1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
81   const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
85   Value *EmitLoadOfLValue(LValue LV) {
86     return CGF.EmitLoadOfLValue(LV).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E));
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     return Builder.CreateIsNotNull(V, "tobool");
144   }
145 
146   //===--------------------------------------------------------------------===//
147   //                            Visitor Methods
148   //===--------------------------------------------------------------------===//
149 
150   Value *Visit(Expr *E) {
151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152   }
153 
154   Value *VisitStmt(Stmt *S) {
155     S->dump(CGF.getContext().getSourceManager());
156     assert(0 && "Stmt can't have complex result type!");
157     return 0;
158   }
159   Value *VisitExpr(Expr *S);
160 
161   Value *VisitParenExpr(ParenExpr *PE) {
162     return Visit(PE->getSubExpr());
163   }
164   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
165     return Visit(GE->getResultExpr());
166   }
167 
168   // Leaves.
169   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
170     return Builder.getInt(E->getValue());
171   }
172   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
173     return llvm::ConstantFP::get(VMContext, E->getValue());
174   }
175   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
176     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
177   }
178   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
179     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
180   }
181   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
182     return EmitNullValue(E->getType());
183   }
184   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
185     return EmitNullValue(E->getType());
186   }
187   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
188   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
189   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
190     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
191     return Builder.CreateBitCast(V, ConvertType(E->getType()));
192   }
193 
194   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
195     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
196   }
197 
198   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
199     if (E->isGLValue())
200       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
201 
202     // Otherwise, assume the mapping is the scalar directly.
203     return CGF.getOpaqueRValueMapping(E).getScalarVal();
204   }
205 
206   // l-values.
207   Value *VisitDeclRefExpr(DeclRefExpr *E) {
208     Expr::EvalResult Result;
209     if (!E->Evaluate(Result, CGF.getContext()))
210       return EmitLoadOfLValue(E);
211 
212     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
213 
214     llvm::Constant *C;
215     if (Result.Val.isInt())
216       C = Builder.getInt(Result.Val.getInt());
217     else if (Result.Val.isFloat())
218       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
219     else
220       return EmitLoadOfLValue(E);
221 
222     // Make sure we emit a debug reference to the global variable.
223     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
224       if (!CGF.getContext().DeclMustBeEmitted(VD))
225         CGF.EmitDeclRefExprDbgValue(E, C);
226     } else if (isa<EnumConstantDecl>(E->getDecl())) {
227       CGF.EmitDeclRefExprDbgValue(E, C);
228     }
229 
230     return C;
231   }
232   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
233     return CGF.EmitObjCSelectorExpr(E);
234   }
235   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
236     return CGF.EmitObjCProtocolExpr(E);
237   }
238   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
239     return EmitLoadOfLValue(E);
240   }
241   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
242     assert(E->getObjectKind() == OK_Ordinary &&
243            "reached property reference without lvalue-to-rvalue");
244     return EmitLoadOfLValue(E);
245   }
246   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
247     if (E->getMethodDecl() &&
248         E->getMethodDecl()->getResultType()->isReferenceType())
249       return EmitLoadOfLValue(E);
250     return CGF.EmitObjCMessageExpr(E).getScalarVal();
251   }
252 
253   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
254     LValue LV = CGF.EmitObjCIsaExpr(E);
255     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
256     return V;
257   }
258 
259   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
260   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
261   Value *VisitMemberExpr(MemberExpr *E);
262   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
263   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
264     return EmitLoadOfLValue(E);
265   }
266 
267   Value *VisitInitListExpr(InitListExpr *E);
268 
269   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
270     return CGF.CGM.EmitNullConstant(E->getType());
271   }
272   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
273     if (E->getType()->isVariablyModifiedType())
274       CGF.EmitVariablyModifiedType(E->getType());
275     return VisitCastExpr(E);
276   }
277   Value *VisitCastExpr(CastExpr *E);
278 
279   Value *VisitCallExpr(const CallExpr *E) {
280     if (E->getCallReturnType()->isReferenceType())
281       return EmitLoadOfLValue(E);
282 
283     return CGF.EmitCallExpr(E).getScalarVal();
284   }
285 
286   Value *VisitStmtExpr(const StmtExpr *E);
287 
288   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
289 
290   // Unary Operators.
291   Value *VisitUnaryPostDec(const UnaryOperator *E) {
292     LValue LV = EmitLValue(E->getSubExpr());
293     return EmitScalarPrePostIncDec(E, LV, false, false);
294   }
295   Value *VisitUnaryPostInc(const UnaryOperator *E) {
296     LValue LV = EmitLValue(E->getSubExpr());
297     return EmitScalarPrePostIncDec(E, LV, true, false);
298   }
299   Value *VisitUnaryPreDec(const UnaryOperator *E) {
300     LValue LV = EmitLValue(E->getSubExpr());
301     return EmitScalarPrePostIncDec(E, LV, false, true);
302   }
303   Value *VisitUnaryPreInc(const UnaryOperator *E) {
304     LValue LV = EmitLValue(E->getSubExpr());
305     return EmitScalarPrePostIncDec(E, LV, true, true);
306   }
307 
308   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
309                                                llvm::Value *InVal,
310                                                llvm::Value *NextVal,
311                                                bool IsInc);
312 
313   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
314                                        bool isInc, bool isPre);
315 
316 
317   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
318     if (isa<MemberPointerType>(E->getType())) // never sugared
319       return CGF.CGM.getMemberPointerConstant(E);
320 
321     return EmitLValue(E->getSubExpr()).getAddress();
322   }
323   Value *VisitUnaryDeref(const UnaryOperator *E) {
324     if (E->getType()->isVoidType())
325       return Visit(E->getSubExpr()); // the actual value should be unused
326     return EmitLoadOfLValue(E);
327   }
328   Value *VisitUnaryPlus(const UnaryOperator *E) {
329     // This differs from gcc, though, most likely due to a bug in gcc.
330     TestAndClearIgnoreResultAssign();
331     return Visit(E->getSubExpr());
332   }
333   Value *VisitUnaryMinus    (const UnaryOperator *E);
334   Value *VisitUnaryNot      (const UnaryOperator *E);
335   Value *VisitUnaryLNot     (const UnaryOperator *E);
336   Value *VisitUnaryReal     (const UnaryOperator *E);
337   Value *VisitUnaryImag     (const UnaryOperator *E);
338   Value *VisitUnaryExtension(const UnaryOperator *E) {
339     return Visit(E->getSubExpr());
340   }
341 
342   // C++
343   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
344     return Visit(DAE->getExpr());
345   }
346   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
347     return CGF.LoadCXXThis();
348   }
349 
350   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
351     return CGF.EmitExprWithCleanups(E).getScalarVal();
352   }
353   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
354     return CGF.EmitCXXNewExpr(E);
355   }
356   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
357     CGF.EmitCXXDeleteExpr(E);
358     return 0;
359   }
360   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
361     return Builder.getInt1(E->getValue());
362   }
363 
364   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
365     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
366   }
367 
368   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
369     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
370   }
371 
372   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
373     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
374   }
375 
376   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
377     // C++ [expr.pseudo]p1:
378     //   The result shall only be used as the operand for the function call
379     //   operator (), and the result of such a call has type void. The only
380     //   effect is the evaluation of the postfix-expression before the dot or
381     //   arrow.
382     CGF.EmitScalarExpr(E->getBase());
383     return 0;
384   }
385 
386   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
387     return EmitNullValue(E->getType());
388   }
389 
390   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
391     CGF.EmitCXXThrowExpr(E);
392     return 0;
393   }
394 
395   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
396     return Builder.getInt1(E->getValue());
397   }
398 
399   // Binary Operators.
400   Value *EmitMul(const BinOpInfo &Ops) {
401     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
402       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
403       case LangOptions::SOB_Undefined:
404         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
405       case LangOptions::SOB_Defined:
406         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
407       case LangOptions::SOB_Trapping:
408         return EmitOverflowCheckedBinOp(Ops);
409       }
410     }
411 
412     if (Ops.LHS->getType()->isFPOrFPVectorTy())
413       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
414     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
415   }
416   bool isTrapvOverflowBehavior() {
417     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
418                == LangOptions::SOB_Trapping;
419   }
420   /// Create a binary op that checks for overflow.
421   /// Currently only supports +, - and *.
422   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
423   // Emit the overflow BB when -ftrapv option is activated.
424   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
425     Builder.SetInsertPoint(overflowBB);
426     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
427     Builder.CreateCall(Trap);
428     Builder.CreateUnreachable();
429   }
430   // Check for undefined division and modulus behaviors.
431   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
432                                                   llvm::Value *Zero,bool isDiv);
433   Value *EmitDiv(const BinOpInfo &Ops);
434   Value *EmitRem(const BinOpInfo &Ops);
435   Value *EmitAdd(const BinOpInfo &Ops);
436   Value *EmitSub(const BinOpInfo &Ops);
437   Value *EmitShl(const BinOpInfo &Ops);
438   Value *EmitShr(const BinOpInfo &Ops);
439   Value *EmitAnd(const BinOpInfo &Ops) {
440     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
441   }
442   Value *EmitXor(const BinOpInfo &Ops) {
443     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
444   }
445   Value *EmitOr (const BinOpInfo &Ops) {
446     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
447   }
448 
449   BinOpInfo EmitBinOps(const BinaryOperator *E);
450   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
451                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
452                                   Value *&Result);
453 
454   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
455                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
456 
457   // Binary operators and binary compound assignment operators.
458 #define HANDLEBINOP(OP) \
459   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
460     return Emit ## OP(EmitBinOps(E));                                      \
461   }                                                                        \
462   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
463     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
464   }
465   HANDLEBINOP(Mul)
466   HANDLEBINOP(Div)
467   HANDLEBINOP(Rem)
468   HANDLEBINOP(Add)
469   HANDLEBINOP(Sub)
470   HANDLEBINOP(Shl)
471   HANDLEBINOP(Shr)
472   HANDLEBINOP(And)
473   HANDLEBINOP(Xor)
474   HANDLEBINOP(Or)
475 #undef HANDLEBINOP
476 
477   // Comparisons.
478   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
479                      unsigned SICmpOpc, unsigned FCmpOpc);
480 #define VISITCOMP(CODE, UI, SI, FP) \
481     Value *VisitBin##CODE(const BinaryOperator *E) { \
482       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
483                          llvm::FCmpInst::FP); }
484   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
485   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
486   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
487   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
488   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
489   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
490 #undef VISITCOMP
491 
492   Value *VisitBinAssign     (const BinaryOperator *E);
493 
494   Value *VisitBinLAnd       (const BinaryOperator *E);
495   Value *VisitBinLOr        (const BinaryOperator *E);
496   Value *VisitBinComma      (const BinaryOperator *E);
497 
498   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
499   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
500 
501   // Other Operators.
502   Value *VisitBlockExpr(const BlockExpr *BE);
503   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
504   Value *VisitChooseExpr(ChooseExpr *CE);
505   Value *VisitVAArgExpr(VAArgExpr *VE);
506   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
507     return CGF.EmitObjCStringLiteral(E);
508   }
509   Value *VisitAsTypeExpr(AsTypeExpr *CE);
510 };
511 }  // end anonymous namespace.
512 
513 //===----------------------------------------------------------------------===//
514 //                                Utilities
515 //===----------------------------------------------------------------------===//
516 
517 /// EmitConversionToBool - Convert the specified expression value to a
518 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
519 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
520   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
521 
522   if (SrcType->isRealFloatingType())
523     return EmitFloatToBoolConversion(Src);
524 
525   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
526     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
527 
528   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
529          "Unknown scalar type to convert");
530 
531   if (isa<llvm::IntegerType>(Src->getType()))
532     return EmitIntToBoolConversion(Src);
533 
534   assert(isa<llvm::PointerType>(Src->getType()));
535   return EmitPointerToBoolConversion(Src);
536 }
537 
538 /// EmitScalarConversion - Emit a conversion from the specified type to the
539 /// specified destination type, both of which are LLVM scalar types.
540 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
541                                                QualType DstType) {
542   SrcType = CGF.getContext().getCanonicalType(SrcType);
543   DstType = CGF.getContext().getCanonicalType(DstType);
544   if (SrcType == DstType) return Src;
545 
546   if (DstType->isVoidType()) return 0;
547 
548   // Handle conversions to bool first, they are special: comparisons against 0.
549   if (DstType->isBooleanType())
550     return EmitConversionToBool(Src, SrcType);
551 
552   const llvm::Type *DstTy = ConvertType(DstType);
553 
554   // Ignore conversions like int -> uint.
555   if (Src->getType() == DstTy)
556     return Src;
557 
558   // Handle pointer conversions next: pointers can only be converted to/from
559   // other pointers and integers. Check for pointer types in terms of LLVM, as
560   // some native types (like Obj-C id) may map to a pointer type.
561   if (isa<llvm::PointerType>(DstTy)) {
562     // The source value may be an integer, or a pointer.
563     if (isa<llvm::PointerType>(Src->getType()))
564       return Builder.CreateBitCast(Src, DstTy, "conv");
565 
566     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
567     // First, convert to the correct width so that we control the kind of
568     // extension.
569     const llvm::Type *MiddleTy = CGF.IntPtrTy;
570     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
571     llvm::Value* IntResult =
572         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
573     // Then, cast to pointer.
574     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
575   }
576 
577   if (isa<llvm::PointerType>(Src->getType())) {
578     // Must be an ptr to int cast.
579     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
580     return Builder.CreatePtrToInt(Src, DstTy, "conv");
581   }
582 
583   // A scalar can be splatted to an extended vector of the same element type
584   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
585     // Cast the scalar to element type
586     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
587     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
588 
589     // Insert the element in element zero of an undef vector
590     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
591     llvm::Value *Idx = Builder.getInt32(0);
592     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
593 
594     // Splat the element across to all elements
595     llvm::SmallVector<llvm::Constant*, 16> Args;
596     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
597     for (unsigned i = 0; i != NumElements; ++i)
598       Args.push_back(Builder.getInt32(0));
599 
600     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
601     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
602     return Yay;
603   }
604 
605   // Allow bitcast from vector to integer/fp of the same size.
606   if (isa<llvm::VectorType>(Src->getType()) ||
607       isa<llvm::VectorType>(DstTy))
608     return Builder.CreateBitCast(Src, DstTy, "conv");
609 
610   // Finally, we have the arithmetic types: real int/float.
611   if (isa<llvm::IntegerType>(Src->getType())) {
612     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
613     if (isa<llvm::IntegerType>(DstTy))
614       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
615     else if (InputSigned)
616       return Builder.CreateSIToFP(Src, DstTy, "conv");
617     else
618       return Builder.CreateUIToFP(Src, DstTy, "conv");
619   }
620 
621   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
622   if (isa<llvm::IntegerType>(DstTy)) {
623     if (DstType->isSignedIntegerOrEnumerationType())
624       return Builder.CreateFPToSI(Src, DstTy, "conv");
625     else
626       return Builder.CreateFPToUI(Src, DstTy, "conv");
627   }
628 
629   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
630   if (DstTy->getTypeID() < Src->getType()->getTypeID())
631     return Builder.CreateFPTrunc(Src, DstTy, "conv");
632   else
633     return Builder.CreateFPExt(Src, DstTy, "conv");
634 }
635 
636 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
637 /// type to the specified destination type, where the destination type is an
638 /// LLVM scalar type.
639 Value *ScalarExprEmitter::
640 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
641                               QualType SrcTy, QualType DstTy) {
642   // Get the source element type.
643   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
644 
645   // Handle conversions to bool first, they are special: comparisons against 0.
646   if (DstTy->isBooleanType()) {
647     //  Complex != 0  -> (Real != 0) | (Imag != 0)
648     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
649     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
650     return Builder.CreateOr(Src.first, Src.second, "tobool");
651   }
652 
653   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
654   // the imaginary part of the complex value is discarded and the value of the
655   // real part is converted according to the conversion rules for the
656   // corresponding real type.
657   return EmitScalarConversion(Src.first, SrcTy, DstTy);
658 }
659 
660 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
661   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
662     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
663 
664   return llvm::Constant::getNullValue(ConvertType(Ty));
665 }
666 
667 //===----------------------------------------------------------------------===//
668 //                            Visitor Methods
669 //===----------------------------------------------------------------------===//
670 
671 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
672   CGF.ErrorUnsupported(E, "scalar expression");
673   if (E->getType()->isVoidType())
674     return 0;
675   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
676 }
677 
678 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
679   // Vector Mask Case
680   if (E->getNumSubExprs() == 2 ||
681       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
682     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
683     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
684     Value *Mask;
685 
686     const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
687     unsigned LHSElts = LTy->getNumElements();
688 
689     if (E->getNumSubExprs() == 3) {
690       Mask = CGF.EmitScalarExpr(E->getExpr(2));
691 
692       // Shuffle LHS & RHS into one input vector.
693       llvm::SmallVector<llvm::Constant*, 32> concat;
694       for (unsigned i = 0; i != LHSElts; ++i) {
695         concat.push_back(Builder.getInt32(2*i));
696         concat.push_back(Builder.getInt32(2*i+1));
697       }
698 
699       Value* CV = llvm::ConstantVector::get(concat);
700       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
701       LHSElts *= 2;
702     } else {
703       Mask = RHS;
704     }
705 
706     const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
707     llvm::Constant* EltMask;
708 
709     // Treat vec3 like vec4.
710     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
711       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
712                                        (1 << llvm::Log2_32(LHSElts+2))-1);
713     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
714       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
715                                        (1 << llvm::Log2_32(LHSElts+1))-1);
716     else
717       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
718                                        (1 << llvm::Log2_32(LHSElts))-1);
719 
720     // Mask off the high bits of each shuffle index.
721     llvm::SmallVector<llvm::Constant *, 32> MaskV;
722     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
723       MaskV.push_back(EltMask);
724 
725     Value* MaskBits = llvm::ConstantVector::get(MaskV);
726     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
727 
728     // newv = undef
729     // mask = mask & maskbits
730     // for each elt
731     //   n = extract mask i
732     //   x = extract val n
733     //   newv = insert newv, x, i
734     const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
735                                                         MTy->getNumElements());
736     Value* NewV = llvm::UndefValue::get(RTy);
737     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
738       Value *Indx = Builder.getInt32(i);
739       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
740       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
741 
742       // Handle vec3 special since the index will be off by one for the RHS.
743       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
744         Value *cmpIndx, *newIndx;
745         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
746                                         "cmp_shuf_idx");
747         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
748         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
749       }
750       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
751       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
752     }
753     return NewV;
754   }
755 
756   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
757   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
758 
759   // Handle vec3 special since the index will be off by one for the RHS.
760   const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
761   llvm::SmallVector<llvm::Constant*, 32> indices;
762   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
763     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
764     if (VTy->getNumElements() == 3 && Idx > 3)
765       Idx -= 1;
766     indices.push_back(Builder.getInt32(Idx));
767   }
768 
769   Value *SV = llvm::ConstantVector::get(indices);
770   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
771 }
772 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
773   Expr::EvalResult Result;
774   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
775     if (E->isArrow())
776       CGF.EmitScalarExpr(E->getBase());
777     else
778       EmitLValue(E->getBase());
779     return Builder.getInt(Result.Val.getInt());
780   }
781 
782   // Emit debug info for aggregate now, if it was delayed to reduce
783   // debug info size.
784   CGDebugInfo *DI = CGF.getDebugInfo();
785   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
786     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
787     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
788       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
789         DI->getOrCreateRecordType(PTy->getPointeeType(),
790                                   M->getParent()->getLocation());
791   }
792   return EmitLoadOfLValue(E);
793 }
794 
795 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
796   TestAndClearIgnoreResultAssign();
797 
798   // Emit subscript expressions in rvalue context's.  For most cases, this just
799   // loads the lvalue formed by the subscript expr.  However, we have to be
800   // careful, because the base of a vector subscript is occasionally an rvalue,
801   // so we can't get it as an lvalue.
802   if (!E->getBase()->getType()->isVectorType())
803     return EmitLoadOfLValue(E);
804 
805   // Handle the vector case.  The base must be a vector, the index must be an
806   // integer value.
807   Value *Base = Visit(E->getBase());
808   Value *Idx  = Visit(E->getIdx());
809   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
810   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
811   return Builder.CreateExtractElement(Base, Idx, "vecext");
812 }
813 
814 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
815                                   unsigned Off, const llvm::Type *I32Ty) {
816   int MV = SVI->getMaskValue(Idx);
817   if (MV == -1)
818     return llvm::UndefValue::get(I32Ty);
819   return llvm::ConstantInt::get(I32Ty, Off+MV);
820 }
821 
822 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
823   bool Ignore = TestAndClearIgnoreResultAssign();
824   (void)Ignore;
825   assert (Ignore == false && "init list ignored");
826   unsigned NumInitElements = E->getNumInits();
827 
828   if (E->hadArrayRangeDesignator())
829     CGF.ErrorUnsupported(E, "GNU array range designator extension");
830 
831   const llvm::VectorType *VType =
832     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
833 
834   // We have a scalar in braces. Just use the first element.
835   if (!VType)
836     return Visit(E->getInit(0));
837 
838   unsigned ResElts = VType->getNumElements();
839 
840   // Loop over initializers collecting the Value for each, and remembering
841   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
842   // us to fold the shuffle for the swizzle into the shuffle for the vector
843   // initializer, since LLVM optimizers generally do not want to touch
844   // shuffles.
845   unsigned CurIdx = 0;
846   bool VIsUndefShuffle = false;
847   llvm::Value *V = llvm::UndefValue::get(VType);
848   for (unsigned i = 0; i != NumInitElements; ++i) {
849     Expr *IE = E->getInit(i);
850     Value *Init = Visit(IE);
851     llvm::SmallVector<llvm::Constant*, 16> Args;
852 
853     const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
854 
855     // Handle scalar elements.  If the scalar initializer is actually one
856     // element of a different vector of the same width, use shuffle instead of
857     // extract+insert.
858     if (!VVT) {
859       if (isa<ExtVectorElementExpr>(IE)) {
860         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
861 
862         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
863           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
864           Value *LHS = 0, *RHS = 0;
865           if (CurIdx == 0) {
866             // insert into undef -> shuffle (src, undef)
867             Args.push_back(C);
868             for (unsigned j = 1; j != ResElts; ++j)
869               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
870 
871             LHS = EI->getVectorOperand();
872             RHS = V;
873             VIsUndefShuffle = true;
874           } else if (VIsUndefShuffle) {
875             // insert into undefshuffle && size match -> shuffle (v, src)
876             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
877             for (unsigned j = 0; j != CurIdx; ++j)
878               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
879             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
880             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
881               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
882 
883             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
884             RHS = EI->getVectorOperand();
885             VIsUndefShuffle = false;
886           }
887           if (!Args.empty()) {
888             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
889             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
890             ++CurIdx;
891             continue;
892           }
893         }
894       }
895       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
896                                       "vecinit");
897       VIsUndefShuffle = false;
898       ++CurIdx;
899       continue;
900     }
901 
902     unsigned InitElts = VVT->getNumElements();
903 
904     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
905     // input is the same width as the vector being constructed, generate an
906     // optimized shuffle of the swizzle input into the result.
907     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
908     if (isa<ExtVectorElementExpr>(IE)) {
909       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
910       Value *SVOp = SVI->getOperand(0);
911       const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
912 
913       if (OpTy->getNumElements() == ResElts) {
914         for (unsigned j = 0; j != CurIdx; ++j) {
915           // If the current vector initializer is a shuffle with undef, merge
916           // this shuffle directly into it.
917           if (VIsUndefShuffle) {
918             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
919                                       CGF.Int32Ty));
920           } else {
921             Args.push_back(Builder.getInt32(j));
922           }
923         }
924         for (unsigned j = 0, je = InitElts; j != je; ++j)
925           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
926         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
927           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
928 
929         if (VIsUndefShuffle)
930           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
931 
932         Init = SVOp;
933       }
934     }
935 
936     // Extend init to result vector length, and then shuffle its contribution
937     // to the vector initializer into V.
938     if (Args.empty()) {
939       for (unsigned j = 0; j != InitElts; ++j)
940         Args.push_back(Builder.getInt32(j));
941       for (unsigned j = InitElts; j != ResElts; ++j)
942         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
943       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
944       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
945                                          Mask, "vext");
946 
947       Args.clear();
948       for (unsigned j = 0; j != CurIdx; ++j)
949         Args.push_back(Builder.getInt32(j));
950       for (unsigned j = 0; j != InitElts; ++j)
951         Args.push_back(Builder.getInt32(j+Offset));
952       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
953         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
954     }
955 
956     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
957     // merging subsequent shuffles into this one.
958     if (CurIdx == 0)
959       std::swap(V, Init);
960     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
961     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
962     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
963     CurIdx += InitElts;
964   }
965 
966   // FIXME: evaluate codegen vs. shuffling against constant null vector.
967   // Emit remaining default initializers.
968   const llvm::Type *EltTy = VType->getElementType();
969 
970   // Emit remaining default initializers
971   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
972     Value *Idx = Builder.getInt32(CurIdx);
973     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
974     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
975   }
976   return V;
977 }
978 
979 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
980   const Expr *E = CE->getSubExpr();
981 
982   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
983     return false;
984 
985   if (isa<CXXThisExpr>(E)) {
986     // We always assume that 'this' is never null.
987     return false;
988   }
989 
990   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
991     // And that glvalue casts are never null.
992     if (ICE->getValueKind() != VK_RValue)
993       return false;
994   }
995 
996   return true;
997 }
998 
999 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1000 // have to handle a more broad range of conversions than explicit casts, as they
1001 // handle things like function to ptr-to-function decay etc.
1002 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1003   Expr *E = CE->getSubExpr();
1004   QualType DestTy = CE->getType();
1005   CastKind Kind = CE->getCastKind();
1006 
1007   if (!DestTy->isVoidType())
1008     TestAndClearIgnoreResultAssign();
1009 
1010   // Since almost all cast kinds apply to scalars, this switch doesn't have
1011   // a default case, so the compiler will warn on a missing case.  The cases
1012   // are in the same order as in the CastKind enum.
1013   switch (Kind) {
1014   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1015 
1016   case CK_LValueBitCast:
1017   case CK_ObjCObjectLValueCast: {
1018     Value *V = EmitLValue(E).getAddress();
1019     V = Builder.CreateBitCast(V,
1020                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1021     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy));
1022   }
1023 
1024   case CK_AnyPointerToObjCPointerCast:
1025   case CK_AnyPointerToBlockPointerCast:
1026   case CK_BitCast: {
1027     Value *Src = Visit(const_cast<Expr*>(E));
1028     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1029   }
1030   case CK_NoOp:
1031   case CK_UserDefinedConversion:
1032     return Visit(const_cast<Expr*>(E));
1033 
1034   case CK_BaseToDerived: {
1035     const CXXRecordDecl *DerivedClassDecl =
1036       DestTy->getCXXRecordDeclForPointerType();
1037 
1038     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1039                                         CE->path_begin(), CE->path_end(),
1040                                         ShouldNullCheckClassCastValue(CE));
1041   }
1042   case CK_UncheckedDerivedToBase:
1043   case CK_DerivedToBase: {
1044     const RecordType *DerivedClassTy =
1045       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1046     CXXRecordDecl *DerivedClassDecl =
1047       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1048 
1049     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1050                                      CE->path_begin(), CE->path_end(),
1051                                      ShouldNullCheckClassCastValue(CE));
1052   }
1053   case CK_Dynamic: {
1054     Value *V = Visit(const_cast<Expr*>(E));
1055     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1056     return CGF.EmitDynamicCast(V, DCE);
1057   }
1058 
1059   case CK_ArrayToPointerDecay: {
1060     assert(E->getType()->isArrayType() &&
1061            "Array to pointer decay must have array source type!");
1062 
1063     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1064 
1065     // Note that VLA pointers are always decayed, so we don't need to do
1066     // anything here.
1067     if (!E->getType()->isVariableArrayType()) {
1068       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1069       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1070                                  ->getElementType()) &&
1071              "Expected pointer to array");
1072       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1073     }
1074 
1075     return V;
1076   }
1077   case CK_FunctionToPointerDecay:
1078     return EmitLValue(E).getAddress();
1079 
1080   case CK_NullToPointer:
1081     if (MustVisitNullValue(E))
1082       (void) Visit(E);
1083 
1084     return llvm::ConstantPointerNull::get(
1085                                cast<llvm::PointerType>(ConvertType(DestTy)));
1086 
1087   case CK_NullToMemberPointer: {
1088     if (MustVisitNullValue(E))
1089       (void) Visit(E);
1090 
1091     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1092     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1093   }
1094 
1095   case CK_BaseToDerivedMemberPointer:
1096   case CK_DerivedToBaseMemberPointer: {
1097     Value *Src = Visit(E);
1098 
1099     // Note that the AST doesn't distinguish between checked and
1100     // unchecked member pointer conversions, so we always have to
1101     // implement checked conversions here.  This is inefficient when
1102     // actual control flow may be required in order to perform the
1103     // check, which it is for data member pointers (but not member
1104     // function pointers on Itanium and ARM).
1105     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1106   }
1107 
1108   case CK_ObjCProduceObject:
1109     return CGF.EmitARCRetainScalarExpr(E);
1110   case CK_ObjCConsumeObject:
1111     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1112   case CK_ObjCReclaimReturnedObject: {
1113     llvm::Value *value = Visit(E);
1114     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1115     return CGF.EmitObjCConsumeObject(E->getType(), value);
1116   }
1117 
1118   case CK_FloatingRealToComplex:
1119   case CK_FloatingComplexCast:
1120   case CK_IntegralRealToComplex:
1121   case CK_IntegralComplexCast:
1122   case CK_IntegralComplexToFloatingComplex:
1123   case CK_FloatingComplexToIntegralComplex:
1124   case CK_ConstructorConversion:
1125   case CK_ToUnion:
1126     llvm_unreachable("scalar cast to non-scalar value");
1127     break;
1128 
1129   case CK_GetObjCProperty: {
1130     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1131     assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1132            "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1133     RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E));
1134     return RV.getScalarVal();
1135   }
1136 
1137   case CK_LValueToRValue:
1138     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1139     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1140     return Visit(const_cast<Expr*>(E));
1141 
1142   case CK_IntegralToPointer: {
1143     Value *Src = Visit(const_cast<Expr*>(E));
1144 
1145     // First, convert to the correct width so that we control the kind of
1146     // extension.
1147     const llvm::Type *MiddleTy = CGF.IntPtrTy;
1148     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1149     llvm::Value* IntResult =
1150       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1151 
1152     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1153   }
1154   case CK_PointerToIntegral:
1155     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1156     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1157 
1158   case CK_ToVoid: {
1159     CGF.EmitIgnoredExpr(E);
1160     return 0;
1161   }
1162   case CK_VectorSplat: {
1163     const llvm::Type *DstTy = ConvertType(DestTy);
1164     Value *Elt = Visit(const_cast<Expr*>(E));
1165 
1166     // Insert the element in element zero of an undef vector
1167     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1168     llvm::Value *Idx = Builder.getInt32(0);
1169     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1170 
1171     // Splat the element across to all elements
1172     llvm::SmallVector<llvm::Constant*, 16> Args;
1173     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1174     llvm::Constant *Zero = Builder.getInt32(0);
1175     for (unsigned i = 0; i < NumElements; i++)
1176       Args.push_back(Zero);
1177 
1178     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1179     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1180     return Yay;
1181   }
1182 
1183   case CK_IntegralCast:
1184   case CK_IntegralToFloating:
1185   case CK_FloatingToIntegral:
1186   case CK_FloatingCast:
1187     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1188 
1189   case CK_IntegralToBoolean:
1190     return EmitIntToBoolConversion(Visit(E));
1191   case CK_PointerToBoolean:
1192     return EmitPointerToBoolConversion(Visit(E));
1193   case CK_FloatingToBoolean:
1194     return EmitFloatToBoolConversion(Visit(E));
1195   case CK_MemberPointerToBoolean: {
1196     llvm::Value *MemPtr = Visit(E);
1197     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1198     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1199   }
1200 
1201   case CK_FloatingComplexToReal:
1202   case CK_IntegralComplexToReal:
1203     return CGF.EmitComplexExpr(E, false, true).first;
1204 
1205   case CK_FloatingComplexToBoolean:
1206   case CK_IntegralComplexToBoolean: {
1207     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1208 
1209     // TODO: kill this function off, inline appropriate case here
1210     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1211   }
1212 
1213   }
1214 
1215   llvm_unreachable("unknown scalar cast");
1216   return 0;
1217 }
1218 
1219 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1220   CodeGenFunction::StmtExprEvaluation eval(CGF);
1221   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1222     .getScalarVal();
1223 }
1224 
1225 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1226   LValue LV = CGF.EmitBlockDeclRefLValue(E);
1227   return CGF.EmitLoadOfLValue(LV).getScalarVal();
1228 }
1229 
1230 //===----------------------------------------------------------------------===//
1231 //                             Unary Operators
1232 //===----------------------------------------------------------------------===//
1233 
1234 llvm::Value *ScalarExprEmitter::
1235 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1236                                 llvm::Value *InVal,
1237                                 llvm::Value *NextVal, bool IsInc) {
1238   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1239   case LangOptions::SOB_Undefined:
1240     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1241     break;
1242   case LangOptions::SOB_Defined:
1243     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1244     break;
1245   case LangOptions::SOB_Trapping:
1246     BinOpInfo BinOp;
1247     BinOp.LHS = InVal;
1248     BinOp.RHS = NextVal;
1249     BinOp.Ty = E->getType();
1250     BinOp.Opcode = BO_Add;
1251     BinOp.E = E;
1252     return EmitOverflowCheckedBinOp(BinOp);
1253     break;
1254   }
1255   assert(false && "Unknown SignedOverflowBehaviorTy");
1256   return 0;
1257 }
1258 
1259 llvm::Value *
1260 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1261                                            bool isInc, bool isPre) {
1262 
1263   QualType type = E->getSubExpr()->getType();
1264   llvm::Value *value = EmitLoadOfLValue(LV);
1265   llvm::Value *input = value;
1266 
1267   int amount = (isInc ? 1 : -1);
1268 
1269   // Special case of integer increment that we have to check first: bool++.
1270   // Due to promotion rules, we get:
1271   //   bool++ -> bool = bool + 1
1272   //          -> bool = (int)bool + 1
1273   //          -> bool = ((int)bool + 1 != 0)
1274   // An interesting aspect of this is that increment is always true.
1275   // Decrement does not have this property.
1276   if (isInc && type->isBooleanType()) {
1277     value = Builder.getTrue();
1278 
1279   // Most common case by far: integer increment.
1280   } else if (type->isIntegerType()) {
1281 
1282     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1283 
1284     // Note that signed integer inc/dec with width less than int can't
1285     // overflow because of promotion rules; we're just eliding a few steps here.
1286     if (type->isSignedIntegerOrEnumerationType() &&
1287         value->getType()->getPrimitiveSizeInBits() >=
1288             CGF.IntTy->getBitWidth())
1289       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1290     else
1291       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1292 
1293   // Next most common: pointer increment.
1294   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1295     QualType type = ptr->getPointeeType();
1296 
1297     // VLA types don't have constant size.
1298     if (const VariableArrayType *vla
1299           = CGF.getContext().getAsVariableArrayType(type)) {
1300       llvm::Value *numElts = CGF.getVLASize(vla).first;
1301       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1302       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1303         value = Builder.CreateGEP(value, numElts, "vla.inc");
1304       else
1305         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1306 
1307     // Arithmetic on function pointers (!) is just +-1.
1308     } else if (type->isFunctionType()) {
1309       llvm::Value *amt = Builder.getInt32(amount);
1310 
1311       value = CGF.EmitCastToVoidPtr(value);
1312       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1313         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1314       else
1315         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1316       value = Builder.CreateBitCast(value, input->getType());
1317 
1318     // For everything else, we can just do a simple increment.
1319     } else {
1320       llvm::Value *amt = Builder.getInt32(amount);
1321       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1322         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1323       else
1324         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1325     }
1326 
1327   // Vector increment/decrement.
1328   } else if (type->isVectorType()) {
1329     if (type->hasIntegerRepresentation()) {
1330       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1331 
1332       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1333     } else {
1334       value = Builder.CreateFAdd(
1335                   value,
1336                   llvm::ConstantFP::get(value->getType(), amount),
1337                   isInc ? "inc" : "dec");
1338     }
1339 
1340   // Floating point.
1341   } else if (type->isRealFloatingType()) {
1342     // Add the inc/dec to the real part.
1343     llvm::Value *amt;
1344     if (value->getType()->isFloatTy())
1345       amt = llvm::ConstantFP::get(VMContext,
1346                                   llvm::APFloat(static_cast<float>(amount)));
1347     else if (value->getType()->isDoubleTy())
1348       amt = llvm::ConstantFP::get(VMContext,
1349                                   llvm::APFloat(static_cast<double>(amount)));
1350     else {
1351       llvm::APFloat F(static_cast<float>(amount));
1352       bool ignored;
1353       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1354                 &ignored);
1355       amt = llvm::ConstantFP::get(VMContext, F);
1356     }
1357     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1358 
1359   // Objective-C pointer types.
1360   } else {
1361     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1362     value = CGF.EmitCastToVoidPtr(value);
1363 
1364     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1365     if (!isInc) size = -size;
1366     llvm::Value *sizeValue =
1367       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1368 
1369     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1370       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1371     else
1372       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1373     value = Builder.CreateBitCast(value, input->getType());
1374   }
1375 
1376   // Store the updated result through the lvalue.
1377   if (LV.isBitField())
1378     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1379   else
1380     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1381 
1382   // If this is a postinc, return the value read from memory, otherwise use the
1383   // updated value.
1384   return isPre ? value : input;
1385 }
1386 
1387 
1388 
1389 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1390   TestAndClearIgnoreResultAssign();
1391   // Emit unary minus with EmitSub so we handle overflow cases etc.
1392   BinOpInfo BinOp;
1393   BinOp.RHS = Visit(E->getSubExpr());
1394 
1395   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1396     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1397   else
1398     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1399   BinOp.Ty = E->getType();
1400   BinOp.Opcode = BO_Sub;
1401   BinOp.E = E;
1402   return EmitSub(BinOp);
1403 }
1404 
1405 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1406   TestAndClearIgnoreResultAssign();
1407   Value *Op = Visit(E->getSubExpr());
1408   return Builder.CreateNot(Op, "neg");
1409 }
1410 
1411 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1412   // Compare operand to zero.
1413   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1414 
1415   // Invert value.
1416   // TODO: Could dynamically modify easy computations here.  For example, if
1417   // the operand is an icmp ne, turn into icmp eq.
1418   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1419 
1420   // ZExt result to the expr type.
1421   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1422 }
1423 
1424 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1425   // Try folding the offsetof to a constant.
1426   Expr::EvalResult EvalResult;
1427   if (E->Evaluate(EvalResult, CGF.getContext()))
1428     return Builder.getInt(EvalResult.Val.getInt());
1429 
1430   // Loop over the components of the offsetof to compute the value.
1431   unsigned n = E->getNumComponents();
1432   const llvm::Type* ResultType = ConvertType(E->getType());
1433   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1434   QualType CurrentType = E->getTypeSourceInfo()->getType();
1435   for (unsigned i = 0; i != n; ++i) {
1436     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1437     llvm::Value *Offset = 0;
1438     switch (ON.getKind()) {
1439     case OffsetOfExpr::OffsetOfNode::Array: {
1440       // Compute the index
1441       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1442       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1443       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1444       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1445 
1446       // Save the element type
1447       CurrentType =
1448           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1449 
1450       // Compute the element size
1451       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1452           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1453 
1454       // Multiply out to compute the result
1455       Offset = Builder.CreateMul(Idx, ElemSize);
1456       break;
1457     }
1458 
1459     case OffsetOfExpr::OffsetOfNode::Field: {
1460       FieldDecl *MemberDecl = ON.getField();
1461       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1462       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1463 
1464       // Compute the index of the field in its parent.
1465       unsigned i = 0;
1466       // FIXME: It would be nice if we didn't have to loop here!
1467       for (RecordDecl::field_iterator Field = RD->field_begin(),
1468                                       FieldEnd = RD->field_end();
1469            Field != FieldEnd; (void)++Field, ++i) {
1470         if (*Field == MemberDecl)
1471           break;
1472       }
1473       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1474 
1475       // Compute the offset to the field
1476       int64_t OffsetInt = RL.getFieldOffset(i) /
1477                           CGF.getContext().getCharWidth();
1478       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1479 
1480       // Save the element type.
1481       CurrentType = MemberDecl->getType();
1482       break;
1483     }
1484 
1485     case OffsetOfExpr::OffsetOfNode::Identifier:
1486       llvm_unreachable("dependent __builtin_offsetof");
1487 
1488     case OffsetOfExpr::OffsetOfNode::Base: {
1489       if (ON.getBase()->isVirtual()) {
1490         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1491         continue;
1492       }
1493 
1494       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1495       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1496 
1497       // Save the element type.
1498       CurrentType = ON.getBase()->getType();
1499 
1500       // Compute the offset to the base.
1501       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1502       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1503       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1504                           CGF.getContext().getCharWidth();
1505       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1506       break;
1507     }
1508     }
1509     Result = Builder.CreateAdd(Result, Offset);
1510   }
1511   return Result;
1512 }
1513 
1514 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1515 /// argument of the sizeof expression as an integer.
1516 Value *
1517 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1518                               const UnaryExprOrTypeTraitExpr *E) {
1519   QualType TypeToSize = E->getTypeOfArgument();
1520   if (E->getKind() == UETT_SizeOf) {
1521     if (const VariableArrayType *VAT =
1522           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1523       if (E->isArgumentType()) {
1524         // sizeof(type) - make sure to emit the VLA size.
1525         CGF.EmitVariablyModifiedType(TypeToSize);
1526       } else {
1527         // C99 6.5.3.4p2: If the argument is an expression of type
1528         // VLA, it is evaluated.
1529         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1530       }
1531 
1532       QualType eltType;
1533       llvm::Value *numElts;
1534       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1535 
1536       llvm::Value *size = numElts;
1537 
1538       // Scale the number of non-VLA elements by the non-VLA element size.
1539       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1540       if (!eltSize.isOne())
1541         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1542 
1543       return size;
1544     }
1545   }
1546 
1547   // If this isn't sizeof(vla), the result must be constant; use the constant
1548   // folding logic so we don't have to duplicate it here.
1549   Expr::EvalResult Result;
1550   E->Evaluate(Result, CGF.getContext());
1551   return Builder.getInt(Result.Val.getInt());
1552 }
1553 
1554 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1555   Expr *Op = E->getSubExpr();
1556   if (Op->getType()->isAnyComplexType()) {
1557     // If it's an l-value, load through the appropriate subobject l-value.
1558     // Note that we have to ask E because Op might be an l-value that
1559     // this won't work for, e.g. an Obj-C property.
1560     if (E->isGLValue())
1561       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1562 
1563     // Otherwise, calculate and project.
1564     return CGF.EmitComplexExpr(Op, false, true).first;
1565   }
1566 
1567   return Visit(Op);
1568 }
1569 
1570 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1571   Expr *Op = E->getSubExpr();
1572   if (Op->getType()->isAnyComplexType()) {
1573     // If it's an l-value, load through the appropriate subobject l-value.
1574     // Note that we have to ask E because Op might be an l-value that
1575     // this won't work for, e.g. an Obj-C property.
1576     if (Op->isGLValue())
1577       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1578 
1579     // Otherwise, calculate and project.
1580     return CGF.EmitComplexExpr(Op, true, false).second;
1581   }
1582 
1583   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1584   // effects are evaluated, but not the actual value.
1585   CGF.EmitScalarExpr(Op, true);
1586   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1587 }
1588 
1589 //===----------------------------------------------------------------------===//
1590 //                           Binary Operators
1591 //===----------------------------------------------------------------------===//
1592 
1593 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1594   TestAndClearIgnoreResultAssign();
1595   BinOpInfo Result;
1596   Result.LHS = Visit(E->getLHS());
1597   Result.RHS = Visit(E->getRHS());
1598   Result.Ty  = E->getType();
1599   Result.Opcode = E->getOpcode();
1600   Result.E = E;
1601   return Result;
1602 }
1603 
1604 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1605                                               const CompoundAssignOperator *E,
1606                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1607                                                    Value *&Result) {
1608   QualType LHSTy = E->getLHS()->getType();
1609   BinOpInfo OpInfo;
1610 
1611   if (E->getComputationResultType()->isAnyComplexType()) {
1612     // This needs to go through the complex expression emitter, but it's a tad
1613     // complicated to do that... I'm leaving it out for now.  (Note that we do
1614     // actually need the imaginary part of the RHS for multiplication and
1615     // division.)
1616     CGF.ErrorUnsupported(E, "complex compound assignment");
1617     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1618     return LValue();
1619   }
1620 
1621   // Emit the RHS first.  __block variables need to have the rhs evaluated
1622   // first, plus this should improve codegen a little.
1623   OpInfo.RHS = Visit(E->getRHS());
1624   OpInfo.Ty = E->getComputationResultType();
1625   OpInfo.Opcode = E->getOpcode();
1626   OpInfo.E = E;
1627   // Load/convert the LHS.
1628   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1629   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1630   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1631                                     E->getComputationLHSType());
1632 
1633   // Expand the binary operator.
1634   Result = (this->*Func)(OpInfo);
1635 
1636   // Convert the result back to the LHS type.
1637   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1638 
1639   // Store the result value into the LHS lvalue. Bit-fields are handled
1640   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1641   // 'An assignment expression has the value of the left operand after the
1642   // assignment...'.
1643   if (LHSLV.isBitField())
1644     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1645   else
1646     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1647 
1648   return LHSLV;
1649 }
1650 
1651 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1652                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1653   bool Ignore = TestAndClearIgnoreResultAssign();
1654   Value *RHS;
1655   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1656 
1657   // If the result is clearly ignored, return now.
1658   if (Ignore)
1659     return 0;
1660 
1661   // The result of an assignment in C is the assigned r-value.
1662   if (!CGF.getContext().getLangOptions().CPlusPlus)
1663     return RHS;
1664 
1665   // Objective-C property assignment never reloads the value following a store.
1666   if (LHS.isPropertyRef())
1667     return RHS;
1668 
1669   // If the lvalue is non-volatile, return the computed value of the assignment.
1670   if (!LHS.isVolatileQualified())
1671     return RHS;
1672 
1673   // Otherwise, reload the value.
1674   return EmitLoadOfLValue(LHS);
1675 }
1676 
1677 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1678      					    const BinOpInfo &Ops,
1679 				     	    llvm::Value *Zero, bool isDiv) {
1680   llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1681   llvm::BasicBlock *contBB =
1682     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1683                          llvm::next(insertPt));
1684   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1685 
1686   const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1687 
1688   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1689     llvm::Value *IntMin =
1690       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1691     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1692 
1693     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1694     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1695     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1696     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1697     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1698                          overflowBB, contBB);
1699   } else {
1700     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1701                              overflowBB, contBB);
1702   }
1703   EmitOverflowBB(overflowBB);
1704   Builder.SetInsertPoint(contBB);
1705 }
1706 
1707 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1708   if (isTrapvOverflowBehavior()) {
1709     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1710 
1711     if (Ops.Ty->isIntegerType())
1712       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1713     else if (Ops.Ty->isRealFloatingType()) {
1714       llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1715       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1716                                                        llvm::next(insertPt));
1717       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1718                                                           CGF.CurFn);
1719       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1720                                overflowBB, DivCont);
1721       EmitOverflowBB(overflowBB);
1722       Builder.SetInsertPoint(DivCont);
1723     }
1724   }
1725   if (Ops.LHS->getType()->isFPOrFPVectorTy())
1726     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1727   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1728     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1729   else
1730     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1731 }
1732 
1733 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1734   // Rem in C can't be a floating point type: C99 6.5.5p2.
1735   if (isTrapvOverflowBehavior()) {
1736     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1737 
1738     if (Ops.Ty->isIntegerType())
1739       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1740   }
1741 
1742   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1743     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1744   else
1745     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1746 }
1747 
1748 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1749   unsigned IID;
1750   unsigned OpID = 0;
1751 
1752   switch (Ops.Opcode) {
1753   case BO_Add:
1754   case BO_AddAssign:
1755     OpID = 1;
1756     IID = llvm::Intrinsic::sadd_with_overflow;
1757     break;
1758   case BO_Sub:
1759   case BO_SubAssign:
1760     OpID = 2;
1761     IID = llvm::Intrinsic::ssub_with_overflow;
1762     break;
1763   case BO_Mul:
1764   case BO_MulAssign:
1765     OpID = 3;
1766     IID = llvm::Intrinsic::smul_with_overflow;
1767     break;
1768   default:
1769     assert(false && "Unsupported operation for overflow detection");
1770     IID = 0;
1771   }
1772   OpID <<= 1;
1773   OpID |= 1;
1774 
1775   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1776 
1777   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1778 
1779   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1780   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1781   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1782 
1783   // Branch in case of overflow.
1784   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1785   llvm::Function::iterator insertPt = initialBB;
1786   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1787                                                       llvm::next(insertPt));
1788   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1789 
1790   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1791 
1792   // Handle overflow with llvm.trap.
1793   const std::string *handlerName =
1794     &CGF.getContext().getLangOptions().OverflowHandler;
1795   if (handlerName->empty()) {
1796     EmitOverflowBB(overflowBB);
1797     Builder.SetInsertPoint(continueBB);
1798     return result;
1799   }
1800 
1801   // If an overflow handler is set, then we want to call it and then use its
1802   // result, if it returns.
1803   Builder.SetInsertPoint(overflowBB);
1804 
1805   // Get the overflow handler.
1806   llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1807   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1808   llvm::FunctionType *handlerTy =
1809       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1810   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1811 
1812   // Sign extend the args to 64-bit, so that we can use the same handler for
1813   // all types of overflow.
1814   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1815   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1816 
1817   // Call the handler with the two arguments, the operation, and the size of
1818   // the result.
1819   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1820       Builder.getInt8(OpID),
1821       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1822 
1823   // Truncate the result back to the desired size.
1824   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1825   Builder.CreateBr(continueBB);
1826 
1827   Builder.SetInsertPoint(continueBB);
1828   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1829   phi->addIncoming(result, initialBB);
1830   phi->addIncoming(handlerResult, overflowBB);
1831 
1832   return phi;
1833 }
1834 
1835 /// Emit pointer + index arithmetic.
1836 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1837                                     const BinOpInfo &op,
1838                                     bool isSubtraction) {
1839   // Must have binary (not unary) expr here.  Unary pointer
1840   // increment/decrement doesn't use this path.
1841   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1842 
1843   Value *pointer = op.LHS;
1844   Expr *pointerOperand = expr->getLHS();
1845   Value *index = op.RHS;
1846   Expr *indexOperand = expr->getRHS();
1847 
1848   // In a subtraction, the LHS is always the pointer.
1849   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1850     std::swap(pointer, index);
1851     std::swap(pointerOperand, indexOperand);
1852   }
1853 
1854   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1855   if (width != CGF.PointerWidthInBits) {
1856     // Zero-extend or sign-extend the pointer value according to
1857     // whether the index is signed or not.
1858     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1859     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1860                                       "idx.ext");
1861   }
1862 
1863   // If this is subtraction, negate the index.
1864   if (isSubtraction)
1865     index = CGF.Builder.CreateNeg(index, "idx.neg");
1866 
1867   const PointerType *pointerType
1868     = pointerOperand->getType()->getAs<PointerType>();
1869   if (!pointerType) {
1870     QualType objectType = pointerOperand->getType()
1871                                         ->castAs<ObjCObjectPointerType>()
1872                                         ->getPointeeType();
1873     llvm::Value *objectSize
1874       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1875 
1876     index = CGF.Builder.CreateMul(index, objectSize);
1877 
1878     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1879     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1880     return CGF.Builder.CreateBitCast(result, pointer->getType());
1881   }
1882 
1883   QualType elementType = pointerType->getPointeeType();
1884   if (const VariableArrayType *vla
1885         = CGF.getContext().getAsVariableArrayType(elementType)) {
1886     // The element count here is the total number of non-VLA elements.
1887     llvm::Value *numElements = CGF.getVLASize(vla).first;
1888 
1889     // Effectively, the multiply by the VLA size is part of the GEP.
1890     // GEP indexes are signed, and scaling an index isn't permitted to
1891     // signed-overflow, so we use the same semantics for our explicit
1892     // multiply.  We suppress this if overflow is not undefined behavior.
1893     if (CGF.getLangOptions().isSignedOverflowDefined()) {
1894       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1895       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1896     } else {
1897       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1898       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1899     }
1900     return pointer;
1901   }
1902 
1903   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1904   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1905   // future proof.
1906   if (elementType->isVoidType() || elementType->isFunctionType()) {
1907     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1908     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1909     return CGF.Builder.CreateBitCast(result, pointer->getType());
1910   }
1911 
1912   if (CGF.getLangOptions().isSignedOverflowDefined())
1913     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1914 
1915   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1916 }
1917 
1918 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
1919   if (op.LHS->getType()->isPointerTy() ||
1920       op.RHS->getType()->isPointerTy())
1921     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
1922 
1923   if (op.Ty->isSignedIntegerOrEnumerationType()) {
1924     switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1925     case LangOptions::SOB_Undefined:
1926       return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
1927     case LangOptions::SOB_Defined:
1928       return Builder.CreateAdd(op.LHS, op.RHS, "add");
1929     case LangOptions::SOB_Trapping:
1930       return EmitOverflowCheckedBinOp(op);
1931     }
1932   }
1933 
1934   if (op.LHS->getType()->isFPOrFPVectorTy())
1935     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
1936 
1937   return Builder.CreateAdd(op.LHS, op.RHS, "add");
1938 }
1939 
1940 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
1941   // The LHS is always a pointer if either side is.
1942   if (!op.LHS->getType()->isPointerTy()) {
1943     if (op.Ty->isSignedIntegerOrEnumerationType()) {
1944       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1945       case LangOptions::SOB_Undefined:
1946         return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
1947       case LangOptions::SOB_Defined:
1948         return Builder.CreateSub(op.LHS, op.RHS, "sub");
1949       case LangOptions::SOB_Trapping:
1950         return EmitOverflowCheckedBinOp(op);
1951       }
1952     }
1953 
1954     if (op.LHS->getType()->isFPOrFPVectorTy())
1955       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
1956 
1957     return Builder.CreateSub(op.LHS, op.RHS, "sub");
1958   }
1959 
1960   // If the RHS is not a pointer, then we have normal pointer
1961   // arithmetic.
1962   if (!op.RHS->getType()->isPointerTy())
1963     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
1964 
1965   // Otherwise, this is a pointer subtraction.
1966 
1967   // Do the raw subtraction part.
1968   llvm::Value *LHS
1969     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
1970   llvm::Value *RHS
1971     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
1972   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1973 
1974   // Okay, figure out the element size.
1975   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1976   QualType elementType = expr->getLHS()->getType()->getPointeeType();
1977 
1978   llvm::Value *divisor = 0;
1979 
1980   // For a variable-length array, this is going to be non-constant.
1981   if (const VariableArrayType *vla
1982         = CGF.getContext().getAsVariableArrayType(elementType)) {
1983     llvm::Value *numElements;
1984     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
1985 
1986     divisor = numElements;
1987 
1988     // Scale the number of non-VLA elements by the non-VLA element size.
1989     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
1990     if (!eltSize.isOne())
1991       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
1992 
1993   // For everything elese, we can just compute it, safe in the
1994   // assumption that Sema won't let anything through that we can't
1995   // safely compute the size of.
1996   } else {
1997     CharUnits elementSize;
1998     // Handle GCC extension for pointer arithmetic on void* and
1999     // function pointer types.
2000     if (elementType->isVoidType() || elementType->isFunctionType())
2001       elementSize = CharUnits::One();
2002     else
2003       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2004 
2005     // Don't even emit the divide for element size of 1.
2006     if (elementSize.isOne())
2007       return diffInChars;
2008 
2009     divisor = CGF.CGM.getSize(elementSize);
2010   }
2011 
2012   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2013   // pointer difference in C is only defined in the case where both operands
2014   // are pointing to elements of an array.
2015   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2016 }
2017 
2018 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2019   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2020   // RHS to the same size as the LHS.
2021   Value *RHS = Ops.RHS;
2022   if (Ops.LHS->getType() != RHS->getType())
2023     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2024 
2025   if (CGF.CatchUndefined
2026       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2027     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2028     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2029     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2030                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2031                              Cont, CGF.getTrapBB());
2032     CGF.EmitBlock(Cont);
2033   }
2034 
2035   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2036 }
2037 
2038 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2039   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2040   // RHS to the same size as the LHS.
2041   Value *RHS = Ops.RHS;
2042   if (Ops.LHS->getType() != RHS->getType())
2043     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2044 
2045   if (CGF.CatchUndefined
2046       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2047     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2048     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2049     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2050                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2051                              Cont, CGF.getTrapBB());
2052     CGF.EmitBlock(Cont);
2053   }
2054 
2055   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2056     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2057   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2058 }
2059 
2060 enum IntrinsicType { VCMPEQ, VCMPGT };
2061 // return corresponding comparison intrinsic for given vector type
2062 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2063                                         BuiltinType::Kind ElemKind) {
2064   switch (ElemKind) {
2065   default: assert(0 && "unexpected element type");
2066   case BuiltinType::Char_U:
2067   case BuiltinType::UChar:
2068     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2069                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2070     break;
2071   case BuiltinType::Char_S:
2072   case BuiltinType::SChar:
2073     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2074                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2075     break;
2076   case BuiltinType::UShort:
2077     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2078                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2079     break;
2080   case BuiltinType::Short:
2081     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2082                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2083     break;
2084   case BuiltinType::UInt:
2085   case BuiltinType::ULong:
2086     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2087                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2088     break;
2089   case BuiltinType::Int:
2090   case BuiltinType::Long:
2091     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2092                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2093     break;
2094   case BuiltinType::Float:
2095     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2096                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2097     break;
2098   }
2099   return llvm::Intrinsic::not_intrinsic;
2100 }
2101 
2102 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2103                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2104   TestAndClearIgnoreResultAssign();
2105   Value *Result;
2106   QualType LHSTy = E->getLHS()->getType();
2107   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2108     assert(E->getOpcode() == BO_EQ ||
2109            E->getOpcode() == BO_NE);
2110     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2111     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2112     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2113                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2114   } else if (!LHSTy->isAnyComplexType()) {
2115     Value *LHS = Visit(E->getLHS());
2116     Value *RHS = Visit(E->getRHS());
2117 
2118     // If AltiVec, the comparison results in a numeric type, so we use
2119     // intrinsics comparing vectors and giving 0 or 1 as a result
2120     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2121       // constants for mapping CR6 register bits to predicate result
2122       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2123 
2124       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2125 
2126       // in several cases vector arguments order will be reversed
2127       Value *FirstVecArg = LHS,
2128             *SecondVecArg = RHS;
2129 
2130       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2131       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2132       BuiltinType::Kind ElementKind = BTy->getKind();
2133 
2134       switch(E->getOpcode()) {
2135       default: assert(0 && "is not a comparison operation");
2136       case BO_EQ:
2137         CR6 = CR6_LT;
2138         ID = GetIntrinsic(VCMPEQ, ElementKind);
2139         break;
2140       case BO_NE:
2141         CR6 = CR6_EQ;
2142         ID = GetIntrinsic(VCMPEQ, ElementKind);
2143         break;
2144       case BO_LT:
2145         CR6 = CR6_LT;
2146         ID = GetIntrinsic(VCMPGT, ElementKind);
2147         std::swap(FirstVecArg, SecondVecArg);
2148         break;
2149       case BO_GT:
2150         CR6 = CR6_LT;
2151         ID = GetIntrinsic(VCMPGT, ElementKind);
2152         break;
2153       case BO_LE:
2154         if (ElementKind == BuiltinType::Float) {
2155           CR6 = CR6_LT;
2156           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2157           std::swap(FirstVecArg, SecondVecArg);
2158         }
2159         else {
2160           CR6 = CR6_EQ;
2161           ID = GetIntrinsic(VCMPGT, ElementKind);
2162         }
2163         break;
2164       case BO_GE:
2165         if (ElementKind == BuiltinType::Float) {
2166           CR6 = CR6_LT;
2167           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2168         }
2169         else {
2170           CR6 = CR6_EQ;
2171           ID = GetIntrinsic(VCMPGT, ElementKind);
2172           std::swap(FirstVecArg, SecondVecArg);
2173         }
2174         break;
2175       }
2176 
2177       Value *CR6Param = Builder.getInt32(CR6);
2178       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2179       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2180       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2181     }
2182 
2183     if (LHS->getType()->isFPOrFPVectorTy()) {
2184       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2185                                   LHS, RHS, "cmp");
2186     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2187       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2188                                   LHS, RHS, "cmp");
2189     } else {
2190       // Unsigned integers and pointers.
2191       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2192                                   LHS, RHS, "cmp");
2193     }
2194 
2195     // If this is a vector comparison, sign extend the result to the appropriate
2196     // vector integer type and return it (don't convert to bool).
2197     if (LHSTy->isVectorType())
2198       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2199 
2200   } else {
2201     // Complex Comparison: can only be an equality comparison.
2202     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2203     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2204 
2205     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2206 
2207     Value *ResultR, *ResultI;
2208     if (CETy->isRealFloatingType()) {
2209       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2210                                    LHS.first, RHS.first, "cmp.r");
2211       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2212                                    LHS.second, RHS.second, "cmp.i");
2213     } else {
2214       // Complex comparisons can only be equality comparisons.  As such, signed
2215       // and unsigned opcodes are the same.
2216       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2217                                    LHS.first, RHS.first, "cmp.r");
2218       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2219                                    LHS.second, RHS.second, "cmp.i");
2220     }
2221 
2222     if (E->getOpcode() == BO_EQ) {
2223       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2224     } else {
2225       assert(E->getOpcode() == BO_NE &&
2226              "Complex comparison other than == or != ?");
2227       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2228     }
2229   }
2230 
2231   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2232 }
2233 
2234 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2235   bool Ignore = TestAndClearIgnoreResultAssign();
2236 
2237   Value *RHS;
2238   LValue LHS;
2239 
2240   switch (E->getLHS()->getType().getObjCLifetime()) {
2241   case Qualifiers::OCL_Strong:
2242     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2243     break;
2244 
2245   case Qualifiers::OCL_Autoreleasing:
2246     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2247     break;
2248 
2249   case Qualifiers::OCL_Weak:
2250     RHS = Visit(E->getRHS());
2251     LHS = EmitCheckedLValue(E->getLHS());
2252     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2253     break;
2254 
2255   // No reason to do any of these differently.
2256   case Qualifiers::OCL_None:
2257   case Qualifiers::OCL_ExplicitNone:
2258     // __block variables need to have the rhs evaluated first, plus
2259     // this should improve codegen just a little.
2260     RHS = Visit(E->getRHS());
2261     LHS = EmitCheckedLValue(E->getLHS());
2262 
2263     // Store the value into the LHS.  Bit-fields are handled specially
2264     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2265     // 'An assignment expression has the value of the left operand after
2266     // the assignment...'.
2267     if (LHS.isBitField())
2268       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2269     else
2270       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2271   }
2272 
2273   // If the result is clearly ignored, return now.
2274   if (Ignore)
2275     return 0;
2276 
2277   // The result of an assignment in C is the assigned r-value.
2278   if (!CGF.getContext().getLangOptions().CPlusPlus)
2279     return RHS;
2280 
2281   // Objective-C property assignment never reloads the value following a store.
2282   if (LHS.isPropertyRef())
2283     return RHS;
2284 
2285   // If the lvalue is non-volatile, return the computed value of the assignment.
2286   if (!LHS.isVolatileQualified())
2287     return RHS;
2288 
2289   // Otherwise, reload the value.
2290   return EmitLoadOfLValue(LHS);
2291 }
2292 
2293 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2294   const llvm::Type *ResTy = ConvertType(E->getType());
2295 
2296   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2297   // If we have 1 && X, just emit X without inserting the control flow.
2298   bool LHSCondVal;
2299   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2300     if (LHSCondVal) { // If we have 1 && X, just emit X.
2301       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2302       // ZExt result to int or bool.
2303       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2304     }
2305 
2306     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2307     if (!CGF.ContainsLabel(E->getRHS()))
2308       return llvm::Constant::getNullValue(ResTy);
2309   }
2310 
2311   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2312   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2313 
2314   CodeGenFunction::ConditionalEvaluation eval(CGF);
2315 
2316   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2317   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2318 
2319   // Any edges into the ContBlock are now from an (indeterminate number of)
2320   // edges from this first condition.  All of these values will be false.  Start
2321   // setting up the PHI node in the Cont Block for this.
2322   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2323                                             "", ContBlock);
2324   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2325        PI != PE; ++PI)
2326     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2327 
2328   eval.begin(CGF);
2329   CGF.EmitBlock(RHSBlock);
2330   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2331   eval.end(CGF);
2332 
2333   // Reaquire the RHS block, as there may be subblocks inserted.
2334   RHSBlock = Builder.GetInsertBlock();
2335 
2336   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2337   // into the phi node for the edge with the value of RHSCond.
2338   if (CGF.getDebugInfo())
2339     // There is no need to emit line number for unconditional branch.
2340     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2341   CGF.EmitBlock(ContBlock);
2342   PN->addIncoming(RHSCond, RHSBlock);
2343 
2344   // ZExt result to int.
2345   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2346 }
2347 
2348 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2349   const llvm::Type *ResTy = ConvertType(E->getType());
2350 
2351   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2352   // If we have 0 || X, just emit X without inserting the control flow.
2353   bool LHSCondVal;
2354   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2355     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2356       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2357       // ZExt result to int or bool.
2358       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2359     }
2360 
2361     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2362     if (!CGF.ContainsLabel(E->getRHS()))
2363       return llvm::ConstantInt::get(ResTy, 1);
2364   }
2365 
2366   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2367   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2368 
2369   CodeGenFunction::ConditionalEvaluation eval(CGF);
2370 
2371   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2372   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2373 
2374   // Any edges into the ContBlock are now from an (indeterminate number of)
2375   // edges from this first condition.  All of these values will be true.  Start
2376   // setting up the PHI node in the Cont Block for this.
2377   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2378                                             "", ContBlock);
2379   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2380        PI != PE; ++PI)
2381     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2382 
2383   eval.begin(CGF);
2384 
2385   // Emit the RHS condition as a bool value.
2386   CGF.EmitBlock(RHSBlock);
2387   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2388 
2389   eval.end(CGF);
2390 
2391   // Reaquire the RHS block, as there may be subblocks inserted.
2392   RHSBlock = Builder.GetInsertBlock();
2393 
2394   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2395   // into the phi node for the edge with the value of RHSCond.
2396   CGF.EmitBlock(ContBlock);
2397   PN->addIncoming(RHSCond, RHSBlock);
2398 
2399   // ZExt result to int.
2400   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2401 }
2402 
2403 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2404   CGF.EmitIgnoredExpr(E->getLHS());
2405   CGF.EnsureInsertPoint();
2406   return Visit(E->getRHS());
2407 }
2408 
2409 //===----------------------------------------------------------------------===//
2410 //                             Other Operators
2411 //===----------------------------------------------------------------------===//
2412 
2413 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2414 /// expression is cheap enough and side-effect-free enough to evaluate
2415 /// unconditionally instead of conditionally.  This is used to convert control
2416 /// flow into selects in some cases.
2417 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2418                                                    CodeGenFunction &CGF) {
2419   E = E->IgnoreParens();
2420 
2421   // Anything that is an integer or floating point constant is fine.
2422   if (E->isConstantInitializer(CGF.getContext(), false))
2423     return true;
2424 
2425   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2426   // X and Y are local variables.
2427   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2428     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2429       if (VD->hasLocalStorage() && !(CGF.getContext()
2430                                      .getCanonicalType(VD->getType())
2431                                      .isVolatileQualified()))
2432         return true;
2433 
2434   return false;
2435 }
2436 
2437 
2438 Value *ScalarExprEmitter::
2439 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2440   TestAndClearIgnoreResultAssign();
2441 
2442   // Bind the common expression if necessary.
2443   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2444 
2445   Expr *condExpr = E->getCond();
2446   Expr *lhsExpr = E->getTrueExpr();
2447   Expr *rhsExpr = E->getFalseExpr();
2448 
2449   // If the condition constant folds and can be elided, try to avoid emitting
2450   // the condition and the dead arm.
2451   bool CondExprBool;
2452   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2453     Expr *live = lhsExpr, *dead = rhsExpr;
2454     if (!CondExprBool) std::swap(live, dead);
2455 
2456     // If the dead side doesn't have labels we need, and if the Live side isn't
2457     // the gnu missing ?: extension (which we could handle, but don't bother
2458     // to), just emit the Live part.
2459     if (!CGF.ContainsLabel(dead))
2460       return Visit(live);
2461   }
2462 
2463   // OpenCL: If the condition is a vector, we can treat this condition like
2464   // the select function.
2465   if (CGF.getContext().getLangOptions().OpenCL
2466       && condExpr->getType()->isVectorType()) {
2467     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2468     llvm::Value *LHS = Visit(lhsExpr);
2469     llvm::Value *RHS = Visit(rhsExpr);
2470 
2471     const llvm::Type *condType = ConvertType(condExpr->getType());
2472     const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2473 
2474     unsigned numElem = vecTy->getNumElements();
2475     const llvm::Type *elemType = vecTy->getElementType();
2476 
2477     std::vector<llvm::Constant*> Zvals;
2478     for (unsigned i = 0; i < numElem; ++i)
2479       Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2480 
2481     llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2482     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2483     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2484                                           llvm::VectorType::get(elemType,
2485                                                                 numElem),
2486                                           "sext");
2487     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2488 
2489     // Cast float to int to perform ANDs if necessary.
2490     llvm::Value *RHSTmp = RHS;
2491     llvm::Value *LHSTmp = LHS;
2492     bool wasCast = false;
2493     const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2494     if (rhsVTy->getElementType()->isFloatTy()) {
2495       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2496       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2497       wasCast = true;
2498     }
2499 
2500     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2501     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2502     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2503     if (wasCast)
2504       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2505 
2506     return tmp5;
2507   }
2508 
2509   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2510   // select instead of as control flow.  We can only do this if it is cheap and
2511   // safe to evaluate the LHS and RHS unconditionally.
2512   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2513       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2514     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2515     llvm::Value *LHS = Visit(lhsExpr);
2516     llvm::Value *RHS = Visit(rhsExpr);
2517     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2518   }
2519 
2520   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2521   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2522   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2523 
2524   CodeGenFunction::ConditionalEvaluation eval(CGF);
2525   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2526 
2527   CGF.EmitBlock(LHSBlock);
2528   eval.begin(CGF);
2529   Value *LHS = Visit(lhsExpr);
2530   eval.end(CGF);
2531 
2532   LHSBlock = Builder.GetInsertBlock();
2533   Builder.CreateBr(ContBlock);
2534 
2535   CGF.EmitBlock(RHSBlock);
2536   eval.begin(CGF);
2537   Value *RHS = Visit(rhsExpr);
2538   eval.end(CGF);
2539 
2540   RHSBlock = Builder.GetInsertBlock();
2541   CGF.EmitBlock(ContBlock);
2542 
2543   // If the LHS or RHS is a throw expression, it will be legitimately null.
2544   if (!LHS)
2545     return RHS;
2546   if (!RHS)
2547     return LHS;
2548 
2549   // Create a PHI node for the real part.
2550   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2551   PN->addIncoming(LHS, LHSBlock);
2552   PN->addIncoming(RHS, RHSBlock);
2553   return PN;
2554 }
2555 
2556 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2557   return Visit(E->getChosenSubExpr(CGF.getContext()));
2558 }
2559 
2560 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2561   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2562   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2563 
2564   // If EmitVAArg fails, we fall back to the LLVM instruction.
2565   if (!ArgPtr)
2566     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2567 
2568   // FIXME Volatility.
2569   return Builder.CreateLoad(ArgPtr);
2570 }
2571 
2572 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2573   return CGF.EmitBlockLiteral(block);
2574 }
2575 
2576 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2577   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2578   const llvm::Type * DstTy = ConvertType(E->getDstType());
2579 
2580   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2581   // a shuffle vector instead of a bitcast.
2582   const llvm::Type *SrcTy = Src->getType();
2583   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2584     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2585     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2586     if ((numElementsDst == 3 && numElementsSrc == 4)
2587         || (numElementsDst == 4 && numElementsSrc == 3)) {
2588 
2589 
2590       // In the case of going from int4->float3, a bitcast is needed before
2591       // doing a shuffle.
2592       const llvm::Type *srcElemTy =
2593       cast<llvm::VectorType>(SrcTy)->getElementType();
2594       const llvm::Type *dstElemTy =
2595       cast<llvm::VectorType>(DstTy)->getElementType();
2596 
2597       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2598           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2599         // Create a float type of the same size as the source or destination.
2600         const llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2601                                                                  numElementsSrc);
2602 
2603         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2604       }
2605 
2606       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2607 
2608       llvm::SmallVector<llvm::Constant*, 3> Args;
2609       Args.push_back(Builder.getInt32(0));
2610       Args.push_back(Builder.getInt32(1));
2611       Args.push_back(Builder.getInt32(2));
2612 
2613       if (numElementsDst == 4)
2614         Args.push_back(llvm::UndefValue::get(
2615                                              llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2616 
2617       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2618 
2619       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2620     }
2621   }
2622 
2623   return Builder.CreateBitCast(Src, DstTy, "astype");
2624 }
2625 
2626 //===----------------------------------------------------------------------===//
2627 //                         Entry Point into this File
2628 //===----------------------------------------------------------------------===//
2629 
2630 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2631 /// type, ignoring the result.
2632 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2633   assert(E && !hasAggregateLLVMType(E->getType()) &&
2634          "Invalid scalar expression to emit");
2635 
2636   if (isa<CXXDefaultArgExpr>(E))
2637     disableDebugInfo();
2638   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2639     .Visit(const_cast<Expr*>(E));
2640   if (isa<CXXDefaultArgExpr>(E))
2641     enableDebugInfo();
2642   return V;
2643 }
2644 
2645 /// EmitScalarConversion - Emit a conversion from the specified type to the
2646 /// specified destination type, both of which are LLVM scalar types.
2647 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2648                                              QualType DstTy) {
2649   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2650          "Invalid scalar expression to emit");
2651   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2652 }
2653 
2654 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2655 /// type to the specified destination type, where the destination type is an
2656 /// LLVM scalar type.
2657 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2658                                                       QualType SrcTy,
2659                                                       QualType DstTy) {
2660   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2661          "Invalid complex -> scalar conversion");
2662   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2663                                                                 DstTy);
2664 }
2665 
2666 
2667 llvm::Value *CodeGenFunction::
2668 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2669                         bool isInc, bool isPre) {
2670   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2671 }
2672 
2673 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2674   llvm::Value *V;
2675   // object->isa or (*object).isa
2676   // Generate code as for: *(Class*)object
2677   // build Class* type
2678   const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2679 
2680   Expr *BaseExpr = E->getBase();
2681   if (BaseExpr->isRValue()) {
2682     V = CreateTempAlloca(ClassPtrTy, "resval");
2683     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2684     Builder.CreateStore(Src, V);
2685     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2686       MakeAddrLValue(V, E->getType()));
2687   } else {
2688     if (E->isArrow())
2689       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2690     else
2691       V = EmitLValue(BaseExpr).getAddress();
2692   }
2693 
2694   // build Class* type
2695   ClassPtrTy = ClassPtrTy->getPointerTo();
2696   V = Builder.CreateBitCast(V, ClassPtrTy);
2697   return MakeAddrLValue(V, E->getType());
2698 }
2699 
2700 
2701 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2702                                             const CompoundAssignOperator *E) {
2703   ScalarExprEmitter Scalar(*this);
2704   Value *Result = 0;
2705   switch (E->getOpcode()) {
2706 #define COMPOUND_OP(Op)                                                       \
2707     case BO_##Op##Assign:                                                     \
2708       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2709                                              Result)
2710   COMPOUND_OP(Mul);
2711   COMPOUND_OP(Div);
2712   COMPOUND_OP(Rem);
2713   COMPOUND_OP(Add);
2714   COMPOUND_OP(Sub);
2715   COMPOUND_OP(Shl);
2716   COMPOUND_OP(Shr);
2717   COMPOUND_OP(And);
2718   COMPOUND_OP(Xor);
2719   COMPOUND_OP(Or);
2720 #undef COMPOUND_OP
2721 
2722   case BO_PtrMemD:
2723   case BO_PtrMemI:
2724   case BO_Mul:
2725   case BO_Div:
2726   case BO_Rem:
2727   case BO_Add:
2728   case BO_Sub:
2729   case BO_Shl:
2730   case BO_Shr:
2731   case BO_LT:
2732   case BO_GT:
2733   case BO_LE:
2734   case BO_GE:
2735   case BO_EQ:
2736   case BO_NE:
2737   case BO_And:
2738   case BO_Xor:
2739   case BO_Or:
2740   case BO_LAnd:
2741   case BO_LOr:
2742   case BO_Assign:
2743   case BO_Comma:
2744     assert(false && "Not valid compound assignment operators");
2745     break;
2746   }
2747 
2748   llvm_unreachable("Unhandled compound assignment operator");
2749 }
2750