1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/FixedPoint.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Module.h"
38 #include <cstdarg>
39 
40 using namespace clang;
41 using namespace CodeGen;
42 using llvm::Value;
43 
44 //===----------------------------------------------------------------------===//
45 //                         Scalar Expression Emitter
46 //===----------------------------------------------------------------------===//
47 
48 namespace {
49 
50 /// Determine whether the given binary operation may overflow.
51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
53 /// the returned overflow check is precise. The returned value is 'true' for
54 /// all other opcodes, to be conservative.
55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
56                              BinaryOperator::Opcode Opcode, bool Signed,
57                              llvm::APInt &Result) {
58   // Assume overflow is possible, unless we can prove otherwise.
59   bool Overflow = true;
60   const auto &LHSAP = LHS->getValue();
61   const auto &RHSAP = RHS->getValue();
62   if (Opcode == BO_Add) {
63     if (Signed)
64       Result = LHSAP.sadd_ov(RHSAP, Overflow);
65     else
66       Result = LHSAP.uadd_ov(RHSAP, Overflow);
67   } else if (Opcode == BO_Sub) {
68     if (Signed)
69       Result = LHSAP.ssub_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.usub_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Mul) {
73     if (Signed)
74       Result = LHSAP.smul_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.umul_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
78     if (Signed && !RHS->isZero())
79       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
80     else
81       return false;
82   }
83   return Overflow;
84 }
85 
86 struct BinOpInfo {
87   Value *LHS;
88   Value *RHS;
89   QualType Ty;  // Computation Type.
90   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
91   FPOptions FPFeatures;
92   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
93 
94   /// Check if the binop can result in integer overflow.
95   bool mayHaveIntegerOverflow() const {
96     // Without constant input, we can't rule out overflow.
97     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
98     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
99     if (!LHSCI || !RHSCI)
100       return true;
101 
102     llvm::APInt Result;
103     return ::mayHaveIntegerOverflow(
104         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
105   }
106 
107   /// Check if the binop computes a division or a remainder.
108   bool isDivremOp() const {
109     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
110            Opcode == BO_RemAssign;
111   }
112 
113   /// Check if the binop can result in an integer division by zero.
114   bool mayHaveIntegerDivisionByZero() const {
115     if (isDivremOp())
116       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
117         return CI->isZero();
118     return true;
119   }
120 
121   /// Check if the binop can result in a float division by zero.
122   bool mayHaveFloatDivisionByZero() const {
123     if (isDivremOp())
124       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
125         return CFP->isZero();
126     return true;
127   }
128 
129   /// Check if either operand is a fixed point type or integer type, with at
130   /// least one being a fixed point type. In any case, this
131   /// operation did not follow usual arithmetic conversion and both operands may
132   /// not be the same.
133   bool isFixedPointBinOp() const {
134     // We cannot simply check the result type since comparison operations return
135     // an int.
136     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137       QualType LHSType = BinOp->getLHS()->getType();
138       QualType RHSType = BinOp->getRHS()->getType();
139       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140     }
141     return false;
142   }
143 };
144 
145 static bool MustVisitNullValue(const Expr *E) {
146   // If a null pointer expression's type is the C++0x nullptr_t, then
147   // it's not necessarily a simple constant and it must be evaluated
148   // for its potential side effects.
149   return E->getType()->isNullPtrType();
150 }
151 
152 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
154                                                         const Expr *E) {
155   const Expr *Base = E->IgnoreImpCasts();
156   if (E == Base)
157     return llvm::None;
158 
159   QualType BaseTy = Base->getType();
160   if (!BaseTy->isPromotableIntegerType() ||
161       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
162     return llvm::None;
163 
164   return BaseTy;
165 }
166 
167 /// Check if \p E is a widened promoted integer.
168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
169   return getUnwidenedIntegerType(Ctx, E).hasValue();
170 }
171 
172 /// Check if we can skip the overflow check for \p Op.
173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
174   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
175          "Expected a unary or binary operator");
176 
177   // If the binop has constant inputs and we can prove there is no overflow,
178   // we can elide the overflow check.
179   if (!Op.mayHaveIntegerOverflow())
180     return true;
181 
182   // If a unary op has a widened operand, the op cannot overflow.
183   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
184     return !UO->canOverflow();
185 
186   // We usually don't need overflow checks for binops with widened operands.
187   // Multiplication with promoted unsigned operands is a special case.
188   const auto *BO = cast<BinaryOperator>(Op.E);
189   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
190   if (!OptionalLHSTy)
191     return false;
192 
193   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
194   if (!OptionalRHSTy)
195     return false;
196 
197   QualType LHSTy = *OptionalLHSTy;
198   QualType RHSTy = *OptionalRHSTy;
199 
200   // This is the simple case: binops without unsigned multiplication, and with
201   // widened operands. No overflow check is needed here.
202   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
203       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
204     return true;
205 
206   // For unsigned multiplication the overflow check can be elided if either one
207   // of the unpromoted types are less than half the size of the promoted type.
208   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
209   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
210          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
211 }
212 
213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
214 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
215                                 FPOptions FPFeatures) {
216   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
217 }
218 
219 /// Propagate fast-math flags from \p Op to the instruction in \p V.
220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
221   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
222     llvm::FastMathFlags FMF = I->getFastMathFlags();
223     updateFastMathFlags(FMF, Op.FPFeatures);
224     I->setFastMathFlags(FMF);
225   }
226   return V;
227 }
228 
229 class ScalarExprEmitter
230   : public StmtVisitor<ScalarExprEmitter, Value*> {
231   CodeGenFunction &CGF;
232   CGBuilderTy &Builder;
233   bool IgnoreResultAssign;
234   llvm::LLVMContext &VMContext;
235 public:
236 
237   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
238     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
239       VMContext(cgf.getLLVMContext()) {
240   }
241 
242   //===--------------------------------------------------------------------===//
243   //                               Utilities
244   //===--------------------------------------------------------------------===//
245 
246   bool TestAndClearIgnoreResultAssign() {
247     bool I = IgnoreResultAssign;
248     IgnoreResultAssign = false;
249     return I;
250   }
251 
252   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
253   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
254   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
255     return CGF.EmitCheckedLValue(E, TCK);
256   }
257 
258   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
259                       const BinOpInfo &Info);
260 
261   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
262     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
263   }
264 
265   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
266     const AlignValueAttr *AVAttr = nullptr;
267     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
268       const ValueDecl *VD = DRE->getDecl();
269 
270       if (VD->getType()->isReferenceType()) {
271         if (const auto *TTy =
272             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
273           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
274       } else {
275         // Assumptions for function parameters are emitted at the start of the
276         // function, so there is no need to repeat that here,
277         // unless the alignment-assumption sanitizer is enabled,
278         // then we prefer the assumption over alignment attribute
279         // on IR function param.
280         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
281           return;
282 
283         AVAttr = VD->getAttr<AlignValueAttr>();
284       }
285     }
286 
287     if (!AVAttr)
288       if (const auto *TTy =
289           dyn_cast<TypedefType>(E->getType()))
290         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
291 
292     if (!AVAttr)
293       return;
294 
295     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
296     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
297     CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(),
298                                 AlignmentCI->getZExtValue());
299   }
300 
301   /// EmitLoadOfLValue - Given an expression with complex type that represents a
302   /// value l-value, this method emits the address of the l-value, then loads
303   /// and returns the result.
304   Value *EmitLoadOfLValue(const Expr *E) {
305     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
306                                 E->getExprLoc());
307 
308     EmitLValueAlignmentAssumption(E, V);
309     return V;
310   }
311 
312   /// EmitConversionToBool - Convert the specified expression value to a
313   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
314   Value *EmitConversionToBool(Value *Src, QualType DstTy);
315 
316   /// Emit a check that a conversion to or from a floating-point type does not
317   /// overflow.
318   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
319                                 Value *Src, QualType SrcType, QualType DstType,
320                                 llvm::Type *DstTy, SourceLocation Loc);
321 
322   /// Known implicit conversion check kinds.
323   /// Keep in sync with the enum of the same name in ubsan_handlers.h
324   enum ImplicitConversionCheckKind : unsigned char {
325     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
326     ICCK_UnsignedIntegerTruncation = 1,
327     ICCK_SignedIntegerTruncation = 2,
328     ICCK_IntegerSignChange = 3,
329     ICCK_SignedIntegerTruncationOrSignChange = 4,
330   };
331 
332   /// Emit a check that an [implicit] truncation of an integer  does not
333   /// discard any bits. It is not UB, so we use the value after truncation.
334   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
335                                   QualType DstType, SourceLocation Loc);
336 
337   /// Emit a check that an [implicit] conversion of an integer does not change
338   /// the sign of the value. It is not UB, so we use the value after conversion.
339   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
340   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
341                                   QualType DstType, SourceLocation Loc);
342 
343   /// Emit a conversion from the specified type to the specified destination
344   /// type, both of which are LLVM scalar types.
345   struct ScalarConversionOpts {
346     bool TreatBooleanAsSigned;
347     bool EmitImplicitIntegerTruncationChecks;
348     bool EmitImplicitIntegerSignChangeChecks;
349 
350     ScalarConversionOpts()
351         : TreatBooleanAsSigned(false),
352           EmitImplicitIntegerTruncationChecks(false),
353           EmitImplicitIntegerSignChangeChecks(false) {}
354 
355     ScalarConversionOpts(clang::SanitizerSet SanOpts)
356         : TreatBooleanAsSigned(false),
357           EmitImplicitIntegerTruncationChecks(
358               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
359           EmitImplicitIntegerSignChangeChecks(
360               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
361   };
362   Value *
363   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
364                        SourceLocation Loc,
365                        ScalarConversionOpts Opts = ScalarConversionOpts());
366 
367   /// Convert between either a fixed point and other fixed point or fixed point
368   /// and an integer.
369   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
370                                   SourceLocation Loc);
371   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
372                                   FixedPointSemantics &DstFixedSema,
373                                   SourceLocation Loc,
374                                   bool DstIsInteger = false);
375 
376   /// Emit a conversion from the specified complex type to the specified
377   /// destination type, where the destination type is an LLVM scalar type.
378   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
379                                        QualType SrcTy, QualType DstTy,
380                                        SourceLocation Loc);
381 
382   /// EmitNullValue - Emit a value that corresponds to null for the given type.
383   Value *EmitNullValue(QualType Ty);
384 
385   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
386   Value *EmitFloatToBoolConversion(Value *V) {
387     // Compare against 0.0 for fp scalars.
388     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
389     return Builder.CreateFCmpUNE(V, Zero, "tobool");
390   }
391 
392   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
393   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
394     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
395 
396     return Builder.CreateICmpNE(V, Zero, "tobool");
397   }
398 
399   Value *EmitIntToBoolConversion(Value *V) {
400     // Because of the type rules of C, we often end up computing a
401     // logical value, then zero extending it to int, then wanting it
402     // as a logical value again.  Optimize this common case.
403     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
404       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
405         Value *Result = ZI->getOperand(0);
406         // If there aren't any more uses, zap the instruction to save space.
407         // Note that there can be more uses, for example if this
408         // is the result of an assignment.
409         if (ZI->use_empty())
410           ZI->eraseFromParent();
411         return Result;
412       }
413     }
414 
415     return Builder.CreateIsNotNull(V, "tobool");
416   }
417 
418   //===--------------------------------------------------------------------===//
419   //                            Visitor Methods
420   //===--------------------------------------------------------------------===//
421 
422   Value *Visit(Expr *E) {
423     ApplyDebugLocation DL(CGF, E);
424     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
425   }
426 
427   Value *VisitStmt(Stmt *S) {
428     S->dump(CGF.getContext().getSourceManager());
429     llvm_unreachable("Stmt can't have complex result type!");
430   }
431   Value *VisitExpr(Expr *S);
432 
433   Value *VisitConstantExpr(ConstantExpr *E) {
434     return Visit(E->getSubExpr());
435   }
436   Value *VisitParenExpr(ParenExpr *PE) {
437     return Visit(PE->getSubExpr());
438   }
439   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
440     return Visit(E->getReplacement());
441   }
442   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
443     return Visit(GE->getResultExpr());
444   }
445   Value *VisitCoawaitExpr(CoawaitExpr *S) {
446     return CGF.EmitCoawaitExpr(*S).getScalarVal();
447   }
448   Value *VisitCoyieldExpr(CoyieldExpr *S) {
449     return CGF.EmitCoyieldExpr(*S).getScalarVal();
450   }
451   Value *VisitUnaryCoawait(const UnaryOperator *E) {
452     return Visit(E->getSubExpr());
453   }
454 
455   // Leaves.
456   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
457     return Builder.getInt(E->getValue());
458   }
459   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
460     return Builder.getInt(E->getValue());
461   }
462   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
463     return llvm::ConstantFP::get(VMContext, E->getValue());
464   }
465   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
466     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467   }
468   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
469     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
470   }
471   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
472     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
473   }
474   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
475     return EmitNullValue(E->getType());
476   }
477   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
478     return EmitNullValue(E->getType());
479   }
480   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
481   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
482   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
483     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
484     return Builder.CreateBitCast(V, ConvertType(E->getType()));
485   }
486 
487   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
488     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
489   }
490 
491   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
492     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
493   }
494 
495   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
496     if (E->isGLValue())
497       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
498                               E->getExprLoc());
499 
500     // Otherwise, assume the mapping is the scalar directly.
501     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
502   }
503 
504   // l-values.
505   Value *VisitDeclRefExpr(DeclRefExpr *E) {
506     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
507       return CGF.emitScalarConstant(Constant, E);
508     return EmitLoadOfLValue(E);
509   }
510 
511   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
512     return CGF.EmitObjCSelectorExpr(E);
513   }
514   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
515     return CGF.EmitObjCProtocolExpr(E);
516   }
517   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
518     return EmitLoadOfLValue(E);
519   }
520   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
521     if (E->getMethodDecl() &&
522         E->getMethodDecl()->getReturnType()->isReferenceType())
523       return EmitLoadOfLValue(E);
524     return CGF.EmitObjCMessageExpr(E).getScalarVal();
525   }
526 
527   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
528     LValue LV = CGF.EmitObjCIsaExpr(E);
529     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
530     return V;
531   }
532 
533   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
534     VersionTuple Version = E->getVersion();
535 
536     // If we're checking for a platform older than our minimum deployment
537     // target, we can fold the check away.
538     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
539       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
540 
541     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
542     llvm::Value *Args[] = {
543         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
544         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
545         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
546     };
547 
548     return CGF.EmitBuiltinAvailable(Args);
549   }
550 
551   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
552   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
553   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
554   Value *VisitMemberExpr(MemberExpr *E);
555   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
556   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
557     return EmitLoadOfLValue(E);
558   }
559 
560   Value *VisitInitListExpr(InitListExpr *E);
561 
562   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
563     assert(CGF.getArrayInitIndex() &&
564            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
565     return CGF.getArrayInitIndex();
566   }
567 
568   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
569     return EmitNullValue(E->getType());
570   }
571   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
572     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
573     return VisitCastExpr(E);
574   }
575   Value *VisitCastExpr(CastExpr *E);
576 
577   Value *VisitCallExpr(const CallExpr *E) {
578     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
579       return EmitLoadOfLValue(E);
580 
581     Value *V = CGF.EmitCallExpr(E).getScalarVal();
582 
583     EmitLValueAlignmentAssumption(E, V);
584     return V;
585   }
586 
587   Value *VisitStmtExpr(const StmtExpr *E);
588 
589   // Unary Operators.
590   Value *VisitUnaryPostDec(const UnaryOperator *E) {
591     LValue LV = EmitLValue(E->getSubExpr());
592     return EmitScalarPrePostIncDec(E, LV, false, false);
593   }
594   Value *VisitUnaryPostInc(const UnaryOperator *E) {
595     LValue LV = EmitLValue(E->getSubExpr());
596     return EmitScalarPrePostIncDec(E, LV, true, false);
597   }
598   Value *VisitUnaryPreDec(const UnaryOperator *E) {
599     LValue LV = EmitLValue(E->getSubExpr());
600     return EmitScalarPrePostIncDec(E, LV, false, true);
601   }
602   Value *VisitUnaryPreInc(const UnaryOperator *E) {
603     LValue LV = EmitLValue(E->getSubExpr());
604     return EmitScalarPrePostIncDec(E, LV, true, true);
605   }
606 
607   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
608                                                   llvm::Value *InVal,
609                                                   bool IsInc);
610 
611   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
612                                        bool isInc, bool isPre);
613 
614 
615   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
616     if (isa<MemberPointerType>(E->getType())) // never sugared
617       return CGF.CGM.getMemberPointerConstant(E);
618 
619     return EmitLValue(E->getSubExpr()).getPointer();
620   }
621   Value *VisitUnaryDeref(const UnaryOperator *E) {
622     if (E->getType()->isVoidType())
623       return Visit(E->getSubExpr()); // the actual value should be unused
624     return EmitLoadOfLValue(E);
625   }
626   Value *VisitUnaryPlus(const UnaryOperator *E) {
627     // This differs from gcc, though, most likely due to a bug in gcc.
628     TestAndClearIgnoreResultAssign();
629     return Visit(E->getSubExpr());
630   }
631   Value *VisitUnaryMinus    (const UnaryOperator *E);
632   Value *VisitUnaryNot      (const UnaryOperator *E);
633   Value *VisitUnaryLNot     (const UnaryOperator *E);
634   Value *VisitUnaryReal     (const UnaryOperator *E);
635   Value *VisitUnaryImag     (const UnaryOperator *E);
636   Value *VisitUnaryExtension(const UnaryOperator *E) {
637     return Visit(E->getSubExpr());
638   }
639 
640   // C++
641   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
642     return EmitLoadOfLValue(E);
643   }
644   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
645     auto &Ctx = CGF.getContext();
646     APValue Evaluated =
647         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
648     return ConstantEmitter(CGF.CGM, &CGF)
649         .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType());
650   }
651 
652   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
653     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
654     return Visit(DAE->getExpr());
655   }
656   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
657     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
658     return Visit(DIE->getExpr());
659   }
660   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
661     return CGF.LoadCXXThis();
662   }
663 
664   Value *VisitExprWithCleanups(ExprWithCleanups *E);
665   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
666     return CGF.EmitCXXNewExpr(E);
667   }
668   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
669     CGF.EmitCXXDeleteExpr(E);
670     return nullptr;
671   }
672 
673   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
674     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
675   }
676 
677   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
678     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
679   }
680 
681   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
682     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
683   }
684 
685   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
686     // C++ [expr.pseudo]p1:
687     //   The result shall only be used as the operand for the function call
688     //   operator (), and the result of such a call has type void. The only
689     //   effect is the evaluation of the postfix-expression before the dot or
690     //   arrow.
691     CGF.EmitScalarExpr(E->getBase());
692     return nullptr;
693   }
694 
695   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
696     return EmitNullValue(E->getType());
697   }
698 
699   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
700     CGF.EmitCXXThrowExpr(E);
701     return nullptr;
702   }
703 
704   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
705     return Builder.getInt1(E->getValue());
706   }
707 
708   // Binary Operators.
709   Value *EmitMul(const BinOpInfo &Ops) {
710     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
711       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
712       case LangOptions::SOB_Defined:
713         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
714       case LangOptions::SOB_Undefined:
715         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
716           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
717         LLVM_FALLTHROUGH;
718       case LangOptions::SOB_Trapping:
719         if (CanElideOverflowCheck(CGF.getContext(), Ops))
720           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
721         return EmitOverflowCheckedBinOp(Ops);
722       }
723     }
724 
725     if (Ops.Ty->isUnsignedIntegerType() &&
726         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
727         !CanElideOverflowCheck(CGF.getContext(), Ops))
728       return EmitOverflowCheckedBinOp(Ops);
729 
730     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
731       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
732       return propagateFMFlags(V, Ops);
733     }
734     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
735   }
736   /// Create a binary op that checks for overflow.
737   /// Currently only supports +, - and *.
738   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
739 
740   // Check for undefined division and modulus behaviors.
741   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
742                                                   llvm::Value *Zero,bool isDiv);
743   // Common helper for getting how wide LHS of shift is.
744   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
745   Value *EmitDiv(const BinOpInfo &Ops);
746   Value *EmitRem(const BinOpInfo &Ops);
747   Value *EmitAdd(const BinOpInfo &Ops);
748   Value *EmitSub(const BinOpInfo &Ops);
749   Value *EmitShl(const BinOpInfo &Ops);
750   Value *EmitShr(const BinOpInfo &Ops);
751   Value *EmitAnd(const BinOpInfo &Ops) {
752     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
753   }
754   Value *EmitXor(const BinOpInfo &Ops) {
755     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
756   }
757   Value *EmitOr (const BinOpInfo &Ops) {
758     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
759   }
760 
761   // Helper functions for fixed point binary operations.
762   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
763 
764   BinOpInfo EmitBinOps(const BinaryOperator *E);
765   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
766                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
767                                   Value *&Result);
768 
769   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
770                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
771 
772   // Binary operators and binary compound assignment operators.
773 #define HANDLEBINOP(OP) \
774   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
775     return Emit ## OP(EmitBinOps(E));                                      \
776   }                                                                        \
777   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
778     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
779   }
780   HANDLEBINOP(Mul)
781   HANDLEBINOP(Div)
782   HANDLEBINOP(Rem)
783   HANDLEBINOP(Add)
784   HANDLEBINOP(Sub)
785   HANDLEBINOP(Shl)
786   HANDLEBINOP(Shr)
787   HANDLEBINOP(And)
788   HANDLEBINOP(Xor)
789   HANDLEBINOP(Or)
790 #undef HANDLEBINOP
791 
792   // Comparisons.
793   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
794                      llvm::CmpInst::Predicate SICmpOpc,
795                      llvm::CmpInst::Predicate FCmpOpc);
796 #define VISITCOMP(CODE, UI, SI, FP) \
797     Value *VisitBin##CODE(const BinaryOperator *E) { \
798       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
799                          llvm::FCmpInst::FP); }
800   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
801   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
802   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
803   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
804   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
805   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
806 #undef VISITCOMP
807 
808   Value *VisitBinAssign     (const BinaryOperator *E);
809 
810   Value *VisitBinLAnd       (const BinaryOperator *E);
811   Value *VisitBinLOr        (const BinaryOperator *E);
812   Value *VisitBinComma      (const BinaryOperator *E);
813 
814   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
815   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
816 
817   // Other Operators.
818   Value *VisitBlockExpr(const BlockExpr *BE);
819   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
820   Value *VisitChooseExpr(ChooseExpr *CE);
821   Value *VisitVAArgExpr(VAArgExpr *VE);
822   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
823     return CGF.EmitObjCStringLiteral(E);
824   }
825   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
826     return CGF.EmitObjCBoxedExpr(E);
827   }
828   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
829     return CGF.EmitObjCArrayLiteral(E);
830   }
831   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
832     return CGF.EmitObjCDictionaryLiteral(E);
833   }
834   Value *VisitAsTypeExpr(AsTypeExpr *CE);
835   Value *VisitAtomicExpr(AtomicExpr *AE);
836 };
837 }  // end anonymous namespace.
838 
839 //===----------------------------------------------------------------------===//
840 //                                Utilities
841 //===----------------------------------------------------------------------===//
842 
843 /// EmitConversionToBool - Convert the specified expression value to a
844 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
845 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
846   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
847 
848   if (SrcType->isRealFloatingType())
849     return EmitFloatToBoolConversion(Src);
850 
851   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
852     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
853 
854   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
855          "Unknown scalar type to convert");
856 
857   if (isa<llvm::IntegerType>(Src->getType()))
858     return EmitIntToBoolConversion(Src);
859 
860   assert(isa<llvm::PointerType>(Src->getType()));
861   return EmitPointerToBoolConversion(Src, SrcType);
862 }
863 
864 void ScalarExprEmitter::EmitFloatConversionCheck(
865     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
866     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
867   CodeGenFunction::SanitizerScope SanScope(&CGF);
868   using llvm::APFloat;
869   using llvm::APSInt;
870 
871   llvm::Type *SrcTy = Src->getType();
872 
873   llvm::Value *Check = nullptr;
874   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
875     // Integer to floating-point. This can fail for unsigned short -> __half
876     // or unsigned __int128 -> float.
877     assert(DstType->isFloatingType());
878     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
879 
880     APFloat LargestFloat =
881       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
882     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
883 
884     bool IsExact;
885     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
886                                       &IsExact) != APFloat::opOK)
887       // The range of representable values of this floating point type includes
888       // all values of this integer type. Don't need an overflow check.
889       return;
890 
891     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
892     if (SrcIsUnsigned)
893       Check = Builder.CreateICmpULE(Src, Max);
894     else {
895       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
896       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
897       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
898       Check = Builder.CreateAnd(GE, LE);
899     }
900   } else {
901     const llvm::fltSemantics &SrcSema =
902       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
903     if (isa<llvm::IntegerType>(DstTy)) {
904       // Floating-point to integer. This has undefined behavior if the source is
905       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
906       // to an integer).
907       unsigned Width = CGF.getContext().getIntWidth(DstType);
908       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
909 
910       APSInt Min = APSInt::getMinValue(Width, Unsigned);
911       APFloat MinSrc(SrcSema, APFloat::uninitialized);
912       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
913           APFloat::opOverflow)
914         // Don't need an overflow check for lower bound. Just check for
915         // -Inf/NaN.
916         MinSrc = APFloat::getInf(SrcSema, true);
917       else
918         // Find the largest value which is too small to represent (before
919         // truncation toward zero).
920         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
921 
922       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
923       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
924       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
925           APFloat::opOverflow)
926         // Don't need an overflow check for upper bound. Just check for
927         // +Inf/NaN.
928         MaxSrc = APFloat::getInf(SrcSema, false);
929       else
930         // Find the smallest value which is too large to represent (before
931         // truncation toward zero).
932         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
933 
934       // If we're converting from __half, convert the range to float to match
935       // the type of src.
936       if (OrigSrcType->isHalfType()) {
937         const llvm::fltSemantics &Sema =
938           CGF.getContext().getFloatTypeSemantics(SrcType);
939         bool IsInexact;
940         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
941         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
942       }
943 
944       llvm::Value *GE =
945         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
946       llvm::Value *LE =
947         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
948       Check = Builder.CreateAnd(GE, LE);
949     } else {
950       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
951       //
952       // Floating-point to floating-point. This has undefined behavior if the
953       // source is not in the range of representable values of the destination
954       // type. The C and C++ standards are spectacularly unclear here. We
955       // diagnose finite out-of-range conversions, but allow infinities and NaNs
956       // to convert to the corresponding value in the smaller type.
957       //
958       // C11 Annex F gives all such conversions defined behavior for IEC 60559
959       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
960       // does not.
961 
962       // Converting from a lower rank to a higher rank can never have
963       // undefined behavior, since higher-rank types must have a superset
964       // of values of lower-rank types.
965       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
966         return;
967 
968       assert(!OrigSrcType->isHalfType() &&
969              "should not check conversion from __half, it has the lowest rank");
970 
971       const llvm::fltSemantics &DstSema =
972         CGF.getContext().getFloatTypeSemantics(DstType);
973       APFloat MinBad = APFloat::getLargest(DstSema, false);
974       APFloat MaxBad = APFloat::getInf(DstSema, false);
975 
976       bool IsInexact;
977       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
978       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
979 
980       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
981         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
982       llvm::Value *GE =
983         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
984       llvm::Value *LE =
985         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
986       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
987     }
988   }
989 
990   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
991                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
992                                   CGF.EmitCheckTypeDescriptor(DstType)};
993   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
994                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
995 }
996 
997 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
998 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
999 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1000                  std::pair<llvm::Value *, SanitizerMask>>
1001 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1002                                  QualType DstType, CGBuilderTy &Builder) {
1003   llvm::Type *SrcTy = Src->getType();
1004   llvm::Type *DstTy = Dst->getType();
1005   (void)DstTy; // Only used in assert()
1006 
1007   // This should be truncation of integral types.
1008   assert(Src != Dst);
1009   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1010   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1011          "non-integer llvm type");
1012 
1013   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1014   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1015 
1016   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1017   // Else, it is a signed truncation.
1018   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1019   SanitizerMask Mask;
1020   if (!SrcSigned && !DstSigned) {
1021     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1022     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1023   } else {
1024     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1025     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1026   }
1027 
1028   llvm::Value *Check = nullptr;
1029   // 1. Extend the truncated value back to the same width as the Src.
1030   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1031   // 2. Equality-compare with the original source value
1032   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1033   // If the comparison result is 'i1 false', then the truncation was lossy.
1034   return std::make_pair(Kind, std::make_pair(Check, Mask));
1035 }
1036 
1037 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1038                                                    Value *Dst, QualType DstType,
1039                                                    SourceLocation Loc) {
1040   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1041     return;
1042 
1043   // We only care about int->int conversions here.
1044   // We ignore conversions to/from pointer and/or bool.
1045   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1046     return;
1047 
1048   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1049   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1050   // This must be truncation. Else we do not care.
1051   if (SrcBits <= DstBits)
1052     return;
1053 
1054   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1055 
1056   // If the integer sign change sanitizer is enabled,
1057   // and we are truncating from larger unsigned type to smaller signed type,
1058   // let that next sanitizer deal with it.
1059   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1060   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1061   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1062       (!SrcSigned && DstSigned))
1063     return;
1064 
1065   CodeGenFunction::SanitizerScope SanScope(&CGF);
1066 
1067   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1068             std::pair<llvm::Value *, SanitizerMask>>
1069       Check =
1070           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1071   // If the comparison result is 'i1 false', then the truncation was lossy.
1072 
1073   // Do we care about this type of truncation?
1074   if (!CGF.SanOpts.has(Check.second.second))
1075     return;
1076 
1077   llvm::Constant *StaticArgs[] = {
1078       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1079       CGF.EmitCheckTypeDescriptor(DstType),
1080       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1081   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1082                 {Src, Dst});
1083 }
1084 
1085 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1086 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1087 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1088                  std::pair<llvm::Value *, SanitizerMask>>
1089 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1090                                  QualType DstType, CGBuilderTy &Builder) {
1091   llvm::Type *SrcTy = Src->getType();
1092   llvm::Type *DstTy = Dst->getType();
1093 
1094   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1095          "non-integer llvm type");
1096 
1097   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1098   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1099   (void)SrcSigned; // Only used in assert()
1100   (void)DstSigned; // Only used in assert()
1101   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1102   unsigned DstBits = DstTy->getScalarSizeInBits();
1103   (void)SrcBits; // Only used in assert()
1104   (void)DstBits; // Only used in assert()
1105 
1106   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1107          "either the widths should be different, or the signednesses.");
1108 
1109   // NOTE: zero value is considered to be non-negative.
1110   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1111                                        const char *Name) -> Value * {
1112     // Is this value a signed type?
1113     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1114     llvm::Type *VTy = V->getType();
1115     if (!VSigned) {
1116       // If the value is unsigned, then it is never negative.
1117       // FIXME: can we encounter non-scalar VTy here?
1118       return llvm::ConstantInt::getFalse(VTy->getContext());
1119     }
1120     // Get the zero of the same type with which we will be comparing.
1121     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1122     // %V.isnegative = icmp slt %V, 0
1123     // I.e is %V *strictly* less than zero, does it have negative value?
1124     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1125                               llvm::Twine(Name) + "." + V->getName() +
1126                                   ".negativitycheck");
1127   };
1128 
1129   // 1. Was the old Value negative?
1130   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1131   // 2. Is the new Value negative?
1132   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1133   // 3. Now, was the 'negativity status' preserved during the conversion?
1134   //    NOTE: conversion from negative to zero is considered to change the sign.
1135   //    (We want to get 'false' when the conversion changed the sign)
1136   //    So we should just equality-compare the negativity statuses.
1137   llvm::Value *Check = nullptr;
1138   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1139   // If the comparison result is 'false', then the conversion changed the sign.
1140   return std::make_pair(
1141       ScalarExprEmitter::ICCK_IntegerSignChange,
1142       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1143 }
1144 
1145 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1146                                                    Value *Dst, QualType DstType,
1147                                                    SourceLocation Loc) {
1148   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1149     return;
1150 
1151   llvm::Type *SrcTy = Src->getType();
1152   llvm::Type *DstTy = Dst->getType();
1153 
1154   // We only care about int->int conversions here.
1155   // We ignore conversions to/from pointer and/or bool.
1156   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1157     return;
1158 
1159   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1160   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1161   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1162   unsigned DstBits = DstTy->getScalarSizeInBits();
1163 
1164   // Now, we do not need to emit the check in *all* of the cases.
1165   // We can avoid emitting it in some obvious cases where it would have been
1166   // dropped by the opt passes (instcombine) always anyways.
1167   // If it's a cast between effectively the same type, no check.
1168   // NOTE: this is *not* equivalent to checking the canonical types.
1169   if (SrcSigned == DstSigned && SrcBits == DstBits)
1170     return;
1171   // At least one of the values needs to have signed type.
1172   // If both are unsigned, then obviously, neither of them can be negative.
1173   if (!SrcSigned && !DstSigned)
1174     return;
1175   // If the conversion is to *larger* *signed* type, then no check is needed.
1176   // Because either sign-extension happens (so the sign will remain),
1177   // or zero-extension will happen (the sign bit will be zero.)
1178   if ((DstBits > SrcBits) && DstSigned)
1179     return;
1180   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1181       (SrcBits > DstBits) && SrcSigned) {
1182     // If the signed integer truncation sanitizer is enabled,
1183     // and this is a truncation from signed type, then no check is needed.
1184     // Because here sign change check is interchangeable with truncation check.
1185     return;
1186   }
1187   // That's it. We can't rule out any more cases with the data we have.
1188 
1189   CodeGenFunction::SanitizerScope SanScope(&CGF);
1190 
1191   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1192             std::pair<llvm::Value *, SanitizerMask>>
1193       Check;
1194 
1195   // Each of these checks needs to return 'false' when an issue was detected.
1196   ImplicitConversionCheckKind CheckKind;
1197   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1198   // So we can 'and' all the checks together, and still get 'false',
1199   // if at least one of the checks detected an issue.
1200 
1201   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1202   CheckKind = Check.first;
1203   Checks.emplace_back(Check.second);
1204 
1205   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1206       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1207     // If the signed integer truncation sanitizer was enabled,
1208     // and we are truncating from larger unsigned type to smaller signed type,
1209     // let's handle the case we skipped in that check.
1210     Check =
1211         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1212     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1213     Checks.emplace_back(Check.second);
1214     // If the comparison result is 'i1 false', then the truncation was lossy.
1215   }
1216 
1217   llvm::Constant *StaticArgs[] = {
1218       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1219       CGF.EmitCheckTypeDescriptor(DstType),
1220       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1221   // EmitCheck() will 'and' all the checks together.
1222   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1223                 {Src, Dst});
1224 }
1225 
1226 /// Emit a conversion from the specified type to the specified destination type,
1227 /// both of which are LLVM scalar types.
1228 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1229                                                QualType DstType,
1230                                                SourceLocation Loc,
1231                                                ScalarConversionOpts Opts) {
1232   // All conversions involving fixed point types should be handled by the
1233   // EmitFixedPoint family functions. This is done to prevent bloating up this
1234   // function more, and although fixed point numbers are represented by
1235   // integers, we do not want to follow any logic that assumes they should be
1236   // treated as integers.
1237   // TODO(leonardchan): When necessary, add another if statement checking for
1238   // conversions to fixed point types from other types.
1239   if (SrcType->isFixedPointType()) {
1240     if (DstType->isBooleanType())
1241       // It is important that we check this before checking if the dest type is
1242       // an integer because booleans are technically integer types.
1243       // We do not need to check the padding bit on unsigned types if unsigned
1244       // padding is enabled because overflow into this bit is undefined
1245       // behavior.
1246       return Builder.CreateIsNotNull(Src, "tobool");
1247     if (DstType->isFixedPointType() || DstType->isIntegerType())
1248       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1249 
1250     llvm_unreachable(
1251         "Unhandled scalar conversion from a fixed point type to another type.");
1252   } else if (DstType->isFixedPointType()) {
1253     if (SrcType->isIntegerType())
1254       // This also includes converting booleans and enums to fixed point types.
1255       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1256 
1257     llvm_unreachable(
1258         "Unhandled scalar conversion to a fixed point type from another type.");
1259   }
1260 
1261   QualType NoncanonicalSrcType = SrcType;
1262   QualType NoncanonicalDstType = DstType;
1263 
1264   SrcType = CGF.getContext().getCanonicalType(SrcType);
1265   DstType = CGF.getContext().getCanonicalType(DstType);
1266   if (SrcType == DstType) return Src;
1267 
1268   if (DstType->isVoidType()) return nullptr;
1269 
1270   llvm::Value *OrigSrc = Src;
1271   QualType OrigSrcType = SrcType;
1272   llvm::Type *SrcTy = Src->getType();
1273 
1274   // Handle conversions to bool first, they are special: comparisons against 0.
1275   if (DstType->isBooleanType())
1276     return EmitConversionToBool(Src, SrcType);
1277 
1278   llvm::Type *DstTy = ConvertType(DstType);
1279 
1280   // Cast from half through float if half isn't a native type.
1281   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1282     // Cast to FP using the intrinsic if the half type itself isn't supported.
1283     if (DstTy->isFloatingPointTy()) {
1284       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1285         return Builder.CreateCall(
1286             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1287             Src);
1288     } else {
1289       // Cast to other types through float, using either the intrinsic or FPExt,
1290       // depending on whether the half type itself is supported
1291       // (as opposed to operations on half, available with NativeHalfType).
1292       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1293         Src = Builder.CreateCall(
1294             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1295                                  CGF.CGM.FloatTy),
1296             Src);
1297       } else {
1298         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1299       }
1300       SrcType = CGF.getContext().FloatTy;
1301       SrcTy = CGF.FloatTy;
1302     }
1303   }
1304 
1305   // Ignore conversions like int -> uint.
1306   if (SrcTy == DstTy) {
1307     if (Opts.EmitImplicitIntegerSignChangeChecks)
1308       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1309                                  NoncanonicalDstType, Loc);
1310 
1311     return Src;
1312   }
1313 
1314   // Handle pointer conversions next: pointers can only be converted to/from
1315   // other pointers and integers. Check for pointer types in terms of LLVM, as
1316   // some native types (like Obj-C id) may map to a pointer type.
1317   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1318     // The source value may be an integer, or a pointer.
1319     if (isa<llvm::PointerType>(SrcTy))
1320       return Builder.CreateBitCast(Src, DstTy, "conv");
1321 
1322     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1323     // First, convert to the correct width so that we control the kind of
1324     // extension.
1325     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1326     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1327     llvm::Value* IntResult =
1328         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1329     // Then, cast to pointer.
1330     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1331   }
1332 
1333   if (isa<llvm::PointerType>(SrcTy)) {
1334     // Must be an ptr to int cast.
1335     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1336     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1337   }
1338 
1339   // A scalar can be splatted to an extended vector of the same element type
1340   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1341     // Sema should add casts to make sure that the source expression's type is
1342     // the same as the vector's element type (sans qualifiers)
1343     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1344                SrcType.getTypePtr() &&
1345            "Splatted expr doesn't match with vector element type?");
1346 
1347     // Splat the element across to all elements
1348     unsigned NumElements = DstTy->getVectorNumElements();
1349     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1350   }
1351 
1352   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1353     // Allow bitcast from vector to integer/fp of the same size.
1354     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1355     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1356     if (SrcSize == DstSize)
1357       return Builder.CreateBitCast(Src, DstTy, "conv");
1358 
1359     // Conversions between vectors of different sizes are not allowed except
1360     // when vectors of half are involved. Operations on storage-only half
1361     // vectors require promoting half vector operands to float vectors and
1362     // truncating the result, which is either an int or float vector, to a
1363     // short or half vector.
1364 
1365     // Source and destination are both expected to be vectors.
1366     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1367     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1368     (void)DstElementTy;
1369 
1370     assert(((SrcElementTy->isIntegerTy() &&
1371              DstElementTy->isIntegerTy()) ||
1372             (SrcElementTy->isFloatingPointTy() &&
1373              DstElementTy->isFloatingPointTy())) &&
1374            "unexpected conversion between a floating-point vector and an "
1375            "integer vector");
1376 
1377     // Truncate an i32 vector to an i16 vector.
1378     if (SrcElementTy->isIntegerTy())
1379       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1380 
1381     // Truncate a float vector to a half vector.
1382     if (SrcSize > DstSize)
1383       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1384 
1385     // Promote a half vector to a float vector.
1386     return Builder.CreateFPExt(Src, DstTy, "conv");
1387   }
1388 
1389   // Finally, we have the arithmetic types: real int/float.
1390   Value *Res = nullptr;
1391   llvm::Type *ResTy = DstTy;
1392 
1393   // An overflowing conversion has undefined behavior if either the source type
1394   // or the destination type is a floating-point type.
1395   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1396       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1397     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1398                              Loc);
1399 
1400   // Cast to half through float if half isn't a native type.
1401   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1402     // Make sure we cast in a single step if from another FP type.
1403     if (SrcTy->isFloatingPointTy()) {
1404       // Use the intrinsic if the half type itself isn't supported
1405       // (as opposed to operations on half, available with NativeHalfType).
1406       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1407         return Builder.CreateCall(
1408             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1409       // If the half type is supported, just use an fptrunc.
1410       return Builder.CreateFPTrunc(Src, DstTy);
1411     }
1412     DstTy = CGF.FloatTy;
1413   }
1414 
1415   if (isa<llvm::IntegerType>(SrcTy)) {
1416     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1417     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1418       InputSigned = true;
1419     }
1420     if (isa<llvm::IntegerType>(DstTy))
1421       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1422     else if (InputSigned)
1423       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1424     else
1425       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1426   } else if (isa<llvm::IntegerType>(DstTy)) {
1427     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1428     if (DstType->isSignedIntegerOrEnumerationType())
1429       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1430     else
1431       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1432   } else {
1433     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1434            "Unknown real conversion");
1435     if (DstTy->getTypeID() < SrcTy->getTypeID())
1436       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1437     else
1438       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1439   }
1440 
1441   if (DstTy != ResTy) {
1442     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1443       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1444       Res = Builder.CreateCall(
1445         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1446         Res);
1447     } else {
1448       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1449     }
1450   }
1451 
1452   if (Opts.EmitImplicitIntegerTruncationChecks)
1453     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1454                                NoncanonicalDstType, Loc);
1455 
1456   if (Opts.EmitImplicitIntegerSignChangeChecks)
1457     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1458                                NoncanonicalDstType, Loc);
1459 
1460   return Res;
1461 }
1462 
1463 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1464                                                    QualType DstTy,
1465                                                    SourceLocation Loc) {
1466   FixedPointSemantics SrcFPSema =
1467       CGF.getContext().getFixedPointSemantics(SrcTy);
1468   FixedPointSemantics DstFPSema =
1469       CGF.getContext().getFixedPointSemantics(DstTy);
1470   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1471                                   DstTy->isIntegerType());
1472 }
1473 
1474 Value *ScalarExprEmitter::EmitFixedPointConversion(
1475     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1476     SourceLocation Loc, bool DstIsInteger) {
1477   using llvm::APInt;
1478   using llvm::ConstantInt;
1479   using llvm::Value;
1480 
1481   unsigned SrcWidth = SrcFPSema.getWidth();
1482   unsigned DstWidth = DstFPSema.getWidth();
1483   unsigned SrcScale = SrcFPSema.getScale();
1484   unsigned DstScale = DstFPSema.getScale();
1485   bool SrcIsSigned = SrcFPSema.isSigned();
1486   bool DstIsSigned = DstFPSema.isSigned();
1487 
1488   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1489 
1490   Value *Result = Src;
1491   unsigned ResultWidth = SrcWidth;
1492 
1493   // Downscale.
1494   if (DstScale < SrcScale) {
1495     // When converting to integers, we round towards zero. For negative numbers,
1496     // right shifting rounds towards negative infinity. In this case, we can
1497     // just round up before shifting.
1498     if (DstIsInteger && SrcIsSigned) {
1499       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1500       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1501       Value *LowBits = ConstantInt::get(
1502           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1503       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1504       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1505     }
1506 
1507     Result = SrcIsSigned
1508                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1509                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1510   }
1511 
1512   if (!DstFPSema.isSaturated()) {
1513     // Resize.
1514     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1515 
1516     // Upscale.
1517     if (DstScale > SrcScale)
1518       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1519   } else {
1520     // Adjust the number of fractional bits.
1521     if (DstScale > SrcScale) {
1522       // Compare to DstWidth to prevent resizing twice.
1523       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1524       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1525       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1526       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1527     }
1528 
1529     // Handle saturation.
1530     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1531     if (LessIntBits) {
1532       Value *Max = ConstantInt::get(
1533           CGF.getLLVMContext(),
1534           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1535       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1536                                    : Builder.CreateICmpUGT(Result, Max);
1537       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1538     }
1539     // Cannot overflow min to dest type if src is unsigned since all fixed
1540     // point types can cover the unsigned min of 0.
1541     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1542       Value *Min = ConstantInt::get(
1543           CGF.getLLVMContext(),
1544           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1545       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1546       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1547     }
1548 
1549     // Resize the integer part to get the final destination size.
1550     if (ResultWidth != DstWidth)
1551       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1552   }
1553   return Result;
1554 }
1555 
1556 /// Emit a conversion from the specified complex type to the specified
1557 /// destination type, where the destination type is an LLVM scalar type.
1558 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1559     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1560     SourceLocation Loc) {
1561   // Get the source element type.
1562   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1563 
1564   // Handle conversions to bool first, they are special: comparisons against 0.
1565   if (DstTy->isBooleanType()) {
1566     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1567     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1568     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1569     return Builder.CreateOr(Src.first, Src.second, "tobool");
1570   }
1571 
1572   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1573   // the imaginary part of the complex value is discarded and the value of the
1574   // real part is converted according to the conversion rules for the
1575   // corresponding real type.
1576   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1577 }
1578 
1579 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1580   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1581 }
1582 
1583 /// Emit a sanitization check for the given "binary" operation (which
1584 /// might actually be a unary increment which has been lowered to a binary
1585 /// operation). The check passes if all values in \p Checks (which are \c i1),
1586 /// are \c true.
1587 void ScalarExprEmitter::EmitBinOpCheck(
1588     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1589   assert(CGF.IsSanitizerScope);
1590   SanitizerHandler Check;
1591   SmallVector<llvm::Constant *, 4> StaticData;
1592   SmallVector<llvm::Value *, 2> DynamicData;
1593 
1594   BinaryOperatorKind Opcode = Info.Opcode;
1595   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1596     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1597 
1598   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1599   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1600   if (UO && UO->getOpcode() == UO_Minus) {
1601     Check = SanitizerHandler::NegateOverflow;
1602     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1603     DynamicData.push_back(Info.RHS);
1604   } else {
1605     if (BinaryOperator::isShiftOp(Opcode)) {
1606       // Shift LHS negative or too large, or RHS out of bounds.
1607       Check = SanitizerHandler::ShiftOutOfBounds;
1608       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1609       StaticData.push_back(
1610         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1611       StaticData.push_back(
1612         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1613     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1614       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1615       Check = SanitizerHandler::DivremOverflow;
1616       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1617     } else {
1618       // Arithmetic overflow (+, -, *).
1619       switch (Opcode) {
1620       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1621       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1622       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1623       default: llvm_unreachable("unexpected opcode for bin op check");
1624       }
1625       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1626     }
1627     DynamicData.push_back(Info.LHS);
1628     DynamicData.push_back(Info.RHS);
1629   }
1630 
1631   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1632 }
1633 
1634 //===----------------------------------------------------------------------===//
1635 //                            Visitor Methods
1636 //===----------------------------------------------------------------------===//
1637 
1638 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1639   CGF.ErrorUnsupported(E, "scalar expression");
1640   if (E->getType()->isVoidType())
1641     return nullptr;
1642   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1643 }
1644 
1645 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1646   // Vector Mask Case
1647   if (E->getNumSubExprs() == 2) {
1648     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1649     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1650     Value *Mask;
1651 
1652     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1653     unsigned LHSElts = LTy->getNumElements();
1654 
1655     Mask = RHS;
1656 
1657     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1658 
1659     // Mask off the high bits of each shuffle index.
1660     Value *MaskBits =
1661         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1662     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1663 
1664     // newv = undef
1665     // mask = mask & maskbits
1666     // for each elt
1667     //   n = extract mask i
1668     //   x = extract val n
1669     //   newv = insert newv, x, i
1670     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1671                                                   MTy->getNumElements());
1672     Value* NewV = llvm::UndefValue::get(RTy);
1673     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1674       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1675       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1676 
1677       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1678       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1679     }
1680     return NewV;
1681   }
1682 
1683   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1684   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1685 
1686   SmallVector<llvm::Constant*, 32> indices;
1687   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1688     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1689     // Check for -1 and output it as undef in the IR.
1690     if (Idx.isSigned() && Idx.isAllOnesValue())
1691       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1692     else
1693       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1694   }
1695 
1696   Value *SV = llvm::ConstantVector::get(indices);
1697   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1698 }
1699 
1700 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1701   QualType SrcType = E->getSrcExpr()->getType(),
1702            DstType = E->getType();
1703 
1704   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1705 
1706   SrcType = CGF.getContext().getCanonicalType(SrcType);
1707   DstType = CGF.getContext().getCanonicalType(DstType);
1708   if (SrcType == DstType) return Src;
1709 
1710   assert(SrcType->isVectorType() &&
1711          "ConvertVector source type must be a vector");
1712   assert(DstType->isVectorType() &&
1713          "ConvertVector destination type must be a vector");
1714 
1715   llvm::Type *SrcTy = Src->getType();
1716   llvm::Type *DstTy = ConvertType(DstType);
1717 
1718   // Ignore conversions like int -> uint.
1719   if (SrcTy == DstTy)
1720     return Src;
1721 
1722   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1723            DstEltType = DstType->getAs<VectorType>()->getElementType();
1724 
1725   assert(SrcTy->isVectorTy() &&
1726          "ConvertVector source IR type must be a vector");
1727   assert(DstTy->isVectorTy() &&
1728          "ConvertVector destination IR type must be a vector");
1729 
1730   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1731              *DstEltTy = DstTy->getVectorElementType();
1732 
1733   if (DstEltType->isBooleanType()) {
1734     assert((SrcEltTy->isFloatingPointTy() ||
1735             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1736 
1737     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1738     if (SrcEltTy->isFloatingPointTy()) {
1739       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1740     } else {
1741       return Builder.CreateICmpNE(Src, Zero, "tobool");
1742     }
1743   }
1744 
1745   // We have the arithmetic types: real int/float.
1746   Value *Res = nullptr;
1747 
1748   if (isa<llvm::IntegerType>(SrcEltTy)) {
1749     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1750     if (isa<llvm::IntegerType>(DstEltTy))
1751       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1752     else if (InputSigned)
1753       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1754     else
1755       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1756   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1757     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1758     if (DstEltType->isSignedIntegerOrEnumerationType())
1759       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1760     else
1761       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1762   } else {
1763     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1764            "Unknown real conversion");
1765     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1766       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1767     else
1768       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1769   }
1770 
1771   return Res;
1772 }
1773 
1774 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1775   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1776     CGF.EmitIgnoredExpr(E->getBase());
1777     return CGF.emitScalarConstant(Constant, E);
1778   } else {
1779     Expr::EvalResult Result;
1780     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1781       llvm::APSInt Value = Result.Val.getInt();
1782       CGF.EmitIgnoredExpr(E->getBase());
1783       return Builder.getInt(Value);
1784     }
1785   }
1786 
1787   return EmitLoadOfLValue(E);
1788 }
1789 
1790 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1791   TestAndClearIgnoreResultAssign();
1792 
1793   // Emit subscript expressions in rvalue context's.  For most cases, this just
1794   // loads the lvalue formed by the subscript expr.  However, we have to be
1795   // careful, because the base of a vector subscript is occasionally an rvalue,
1796   // so we can't get it as an lvalue.
1797   if (!E->getBase()->getType()->isVectorType())
1798     return EmitLoadOfLValue(E);
1799 
1800   // Handle the vector case.  The base must be a vector, the index must be an
1801   // integer value.
1802   Value *Base = Visit(E->getBase());
1803   Value *Idx  = Visit(E->getIdx());
1804   QualType IdxTy = E->getIdx()->getType();
1805 
1806   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1807     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1808 
1809   return Builder.CreateExtractElement(Base, Idx, "vecext");
1810 }
1811 
1812 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1813                                   unsigned Off, llvm::Type *I32Ty) {
1814   int MV = SVI->getMaskValue(Idx);
1815   if (MV == -1)
1816     return llvm::UndefValue::get(I32Ty);
1817   return llvm::ConstantInt::get(I32Ty, Off+MV);
1818 }
1819 
1820 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1821   if (C->getBitWidth() != 32) {
1822       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1823                                                     C->getZExtValue()) &&
1824              "Index operand too large for shufflevector mask!");
1825       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1826   }
1827   return C;
1828 }
1829 
1830 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1831   bool Ignore = TestAndClearIgnoreResultAssign();
1832   (void)Ignore;
1833   assert (Ignore == false && "init list ignored");
1834   unsigned NumInitElements = E->getNumInits();
1835 
1836   if (E->hadArrayRangeDesignator())
1837     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1838 
1839   llvm::VectorType *VType =
1840     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1841 
1842   if (!VType) {
1843     if (NumInitElements == 0) {
1844       // C++11 value-initialization for the scalar.
1845       return EmitNullValue(E->getType());
1846     }
1847     // We have a scalar in braces. Just use the first element.
1848     return Visit(E->getInit(0));
1849   }
1850 
1851   unsigned ResElts = VType->getNumElements();
1852 
1853   // Loop over initializers collecting the Value for each, and remembering
1854   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1855   // us to fold the shuffle for the swizzle into the shuffle for the vector
1856   // initializer, since LLVM optimizers generally do not want to touch
1857   // shuffles.
1858   unsigned CurIdx = 0;
1859   bool VIsUndefShuffle = false;
1860   llvm::Value *V = llvm::UndefValue::get(VType);
1861   for (unsigned i = 0; i != NumInitElements; ++i) {
1862     Expr *IE = E->getInit(i);
1863     Value *Init = Visit(IE);
1864     SmallVector<llvm::Constant*, 16> Args;
1865 
1866     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1867 
1868     // Handle scalar elements.  If the scalar initializer is actually one
1869     // element of a different vector of the same width, use shuffle instead of
1870     // extract+insert.
1871     if (!VVT) {
1872       if (isa<ExtVectorElementExpr>(IE)) {
1873         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1874 
1875         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1876           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1877           Value *LHS = nullptr, *RHS = nullptr;
1878           if (CurIdx == 0) {
1879             // insert into undef -> shuffle (src, undef)
1880             // shufflemask must use an i32
1881             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1882             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1883 
1884             LHS = EI->getVectorOperand();
1885             RHS = V;
1886             VIsUndefShuffle = true;
1887           } else if (VIsUndefShuffle) {
1888             // insert into undefshuffle && size match -> shuffle (v, src)
1889             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1890             for (unsigned j = 0; j != CurIdx; ++j)
1891               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1892             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1893             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1894 
1895             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1896             RHS = EI->getVectorOperand();
1897             VIsUndefShuffle = false;
1898           }
1899           if (!Args.empty()) {
1900             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1901             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1902             ++CurIdx;
1903             continue;
1904           }
1905         }
1906       }
1907       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1908                                       "vecinit");
1909       VIsUndefShuffle = false;
1910       ++CurIdx;
1911       continue;
1912     }
1913 
1914     unsigned InitElts = VVT->getNumElements();
1915 
1916     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1917     // input is the same width as the vector being constructed, generate an
1918     // optimized shuffle of the swizzle input into the result.
1919     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1920     if (isa<ExtVectorElementExpr>(IE)) {
1921       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1922       Value *SVOp = SVI->getOperand(0);
1923       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1924 
1925       if (OpTy->getNumElements() == ResElts) {
1926         for (unsigned j = 0; j != CurIdx; ++j) {
1927           // If the current vector initializer is a shuffle with undef, merge
1928           // this shuffle directly into it.
1929           if (VIsUndefShuffle) {
1930             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1931                                       CGF.Int32Ty));
1932           } else {
1933             Args.push_back(Builder.getInt32(j));
1934           }
1935         }
1936         for (unsigned j = 0, je = InitElts; j != je; ++j)
1937           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1938         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1939 
1940         if (VIsUndefShuffle)
1941           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1942 
1943         Init = SVOp;
1944       }
1945     }
1946 
1947     // Extend init to result vector length, and then shuffle its contribution
1948     // to the vector initializer into V.
1949     if (Args.empty()) {
1950       for (unsigned j = 0; j != InitElts; ++j)
1951         Args.push_back(Builder.getInt32(j));
1952       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1953       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1954       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1955                                          Mask, "vext");
1956 
1957       Args.clear();
1958       for (unsigned j = 0; j != CurIdx; ++j)
1959         Args.push_back(Builder.getInt32(j));
1960       for (unsigned j = 0; j != InitElts; ++j)
1961         Args.push_back(Builder.getInt32(j+Offset));
1962       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1963     }
1964 
1965     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1966     // merging subsequent shuffles into this one.
1967     if (CurIdx == 0)
1968       std::swap(V, Init);
1969     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1970     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1971     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1972     CurIdx += InitElts;
1973   }
1974 
1975   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1976   // Emit remaining default initializers.
1977   llvm::Type *EltTy = VType->getElementType();
1978 
1979   // Emit remaining default initializers
1980   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1981     Value *Idx = Builder.getInt32(CurIdx);
1982     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1983     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1984   }
1985   return V;
1986 }
1987 
1988 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1989   const Expr *E = CE->getSubExpr();
1990 
1991   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1992     return false;
1993 
1994   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1995     // We always assume that 'this' is never null.
1996     return false;
1997   }
1998 
1999   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2000     // And that glvalue casts are never null.
2001     if (ICE->getValueKind() != VK_RValue)
2002       return false;
2003   }
2004 
2005   return true;
2006 }
2007 
2008 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
2009 // have to handle a more broad range of conversions than explicit casts, as they
2010 // handle things like function to ptr-to-function decay etc.
2011 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2012   Expr *E = CE->getSubExpr();
2013   QualType DestTy = CE->getType();
2014   CastKind Kind = CE->getCastKind();
2015 
2016   // These cases are generally not written to ignore the result of
2017   // evaluating their sub-expressions, so we clear this now.
2018   bool Ignored = TestAndClearIgnoreResultAssign();
2019 
2020   // Since almost all cast kinds apply to scalars, this switch doesn't have
2021   // a default case, so the compiler will warn on a missing case.  The cases
2022   // are in the same order as in the CastKind enum.
2023   switch (Kind) {
2024   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2025   case CK_BuiltinFnToFnPtr:
2026     llvm_unreachable("builtin functions are handled elsewhere");
2027 
2028   case CK_LValueBitCast:
2029   case CK_ObjCObjectLValueCast: {
2030     Address Addr = EmitLValue(E).getAddress();
2031     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2032     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2033     return EmitLoadOfLValue(LV, CE->getExprLoc());
2034   }
2035 
2036   case CK_CPointerToObjCPointerCast:
2037   case CK_BlockPointerToObjCPointerCast:
2038   case CK_AnyPointerToBlockPointerCast:
2039   case CK_BitCast: {
2040     Value *Src = Visit(const_cast<Expr*>(E));
2041     llvm::Type *SrcTy = Src->getType();
2042     llvm::Type *DstTy = ConvertType(DestTy);
2043     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2044         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2045       llvm_unreachable("wrong cast for pointers in different address spaces"
2046                        "(must be an address space cast)!");
2047     }
2048 
2049     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2050       if (auto PT = DestTy->getAs<PointerType>())
2051         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2052                                       /*MayBeNull=*/true,
2053                                       CodeGenFunction::CFITCK_UnrelatedCast,
2054                                       CE->getBeginLoc());
2055     }
2056 
2057     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2058       const QualType SrcType = E->getType();
2059 
2060       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2061         // Casting to pointer that could carry dynamic information (provided by
2062         // invariant.group) requires launder.
2063         Src = Builder.CreateLaunderInvariantGroup(Src);
2064       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2065         // Casting to pointer that does not carry dynamic information (provided
2066         // by invariant.group) requires stripping it.  Note that we don't do it
2067         // if the source could not be dynamic type and destination could be
2068         // dynamic because dynamic information is already laundered.  It is
2069         // because launder(strip(src)) == launder(src), so there is no need to
2070         // add extra strip before launder.
2071         Src = Builder.CreateStripInvariantGroup(Src);
2072       }
2073     }
2074 
2075     // Update heapallocsite metadata when there is an explicit cast.
2076     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2077       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2078           CGF.getDebugInfo()->
2079               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2080 
2081     return Builder.CreateBitCast(Src, DstTy);
2082   }
2083   case CK_AddressSpaceConversion: {
2084     Expr::EvalResult Result;
2085     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2086         Result.Val.isNullPointer()) {
2087       // If E has side effect, it is emitted even if its final result is a
2088       // null pointer. In that case, a DCE pass should be able to
2089       // eliminate the useless instructions emitted during translating E.
2090       if (Result.HasSideEffects)
2091         Visit(E);
2092       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2093           ConvertType(DestTy)), DestTy);
2094     }
2095     // Since target may map different address spaces in AST to the same address
2096     // space, an address space conversion may end up as a bitcast.
2097     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2098         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2099         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2100   }
2101   case CK_AtomicToNonAtomic:
2102   case CK_NonAtomicToAtomic:
2103   case CK_NoOp:
2104   case CK_UserDefinedConversion:
2105     return Visit(const_cast<Expr*>(E));
2106 
2107   case CK_BaseToDerived: {
2108     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2109     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2110 
2111     Address Base = CGF.EmitPointerWithAlignment(E);
2112     Address Derived =
2113       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2114                                    CE->path_begin(), CE->path_end(),
2115                                    CGF.ShouldNullCheckClassCastValue(CE));
2116 
2117     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2118     // performed and the object is not of the derived type.
2119     if (CGF.sanitizePerformTypeCheck())
2120       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2121                         Derived.getPointer(), DestTy->getPointeeType());
2122 
2123     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2124       CGF.EmitVTablePtrCheckForCast(
2125           DestTy->getPointeeType(), Derived.getPointer(),
2126           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2127           CE->getBeginLoc());
2128 
2129     return Derived.getPointer();
2130   }
2131   case CK_UncheckedDerivedToBase:
2132   case CK_DerivedToBase: {
2133     // The EmitPointerWithAlignment path does this fine; just discard
2134     // the alignment.
2135     return CGF.EmitPointerWithAlignment(CE).getPointer();
2136   }
2137 
2138   case CK_Dynamic: {
2139     Address V = CGF.EmitPointerWithAlignment(E);
2140     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2141     return CGF.EmitDynamicCast(V, DCE);
2142   }
2143 
2144   case CK_ArrayToPointerDecay:
2145     return CGF.EmitArrayToPointerDecay(E).getPointer();
2146   case CK_FunctionToPointerDecay:
2147     return EmitLValue(E).getPointer();
2148 
2149   case CK_NullToPointer:
2150     if (MustVisitNullValue(E))
2151       (void) Visit(E);
2152 
2153     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2154                               DestTy);
2155 
2156   case CK_NullToMemberPointer: {
2157     if (MustVisitNullValue(E))
2158       (void) Visit(E);
2159 
2160     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2161     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2162   }
2163 
2164   case CK_ReinterpretMemberPointer:
2165   case CK_BaseToDerivedMemberPointer:
2166   case CK_DerivedToBaseMemberPointer: {
2167     Value *Src = Visit(E);
2168 
2169     // Note that the AST doesn't distinguish between checked and
2170     // unchecked member pointer conversions, so we always have to
2171     // implement checked conversions here.  This is inefficient when
2172     // actual control flow may be required in order to perform the
2173     // check, which it is for data member pointers (but not member
2174     // function pointers on Itanium and ARM).
2175     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2176   }
2177 
2178   case CK_ARCProduceObject:
2179     return CGF.EmitARCRetainScalarExpr(E);
2180   case CK_ARCConsumeObject:
2181     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2182   case CK_ARCReclaimReturnedObject:
2183     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2184   case CK_ARCExtendBlockObject:
2185     return CGF.EmitARCExtendBlockObject(E);
2186 
2187   case CK_CopyAndAutoreleaseBlockObject:
2188     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2189 
2190   case CK_FloatingRealToComplex:
2191   case CK_FloatingComplexCast:
2192   case CK_IntegralRealToComplex:
2193   case CK_IntegralComplexCast:
2194   case CK_IntegralComplexToFloatingComplex:
2195   case CK_FloatingComplexToIntegralComplex:
2196   case CK_ConstructorConversion:
2197   case CK_ToUnion:
2198     llvm_unreachable("scalar cast to non-scalar value");
2199 
2200   case CK_LValueToRValue:
2201     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2202     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2203     return Visit(const_cast<Expr*>(E));
2204 
2205   case CK_IntegralToPointer: {
2206     Value *Src = Visit(const_cast<Expr*>(E));
2207 
2208     // First, convert to the correct width so that we control the kind of
2209     // extension.
2210     auto DestLLVMTy = ConvertType(DestTy);
2211     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2212     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2213     llvm::Value* IntResult =
2214       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2215 
2216     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2217 
2218     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2219       // Going from integer to pointer that could be dynamic requires reloading
2220       // dynamic information from invariant.group.
2221       if (DestTy.mayBeDynamicClass())
2222         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2223     }
2224     return IntToPtr;
2225   }
2226   case CK_PointerToIntegral: {
2227     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2228     auto *PtrExpr = Visit(E);
2229 
2230     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2231       const QualType SrcType = E->getType();
2232 
2233       // Casting to integer requires stripping dynamic information as it does
2234       // not carries it.
2235       if (SrcType.mayBeDynamicClass())
2236         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2237     }
2238 
2239     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2240   }
2241   case CK_ToVoid: {
2242     CGF.EmitIgnoredExpr(E);
2243     return nullptr;
2244   }
2245   case CK_VectorSplat: {
2246     llvm::Type *DstTy = ConvertType(DestTy);
2247     Value *Elt = Visit(const_cast<Expr*>(E));
2248     // Splat the element across to all elements
2249     unsigned NumElements = DstTy->getVectorNumElements();
2250     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2251   }
2252 
2253   case CK_FixedPointCast:
2254     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2255                                 CE->getExprLoc());
2256 
2257   case CK_FixedPointToBoolean:
2258     assert(E->getType()->isFixedPointType() &&
2259            "Expected src type to be fixed point type");
2260     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2261     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2262                                 CE->getExprLoc());
2263 
2264   case CK_FixedPointToIntegral:
2265     assert(E->getType()->isFixedPointType() &&
2266            "Expected src type to be fixed point type");
2267     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2268     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2269                                 CE->getExprLoc());
2270 
2271   case CK_IntegralToFixedPoint:
2272     assert(E->getType()->isIntegerType() &&
2273            "Expected src type to be an integer");
2274     assert(DestTy->isFixedPointType() &&
2275            "Expected dest type to be fixed point type");
2276     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2277                                 CE->getExprLoc());
2278 
2279   case CK_IntegralCast: {
2280     ScalarConversionOpts Opts;
2281     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2282       if (!ICE->isPartOfExplicitCast())
2283         Opts = ScalarConversionOpts(CGF.SanOpts);
2284     }
2285     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2286                                 CE->getExprLoc(), Opts);
2287   }
2288   case CK_IntegralToFloating:
2289   case CK_FloatingToIntegral:
2290   case CK_FloatingCast:
2291     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2292                                 CE->getExprLoc());
2293   case CK_BooleanToSignedIntegral: {
2294     ScalarConversionOpts Opts;
2295     Opts.TreatBooleanAsSigned = true;
2296     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2297                                 CE->getExprLoc(), Opts);
2298   }
2299   case CK_IntegralToBoolean:
2300     return EmitIntToBoolConversion(Visit(E));
2301   case CK_PointerToBoolean:
2302     return EmitPointerToBoolConversion(Visit(E), E->getType());
2303   case CK_FloatingToBoolean:
2304     return EmitFloatToBoolConversion(Visit(E));
2305   case CK_MemberPointerToBoolean: {
2306     llvm::Value *MemPtr = Visit(E);
2307     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2308     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2309   }
2310 
2311   case CK_FloatingComplexToReal:
2312   case CK_IntegralComplexToReal:
2313     return CGF.EmitComplexExpr(E, false, true).first;
2314 
2315   case CK_FloatingComplexToBoolean:
2316   case CK_IntegralComplexToBoolean: {
2317     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2318 
2319     // TODO: kill this function off, inline appropriate case here
2320     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2321                                          CE->getExprLoc());
2322   }
2323 
2324   case CK_ZeroToOCLOpaqueType: {
2325     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2326             DestTy->isOCLIntelSubgroupAVCType()) &&
2327            "CK_ZeroToOCLEvent cast on non-event type");
2328     return llvm::Constant::getNullValue(ConvertType(DestTy));
2329   }
2330 
2331   case CK_IntToOCLSampler:
2332     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2333 
2334   } // end of switch
2335 
2336   llvm_unreachable("unknown scalar cast");
2337 }
2338 
2339 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2340   CodeGenFunction::StmtExprEvaluation eval(CGF);
2341   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2342                                            !E->getType()->isVoidType());
2343   if (!RetAlloca.isValid())
2344     return nullptr;
2345   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2346                               E->getExprLoc());
2347 }
2348 
2349 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2350   CGF.enterFullExpression(E);
2351   CodeGenFunction::RunCleanupsScope Scope(CGF);
2352   Value *V = Visit(E->getSubExpr());
2353   // Defend against dominance problems caused by jumps out of expression
2354   // evaluation through the shared cleanup block.
2355   Scope.ForceCleanup({&V});
2356   return V;
2357 }
2358 
2359 //===----------------------------------------------------------------------===//
2360 //                             Unary Operators
2361 //===----------------------------------------------------------------------===//
2362 
2363 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2364                                            llvm::Value *InVal, bool IsInc) {
2365   BinOpInfo BinOp;
2366   BinOp.LHS = InVal;
2367   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2368   BinOp.Ty = E->getType();
2369   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2370   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2371   BinOp.E = E;
2372   return BinOp;
2373 }
2374 
2375 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2376     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2377   llvm::Value *Amount =
2378       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2379   StringRef Name = IsInc ? "inc" : "dec";
2380   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2381   case LangOptions::SOB_Defined:
2382     return Builder.CreateAdd(InVal, Amount, Name);
2383   case LangOptions::SOB_Undefined:
2384     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2385       return Builder.CreateNSWAdd(InVal, Amount, Name);
2386     LLVM_FALLTHROUGH;
2387   case LangOptions::SOB_Trapping:
2388     if (!E->canOverflow())
2389       return Builder.CreateNSWAdd(InVal, Amount, Name);
2390     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2391   }
2392   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2393 }
2394 
2395 llvm::Value *
2396 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2397                                            bool isInc, bool isPre) {
2398 
2399   QualType type = E->getSubExpr()->getType();
2400   llvm::PHINode *atomicPHI = nullptr;
2401   llvm::Value *value;
2402   llvm::Value *input;
2403 
2404   int amount = (isInc ? 1 : -1);
2405   bool isSubtraction = !isInc;
2406 
2407   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2408     type = atomicTy->getValueType();
2409     if (isInc && type->isBooleanType()) {
2410       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2411       if (isPre) {
2412         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2413           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2414         return Builder.getTrue();
2415       }
2416       // For atomic bool increment, we just store true and return it for
2417       // preincrement, do an atomic swap with true for postincrement
2418       return Builder.CreateAtomicRMW(
2419           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2420           llvm::AtomicOrdering::SequentiallyConsistent);
2421     }
2422     // Special case for atomic increment / decrement on integers, emit
2423     // atomicrmw instructions.  We skip this if we want to be doing overflow
2424     // checking, and fall into the slow path with the atomic cmpxchg loop.
2425     if (!type->isBooleanType() && type->isIntegerType() &&
2426         !(type->isUnsignedIntegerType() &&
2427           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2428         CGF.getLangOpts().getSignedOverflowBehavior() !=
2429             LangOptions::SOB_Trapping) {
2430       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2431         llvm::AtomicRMWInst::Sub;
2432       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2433         llvm::Instruction::Sub;
2434       llvm::Value *amt = CGF.EmitToMemory(
2435           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2436       llvm::Value *old = Builder.CreateAtomicRMW(aop,
2437           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2438       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2439     }
2440     value = EmitLoadOfLValue(LV, E->getExprLoc());
2441     input = value;
2442     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2443     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2444     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2445     value = CGF.EmitToMemory(value, type);
2446     Builder.CreateBr(opBB);
2447     Builder.SetInsertPoint(opBB);
2448     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2449     atomicPHI->addIncoming(value, startBB);
2450     value = atomicPHI;
2451   } else {
2452     value = EmitLoadOfLValue(LV, E->getExprLoc());
2453     input = value;
2454   }
2455 
2456   // Special case of integer increment that we have to check first: bool++.
2457   // Due to promotion rules, we get:
2458   //   bool++ -> bool = bool + 1
2459   //          -> bool = (int)bool + 1
2460   //          -> bool = ((int)bool + 1 != 0)
2461   // An interesting aspect of this is that increment is always true.
2462   // Decrement does not have this property.
2463   if (isInc && type->isBooleanType()) {
2464     value = Builder.getTrue();
2465 
2466   // Most common case by far: integer increment.
2467   } else if (type->isIntegerType()) {
2468     // Note that signed integer inc/dec with width less than int can't
2469     // overflow because of promotion rules; we're just eliding a few steps here.
2470     if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2471       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2472     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2473                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2474       value =
2475           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2476     } else {
2477       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2478       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2479     }
2480 
2481   // Next most common: pointer increment.
2482   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2483     QualType type = ptr->getPointeeType();
2484 
2485     // VLA types don't have constant size.
2486     if (const VariableArrayType *vla
2487           = CGF.getContext().getAsVariableArrayType(type)) {
2488       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2489       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2490       if (CGF.getLangOpts().isSignedOverflowDefined())
2491         value = Builder.CreateGEP(value, numElts, "vla.inc");
2492       else
2493         value = CGF.EmitCheckedInBoundsGEP(
2494             value, numElts, /*SignedIndices=*/false, isSubtraction,
2495             E->getExprLoc(), "vla.inc");
2496 
2497     // Arithmetic on function pointers (!) is just +-1.
2498     } else if (type->isFunctionType()) {
2499       llvm::Value *amt = Builder.getInt32(amount);
2500 
2501       value = CGF.EmitCastToVoidPtr(value);
2502       if (CGF.getLangOpts().isSignedOverflowDefined())
2503         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2504       else
2505         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2506                                            isSubtraction, E->getExprLoc(),
2507                                            "incdec.funcptr");
2508       value = Builder.CreateBitCast(value, input->getType());
2509 
2510     // For everything else, we can just do a simple increment.
2511     } else {
2512       llvm::Value *amt = Builder.getInt32(amount);
2513       if (CGF.getLangOpts().isSignedOverflowDefined())
2514         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2515       else
2516         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2517                                            isSubtraction, E->getExprLoc(),
2518                                            "incdec.ptr");
2519     }
2520 
2521   // Vector increment/decrement.
2522   } else if (type->isVectorType()) {
2523     if (type->hasIntegerRepresentation()) {
2524       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2525 
2526       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2527     } else {
2528       value = Builder.CreateFAdd(
2529                   value,
2530                   llvm::ConstantFP::get(value->getType(), amount),
2531                   isInc ? "inc" : "dec");
2532     }
2533 
2534   // Floating point.
2535   } else if (type->isRealFloatingType()) {
2536     // Add the inc/dec to the real part.
2537     llvm::Value *amt;
2538 
2539     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2540       // Another special case: half FP increment should be done via float
2541       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2542         value = Builder.CreateCall(
2543             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2544                                  CGF.CGM.FloatTy),
2545             input, "incdec.conv");
2546       } else {
2547         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2548       }
2549     }
2550 
2551     if (value->getType()->isFloatTy())
2552       amt = llvm::ConstantFP::get(VMContext,
2553                                   llvm::APFloat(static_cast<float>(amount)));
2554     else if (value->getType()->isDoubleTy())
2555       amt = llvm::ConstantFP::get(VMContext,
2556                                   llvm::APFloat(static_cast<double>(amount)));
2557     else {
2558       // Remaining types are Half, LongDouble or __float128. Convert from float.
2559       llvm::APFloat F(static_cast<float>(amount));
2560       bool ignored;
2561       const llvm::fltSemantics *FS;
2562       // Don't use getFloatTypeSemantics because Half isn't
2563       // necessarily represented using the "half" LLVM type.
2564       if (value->getType()->isFP128Ty())
2565         FS = &CGF.getTarget().getFloat128Format();
2566       else if (value->getType()->isHalfTy())
2567         FS = &CGF.getTarget().getHalfFormat();
2568       else
2569         FS = &CGF.getTarget().getLongDoubleFormat();
2570       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2571       amt = llvm::ConstantFP::get(VMContext, F);
2572     }
2573     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2574 
2575     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2576       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2577         value = Builder.CreateCall(
2578             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2579                                  CGF.CGM.FloatTy),
2580             value, "incdec.conv");
2581       } else {
2582         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2583       }
2584     }
2585 
2586   // Objective-C pointer types.
2587   } else {
2588     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2589     value = CGF.EmitCastToVoidPtr(value);
2590 
2591     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2592     if (!isInc) size = -size;
2593     llvm::Value *sizeValue =
2594       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2595 
2596     if (CGF.getLangOpts().isSignedOverflowDefined())
2597       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2598     else
2599       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2600                                          /*SignedIndices=*/false, isSubtraction,
2601                                          E->getExprLoc(), "incdec.objptr");
2602     value = Builder.CreateBitCast(value, input->getType());
2603   }
2604 
2605   if (atomicPHI) {
2606     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2607     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2608     auto Pair = CGF.EmitAtomicCompareExchange(
2609         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2610     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2611     llvm::Value *success = Pair.second;
2612     atomicPHI->addIncoming(old, curBlock);
2613     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2614     Builder.SetInsertPoint(contBB);
2615     return isPre ? value : input;
2616   }
2617 
2618   // Store the updated result through the lvalue.
2619   if (LV.isBitField())
2620     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2621   else
2622     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2623 
2624   // If this is a postinc, return the value read from memory, otherwise use the
2625   // updated value.
2626   return isPre ? value : input;
2627 }
2628 
2629 
2630 
2631 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2632   TestAndClearIgnoreResultAssign();
2633   // Emit unary minus with EmitSub so we handle overflow cases etc.
2634   BinOpInfo BinOp;
2635   BinOp.RHS = Visit(E->getSubExpr());
2636 
2637   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2638     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2639   else
2640     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2641   BinOp.Ty = E->getType();
2642   BinOp.Opcode = BO_Sub;
2643   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2644   BinOp.E = E;
2645   return EmitSub(BinOp);
2646 }
2647 
2648 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2649   TestAndClearIgnoreResultAssign();
2650   Value *Op = Visit(E->getSubExpr());
2651   return Builder.CreateNot(Op, "neg");
2652 }
2653 
2654 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2655   // Perform vector logical not on comparison with zero vector.
2656   if (E->getType()->isExtVectorType()) {
2657     Value *Oper = Visit(E->getSubExpr());
2658     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2659     Value *Result;
2660     if (Oper->getType()->isFPOrFPVectorTy())
2661       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2662     else
2663       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2664     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2665   }
2666 
2667   // Compare operand to zero.
2668   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2669 
2670   // Invert value.
2671   // TODO: Could dynamically modify easy computations here.  For example, if
2672   // the operand is an icmp ne, turn into icmp eq.
2673   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2674 
2675   // ZExt result to the expr type.
2676   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2677 }
2678 
2679 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2680   // Try folding the offsetof to a constant.
2681   Expr::EvalResult EVResult;
2682   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2683     llvm::APSInt Value = EVResult.Val.getInt();
2684     return Builder.getInt(Value);
2685   }
2686 
2687   // Loop over the components of the offsetof to compute the value.
2688   unsigned n = E->getNumComponents();
2689   llvm::Type* ResultType = ConvertType(E->getType());
2690   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2691   QualType CurrentType = E->getTypeSourceInfo()->getType();
2692   for (unsigned i = 0; i != n; ++i) {
2693     OffsetOfNode ON = E->getComponent(i);
2694     llvm::Value *Offset = nullptr;
2695     switch (ON.getKind()) {
2696     case OffsetOfNode::Array: {
2697       // Compute the index
2698       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2699       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2700       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2701       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2702 
2703       // Save the element type
2704       CurrentType =
2705           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2706 
2707       // Compute the element size
2708       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2709           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2710 
2711       // Multiply out to compute the result
2712       Offset = Builder.CreateMul(Idx, ElemSize);
2713       break;
2714     }
2715 
2716     case OffsetOfNode::Field: {
2717       FieldDecl *MemberDecl = ON.getField();
2718       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2719       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2720 
2721       // Compute the index of the field in its parent.
2722       unsigned i = 0;
2723       // FIXME: It would be nice if we didn't have to loop here!
2724       for (RecordDecl::field_iterator Field = RD->field_begin(),
2725                                       FieldEnd = RD->field_end();
2726            Field != FieldEnd; ++Field, ++i) {
2727         if (*Field == MemberDecl)
2728           break;
2729       }
2730       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2731 
2732       // Compute the offset to the field
2733       int64_t OffsetInt = RL.getFieldOffset(i) /
2734                           CGF.getContext().getCharWidth();
2735       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2736 
2737       // Save the element type.
2738       CurrentType = MemberDecl->getType();
2739       break;
2740     }
2741 
2742     case OffsetOfNode::Identifier:
2743       llvm_unreachable("dependent __builtin_offsetof");
2744 
2745     case OffsetOfNode::Base: {
2746       if (ON.getBase()->isVirtual()) {
2747         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2748         continue;
2749       }
2750 
2751       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2752       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2753 
2754       // Save the element type.
2755       CurrentType = ON.getBase()->getType();
2756 
2757       // Compute the offset to the base.
2758       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2759       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2760       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2761       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2762       break;
2763     }
2764     }
2765     Result = Builder.CreateAdd(Result, Offset);
2766   }
2767   return Result;
2768 }
2769 
2770 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2771 /// argument of the sizeof expression as an integer.
2772 Value *
2773 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2774                               const UnaryExprOrTypeTraitExpr *E) {
2775   QualType TypeToSize = E->getTypeOfArgument();
2776   if (E->getKind() == UETT_SizeOf) {
2777     if (const VariableArrayType *VAT =
2778           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2779       if (E->isArgumentType()) {
2780         // sizeof(type) - make sure to emit the VLA size.
2781         CGF.EmitVariablyModifiedType(TypeToSize);
2782       } else {
2783         // C99 6.5.3.4p2: If the argument is an expression of type
2784         // VLA, it is evaluated.
2785         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2786       }
2787 
2788       auto VlaSize = CGF.getVLASize(VAT);
2789       llvm::Value *size = VlaSize.NumElts;
2790 
2791       // Scale the number of non-VLA elements by the non-VLA element size.
2792       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2793       if (!eltSize.isOne())
2794         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2795 
2796       return size;
2797     }
2798   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2799     auto Alignment =
2800         CGF.getContext()
2801             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2802                 E->getTypeOfArgument()->getPointeeType()))
2803             .getQuantity();
2804     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2805   }
2806 
2807   // If this isn't sizeof(vla), the result must be constant; use the constant
2808   // folding logic so we don't have to duplicate it here.
2809   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2810 }
2811 
2812 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2813   Expr *Op = E->getSubExpr();
2814   if (Op->getType()->isAnyComplexType()) {
2815     // If it's an l-value, load through the appropriate subobject l-value.
2816     // Note that we have to ask E because Op might be an l-value that
2817     // this won't work for, e.g. an Obj-C property.
2818     if (E->isGLValue())
2819       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2820                                   E->getExprLoc()).getScalarVal();
2821 
2822     // Otherwise, calculate and project.
2823     return CGF.EmitComplexExpr(Op, false, true).first;
2824   }
2825 
2826   return Visit(Op);
2827 }
2828 
2829 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2830   Expr *Op = E->getSubExpr();
2831   if (Op->getType()->isAnyComplexType()) {
2832     // If it's an l-value, load through the appropriate subobject l-value.
2833     // Note that we have to ask E because Op might be an l-value that
2834     // this won't work for, e.g. an Obj-C property.
2835     if (Op->isGLValue())
2836       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2837                                   E->getExprLoc()).getScalarVal();
2838 
2839     // Otherwise, calculate and project.
2840     return CGF.EmitComplexExpr(Op, true, false).second;
2841   }
2842 
2843   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2844   // effects are evaluated, but not the actual value.
2845   if (Op->isGLValue())
2846     CGF.EmitLValue(Op);
2847   else
2848     CGF.EmitScalarExpr(Op, true);
2849   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2850 }
2851 
2852 //===----------------------------------------------------------------------===//
2853 //                           Binary Operators
2854 //===----------------------------------------------------------------------===//
2855 
2856 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2857   TestAndClearIgnoreResultAssign();
2858   BinOpInfo Result;
2859   Result.LHS = Visit(E->getLHS());
2860   Result.RHS = Visit(E->getRHS());
2861   Result.Ty  = E->getType();
2862   Result.Opcode = E->getOpcode();
2863   Result.FPFeatures = E->getFPFeatures();
2864   Result.E = E;
2865   return Result;
2866 }
2867 
2868 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2869                                               const CompoundAssignOperator *E,
2870                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2871                                                    Value *&Result) {
2872   QualType LHSTy = E->getLHS()->getType();
2873   BinOpInfo OpInfo;
2874 
2875   if (E->getComputationResultType()->isAnyComplexType())
2876     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2877 
2878   // Emit the RHS first.  __block variables need to have the rhs evaluated
2879   // first, plus this should improve codegen a little.
2880   OpInfo.RHS = Visit(E->getRHS());
2881   OpInfo.Ty = E->getComputationResultType();
2882   OpInfo.Opcode = E->getOpcode();
2883   OpInfo.FPFeatures = E->getFPFeatures();
2884   OpInfo.E = E;
2885   // Load/convert the LHS.
2886   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2887 
2888   llvm::PHINode *atomicPHI = nullptr;
2889   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2890     QualType type = atomicTy->getValueType();
2891     if (!type->isBooleanType() && type->isIntegerType() &&
2892         !(type->isUnsignedIntegerType() &&
2893           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2894         CGF.getLangOpts().getSignedOverflowBehavior() !=
2895             LangOptions::SOB_Trapping) {
2896       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2897       switch (OpInfo.Opcode) {
2898         // We don't have atomicrmw operands for *, %, /, <<, >>
2899         case BO_MulAssign: case BO_DivAssign:
2900         case BO_RemAssign:
2901         case BO_ShlAssign:
2902         case BO_ShrAssign:
2903           break;
2904         case BO_AddAssign:
2905           aop = llvm::AtomicRMWInst::Add;
2906           break;
2907         case BO_SubAssign:
2908           aop = llvm::AtomicRMWInst::Sub;
2909           break;
2910         case BO_AndAssign:
2911           aop = llvm::AtomicRMWInst::And;
2912           break;
2913         case BO_XorAssign:
2914           aop = llvm::AtomicRMWInst::Xor;
2915           break;
2916         case BO_OrAssign:
2917           aop = llvm::AtomicRMWInst::Or;
2918           break;
2919         default:
2920           llvm_unreachable("Invalid compound assignment type");
2921       }
2922       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2923         llvm::Value *amt = CGF.EmitToMemory(
2924             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2925                                  E->getExprLoc()),
2926             LHSTy);
2927         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2928             llvm::AtomicOrdering::SequentiallyConsistent);
2929         return LHSLV;
2930       }
2931     }
2932     // FIXME: For floating point types, we should be saving and restoring the
2933     // floating point environment in the loop.
2934     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2935     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2936     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2937     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2938     Builder.CreateBr(opBB);
2939     Builder.SetInsertPoint(opBB);
2940     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2941     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2942     OpInfo.LHS = atomicPHI;
2943   }
2944   else
2945     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2946 
2947   SourceLocation Loc = E->getExprLoc();
2948   OpInfo.LHS =
2949       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2950 
2951   // Expand the binary operator.
2952   Result = (this->*Func)(OpInfo);
2953 
2954   // Convert the result back to the LHS type,
2955   // potentially with Implicit Conversion sanitizer check.
2956   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2957                                 Loc, ScalarConversionOpts(CGF.SanOpts));
2958 
2959   if (atomicPHI) {
2960     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2961     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2962     auto Pair = CGF.EmitAtomicCompareExchange(
2963         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2964     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2965     llvm::Value *success = Pair.second;
2966     atomicPHI->addIncoming(old, curBlock);
2967     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2968     Builder.SetInsertPoint(contBB);
2969     return LHSLV;
2970   }
2971 
2972   // Store the result value into the LHS lvalue. Bit-fields are handled
2973   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2974   // 'An assignment expression has the value of the left operand after the
2975   // assignment...'.
2976   if (LHSLV.isBitField())
2977     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2978   else
2979     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2980 
2981   return LHSLV;
2982 }
2983 
2984 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2985                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2986   bool Ignore = TestAndClearIgnoreResultAssign();
2987   Value *RHS = nullptr;
2988   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2989 
2990   // If the result is clearly ignored, return now.
2991   if (Ignore)
2992     return nullptr;
2993 
2994   // The result of an assignment in C is the assigned r-value.
2995   if (!CGF.getLangOpts().CPlusPlus)
2996     return RHS;
2997 
2998   // If the lvalue is non-volatile, return the computed value of the assignment.
2999   if (!LHS.isVolatileQualified())
3000     return RHS;
3001 
3002   // Otherwise, reload the value.
3003   return EmitLoadOfLValue(LHS, E->getExprLoc());
3004 }
3005 
3006 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3007     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3008   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3009 
3010   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3011     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3012                                     SanitizerKind::IntegerDivideByZero));
3013   }
3014 
3015   const auto *BO = cast<BinaryOperator>(Ops.E);
3016   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3017       Ops.Ty->hasSignedIntegerRepresentation() &&
3018       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3019       Ops.mayHaveIntegerOverflow()) {
3020     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3021 
3022     llvm::Value *IntMin =
3023       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3024     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3025 
3026     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3027     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3028     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3029     Checks.push_back(
3030         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3031   }
3032 
3033   if (Checks.size() > 0)
3034     EmitBinOpCheck(Checks, Ops);
3035 }
3036 
3037 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3038   {
3039     CodeGenFunction::SanitizerScope SanScope(&CGF);
3040     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3041          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3042         Ops.Ty->isIntegerType() &&
3043         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3044       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3045       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3046     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3047                Ops.Ty->isRealFloatingType() &&
3048                Ops.mayHaveFloatDivisionByZero()) {
3049       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3050       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3051       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3052                      Ops);
3053     }
3054   }
3055 
3056   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3057     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3058     if (CGF.getLangOpts().OpenCL &&
3059         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3060       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3061       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3062       // build option allows an application to specify that single precision
3063       // floating-point divide (x/y and 1/x) and sqrt used in the program
3064       // source are correctly rounded.
3065       llvm::Type *ValTy = Val->getType();
3066       if (ValTy->isFloatTy() ||
3067           (isa<llvm::VectorType>(ValTy) &&
3068            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3069         CGF.SetFPAccuracy(Val, 2.5);
3070     }
3071     return Val;
3072   }
3073   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3074     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3075   else
3076     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3077 }
3078 
3079 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3080   // Rem in C can't be a floating point type: C99 6.5.5p2.
3081   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3082        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3083       Ops.Ty->isIntegerType() &&
3084       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3085     CodeGenFunction::SanitizerScope SanScope(&CGF);
3086     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3087     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3088   }
3089 
3090   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3091     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3092   else
3093     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3094 }
3095 
3096 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3097   unsigned IID;
3098   unsigned OpID = 0;
3099 
3100   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3101   switch (Ops.Opcode) {
3102   case BO_Add:
3103   case BO_AddAssign:
3104     OpID = 1;
3105     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3106                      llvm::Intrinsic::uadd_with_overflow;
3107     break;
3108   case BO_Sub:
3109   case BO_SubAssign:
3110     OpID = 2;
3111     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3112                      llvm::Intrinsic::usub_with_overflow;
3113     break;
3114   case BO_Mul:
3115   case BO_MulAssign:
3116     OpID = 3;
3117     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3118                      llvm::Intrinsic::umul_with_overflow;
3119     break;
3120   default:
3121     llvm_unreachable("Unsupported operation for overflow detection");
3122   }
3123   OpID <<= 1;
3124   if (isSigned)
3125     OpID |= 1;
3126 
3127   CodeGenFunction::SanitizerScope SanScope(&CGF);
3128   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3129 
3130   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3131 
3132   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3133   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3134   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3135 
3136   // Handle overflow with llvm.trap if no custom handler has been specified.
3137   const std::string *handlerName =
3138     &CGF.getLangOpts().OverflowHandler;
3139   if (handlerName->empty()) {
3140     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3141     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3142     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3143       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3144       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3145                               : SanitizerKind::UnsignedIntegerOverflow;
3146       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3147     } else
3148       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3149     return result;
3150   }
3151 
3152   // Branch in case of overflow.
3153   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3154   llvm::BasicBlock *continueBB =
3155       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3156   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3157 
3158   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3159 
3160   // If an overflow handler is set, then we want to call it and then use its
3161   // result, if it returns.
3162   Builder.SetInsertPoint(overflowBB);
3163 
3164   // Get the overflow handler.
3165   llvm::Type *Int8Ty = CGF.Int8Ty;
3166   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3167   llvm::FunctionType *handlerTy =
3168       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3169   llvm::FunctionCallee handler =
3170       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3171 
3172   // Sign extend the args to 64-bit, so that we can use the same handler for
3173   // all types of overflow.
3174   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3175   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3176 
3177   // Call the handler with the two arguments, the operation, and the size of
3178   // the result.
3179   llvm::Value *handlerArgs[] = {
3180     lhs,
3181     rhs,
3182     Builder.getInt8(OpID),
3183     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3184   };
3185   llvm::Value *handlerResult =
3186     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3187 
3188   // Truncate the result back to the desired size.
3189   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3190   Builder.CreateBr(continueBB);
3191 
3192   Builder.SetInsertPoint(continueBB);
3193   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3194   phi->addIncoming(result, initialBB);
3195   phi->addIncoming(handlerResult, overflowBB);
3196 
3197   return phi;
3198 }
3199 
3200 /// Emit pointer + index arithmetic.
3201 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3202                                     const BinOpInfo &op,
3203                                     bool isSubtraction) {
3204   // Must have binary (not unary) expr here.  Unary pointer
3205   // increment/decrement doesn't use this path.
3206   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3207 
3208   Value *pointer = op.LHS;
3209   Expr *pointerOperand = expr->getLHS();
3210   Value *index = op.RHS;
3211   Expr *indexOperand = expr->getRHS();
3212 
3213   // In a subtraction, the LHS is always the pointer.
3214   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3215     std::swap(pointer, index);
3216     std::swap(pointerOperand, indexOperand);
3217   }
3218 
3219   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3220 
3221   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3222   auto &DL = CGF.CGM.getDataLayout();
3223   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3224 
3225   // Some versions of glibc and gcc use idioms (particularly in their malloc
3226   // routines) that add a pointer-sized integer (known to be a pointer value)
3227   // to a null pointer in order to cast the value back to an integer or as
3228   // part of a pointer alignment algorithm.  This is undefined behavior, but
3229   // we'd like to be able to compile programs that use it.
3230   //
3231   // Normally, we'd generate a GEP with a null-pointer base here in response
3232   // to that code, but it's also UB to dereference a pointer created that
3233   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3234   // generate a direct cast of the integer value to a pointer.
3235   //
3236   // The idiom (p = nullptr + N) is not met if any of the following are true:
3237   //
3238   //   The operation is subtraction.
3239   //   The index is not pointer-sized.
3240   //   The pointer type is not byte-sized.
3241   //
3242   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3243                                                        op.Opcode,
3244                                                        expr->getLHS(),
3245                                                        expr->getRHS()))
3246     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3247 
3248   if (width != DL.getTypeSizeInBits(PtrTy)) {
3249     // Zero-extend or sign-extend the pointer value according to
3250     // whether the index is signed or not.
3251     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3252                                       "idx.ext");
3253   }
3254 
3255   // If this is subtraction, negate the index.
3256   if (isSubtraction)
3257     index = CGF.Builder.CreateNeg(index, "idx.neg");
3258 
3259   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3260     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3261                         /*Accessed*/ false);
3262 
3263   const PointerType *pointerType
3264     = pointerOperand->getType()->getAs<PointerType>();
3265   if (!pointerType) {
3266     QualType objectType = pointerOperand->getType()
3267                                         ->castAs<ObjCObjectPointerType>()
3268                                         ->getPointeeType();
3269     llvm::Value *objectSize
3270       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3271 
3272     index = CGF.Builder.CreateMul(index, objectSize);
3273 
3274     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3275     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3276     return CGF.Builder.CreateBitCast(result, pointer->getType());
3277   }
3278 
3279   QualType elementType = pointerType->getPointeeType();
3280   if (const VariableArrayType *vla
3281         = CGF.getContext().getAsVariableArrayType(elementType)) {
3282     // The element count here is the total number of non-VLA elements.
3283     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3284 
3285     // Effectively, the multiply by the VLA size is part of the GEP.
3286     // GEP indexes are signed, and scaling an index isn't permitted to
3287     // signed-overflow, so we use the same semantics for our explicit
3288     // multiply.  We suppress this if overflow is not undefined behavior.
3289     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3290       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3291       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3292     } else {
3293       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3294       pointer =
3295           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3296                                      op.E->getExprLoc(), "add.ptr");
3297     }
3298     return pointer;
3299   }
3300 
3301   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3302   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3303   // future proof.
3304   if (elementType->isVoidType() || elementType->isFunctionType()) {
3305     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3306     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3307     return CGF.Builder.CreateBitCast(result, pointer->getType());
3308   }
3309 
3310   if (CGF.getLangOpts().isSignedOverflowDefined())
3311     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3312 
3313   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3314                                     op.E->getExprLoc(), "add.ptr");
3315 }
3316 
3317 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3318 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3319 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3320 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3321 // efficient operations.
3322 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3323                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3324                            bool negMul, bool negAdd) {
3325   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3326 
3327   Value *MulOp0 = MulOp->getOperand(0);
3328   Value *MulOp1 = MulOp->getOperand(1);
3329   if (negMul) {
3330     MulOp0 =
3331       Builder.CreateFSub(
3332         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3333         "neg");
3334   } else if (negAdd) {
3335     Addend =
3336       Builder.CreateFSub(
3337         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3338         "neg");
3339   }
3340 
3341   Value *FMulAdd = Builder.CreateCall(
3342       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3343       {MulOp0, MulOp1, Addend});
3344    MulOp->eraseFromParent();
3345 
3346    return FMulAdd;
3347 }
3348 
3349 // Check whether it would be legal to emit an fmuladd intrinsic call to
3350 // represent op and if so, build the fmuladd.
3351 //
3352 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3353 // Does NOT check the type of the operation - it's assumed that this function
3354 // will be called from contexts where it's known that the type is contractable.
3355 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3356                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3357                          bool isSub=false) {
3358 
3359   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3360           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3361          "Only fadd/fsub can be the root of an fmuladd.");
3362 
3363   // Check whether this op is marked as fusable.
3364   if (!op.FPFeatures.allowFPContractWithinStatement())
3365     return nullptr;
3366 
3367   // We have a potentially fusable op. Look for a mul on one of the operands.
3368   // Also, make sure that the mul result isn't used directly. In that case,
3369   // there's no point creating a muladd operation.
3370   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3371     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3372         LHSBinOp->use_empty())
3373       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3374   }
3375   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3376     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3377         RHSBinOp->use_empty())
3378       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3379   }
3380 
3381   return nullptr;
3382 }
3383 
3384 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3385   if (op.LHS->getType()->isPointerTy() ||
3386       op.RHS->getType()->isPointerTy())
3387     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3388 
3389   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3390     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3391     case LangOptions::SOB_Defined:
3392       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3393     case LangOptions::SOB_Undefined:
3394       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3395         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3396       LLVM_FALLTHROUGH;
3397     case LangOptions::SOB_Trapping:
3398       if (CanElideOverflowCheck(CGF.getContext(), op))
3399         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3400       return EmitOverflowCheckedBinOp(op);
3401     }
3402   }
3403 
3404   if (op.Ty->isUnsignedIntegerType() &&
3405       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3406       !CanElideOverflowCheck(CGF.getContext(), op))
3407     return EmitOverflowCheckedBinOp(op);
3408 
3409   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3410     // Try to form an fmuladd.
3411     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3412       return FMulAdd;
3413 
3414     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3415     return propagateFMFlags(V, op);
3416   }
3417 
3418   if (op.isFixedPointBinOp())
3419     return EmitFixedPointBinOp(op);
3420 
3421   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3422 }
3423 
3424 /// The resulting value must be calculated with exact precision, so the operands
3425 /// may not be the same type.
3426 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3427   using llvm::APSInt;
3428   using llvm::ConstantInt;
3429 
3430   const auto *BinOp = cast<BinaryOperator>(op.E);
3431 
3432   // The result is a fixed point type and at least one of the operands is fixed
3433   // point while the other is either fixed point or an int. This resulting type
3434   // should be determined by Sema::handleFixedPointConversions().
3435   QualType ResultTy = op.Ty;
3436   QualType LHSTy = BinOp->getLHS()->getType();
3437   QualType RHSTy = BinOp->getRHS()->getType();
3438   ASTContext &Ctx = CGF.getContext();
3439   Value *LHS = op.LHS;
3440   Value *RHS = op.RHS;
3441 
3442   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3443   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3444   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3445   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3446 
3447   // Convert the operands to the full precision type.
3448   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3449                                             BinOp->getExprLoc());
3450   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3451                                             BinOp->getExprLoc());
3452 
3453   // Perform the actual addition.
3454   Value *Result;
3455   switch (BinOp->getOpcode()) {
3456   case BO_Add: {
3457     if (ResultFixedSema.isSaturated()) {
3458       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3459                                     ? llvm::Intrinsic::sadd_sat
3460                                     : llvm::Intrinsic::uadd_sat;
3461       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3462     } else {
3463       Result = Builder.CreateAdd(FullLHS, FullRHS);
3464     }
3465     break;
3466   }
3467   case BO_Sub: {
3468     if (ResultFixedSema.isSaturated()) {
3469       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3470                                     ? llvm::Intrinsic::ssub_sat
3471                                     : llvm::Intrinsic::usub_sat;
3472       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3473     } else {
3474       Result = Builder.CreateSub(FullLHS, FullRHS);
3475     }
3476     break;
3477   }
3478   case BO_LT:
3479     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3480                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3481   case BO_GT:
3482     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3483                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3484   case BO_LE:
3485     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3486                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3487   case BO_GE:
3488     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3489                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3490   case BO_EQ:
3491     // For equality operations, we assume any padding bits on unsigned types are
3492     // zero'd out. They could be overwritten through non-saturating operations
3493     // that cause overflow, but this leads to undefined behavior.
3494     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3495   case BO_NE:
3496     return Builder.CreateICmpNE(FullLHS, FullRHS);
3497   case BO_Mul:
3498   case BO_Div:
3499   case BO_Shl:
3500   case BO_Shr:
3501   case BO_Cmp:
3502   case BO_LAnd:
3503   case BO_LOr:
3504   case BO_MulAssign:
3505   case BO_DivAssign:
3506   case BO_AddAssign:
3507   case BO_SubAssign:
3508   case BO_ShlAssign:
3509   case BO_ShrAssign:
3510     llvm_unreachable("Found unimplemented fixed point binary operation");
3511   case BO_PtrMemD:
3512   case BO_PtrMemI:
3513   case BO_Rem:
3514   case BO_Xor:
3515   case BO_And:
3516   case BO_Or:
3517   case BO_Assign:
3518   case BO_RemAssign:
3519   case BO_AndAssign:
3520   case BO_XorAssign:
3521   case BO_OrAssign:
3522   case BO_Comma:
3523     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3524   }
3525 
3526   // Convert to the result type.
3527   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3528                                   BinOp->getExprLoc());
3529 }
3530 
3531 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3532   // The LHS is always a pointer if either side is.
3533   if (!op.LHS->getType()->isPointerTy()) {
3534     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3535       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3536       case LangOptions::SOB_Defined:
3537         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3538       case LangOptions::SOB_Undefined:
3539         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3540           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3541         LLVM_FALLTHROUGH;
3542       case LangOptions::SOB_Trapping:
3543         if (CanElideOverflowCheck(CGF.getContext(), op))
3544           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3545         return EmitOverflowCheckedBinOp(op);
3546       }
3547     }
3548 
3549     if (op.Ty->isUnsignedIntegerType() &&
3550         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3551         !CanElideOverflowCheck(CGF.getContext(), op))
3552       return EmitOverflowCheckedBinOp(op);
3553 
3554     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3555       // Try to form an fmuladd.
3556       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3557         return FMulAdd;
3558       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3559       return propagateFMFlags(V, op);
3560     }
3561 
3562     if (op.isFixedPointBinOp())
3563       return EmitFixedPointBinOp(op);
3564 
3565     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3566   }
3567 
3568   // If the RHS is not a pointer, then we have normal pointer
3569   // arithmetic.
3570   if (!op.RHS->getType()->isPointerTy())
3571     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3572 
3573   // Otherwise, this is a pointer subtraction.
3574 
3575   // Do the raw subtraction part.
3576   llvm::Value *LHS
3577     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3578   llvm::Value *RHS
3579     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3580   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3581 
3582   // Okay, figure out the element size.
3583   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3584   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3585 
3586   llvm::Value *divisor = nullptr;
3587 
3588   // For a variable-length array, this is going to be non-constant.
3589   if (const VariableArrayType *vla
3590         = CGF.getContext().getAsVariableArrayType(elementType)) {
3591     auto VlaSize = CGF.getVLASize(vla);
3592     elementType = VlaSize.Type;
3593     divisor = VlaSize.NumElts;
3594 
3595     // Scale the number of non-VLA elements by the non-VLA element size.
3596     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3597     if (!eltSize.isOne())
3598       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3599 
3600   // For everything elese, we can just compute it, safe in the
3601   // assumption that Sema won't let anything through that we can't
3602   // safely compute the size of.
3603   } else {
3604     CharUnits elementSize;
3605     // Handle GCC extension for pointer arithmetic on void* and
3606     // function pointer types.
3607     if (elementType->isVoidType() || elementType->isFunctionType())
3608       elementSize = CharUnits::One();
3609     else
3610       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3611 
3612     // Don't even emit the divide for element size of 1.
3613     if (elementSize.isOne())
3614       return diffInChars;
3615 
3616     divisor = CGF.CGM.getSize(elementSize);
3617   }
3618 
3619   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3620   // pointer difference in C is only defined in the case where both operands
3621   // are pointing to elements of an array.
3622   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3623 }
3624 
3625 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3626   llvm::IntegerType *Ty;
3627   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3628     Ty = cast<llvm::IntegerType>(VT->getElementType());
3629   else
3630     Ty = cast<llvm::IntegerType>(LHS->getType());
3631   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3632 }
3633 
3634 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3635   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3636   // RHS to the same size as the LHS.
3637   Value *RHS = Ops.RHS;
3638   if (Ops.LHS->getType() != RHS->getType())
3639     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3640 
3641   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3642                       Ops.Ty->hasSignedIntegerRepresentation() &&
3643                       !CGF.getLangOpts().isSignedOverflowDefined();
3644   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3645   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3646   if (CGF.getLangOpts().OpenCL)
3647     RHS =
3648         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3649   else if ((SanitizeBase || SanitizeExponent) &&
3650            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3651     CodeGenFunction::SanitizerScope SanScope(&CGF);
3652     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3653     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3654     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3655 
3656     if (SanitizeExponent) {
3657       Checks.push_back(
3658           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3659     }
3660 
3661     if (SanitizeBase) {
3662       // Check whether we are shifting any non-zero bits off the top of the
3663       // integer. We only emit this check if exponent is valid - otherwise
3664       // instructions below will have undefined behavior themselves.
3665       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3666       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3667       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3668       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3669       llvm::Value *PromotedWidthMinusOne =
3670           (RHS == Ops.RHS) ? WidthMinusOne
3671                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3672       CGF.EmitBlock(CheckShiftBase);
3673       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3674           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3675                                      /*NUW*/ true, /*NSW*/ true),
3676           "shl.check");
3677       if (CGF.getLangOpts().CPlusPlus) {
3678         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3679         // Under C++11's rules, shifting a 1 bit into the sign bit is
3680         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3681         // define signed left shifts, so we use the C99 and C++11 rules there).
3682         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3683         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3684       }
3685       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3686       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3687       CGF.EmitBlock(Cont);
3688       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3689       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3690       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3691       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3692     }
3693 
3694     assert(!Checks.empty());
3695     EmitBinOpCheck(Checks, Ops);
3696   }
3697 
3698   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3699 }
3700 
3701 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3702   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3703   // RHS to the same size as the LHS.
3704   Value *RHS = Ops.RHS;
3705   if (Ops.LHS->getType() != RHS->getType())
3706     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3707 
3708   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3709   if (CGF.getLangOpts().OpenCL)
3710     RHS =
3711         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3712   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3713            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3714     CodeGenFunction::SanitizerScope SanScope(&CGF);
3715     llvm::Value *Valid =
3716         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3717     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3718   }
3719 
3720   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3721     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3722   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3723 }
3724 
3725 enum IntrinsicType { VCMPEQ, VCMPGT };
3726 // return corresponding comparison intrinsic for given vector type
3727 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3728                                         BuiltinType::Kind ElemKind) {
3729   switch (ElemKind) {
3730   default: llvm_unreachable("unexpected element type");
3731   case BuiltinType::Char_U:
3732   case BuiltinType::UChar:
3733     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3734                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3735   case BuiltinType::Char_S:
3736   case BuiltinType::SChar:
3737     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3738                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3739   case BuiltinType::UShort:
3740     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3741                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3742   case BuiltinType::Short:
3743     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3744                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3745   case BuiltinType::UInt:
3746     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3747                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3748   case BuiltinType::Int:
3749     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3750                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3751   case BuiltinType::ULong:
3752   case BuiltinType::ULongLong:
3753     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3754                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3755   case BuiltinType::Long:
3756   case BuiltinType::LongLong:
3757     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3758                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3759   case BuiltinType::Float:
3760     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3761                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3762   case BuiltinType::Double:
3763     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3764                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3765   }
3766 }
3767 
3768 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3769                                       llvm::CmpInst::Predicate UICmpOpc,
3770                                       llvm::CmpInst::Predicate SICmpOpc,
3771                                       llvm::CmpInst::Predicate FCmpOpc) {
3772   TestAndClearIgnoreResultAssign();
3773   Value *Result;
3774   QualType LHSTy = E->getLHS()->getType();
3775   QualType RHSTy = E->getRHS()->getType();
3776   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3777     assert(E->getOpcode() == BO_EQ ||
3778            E->getOpcode() == BO_NE);
3779     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3780     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3781     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3782                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3783   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3784     BinOpInfo BOInfo = EmitBinOps(E);
3785     Value *LHS = BOInfo.LHS;
3786     Value *RHS = BOInfo.RHS;
3787 
3788     // If AltiVec, the comparison results in a numeric type, so we use
3789     // intrinsics comparing vectors and giving 0 or 1 as a result
3790     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3791       // constants for mapping CR6 register bits to predicate result
3792       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3793 
3794       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3795 
3796       // in several cases vector arguments order will be reversed
3797       Value *FirstVecArg = LHS,
3798             *SecondVecArg = RHS;
3799 
3800       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3801       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3802       BuiltinType::Kind ElementKind = BTy->getKind();
3803 
3804       switch(E->getOpcode()) {
3805       default: llvm_unreachable("is not a comparison operation");
3806       case BO_EQ:
3807         CR6 = CR6_LT;
3808         ID = GetIntrinsic(VCMPEQ, ElementKind);
3809         break;
3810       case BO_NE:
3811         CR6 = CR6_EQ;
3812         ID = GetIntrinsic(VCMPEQ, ElementKind);
3813         break;
3814       case BO_LT:
3815         CR6 = CR6_LT;
3816         ID = GetIntrinsic(VCMPGT, ElementKind);
3817         std::swap(FirstVecArg, SecondVecArg);
3818         break;
3819       case BO_GT:
3820         CR6 = CR6_LT;
3821         ID = GetIntrinsic(VCMPGT, ElementKind);
3822         break;
3823       case BO_LE:
3824         if (ElementKind == BuiltinType::Float) {
3825           CR6 = CR6_LT;
3826           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3827           std::swap(FirstVecArg, SecondVecArg);
3828         }
3829         else {
3830           CR6 = CR6_EQ;
3831           ID = GetIntrinsic(VCMPGT, ElementKind);
3832         }
3833         break;
3834       case BO_GE:
3835         if (ElementKind == BuiltinType::Float) {
3836           CR6 = CR6_LT;
3837           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3838         }
3839         else {
3840           CR6 = CR6_EQ;
3841           ID = GetIntrinsic(VCMPGT, ElementKind);
3842           std::swap(FirstVecArg, SecondVecArg);
3843         }
3844         break;
3845       }
3846 
3847       Value *CR6Param = Builder.getInt32(CR6);
3848       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3849       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3850 
3851       // The result type of intrinsic may not be same as E->getType().
3852       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3853       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3854       // do nothing, if ResultTy is not i1 at the same time, it will cause
3855       // crash later.
3856       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3857       if (ResultTy->getBitWidth() > 1 &&
3858           E->getType() == CGF.getContext().BoolTy)
3859         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3860       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3861                                   E->getExprLoc());
3862     }
3863 
3864     if (BOInfo.isFixedPointBinOp()) {
3865       Result = EmitFixedPointBinOp(BOInfo);
3866     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3867       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3868     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3869       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3870     } else {
3871       // Unsigned integers and pointers.
3872 
3873       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3874           !isa<llvm::ConstantPointerNull>(LHS) &&
3875           !isa<llvm::ConstantPointerNull>(RHS)) {
3876 
3877         // Dynamic information is required to be stripped for comparisons,
3878         // because it could leak the dynamic information.  Based on comparisons
3879         // of pointers to dynamic objects, the optimizer can replace one pointer
3880         // with another, which might be incorrect in presence of invariant
3881         // groups. Comparison with null is safe because null does not carry any
3882         // dynamic information.
3883         if (LHSTy.mayBeDynamicClass())
3884           LHS = Builder.CreateStripInvariantGroup(LHS);
3885         if (RHSTy.mayBeDynamicClass())
3886           RHS = Builder.CreateStripInvariantGroup(RHS);
3887       }
3888 
3889       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3890     }
3891 
3892     // If this is a vector comparison, sign extend the result to the appropriate
3893     // vector integer type and return it (don't convert to bool).
3894     if (LHSTy->isVectorType())
3895       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3896 
3897   } else {
3898     // Complex Comparison: can only be an equality comparison.
3899     CodeGenFunction::ComplexPairTy LHS, RHS;
3900     QualType CETy;
3901     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3902       LHS = CGF.EmitComplexExpr(E->getLHS());
3903       CETy = CTy->getElementType();
3904     } else {
3905       LHS.first = Visit(E->getLHS());
3906       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3907       CETy = LHSTy;
3908     }
3909     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3910       RHS = CGF.EmitComplexExpr(E->getRHS());
3911       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3912                                                      CTy->getElementType()) &&
3913              "The element types must always match.");
3914       (void)CTy;
3915     } else {
3916       RHS.first = Visit(E->getRHS());
3917       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3918       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3919              "The element types must always match.");
3920     }
3921 
3922     Value *ResultR, *ResultI;
3923     if (CETy->isRealFloatingType()) {
3924       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3925       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3926     } else {
3927       // Complex comparisons can only be equality comparisons.  As such, signed
3928       // and unsigned opcodes are the same.
3929       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3930       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3931     }
3932 
3933     if (E->getOpcode() == BO_EQ) {
3934       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3935     } else {
3936       assert(E->getOpcode() == BO_NE &&
3937              "Complex comparison other than == or != ?");
3938       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3939     }
3940   }
3941 
3942   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3943                               E->getExprLoc());
3944 }
3945 
3946 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3947   bool Ignore = TestAndClearIgnoreResultAssign();
3948 
3949   Value *RHS;
3950   LValue LHS;
3951 
3952   switch (E->getLHS()->getType().getObjCLifetime()) {
3953   case Qualifiers::OCL_Strong:
3954     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3955     break;
3956 
3957   case Qualifiers::OCL_Autoreleasing:
3958     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3959     break;
3960 
3961   case Qualifiers::OCL_ExplicitNone:
3962     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3963     break;
3964 
3965   case Qualifiers::OCL_Weak:
3966     RHS = Visit(E->getRHS());
3967     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3968     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3969     break;
3970 
3971   case Qualifiers::OCL_None:
3972     // __block variables need to have the rhs evaluated first, plus
3973     // this should improve codegen just a little.
3974     RHS = Visit(E->getRHS());
3975     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3976 
3977     // Store the value into the LHS.  Bit-fields are handled specially
3978     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3979     // 'An assignment expression has the value of the left operand after
3980     // the assignment...'.
3981     if (LHS.isBitField()) {
3982       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3983     } else {
3984       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3985       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3986     }
3987   }
3988 
3989   // If the result is clearly ignored, return now.
3990   if (Ignore)
3991     return nullptr;
3992 
3993   // The result of an assignment in C is the assigned r-value.
3994   if (!CGF.getLangOpts().CPlusPlus)
3995     return RHS;
3996 
3997   // If the lvalue is non-volatile, return the computed value of the assignment.
3998   if (!LHS.isVolatileQualified())
3999     return RHS;
4000 
4001   // Otherwise, reload the value.
4002   return EmitLoadOfLValue(LHS, E->getExprLoc());
4003 }
4004 
4005 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4006   // Perform vector logical and on comparisons with zero vectors.
4007   if (E->getType()->isVectorType()) {
4008     CGF.incrementProfileCounter(E);
4009 
4010     Value *LHS = Visit(E->getLHS());
4011     Value *RHS = Visit(E->getRHS());
4012     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4013     if (LHS->getType()->isFPOrFPVectorTy()) {
4014       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4015       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4016     } else {
4017       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4018       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4019     }
4020     Value *And = Builder.CreateAnd(LHS, RHS);
4021     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4022   }
4023 
4024   llvm::Type *ResTy = ConvertType(E->getType());
4025 
4026   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4027   // If we have 1 && X, just emit X without inserting the control flow.
4028   bool LHSCondVal;
4029   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4030     if (LHSCondVal) { // If we have 1 && X, just emit X.
4031       CGF.incrementProfileCounter(E);
4032 
4033       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4034       // ZExt result to int or bool.
4035       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4036     }
4037 
4038     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4039     if (!CGF.ContainsLabel(E->getRHS()))
4040       return llvm::Constant::getNullValue(ResTy);
4041   }
4042 
4043   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4044   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4045 
4046   CodeGenFunction::ConditionalEvaluation eval(CGF);
4047 
4048   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4049   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4050                            CGF.getProfileCount(E->getRHS()));
4051 
4052   // Any edges into the ContBlock are now from an (indeterminate number of)
4053   // edges from this first condition.  All of these values will be false.  Start
4054   // setting up the PHI node in the Cont Block for this.
4055   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4056                                             "", ContBlock);
4057   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4058        PI != PE; ++PI)
4059     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4060 
4061   eval.begin(CGF);
4062   CGF.EmitBlock(RHSBlock);
4063   CGF.incrementProfileCounter(E);
4064   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4065   eval.end(CGF);
4066 
4067   // Reaquire the RHS block, as there may be subblocks inserted.
4068   RHSBlock = Builder.GetInsertBlock();
4069 
4070   // Emit an unconditional branch from this block to ContBlock.
4071   {
4072     // There is no need to emit line number for unconditional branch.
4073     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4074     CGF.EmitBlock(ContBlock);
4075   }
4076   // Insert an entry into the phi node for the edge with the value of RHSCond.
4077   PN->addIncoming(RHSCond, RHSBlock);
4078 
4079   // Artificial location to preserve the scope information
4080   {
4081     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4082     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4083   }
4084 
4085   // ZExt result to int.
4086   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4087 }
4088 
4089 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4090   // Perform vector logical or on comparisons with zero vectors.
4091   if (E->getType()->isVectorType()) {
4092     CGF.incrementProfileCounter(E);
4093 
4094     Value *LHS = Visit(E->getLHS());
4095     Value *RHS = Visit(E->getRHS());
4096     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4097     if (LHS->getType()->isFPOrFPVectorTy()) {
4098       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4099       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4100     } else {
4101       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4102       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4103     }
4104     Value *Or = Builder.CreateOr(LHS, RHS);
4105     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4106   }
4107 
4108   llvm::Type *ResTy = ConvertType(E->getType());
4109 
4110   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4111   // If we have 0 || X, just emit X without inserting the control flow.
4112   bool LHSCondVal;
4113   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4114     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4115       CGF.incrementProfileCounter(E);
4116 
4117       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4118       // ZExt result to int or bool.
4119       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4120     }
4121 
4122     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4123     if (!CGF.ContainsLabel(E->getRHS()))
4124       return llvm::ConstantInt::get(ResTy, 1);
4125   }
4126 
4127   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4128   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4129 
4130   CodeGenFunction::ConditionalEvaluation eval(CGF);
4131 
4132   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4133   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4134                            CGF.getCurrentProfileCount() -
4135                                CGF.getProfileCount(E->getRHS()));
4136 
4137   // Any edges into the ContBlock are now from an (indeterminate number of)
4138   // edges from this first condition.  All of these values will be true.  Start
4139   // setting up the PHI node in the Cont Block for this.
4140   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4141                                             "", ContBlock);
4142   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4143        PI != PE; ++PI)
4144     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4145 
4146   eval.begin(CGF);
4147 
4148   // Emit the RHS condition as a bool value.
4149   CGF.EmitBlock(RHSBlock);
4150   CGF.incrementProfileCounter(E);
4151   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4152 
4153   eval.end(CGF);
4154 
4155   // Reaquire the RHS block, as there may be subblocks inserted.
4156   RHSBlock = Builder.GetInsertBlock();
4157 
4158   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4159   // into the phi node for the edge with the value of RHSCond.
4160   CGF.EmitBlock(ContBlock);
4161   PN->addIncoming(RHSCond, RHSBlock);
4162 
4163   // ZExt result to int.
4164   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4165 }
4166 
4167 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4168   CGF.EmitIgnoredExpr(E->getLHS());
4169   CGF.EnsureInsertPoint();
4170   return Visit(E->getRHS());
4171 }
4172 
4173 //===----------------------------------------------------------------------===//
4174 //                             Other Operators
4175 //===----------------------------------------------------------------------===//
4176 
4177 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4178 /// expression is cheap enough and side-effect-free enough to evaluate
4179 /// unconditionally instead of conditionally.  This is used to convert control
4180 /// flow into selects in some cases.
4181 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4182                                                    CodeGenFunction &CGF) {
4183   // Anything that is an integer or floating point constant is fine.
4184   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4185 
4186   // Even non-volatile automatic variables can't be evaluated unconditionally.
4187   // Referencing a thread_local may cause non-trivial initialization work to
4188   // occur. If we're inside a lambda and one of the variables is from the scope
4189   // outside the lambda, that function may have returned already. Reading its
4190   // locals is a bad idea. Also, these reads may introduce races there didn't
4191   // exist in the source-level program.
4192 }
4193 
4194 
4195 Value *ScalarExprEmitter::
4196 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4197   TestAndClearIgnoreResultAssign();
4198 
4199   // Bind the common expression if necessary.
4200   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4201 
4202   Expr *condExpr = E->getCond();
4203   Expr *lhsExpr = E->getTrueExpr();
4204   Expr *rhsExpr = E->getFalseExpr();
4205 
4206   // If the condition constant folds and can be elided, try to avoid emitting
4207   // the condition and the dead arm.
4208   bool CondExprBool;
4209   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4210     Expr *live = lhsExpr, *dead = rhsExpr;
4211     if (!CondExprBool) std::swap(live, dead);
4212 
4213     // If the dead side doesn't have labels we need, just emit the Live part.
4214     if (!CGF.ContainsLabel(dead)) {
4215       if (CondExprBool)
4216         CGF.incrementProfileCounter(E);
4217       Value *Result = Visit(live);
4218 
4219       // If the live part is a throw expression, it acts like it has a void
4220       // type, so evaluating it returns a null Value*.  However, a conditional
4221       // with non-void type must return a non-null Value*.
4222       if (!Result && !E->getType()->isVoidType())
4223         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4224 
4225       return Result;
4226     }
4227   }
4228 
4229   // OpenCL: If the condition is a vector, we can treat this condition like
4230   // the select function.
4231   if (CGF.getLangOpts().OpenCL
4232       && condExpr->getType()->isVectorType()) {
4233     CGF.incrementProfileCounter(E);
4234 
4235     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4236     llvm::Value *LHS = Visit(lhsExpr);
4237     llvm::Value *RHS = Visit(rhsExpr);
4238 
4239     llvm::Type *condType = ConvertType(condExpr->getType());
4240     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4241 
4242     unsigned numElem = vecTy->getNumElements();
4243     llvm::Type *elemType = vecTy->getElementType();
4244 
4245     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4246     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4247     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4248                                           llvm::VectorType::get(elemType,
4249                                                                 numElem),
4250                                           "sext");
4251     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4252 
4253     // Cast float to int to perform ANDs if necessary.
4254     llvm::Value *RHSTmp = RHS;
4255     llvm::Value *LHSTmp = LHS;
4256     bool wasCast = false;
4257     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4258     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4259       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4260       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4261       wasCast = true;
4262     }
4263 
4264     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4265     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4266     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4267     if (wasCast)
4268       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4269 
4270     return tmp5;
4271   }
4272 
4273   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4274   // select instead of as control flow.  We can only do this if it is cheap and
4275   // safe to evaluate the LHS and RHS unconditionally.
4276   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4277       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4278     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4279     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4280 
4281     CGF.incrementProfileCounter(E, StepV);
4282 
4283     llvm::Value *LHS = Visit(lhsExpr);
4284     llvm::Value *RHS = Visit(rhsExpr);
4285     if (!LHS) {
4286       // If the conditional has void type, make sure we return a null Value*.
4287       assert(!RHS && "LHS and RHS types must match");
4288       return nullptr;
4289     }
4290     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4291   }
4292 
4293   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4294   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4295   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4296 
4297   CodeGenFunction::ConditionalEvaluation eval(CGF);
4298   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4299                            CGF.getProfileCount(lhsExpr));
4300 
4301   CGF.EmitBlock(LHSBlock);
4302   CGF.incrementProfileCounter(E);
4303   eval.begin(CGF);
4304   Value *LHS = Visit(lhsExpr);
4305   eval.end(CGF);
4306 
4307   LHSBlock = Builder.GetInsertBlock();
4308   Builder.CreateBr(ContBlock);
4309 
4310   CGF.EmitBlock(RHSBlock);
4311   eval.begin(CGF);
4312   Value *RHS = Visit(rhsExpr);
4313   eval.end(CGF);
4314 
4315   RHSBlock = Builder.GetInsertBlock();
4316   CGF.EmitBlock(ContBlock);
4317 
4318   // If the LHS or RHS is a throw expression, it will be legitimately null.
4319   if (!LHS)
4320     return RHS;
4321   if (!RHS)
4322     return LHS;
4323 
4324   // Create a PHI node for the real part.
4325   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4326   PN->addIncoming(LHS, LHSBlock);
4327   PN->addIncoming(RHS, RHSBlock);
4328   return PN;
4329 }
4330 
4331 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4332   return Visit(E->getChosenSubExpr());
4333 }
4334 
4335 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4336   QualType Ty = VE->getType();
4337 
4338   if (Ty->isVariablyModifiedType())
4339     CGF.EmitVariablyModifiedType(Ty);
4340 
4341   Address ArgValue = Address::invalid();
4342   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4343 
4344   llvm::Type *ArgTy = ConvertType(VE->getType());
4345 
4346   // If EmitVAArg fails, emit an error.
4347   if (!ArgPtr.isValid()) {
4348     CGF.ErrorUnsupported(VE, "va_arg expression");
4349     return llvm::UndefValue::get(ArgTy);
4350   }
4351 
4352   // FIXME Volatility.
4353   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4354 
4355   // If EmitVAArg promoted the type, we must truncate it.
4356   if (ArgTy != Val->getType()) {
4357     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4358       Val = Builder.CreateIntToPtr(Val, ArgTy);
4359     else
4360       Val = Builder.CreateTrunc(Val, ArgTy);
4361   }
4362 
4363   return Val;
4364 }
4365 
4366 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4367   return CGF.EmitBlockLiteral(block);
4368 }
4369 
4370 // Convert a vec3 to vec4, or vice versa.
4371 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4372                                  Value *Src, unsigned NumElementsDst) {
4373   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4374   SmallVector<llvm::Constant*, 4> Args;
4375   Args.push_back(Builder.getInt32(0));
4376   Args.push_back(Builder.getInt32(1));
4377   Args.push_back(Builder.getInt32(2));
4378   if (NumElementsDst == 4)
4379     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4380   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4381   return Builder.CreateShuffleVector(Src, UnV, Mask);
4382 }
4383 
4384 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4385 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4386 // but could be scalar or vectors of different lengths, and either can be
4387 // pointer.
4388 // There are 4 cases:
4389 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4390 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4391 // 3. pointer -> non-pointer
4392 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4393 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4394 // 4. non-pointer -> pointer
4395 //   a) intptr_t -> pointer       : needs 1 inttoptr
4396 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4397 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4398 // allow casting directly between pointer types and non-integer non-pointer
4399 // types.
4400 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4401                                            const llvm::DataLayout &DL,
4402                                            Value *Src, llvm::Type *DstTy,
4403                                            StringRef Name = "") {
4404   auto SrcTy = Src->getType();
4405 
4406   // Case 1.
4407   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4408     return Builder.CreateBitCast(Src, DstTy, Name);
4409 
4410   // Case 2.
4411   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4412     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4413 
4414   // Case 3.
4415   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4416     // Case 3b.
4417     if (!DstTy->isIntegerTy())
4418       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4419     // Cases 3a and 3b.
4420     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4421   }
4422 
4423   // Case 4b.
4424   if (!SrcTy->isIntegerTy())
4425     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4426   // Cases 4a and 4b.
4427   return Builder.CreateIntToPtr(Src, DstTy, Name);
4428 }
4429 
4430 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4431   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4432   llvm::Type *DstTy = ConvertType(E->getType());
4433 
4434   llvm::Type *SrcTy = Src->getType();
4435   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4436     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4437   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4438     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4439 
4440   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4441   // vector to get a vec4, then a bitcast if the target type is different.
4442   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4443     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4444 
4445     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4446       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4447                                          DstTy);
4448     }
4449 
4450     Src->setName("astype");
4451     return Src;
4452   }
4453 
4454   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4455   // to vec4 if the original type is not vec4, then a shuffle vector to
4456   // get a vec3.
4457   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4458     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4459       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4460       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4461                                          Vec4Ty);
4462     }
4463 
4464     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4465     Src->setName("astype");
4466     return Src;
4467   }
4468 
4469   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4470                                             Src, DstTy, "astype");
4471 }
4472 
4473 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4474   return CGF.EmitAtomicExpr(E).getScalarVal();
4475 }
4476 
4477 //===----------------------------------------------------------------------===//
4478 //                         Entry Point into this File
4479 //===----------------------------------------------------------------------===//
4480 
4481 /// Emit the computation of the specified expression of scalar type, ignoring
4482 /// the result.
4483 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4484   assert(E && hasScalarEvaluationKind(E->getType()) &&
4485          "Invalid scalar expression to emit");
4486 
4487   return ScalarExprEmitter(*this, IgnoreResultAssign)
4488       .Visit(const_cast<Expr *>(E));
4489 }
4490 
4491 /// Emit a conversion from the specified type to the specified destination type,
4492 /// both of which are LLVM scalar types.
4493 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4494                                              QualType DstTy,
4495                                              SourceLocation Loc) {
4496   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4497          "Invalid scalar expression to emit");
4498   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4499 }
4500 
4501 /// Emit a conversion from the specified complex type to the specified
4502 /// destination type, where the destination type is an LLVM scalar type.
4503 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4504                                                       QualType SrcTy,
4505                                                       QualType DstTy,
4506                                                       SourceLocation Loc) {
4507   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4508          "Invalid complex -> scalar conversion");
4509   return ScalarExprEmitter(*this)
4510       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4511 }
4512 
4513 
4514 llvm::Value *CodeGenFunction::
4515 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4516                         bool isInc, bool isPre) {
4517   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4518 }
4519 
4520 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4521   // object->isa or (*object).isa
4522   // Generate code as for: *(Class*)object
4523 
4524   Expr *BaseExpr = E->getBase();
4525   Address Addr = Address::invalid();
4526   if (BaseExpr->isRValue()) {
4527     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4528   } else {
4529     Addr = EmitLValue(BaseExpr).getAddress();
4530   }
4531 
4532   // Cast the address to Class*.
4533   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4534   return MakeAddrLValue(Addr, E->getType());
4535 }
4536 
4537 
4538 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4539                                             const CompoundAssignOperator *E) {
4540   ScalarExprEmitter Scalar(*this);
4541   Value *Result = nullptr;
4542   switch (E->getOpcode()) {
4543 #define COMPOUND_OP(Op)                                                       \
4544     case BO_##Op##Assign:                                                     \
4545       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4546                                              Result)
4547   COMPOUND_OP(Mul);
4548   COMPOUND_OP(Div);
4549   COMPOUND_OP(Rem);
4550   COMPOUND_OP(Add);
4551   COMPOUND_OP(Sub);
4552   COMPOUND_OP(Shl);
4553   COMPOUND_OP(Shr);
4554   COMPOUND_OP(And);
4555   COMPOUND_OP(Xor);
4556   COMPOUND_OP(Or);
4557 #undef COMPOUND_OP
4558 
4559   case BO_PtrMemD:
4560   case BO_PtrMemI:
4561   case BO_Mul:
4562   case BO_Div:
4563   case BO_Rem:
4564   case BO_Add:
4565   case BO_Sub:
4566   case BO_Shl:
4567   case BO_Shr:
4568   case BO_LT:
4569   case BO_GT:
4570   case BO_LE:
4571   case BO_GE:
4572   case BO_EQ:
4573   case BO_NE:
4574   case BO_Cmp:
4575   case BO_And:
4576   case BO_Xor:
4577   case BO_Or:
4578   case BO_LAnd:
4579   case BO_LOr:
4580   case BO_Assign:
4581   case BO_Comma:
4582     llvm_unreachable("Not valid compound assignment operators");
4583   }
4584 
4585   llvm_unreachable("Unhandled compound assignment operator");
4586 }
4587 
4588 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
4589                                                ArrayRef<Value *> IdxList,
4590                                                bool SignedIndices,
4591                                                bool IsSubtraction,
4592                                                SourceLocation Loc,
4593                                                const Twine &Name) {
4594   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4595 
4596   // If the pointer overflow sanitizer isn't enabled, do nothing.
4597   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4598     return GEPVal;
4599 
4600   // If the GEP has already been reduced to a constant, leave it be.
4601   if (isa<llvm::Constant>(GEPVal))
4602     return GEPVal;
4603 
4604   // Only check for overflows in the default address space.
4605   if (GEPVal->getType()->getPointerAddressSpace())
4606     return GEPVal;
4607 
4608   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4609   assert(GEP->isInBounds() && "Expected inbounds GEP");
4610 
4611   SanitizerScope SanScope(this);
4612   auto &VMContext = getLLVMContext();
4613   const auto &DL = CGM.getDataLayout();
4614   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4615 
4616   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4617   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4618   auto *SAddIntrinsic =
4619       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4620   auto *SMulIntrinsic =
4621       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4622 
4623   // The total (signed) byte offset for the GEP.
4624   llvm::Value *TotalOffset = nullptr;
4625   // The offset overflow flag - true if the total offset overflows.
4626   llvm::Value *OffsetOverflows = Builder.getFalse();
4627 
4628   /// Return the result of the given binary operation.
4629   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4630                   llvm::Value *RHS) -> llvm::Value * {
4631     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4632 
4633     // If the operands are constants, return a constant result.
4634     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4635       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4636         llvm::APInt N;
4637         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4638                                                   /*Signed=*/true, N);
4639         if (HasOverflow)
4640           OffsetOverflows = Builder.getTrue();
4641         return llvm::ConstantInt::get(VMContext, N);
4642       }
4643     }
4644 
4645     // Otherwise, compute the result with checked arithmetic.
4646     auto *ResultAndOverflow = Builder.CreateCall(
4647         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4648     OffsetOverflows = Builder.CreateOr(
4649         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4650     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4651   };
4652 
4653   // Determine the total byte offset by looking at each GEP operand.
4654   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4655        GTI != GTE; ++GTI) {
4656     llvm::Value *LocalOffset;
4657     auto *Index = GTI.getOperand();
4658     // Compute the local offset contributed by this indexing step:
4659     if (auto *STy = GTI.getStructTypeOrNull()) {
4660       // For struct indexing, the local offset is the byte position of the
4661       // specified field.
4662       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4663       LocalOffset = llvm::ConstantInt::get(
4664           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4665     } else {
4666       // Otherwise this is array-like indexing. The local offset is the index
4667       // multiplied by the element size.
4668       auto *ElementSize = llvm::ConstantInt::get(
4669           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4670       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4671       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4672     }
4673 
4674     // If this is the first offset, set it as the total offset. Otherwise, add
4675     // the local offset into the running total.
4676     if (!TotalOffset || TotalOffset == Zero)
4677       TotalOffset = LocalOffset;
4678     else
4679       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4680   }
4681 
4682   // Common case: if the total offset is zero, don't emit a check.
4683   if (TotalOffset == Zero)
4684     return GEPVal;
4685 
4686   // Now that we've computed the total offset, add it to the base pointer (with
4687   // wrapping semantics).
4688   auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4689   auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4690 
4691   // The GEP is valid if:
4692   // 1) The total offset doesn't overflow, and
4693   // 2) The sign of the difference between the computed address and the base
4694   // pointer matches the sign of the total offset.
4695   llvm::Value *ValidGEP;
4696   auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4697   if (SignedIndices) {
4698     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4699     auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4700     llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4701     ValidGEP = Builder.CreateAnd(
4702         Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4703         NoOffsetOverflow);
4704   } else if (!SignedIndices && !IsSubtraction) {
4705     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4706     ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4707   } else {
4708     auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4709     ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4710   }
4711 
4712   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4713   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4714   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4715   EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4716             SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4717 
4718   return GEPVal;
4719 }
4720