmitFixedPointBinOp(Info);
2707 
2708   // Objective-C pointer types.
2709   } else {
2710     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2711     value = CGF.EmitCastToVoidPtr(value);
2712 
2713     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2714     if (!isInc) size = -size;
2715     llvm::Value *sizeValue =
2716       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2717 
2718     if (CGF.getLangOpts().isSignedOverflowDefined())
2719       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2720     else
2721       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2722                                          /*SignedIndices=*/false, isSubtraction,
2723                                          E->getExprLoc(), "incdec.objptr");
2724     value = Builder.CreateBitCast(value, input->getType());
2725   }
2726 
2727   if (atomicPHI) {
2728     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2729     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2730     auto Pair = CGF.EmitAtomicCompareExchange(
2731         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2732     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2733     llvm::Value *success = Pair.second;
2734     atomicPHI->addIncoming(old, curBlock);
2735     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2736     Builder.SetInsertPoint(contBB);
2737     return isPre ? value : input;
2738   }
2739 
2740   // Store the updated result through the lvalue.
2741   if (LV.isBitField())
2742     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2743   else
2744     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2745 
2746   // If this is a postinc, return the value read from memory, otherwise use the
2747   // updated value.
2748   return isPre ? value : input;
2749 }
2750 
2751 
2752 
2753 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2754   TestAndClearIgnoreResultAssign();
2755   Value *Op = Visit(E->getSubExpr());
2756 
2757   // Generate a unary FNeg for FP ops.
2758   if (Op->getType()->isFPOrFPVectorTy())
2759     return Builder.CreateFNeg(Op, "fneg");
2760 
2761   // Emit unary minus with EmitSub so we handle overflow cases etc.
2762   BinOpInfo BinOp;
2763   BinOp.RHS = Op;
2764   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2765   BinOp.Ty = E->getType();
2766   BinOp.Opcode = BO_Sub;
2767   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2768   BinOp.E = E;
2769   return EmitSub(BinOp);
2770 }
2771 
2772 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2773   TestAndClearIgnoreResultAssign();
2774   Value *Op = Visit(E->getSubExpr());
2775   return Builder.CreateNot(Op, "neg");
2776 }
2777 
2778 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2779   // Perform vector logical not on comparison with zero vector.
2780   if (E->getType()->isVectorType() &&
2781       E->getType()->castAs<VectorType>()->getVectorKind() ==
2782           VectorType::GenericVector) {
2783     Value *Oper = Visit(E->getSubExpr());
2784     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2785     Value *Result;
2786     if (Oper->getType()->isFPOrFPVectorTy()) {
2787       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2788           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2789       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2790     } else
2791       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2792     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2793   }
2794 
2795   // Compare operand to zero.
2796   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2797 
2798   // Invert value.
2799   // TODO: Could dynamically modify easy computations here.  For example, if
2800   // the operand is an icmp ne, turn into icmp eq.
2801   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2802 
2803   // ZExt result to the expr type.
2804   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2805 }
2806 
2807 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2808   // Try folding the offsetof to a constant.
2809   Expr::EvalResult EVResult;
2810   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2811     llvm::APSInt Value = EVResult.Val.getInt();
2812     return Builder.getInt(Value);
2813   }
2814 
2815   // Loop over the components of the offsetof to compute the value.
2816   unsigned n = E->getNumComponents();
2817   llvm::Type* ResultType = ConvertType(E->getType());
2818   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2819   QualType CurrentType = E->getTypeSourceInfo()->getType();
2820   for (unsigned i = 0; i != n; ++i) {
2821     OffsetOfNode ON = E->getComponent(i);
2822     llvm::Value *Offset = nullptr;
2823     switch (ON.getKind()) {
2824     case OffsetOfNode::Array: {
2825       // Compute the index
2826       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2827       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2828       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2829       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2830 
2831       // Save the element type
2832       CurrentType =
2833           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2834 
2835       // Compute the element size
2836       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2837           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2838 
2839       // Multiply out to compute the result
2840       Offset = Builder.CreateMul(Idx, ElemSize);
2841       break;
2842     }
2843 
2844     case OffsetOfNode::Field: {
2845       FieldDecl *MemberDecl = ON.getField();
2846       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2847       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2848 
2849       // Compute the index of the field in its parent.
2850       unsigned i = 0;
2851       // FIXME: It would be nice if we didn't have to loop here!
2852       for (RecordDecl::field_iterator Field = RD->field_begin(),
2853                                       FieldEnd = RD->field_end();
2854            Field != FieldEnd; ++Field, ++i) {
2855         if (*Field == MemberDecl)
2856           break;
2857       }
2858       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2859 
2860       // Compute the offset to the field
2861       int64_t OffsetInt = RL.getFieldOffset(i) /
2862                           CGF.getContext().getCharWidth();
2863       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2864 
2865       // Save the element type.
2866       CurrentType = MemberDecl->getType();
2867       break;
2868     }
2869 
2870     case OffsetOfNode::Identifier:
2871       llvm_unreachable("dependent __builtin_offsetof");
2872 
2873     case OffsetOfNode::Base: {
2874       if (ON.getBase()->isVirtual()) {
2875         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2876         continue;
2877       }
2878 
2879       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2880       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2881 
2882       // Save the element type.
2883       CurrentType = ON.getBase()->getType();
2884 
2885       // Compute the offset to the base.
2886       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2887       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2888       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2889       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2890       break;
2891     }
2892     }
2893     Result = Builder.CreateAdd(Result, Offset);
2894   }
2895   return Result;
2896 }
2897 
2898 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2899 /// argument of the sizeof expression as an integer.
2900 Value *
2901 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2902                               const UnaryExprOrTypeTraitExpr *E) {
2903   QualType TypeToSize = E->getTypeOfArgument();
2904   if (E->getKind() == UETT_SizeOf) {
2905     if (const VariableArrayType *VAT =
2906           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2907       if (E->isArgumentType()) {
2908         // sizeof(type) - make sure to emit the VLA size.
2909         CGF.EmitVariablyModifiedType(TypeToSize);
2910       } else {
2911         // C99 6.5.3.4p2: If the argument is an expression of type
2912         // VLA, it is evaluated.
2913         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2914       }
2915 
2916       auto VlaSize = CGF.getVLASize(VAT);
2917       llvm::Value *size = VlaSize.NumElts;
2918 
2919       // Scale the number of non-VLA elements by the non-VLA element size.
2920       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2921       if (!eltSize.isOne())
2922         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2923 
2924       return size;
2925     }
2926   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2927     auto Alignment =
2928         CGF.getContext()
2929             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2930                 E->getTypeOfArgument()->getPointeeType()))
2931             .getQuantity();
2932     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2933   }
2934 
2935   // If this isn't sizeof(vla), the result must be constant; use the constant
2936   // folding logic so we don't have to duplicate it here.
2937   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2938 }
2939 
2940 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2941   Expr *Op = E->getSubExpr();
2942   if (Op->getType()->isAnyComplexType()) {
2943     // If it's an l-value, load through the appropriate subobject l-value.
2944     // Note that we have to ask E because Op might be an l-value that
2945     // this won't work for, e.g. an Obj-C property.
2946     if (E->isGLValue())
2947       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2948                                   E->getExprLoc()).getScalarVal();
2949 
2950     // Otherwise, calculate and project.
2951     return CGF.EmitComplexExpr(Op, false, true).first;
2952   }
2953 
2954   return Visit(Op);
2955 }
2956 
2957 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2958   Expr *Op = E->getSubExpr();
2959   if (Op->getType()->isAnyComplexType()) {
2960     // If it's an l-value, load through the appropriate subobject l-value.
2961     // Note that we have to ask E because Op might be an l-value that
2962     // this won't work for, e.g. an Obj-C property.
2963     if (Op->isGLValue())
2964       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2965                                   E->getExprLoc()).getScalarVal();
2966 
2967     // Otherwise, calculate and project.
2968     return CGF.EmitComplexExpr(Op, true, false).second;
2969   }
2970 
2971   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2972   // effects are evaluated, but not the actual value.
2973   if (Op->isGLValue())
2974     CGF.EmitLValue(Op);
2975   else
2976     CGF.EmitScalarExpr(Op, true);
2977   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2978 }
2979 
2980 //===----------------------------------------------------------------------===//
2981 //                           Binary Operators
2982 //===----------------------------------------------------------------------===//
2983 
2984 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2985   TestAndClearIgnoreResultAssign();
2986   BinOpInfo Result;
2987   Result.LHS = Visit(E->getLHS());
2988   Result.RHS = Visit(E->getRHS());
2989   Result.Ty  = E->getType();
2990   Result.Opcode = E->getOpcode();
2991   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2992   Result.E = E;
2993   return Result;
2994 }
2995 
2996 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2997                                               const CompoundAssignOperator *E,
2998                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2999                                                    Value *&Result) {
3000   QualType LHSTy = E->getLHS()->getType();
3001   BinOpInfo OpInfo;
3002 
3003   if (E->getComputationResultType()->isAnyComplexType())
3004     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3005 
3006   // Emit the RHS first.  __block variables need to have the rhs evaluated
3007   // first, plus this should improve codegen a little.
3008   OpInfo.RHS = Visit(E->getRHS());
3009   OpInfo.Ty = E->getComputationResultType();
3010   OpInfo.Opcode = E->getOpcode();
3011   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3012   OpInfo.E = E;
3013   // Load/convert the LHS.
3014   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3015 
3016   llvm::PHINode *atomicPHI = nullptr;
3017   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3018     QualType type = atomicTy->getValueType();
3019     if (!type->isBooleanType() && type->isIntegerType() &&
3020         !(type->isUnsignedIntegerType() &&
3021           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3022         CGF.getLangOpts().getSignedOverflowBehavior() !=
3023             LangOptions::SOB_Trapping) {
3024       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3025       llvm::Instruction::BinaryOps Op;
3026       switch (OpInfo.Opcode) {
3027         // We don't have atomicrmw operands for *, %, /, <<, >>
3028         case BO_MulAssign: case BO_DivAssign:
3029         case BO_RemAssign:
3030         case BO_ShlAssign:
3031         case BO_ShrAssign:
3032           break;
3033         case BO_AddAssign:
3034           AtomicOp = llvm::AtomicRMWInst::Add;
3035           Op = llvm::Instruction::Add;
3036           break;
3037         case BO_SubAssign:
3038           AtomicOp = llvm::AtomicRMWInst::Sub;
3039           Op = llvm::Instruction::Sub;
3040           break;
3041         case BO_AndAssign:
3042           AtomicOp = llvm::AtomicRMWInst::And;
3043           Op = llvm::Instruction::And;
3044           break;
3045         case BO_XorAssign:
3046           AtomicOp = llvm::AtomicRMWInst::Xor;
3047           Op = llvm::Instruction::Xor;
3048           break;
3049         case BO_OrAssign:
3050           AtomicOp = llvm::AtomicRMWInst::Or;
3051           Op = llvm::Instruction::Or;
3052           break;
3053         default:
3054           llvm_unreachable("Invalid compound assignment type");
3055       }
3056       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3057         llvm::Value *Amt = CGF.EmitToMemory(
3058             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3059                                  E->getExprLoc()),
3060             LHSTy);
3061         Value *OldVal = Builder.CreateAtomicRMW(
3062             AtomicOp, LHSLV.getPointer(CGF), Amt,
3063             llvm::AtomicOrdering::SequentiallyConsistent);
3064 
3065         // Since operation is atomic, the result type is guaranteed to be the
3066         // same as the input in LLVM terms.
3067         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3068         return LHSLV;
3069       }
3070     }
3071     // FIXME: For floating point types, we should be saving and restoring the
3072     // floating point environment in the loop.
3073     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3074     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3075     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3076     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3077     Builder.CreateBr(opBB);
3078     Builder.SetInsertPoint(opBB);
3079     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3080     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3081     OpInfo.LHS = atomicPHI;
3082   }
3083   else
3084     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3085 
3086   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3087   SourceLocation Loc = E->getExprLoc();
3088   OpInfo.LHS =
3089       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3090 
3091   // Expand the binary operator.
3092   Result = (this->*Func)(OpInfo);
3093 
3094   // Convert the result back to the LHS type,
3095   // potentially with Implicit Conversion sanitizer check.
3096   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3097                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3098 
3099   if (atomicPHI) {
3100     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3101     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3102     auto Pair = CGF.EmitAtomicCompareExchange(
3103         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3104     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3105     llvm::Value *success = Pair.second;
3106     atomicPHI->addIncoming(old, curBlock);
3107     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3108     Builder.SetInsertPoint(contBB);
3109     return LHSLV;
3110   }
3111 
3112   // Store the result value into the LHS lvalue. Bit-fields are handled
3113   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3114   // 'An assignment expression has the value of the left operand after the
3115   // assignment...'.
3116   if (LHSLV.isBitField())
3117     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3118   else
3119     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3120 
3121   if (CGF.getLangOpts().OpenMP)
3122     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3123                                                                   E->getLHS());
3124   return LHSLV;
3125 }
3126 
3127 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3128                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3129   bool Ignore = TestAndClearIgnoreResultAssign();
3130   Value *RHS = nullptr;
3131   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3132 
3133   // If the result is clearly ignored, return now.
3134   if (Ignore)
3135     return nullptr;
3136 
3137   // The result of an assignment in C is the assigned r-value.
3138   if (!CGF.getLangOpts().CPlusPlus)
3139     return RHS;
3140 
3141   // If the lvalue is non-volatile, return the computed value of the assignment.
3142   if (!LHS.isVolatileQualified())
3143     return RHS;
3144 
3145   // Otherwise, reload the value.
3146   return EmitLoadOfLValue(LHS, E->getExprLoc());
3147 }
3148 
3149 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3150     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3151   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3152 
3153   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3154     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3155                                     SanitizerKind::IntegerDivideByZero));
3156   }
3157 
3158   const auto *BO = cast<BinaryOperator>(Ops.E);
3159   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3160       Ops.Ty->hasSignedIntegerRepresentation() &&
3161       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3162       Ops.mayHaveIntegerOverflow()) {
3163     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3164 
3165     llvm::Value *IntMin =
3166       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3167     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3168 
3169     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3170     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3171     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3172     Checks.push_back(
3173         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3174   }
3175 
3176   if (Checks.size() > 0)
3177     EmitBinOpCheck(Checks, Ops);
3178 }
3179 
3180 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3181   {
3182     CodeGenFunction::SanitizerScope SanScope(&CGF);
3183     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3184          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3185         Ops.Ty->isIntegerType() &&
3186         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3187       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3188       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3189     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3190                Ops.Ty->isRealFloatingType() &&
3191                Ops.mayHaveFloatDivisionByZero()) {
3192       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3193       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3194       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3195                      Ops);
3196     }
3197   }
3198 
3199   if (Ops.Ty->isConstantMatrixType()) {
3200     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3201     // We need to check the types of the operands of the operator to get the
3202     // correct matrix dimensions.
3203     auto *BO = cast<BinaryOperator>(Ops.E);
3204     (void)BO;
3205     assert(
3206         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3207         "first operand must be a matrix");
3208     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3209            "second operand must be an arithmetic type");
3210     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3211     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3212                               Ops.Ty->hasUnsignedIntegerRepresentation());
3213   }
3214 
3215   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3216     llvm::Value *Val;
3217     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3218     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3219     if (CGF.getLangOpts().OpenCL &&
3220         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3221       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3222       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3223       // build option allows an application to specify that single precision
3224       // floating-point divide (x/y and 1/x) and sqrt used in the program
3225       // source are correctly rounded.
3226       llvm::Type *ValTy = Val->getType();
3227       if (ValTy->isFloatTy() ||
3228           (isa<llvm::VectorType>(ValTy) &&
3229            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3230         CGF.SetFPAccuracy(Val, 2.5);
3231     }
3232     return Val;
3233   }
3234   else if (Ops.isFixedPointOp())
3235     return EmitFixedPointBinOp(Ops);
3236   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3237     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3238   else
3239     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3240 }
3241 
3242 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3243   // Rem in C can't be a floating point type: C99 6.5.5p2.
3244   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3245        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3246       Ops.Ty->isIntegerType() &&
3247       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3248     CodeGenFunction::SanitizerScope SanScope(&CGF);
3249     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3250     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3251   }
3252 
3253   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3254     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3255   else
3256     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3257 }
3258 
3259 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3260   unsigned IID;
3261   unsigned OpID = 0;
3262   SanitizerHandler OverflowKind;
3263 
3264   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3265   switch (Ops.Opcode) {
3266   case BO_Add:
3267   case BO_AddAssign:
3268     OpID = 1;
3269     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3270                      llvm::Intrinsic::uadd_with_overflow;
3271     OverflowKind = SanitizerHandler::AddOverflow;
3272     break;
3273   case BO_Sub:
3274   case BO_SubAssign:
3275     OpID = 2;
3276     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3277                      llvm::Intrinsic::usub_with_overflow;
3278     OverflowKind = SanitizerHandler::SubOverflow;
3279     break;
3280   case BO_Mul:
3281   case BO_MulAssign:
3282     OpID = 3;
3283     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3284                      llvm::Intrinsic::umul_with_overflow;
3285     OverflowKind = SanitizerHandler::MulOverflow;
3286     break;
3287   default:
3288     llvm_unreachable("Unsupported operation for overflow detection");
3289   }
3290   OpID <<= 1;
3291   if (isSigned)
3292     OpID |= 1;
3293 
3294   CodeGenFunction::SanitizerScope SanScope(&CGF);
3295   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3296 
3297   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3298 
3299   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3300   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3301   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3302 
3303   // Handle overflow with llvm.trap if no custom handler has been specified.
3304   const std::string *handlerName =
3305     &CGF.getLangOpts().OverflowHandler;
3306   if (handlerName->empty()) {
3307     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3308     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3309     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3310       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3311       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3312                               : SanitizerKind::UnsignedIntegerOverflow;
3313       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3314     } else
3315       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3316     return result;
3317   }
3318 
3319   // Branch in case of overflow.
3320   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3321   llvm::BasicBlock *continueBB =
3322       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3323   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3324 
3325   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3326 
3327   // If an overflow handler is set, then we want to call it and then use its
3328   // result, if it returns.
3329   Builder.SetInsertPoint(overflowBB);
3330 
3331   // Get the overflow handler.
3332   llvm::Type *Int8Ty = CGF.Int8Ty;
3333   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3334   llvm::FunctionType *handlerTy =
3335       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3336   llvm::FunctionCallee handler =
3337       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3338 
3339   // Sign extend the args to 64-bit, so that we can use the same handler for
3340   // all types of overflow.
3341   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3342   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3343 
3344   // Call the handler with the two arguments, the operation, and the size of
3345   // the result.
3346   llvm::Value *handlerArgs[] = {
3347     lhs,
3348     rhs,
3349     Builder.getInt8(OpID),
3350     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3351   };
3352   llvm::Value *handlerResult =
3353     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3354 
3355   // Truncate the result back to the desired size.
3356   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3357   Builder.CreateBr(continueBB);
3358 
3359   Builder.SetInsertPoint(continueBB);
3360   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3361   phi->addIncoming(result, initialBB);
3362   phi->addIncoming(handlerResult, overflowBB);
3363 
3364   return phi;
3365 }
3366 
3367 /// Emit pointer + index arithmetic.
3368 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3369                                     const BinOpInfo &op,
3370                                     bool isSubtraction) {
3371   // Must have binary (not unary) expr here.  Unary pointer
3372   // increment/decrement doesn't use this path.
3373   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3374 
3375   Value *pointer = op.LHS;
3376   Expr *pointerOperand = expr->getLHS();
3377   Value *index = op.RHS;
3378   Expr *indexOperand = expr->getRHS();
3379 
3380   // In a subtraction, the LHS is always the pointer.
3381   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3382     std::swap(pointer, index);
3383     std::swap(pointerOperand, indexOperand);
3384   }
3385 
3386   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3387 
3388   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3389   auto &DL = CGF.CGM.getDataLayout();
3390   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3391 
3392   // Some versions of glibc and gcc use idioms (particularly in their malloc
3393   // routines) that add a pointer-sized integer (known to be a pointer value)
3394   // to a null pointer in order to cast the value back to an integer or as
3395   // part of a pointer alignment algorithm.  This is undefined behavior, but
3396   // we'd like to be able to compile programs that use it.
3397   //
3398   // Normally, we'd generate a GEP with a null-pointer base here in response
3399   // to that code, but it's also UB to dereference a pointer created that
3400   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3401   // generate a direct cast of the integer value to a pointer.
3402   //
3403   // The idiom (p = nullptr + N) is not met if any of the following are true:
3404   //
3405   //   The operation is subtraction.
3406   //   The index is not pointer-sized.
3407   //   The pointer type is not byte-sized.
3408   //
3409   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3410                                                        op.Opcode,
3411                                                        expr->getLHS(),
3412                                                        expr->getRHS()))
3413     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3414 
3415   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3416     // Zero-extend or sign-extend the pointer value according to
3417     // whether the index is signed or not.
3418     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3419                                       "idx.ext");
3420   }
3421 
3422   // If this is subtraction, negate the index.
3423   if (isSubtraction)
3424     index = CGF.Builder.CreateNeg(index, "idx.neg");
3425 
3426   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3427     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3428                         /*Accessed*/ false);
3429 
3430   const PointerType *pointerType
3431     = pointerOperand->getType()->getAs<PointerType>();
3432   if (!pointerType) {
3433     QualType objectType = pointerOperand->getType()
3434                                         ->castAs<ObjCObjectPointerType>()
3435                                         ->getPointeeType();
3436     llvm::Value *objectSize
3437       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3438 
3439     index = CGF.Builder.CreateMul(index, objectSize);
3440 
3441     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3442     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3443     return CGF.Builder.CreateBitCast(result, pointer->getType());
3444   }
3445 
3446   QualType elementType = pointerType->getPointeeType();
3447   if (const VariableArrayType *vla
3448         = CGF.getContext().getAsVariableArrayType(elementType)) {
3449     // The element count here is the total number of non-VLA elements.
3450     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3451 
3452     // Effectively, the multiply by the VLA size is part of the GEP.
3453     // GEP indexes are signed, and scaling an index isn't permitted to
3454     // signed-overflow, so we use the same semantics for our explicit
3455     // multiply.  We suppress this if overflow is not undefined behavior.
3456     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3457       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3458       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3459     } else {
3460       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3461       pointer =
3462           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3463                                      op.E->getExprLoc(), "add.ptr");
3464     }
3465     return pointer;
3466   }
3467 
3468   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3469   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3470   // future proof.
3471   if (elementType->isVoidType() || elementType->isFunctionType()) {
3472     Value *result = CGF.EmitCastToVoidPtr(pointer);
3473     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3474     return CGF.Builder.CreateBitCast(result, pointer->getType());
3475   }
3476 
3477   if (CGF.getLangOpts().isSignedOverflowDefined())
3478     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3479 
3480   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3481                                     op.E->getExprLoc(), "add.ptr");
3482 }
3483 
3484 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3485 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3486 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3487 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3488 // efficient operations.
3489 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3490                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3491                            bool negMul, bool negAdd) {
3492   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3493 
3494   Value *MulOp0 = MulOp->getOperand(0);
3495   Value *MulOp1 = MulOp->getOperand(1);
3496   if (negMul)
3497     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3498   if (negAdd)
3499     Addend = Builder.CreateFNeg(Addend, "neg");
3500 
3501   Value *FMulAdd = nullptr;
3502   if (Builder.getIsFPConstrained()) {
3503     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3504            "Only constrained operation should be created when Builder is in FP "
3505            "constrained mode");
3506     FMulAdd = Builder.CreateConstrainedFPCall(
3507         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3508                              Addend->getType()),
3509         {MulOp0, MulOp1, Addend});
3510   } else {
3511     FMulAdd = Builder.CreateCall(
3512         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3513         {MulOp0, MulOp1, Addend});
3514   }
3515   MulOp->eraseFromParent();
3516 
3517   return FMulAdd;
3518 }
3519 
3520 // Check whether it would be legal to emit an fmuladd intrinsic call to
3521 // represent op and if so, build the fmuladd.
3522 //
3523 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3524 // Does NOT check the type of the operation - it's assumed that this function
3525 // will be called from contexts where it's known that the type is contractable.
3526 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3527                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3528                          bool isSub=false) {
3529 
3530   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3531           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3532          "Only fadd/fsub can be the root of an fmuladd.");
3533 
3534   // Check whether this op is marked as fusable.
3535   if (!op.FPFeatures.allowFPContractWithinStatement())
3536     return nullptr;
3537 
3538   // We have a potentially fusable op. Look for a mul on one of the operands.
3539   // Also, make sure that the mul result isn't used directly. In that case,
3540   // there's no point creating a muladd operation.
3541   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3542     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3543         LHSBinOp->use_empty())
3544       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3545   }
3546   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3547     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3548         RHSBinOp->use_empty())
3549       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3550   }
3551 
3552   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3553     if (LHSBinOp->getIntrinsicID() ==
3554             llvm::Intrinsic::experimental_constrained_fmul &&
3555         LHSBinOp->use_empty())
3556       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3557   }
3558   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3559     if (RHSBinOp->getIntrinsicID() ==
3560             llvm::Intrinsic::experimental_constrained_fmul &&
3561         RHSBinOp->use_empty())
3562       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3563   }
3564 
3565   return nullptr;
3566 }
3567 
3568 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3569   if (op.LHS->getType()->isPointerTy() ||
3570       op.RHS->getType()->isPointerTy())
3571     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3572 
3573   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3574     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3575     case LangOptions::SOB_Defined:
3576       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3577     case LangOptions::SOB_Undefined:
3578       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3579         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3580       LLVM_FALLTHROUGH;
3581     case LangOptions::SOB_Trapping:
3582       if (CanElideOverflowCheck(CGF.getContext(), op))
3583         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3584       return EmitOverflowCheckedBinOp(op);
3585     }
3586   }
3587 
3588   if (op.Ty->isConstantMatrixType()) {
3589     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3590     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3591     return MB.CreateAdd(op.LHS, op.RHS);
3592   }
3593 
3594   if (op.Ty->isUnsignedIntegerType() &&
3595       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3596       !CanElideOverflowCheck(CGF.getContext(), op))
3597     return EmitOverflowCheckedBinOp(op);
3598 
3599   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3600     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3601     // Try to form an fmuladd.
3602     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3603       return FMulAdd;
3604 
3605     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3606   }
3607 
3608   if (op.isFixedPointOp())
3609     return EmitFixedPointBinOp(op);
3610 
3611   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3612 }
3613 
3614 /// The resulting value must be calculated with exact precision, so the operands
3615 /// may not be the same type.
3616 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3617   using llvm::APSInt;
3618   using llvm::ConstantInt;
3619 
3620   // This is either a binary operation where at least one of the operands is
3621   // a fixed-point type, or a unary operation where the operand is a fixed-point
3622   // type. The result type of a binary operation is determined by
3623   // Sema::handleFixedPointConversions().
3624   QualType ResultTy = op.Ty;
3625   QualType LHSTy, RHSTy;
3626   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3627     RHSTy = BinOp->getRHS()->getType();
3628     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3629       // For compound assignment, the effective type of the LHS at this point
3630       // is the computation LHS type, not the actual LHS type, and the final
3631       // result type is not the type of the expression but rather the
3632       // computation result type.
3633       LHSTy = CAO->getComputationLHSType();
3634       ResultTy = CAO->getComputationResultType();
3635     } else
3636       LHSTy = BinOp->getLHS()->getType();
3637   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3638     LHSTy = UnOp->getSubExpr()->getType();
3639     RHSTy = UnOp->getSubExpr()->getType();
3640   }
3641   ASTContext &Ctx = CGF.getContext();
3642   Value *LHS = op.LHS;
3643   Value *RHS = op.RHS;
3644 
3645   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3646   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3647   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3648   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3649 
3650   // Perform the actual operation.
3651   Value *Result;
3652   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3653   switch (op.Opcode) {
3654   case BO_AddAssign:
3655   case BO_Add:
3656     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3657     break;
3658   case BO_SubAssign:
3659   case BO_Sub:
3660     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3661     break;
3662   case BO_MulAssign:
3663   case BO_Mul:
3664     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3665     break;
3666   case BO_DivAssign:
3667   case BO_Div:
3668     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3669     break;
3670   case BO_ShlAssign:
3671   case BO_Shl:
3672     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3673     break;
3674   case BO_ShrAssign:
3675   case BO_Shr:
3676     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3677     break;
3678   case BO_LT:
3679     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3680   case BO_GT:
3681     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3682   case BO_LE:
3683     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3684   case BO_GE:
3685     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3686   case BO_EQ:
3687     // For equality operations, we assume any padding bits on unsigned types are
3688     // zero'd out. They could be overwritten through non-saturating operations
3689     // that cause overflow, but this leads to undefined behavior.
3690     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3691   case BO_NE:
3692     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3693   case BO_Cmp:
3694   case BO_LAnd:
3695   case BO_LOr:
3696     llvm_unreachable("Found unimplemented fixed point binary operation");
3697   case BO_PtrMemD:
3698   case BO_PtrMemI:
3699   case BO_Rem:
3700   case BO_Xor:
3701   case BO_And:
3702   case BO_Or:
3703   case BO_Assign:
3704   case BO_RemAssign:
3705   case BO_AndAssign:
3706   case BO_XorAssign:
3707   case BO_OrAssign:
3708   case BO_Comma:
3709     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3710   }
3711 
3712   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3713                  BinaryOperator::isShiftAssignOp(op.Opcode);
3714   // Convert to the result type.
3715   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3716                                                       : CommonFixedSema,
3717                                       ResultFixedSema);
3718 }
3719 
3720 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3721   // The LHS is always a pointer if either side is.
3722   if (!op.LHS->getType()->isPointerTy()) {
3723     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3724       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3725       case LangOptions::SOB_Defined:
3726         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3727       case LangOptions::SOB_Undefined:
3728         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3729           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3730         LLVM_FALLTHROUGH;
3731       case LangOptions::SOB_Trapping:
3732         if (CanElideOverflowCheck(CGF.getContext(), op))
3733           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3734         return EmitOverflowCheckedBinOp(op);
3735       }
3736     }
3737 
3738     if (op.Ty->isConstantMatrixType()) {
3739       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3740       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3741       return MB.CreateSub(op.LHS, op.RHS);
3742     }
3743 
3744     if (op.Ty->isUnsignedIntegerType() &&
3745         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3746         !CanElideOverflowCheck(CGF.getContext(), op))
3747       return EmitOverflowCheckedBinOp(op);
3748 
3749     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3750       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3751       // Try to form an fmuladd.
3752       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3753         return FMulAdd;
3754       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3755     }
3756 
3757     if (op.isFixedPointOp())
3758       return EmitFixedPointBinOp(op);
3759 
3760     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3761   }
3762 
3763   // If the RHS is not a pointer, then we have normal pointer
3764   // arithmetic.
3765   if (!op.RHS->getType()->isPointerTy())
3766     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3767 
3768   // Otherwise, this is a pointer subtraction.
3769 
3770   // Do the raw subtraction part.
3771   llvm::Value *LHS
3772     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3773   llvm::Value *RHS
3774     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3775   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3776 
3777   // Okay, figure out the element size.
3778   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3779   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3780 
3781   llvm::Value *divisor = nullptr;
3782 
3783   // For a variable-length array, this is going to be non-constant.
3784   if (const VariableArrayType *vla
3785         = CGF.getContext().getAsVariableArrayType(elementType)) {
3786     auto VlaSize = CGF.getVLASize(vla);
3787     elementType = VlaSize.Type;
3788     divisor = VlaSize.NumElts;
3789 
3790     // Scale the number of non-VLA elements by the non-VLA element size.
3791     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3792     if (!eltSize.isOne())
3793       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3794 
3795   // For everything elese, we can just compute it, safe in the
3796   // assumption that Sema won't let anything through that we can't
3797   // safely compute the size of.
3798   } else {
3799     CharUnits elementSize;
3800     // Handle GCC extension for pointer arithmetic on void* and
3801     // function pointer types.
3802     if (elementType->isVoidType() || elementType->isFunctionType())
3803       elementSize = CharUnits::One();
3804     else
3805       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3806 
3807     // Don't even emit the divide for element size of 1.
3808     if (elementSize.isOne())
3809       return diffInChars;
3810 
3811     divisor = CGF.CGM.getSize(elementSize);
3812   }
3813 
3814   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3815   // pointer difference in C is only defined in the case where both operands
3816   // are pointing to elements of an array.
3817   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3818 }
3819 
3820 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3821   llvm::IntegerType *Ty;
3822   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3823     Ty = cast<llvm::IntegerType>(VT->getElementType());
3824   else
3825     Ty = cast<llvm::IntegerType>(LHS->getType());
3826   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3827 }
3828 
3829 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3830                                               const Twine &Name) {
3831   llvm::IntegerType *Ty;
3832   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3833     Ty = cast<llvm::IntegerType>(VT->getElementType());
3834   else
3835     Ty = cast<llvm::IntegerType>(LHS->getType());
3836 
3837   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3838         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3839 
3840   return Builder.CreateURem(
3841       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3842 }
3843 
3844 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3845   // TODO: This misses out on the sanitizer check below.
3846   if (Ops.isFixedPointOp())
3847     return EmitFixedPointBinOp(Ops);
3848 
3849   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3850   // RHS to the same size as the LHS.
3851   Value *RHS = Ops.RHS;
3852   if (Ops.LHS->getType() != RHS->getType())
3853     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3854 
3855   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3856                             Ops.Ty->hasSignedIntegerRepresentation() &&
3857                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3858                             !CGF.getLangOpts().CPlusPlus20;
3859   bool SanitizeUnsignedBase =
3860       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3861       Ops.Ty->hasUnsignedIntegerRepresentation();
3862   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3863   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3864   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3865   if (CGF.getLangOpts().OpenCL)
3866     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3867   else if ((SanitizeBase || SanitizeExponent) &&
3868            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3869     CodeGenFunction::SanitizerScope SanScope(&CGF);
3870     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3871     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3872     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3873 
3874     if (SanitizeExponent) {
3875       Checks.push_back(
3876           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3877     }
3878 
3879     if (SanitizeBase) {
3880       // Check whether we are shifting any non-zero bits off the top of the
3881       // integer. We only emit this check if exponent is valid - otherwise
3882       // instructions below will have undefined behavior themselves.
3883       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3884       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3885       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3886       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3887       llvm::Value *PromotedWidthMinusOne =
3888           (RHS == Ops.RHS) ? WidthMinusOne
3889                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3890       CGF.EmitBlock(CheckShiftBase);
3891       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3892           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3893                                      /*NUW*/ true, /*NSW*/ true),
3894           "shl.check");
3895       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3896         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3897         // Under C++11's rules, shifting a 1 bit into the sign bit is
3898         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3899         // define signed left shifts, so we use the C99 and C++11 rules there).
3900         // Unsigned shifts can always shift into the top bit.
3901         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3902         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3903       }
3904       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3905       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3906       CGF.EmitBlock(Cont);
3907       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3908       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3909       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3910       Checks.push_back(std::make_pair(
3911           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3912                                         : SanitizerKind::UnsignedShiftBase));
3913     }
3914 
3915     assert(!Checks.empty());
3916     EmitBinOpCheck(Checks, Ops);
3917   }
3918 
3919   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3920 }
3921 
3922 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3923   // TODO: This misses out on the sanitizer check below.
3924   if (Ops.isFixedPointOp())
3925     return EmitFixedPointBinOp(Ops);
3926 
3927   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3928   // RHS to the same size as the LHS.
3929   Value *RHS = Ops.RHS;
3930   if (Ops.LHS->getType() != RHS->getType())
3931     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3932 
3933   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3934   if (CGF.getLangOpts().OpenCL)
3935     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3936   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3937            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3938     CodeGenFunction::SanitizerScope SanScope(&CGF);
3939     llvm::Value *Valid =
3940         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3941     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3942   }
3943 
3944   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3945     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3946   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3947 }
3948 
3949 enum IntrinsicType { VCMPEQ, VCMPGT };
3950 // return corresponding comparison intrinsic for given vector type
3951 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3952                                         BuiltinType::Kind ElemKind) {
3953   switch (ElemKind) {
3954   default: llvm_unreachable("unexpected element type");
3955   case BuiltinType::Char_U:
3956   case BuiltinType::UChar:
3957     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3958                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3959   case BuiltinType::Char_S:
3960   case BuiltinType::SChar:
3961     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3962                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3963   case BuiltinType::UShort:
3964     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3965                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3966   case BuiltinType::Short:
3967     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3968                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3969   case BuiltinType::UInt:
3970     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3971                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3972   case BuiltinType::Int:
3973     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3974                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3975   case BuiltinType::ULong:
3976   case BuiltinType::ULongLong:
3977     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3978                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3979   case BuiltinType::Long:
3980   case BuiltinType::LongLong:
3981     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3982                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3983   case BuiltinType::Float:
3984     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3985                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3986   case BuiltinType::Double:
3987     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3988                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3989   case BuiltinType::UInt128:
3990     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3991                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
3992   case BuiltinType::Int128:
3993     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3994                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
3995   }
3996 }
3997 
3998 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3999                                       llvm::CmpInst::Predicate UICmpOpc,
4000                                       llvm::CmpInst::Predicate SICmpOpc,
4001                                       llvm::CmpInst::Predicate FCmpOpc,
4002                                       bool IsSignaling) {
4003   TestAndClearIgnoreResultAssign();
4004   Value *Result;
4005   QualType LHSTy = E->getLHS()->getType();
4006   QualType RHSTy = E->getRHS()->getType();
4007   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4008     assert(E->getOpcode() == BO_EQ ||
4009            E->getOpcode() == BO_NE);
4010     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4011     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4012     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4013                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4014   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4015     BinOpInfo BOInfo = EmitBinOps(E);
4016     Value *LHS = BOInfo.LHS;
4017     Value *RHS = BOInfo.RHS;
4018 
4019     // If AltiVec, the comparison results in a numeric type, so we use
4020     // intrinsics comparing vectors and giving 0 or 1 as a result
4021     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4022       // constants for mapping CR6 register bits to predicate result
4023       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4024 
4025       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4026 
4027       // in several cases vector arguments order will be reversed
4028       Value *FirstVecArg = LHS,
4029             *SecondVecArg = RHS;
4030 
4031       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4032       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4033 
4034       switch(E->getOpcode()) {
4035       default: llvm_unreachable("is not a comparison operation");
4036       case BO_EQ:
4037         CR6 = CR6_LT;
4038         ID = GetIntrinsic(VCMPEQ, ElementKind);
4039         break;
4040       case BO_NE:
4041         CR6 = CR6_EQ;
4042         ID = GetIntrinsic(VCMPEQ, ElementKind);
4043         break;
4044       case BO_LT:
4045         CR6 = CR6_LT;
4046         ID = GetIntrinsic(VCMPGT, ElementKind);
4047         std::swap(FirstVecArg, SecondVecArg);
4048         break;
4049       case BO_GT:
4050         CR6 = CR6_LT;
4051         ID = GetIntrinsic(VCMPGT, ElementKind);
4052         break;
4053       case BO_LE:
4054         if (ElementKind == BuiltinType::Float) {
4055           CR6 = CR6_LT;
4056           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4057           std::swap(FirstVecArg, SecondVecArg);
4058         }
4059         else {
4060           CR6 = CR6_EQ;
4061           ID = GetIntrinsic(VCMPGT, ElementKind);
4062         }
4063         break;
4064       case BO_GE:
4065         if (ElementKind == BuiltinType::Float) {
4066           CR6 = CR6_LT;
4067           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4068         }
4069         else {
4070           CR6 = CR6_EQ;
4071           ID = GetIntrinsic(VCMPGT, ElementKind);
4072           std::swap(FirstVecArg, SecondVecArg);
4073         }
4074         break;
4075       }
4076 
4077       Value *CR6Param = Builder.getInt32(CR6);
4078       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4079       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4080 
4081       // The result type of intrinsic may not be same as E->getType().
4082       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4083       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4084       // do nothing, if ResultTy is not i1 at the same time, it will cause
4085       // crash later.
4086       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4087       if (ResultTy->getBitWidth() > 1 &&
4088           E->getType() == CGF.getContext().BoolTy)
4089         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4090       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4091                                   E->getExprLoc());
4092     }
4093 
4094     if (BOInfo.isFixedPointOp()) {
4095       Result = EmitFixedPointBinOp(BOInfo);
4096     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4097       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4098       if (!IsSignaling)
4099         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4100       else
4101         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4102     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4103       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4104     } else {
4105       // Unsigned integers and pointers.
4106 
4107       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4108           !isa<llvm::ConstantPointerNull>(LHS) &&
4109           !isa<llvm::ConstantPointerNull>(RHS)) {
4110 
4111         // Dynamic information is required to be stripped for comparisons,
4112         // because it could leak the dynamic information.  Based on comparisons
4113         // of pointers to dynamic objects, the optimizer can replace one pointer
4114         // with another, which might be incorrect in presence of invariant
4115         // groups. Comparison with null is safe because null does not carry any
4116         // dynamic information.
4117         if (LHSTy.mayBeDynamicClass())
4118           LHS = Builder.CreateStripInvariantGroup(LHS);
4119         if (RHSTy.mayBeDynamicClass())
4120           RHS = Builder.CreateStripInvariantGroup(RHS);
4121       }
4122 
4123       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4124     }
4125 
4126     // If this is a vector comparison, sign extend the result to the appropriate
4127     // vector integer type and return it (don't convert to bool).
4128     if (LHSTy->isVectorType())
4129       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4130 
4131   } else {
4132     // Complex Comparison: can only be an equality comparison.
4133     CodeGenFunction::ComplexPairTy LHS, RHS;
4134     QualType CETy;
4135     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4136       LHS = CGF.EmitComplexExpr(E->getLHS());
4137       CETy = CTy->getElementType();
4138     } else {
4139       LHS.first = Visit(E->getLHS());
4140       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4141       CETy = LHSTy;
4142     }
4143     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4144       RHS = CGF.EmitComplexExpr(E->getRHS());
4145       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4146                                                      CTy->getElementType()) &&
4147              "The element types must always match.");
4148       (void)CTy;
4149     } else {
4150       RHS.first = Visit(E->getRHS());
4151       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4152       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4153              "The element types must always match.");
4154     }
4155 
4156     Value *ResultR, *ResultI;
4157     if (CETy->isRealFloatingType()) {
4158       // As complex comparisons can only be equality comparisons, they
4159       // are never signaling comparisons.
4160       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4161       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4162     } else {
4163       // Complex comparisons can only be equality comparisons.  As such, signed
4164       // and unsigned opcodes are the same.
4165       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4166       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4167     }
4168 
4169     if (E->getOpcode() == BO_EQ) {
4170       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4171     } else {
4172       assert(E->getOpcode() == BO_NE &&
4173              "Complex comparison other than == or != ?");
4174       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4175     }
4176   }
4177 
4178   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4179                               E->getExprLoc());
4180 }
4181 
4182 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4183   bool Ignore = TestAndClearIgnoreResultAssign();
4184 
4185   Value *RHS;
4186   LValue LHS;
4187 
4188   switch (E->getLHS()->getType().getObjCLifetime()) {
4189   case Qualifiers::OCL_Strong:
4190     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4191     break;
4192 
4193   case Qualifiers::OCL_Autoreleasing:
4194     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4195     break;
4196 
4197   case Qualifiers::OCL_ExplicitNone:
4198     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4199     break;
4200 
4201   case Qualifiers::OCL_Weak:
4202     RHS = Visit(E->getRHS());
4203     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4204     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4205     break;
4206 
4207   case Qualifiers::OCL_None:
4208     // __block variables need to have the rhs evaluated first, plus
4209     // this should improve codegen just a little.
4210     RHS = Visit(E->getRHS());
4211     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4212 
4213     // Store the value into the LHS.  Bit-fields are handled specially
4214     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4215     // 'An assignment expression has the value of the left operand after
4216     // the assignment...'.
4217     if (LHS.isBitField()) {
4218       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4219     } else {
4220       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4221       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4222     }
4223   }
4224 
4225   // If the result is clearly ignored, return now.
4226   if (Ignore)
4227     return nullptr;
4228 
4229   // The result of an assignment in C is the assigned r-value.
4230   if (!CGF.getLangOpts().CPlusPlus)
4231     return RHS;
4232 
4233   // If the lvalue is non-volatile, return the computed value of the assignment.
4234   if (!LHS.isVolatileQualified())
4235     return RHS;
4236 
4237   // Otherwise, reload the value.
4238   return EmitLoadOfLValue(LHS, E->getExprLoc());
4239 }
4240 
4241 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4242   // Perform vector logical and on comparisons with zero vectors.
4243   if (E->getType()->isVectorType()) {
4244     CGF.incrementProfileCounter(E);
4245 
4246     Value *LHS = Visit(E->getLHS());
4247     Value *RHS = Visit(E->getRHS());
4248     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4249     if (LHS->getType()->isFPOrFPVectorTy()) {
4250       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4251           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4252       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4253       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4254     } else {
4255       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4256       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4257     }
4258     Value *And = Builder.CreateAnd(LHS, RHS);
4259     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4260   }
4261 
4262   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4263   llvm::Type *ResTy = ConvertType(E->getType());
4264 
4265   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4266   // If we have 1 && X, just emit X without inserting the control flow.
4267   bool LHSCondVal;
4268   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4269     if (LHSCondVal) { // If we have 1 && X, just emit X.
4270       CGF.incrementProfileCounter(E);
4271 
4272       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4273 
4274       // If we're generating for profiling or coverage, generate a branch to a
4275       // block that increments the RHS counter needed to track branch condition
4276       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4277       // "FalseBlock" after the increment is done.
4278       if (InstrumentRegions &&
4279           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4280         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4281         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4282         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4283         CGF.EmitBlock(RHSBlockCnt);
4284         CGF.incrementProfileCounter(E->getRHS());
4285         CGF.EmitBranch(FBlock);
4286         CGF.EmitBlock(FBlock);
4287       }
4288 
4289       // ZExt result to int or bool.
4290       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4291     }
4292 
4293     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4294     if (!CGF.ContainsLabel(E->getRHS()))
4295       return llvm::Constant::getNullValue(ResTy);
4296   }
4297 
4298   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4299   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4300 
4301   CodeGenFunction::ConditionalEvaluation eval(CGF);
4302 
4303   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4304   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4305                            CGF.getProfileCount(E->getRHS()));
4306 
4307   // Any edges into the ContBlock are now from an (indeterminate number of)
4308   // edges from this first condition.  All of these values will be false.  Start
4309   // setting up the PHI node in the Cont Block for this.
4310   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4311                                             "", ContBlock);
4312   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4313        PI != PE; ++PI)
4314     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4315 
4316   eval.begin(CGF);
4317   CGF.EmitBlock(RHSBlock);
4318   CGF.incrementProfileCounter(E);
4319   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4320   eval.end(CGF);
4321 
4322   // Reaquire the RHS block, as there may be subblocks inserted.
4323   RHSBlock = Builder.GetInsertBlock();
4324 
4325   // If we're generating for profiling or coverage, generate a branch on the
4326   // RHS to a block that increments the RHS true counter needed to track branch
4327   // condition coverage.
4328   if (InstrumentRegions &&
4329       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4330     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4331     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4332     CGF.EmitBlock(RHSBlockCnt);
4333     CGF.incrementProfileCounter(E->getRHS());
4334     CGF.EmitBranch(ContBlock);
4335     PN->addIncoming(RHSCond, RHSBlockCnt);
4336   }
4337 
4338   // Emit an unconditional branch from this block to ContBlock.
4339   {
4340     // There is no need to emit line number for unconditional branch.
4341     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4342     CGF.EmitBlock(ContBlock);
4343   }
4344   // Insert an entry into the phi node for the edge with the value of RHSCond.
4345   PN->addIncoming(RHSCond, RHSBlock);
4346 
4347   // Artificial location to preserve the scope information
4348   {
4349     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4350     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4351   }
4352 
4353   // ZExt result to int.
4354   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4355 }
4356 
4357 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4358   // Perform vector logical or on comparisons with zero vectors.
4359   if (E->getType()->isVectorType()) {
4360     CGF.incrementProfileCounter(E);
4361 
4362     Value *LHS = Visit(E->getLHS());
4363     Value *RHS = Visit(E->getRHS());
4364     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4365     if (LHS->getType()->isFPOrFPVectorTy()) {
4366       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4367           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4368       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4369       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4370     } else {
4371       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4372       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4373     }
4374     Value *Or = Builder.CreateOr(LHS, RHS);
4375     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4376   }
4377 
4378   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4379   llvm::Type *ResTy = ConvertType(E->getType());
4380 
4381   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4382   // If we have 0 || X, just emit X without inserting the control flow.
4383   bool LHSCondVal;
4384   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4385     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4386       CGF.incrementProfileCounter(E);
4387 
4388       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4389 
4390       // If we're generating for profiling or coverage, generate a branch to a
4391       // block that increments the RHS counter need to track branch condition
4392       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4393       // "FalseBlock" after the increment is done.
4394       if (InstrumentRegions &&
4395           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4396         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4397         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4398         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4399         CGF.EmitBlock(RHSBlockCnt);
4400         CGF.incrementProfileCounter(E->getRHS());
4401         CGF.EmitBranch(FBlock);
4402         CGF.EmitBlock(FBlock);
4403       }
4404 
4405       // ZExt result to int or bool.
4406       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4407     }
4408 
4409     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4410     if (!CGF.ContainsLabel(E->getRHS()))
4411       return llvm::ConstantInt::get(ResTy, 1);
4412   }
4413 
4414   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4415   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4416 
4417   CodeGenFunction::ConditionalEvaluation eval(CGF);
4418 
4419   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4420   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4421                            CGF.getCurrentProfileCount() -
4422                                CGF.getProfileCount(E->getRHS()));
4423 
4424   // Any edges into the ContBlock are now from an (indeterminate number of)
4425   // edges from this first condition.  All of these values will be true.  Start
4426   // setting up the PHI node in the Cont Block for this.
4427   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4428                                             "", ContBlock);
4429   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4430        PI != PE; ++PI)
4431     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4432 
4433   eval.begin(CGF);
4434 
4435   // Emit the RHS condition as a bool value.
4436   CGF.EmitBlock(RHSBlock);
4437   CGF.incrementProfileCounter(E);
4438   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4439 
4440   eval.end(CGF);
4441 
4442   // Reaquire the RHS block, as there may be subblocks inserted.
4443   RHSBlock = Builder.GetInsertBlock();
4444 
4445   // If we're generating for profiling or coverage, generate a branch on the
4446   // RHS to a block that increments the RHS true counter needed to track branch
4447   // condition coverage.
4448   if (InstrumentRegions &&
4449       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4450     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4451     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4452     CGF.EmitBlock(RHSBlockCnt);
4453     CGF.incrementProfileCounter(E->getRHS());
4454     CGF.EmitBranch(ContBlock);
4455     PN->addIncoming(RHSCond, RHSBlockCnt);
4456   }
4457 
4458   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4459   // into the phi node for the edge with the value of RHSCond.
4460   CGF.EmitBlock(ContBlock);
4461   PN->addIncoming(RHSCond, RHSBlock);
4462 
4463   // ZExt result to int.
4464   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4465 }
4466 
4467 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4468   CGF.EmitIgnoredExpr(E->getLHS());
4469   CGF.EnsureInsertPoint();
4470   return Visit(E->getRHS());
4471 }
4472 
4473 //===----------------------------------------------------------------------===//
4474 //                             Other Operators
4475 //===----------------------------------------------------------------------===//
4476 
4477 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4478 /// expression is cheap enough and side-effect-free enough to evaluate
4479 /// unconditionally instead of conditionally.  This is used to convert control
4480 /// flow into selects in some cases.
4481 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4482                                                    CodeGenFunction &CGF) {
4483   // Anything that is an integer or floating point constant is fine.
4484   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4485 
4486   // Even non-volatile automatic variables can't be evaluated unconditionally.
4487   // Referencing a thread_local may cause non-trivial initialization work to
4488   // occur. If we're inside a lambda and one of the variables is from the scope
4489   // outside the lambda, that function may have returned already. Reading its
4490   // locals is a bad idea. Also, these reads may introduce races there didn't
4491   // exist in the source-level program.
4492 }
4493 
4494 
4495 Value *ScalarExprEmitter::
4496 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4497   TestAndClearIgnoreResultAssign();
4498 
4499   // Bind the common expression if necessary.
4500   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4501 
4502   Expr *condExpr = E->getCond();
4503   Expr *lhsExpr = E->getTrueExpr();
4504   Expr *rhsExpr = E->getFalseExpr();
4505 
4506   // If the condition constant folds and can be elided, try to avoid emitting
4507   // the condition and the dead arm.
4508   bool CondExprBool;
4509   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4510     Expr *live = lhsExpr, *dead = rhsExpr;
4511     if (!CondExprBool) std::swap(live, dead);
4512 
4513     // If the dead side doesn't have labels we need, just emit the Live part.
4514     if (!CGF.ContainsLabel(dead)) {
4515       if (CondExprBool)
4516         CGF.incrementProfileCounter(E);
4517       Value *Result = Visit(live);
4518 
4519       // If the live part is a throw expression, it acts like it has a void
4520       // type, so evaluating it returns a null Value*.  However, a conditional
4521       // with non-void type must return a non-null Value*.
4522       if (!Result && !E->getType()->isVoidType())
4523         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4524 
4525       return Result;
4526     }
4527   }
4528 
4529   // OpenCL: If the condition is a vector, we can treat this condition like
4530   // the select function.
4531   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4532       condExpr->getType()->isExtVectorType()) {
4533     CGF.incrementProfileCounter(E);
4534 
4535     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4536     llvm::Value *LHS = Visit(lhsExpr);
4537     llvm::Value *RHS = Visit(rhsExpr);
4538 
4539     llvm::Type *condType = ConvertType(condExpr->getType());
4540     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4541 
4542     unsigned numElem = vecTy->getNumElements();
4543     llvm::Type *elemType = vecTy->getElementType();
4544 
4545     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4546     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4547     llvm::Value *tmp = Builder.CreateSExt(
4548         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4549     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4550 
4551     // Cast float to int to perform ANDs if necessary.
4552     llvm::Value *RHSTmp = RHS;
4553     llvm::Value *LHSTmp = LHS;
4554     bool wasCast = false;
4555     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4556     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4557       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4558       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4559       wasCast = true;
4560     }
4561 
4562     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4563     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4564     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4565     if (wasCast)
4566       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4567 
4568     return tmp5;
4569   }
4570 
4571   if (condExpr->getType()->isVectorType()) {
4572     CGF.incrementProfileCounter(E);
4573 
4574     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4575     llvm::Value *LHS = Visit(lhsExpr);
4576     llvm::Value *RHS = Visit(rhsExpr);
4577 
4578     llvm::Type *CondType = ConvertType(condExpr->getType());
4579     auto *VecTy = cast<llvm::VectorType>(CondType);
4580     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4581 
4582     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4583     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4584   }
4585 
4586   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4587   // select instead of as control flow.  We can only do this if it is cheap and
4588   // safe to evaluate the LHS and RHS unconditionally.
4589   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4590       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4591     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4592     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4593 
4594     CGF.incrementProfileCounter(E, StepV);
4595 
4596     llvm::Value *LHS = Visit(lhsExpr);
4597     llvm::Value *RHS = Visit(rhsExpr);
4598     if (!LHS) {
4599       // If the conditional has void type, make sure we return a null Value*.
4600       assert(!RHS && "LHS and RHS types must match");
4601       return nullptr;
4602     }
4603     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4604   }
4605 
4606   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4607   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4608   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4609 
4610   CodeGenFunction::ConditionalEvaluation eval(CGF);
4611   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4612                            CGF.getProfileCount(lhsExpr));
4613 
4614   CGF.EmitBlock(LHSBlock);
4615   CGF.incrementProfileCounter(E);
4616   eval.begin(CGF);
4617   Value *LHS = Visit(lhsExpr);
4618   eval.end(CGF);
4619 
4620   LHSBlock = Builder.GetInsertBlock();
4621   Builder.CreateBr(ContBlock);
4622 
4623   CGF.EmitBlock(RHSBlock);
4624   eval.begin(CGF);
4625   Value *RHS = Visit(rhsExpr);
4626   eval.end(CGF);
4627 
4628   RHSBlock = Builder.GetInsertBlock();
4629   CGF.EmitBlock(ContBlock);
4630 
4631   // If the LHS or RHS is a throw expression, it will be legitimately null.
4632   if (!LHS)
4633     return RHS;
4634   if (!RHS)
4635     return LHS;
4636 
4637   // Create a PHI node for the real part.
4638   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4639   PN->addIncoming(LHS, LHSBlock);
4640   PN->addIncoming(RHS, RHSBlock);
4641   return PN;
4642 }
4643 
4644 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4645   return Visit(E->getChosenSubExpr());
4646 }
4647 
4648 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4649   QualType Ty = VE->getType();
4650 
4651   if (Ty->isVariablyModifiedType())
4652     CGF.EmitVariablyModifiedType(Ty);
4653 
4654   Address ArgValue = Address::invalid();
4655   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4656 
4657   llvm::Type *ArgTy = ConvertType(VE->getType());
4658 
4659   // If EmitVAArg fails, emit an error.
4660   if (!ArgPtr.isValid()) {
4661     CGF.ErrorUnsupported(VE, "va_arg expression");
4662     return llvm::UndefValue::get(ArgTy);
4663   }
4664 
4665   // FIXME Volatility.
4666   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4667 
4668   // If EmitVAArg promoted the type, we must truncate it.
4669   if (ArgTy != Val->getType()) {
4670     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4671       Val = Builder.CreateIntToPtr(Val, ArgTy);
4672     else
4673       Val = Builder.CreateTrunc(Val, ArgTy);
4674   }
4675 
4676   return Val;
4677 }
4678 
4679 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4680   return CGF.EmitBlockLiteral(block);
4681 }
4682 
4683 // Convert a vec3 to vec4, or vice versa.
4684 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4685                                  Value *Src, unsigned NumElementsDst) {
4686   static constexpr int Mask[] = {0, 1, 2, -1};
4687   return Builder.CreateShuffleVector(Src,
4688                                      llvm::makeArrayRef(Mask, NumElementsDst));
4689 }
4690 
4691 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4692 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4693 // but could be scalar or vectors of different lengths, and either can be
4694 // pointer.
4695 // There are 4 cases:
4696 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4697 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4698 // 3. pointer -> non-pointer
4699 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4700 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4701 // 4. non-pointer -> pointer
4702 //   a) intptr_t -> pointer       : needs 1 inttoptr
4703 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4704 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4705 // allow casting directly between pointer types and non-integer non-pointer
4706 // types.
4707 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4708                                            const llvm::DataLayout &DL,
4709                                            Value *Src, llvm::Type *DstTy,
4710                                            StringRef Name = "") {
4711   auto SrcTy = Src->getType();
4712 
4713   // Case 1.
4714   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4715     return Builder.CreateBitCast(Src, DstTy, Name);
4716 
4717   // Case 2.
4718   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4719     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4720 
4721   // Case 3.
4722   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4723     // Case 3b.
4724     if (!DstTy->isIntegerTy())
4725       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4726     // Cases 3a and 3b.
4727     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4728   }
4729 
4730   // Case 4b.
4731   if (!SrcTy->isIntegerTy())
4732     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4733   // Cases 4a and 4b.
4734   return Builder.CreateIntToPtr(Src, DstTy, Name);
4735 }
4736 
4737 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4738   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4739   llvm::Type *DstTy = ConvertType(E->getType());
4740 
4741   llvm::Type *SrcTy = Src->getType();
4742   unsigned NumElementsSrc =
4743       isa<llvm::VectorType>(SrcTy)
4744           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4745           : 0;
4746   unsigned NumElementsDst =
4747       isa<llvm::VectorType>(DstTy)
4748           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4749           : 0;
4750 
4751   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4752   // vector to get a vec4, then a bitcast if the target type is different.
4753   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4754     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4755 
4756     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4757       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4758                                          DstTy);
4759     }
4760 
4761     Src->setName("astype");
4762     return Src;
4763   }
4764 
4765   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4766   // to vec4 if the original type is not vec4, then a shuffle vector to
4767   // get a vec3.
4768   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4769     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4770       auto *Vec4Ty = llvm::FixedVectorType::get(
4771           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4772       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4773                                          Vec4Ty);
4774     }
4775 
4776     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4777     Src->setName("astype");
4778     return Src;
4779   }
4780 
4781   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4782                                       Src, DstTy, "astype");
4783 }
4784 
4785 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4786   return CGF.EmitAtomicExpr(E).getScalarVal();
4787 }
4788 
4789 //===----------------------------------------------------------------------===//
4790 //                         Entry Point into this File
4791 //===----------------------------------------------------------------------===//
4792 
4793 /// Emit the computation of the specified expression of scalar type, ignoring
4794 /// the result.
4795 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4796   assert(E && hasScalarEvaluationKind(E->getType()) &&
4797          "Invalid scalar expression to emit");
4798 
4799   return ScalarExprEmitter(*this, IgnoreResultAssign)
4800       .Visit(const_cast<Expr *>(E));
4801 }
4802 
4803 /// Emit a conversion from the specified type to the specified destination type,
4804 /// both of which are LLVM scalar types.
4805 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4806                                              QualType DstTy,
4807                                              SourceLocation Loc) {
4808   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4809          "Invalid scalar expression to emit");
4810   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4811 }
4812 
4813 /// Emit a conversion from the specified complex type to the specified
4814 /// destination type, where the destination type is an LLVM scalar type.
4815 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4816                                                       QualType SrcTy,
4817                                                       QualType DstTy,
4818                                                       SourceLocation Loc) {
4819   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4820          "Invalid complex -> scalar conversion");
4821   return ScalarExprEmitter(*this)
4822       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4823 }
4824 
4825 
4826 llvm::Value *CodeGenFunction::
4827 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4828                         bool isInc, bool isPre) {
4829   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4830 }
4831 
4832 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4833   // object->isa or (*object).isa
4834   // Generate code as for: *(Class*)object
4835 
4836   Expr *BaseExpr = E->getBase();
4837   Address Addr = Address::invalid();
4838   if (BaseExpr->isRValue()) {
4839     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4840   } else {
4841     Addr = EmitLValue(BaseExpr).getAddress(*this);
4842   }
4843 
4844   // Cast the address to Class*.
4845   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4846   return MakeAddrLValue(Addr, E->getType());
4847 }
4848 
4849 
4850 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4851                                             const CompoundAssignOperator *E) {
4852   ScalarExprEmitter Scalar(*this);
4853   Value *Result = nullptr;
4854   switch (E->getOpcode()) {
4855 #define COMPOUND_OP(Op)                                                       \
4856     case BO_##Op##Assign:                                                     \
4857       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4858                                              Result)
4859   COMPOUND_OP(Mul);
4860   COMPOUND_OP(Div);
4861   COMPOUND_OP(Rem);
4862   COMPOUND_OP(Add);
4863   COMPOUND_OP(Sub);
4864   COMPOUND_OP(Shl);
4865   COMPOUND_OP(Shr);
4866   COMPOUND_OP(And);
4867   COMPOUND_OP(Xor);
4868   COMPOUND_OP(Or);
4869 #undef COMPOUND_OP
4870 
4871   case BO_PtrMemD:
4872   case BO_PtrMemI:
4873   case BO_Mul:
4874   case BO_Div:
4875   case BO_Rem:
4876   case BO_Add:
4877   case BO_Sub:
4878   case BO_Shl:
4879   case BO_Shr:
4880   case BO_LT:
4881   case BO_GT:
4882   case BO_LE:
4883   case BO_GE:
4884   case BO_EQ:
4885   case BO_NE:
4886   case BO_Cmp:
4887   case BO_And:
4888   case BO_Xor:
4889   case BO_Or:
4890   case BO_LAnd:
4891   case BO_LOr:
4892   case BO_Assign:
4893   case BO_Comma:
4894     llvm_unreachable("Not valid compound assignment operators");
4895   }
4896 
4897   llvm_unreachable("Unhandled compound assignment operator");
4898 }
4899 
4900 struct GEPOffsetAndOverflow {
4901   // The total (signed) byte offset for the GEP.
4902   llvm::Value *TotalOffset;
4903   // The offset overflow flag - true if the total offset overflows.
4904   llvm::Value *OffsetOverflows;
4905 };
4906 
4907 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4908 /// and compute the total offset it applies from it's base pointer BasePtr.
4909 /// Returns offset in bytes and a boolean flag whether an overflow happened
4910 /// during evaluation.
4911 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4912                                                  llvm::LLVMContext &VMContext,
4913                                                  CodeGenModule &CGM,
4914                                                  CGBuilderTy &Builder) {
4915   const auto &DL = CGM.getDataLayout();
4916 
4917   // The total (signed) byte offset for the GEP.
4918   llvm::Value *TotalOffset = nullptr;
4919 
4920   // Was the GEP already reduced to a constant?
4921   if (isa<llvm::Constant>(GEPVal)) {
4922     // Compute the offset by casting both pointers to integers and subtracting:
4923     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4924     Value *BasePtr_int =
4925         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4926     Value *GEPVal_int =
4927         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4928     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4929     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4930   }
4931 
4932   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4933   assert(GEP->getPointerOperand() == BasePtr &&
4934          "BasePtr must be the the base of the GEP.");
4935   assert(GEP->isInBounds() && "Expected inbounds GEP");
4936 
4937   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4938 
4939   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4940   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4941   auto *SAddIntrinsic =
4942       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4943   auto *SMulIntrinsic =
4944       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4945 
4946   // The offset overflow flag - true if the total offset overflows.
4947   llvm::Value *OffsetOverflows = Builder.getFalse();
4948 
4949   /// Return the result of the given binary operation.
4950   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4951                   llvm::Value *RHS) -> llvm::Value * {
4952     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4953 
4954     // If the operands are constants, return a constant result.
4955     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4956       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4957         llvm::APInt N;
4958         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4959                                                   /*Signed=*/true, N);
4960         if (HasOverflow)
4961           OffsetOverflows = Builder.getTrue();
4962         return llvm::ConstantInt::get(VMContext, N);
4963       }
4964     }
4965 
4966     // Otherwise, compute the result with checked arithmetic.
4967     auto *ResultAndOverflow = Builder.CreateCall(
4968         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4969     OffsetOverflows = Builder.CreateOr(
4970         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4971     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4972   };
4973 
4974   // Determine the total byte offset by looking at each GEP operand.
4975   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4976        GTI != GTE; ++GTI) {
4977     llvm::Value *LocalOffset;
4978     auto *Index = GTI.getOperand();
4979     // Compute the local offset contributed by this indexing step:
4980     if (auto *STy = GTI.getStructTypeOrNull()) {
4981       // For struct indexing, the local offset is the byte position of the
4982       // specified field.
4983       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4984       LocalOffset = llvm::ConstantInt::get(
4985           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4986     } else {
4987       // Otherwise this is array-like indexing. The local offset is the index
4988       // multiplied by the element size.
4989       auto *ElementSize = llvm::ConstantInt::get(
4990           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4991       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4992       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4993     }
4994 
4995     // If this is the first offset, set it as the total offset. Otherwise, add
4996     // the local offset into the running total.
4997     if (!TotalOffset || TotalOffset == Zero)
4998       TotalOffset = LocalOffset;
4999     else
5000       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5001   }
5002 
5003   return {TotalOffset, OffsetOverflows};
5004 }
5005 
5006 Value *
5007 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
5008                                         bool SignedIndices, bool IsSubtraction,
5009                                         SourceLocation Loc, const Twine &Name) {
5010   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
5011 
5012   // If the pointer overflow sanitizer isn't enabled, do nothing.
5013   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5014     return GEPVal;
5015 
5016   llvm::Type *PtrTy = Ptr->getType();
5017 
5018   // Perform nullptr-and-offset check unless the nullptr is defined.
5019   bool PerformNullCheck = !NullPointerIsDefined(
5020       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5021   // Check for overflows unless the GEP got constant-folded,
5022   // and only in the default address space
5023   bool PerformOverflowCheck =
5024       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5025 
5026   if (!(PerformNullCheck || PerformOverflowCheck))
5027     return GEPVal;
5028 
5029   const auto &DL = CGM.getDataLayout();
5030 
5031   SanitizerScope SanScope(this);
5032   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5033 
5034   GEPOffsetAndOverflow EvaluatedGEP =
5035       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5036 
5037   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5038           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5039          "If the offset got constant-folded, we don't expect that there was an "
5040          "overflow.");
5041 
5042   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5043 
5044   // Common case: if the total offset is zero, and we are using C++ semantics,
5045   // where nullptr+0 is defined, don't emit a check.
5046   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5047     return GEPVal;
5048 
5049   // Now that we've computed the total offset, add it to the base pointer (with
5050   // wrapping semantics).
5051   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5052   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5053 
5054   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5055 
5056   if (PerformNullCheck) {
5057     // In C++, if the base pointer evaluates to a null pointer value,
5058     // the only valid  pointer this inbounds GEP can produce is also
5059     // a null pointer, so the offset must also evaluate to zero.
5060     // Likewise, if we have non-zero base pointer, we can not get null pointer
5061     // as a result, so the offset can not be -intptr_t(BasePtr).
5062     // In other words, both pointers are either null, or both are non-null,
5063     // or the behaviour is undefined.
5064     //
5065     // C, however, is more strict in this regard, and gives more
5066     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5067     // So both the input to the 'gep inbounds' AND the output must not be null.
5068     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5069     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5070     auto *Valid =
5071         CGM.getLangOpts().CPlusPlus
5072             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5073             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5074     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5075   }
5076 
5077   if (PerformOverflowCheck) {
5078     // The GEP is valid if:
5079     // 1) The total offset doesn't overflow, and
5080     // 2) The sign of the difference between the computed address and the base
5081     // pointer matches the sign of the total offset.
5082     llvm::Value *ValidGEP;
5083     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5084     if (SignedIndices) {
5085       // GEP is computed as `unsigned base + signed offset`, therefore:
5086       // * If offset was positive, then the computed pointer can not be
5087       //   [unsigned] less than the base pointer, unless it overflowed.
5088       // * If offset was negative, then the computed pointer can not be
5089       //   [unsigned] greater than the bas pointere, unless it overflowed.
5090       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5091       auto *PosOrZeroOffset =
5092           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5093       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5094       ValidGEP =
5095           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5096     } else if (!IsSubtraction) {
5097       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5098       // computed pointer can not be [unsigned] less than base pointer,
5099       // unless there was an overflow.
5100       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5101       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5102     } else {
5103       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5104       // computed pointer can not be [unsigned] greater than base pointer,
5105       // unless there was an overflow.
5106       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5107       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5108     }
5109     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5110     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5111   }
5112 
5113   assert(!Checks.empty() && "Should have produced some checks.");
5114 
5115   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5116   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5117   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5118   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5119 
5120   return GEPVal;
5121 }
5122