1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/FixedPoint.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include <cstdarg> 39 40 using namespace clang; 41 using namespace CodeGen; 42 using llvm::Value; 43 44 //===----------------------------------------------------------------------===// 45 // Scalar Expression Emitter 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 50 /// Determine whether the given binary operation may overflow. 51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 53 /// the returned overflow check is precise. The returned value is 'true' for 54 /// all other opcodes, to be conservative. 55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 56 BinaryOperator::Opcode Opcode, bool Signed, 57 llvm::APInt &Result) { 58 // Assume overflow is possible, unless we can prove otherwise. 59 bool Overflow = true; 60 const auto &LHSAP = LHS->getValue(); 61 const auto &RHSAP = RHS->getValue(); 62 if (Opcode == BO_Add) { 63 if (Signed) 64 Result = LHSAP.sadd_ov(RHSAP, Overflow); 65 else 66 Result = LHSAP.uadd_ov(RHSAP, Overflow); 67 } else if (Opcode == BO_Sub) { 68 if (Signed) 69 Result = LHSAP.ssub_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.usub_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Mul) { 73 if (Signed) 74 Result = LHSAP.smul_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.umul_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 78 if (Signed && !RHS->isZero()) 79 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 80 else 81 return false; 82 } 83 return Overflow; 84 } 85 86 struct BinOpInfo { 87 Value *LHS; 88 Value *RHS; 89 QualType Ty; // Computation Type. 90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 91 FPOptions FPFeatures; 92 const Expr *E; // Entire expr, for error unsupported. May not be binop. 93 94 /// Check if the binop can result in integer overflow. 95 bool mayHaveIntegerOverflow() const { 96 // Without constant input, we can't rule out overflow. 97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 99 if (!LHSCI || !RHSCI) 100 return true; 101 102 llvm::APInt Result; 103 return ::mayHaveIntegerOverflow( 104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 105 } 106 107 /// Check if the binop computes a division or a remainder. 108 bool isDivremOp() const { 109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 110 Opcode == BO_RemAssign; 111 } 112 113 /// Check if the binop can result in an integer division by zero. 114 bool mayHaveIntegerDivisionByZero() const { 115 if (isDivremOp()) 116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 117 return CI->isZero(); 118 return true; 119 } 120 121 /// Check if the binop can result in a float division by zero. 122 bool mayHaveFloatDivisionByZero() const { 123 if (isDivremOp()) 124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 125 return CFP->isZero(); 126 return true; 127 } 128 129 /// Check if either operand is a fixed point type or integer type, with at 130 /// least one being a fixed point type. In any case, this 131 /// operation did not follow usual arithmetic conversion and both operands may 132 /// not be the same. 133 bool isFixedPointBinOp() const { 134 // We cannot simply check the result type since comparison operations return 135 // an int. 136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 137 QualType LHSType = BinOp->getLHS()->getType(); 138 QualType RHSType = BinOp->getRHS()->getType(); 139 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 140 } 141 return false; 142 } 143 }; 144 145 static bool MustVisitNullValue(const Expr *E) { 146 // If a null pointer expression's type is the C++0x nullptr_t, then 147 // it's not necessarily a simple constant and it must be evaluated 148 // for its potential side effects. 149 return E->getType()->isNullPtrType(); 150 } 151 152 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 154 const Expr *E) { 155 const Expr *Base = E->IgnoreImpCasts(); 156 if (E == Base) 157 return llvm::None; 158 159 QualType BaseTy = Base->getType(); 160 if (!BaseTy->isPromotableIntegerType() || 161 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 162 return llvm::None; 163 164 return BaseTy; 165 } 166 167 /// Check if \p E is a widened promoted integer. 168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 169 return getUnwidenedIntegerType(Ctx, E).hasValue(); 170 } 171 172 /// Check if we can skip the overflow check for \p Op. 173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 174 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 175 "Expected a unary or binary operator"); 176 177 // If the binop has constant inputs and we can prove there is no overflow, 178 // we can elide the overflow check. 179 if (!Op.mayHaveIntegerOverflow()) 180 return true; 181 182 // If a unary op has a widened operand, the op cannot overflow. 183 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 184 return !UO->canOverflow(); 185 186 // We usually don't need overflow checks for binops with widened operands. 187 // Multiplication with promoted unsigned operands is a special case. 188 const auto *BO = cast<BinaryOperator>(Op.E); 189 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 190 if (!OptionalLHSTy) 191 return false; 192 193 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 194 if (!OptionalRHSTy) 195 return false; 196 197 QualType LHSTy = *OptionalLHSTy; 198 QualType RHSTy = *OptionalRHSTy; 199 200 // This is the simple case: binops without unsigned multiplication, and with 201 // widened operands. No overflow check is needed here. 202 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 203 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 204 return true; 205 206 // For unsigned multiplication the overflow check can be elided if either one 207 // of the unpromoted types are less than half the size of the promoted type. 208 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 209 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 210 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 211 } 212 213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 214 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 215 FPOptions FPFeatures) { 216 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 217 } 218 219 /// Propagate fast-math flags from \p Op to the instruction in \p V. 220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 221 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 222 llvm::FastMathFlags FMF = I->getFastMathFlags(); 223 updateFastMathFlags(FMF, Op.FPFeatures); 224 I->setFastMathFlags(FMF); 225 } 226 return V; 227 } 228 229 class ScalarExprEmitter 230 : public StmtVisitor<ScalarExprEmitter, Value*> { 231 CodeGenFunction &CGF; 232 CGBuilderTy &Builder; 233 bool IgnoreResultAssign; 234 llvm::LLVMContext &VMContext; 235 public: 236 237 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 238 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 239 VMContext(cgf.getLLVMContext()) { 240 } 241 242 //===--------------------------------------------------------------------===// 243 // Utilities 244 //===--------------------------------------------------------------------===// 245 246 bool TestAndClearIgnoreResultAssign() { 247 bool I = IgnoreResultAssign; 248 IgnoreResultAssign = false; 249 return I; 250 } 251 252 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 253 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 254 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 255 return CGF.EmitCheckedLValue(E, TCK); 256 } 257 258 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 259 const BinOpInfo &Info); 260 261 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 262 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 263 } 264 265 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 266 const AlignValueAttr *AVAttr = nullptr; 267 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 268 const ValueDecl *VD = DRE->getDecl(); 269 270 if (VD->getType()->isReferenceType()) { 271 if (const auto *TTy = 272 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 273 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 274 } else { 275 // Assumptions for function parameters are emitted at the start of the 276 // function, so there is no need to repeat that here, 277 // unless the alignment-assumption sanitizer is enabled, 278 // then we prefer the assumption over alignment attribute 279 // on IR function param. 280 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 281 return; 282 283 AVAttr = VD->getAttr<AlignValueAttr>(); 284 } 285 } 286 287 if (!AVAttr) 288 if (const auto *TTy = 289 dyn_cast<TypedefType>(E->getType())) 290 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 291 292 if (!AVAttr) 293 return; 294 295 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 296 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 297 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), 298 AlignmentCI->getZExtValue()); 299 } 300 301 /// EmitLoadOfLValue - Given an expression with complex type that represents a 302 /// value l-value, this method emits the address of the l-value, then loads 303 /// and returns the result. 304 Value *EmitLoadOfLValue(const Expr *E) { 305 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 306 E->getExprLoc()); 307 308 EmitLValueAlignmentAssumption(E, V); 309 return V; 310 } 311 312 /// EmitConversionToBool - Convert the specified expression value to a 313 /// boolean (i1) truth value. This is equivalent to "Val != 0". 314 Value *EmitConversionToBool(Value *Src, QualType DstTy); 315 316 /// Emit a check that a conversion to or from a floating-point type does not 317 /// overflow. 318 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 319 Value *Src, QualType SrcType, QualType DstType, 320 llvm::Type *DstTy, SourceLocation Loc); 321 322 /// Known implicit conversion check kinds. 323 /// Keep in sync with the enum of the same name in ubsan_handlers.h 324 enum ImplicitConversionCheckKind : unsigned char { 325 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 326 ICCK_UnsignedIntegerTruncation = 1, 327 ICCK_SignedIntegerTruncation = 2, 328 ICCK_IntegerSignChange = 3, 329 ICCK_SignedIntegerTruncationOrSignChange = 4, 330 }; 331 332 /// Emit a check that an [implicit] truncation of an integer does not 333 /// discard any bits. It is not UB, so we use the value after truncation. 334 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 335 QualType DstType, SourceLocation Loc); 336 337 /// Emit a check that an [implicit] conversion of an integer does not change 338 /// the sign of the value. It is not UB, so we use the value after conversion. 339 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 340 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 341 QualType DstType, SourceLocation Loc); 342 343 /// Emit a conversion from the specified type to the specified destination 344 /// type, both of which are LLVM scalar types. 345 struct ScalarConversionOpts { 346 bool TreatBooleanAsSigned; 347 bool EmitImplicitIntegerTruncationChecks; 348 bool EmitImplicitIntegerSignChangeChecks; 349 350 ScalarConversionOpts() 351 : TreatBooleanAsSigned(false), 352 EmitImplicitIntegerTruncationChecks(false), 353 EmitImplicitIntegerSignChangeChecks(false) {} 354 355 ScalarConversionOpts(clang::SanitizerSet SanOpts) 356 : TreatBooleanAsSigned(false), 357 EmitImplicitIntegerTruncationChecks( 358 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 359 EmitImplicitIntegerSignChangeChecks( 360 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 361 }; 362 Value * 363 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 364 SourceLocation Loc, 365 ScalarConversionOpts Opts = ScalarConversionOpts()); 366 367 /// Convert between either a fixed point and other fixed point or fixed point 368 /// and an integer. 369 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 370 SourceLocation Loc); 371 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 372 FixedPointSemantics &DstFixedSema, 373 SourceLocation Loc, 374 bool DstIsInteger = false); 375 376 /// Emit a conversion from the specified complex type to the specified 377 /// destination type, where the destination type is an LLVM scalar type. 378 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 379 QualType SrcTy, QualType DstTy, 380 SourceLocation Loc); 381 382 /// EmitNullValue - Emit a value that corresponds to null for the given type. 383 Value *EmitNullValue(QualType Ty); 384 385 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 386 Value *EmitFloatToBoolConversion(Value *V) { 387 // Compare against 0.0 for fp scalars. 388 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 389 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 390 } 391 392 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 393 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 394 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 395 396 return Builder.CreateICmpNE(V, Zero, "tobool"); 397 } 398 399 Value *EmitIntToBoolConversion(Value *V) { 400 // Because of the type rules of C, we often end up computing a 401 // logical value, then zero extending it to int, then wanting it 402 // as a logical value again. Optimize this common case. 403 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 404 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 405 Value *Result = ZI->getOperand(0); 406 // If there aren't any more uses, zap the instruction to save space. 407 // Note that there can be more uses, for example if this 408 // is the result of an assignment. 409 if (ZI->use_empty()) 410 ZI->eraseFromParent(); 411 return Result; 412 } 413 } 414 415 return Builder.CreateIsNotNull(V, "tobool"); 416 } 417 418 //===--------------------------------------------------------------------===// 419 // Visitor Methods 420 //===--------------------------------------------------------------------===// 421 422 Value *Visit(Expr *E) { 423 ApplyDebugLocation DL(CGF, E); 424 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 425 } 426 427 Value *VisitStmt(Stmt *S) { 428 S->dump(CGF.getContext().getSourceManager()); 429 llvm_unreachable("Stmt can't have complex result type!"); 430 } 431 Value *VisitExpr(Expr *S); 432 433 Value *VisitConstantExpr(ConstantExpr *E) { 434 return Visit(E->getSubExpr()); 435 } 436 Value *VisitParenExpr(ParenExpr *PE) { 437 return Visit(PE->getSubExpr()); 438 } 439 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 440 return Visit(E->getReplacement()); 441 } 442 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 443 return Visit(GE->getResultExpr()); 444 } 445 Value *VisitCoawaitExpr(CoawaitExpr *S) { 446 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 447 } 448 Value *VisitCoyieldExpr(CoyieldExpr *S) { 449 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 450 } 451 Value *VisitUnaryCoawait(const UnaryOperator *E) { 452 return Visit(E->getSubExpr()); 453 } 454 455 // Leaves. 456 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 457 return Builder.getInt(E->getValue()); 458 } 459 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 460 return Builder.getInt(E->getValue()); 461 } 462 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 463 return llvm::ConstantFP::get(VMContext, E->getValue()); 464 } 465 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 466 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 467 } 468 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 469 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 470 } 471 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 472 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 473 } 474 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 475 return EmitNullValue(E->getType()); 476 } 477 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 478 return EmitNullValue(E->getType()); 479 } 480 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 481 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 482 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 483 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 484 return Builder.CreateBitCast(V, ConvertType(E->getType())); 485 } 486 487 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 488 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 489 } 490 491 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 492 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 493 } 494 495 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 496 if (E->isGLValue()) 497 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 498 E->getExprLoc()); 499 500 // Otherwise, assume the mapping is the scalar directly. 501 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 502 } 503 504 // l-values. 505 Value *VisitDeclRefExpr(DeclRefExpr *E) { 506 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 507 return CGF.emitScalarConstant(Constant, E); 508 return EmitLoadOfLValue(E); 509 } 510 511 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 512 return CGF.EmitObjCSelectorExpr(E); 513 } 514 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 515 return CGF.EmitObjCProtocolExpr(E); 516 } 517 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 518 return EmitLoadOfLValue(E); 519 } 520 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 521 if (E->getMethodDecl() && 522 E->getMethodDecl()->getReturnType()->isReferenceType()) 523 return EmitLoadOfLValue(E); 524 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 525 } 526 527 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 528 LValue LV = CGF.EmitObjCIsaExpr(E); 529 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 530 return V; 531 } 532 533 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 534 VersionTuple Version = E->getVersion(); 535 536 // If we're checking for a platform older than our minimum deployment 537 // target, we can fold the check away. 538 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 539 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 540 541 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 542 llvm::Value *Args[] = { 543 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 544 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 545 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 546 }; 547 548 return CGF.EmitBuiltinAvailable(Args); 549 } 550 551 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 552 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 553 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 554 Value *VisitMemberExpr(MemberExpr *E); 555 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 556 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 557 return EmitLoadOfLValue(E); 558 } 559 560 Value *VisitInitListExpr(InitListExpr *E); 561 562 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 563 assert(CGF.getArrayInitIndex() && 564 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 565 return CGF.getArrayInitIndex(); 566 } 567 568 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 569 return EmitNullValue(E->getType()); 570 } 571 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 572 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 573 return VisitCastExpr(E); 574 } 575 Value *VisitCastExpr(CastExpr *E); 576 577 Value *VisitCallExpr(const CallExpr *E) { 578 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 579 return EmitLoadOfLValue(E); 580 581 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 582 583 EmitLValueAlignmentAssumption(E, V); 584 return V; 585 } 586 587 Value *VisitStmtExpr(const StmtExpr *E); 588 589 // Unary Operators. 590 Value *VisitUnaryPostDec(const UnaryOperator *E) { 591 LValue LV = EmitLValue(E->getSubExpr()); 592 return EmitScalarPrePostIncDec(E, LV, false, false); 593 } 594 Value *VisitUnaryPostInc(const UnaryOperator *E) { 595 LValue LV = EmitLValue(E->getSubExpr()); 596 return EmitScalarPrePostIncDec(E, LV, true, false); 597 } 598 Value *VisitUnaryPreDec(const UnaryOperator *E) { 599 LValue LV = EmitLValue(E->getSubExpr()); 600 return EmitScalarPrePostIncDec(E, LV, false, true); 601 } 602 Value *VisitUnaryPreInc(const UnaryOperator *E) { 603 LValue LV = EmitLValue(E->getSubExpr()); 604 return EmitScalarPrePostIncDec(E, LV, true, true); 605 } 606 607 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 608 llvm::Value *InVal, 609 bool IsInc); 610 611 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 612 bool isInc, bool isPre); 613 614 615 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 616 if (isa<MemberPointerType>(E->getType())) // never sugared 617 return CGF.CGM.getMemberPointerConstant(E); 618 619 return EmitLValue(E->getSubExpr()).getPointer(); 620 } 621 Value *VisitUnaryDeref(const UnaryOperator *E) { 622 if (E->getType()->isVoidType()) 623 return Visit(E->getSubExpr()); // the actual value should be unused 624 return EmitLoadOfLValue(E); 625 } 626 Value *VisitUnaryPlus(const UnaryOperator *E) { 627 // This differs from gcc, though, most likely due to a bug in gcc. 628 TestAndClearIgnoreResultAssign(); 629 return Visit(E->getSubExpr()); 630 } 631 Value *VisitUnaryMinus (const UnaryOperator *E); 632 Value *VisitUnaryNot (const UnaryOperator *E); 633 Value *VisitUnaryLNot (const UnaryOperator *E); 634 Value *VisitUnaryReal (const UnaryOperator *E); 635 Value *VisitUnaryImag (const UnaryOperator *E); 636 Value *VisitUnaryExtension(const UnaryOperator *E) { 637 return Visit(E->getSubExpr()); 638 } 639 640 // C++ 641 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 642 return EmitLoadOfLValue(E); 643 } 644 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 645 auto &Ctx = CGF.getContext(); 646 APValue Evaluated = 647 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 648 return ConstantEmitter(CGF.CGM, &CGF) 649 .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType()); 650 } 651 652 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 653 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 654 return Visit(DAE->getExpr()); 655 } 656 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 657 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 658 return Visit(DIE->getExpr()); 659 } 660 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 661 return CGF.LoadCXXThis(); 662 } 663 664 Value *VisitExprWithCleanups(ExprWithCleanups *E); 665 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 666 return CGF.EmitCXXNewExpr(E); 667 } 668 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 669 CGF.EmitCXXDeleteExpr(E); 670 return nullptr; 671 } 672 673 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 674 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 675 } 676 677 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 678 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 679 } 680 681 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 682 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 683 } 684 685 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 686 // C++ [expr.pseudo]p1: 687 // The result shall only be used as the operand for the function call 688 // operator (), and the result of such a call has type void. The only 689 // effect is the evaluation of the postfix-expression before the dot or 690 // arrow. 691 CGF.EmitScalarExpr(E->getBase()); 692 return nullptr; 693 } 694 695 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 696 return EmitNullValue(E->getType()); 697 } 698 699 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 700 CGF.EmitCXXThrowExpr(E); 701 return nullptr; 702 } 703 704 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 705 return Builder.getInt1(E->getValue()); 706 } 707 708 // Binary Operators. 709 Value *EmitMul(const BinOpInfo &Ops) { 710 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 711 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 712 case LangOptions::SOB_Defined: 713 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 714 case LangOptions::SOB_Undefined: 715 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 716 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 717 LLVM_FALLTHROUGH; 718 case LangOptions::SOB_Trapping: 719 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 720 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 721 return EmitOverflowCheckedBinOp(Ops); 722 } 723 } 724 725 if (Ops.Ty->isUnsignedIntegerType() && 726 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 727 !CanElideOverflowCheck(CGF.getContext(), Ops)) 728 return EmitOverflowCheckedBinOp(Ops); 729 730 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 731 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 732 return propagateFMFlags(V, Ops); 733 } 734 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 735 } 736 /// Create a binary op that checks for overflow. 737 /// Currently only supports +, - and *. 738 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 739 740 // Check for undefined division and modulus behaviors. 741 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 742 llvm::Value *Zero,bool isDiv); 743 // Common helper for getting how wide LHS of shift is. 744 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 745 Value *EmitDiv(const BinOpInfo &Ops); 746 Value *EmitRem(const BinOpInfo &Ops); 747 Value *EmitAdd(const BinOpInfo &Ops); 748 Value *EmitSub(const BinOpInfo &Ops); 749 Value *EmitShl(const BinOpInfo &Ops); 750 Value *EmitShr(const BinOpInfo &Ops); 751 Value *EmitAnd(const BinOpInfo &Ops) { 752 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 753 } 754 Value *EmitXor(const BinOpInfo &Ops) { 755 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 756 } 757 Value *EmitOr (const BinOpInfo &Ops) { 758 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 759 } 760 761 // Helper functions for fixed point binary operations. 762 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 763 764 BinOpInfo EmitBinOps(const BinaryOperator *E); 765 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 766 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 767 Value *&Result); 768 769 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 770 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 771 772 // Binary operators and binary compound assignment operators. 773 #define HANDLEBINOP(OP) \ 774 Value *VisitBin ## OP(const BinaryOperator *E) { \ 775 return Emit ## OP(EmitBinOps(E)); \ 776 } \ 777 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 778 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 779 } 780 HANDLEBINOP(Mul) 781 HANDLEBINOP(Div) 782 HANDLEBINOP(Rem) 783 HANDLEBINOP(Add) 784 HANDLEBINOP(Sub) 785 HANDLEBINOP(Shl) 786 HANDLEBINOP(Shr) 787 HANDLEBINOP(And) 788 HANDLEBINOP(Xor) 789 HANDLEBINOP(Or) 790 #undef HANDLEBINOP 791 792 // Comparisons. 793 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 794 llvm::CmpInst::Predicate SICmpOpc, 795 llvm::CmpInst::Predicate FCmpOpc); 796 #define VISITCOMP(CODE, UI, SI, FP) \ 797 Value *VisitBin##CODE(const BinaryOperator *E) { \ 798 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 799 llvm::FCmpInst::FP); } 800 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 801 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 802 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 803 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 804 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 805 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 806 #undef VISITCOMP 807 808 Value *VisitBinAssign (const BinaryOperator *E); 809 810 Value *VisitBinLAnd (const BinaryOperator *E); 811 Value *VisitBinLOr (const BinaryOperator *E); 812 Value *VisitBinComma (const BinaryOperator *E); 813 814 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 815 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 816 817 // Other Operators. 818 Value *VisitBlockExpr(const BlockExpr *BE); 819 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 820 Value *VisitChooseExpr(ChooseExpr *CE); 821 Value *VisitVAArgExpr(VAArgExpr *VE); 822 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 823 return CGF.EmitObjCStringLiteral(E); 824 } 825 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 826 return CGF.EmitObjCBoxedExpr(E); 827 } 828 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 829 return CGF.EmitObjCArrayLiteral(E); 830 } 831 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 832 return CGF.EmitObjCDictionaryLiteral(E); 833 } 834 Value *VisitAsTypeExpr(AsTypeExpr *CE); 835 Value *VisitAtomicExpr(AtomicExpr *AE); 836 }; 837 } // end anonymous namespace. 838 839 //===----------------------------------------------------------------------===// 840 // Utilities 841 //===----------------------------------------------------------------------===// 842 843 /// EmitConversionToBool - Convert the specified expression value to a 844 /// boolean (i1) truth value. This is equivalent to "Val != 0". 845 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 846 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 847 848 if (SrcType->isRealFloatingType()) 849 return EmitFloatToBoolConversion(Src); 850 851 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 852 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 853 854 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 855 "Unknown scalar type to convert"); 856 857 if (isa<llvm::IntegerType>(Src->getType())) 858 return EmitIntToBoolConversion(Src); 859 860 assert(isa<llvm::PointerType>(Src->getType())); 861 return EmitPointerToBoolConversion(Src, SrcType); 862 } 863 864 void ScalarExprEmitter::EmitFloatConversionCheck( 865 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 866 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 867 CodeGenFunction::SanitizerScope SanScope(&CGF); 868 using llvm::APFloat; 869 using llvm::APSInt; 870 871 llvm::Type *SrcTy = Src->getType(); 872 873 llvm::Value *Check = nullptr; 874 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 875 // Integer to floating-point. This can fail for unsigned short -> __half 876 // or unsigned __int128 -> float. 877 assert(DstType->isFloatingType()); 878 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 879 880 APFloat LargestFloat = 881 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 882 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 883 884 bool IsExact; 885 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 886 &IsExact) != APFloat::opOK) 887 // The range of representable values of this floating point type includes 888 // all values of this integer type. Don't need an overflow check. 889 return; 890 891 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 892 if (SrcIsUnsigned) 893 Check = Builder.CreateICmpULE(Src, Max); 894 else { 895 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 896 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 897 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 898 Check = Builder.CreateAnd(GE, LE); 899 } 900 } else { 901 const llvm::fltSemantics &SrcSema = 902 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 903 if (isa<llvm::IntegerType>(DstTy)) { 904 // Floating-point to integer. This has undefined behavior if the source is 905 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 906 // to an integer). 907 unsigned Width = CGF.getContext().getIntWidth(DstType); 908 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 909 910 APSInt Min = APSInt::getMinValue(Width, Unsigned); 911 APFloat MinSrc(SrcSema, APFloat::uninitialized); 912 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 913 APFloat::opOverflow) 914 // Don't need an overflow check for lower bound. Just check for 915 // -Inf/NaN. 916 MinSrc = APFloat::getInf(SrcSema, true); 917 else 918 // Find the largest value which is too small to represent (before 919 // truncation toward zero). 920 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 921 922 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 923 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 924 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 925 APFloat::opOverflow) 926 // Don't need an overflow check for upper bound. Just check for 927 // +Inf/NaN. 928 MaxSrc = APFloat::getInf(SrcSema, false); 929 else 930 // Find the smallest value which is too large to represent (before 931 // truncation toward zero). 932 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 933 934 // If we're converting from __half, convert the range to float to match 935 // the type of src. 936 if (OrigSrcType->isHalfType()) { 937 const llvm::fltSemantics &Sema = 938 CGF.getContext().getFloatTypeSemantics(SrcType); 939 bool IsInexact; 940 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 941 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 942 } 943 944 llvm::Value *GE = 945 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 946 llvm::Value *LE = 947 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 948 Check = Builder.CreateAnd(GE, LE); 949 } else { 950 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 951 // 952 // Floating-point to floating-point. This has undefined behavior if the 953 // source is not in the range of representable values of the destination 954 // type. The C and C++ standards are spectacularly unclear here. We 955 // diagnose finite out-of-range conversions, but allow infinities and NaNs 956 // to convert to the corresponding value in the smaller type. 957 // 958 // C11 Annex F gives all such conversions defined behavior for IEC 60559 959 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 960 // does not. 961 962 // Converting from a lower rank to a higher rank can never have 963 // undefined behavior, since higher-rank types must have a superset 964 // of values of lower-rank types. 965 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 966 return; 967 968 assert(!OrigSrcType->isHalfType() && 969 "should not check conversion from __half, it has the lowest rank"); 970 971 const llvm::fltSemantics &DstSema = 972 CGF.getContext().getFloatTypeSemantics(DstType); 973 APFloat MinBad = APFloat::getLargest(DstSema, false); 974 APFloat MaxBad = APFloat::getInf(DstSema, false); 975 976 bool IsInexact; 977 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 978 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 979 980 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 981 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 982 llvm::Value *GE = 983 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 984 llvm::Value *LE = 985 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 986 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 987 } 988 } 989 990 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 991 CGF.EmitCheckTypeDescriptor(OrigSrcType), 992 CGF.EmitCheckTypeDescriptor(DstType)}; 993 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 994 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 995 } 996 997 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 998 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 999 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1000 std::pair<llvm::Value *, SanitizerMask>> 1001 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1002 QualType DstType, CGBuilderTy &Builder) { 1003 llvm::Type *SrcTy = Src->getType(); 1004 llvm::Type *DstTy = Dst->getType(); 1005 (void)DstTy; // Only used in assert() 1006 1007 // This should be truncation of integral types. 1008 assert(Src != Dst); 1009 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 1010 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1011 "non-integer llvm type"); 1012 1013 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1014 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1015 1016 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 1017 // Else, it is a signed truncation. 1018 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 1019 SanitizerMask Mask; 1020 if (!SrcSigned && !DstSigned) { 1021 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 1022 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 1023 } else { 1024 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 1025 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 1026 } 1027 1028 llvm::Value *Check = nullptr; 1029 // 1. Extend the truncated value back to the same width as the Src. 1030 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 1031 // 2. Equality-compare with the original source value 1032 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 1033 // If the comparison result is 'i1 false', then the truncation was lossy. 1034 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1035 } 1036 1037 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1038 Value *Dst, QualType DstType, 1039 SourceLocation Loc) { 1040 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1041 return; 1042 1043 // We only care about int->int conversions here. 1044 // We ignore conversions to/from pointer and/or bool. 1045 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1046 return; 1047 1048 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1049 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1050 // This must be truncation. Else we do not care. 1051 if (SrcBits <= DstBits) 1052 return; 1053 1054 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1055 1056 // If the integer sign change sanitizer is enabled, 1057 // and we are truncating from larger unsigned type to smaller signed type, 1058 // let that next sanitizer deal with it. 1059 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1060 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1061 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1062 (!SrcSigned && DstSigned)) 1063 return; 1064 1065 CodeGenFunction::SanitizerScope SanScope(&CGF); 1066 1067 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1068 std::pair<llvm::Value *, SanitizerMask>> 1069 Check = 1070 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1071 // If the comparison result is 'i1 false', then the truncation was lossy. 1072 1073 // Do we care about this type of truncation? 1074 if (!CGF.SanOpts.has(Check.second.second)) 1075 return; 1076 1077 llvm::Constant *StaticArgs[] = { 1078 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1079 CGF.EmitCheckTypeDescriptor(DstType), 1080 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1081 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1082 {Src, Dst}); 1083 } 1084 1085 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1086 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1087 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1088 std::pair<llvm::Value *, SanitizerMask>> 1089 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1090 QualType DstType, CGBuilderTy &Builder) { 1091 llvm::Type *SrcTy = Src->getType(); 1092 llvm::Type *DstTy = Dst->getType(); 1093 1094 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1095 "non-integer llvm type"); 1096 1097 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1098 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1099 (void)SrcSigned; // Only used in assert() 1100 (void)DstSigned; // Only used in assert() 1101 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1102 unsigned DstBits = DstTy->getScalarSizeInBits(); 1103 (void)SrcBits; // Only used in assert() 1104 (void)DstBits; // Only used in assert() 1105 1106 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1107 "either the widths should be different, or the signednesses."); 1108 1109 // NOTE: zero value is considered to be non-negative. 1110 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1111 const char *Name) -> Value * { 1112 // Is this value a signed type? 1113 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1114 llvm::Type *VTy = V->getType(); 1115 if (!VSigned) { 1116 // If the value is unsigned, then it is never negative. 1117 // FIXME: can we encounter non-scalar VTy here? 1118 return llvm::ConstantInt::getFalse(VTy->getContext()); 1119 } 1120 // Get the zero of the same type with which we will be comparing. 1121 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1122 // %V.isnegative = icmp slt %V, 0 1123 // I.e is %V *strictly* less than zero, does it have negative value? 1124 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1125 llvm::Twine(Name) + "." + V->getName() + 1126 ".negativitycheck"); 1127 }; 1128 1129 // 1. Was the old Value negative? 1130 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1131 // 2. Is the new Value negative? 1132 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1133 // 3. Now, was the 'negativity status' preserved during the conversion? 1134 // NOTE: conversion from negative to zero is considered to change the sign. 1135 // (We want to get 'false' when the conversion changed the sign) 1136 // So we should just equality-compare the negativity statuses. 1137 llvm::Value *Check = nullptr; 1138 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1139 // If the comparison result is 'false', then the conversion changed the sign. 1140 return std::make_pair( 1141 ScalarExprEmitter::ICCK_IntegerSignChange, 1142 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1143 } 1144 1145 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1146 Value *Dst, QualType DstType, 1147 SourceLocation Loc) { 1148 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1149 return; 1150 1151 llvm::Type *SrcTy = Src->getType(); 1152 llvm::Type *DstTy = Dst->getType(); 1153 1154 // We only care about int->int conversions here. 1155 // We ignore conversions to/from pointer and/or bool. 1156 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1157 return; 1158 1159 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1160 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1161 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1162 unsigned DstBits = DstTy->getScalarSizeInBits(); 1163 1164 // Now, we do not need to emit the check in *all* of the cases. 1165 // We can avoid emitting it in some obvious cases where it would have been 1166 // dropped by the opt passes (instcombine) always anyways. 1167 // If it's a cast between effectively the same type, no check. 1168 // NOTE: this is *not* equivalent to checking the canonical types. 1169 if (SrcSigned == DstSigned && SrcBits == DstBits) 1170 return; 1171 // At least one of the values needs to have signed type. 1172 // If both are unsigned, then obviously, neither of them can be negative. 1173 if (!SrcSigned && !DstSigned) 1174 return; 1175 // If the conversion is to *larger* *signed* type, then no check is needed. 1176 // Because either sign-extension happens (so the sign will remain), 1177 // or zero-extension will happen (the sign bit will be zero.) 1178 if ((DstBits > SrcBits) && DstSigned) 1179 return; 1180 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1181 (SrcBits > DstBits) && SrcSigned) { 1182 // If the signed integer truncation sanitizer is enabled, 1183 // and this is a truncation from signed type, then no check is needed. 1184 // Because here sign change check is interchangeable with truncation check. 1185 return; 1186 } 1187 // That's it. We can't rule out any more cases with the data we have. 1188 1189 CodeGenFunction::SanitizerScope SanScope(&CGF); 1190 1191 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1192 std::pair<llvm::Value *, SanitizerMask>> 1193 Check; 1194 1195 // Each of these checks needs to return 'false' when an issue was detected. 1196 ImplicitConversionCheckKind CheckKind; 1197 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1198 // So we can 'and' all the checks together, and still get 'false', 1199 // if at least one of the checks detected an issue. 1200 1201 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1202 CheckKind = Check.first; 1203 Checks.emplace_back(Check.second); 1204 1205 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1206 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1207 // If the signed integer truncation sanitizer was enabled, 1208 // and we are truncating from larger unsigned type to smaller signed type, 1209 // let's handle the case we skipped in that check. 1210 Check = 1211 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1212 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1213 Checks.emplace_back(Check.second); 1214 // If the comparison result is 'i1 false', then the truncation was lossy. 1215 } 1216 1217 llvm::Constant *StaticArgs[] = { 1218 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1219 CGF.EmitCheckTypeDescriptor(DstType), 1220 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1221 // EmitCheck() will 'and' all the checks together. 1222 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1223 {Src, Dst}); 1224 } 1225 1226 /// Emit a conversion from the specified type to the specified destination type, 1227 /// both of which are LLVM scalar types. 1228 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1229 QualType DstType, 1230 SourceLocation Loc, 1231 ScalarConversionOpts Opts) { 1232 // All conversions involving fixed point types should be handled by the 1233 // EmitFixedPoint family functions. This is done to prevent bloating up this 1234 // function more, and although fixed point numbers are represented by 1235 // integers, we do not want to follow any logic that assumes they should be 1236 // treated as integers. 1237 // TODO(leonardchan): When necessary, add another if statement checking for 1238 // conversions to fixed point types from other types. 1239 if (SrcType->isFixedPointType()) { 1240 if (DstType->isBooleanType()) 1241 // It is important that we check this before checking if the dest type is 1242 // an integer because booleans are technically integer types. 1243 // We do not need to check the padding bit on unsigned types if unsigned 1244 // padding is enabled because overflow into this bit is undefined 1245 // behavior. 1246 return Builder.CreateIsNotNull(Src, "tobool"); 1247 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1248 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1249 1250 llvm_unreachable( 1251 "Unhandled scalar conversion from a fixed point type to another type."); 1252 } else if (DstType->isFixedPointType()) { 1253 if (SrcType->isIntegerType()) 1254 // This also includes converting booleans and enums to fixed point types. 1255 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1256 1257 llvm_unreachable( 1258 "Unhandled scalar conversion to a fixed point type from another type."); 1259 } 1260 1261 QualType NoncanonicalSrcType = SrcType; 1262 QualType NoncanonicalDstType = DstType; 1263 1264 SrcType = CGF.getContext().getCanonicalType(SrcType); 1265 DstType = CGF.getContext().getCanonicalType(DstType); 1266 if (SrcType == DstType) return Src; 1267 1268 if (DstType->isVoidType()) return nullptr; 1269 1270 llvm::Value *OrigSrc = Src; 1271 QualType OrigSrcType = SrcType; 1272 llvm::Type *SrcTy = Src->getType(); 1273 1274 // Handle conversions to bool first, they are special: comparisons against 0. 1275 if (DstType->isBooleanType()) 1276 return EmitConversionToBool(Src, SrcType); 1277 1278 llvm::Type *DstTy = ConvertType(DstType); 1279 1280 // Cast from half through float if half isn't a native type. 1281 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1282 // Cast to FP using the intrinsic if the half type itself isn't supported. 1283 if (DstTy->isFloatingPointTy()) { 1284 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1285 return Builder.CreateCall( 1286 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1287 Src); 1288 } else { 1289 // Cast to other types through float, using either the intrinsic or FPExt, 1290 // depending on whether the half type itself is supported 1291 // (as opposed to operations on half, available with NativeHalfType). 1292 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1293 Src = Builder.CreateCall( 1294 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1295 CGF.CGM.FloatTy), 1296 Src); 1297 } else { 1298 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1299 } 1300 SrcType = CGF.getContext().FloatTy; 1301 SrcTy = CGF.FloatTy; 1302 } 1303 } 1304 1305 // Ignore conversions like int -> uint. 1306 if (SrcTy == DstTy) { 1307 if (Opts.EmitImplicitIntegerSignChangeChecks) 1308 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1309 NoncanonicalDstType, Loc); 1310 1311 return Src; 1312 } 1313 1314 // Handle pointer conversions next: pointers can only be converted to/from 1315 // other pointers and integers. Check for pointer types in terms of LLVM, as 1316 // some native types (like Obj-C id) may map to a pointer type. 1317 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1318 // The source value may be an integer, or a pointer. 1319 if (isa<llvm::PointerType>(SrcTy)) 1320 return Builder.CreateBitCast(Src, DstTy, "conv"); 1321 1322 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1323 // First, convert to the correct width so that we control the kind of 1324 // extension. 1325 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1326 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1327 llvm::Value* IntResult = 1328 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1329 // Then, cast to pointer. 1330 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1331 } 1332 1333 if (isa<llvm::PointerType>(SrcTy)) { 1334 // Must be an ptr to int cast. 1335 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1336 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1337 } 1338 1339 // A scalar can be splatted to an extended vector of the same element type 1340 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1341 // Sema should add casts to make sure that the source expression's type is 1342 // the same as the vector's element type (sans qualifiers) 1343 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1344 SrcType.getTypePtr() && 1345 "Splatted expr doesn't match with vector element type?"); 1346 1347 // Splat the element across to all elements 1348 unsigned NumElements = DstTy->getVectorNumElements(); 1349 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1350 } 1351 1352 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1353 // Allow bitcast from vector to integer/fp of the same size. 1354 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1355 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1356 if (SrcSize == DstSize) 1357 return Builder.CreateBitCast(Src, DstTy, "conv"); 1358 1359 // Conversions between vectors of different sizes are not allowed except 1360 // when vectors of half are involved. Operations on storage-only half 1361 // vectors require promoting half vector operands to float vectors and 1362 // truncating the result, which is either an int or float vector, to a 1363 // short or half vector. 1364 1365 // Source and destination are both expected to be vectors. 1366 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1367 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1368 (void)DstElementTy; 1369 1370 assert(((SrcElementTy->isIntegerTy() && 1371 DstElementTy->isIntegerTy()) || 1372 (SrcElementTy->isFloatingPointTy() && 1373 DstElementTy->isFloatingPointTy())) && 1374 "unexpected conversion between a floating-point vector and an " 1375 "integer vector"); 1376 1377 // Truncate an i32 vector to an i16 vector. 1378 if (SrcElementTy->isIntegerTy()) 1379 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1380 1381 // Truncate a float vector to a half vector. 1382 if (SrcSize > DstSize) 1383 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1384 1385 // Promote a half vector to a float vector. 1386 return Builder.CreateFPExt(Src, DstTy, "conv"); 1387 } 1388 1389 // Finally, we have the arithmetic types: real int/float. 1390 Value *Res = nullptr; 1391 llvm::Type *ResTy = DstTy; 1392 1393 // An overflowing conversion has undefined behavior if either the source type 1394 // or the destination type is a floating-point type. 1395 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1396 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1397 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1398 Loc); 1399 1400 // Cast to half through float if half isn't a native type. 1401 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1402 // Make sure we cast in a single step if from another FP type. 1403 if (SrcTy->isFloatingPointTy()) { 1404 // Use the intrinsic if the half type itself isn't supported 1405 // (as opposed to operations on half, available with NativeHalfType). 1406 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1407 return Builder.CreateCall( 1408 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1409 // If the half type is supported, just use an fptrunc. 1410 return Builder.CreateFPTrunc(Src, DstTy); 1411 } 1412 DstTy = CGF.FloatTy; 1413 } 1414 1415 if (isa<llvm::IntegerType>(SrcTy)) { 1416 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1417 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1418 InputSigned = true; 1419 } 1420 if (isa<llvm::IntegerType>(DstTy)) 1421 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1422 else if (InputSigned) 1423 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1424 else 1425 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1426 } else if (isa<llvm::IntegerType>(DstTy)) { 1427 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1428 if (DstType->isSignedIntegerOrEnumerationType()) 1429 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1430 else 1431 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1432 } else { 1433 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1434 "Unknown real conversion"); 1435 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1436 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1437 else 1438 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1439 } 1440 1441 if (DstTy != ResTy) { 1442 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1443 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1444 Res = Builder.CreateCall( 1445 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1446 Res); 1447 } else { 1448 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1449 } 1450 } 1451 1452 if (Opts.EmitImplicitIntegerTruncationChecks) 1453 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1454 NoncanonicalDstType, Loc); 1455 1456 if (Opts.EmitImplicitIntegerSignChangeChecks) 1457 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1458 NoncanonicalDstType, Loc); 1459 1460 return Res; 1461 } 1462 1463 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1464 QualType DstTy, 1465 SourceLocation Loc) { 1466 FixedPointSemantics SrcFPSema = 1467 CGF.getContext().getFixedPointSemantics(SrcTy); 1468 FixedPointSemantics DstFPSema = 1469 CGF.getContext().getFixedPointSemantics(DstTy); 1470 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1471 DstTy->isIntegerType()); 1472 } 1473 1474 Value *ScalarExprEmitter::EmitFixedPointConversion( 1475 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1476 SourceLocation Loc, bool DstIsInteger) { 1477 using llvm::APInt; 1478 using llvm::ConstantInt; 1479 using llvm::Value; 1480 1481 unsigned SrcWidth = SrcFPSema.getWidth(); 1482 unsigned DstWidth = DstFPSema.getWidth(); 1483 unsigned SrcScale = SrcFPSema.getScale(); 1484 unsigned DstScale = DstFPSema.getScale(); 1485 bool SrcIsSigned = SrcFPSema.isSigned(); 1486 bool DstIsSigned = DstFPSema.isSigned(); 1487 1488 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1489 1490 Value *Result = Src; 1491 unsigned ResultWidth = SrcWidth; 1492 1493 // Downscale. 1494 if (DstScale < SrcScale) { 1495 // When converting to integers, we round towards zero. For negative numbers, 1496 // right shifting rounds towards negative infinity. In this case, we can 1497 // just round up before shifting. 1498 if (DstIsInteger && SrcIsSigned) { 1499 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1500 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1501 Value *LowBits = ConstantInt::get( 1502 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1503 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1504 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1505 } 1506 1507 Result = SrcIsSigned 1508 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1509 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1510 } 1511 1512 if (!DstFPSema.isSaturated()) { 1513 // Resize. 1514 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1515 1516 // Upscale. 1517 if (DstScale > SrcScale) 1518 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1519 } else { 1520 // Adjust the number of fractional bits. 1521 if (DstScale > SrcScale) { 1522 // Compare to DstWidth to prevent resizing twice. 1523 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1524 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1525 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1526 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1527 } 1528 1529 // Handle saturation. 1530 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1531 if (LessIntBits) { 1532 Value *Max = ConstantInt::get( 1533 CGF.getLLVMContext(), 1534 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1535 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1536 : Builder.CreateICmpUGT(Result, Max); 1537 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1538 } 1539 // Cannot overflow min to dest type if src is unsigned since all fixed 1540 // point types can cover the unsigned min of 0. 1541 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1542 Value *Min = ConstantInt::get( 1543 CGF.getLLVMContext(), 1544 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1545 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1546 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1547 } 1548 1549 // Resize the integer part to get the final destination size. 1550 if (ResultWidth != DstWidth) 1551 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1552 } 1553 return Result; 1554 } 1555 1556 /// Emit a conversion from the specified complex type to the specified 1557 /// destination type, where the destination type is an LLVM scalar type. 1558 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1559 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1560 SourceLocation Loc) { 1561 // Get the source element type. 1562 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1563 1564 // Handle conversions to bool first, they are special: comparisons against 0. 1565 if (DstTy->isBooleanType()) { 1566 // Complex != 0 -> (Real != 0) | (Imag != 0) 1567 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1568 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1569 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1570 } 1571 1572 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1573 // the imaginary part of the complex value is discarded and the value of the 1574 // real part is converted according to the conversion rules for the 1575 // corresponding real type. 1576 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1577 } 1578 1579 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1580 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1581 } 1582 1583 /// Emit a sanitization check for the given "binary" operation (which 1584 /// might actually be a unary increment which has been lowered to a binary 1585 /// operation). The check passes if all values in \p Checks (which are \c i1), 1586 /// are \c true. 1587 void ScalarExprEmitter::EmitBinOpCheck( 1588 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1589 assert(CGF.IsSanitizerScope); 1590 SanitizerHandler Check; 1591 SmallVector<llvm::Constant *, 4> StaticData; 1592 SmallVector<llvm::Value *, 2> DynamicData; 1593 1594 BinaryOperatorKind Opcode = Info.Opcode; 1595 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1596 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1597 1598 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1599 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1600 if (UO && UO->getOpcode() == UO_Minus) { 1601 Check = SanitizerHandler::NegateOverflow; 1602 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1603 DynamicData.push_back(Info.RHS); 1604 } else { 1605 if (BinaryOperator::isShiftOp(Opcode)) { 1606 // Shift LHS negative or too large, or RHS out of bounds. 1607 Check = SanitizerHandler::ShiftOutOfBounds; 1608 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1609 StaticData.push_back( 1610 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1611 StaticData.push_back( 1612 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1613 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1614 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1615 Check = SanitizerHandler::DivremOverflow; 1616 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1617 } else { 1618 // Arithmetic overflow (+, -, *). 1619 switch (Opcode) { 1620 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1621 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1622 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1623 default: llvm_unreachable("unexpected opcode for bin op check"); 1624 } 1625 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1626 } 1627 DynamicData.push_back(Info.LHS); 1628 DynamicData.push_back(Info.RHS); 1629 } 1630 1631 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1632 } 1633 1634 //===----------------------------------------------------------------------===// 1635 // Visitor Methods 1636 //===----------------------------------------------------------------------===// 1637 1638 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1639 CGF.ErrorUnsupported(E, "scalar expression"); 1640 if (E->getType()->isVoidType()) 1641 return nullptr; 1642 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1643 } 1644 1645 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1646 // Vector Mask Case 1647 if (E->getNumSubExprs() == 2) { 1648 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1649 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1650 Value *Mask; 1651 1652 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1653 unsigned LHSElts = LTy->getNumElements(); 1654 1655 Mask = RHS; 1656 1657 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1658 1659 // Mask off the high bits of each shuffle index. 1660 Value *MaskBits = 1661 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1662 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1663 1664 // newv = undef 1665 // mask = mask & maskbits 1666 // for each elt 1667 // n = extract mask i 1668 // x = extract val n 1669 // newv = insert newv, x, i 1670 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1671 MTy->getNumElements()); 1672 Value* NewV = llvm::UndefValue::get(RTy); 1673 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1674 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1675 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1676 1677 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1678 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1679 } 1680 return NewV; 1681 } 1682 1683 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1684 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1685 1686 SmallVector<llvm::Constant*, 32> indices; 1687 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1688 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1689 // Check for -1 and output it as undef in the IR. 1690 if (Idx.isSigned() && Idx.isAllOnesValue()) 1691 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1692 else 1693 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1694 } 1695 1696 Value *SV = llvm::ConstantVector::get(indices); 1697 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1698 } 1699 1700 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1701 QualType SrcType = E->getSrcExpr()->getType(), 1702 DstType = E->getType(); 1703 1704 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1705 1706 SrcType = CGF.getContext().getCanonicalType(SrcType); 1707 DstType = CGF.getContext().getCanonicalType(DstType); 1708 if (SrcType == DstType) return Src; 1709 1710 assert(SrcType->isVectorType() && 1711 "ConvertVector source type must be a vector"); 1712 assert(DstType->isVectorType() && 1713 "ConvertVector destination type must be a vector"); 1714 1715 llvm::Type *SrcTy = Src->getType(); 1716 llvm::Type *DstTy = ConvertType(DstType); 1717 1718 // Ignore conversions like int -> uint. 1719 if (SrcTy == DstTy) 1720 return Src; 1721 1722 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1723 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1724 1725 assert(SrcTy->isVectorTy() && 1726 "ConvertVector source IR type must be a vector"); 1727 assert(DstTy->isVectorTy() && 1728 "ConvertVector destination IR type must be a vector"); 1729 1730 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1731 *DstEltTy = DstTy->getVectorElementType(); 1732 1733 if (DstEltType->isBooleanType()) { 1734 assert((SrcEltTy->isFloatingPointTy() || 1735 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1736 1737 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1738 if (SrcEltTy->isFloatingPointTy()) { 1739 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1740 } else { 1741 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1742 } 1743 } 1744 1745 // We have the arithmetic types: real int/float. 1746 Value *Res = nullptr; 1747 1748 if (isa<llvm::IntegerType>(SrcEltTy)) { 1749 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1750 if (isa<llvm::IntegerType>(DstEltTy)) 1751 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1752 else if (InputSigned) 1753 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1754 else 1755 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1756 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1757 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1758 if (DstEltType->isSignedIntegerOrEnumerationType()) 1759 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1760 else 1761 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1762 } else { 1763 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1764 "Unknown real conversion"); 1765 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1766 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1767 else 1768 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1769 } 1770 1771 return Res; 1772 } 1773 1774 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1775 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1776 CGF.EmitIgnoredExpr(E->getBase()); 1777 return CGF.emitScalarConstant(Constant, E); 1778 } else { 1779 Expr::EvalResult Result; 1780 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1781 llvm::APSInt Value = Result.Val.getInt(); 1782 CGF.EmitIgnoredExpr(E->getBase()); 1783 return Builder.getInt(Value); 1784 } 1785 } 1786 1787 return EmitLoadOfLValue(E); 1788 } 1789 1790 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1791 TestAndClearIgnoreResultAssign(); 1792 1793 // Emit subscript expressions in rvalue context's. For most cases, this just 1794 // loads the lvalue formed by the subscript expr. However, we have to be 1795 // careful, because the base of a vector subscript is occasionally an rvalue, 1796 // so we can't get it as an lvalue. 1797 if (!E->getBase()->getType()->isVectorType()) 1798 return EmitLoadOfLValue(E); 1799 1800 // Handle the vector case. The base must be a vector, the index must be an 1801 // integer value. 1802 Value *Base = Visit(E->getBase()); 1803 Value *Idx = Visit(E->getIdx()); 1804 QualType IdxTy = E->getIdx()->getType(); 1805 1806 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1807 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1808 1809 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1810 } 1811 1812 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1813 unsigned Off, llvm::Type *I32Ty) { 1814 int MV = SVI->getMaskValue(Idx); 1815 if (MV == -1) 1816 return llvm::UndefValue::get(I32Ty); 1817 return llvm::ConstantInt::get(I32Ty, Off+MV); 1818 } 1819 1820 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1821 if (C->getBitWidth() != 32) { 1822 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1823 C->getZExtValue()) && 1824 "Index operand too large for shufflevector mask!"); 1825 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1826 } 1827 return C; 1828 } 1829 1830 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1831 bool Ignore = TestAndClearIgnoreResultAssign(); 1832 (void)Ignore; 1833 assert (Ignore == false && "init list ignored"); 1834 unsigned NumInitElements = E->getNumInits(); 1835 1836 if (E->hadArrayRangeDesignator()) 1837 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1838 1839 llvm::VectorType *VType = 1840 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1841 1842 if (!VType) { 1843 if (NumInitElements == 0) { 1844 // C++11 value-initialization for the scalar. 1845 return EmitNullValue(E->getType()); 1846 } 1847 // We have a scalar in braces. Just use the first element. 1848 return Visit(E->getInit(0)); 1849 } 1850 1851 unsigned ResElts = VType->getNumElements(); 1852 1853 // Loop over initializers collecting the Value for each, and remembering 1854 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1855 // us to fold the shuffle for the swizzle into the shuffle for the vector 1856 // initializer, since LLVM optimizers generally do not want to touch 1857 // shuffles. 1858 unsigned CurIdx = 0; 1859 bool VIsUndefShuffle = false; 1860 llvm::Value *V = llvm::UndefValue::get(VType); 1861 for (unsigned i = 0; i != NumInitElements; ++i) { 1862 Expr *IE = E->getInit(i); 1863 Value *Init = Visit(IE); 1864 SmallVector<llvm::Constant*, 16> Args; 1865 1866 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1867 1868 // Handle scalar elements. If the scalar initializer is actually one 1869 // element of a different vector of the same width, use shuffle instead of 1870 // extract+insert. 1871 if (!VVT) { 1872 if (isa<ExtVectorElementExpr>(IE)) { 1873 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1874 1875 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1876 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1877 Value *LHS = nullptr, *RHS = nullptr; 1878 if (CurIdx == 0) { 1879 // insert into undef -> shuffle (src, undef) 1880 // shufflemask must use an i32 1881 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1882 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1883 1884 LHS = EI->getVectorOperand(); 1885 RHS = V; 1886 VIsUndefShuffle = true; 1887 } else if (VIsUndefShuffle) { 1888 // insert into undefshuffle && size match -> shuffle (v, src) 1889 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1890 for (unsigned j = 0; j != CurIdx; ++j) 1891 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1892 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1893 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1894 1895 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1896 RHS = EI->getVectorOperand(); 1897 VIsUndefShuffle = false; 1898 } 1899 if (!Args.empty()) { 1900 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1901 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1902 ++CurIdx; 1903 continue; 1904 } 1905 } 1906 } 1907 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1908 "vecinit"); 1909 VIsUndefShuffle = false; 1910 ++CurIdx; 1911 continue; 1912 } 1913 1914 unsigned InitElts = VVT->getNumElements(); 1915 1916 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1917 // input is the same width as the vector being constructed, generate an 1918 // optimized shuffle of the swizzle input into the result. 1919 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1920 if (isa<ExtVectorElementExpr>(IE)) { 1921 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1922 Value *SVOp = SVI->getOperand(0); 1923 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1924 1925 if (OpTy->getNumElements() == ResElts) { 1926 for (unsigned j = 0; j != CurIdx; ++j) { 1927 // If the current vector initializer is a shuffle with undef, merge 1928 // this shuffle directly into it. 1929 if (VIsUndefShuffle) { 1930 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1931 CGF.Int32Ty)); 1932 } else { 1933 Args.push_back(Builder.getInt32(j)); 1934 } 1935 } 1936 for (unsigned j = 0, je = InitElts; j != je; ++j) 1937 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1938 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1939 1940 if (VIsUndefShuffle) 1941 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1942 1943 Init = SVOp; 1944 } 1945 } 1946 1947 // Extend init to result vector length, and then shuffle its contribution 1948 // to the vector initializer into V. 1949 if (Args.empty()) { 1950 for (unsigned j = 0; j != InitElts; ++j) 1951 Args.push_back(Builder.getInt32(j)); 1952 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1953 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1954 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1955 Mask, "vext"); 1956 1957 Args.clear(); 1958 for (unsigned j = 0; j != CurIdx; ++j) 1959 Args.push_back(Builder.getInt32(j)); 1960 for (unsigned j = 0; j != InitElts; ++j) 1961 Args.push_back(Builder.getInt32(j+Offset)); 1962 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1963 } 1964 1965 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1966 // merging subsequent shuffles into this one. 1967 if (CurIdx == 0) 1968 std::swap(V, Init); 1969 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1970 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1971 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1972 CurIdx += InitElts; 1973 } 1974 1975 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1976 // Emit remaining default initializers. 1977 llvm::Type *EltTy = VType->getElementType(); 1978 1979 // Emit remaining default initializers 1980 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1981 Value *Idx = Builder.getInt32(CurIdx); 1982 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1983 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1984 } 1985 return V; 1986 } 1987 1988 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1989 const Expr *E = CE->getSubExpr(); 1990 1991 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1992 return false; 1993 1994 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1995 // We always assume that 'this' is never null. 1996 return false; 1997 } 1998 1999 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2000 // And that glvalue casts are never null. 2001 if (ICE->getValueKind() != VK_RValue) 2002 return false; 2003 } 2004 2005 return true; 2006 } 2007 2008 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 2009 // have to handle a more broad range of conversions than explicit casts, as they 2010 // handle things like function to ptr-to-function decay etc. 2011 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 2012 Expr *E = CE->getSubExpr(); 2013 QualType DestTy = CE->getType(); 2014 CastKind Kind = CE->getCastKind(); 2015 2016 // These cases are generally not written to ignore the result of 2017 // evaluating their sub-expressions, so we clear this now. 2018 bool Ignored = TestAndClearIgnoreResultAssign(); 2019 2020 // Since almost all cast kinds apply to scalars, this switch doesn't have 2021 // a default case, so the compiler will warn on a missing case. The cases 2022 // are in the same order as in the CastKind enum. 2023 switch (Kind) { 2024 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 2025 case CK_BuiltinFnToFnPtr: 2026 llvm_unreachable("builtin functions are handled elsewhere"); 2027 2028 case CK_LValueBitCast: 2029 case CK_ObjCObjectLValueCast: { 2030 Address Addr = EmitLValue(E).getAddress(); 2031 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2032 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 2033 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2034 } 2035 2036 case CK_CPointerToObjCPointerCast: 2037 case CK_BlockPointerToObjCPointerCast: 2038 case CK_AnyPointerToBlockPointerCast: 2039 case CK_BitCast: { 2040 Value *Src = Visit(const_cast<Expr*>(E)); 2041 llvm::Type *SrcTy = Src->getType(); 2042 llvm::Type *DstTy = ConvertType(DestTy); 2043 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2044 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2045 llvm_unreachable("wrong cast for pointers in different address spaces" 2046 "(must be an address space cast)!"); 2047 } 2048 2049 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2050 if (auto PT = DestTy->getAs<PointerType>()) 2051 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2052 /*MayBeNull=*/true, 2053 CodeGenFunction::CFITCK_UnrelatedCast, 2054 CE->getBeginLoc()); 2055 } 2056 2057 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2058 const QualType SrcType = E->getType(); 2059 2060 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2061 // Casting to pointer that could carry dynamic information (provided by 2062 // invariant.group) requires launder. 2063 Src = Builder.CreateLaunderInvariantGroup(Src); 2064 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2065 // Casting to pointer that does not carry dynamic information (provided 2066 // by invariant.group) requires stripping it. Note that we don't do it 2067 // if the source could not be dynamic type and destination could be 2068 // dynamic because dynamic information is already laundered. It is 2069 // because launder(strip(src)) == launder(src), so there is no need to 2070 // add extra strip before launder. 2071 Src = Builder.CreateStripInvariantGroup(Src); 2072 } 2073 } 2074 2075 // Update heapallocsite metadata when there is an explicit cast. 2076 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2077 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2078 CGF.getDebugInfo()-> 2079 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2080 2081 return Builder.CreateBitCast(Src, DstTy); 2082 } 2083 case CK_AddressSpaceConversion: { 2084 Expr::EvalResult Result; 2085 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2086 Result.Val.isNullPointer()) { 2087 // If E has side effect, it is emitted even if its final result is a 2088 // null pointer. In that case, a DCE pass should be able to 2089 // eliminate the useless instructions emitted during translating E. 2090 if (Result.HasSideEffects) 2091 Visit(E); 2092 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2093 ConvertType(DestTy)), DestTy); 2094 } 2095 // Since target may map different address spaces in AST to the same address 2096 // space, an address space conversion may end up as a bitcast. 2097 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2098 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2099 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2100 } 2101 case CK_AtomicToNonAtomic: 2102 case CK_NonAtomicToAtomic: 2103 case CK_NoOp: 2104 case CK_UserDefinedConversion: 2105 return Visit(const_cast<Expr*>(E)); 2106 2107 case CK_BaseToDerived: { 2108 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2109 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2110 2111 Address Base = CGF.EmitPointerWithAlignment(E); 2112 Address Derived = 2113 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2114 CE->path_begin(), CE->path_end(), 2115 CGF.ShouldNullCheckClassCastValue(CE)); 2116 2117 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2118 // performed and the object is not of the derived type. 2119 if (CGF.sanitizePerformTypeCheck()) 2120 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2121 Derived.getPointer(), DestTy->getPointeeType()); 2122 2123 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2124 CGF.EmitVTablePtrCheckForCast( 2125 DestTy->getPointeeType(), Derived.getPointer(), 2126 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2127 CE->getBeginLoc()); 2128 2129 return Derived.getPointer(); 2130 } 2131 case CK_UncheckedDerivedToBase: 2132 case CK_DerivedToBase: { 2133 // The EmitPointerWithAlignment path does this fine; just discard 2134 // the alignment. 2135 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2136 } 2137 2138 case CK_Dynamic: { 2139 Address V = CGF.EmitPointerWithAlignment(E); 2140 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2141 return CGF.EmitDynamicCast(V, DCE); 2142 } 2143 2144 case CK_ArrayToPointerDecay: 2145 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2146 case CK_FunctionToPointerDecay: 2147 return EmitLValue(E).getPointer(); 2148 2149 case CK_NullToPointer: 2150 if (MustVisitNullValue(E)) 2151 (void) Visit(E); 2152 2153 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2154 DestTy); 2155 2156 case CK_NullToMemberPointer: { 2157 if (MustVisitNullValue(E)) 2158 (void) Visit(E); 2159 2160 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2161 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2162 } 2163 2164 case CK_ReinterpretMemberPointer: 2165 case CK_BaseToDerivedMemberPointer: 2166 case CK_DerivedToBaseMemberPointer: { 2167 Value *Src = Visit(E); 2168 2169 // Note that the AST doesn't distinguish between checked and 2170 // unchecked member pointer conversions, so we always have to 2171 // implement checked conversions here. This is inefficient when 2172 // actual control flow may be required in order to perform the 2173 // check, which it is for data member pointers (but not member 2174 // function pointers on Itanium and ARM). 2175 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2176 } 2177 2178 case CK_ARCProduceObject: 2179 return CGF.EmitARCRetainScalarExpr(E); 2180 case CK_ARCConsumeObject: 2181 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2182 case CK_ARCReclaimReturnedObject: 2183 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2184 case CK_ARCExtendBlockObject: 2185 return CGF.EmitARCExtendBlockObject(E); 2186 2187 case CK_CopyAndAutoreleaseBlockObject: 2188 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2189 2190 case CK_FloatingRealToComplex: 2191 case CK_FloatingComplexCast: 2192 case CK_IntegralRealToComplex: 2193 case CK_IntegralComplexCast: 2194 case CK_IntegralComplexToFloatingComplex: 2195 case CK_FloatingComplexToIntegralComplex: 2196 case CK_ConstructorConversion: 2197 case CK_ToUnion: 2198 llvm_unreachable("scalar cast to non-scalar value"); 2199 2200 case CK_LValueToRValue: 2201 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2202 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2203 return Visit(const_cast<Expr*>(E)); 2204 2205 case CK_IntegralToPointer: { 2206 Value *Src = Visit(const_cast<Expr*>(E)); 2207 2208 // First, convert to the correct width so that we control the kind of 2209 // extension. 2210 auto DestLLVMTy = ConvertType(DestTy); 2211 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2212 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2213 llvm::Value* IntResult = 2214 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2215 2216 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2217 2218 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2219 // Going from integer to pointer that could be dynamic requires reloading 2220 // dynamic information from invariant.group. 2221 if (DestTy.mayBeDynamicClass()) 2222 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2223 } 2224 return IntToPtr; 2225 } 2226 case CK_PointerToIntegral: { 2227 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2228 auto *PtrExpr = Visit(E); 2229 2230 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2231 const QualType SrcType = E->getType(); 2232 2233 // Casting to integer requires stripping dynamic information as it does 2234 // not carries it. 2235 if (SrcType.mayBeDynamicClass()) 2236 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2237 } 2238 2239 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2240 } 2241 case CK_ToVoid: { 2242 CGF.EmitIgnoredExpr(E); 2243 return nullptr; 2244 } 2245 case CK_VectorSplat: { 2246 llvm::Type *DstTy = ConvertType(DestTy); 2247 Value *Elt = Visit(const_cast<Expr*>(E)); 2248 // Splat the element across to all elements 2249 unsigned NumElements = DstTy->getVectorNumElements(); 2250 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2251 } 2252 2253 case CK_FixedPointCast: 2254 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2255 CE->getExprLoc()); 2256 2257 case CK_FixedPointToBoolean: 2258 assert(E->getType()->isFixedPointType() && 2259 "Expected src type to be fixed point type"); 2260 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2261 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2262 CE->getExprLoc()); 2263 2264 case CK_FixedPointToIntegral: 2265 assert(E->getType()->isFixedPointType() && 2266 "Expected src type to be fixed point type"); 2267 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2268 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2269 CE->getExprLoc()); 2270 2271 case CK_IntegralToFixedPoint: 2272 assert(E->getType()->isIntegerType() && 2273 "Expected src type to be an integer"); 2274 assert(DestTy->isFixedPointType() && 2275 "Expected dest type to be fixed point type"); 2276 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2277 CE->getExprLoc()); 2278 2279 case CK_IntegralCast: { 2280 ScalarConversionOpts Opts; 2281 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2282 if (!ICE->isPartOfExplicitCast()) 2283 Opts = ScalarConversionOpts(CGF.SanOpts); 2284 } 2285 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2286 CE->getExprLoc(), Opts); 2287 } 2288 case CK_IntegralToFloating: 2289 case CK_FloatingToIntegral: 2290 case CK_FloatingCast: 2291 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2292 CE->getExprLoc()); 2293 case CK_BooleanToSignedIntegral: { 2294 ScalarConversionOpts Opts; 2295 Opts.TreatBooleanAsSigned = true; 2296 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2297 CE->getExprLoc(), Opts); 2298 } 2299 case CK_IntegralToBoolean: 2300 return EmitIntToBoolConversion(Visit(E)); 2301 case CK_PointerToBoolean: 2302 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2303 case CK_FloatingToBoolean: 2304 return EmitFloatToBoolConversion(Visit(E)); 2305 case CK_MemberPointerToBoolean: { 2306 llvm::Value *MemPtr = Visit(E); 2307 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2308 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2309 } 2310 2311 case CK_FloatingComplexToReal: 2312 case CK_IntegralComplexToReal: 2313 return CGF.EmitComplexExpr(E, false, true).first; 2314 2315 case CK_FloatingComplexToBoolean: 2316 case CK_IntegralComplexToBoolean: { 2317 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2318 2319 // TODO: kill this function off, inline appropriate case here 2320 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2321 CE->getExprLoc()); 2322 } 2323 2324 case CK_ZeroToOCLOpaqueType: { 2325 assert((DestTy->isEventT() || DestTy->isQueueT() || 2326 DestTy->isOCLIntelSubgroupAVCType()) && 2327 "CK_ZeroToOCLEvent cast on non-event type"); 2328 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2329 } 2330 2331 case CK_IntToOCLSampler: 2332 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2333 2334 } // end of switch 2335 2336 llvm_unreachable("unknown scalar cast"); 2337 } 2338 2339 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2340 CodeGenFunction::StmtExprEvaluation eval(CGF); 2341 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2342 !E->getType()->isVoidType()); 2343 if (!RetAlloca.isValid()) 2344 return nullptr; 2345 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2346 E->getExprLoc()); 2347 } 2348 2349 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2350 CGF.enterFullExpression(E); 2351 CodeGenFunction::RunCleanupsScope Scope(CGF); 2352 Value *V = Visit(E->getSubExpr()); 2353 // Defend against dominance problems caused by jumps out of expression 2354 // evaluation through the shared cleanup block. 2355 Scope.ForceCleanup({&V}); 2356 return V; 2357 } 2358 2359 //===----------------------------------------------------------------------===// 2360 // Unary Operators 2361 //===----------------------------------------------------------------------===// 2362 2363 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2364 llvm::Value *InVal, bool IsInc) { 2365 BinOpInfo BinOp; 2366 BinOp.LHS = InVal; 2367 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2368 BinOp.Ty = E->getType(); 2369 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2370 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2371 BinOp.E = E; 2372 return BinOp; 2373 } 2374 2375 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2376 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2377 llvm::Value *Amount = 2378 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2379 StringRef Name = IsInc ? "inc" : "dec"; 2380 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2381 case LangOptions::SOB_Defined: 2382 return Builder.CreateAdd(InVal, Amount, Name); 2383 case LangOptions::SOB_Undefined: 2384 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2385 return Builder.CreateNSWAdd(InVal, Amount, Name); 2386 LLVM_FALLTHROUGH; 2387 case LangOptions::SOB_Trapping: 2388 if (!E->canOverflow()) 2389 return Builder.CreateNSWAdd(InVal, Amount, Name); 2390 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2391 } 2392 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2393 } 2394 2395 llvm::Value * 2396 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2397 bool isInc, bool isPre) { 2398 2399 QualType type = E->getSubExpr()->getType(); 2400 llvm::PHINode *atomicPHI = nullptr; 2401 llvm::Value *value; 2402 llvm::Value *input; 2403 2404 int amount = (isInc ? 1 : -1); 2405 bool isSubtraction = !isInc; 2406 2407 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2408 type = atomicTy->getValueType(); 2409 if (isInc && type->isBooleanType()) { 2410 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2411 if (isPre) { 2412 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2413 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2414 return Builder.getTrue(); 2415 } 2416 // For atomic bool increment, we just store true and return it for 2417 // preincrement, do an atomic swap with true for postincrement 2418 return Builder.CreateAtomicRMW( 2419 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2420 llvm::AtomicOrdering::SequentiallyConsistent); 2421 } 2422 // Special case for atomic increment / decrement on integers, emit 2423 // atomicrmw instructions. We skip this if we want to be doing overflow 2424 // checking, and fall into the slow path with the atomic cmpxchg loop. 2425 if (!type->isBooleanType() && type->isIntegerType() && 2426 !(type->isUnsignedIntegerType() && 2427 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2428 CGF.getLangOpts().getSignedOverflowBehavior() != 2429 LangOptions::SOB_Trapping) { 2430 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2431 llvm::AtomicRMWInst::Sub; 2432 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2433 llvm::Instruction::Sub; 2434 llvm::Value *amt = CGF.EmitToMemory( 2435 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2436 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2437 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2438 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2439 } 2440 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2441 input = value; 2442 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2443 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2444 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2445 value = CGF.EmitToMemory(value, type); 2446 Builder.CreateBr(opBB); 2447 Builder.SetInsertPoint(opBB); 2448 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2449 atomicPHI->addIncoming(value, startBB); 2450 value = atomicPHI; 2451 } else { 2452 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2453 input = value; 2454 } 2455 2456 // Special case of integer increment that we have to check first: bool++. 2457 // Due to promotion rules, we get: 2458 // bool++ -> bool = bool + 1 2459 // -> bool = (int)bool + 1 2460 // -> bool = ((int)bool + 1 != 0) 2461 // An interesting aspect of this is that increment is always true. 2462 // Decrement does not have this property. 2463 if (isInc && type->isBooleanType()) { 2464 value = Builder.getTrue(); 2465 2466 // Most common case by far: integer increment. 2467 } else if (type->isIntegerType()) { 2468 // Note that signed integer inc/dec with width less than int can't 2469 // overflow because of promotion rules; we're just eliding a few steps here. 2470 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2471 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2472 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2473 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2474 value = 2475 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2476 } else { 2477 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2478 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2479 } 2480 2481 // Next most common: pointer increment. 2482 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2483 QualType type = ptr->getPointeeType(); 2484 2485 // VLA types don't have constant size. 2486 if (const VariableArrayType *vla 2487 = CGF.getContext().getAsVariableArrayType(type)) { 2488 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2489 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2490 if (CGF.getLangOpts().isSignedOverflowDefined()) 2491 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2492 else 2493 value = CGF.EmitCheckedInBoundsGEP( 2494 value, numElts, /*SignedIndices=*/false, isSubtraction, 2495 E->getExprLoc(), "vla.inc"); 2496 2497 // Arithmetic on function pointers (!) is just +-1. 2498 } else if (type->isFunctionType()) { 2499 llvm::Value *amt = Builder.getInt32(amount); 2500 2501 value = CGF.EmitCastToVoidPtr(value); 2502 if (CGF.getLangOpts().isSignedOverflowDefined()) 2503 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2504 else 2505 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2506 isSubtraction, E->getExprLoc(), 2507 "incdec.funcptr"); 2508 value = Builder.CreateBitCast(value, input->getType()); 2509 2510 // For everything else, we can just do a simple increment. 2511 } else { 2512 llvm::Value *amt = Builder.getInt32(amount); 2513 if (CGF.getLangOpts().isSignedOverflowDefined()) 2514 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2515 else 2516 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2517 isSubtraction, E->getExprLoc(), 2518 "incdec.ptr"); 2519 } 2520 2521 // Vector increment/decrement. 2522 } else if (type->isVectorType()) { 2523 if (type->hasIntegerRepresentation()) { 2524 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2525 2526 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2527 } else { 2528 value = Builder.CreateFAdd( 2529 value, 2530 llvm::ConstantFP::get(value->getType(), amount), 2531 isInc ? "inc" : "dec"); 2532 } 2533 2534 // Floating point. 2535 } else if (type->isRealFloatingType()) { 2536 // Add the inc/dec to the real part. 2537 llvm::Value *amt; 2538 2539 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2540 // Another special case: half FP increment should be done via float 2541 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2542 value = Builder.CreateCall( 2543 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2544 CGF.CGM.FloatTy), 2545 input, "incdec.conv"); 2546 } else { 2547 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2548 } 2549 } 2550 2551 if (value->getType()->isFloatTy()) 2552 amt = llvm::ConstantFP::get(VMContext, 2553 llvm::APFloat(static_cast<float>(amount))); 2554 else if (value->getType()->isDoubleTy()) 2555 amt = llvm::ConstantFP::get(VMContext, 2556 llvm::APFloat(static_cast<double>(amount))); 2557 else { 2558 // Remaining types are Half, LongDouble or __float128. Convert from float. 2559 llvm::APFloat F(static_cast<float>(amount)); 2560 bool ignored; 2561 const llvm::fltSemantics *FS; 2562 // Don't use getFloatTypeSemantics because Half isn't 2563 // necessarily represented using the "half" LLVM type. 2564 if (value->getType()->isFP128Ty()) 2565 FS = &CGF.getTarget().getFloat128Format(); 2566 else if (value->getType()->isHalfTy()) 2567 FS = &CGF.getTarget().getHalfFormat(); 2568 else 2569 FS = &CGF.getTarget().getLongDoubleFormat(); 2570 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2571 amt = llvm::ConstantFP::get(VMContext, F); 2572 } 2573 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2574 2575 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2576 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2577 value = Builder.CreateCall( 2578 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2579 CGF.CGM.FloatTy), 2580 value, "incdec.conv"); 2581 } else { 2582 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2583 } 2584 } 2585 2586 // Objective-C pointer types. 2587 } else { 2588 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2589 value = CGF.EmitCastToVoidPtr(value); 2590 2591 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2592 if (!isInc) size = -size; 2593 llvm::Value *sizeValue = 2594 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2595 2596 if (CGF.getLangOpts().isSignedOverflowDefined()) 2597 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2598 else 2599 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2600 /*SignedIndices=*/false, isSubtraction, 2601 E->getExprLoc(), "incdec.objptr"); 2602 value = Builder.CreateBitCast(value, input->getType()); 2603 } 2604 2605 if (atomicPHI) { 2606 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2607 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2608 auto Pair = CGF.EmitAtomicCompareExchange( 2609 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2610 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2611 llvm::Value *success = Pair.second; 2612 atomicPHI->addIncoming(old, curBlock); 2613 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2614 Builder.SetInsertPoint(contBB); 2615 return isPre ? value : input; 2616 } 2617 2618 // Store the updated result through the lvalue. 2619 if (LV.isBitField()) 2620 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2621 else 2622 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2623 2624 // If this is a postinc, return the value read from memory, otherwise use the 2625 // updated value. 2626 return isPre ? value : input; 2627 } 2628 2629 2630 2631 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2632 TestAndClearIgnoreResultAssign(); 2633 // Emit unary minus with EmitSub so we handle overflow cases etc. 2634 BinOpInfo BinOp; 2635 BinOp.RHS = Visit(E->getSubExpr()); 2636 2637 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2638 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2639 else 2640 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2641 BinOp.Ty = E->getType(); 2642 BinOp.Opcode = BO_Sub; 2643 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2644 BinOp.E = E; 2645 return EmitSub(BinOp); 2646 } 2647 2648 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2649 TestAndClearIgnoreResultAssign(); 2650 Value *Op = Visit(E->getSubExpr()); 2651 return Builder.CreateNot(Op, "neg"); 2652 } 2653 2654 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2655 // Perform vector logical not on comparison with zero vector. 2656 if (E->getType()->isExtVectorType()) { 2657 Value *Oper = Visit(E->getSubExpr()); 2658 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2659 Value *Result; 2660 if (Oper->getType()->isFPOrFPVectorTy()) 2661 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2662 else 2663 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2664 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2665 } 2666 2667 // Compare operand to zero. 2668 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2669 2670 // Invert value. 2671 // TODO: Could dynamically modify easy computations here. For example, if 2672 // the operand is an icmp ne, turn into icmp eq. 2673 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2674 2675 // ZExt result to the expr type. 2676 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2677 } 2678 2679 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2680 // Try folding the offsetof to a constant. 2681 Expr::EvalResult EVResult; 2682 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2683 llvm::APSInt Value = EVResult.Val.getInt(); 2684 return Builder.getInt(Value); 2685 } 2686 2687 // Loop over the components of the offsetof to compute the value. 2688 unsigned n = E->getNumComponents(); 2689 llvm::Type* ResultType = ConvertType(E->getType()); 2690 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2691 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2692 for (unsigned i = 0; i != n; ++i) { 2693 OffsetOfNode ON = E->getComponent(i); 2694 llvm::Value *Offset = nullptr; 2695 switch (ON.getKind()) { 2696 case OffsetOfNode::Array: { 2697 // Compute the index 2698 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2699 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2700 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2701 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2702 2703 // Save the element type 2704 CurrentType = 2705 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2706 2707 // Compute the element size 2708 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2709 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2710 2711 // Multiply out to compute the result 2712 Offset = Builder.CreateMul(Idx, ElemSize); 2713 break; 2714 } 2715 2716 case OffsetOfNode::Field: { 2717 FieldDecl *MemberDecl = ON.getField(); 2718 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2719 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2720 2721 // Compute the index of the field in its parent. 2722 unsigned i = 0; 2723 // FIXME: It would be nice if we didn't have to loop here! 2724 for (RecordDecl::field_iterator Field = RD->field_begin(), 2725 FieldEnd = RD->field_end(); 2726 Field != FieldEnd; ++Field, ++i) { 2727 if (*Field == MemberDecl) 2728 break; 2729 } 2730 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2731 2732 // Compute the offset to the field 2733 int64_t OffsetInt = RL.getFieldOffset(i) / 2734 CGF.getContext().getCharWidth(); 2735 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2736 2737 // Save the element type. 2738 CurrentType = MemberDecl->getType(); 2739 break; 2740 } 2741 2742 case OffsetOfNode::Identifier: 2743 llvm_unreachable("dependent __builtin_offsetof"); 2744 2745 case OffsetOfNode::Base: { 2746 if (ON.getBase()->isVirtual()) { 2747 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2748 continue; 2749 } 2750 2751 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2752 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2753 2754 // Save the element type. 2755 CurrentType = ON.getBase()->getType(); 2756 2757 // Compute the offset to the base. 2758 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2759 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2760 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2761 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2762 break; 2763 } 2764 } 2765 Result = Builder.CreateAdd(Result, Offset); 2766 } 2767 return Result; 2768 } 2769 2770 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2771 /// argument of the sizeof expression as an integer. 2772 Value * 2773 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2774 const UnaryExprOrTypeTraitExpr *E) { 2775 QualType TypeToSize = E->getTypeOfArgument(); 2776 if (E->getKind() == UETT_SizeOf) { 2777 if (const VariableArrayType *VAT = 2778 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2779 if (E->isArgumentType()) { 2780 // sizeof(type) - make sure to emit the VLA size. 2781 CGF.EmitVariablyModifiedType(TypeToSize); 2782 } else { 2783 // C99 6.5.3.4p2: If the argument is an expression of type 2784 // VLA, it is evaluated. 2785 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2786 } 2787 2788 auto VlaSize = CGF.getVLASize(VAT); 2789 llvm::Value *size = VlaSize.NumElts; 2790 2791 // Scale the number of non-VLA elements by the non-VLA element size. 2792 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2793 if (!eltSize.isOne()) 2794 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2795 2796 return size; 2797 } 2798 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2799 auto Alignment = 2800 CGF.getContext() 2801 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2802 E->getTypeOfArgument()->getPointeeType())) 2803 .getQuantity(); 2804 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2805 } 2806 2807 // If this isn't sizeof(vla), the result must be constant; use the constant 2808 // folding logic so we don't have to duplicate it here. 2809 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2810 } 2811 2812 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2813 Expr *Op = E->getSubExpr(); 2814 if (Op->getType()->isAnyComplexType()) { 2815 // If it's an l-value, load through the appropriate subobject l-value. 2816 // Note that we have to ask E because Op might be an l-value that 2817 // this won't work for, e.g. an Obj-C property. 2818 if (E->isGLValue()) 2819 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2820 E->getExprLoc()).getScalarVal(); 2821 2822 // Otherwise, calculate and project. 2823 return CGF.EmitComplexExpr(Op, false, true).first; 2824 } 2825 2826 return Visit(Op); 2827 } 2828 2829 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2830 Expr *Op = E->getSubExpr(); 2831 if (Op->getType()->isAnyComplexType()) { 2832 // If it's an l-value, load through the appropriate subobject l-value. 2833 // Note that we have to ask E because Op might be an l-value that 2834 // this won't work for, e.g. an Obj-C property. 2835 if (Op->isGLValue()) 2836 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2837 E->getExprLoc()).getScalarVal(); 2838 2839 // Otherwise, calculate and project. 2840 return CGF.EmitComplexExpr(Op, true, false).second; 2841 } 2842 2843 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2844 // effects are evaluated, but not the actual value. 2845 if (Op->isGLValue()) 2846 CGF.EmitLValue(Op); 2847 else 2848 CGF.EmitScalarExpr(Op, true); 2849 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2850 } 2851 2852 //===----------------------------------------------------------------------===// 2853 // Binary Operators 2854 //===----------------------------------------------------------------------===// 2855 2856 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2857 TestAndClearIgnoreResultAssign(); 2858 BinOpInfo Result; 2859 Result.LHS = Visit(E->getLHS()); 2860 Result.RHS = Visit(E->getRHS()); 2861 Result.Ty = E->getType(); 2862 Result.Opcode = E->getOpcode(); 2863 Result.FPFeatures = E->getFPFeatures(); 2864 Result.E = E; 2865 return Result; 2866 } 2867 2868 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2869 const CompoundAssignOperator *E, 2870 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2871 Value *&Result) { 2872 QualType LHSTy = E->getLHS()->getType(); 2873 BinOpInfo OpInfo; 2874 2875 if (E->getComputationResultType()->isAnyComplexType()) 2876 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2877 2878 // Emit the RHS first. __block variables need to have the rhs evaluated 2879 // first, plus this should improve codegen a little. 2880 OpInfo.RHS = Visit(E->getRHS()); 2881 OpInfo.Ty = E->getComputationResultType(); 2882 OpInfo.Opcode = E->getOpcode(); 2883 OpInfo.FPFeatures = E->getFPFeatures(); 2884 OpInfo.E = E; 2885 // Load/convert the LHS. 2886 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2887 2888 llvm::PHINode *atomicPHI = nullptr; 2889 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2890 QualType type = atomicTy->getValueType(); 2891 if (!type->isBooleanType() && type->isIntegerType() && 2892 !(type->isUnsignedIntegerType() && 2893 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2894 CGF.getLangOpts().getSignedOverflowBehavior() != 2895 LangOptions::SOB_Trapping) { 2896 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2897 switch (OpInfo.Opcode) { 2898 // We don't have atomicrmw operands for *, %, /, <<, >> 2899 case BO_MulAssign: case BO_DivAssign: 2900 case BO_RemAssign: 2901 case BO_ShlAssign: 2902 case BO_ShrAssign: 2903 break; 2904 case BO_AddAssign: 2905 aop = llvm::AtomicRMWInst::Add; 2906 break; 2907 case BO_SubAssign: 2908 aop = llvm::AtomicRMWInst::Sub; 2909 break; 2910 case BO_AndAssign: 2911 aop = llvm::AtomicRMWInst::And; 2912 break; 2913 case BO_XorAssign: 2914 aop = llvm::AtomicRMWInst::Xor; 2915 break; 2916 case BO_OrAssign: 2917 aop = llvm::AtomicRMWInst::Or; 2918 break; 2919 default: 2920 llvm_unreachable("Invalid compound assignment type"); 2921 } 2922 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2923 llvm::Value *amt = CGF.EmitToMemory( 2924 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2925 E->getExprLoc()), 2926 LHSTy); 2927 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2928 llvm::AtomicOrdering::SequentiallyConsistent); 2929 return LHSLV; 2930 } 2931 } 2932 // FIXME: For floating point types, we should be saving and restoring the 2933 // floating point environment in the loop. 2934 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2935 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2936 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2937 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2938 Builder.CreateBr(opBB); 2939 Builder.SetInsertPoint(opBB); 2940 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2941 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2942 OpInfo.LHS = atomicPHI; 2943 } 2944 else 2945 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2946 2947 SourceLocation Loc = E->getExprLoc(); 2948 OpInfo.LHS = 2949 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2950 2951 // Expand the binary operator. 2952 Result = (this->*Func)(OpInfo); 2953 2954 // Convert the result back to the LHS type, 2955 // potentially with Implicit Conversion sanitizer check. 2956 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2957 Loc, ScalarConversionOpts(CGF.SanOpts)); 2958 2959 if (atomicPHI) { 2960 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2961 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2962 auto Pair = CGF.EmitAtomicCompareExchange( 2963 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2964 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2965 llvm::Value *success = Pair.second; 2966 atomicPHI->addIncoming(old, curBlock); 2967 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2968 Builder.SetInsertPoint(contBB); 2969 return LHSLV; 2970 } 2971 2972 // Store the result value into the LHS lvalue. Bit-fields are handled 2973 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2974 // 'An assignment expression has the value of the left operand after the 2975 // assignment...'. 2976 if (LHSLV.isBitField()) 2977 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2978 else 2979 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2980 2981 return LHSLV; 2982 } 2983 2984 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2985 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2986 bool Ignore = TestAndClearIgnoreResultAssign(); 2987 Value *RHS = nullptr; 2988 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2989 2990 // If the result is clearly ignored, return now. 2991 if (Ignore) 2992 return nullptr; 2993 2994 // The result of an assignment in C is the assigned r-value. 2995 if (!CGF.getLangOpts().CPlusPlus) 2996 return RHS; 2997 2998 // If the lvalue is non-volatile, return the computed value of the assignment. 2999 if (!LHS.isVolatileQualified()) 3000 return RHS; 3001 3002 // Otherwise, reload the value. 3003 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3004 } 3005 3006 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3007 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3008 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3009 3010 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3011 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3012 SanitizerKind::IntegerDivideByZero)); 3013 } 3014 3015 const auto *BO = cast<BinaryOperator>(Ops.E); 3016 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3017 Ops.Ty->hasSignedIntegerRepresentation() && 3018 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3019 Ops.mayHaveIntegerOverflow()) { 3020 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3021 3022 llvm::Value *IntMin = 3023 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3024 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 3025 3026 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3027 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3028 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3029 Checks.push_back( 3030 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3031 } 3032 3033 if (Checks.size() > 0) 3034 EmitBinOpCheck(Checks, Ops); 3035 } 3036 3037 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3038 { 3039 CodeGenFunction::SanitizerScope SanScope(&CGF); 3040 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3041 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3042 Ops.Ty->isIntegerType() && 3043 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3044 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3045 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3046 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3047 Ops.Ty->isRealFloatingType() && 3048 Ops.mayHaveFloatDivisionByZero()) { 3049 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3050 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3051 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3052 Ops); 3053 } 3054 } 3055 3056 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3057 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3058 if (CGF.getLangOpts().OpenCL && 3059 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3060 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3061 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3062 // build option allows an application to specify that single precision 3063 // floating-point divide (x/y and 1/x) and sqrt used in the program 3064 // source are correctly rounded. 3065 llvm::Type *ValTy = Val->getType(); 3066 if (ValTy->isFloatTy() || 3067 (isa<llvm::VectorType>(ValTy) && 3068 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3069 CGF.SetFPAccuracy(Val, 2.5); 3070 } 3071 return Val; 3072 } 3073 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3074 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3075 else 3076 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3077 } 3078 3079 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3080 // Rem in C can't be a floating point type: C99 6.5.5p2. 3081 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3082 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3083 Ops.Ty->isIntegerType() && 3084 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3085 CodeGenFunction::SanitizerScope SanScope(&CGF); 3086 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3087 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3088 } 3089 3090 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3091 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3092 else 3093 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3094 } 3095 3096 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3097 unsigned IID; 3098 unsigned OpID = 0; 3099 3100 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3101 switch (Ops.Opcode) { 3102 case BO_Add: 3103 case BO_AddAssign: 3104 OpID = 1; 3105 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3106 llvm::Intrinsic::uadd_with_overflow; 3107 break; 3108 case BO_Sub: 3109 case BO_SubAssign: 3110 OpID = 2; 3111 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3112 llvm::Intrinsic::usub_with_overflow; 3113 break; 3114 case BO_Mul: 3115 case BO_MulAssign: 3116 OpID = 3; 3117 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3118 llvm::Intrinsic::umul_with_overflow; 3119 break; 3120 default: 3121 llvm_unreachable("Unsupported operation for overflow detection"); 3122 } 3123 OpID <<= 1; 3124 if (isSigned) 3125 OpID |= 1; 3126 3127 CodeGenFunction::SanitizerScope SanScope(&CGF); 3128 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3129 3130 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3131 3132 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3133 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3134 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3135 3136 // Handle overflow with llvm.trap if no custom handler has been specified. 3137 const std::string *handlerName = 3138 &CGF.getLangOpts().OverflowHandler; 3139 if (handlerName->empty()) { 3140 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3141 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3142 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3143 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3144 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3145 : SanitizerKind::UnsignedIntegerOverflow; 3146 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3147 } else 3148 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3149 return result; 3150 } 3151 3152 // Branch in case of overflow. 3153 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3154 llvm::BasicBlock *continueBB = 3155 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3156 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3157 3158 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3159 3160 // If an overflow handler is set, then we want to call it and then use its 3161 // result, if it returns. 3162 Builder.SetInsertPoint(overflowBB); 3163 3164 // Get the overflow handler. 3165 llvm::Type *Int8Ty = CGF.Int8Ty; 3166 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3167 llvm::FunctionType *handlerTy = 3168 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3169 llvm::FunctionCallee handler = 3170 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3171 3172 // Sign extend the args to 64-bit, so that we can use the same handler for 3173 // all types of overflow. 3174 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3175 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3176 3177 // Call the handler with the two arguments, the operation, and the size of 3178 // the result. 3179 llvm::Value *handlerArgs[] = { 3180 lhs, 3181 rhs, 3182 Builder.getInt8(OpID), 3183 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3184 }; 3185 llvm::Value *handlerResult = 3186 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3187 3188 // Truncate the result back to the desired size. 3189 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3190 Builder.CreateBr(continueBB); 3191 3192 Builder.SetInsertPoint(continueBB); 3193 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3194 phi->addIncoming(result, initialBB); 3195 phi->addIncoming(handlerResult, overflowBB); 3196 3197 return phi; 3198 } 3199 3200 /// Emit pointer + index arithmetic. 3201 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3202 const BinOpInfo &op, 3203 bool isSubtraction) { 3204 // Must have binary (not unary) expr here. Unary pointer 3205 // increment/decrement doesn't use this path. 3206 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3207 3208 Value *pointer = op.LHS; 3209 Expr *pointerOperand = expr->getLHS(); 3210 Value *index = op.RHS; 3211 Expr *indexOperand = expr->getRHS(); 3212 3213 // In a subtraction, the LHS is always the pointer. 3214 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3215 std::swap(pointer, index); 3216 std::swap(pointerOperand, indexOperand); 3217 } 3218 3219 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3220 3221 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3222 auto &DL = CGF.CGM.getDataLayout(); 3223 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3224 3225 // Some versions of glibc and gcc use idioms (particularly in their malloc 3226 // routines) that add a pointer-sized integer (known to be a pointer value) 3227 // to a null pointer in order to cast the value back to an integer or as 3228 // part of a pointer alignment algorithm. This is undefined behavior, but 3229 // we'd like to be able to compile programs that use it. 3230 // 3231 // Normally, we'd generate a GEP with a null-pointer base here in response 3232 // to that code, but it's also UB to dereference a pointer created that 3233 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3234 // generate a direct cast of the integer value to a pointer. 3235 // 3236 // The idiom (p = nullptr + N) is not met if any of the following are true: 3237 // 3238 // The operation is subtraction. 3239 // The index is not pointer-sized. 3240 // The pointer type is not byte-sized. 3241 // 3242 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3243 op.Opcode, 3244 expr->getLHS(), 3245 expr->getRHS())) 3246 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3247 3248 if (width != DL.getTypeSizeInBits(PtrTy)) { 3249 // Zero-extend or sign-extend the pointer value according to 3250 // whether the index is signed or not. 3251 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3252 "idx.ext"); 3253 } 3254 3255 // If this is subtraction, negate the index. 3256 if (isSubtraction) 3257 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3258 3259 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3260 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3261 /*Accessed*/ false); 3262 3263 const PointerType *pointerType 3264 = pointerOperand->getType()->getAs<PointerType>(); 3265 if (!pointerType) { 3266 QualType objectType = pointerOperand->getType() 3267 ->castAs<ObjCObjectPointerType>() 3268 ->getPointeeType(); 3269 llvm::Value *objectSize 3270 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3271 3272 index = CGF.Builder.CreateMul(index, objectSize); 3273 3274 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3275 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3276 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3277 } 3278 3279 QualType elementType = pointerType->getPointeeType(); 3280 if (const VariableArrayType *vla 3281 = CGF.getContext().getAsVariableArrayType(elementType)) { 3282 // The element count here is the total number of non-VLA elements. 3283 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3284 3285 // Effectively, the multiply by the VLA size is part of the GEP. 3286 // GEP indexes are signed, and scaling an index isn't permitted to 3287 // signed-overflow, so we use the same semantics for our explicit 3288 // multiply. We suppress this if overflow is not undefined behavior. 3289 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3290 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3291 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3292 } else { 3293 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3294 pointer = 3295 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3296 op.E->getExprLoc(), "add.ptr"); 3297 } 3298 return pointer; 3299 } 3300 3301 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3302 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3303 // future proof. 3304 if (elementType->isVoidType() || elementType->isFunctionType()) { 3305 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3306 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3307 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3308 } 3309 3310 if (CGF.getLangOpts().isSignedOverflowDefined()) 3311 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3312 3313 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3314 op.E->getExprLoc(), "add.ptr"); 3315 } 3316 3317 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3318 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3319 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3320 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3321 // efficient operations. 3322 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3323 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3324 bool negMul, bool negAdd) { 3325 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3326 3327 Value *MulOp0 = MulOp->getOperand(0); 3328 Value *MulOp1 = MulOp->getOperand(1); 3329 if (negMul) { 3330 MulOp0 = 3331 Builder.CreateFSub( 3332 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3333 "neg"); 3334 } else if (negAdd) { 3335 Addend = 3336 Builder.CreateFSub( 3337 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3338 "neg"); 3339 } 3340 3341 Value *FMulAdd = Builder.CreateCall( 3342 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3343 {MulOp0, MulOp1, Addend}); 3344 MulOp->eraseFromParent(); 3345 3346 return FMulAdd; 3347 } 3348 3349 // Check whether it would be legal to emit an fmuladd intrinsic call to 3350 // represent op and if so, build the fmuladd. 3351 // 3352 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3353 // Does NOT check the type of the operation - it's assumed that this function 3354 // will be called from contexts where it's known that the type is contractable. 3355 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3356 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3357 bool isSub=false) { 3358 3359 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3360 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3361 "Only fadd/fsub can be the root of an fmuladd."); 3362 3363 // Check whether this op is marked as fusable. 3364 if (!op.FPFeatures.allowFPContractWithinStatement()) 3365 return nullptr; 3366 3367 // We have a potentially fusable op. Look for a mul on one of the operands. 3368 // Also, make sure that the mul result isn't used directly. In that case, 3369 // there's no point creating a muladd operation. 3370 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3371 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3372 LHSBinOp->use_empty()) 3373 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3374 } 3375 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3376 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3377 RHSBinOp->use_empty()) 3378 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3379 } 3380 3381 return nullptr; 3382 } 3383 3384 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3385 if (op.LHS->getType()->isPointerTy() || 3386 op.RHS->getType()->isPointerTy()) 3387 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3388 3389 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3390 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3391 case LangOptions::SOB_Defined: 3392 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3393 case LangOptions::SOB_Undefined: 3394 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3395 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3396 LLVM_FALLTHROUGH; 3397 case LangOptions::SOB_Trapping: 3398 if (CanElideOverflowCheck(CGF.getContext(), op)) 3399 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3400 return EmitOverflowCheckedBinOp(op); 3401 } 3402 } 3403 3404 if (op.Ty->isUnsignedIntegerType() && 3405 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3406 !CanElideOverflowCheck(CGF.getContext(), op)) 3407 return EmitOverflowCheckedBinOp(op); 3408 3409 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3410 // Try to form an fmuladd. 3411 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3412 return FMulAdd; 3413 3414 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3415 return propagateFMFlags(V, op); 3416 } 3417 3418 if (op.isFixedPointBinOp()) 3419 return EmitFixedPointBinOp(op); 3420 3421 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3422 } 3423 3424 /// The resulting value must be calculated with exact precision, so the operands 3425 /// may not be the same type. 3426 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3427 using llvm::APSInt; 3428 using llvm::ConstantInt; 3429 3430 const auto *BinOp = cast<BinaryOperator>(op.E); 3431 3432 // The result is a fixed point type and at least one of the operands is fixed 3433 // point while the other is either fixed point or an int. This resulting type 3434 // should be determined by Sema::handleFixedPointConversions(). 3435 QualType ResultTy = op.Ty; 3436 QualType LHSTy = BinOp->getLHS()->getType(); 3437 QualType RHSTy = BinOp->getRHS()->getType(); 3438 ASTContext &Ctx = CGF.getContext(); 3439 Value *LHS = op.LHS; 3440 Value *RHS = op.RHS; 3441 3442 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3443 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3444 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3445 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3446 3447 // Convert the operands to the full precision type. 3448 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3449 BinOp->getExprLoc()); 3450 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3451 BinOp->getExprLoc()); 3452 3453 // Perform the actual addition. 3454 Value *Result; 3455 switch (BinOp->getOpcode()) { 3456 case BO_Add: { 3457 if (ResultFixedSema.isSaturated()) { 3458 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3459 ? llvm::Intrinsic::sadd_sat 3460 : llvm::Intrinsic::uadd_sat; 3461 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3462 } else { 3463 Result = Builder.CreateAdd(FullLHS, FullRHS); 3464 } 3465 break; 3466 } 3467 case BO_Sub: { 3468 if (ResultFixedSema.isSaturated()) { 3469 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3470 ? llvm::Intrinsic::ssub_sat 3471 : llvm::Intrinsic::usub_sat; 3472 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3473 } else { 3474 Result = Builder.CreateSub(FullLHS, FullRHS); 3475 } 3476 break; 3477 } 3478 case BO_LT: 3479 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3480 : Builder.CreateICmpULT(FullLHS, FullRHS); 3481 case BO_GT: 3482 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3483 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3484 case BO_LE: 3485 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3486 : Builder.CreateICmpULE(FullLHS, FullRHS); 3487 case BO_GE: 3488 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3489 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3490 case BO_EQ: 3491 // For equality operations, we assume any padding bits on unsigned types are 3492 // zero'd out. They could be overwritten through non-saturating operations 3493 // that cause overflow, but this leads to undefined behavior. 3494 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3495 case BO_NE: 3496 return Builder.CreateICmpNE(FullLHS, FullRHS); 3497 case BO_Mul: 3498 case BO_Div: 3499 case BO_Shl: 3500 case BO_Shr: 3501 case BO_Cmp: 3502 case BO_LAnd: 3503 case BO_LOr: 3504 case BO_MulAssign: 3505 case BO_DivAssign: 3506 case BO_AddAssign: 3507 case BO_SubAssign: 3508 case BO_ShlAssign: 3509 case BO_ShrAssign: 3510 llvm_unreachable("Found unimplemented fixed point binary operation"); 3511 case BO_PtrMemD: 3512 case BO_PtrMemI: 3513 case BO_Rem: 3514 case BO_Xor: 3515 case BO_And: 3516 case BO_Or: 3517 case BO_Assign: 3518 case BO_RemAssign: 3519 case BO_AndAssign: 3520 case BO_XorAssign: 3521 case BO_OrAssign: 3522 case BO_Comma: 3523 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3524 } 3525 3526 // Convert to the result type. 3527 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3528 BinOp->getExprLoc()); 3529 } 3530 3531 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3532 // The LHS is always a pointer if either side is. 3533 if (!op.LHS->getType()->isPointerTy()) { 3534 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3535 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3536 case LangOptions::SOB_Defined: 3537 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3538 case LangOptions::SOB_Undefined: 3539 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3540 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3541 LLVM_FALLTHROUGH; 3542 case LangOptions::SOB_Trapping: 3543 if (CanElideOverflowCheck(CGF.getContext(), op)) 3544 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3545 return EmitOverflowCheckedBinOp(op); 3546 } 3547 } 3548 3549 if (op.Ty->isUnsignedIntegerType() && 3550 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3551 !CanElideOverflowCheck(CGF.getContext(), op)) 3552 return EmitOverflowCheckedBinOp(op); 3553 3554 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3555 // Try to form an fmuladd. 3556 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3557 return FMulAdd; 3558 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3559 return propagateFMFlags(V, op); 3560 } 3561 3562 if (op.isFixedPointBinOp()) 3563 return EmitFixedPointBinOp(op); 3564 3565 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3566 } 3567 3568 // If the RHS is not a pointer, then we have normal pointer 3569 // arithmetic. 3570 if (!op.RHS->getType()->isPointerTy()) 3571 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3572 3573 // Otherwise, this is a pointer subtraction. 3574 3575 // Do the raw subtraction part. 3576 llvm::Value *LHS 3577 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3578 llvm::Value *RHS 3579 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3580 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3581 3582 // Okay, figure out the element size. 3583 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3584 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3585 3586 llvm::Value *divisor = nullptr; 3587 3588 // For a variable-length array, this is going to be non-constant. 3589 if (const VariableArrayType *vla 3590 = CGF.getContext().getAsVariableArrayType(elementType)) { 3591 auto VlaSize = CGF.getVLASize(vla); 3592 elementType = VlaSize.Type; 3593 divisor = VlaSize.NumElts; 3594 3595 // Scale the number of non-VLA elements by the non-VLA element size. 3596 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3597 if (!eltSize.isOne()) 3598 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3599 3600 // For everything elese, we can just compute it, safe in the 3601 // assumption that Sema won't let anything through that we can't 3602 // safely compute the size of. 3603 } else { 3604 CharUnits elementSize; 3605 // Handle GCC extension for pointer arithmetic on void* and 3606 // function pointer types. 3607 if (elementType->isVoidType() || elementType->isFunctionType()) 3608 elementSize = CharUnits::One(); 3609 else 3610 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3611 3612 // Don't even emit the divide for element size of 1. 3613 if (elementSize.isOne()) 3614 return diffInChars; 3615 3616 divisor = CGF.CGM.getSize(elementSize); 3617 } 3618 3619 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3620 // pointer difference in C is only defined in the case where both operands 3621 // are pointing to elements of an array. 3622 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3623 } 3624 3625 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3626 llvm::IntegerType *Ty; 3627 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3628 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3629 else 3630 Ty = cast<llvm::IntegerType>(LHS->getType()); 3631 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3632 } 3633 3634 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3635 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3636 // RHS to the same size as the LHS. 3637 Value *RHS = Ops.RHS; 3638 if (Ops.LHS->getType() != RHS->getType()) 3639 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3640 3641 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3642 Ops.Ty->hasSignedIntegerRepresentation() && 3643 !CGF.getLangOpts().isSignedOverflowDefined(); 3644 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3645 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3646 if (CGF.getLangOpts().OpenCL) 3647 RHS = 3648 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3649 else if ((SanitizeBase || SanitizeExponent) && 3650 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3651 CodeGenFunction::SanitizerScope SanScope(&CGF); 3652 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3653 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3654 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3655 3656 if (SanitizeExponent) { 3657 Checks.push_back( 3658 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3659 } 3660 3661 if (SanitizeBase) { 3662 // Check whether we are shifting any non-zero bits off the top of the 3663 // integer. We only emit this check if exponent is valid - otherwise 3664 // instructions below will have undefined behavior themselves. 3665 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3666 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3667 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3668 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3669 llvm::Value *PromotedWidthMinusOne = 3670 (RHS == Ops.RHS) ? WidthMinusOne 3671 : GetWidthMinusOneValue(Ops.LHS, RHS); 3672 CGF.EmitBlock(CheckShiftBase); 3673 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3674 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3675 /*NUW*/ true, /*NSW*/ true), 3676 "shl.check"); 3677 if (CGF.getLangOpts().CPlusPlus) { 3678 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3679 // Under C++11's rules, shifting a 1 bit into the sign bit is 3680 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3681 // define signed left shifts, so we use the C99 and C++11 rules there). 3682 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3683 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3684 } 3685 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3686 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3687 CGF.EmitBlock(Cont); 3688 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3689 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3690 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3691 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3692 } 3693 3694 assert(!Checks.empty()); 3695 EmitBinOpCheck(Checks, Ops); 3696 } 3697 3698 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3699 } 3700 3701 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3702 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3703 // RHS to the same size as the LHS. 3704 Value *RHS = Ops.RHS; 3705 if (Ops.LHS->getType() != RHS->getType()) 3706 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3707 3708 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3709 if (CGF.getLangOpts().OpenCL) 3710 RHS = 3711 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3712 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3713 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3714 CodeGenFunction::SanitizerScope SanScope(&CGF); 3715 llvm::Value *Valid = 3716 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3717 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3718 } 3719 3720 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3721 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3722 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3723 } 3724 3725 enum IntrinsicType { VCMPEQ, VCMPGT }; 3726 // return corresponding comparison intrinsic for given vector type 3727 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3728 BuiltinType::Kind ElemKind) { 3729 switch (ElemKind) { 3730 default: llvm_unreachable("unexpected element type"); 3731 case BuiltinType::Char_U: 3732 case BuiltinType::UChar: 3733 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3734 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3735 case BuiltinType::Char_S: 3736 case BuiltinType::SChar: 3737 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3738 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3739 case BuiltinType::UShort: 3740 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3741 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3742 case BuiltinType::Short: 3743 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3744 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3745 case BuiltinType::UInt: 3746 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3747 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3748 case BuiltinType::Int: 3749 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3750 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3751 case BuiltinType::ULong: 3752 case BuiltinType::ULongLong: 3753 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3754 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3755 case BuiltinType::Long: 3756 case BuiltinType::LongLong: 3757 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3758 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3759 case BuiltinType::Float: 3760 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3761 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3762 case BuiltinType::Double: 3763 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3764 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3765 } 3766 } 3767 3768 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3769 llvm::CmpInst::Predicate UICmpOpc, 3770 llvm::CmpInst::Predicate SICmpOpc, 3771 llvm::CmpInst::Predicate FCmpOpc) { 3772 TestAndClearIgnoreResultAssign(); 3773 Value *Result; 3774 QualType LHSTy = E->getLHS()->getType(); 3775 QualType RHSTy = E->getRHS()->getType(); 3776 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3777 assert(E->getOpcode() == BO_EQ || 3778 E->getOpcode() == BO_NE); 3779 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3780 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3781 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3782 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3783 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3784 BinOpInfo BOInfo = EmitBinOps(E); 3785 Value *LHS = BOInfo.LHS; 3786 Value *RHS = BOInfo.RHS; 3787 3788 // If AltiVec, the comparison results in a numeric type, so we use 3789 // intrinsics comparing vectors and giving 0 or 1 as a result 3790 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3791 // constants for mapping CR6 register bits to predicate result 3792 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3793 3794 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3795 3796 // in several cases vector arguments order will be reversed 3797 Value *FirstVecArg = LHS, 3798 *SecondVecArg = RHS; 3799 3800 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3801 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3802 BuiltinType::Kind ElementKind = BTy->getKind(); 3803 3804 switch(E->getOpcode()) { 3805 default: llvm_unreachable("is not a comparison operation"); 3806 case BO_EQ: 3807 CR6 = CR6_LT; 3808 ID = GetIntrinsic(VCMPEQ, ElementKind); 3809 break; 3810 case BO_NE: 3811 CR6 = CR6_EQ; 3812 ID = GetIntrinsic(VCMPEQ, ElementKind); 3813 break; 3814 case BO_LT: 3815 CR6 = CR6_LT; 3816 ID = GetIntrinsic(VCMPGT, ElementKind); 3817 std::swap(FirstVecArg, SecondVecArg); 3818 break; 3819 case BO_GT: 3820 CR6 = CR6_LT; 3821 ID = GetIntrinsic(VCMPGT, ElementKind); 3822 break; 3823 case BO_LE: 3824 if (ElementKind == BuiltinType::Float) { 3825 CR6 = CR6_LT; 3826 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3827 std::swap(FirstVecArg, SecondVecArg); 3828 } 3829 else { 3830 CR6 = CR6_EQ; 3831 ID = GetIntrinsic(VCMPGT, ElementKind); 3832 } 3833 break; 3834 case BO_GE: 3835 if (ElementKind == BuiltinType::Float) { 3836 CR6 = CR6_LT; 3837 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3838 } 3839 else { 3840 CR6 = CR6_EQ; 3841 ID = GetIntrinsic(VCMPGT, ElementKind); 3842 std::swap(FirstVecArg, SecondVecArg); 3843 } 3844 break; 3845 } 3846 3847 Value *CR6Param = Builder.getInt32(CR6); 3848 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3849 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3850 3851 // The result type of intrinsic may not be same as E->getType(). 3852 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3853 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3854 // do nothing, if ResultTy is not i1 at the same time, it will cause 3855 // crash later. 3856 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3857 if (ResultTy->getBitWidth() > 1 && 3858 E->getType() == CGF.getContext().BoolTy) 3859 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3860 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3861 E->getExprLoc()); 3862 } 3863 3864 if (BOInfo.isFixedPointBinOp()) { 3865 Result = EmitFixedPointBinOp(BOInfo); 3866 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3867 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3868 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3869 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3870 } else { 3871 // Unsigned integers and pointers. 3872 3873 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3874 !isa<llvm::ConstantPointerNull>(LHS) && 3875 !isa<llvm::ConstantPointerNull>(RHS)) { 3876 3877 // Dynamic information is required to be stripped for comparisons, 3878 // because it could leak the dynamic information. Based on comparisons 3879 // of pointers to dynamic objects, the optimizer can replace one pointer 3880 // with another, which might be incorrect in presence of invariant 3881 // groups. Comparison with null is safe because null does not carry any 3882 // dynamic information. 3883 if (LHSTy.mayBeDynamicClass()) 3884 LHS = Builder.CreateStripInvariantGroup(LHS); 3885 if (RHSTy.mayBeDynamicClass()) 3886 RHS = Builder.CreateStripInvariantGroup(RHS); 3887 } 3888 3889 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3890 } 3891 3892 // If this is a vector comparison, sign extend the result to the appropriate 3893 // vector integer type and return it (don't convert to bool). 3894 if (LHSTy->isVectorType()) 3895 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3896 3897 } else { 3898 // Complex Comparison: can only be an equality comparison. 3899 CodeGenFunction::ComplexPairTy LHS, RHS; 3900 QualType CETy; 3901 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3902 LHS = CGF.EmitComplexExpr(E->getLHS()); 3903 CETy = CTy->getElementType(); 3904 } else { 3905 LHS.first = Visit(E->getLHS()); 3906 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3907 CETy = LHSTy; 3908 } 3909 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3910 RHS = CGF.EmitComplexExpr(E->getRHS()); 3911 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3912 CTy->getElementType()) && 3913 "The element types must always match."); 3914 (void)CTy; 3915 } else { 3916 RHS.first = Visit(E->getRHS()); 3917 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3918 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3919 "The element types must always match."); 3920 } 3921 3922 Value *ResultR, *ResultI; 3923 if (CETy->isRealFloatingType()) { 3924 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3925 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3926 } else { 3927 // Complex comparisons can only be equality comparisons. As such, signed 3928 // and unsigned opcodes are the same. 3929 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3930 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3931 } 3932 3933 if (E->getOpcode() == BO_EQ) { 3934 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3935 } else { 3936 assert(E->getOpcode() == BO_NE && 3937 "Complex comparison other than == or != ?"); 3938 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3939 } 3940 } 3941 3942 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3943 E->getExprLoc()); 3944 } 3945 3946 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3947 bool Ignore = TestAndClearIgnoreResultAssign(); 3948 3949 Value *RHS; 3950 LValue LHS; 3951 3952 switch (E->getLHS()->getType().getObjCLifetime()) { 3953 case Qualifiers::OCL_Strong: 3954 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3955 break; 3956 3957 case Qualifiers::OCL_Autoreleasing: 3958 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3959 break; 3960 3961 case Qualifiers::OCL_ExplicitNone: 3962 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3963 break; 3964 3965 case Qualifiers::OCL_Weak: 3966 RHS = Visit(E->getRHS()); 3967 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3968 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3969 break; 3970 3971 case Qualifiers::OCL_None: 3972 // __block variables need to have the rhs evaluated first, plus 3973 // this should improve codegen just a little. 3974 RHS = Visit(E->getRHS()); 3975 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3976 3977 // Store the value into the LHS. Bit-fields are handled specially 3978 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3979 // 'An assignment expression has the value of the left operand after 3980 // the assignment...'. 3981 if (LHS.isBitField()) { 3982 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3983 } else { 3984 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3985 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3986 } 3987 } 3988 3989 // If the result is clearly ignored, return now. 3990 if (Ignore) 3991 return nullptr; 3992 3993 // The result of an assignment in C is the assigned r-value. 3994 if (!CGF.getLangOpts().CPlusPlus) 3995 return RHS; 3996 3997 // If the lvalue is non-volatile, return the computed value of the assignment. 3998 if (!LHS.isVolatileQualified()) 3999 return RHS; 4000 4001 // Otherwise, reload the value. 4002 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4003 } 4004 4005 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4006 // Perform vector logical and on comparisons with zero vectors. 4007 if (E->getType()->isVectorType()) { 4008 CGF.incrementProfileCounter(E); 4009 4010 Value *LHS = Visit(E->getLHS()); 4011 Value *RHS = Visit(E->getRHS()); 4012 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4013 if (LHS->getType()->isFPOrFPVectorTy()) { 4014 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4015 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4016 } else { 4017 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4018 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4019 } 4020 Value *And = Builder.CreateAnd(LHS, RHS); 4021 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4022 } 4023 4024 llvm::Type *ResTy = ConvertType(E->getType()); 4025 4026 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4027 // If we have 1 && X, just emit X without inserting the control flow. 4028 bool LHSCondVal; 4029 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4030 if (LHSCondVal) { // If we have 1 && X, just emit X. 4031 CGF.incrementProfileCounter(E); 4032 4033 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4034 // ZExt result to int or bool. 4035 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4036 } 4037 4038 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4039 if (!CGF.ContainsLabel(E->getRHS())) 4040 return llvm::Constant::getNullValue(ResTy); 4041 } 4042 4043 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4044 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4045 4046 CodeGenFunction::ConditionalEvaluation eval(CGF); 4047 4048 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4049 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4050 CGF.getProfileCount(E->getRHS())); 4051 4052 // Any edges into the ContBlock are now from an (indeterminate number of) 4053 // edges from this first condition. All of these values will be false. Start 4054 // setting up the PHI node in the Cont Block for this. 4055 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4056 "", ContBlock); 4057 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4058 PI != PE; ++PI) 4059 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4060 4061 eval.begin(CGF); 4062 CGF.EmitBlock(RHSBlock); 4063 CGF.incrementProfileCounter(E); 4064 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4065 eval.end(CGF); 4066 4067 // Reaquire the RHS block, as there may be subblocks inserted. 4068 RHSBlock = Builder.GetInsertBlock(); 4069 4070 // Emit an unconditional branch from this block to ContBlock. 4071 { 4072 // There is no need to emit line number for unconditional branch. 4073 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4074 CGF.EmitBlock(ContBlock); 4075 } 4076 // Insert an entry into the phi node for the edge with the value of RHSCond. 4077 PN->addIncoming(RHSCond, RHSBlock); 4078 4079 // Artificial location to preserve the scope information 4080 { 4081 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4082 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4083 } 4084 4085 // ZExt result to int. 4086 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4087 } 4088 4089 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4090 // Perform vector logical or on comparisons with zero vectors. 4091 if (E->getType()->isVectorType()) { 4092 CGF.incrementProfileCounter(E); 4093 4094 Value *LHS = Visit(E->getLHS()); 4095 Value *RHS = Visit(E->getRHS()); 4096 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4097 if (LHS->getType()->isFPOrFPVectorTy()) { 4098 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4099 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4100 } else { 4101 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4102 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4103 } 4104 Value *Or = Builder.CreateOr(LHS, RHS); 4105 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4106 } 4107 4108 llvm::Type *ResTy = ConvertType(E->getType()); 4109 4110 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4111 // If we have 0 || X, just emit X without inserting the control flow. 4112 bool LHSCondVal; 4113 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4114 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4115 CGF.incrementProfileCounter(E); 4116 4117 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4118 // ZExt result to int or bool. 4119 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4120 } 4121 4122 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4123 if (!CGF.ContainsLabel(E->getRHS())) 4124 return llvm::ConstantInt::get(ResTy, 1); 4125 } 4126 4127 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4128 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4129 4130 CodeGenFunction::ConditionalEvaluation eval(CGF); 4131 4132 // Branch on the LHS first. If it is true, go to the success (cont) block. 4133 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4134 CGF.getCurrentProfileCount() - 4135 CGF.getProfileCount(E->getRHS())); 4136 4137 // Any edges into the ContBlock are now from an (indeterminate number of) 4138 // edges from this first condition. All of these values will be true. Start 4139 // setting up the PHI node in the Cont Block for this. 4140 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4141 "", ContBlock); 4142 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4143 PI != PE; ++PI) 4144 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4145 4146 eval.begin(CGF); 4147 4148 // Emit the RHS condition as a bool value. 4149 CGF.EmitBlock(RHSBlock); 4150 CGF.incrementProfileCounter(E); 4151 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4152 4153 eval.end(CGF); 4154 4155 // Reaquire the RHS block, as there may be subblocks inserted. 4156 RHSBlock = Builder.GetInsertBlock(); 4157 4158 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4159 // into the phi node for the edge with the value of RHSCond. 4160 CGF.EmitBlock(ContBlock); 4161 PN->addIncoming(RHSCond, RHSBlock); 4162 4163 // ZExt result to int. 4164 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4165 } 4166 4167 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4168 CGF.EmitIgnoredExpr(E->getLHS()); 4169 CGF.EnsureInsertPoint(); 4170 return Visit(E->getRHS()); 4171 } 4172 4173 //===----------------------------------------------------------------------===// 4174 // Other Operators 4175 //===----------------------------------------------------------------------===// 4176 4177 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4178 /// expression is cheap enough and side-effect-free enough to evaluate 4179 /// unconditionally instead of conditionally. This is used to convert control 4180 /// flow into selects in some cases. 4181 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4182 CodeGenFunction &CGF) { 4183 // Anything that is an integer or floating point constant is fine. 4184 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4185 4186 // Even non-volatile automatic variables can't be evaluated unconditionally. 4187 // Referencing a thread_local may cause non-trivial initialization work to 4188 // occur. If we're inside a lambda and one of the variables is from the scope 4189 // outside the lambda, that function may have returned already. Reading its 4190 // locals is a bad idea. Also, these reads may introduce races there didn't 4191 // exist in the source-level program. 4192 } 4193 4194 4195 Value *ScalarExprEmitter:: 4196 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4197 TestAndClearIgnoreResultAssign(); 4198 4199 // Bind the common expression if necessary. 4200 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4201 4202 Expr *condExpr = E->getCond(); 4203 Expr *lhsExpr = E->getTrueExpr(); 4204 Expr *rhsExpr = E->getFalseExpr(); 4205 4206 // If the condition constant folds and can be elided, try to avoid emitting 4207 // the condition and the dead arm. 4208 bool CondExprBool; 4209 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4210 Expr *live = lhsExpr, *dead = rhsExpr; 4211 if (!CondExprBool) std::swap(live, dead); 4212 4213 // If the dead side doesn't have labels we need, just emit the Live part. 4214 if (!CGF.ContainsLabel(dead)) { 4215 if (CondExprBool) 4216 CGF.incrementProfileCounter(E); 4217 Value *Result = Visit(live); 4218 4219 // If the live part is a throw expression, it acts like it has a void 4220 // type, so evaluating it returns a null Value*. However, a conditional 4221 // with non-void type must return a non-null Value*. 4222 if (!Result && !E->getType()->isVoidType()) 4223 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4224 4225 return Result; 4226 } 4227 } 4228 4229 // OpenCL: If the condition is a vector, we can treat this condition like 4230 // the select function. 4231 if (CGF.getLangOpts().OpenCL 4232 && condExpr->getType()->isVectorType()) { 4233 CGF.incrementProfileCounter(E); 4234 4235 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4236 llvm::Value *LHS = Visit(lhsExpr); 4237 llvm::Value *RHS = Visit(rhsExpr); 4238 4239 llvm::Type *condType = ConvertType(condExpr->getType()); 4240 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4241 4242 unsigned numElem = vecTy->getNumElements(); 4243 llvm::Type *elemType = vecTy->getElementType(); 4244 4245 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4246 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4247 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4248 llvm::VectorType::get(elemType, 4249 numElem), 4250 "sext"); 4251 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4252 4253 // Cast float to int to perform ANDs if necessary. 4254 llvm::Value *RHSTmp = RHS; 4255 llvm::Value *LHSTmp = LHS; 4256 bool wasCast = false; 4257 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4258 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4259 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4260 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4261 wasCast = true; 4262 } 4263 4264 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4265 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4266 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4267 if (wasCast) 4268 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4269 4270 return tmp5; 4271 } 4272 4273 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4274 // select instead of as control flow. We can only do this if it is cheap and 4275 // safe to evaluate the LHS and RHS unconditionally. 4276 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4277 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4278 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4279 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4280 4281 CGF.incrementProfileCounter(E, StepV); 4282 4283 llvm::Value *LHS = Visit(lhsExpr); 4284 llvm::Value *RHS = Visit(rhsExpr); 4285 if (!LHS) { 4286 // If the conditional has void type, make sure we return a null Value*. 4287 assert(!RHS && "LHS and RHS types must match"); 4288 return nullptr; 4289 } 4290 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4291 } 4292 4293 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4294 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4295 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4296 4297 CodeGenFunction::ConditionalEvaluation eval(CGF); 4298 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4299 CGF.getProfileCount(lhsExpr)); 4300 4301 CGF.EmitBlock(LHSBlock); 4302 CGF.incrementProfileCounter(E); 4303 eval.begin(CGF); 4304 Value *LHS = Visit(lhsExpr); 4305 eval.end(CGF); 4306 4307 LHSBlock = Builder.GetInsertBlock(); 4308 Builder.CreateBr(ContBlock); 4309 4310 CGF.EmitBlock(RHSBlock); 4311 eval.begin(CGF); 4312 Value *RHS = Visit(rhsExpr); 4313 eval.end(CGF); 4314 4315 RHSBlock = Builder.GetInsertBlock(); 4316 CGF.EmitBlock(ContBlock); 4317 4318 // If the LHS or RHS is a throw expression, it will be legitimately null. 4319 if (!LHS) 4320 return RHS; 4321 if (!RHS) 4322 return LHS; 4323 4324 // Create a PHI node for the real part. 4325 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4326 PN->addIncoming(LHS, LHSBlock); 4327 PN->addIncoming(RHS, RHSBlock); 4328 return PN; 4329 } 4330 4331 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4332 return Visit(E->getChosenSubExpr()); 4333 } 4334 4335 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4336 QualType Ty = VE->getType(); 4337 4338 if (Ty->isVariablyModifiedType()) 4339 CGF.EmitVariablyModifiedType(Ty); 4340 4341 Address ArgValue = Address::invalid(); 4342 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4343 4344 llvm::Type *ArgTy = ConvertType(VE->getType()); 4345 4346 // If EmitVAArg fails, emit an error. 4347 if (!ArgPtr.isValid()) { 4348 CGF.ErrorUnsupported(VE, "va_arg expression"); 4349 return llvm::UndefValue::get(ArgTy); 4350 } 4351 4352 // FIXME Volatility. 4353 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4354 4355 // If EmitVAArg promoted the type, we must truncate it. 4356 if (ArgTy != Val->getType()) { 4357 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4358 Val = Builder.CreateIntToPtr(Val, ArgTy); 4359 else 4360 Val = Builder.CreateTrunc(Val, ArgTy); 4361 } 4362 4363 return Val; 4364 } 4365 4366 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4367 return CGF.EmitBlockLiteral(block); 4368 } 4369 4370 // Convert a vec3 to vec4, or vice versa. 4371 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4372 Value *Src, unsigned NumElementsDst) { 4373 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4374 SmallVector<llvm::Constant*, 4> Args; 4375 Args.push_back(Builder.getInt32(0)); 4376 Args.push_back(Builder.getInt32(1)); 4377 Args.push_back(Builder.getInt32(2)); 4378 if (NumElementsDst == 4) 4379 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4380 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4381 return Builder.CreateShuffleVector(Src, UnV, Mask); 4382 } 4383 4384 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4385 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4386 // but could be scalar or vectors of different lengths, and either can be 4387 // pointer. 4388 // There are 4 cases: 4389 // 1. non-pointer -> non-pointer : needs 1 bitcast 4390 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4391 // 3. pointer -> non-pointer 4392 // a) pointer -> intptr_t : needs 1 ptrtoint 4393 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4394 // 4. non-pointer -> pointer 4395 // a) intptr_t -> pointer : needs 1 inttoptr 4396 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4397 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4398 // allow casting directly between pointer types and non-integer non-pointer 4399 // types. 4400 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4401 const llvm::DataLayout &DL, 4402 Value *Src, llvm::Type *DstTy, 4403 StringRef Name = "") { 4404 auto SrcTy = Src->getType(); 4405 4406 // Case 1. 4407 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4408 return Builder.CreateBitCast(Src, DstTy, Name); 4409 4410 // Case 2. 4411 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4412 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4413 4414 // Case 3. 4415 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4416 // Case 3b. 4417 if (!DstTy->isIntegerTy()) 4418 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4419 // Cases 3a and 3b. 4420 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4421 } 4422 4423 // Case 4b. 4424 if (!SrcTy->isIntegerTy()) 4425 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4426 // Cases 4a and 4b. 4427 return Builder.CreateIntToPtr(Src, DstTy, Name); 4428 } 4429 4430 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4431 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4432 llvm::Type *DstTy = ConvertType(E->getType()); 4433 4434 llvm::Type *SrcTy = Src->getType(); 4435 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4436 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4437 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4438 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4439 4440 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4441 // vector to get a vec4, then a bitcast if the target type is different. 4442 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4443 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4444 4445 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4446 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4447 DstTy); 4448 } 4449 4450 Src->setName("astype"); 4451 return Src; 4452 } 4453 4454 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4455 // to vec4 if the original type is not vec4, then a shuffle vector to 4456 // get a vec3. 4457 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4458 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4459 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4460 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4461 Vec4Ty); 4462 } 4463 4464 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4465 Src->setName("astype"); 4466 return Src; 4467 } 4468 4469 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4470 Src, DstTy, "astype"); 4471 } 4472 4473 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4474 return CGF.EmitAtomicExpr(E).getScalarVal(); 4475 } 4476 4477 //===----------------------------------------------------------------------===// 4478 // Entry Point into this File 4479 //===----------------------------------------------------------------------===// 4480 4481 /// Emit the computation of the specified expression of scalar type, ignoring 4482 /// the result. 4483 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4484 assert(E && hasScalarEvaluationKind(E->getType()) && 4485 "Invalid scalar expression to emit"); 4486 4487 return ScalarExprEmitter(*this, IgnoreResultAssign) 4488 .Visit(const_cast<Expr *>(E)); 4489 } 4490 4491 /// Emit a conversion from the specified type to the specified destination type, 4492 /// both of which are LLVM scalar types. 4493 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4494 QualType DstTy, 4495 SourceLocation Loc) { 4496 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4497 "Invalid scalar expression to emit"); 4498 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4499 } 4500 4501 /// Emit a conversion from the specified complex type to the specified 4502 /// destination type, where the destination type is an LLVM scalar type. 4503 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4504 QualType SrcTy, 4505 QualType DstTy, 4506 SourceLocation Loc) { 4507 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4508 "Invalid complex -> scalar conversion"); 4509 return ScalarExprEmitter(*this) 4510 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4511 } 4512 4513 4514 llvm::Value *CodeGenFunction:: 4515 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4516 bool isInc, bool isPre) { 4517 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4518 } 4519 4520 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4521 // object->isa or (*object).isa 4522 // Generate code as for: *(Class*)object 4523 4524 Expr *BaseExpr = E->getBase(); 4525 Address Addr = Address::invalid(); 4526 if (BaseExpr->isRValue()) { 4527 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4528 } else { 4529 Addr = EmitLValue(BaseExpr).getAddress(); 4530 } 4531 4532 // Cast the address to Class*. 4533 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4534 return MakeAddrLValue(Addr, E->getType()); 4535 } 4536 4537 4538 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4539 const CompoundAssignOperator *E) { 4540 ScalarExprEmitter Scalar(*this); 4541 Value *Result = nullptr; 4542 switch (E->getOpcode()) { 4543 #define COMPOUND_OP(Op) \ 4544 case BO_##Op##Assign: \ 4545 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4546 Result) 4547 COMPOUND_OP(Mul); 4548 COMPOUND_OP(Div); 4549 COMPOUND_OP(Rem); 4550 COMPOUND_OP(Add); 4551 COMPOUND_OP(Sub); 4552 COMPOUND_OP(Shl); 4553 COMPOUND_OP(Shr); 4554 COMPOUND_OP(And); 4555 COMPOUND_OP(Xor); 4556 COMPOUND_OP(Or); 4557 #undef COMPOUND_OP 4558 4559 case BO_PtrMemD: 4560 case BO_PtrMemI: 4561 case BO_Mul: 4562 case BO_Div: 4563 case BO_Rem: 4564 case BO_Add: 4565 case BO_Sub: 4566 case BO_Shl: 4567 case BO_Shr: 4568 case BO_LT: 4569 case BO_GT: 4570 case BO_LE: 4571 case BO_GE: 4572 case BO_EQ: 4573 case BO_NE: 4574 case BO_Cmp: 4575 case BO_And: 4576 case BO_Xor: 4577 case BO_Or: 4578 case BO_LAnd: 4579 case BO_LOr: 4580 case BO_Assign: 4581 case BO_Comma: 4582 llvm_unreachable("Not valid compound assignment operators"); 4583 } 4584 4585 llvm_unreachable("Unhandled compound assignment operator"); 4586 } 4587 4588 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 4589 ArrayRef<Value *> IdxList, 4590 bool SignedIndices, 4591 bool IsSubtraction, 4592 SourceLocation Loc, 4593 const Twine &Name) { 4594 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4595 4596 // If the pointer overflow sanitizer isn't enabled, do nothing. 4597 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4598 return GEPVal; 4599 4600 // If the GEP has already been reduced to a constant, leave it be. 4601 if (isa<llvm::Constant>(GEPVal)) 4602 return GEPVal; 4603 4604 // Only check for overflows in the default address space. 4605 if (GEPVal->getType()->getPointerAddressSpace()) 4606 return GEPVal; 4607 4608 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4609 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4610 4611 SanitizerScope SanScope(this); 4612 auto &VMContext = getLLVMContext(); 4613 const auto &DL = CGM.getDataLayout(); 4614 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4615 4616 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4617 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4618 auto *SAddIntrinsic = 4619 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4620 auto *SMulIntrinsic = 4621 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4622 4623 // The total (signed) byte offset for the GEP. 4624 llvm::Value *TotalOffset = nullptr; 4625 // The offset overflow flag - true if the total offset overflows. 4626 llvm::Value *OffsetOverflows = Builder.getFalse(); 4627 4628 /// Return the result of the given binary operation. 4629 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4630 llvm::Value *RHS) -> llvm::Value * { 4631 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4632 4633 // If the operands are constants, return a constant result. 4634 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4635 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4636 llvm::APInt N; 4637 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4638 /*Signed=*/true, N); 4639 if (HasOverflow) 4640 OffsetOverflows = Builder.getTrue(); 4641 return llvm::ConstantInt::get(VMContext, N); 4642 } 4643 } 4644 4645 // Otherwise, compute the result with checked arithmetic. 4646 auto *ResultAndOverflow = Builder.CreateCall( 4647 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4648 OffsetOverflows = Builder.CreateOr( 4649 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4650 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4651 }; 4652 4653 // Determine the total byte offset by looking at each GEP operand. 4654 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4655 GTI != GTE; ++GTI) { 4656 llvm::Value *LocalOffset; 4657 auto *Index = GTI.getOperand(); 4658 // Compute the local offset contributed by this indexing step: 4659 if (auto *STy = GTI.getStructTypeOrNull()) { 4660 // For struct indexing, the local offset is the byte position of the 4661 // specified field. 4662 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4663 LocalOffset = llvm::ConstantInt::get( 4664 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4665 } else { 4666 // Otherwise this is array-like indexing. The local offset is the index 4667 // multiplied by the element size. 4668 auto *ElementSize = llvm::ConstantInt::get( 4669 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4670 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4671 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4672 } 4673 4674 // If this is the first offset, set it as the total offset. Otherwise, add 4675 // the local offset into the running total. 4676 if (!TotalOffset || TotalOffset == Zero) 4677 TotalOffset = LocalOffset; 4678 else 4679 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4680 } 4681 4682 // Common case: if the total offset is zero, don't emit a check. 4683 if (TotalOffset == Zero) 4684 return GEPVal; 4685 4686 // Now that we've computed the total offset, add it to the base pointer (with 4687 // wrapping semantics). 4688 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4689 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4690 4691 // The GEP is valid if: 4692 // 1) The total offset doesn't overflow, and 4693 // 2) The sign of the difference between the computed address and the base 4694 // pointer matches the sign of the total offset. 4695 llvm::Value *ValidGEP; 4696 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4697 if (SignedIndices) { 4698 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4699 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4700 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4701 ValidGEP = Builder.CreateAnd( 4702 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4703 NoOffsetOverflow); 4704 } else if (!SignedIndices && !IsSubtraction) { 4705 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4706 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4707 } else { 4708 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4709 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4710 } 4711 4712 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4713 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4714 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4715 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4716 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4717 4718 return GEPVal; 4719 } 4720