1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
81   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
85   Value *EmitLoadOfLValue(LValue LV) {
86     return CGF.EmitLoadOfLValue(LV).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E));
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     return Builder.CreateIsNotNull(V, "tobool");
144   }
145 
146   //===--------------------------------------------------------------------===//
147   //                            Visitor Methods
148   //===--------------------------------------------------------------------===//
149 
150   Value *Visit(Expr *E) {
151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152   }
153 
154   Value *VisitStmt(Stmt *S) {
155     S->dump(CGF.getContext().getSourceManager());
156     llvm_unreachable("Stmt can't have complex result type!");
157   }
158   Value *VisitExpr(Expr *S);
159 
160   Value *VisitParenExpr(ParenExpr *PE) {
161     return Visit(PE->getSubExpr());
162   }
163   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164     return Visit(E->getReplacement());
165   }
166   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167     return Visit(GE->getResultExpr());
168   }
169 
170   // Leaves.
171   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172     return Builder.getInt(E->getValue());
173   }
174   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175     return llvm::ConstantFP::get(VMContext, E->getValue());
176   }
177   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179   }
180   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
181     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182   }
183   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
184     return EmitNullValue(E->getType());
185   }
186   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
187     return EmitNullValue(E->getType());
188   }
189   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
190   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
191   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
192     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
193     return Builder.CreateBitCast(V, ConvertType(E->getType()));
194   }
195 
196   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
197     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
198   }
199 
200   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
201     if (E->isGLValue())
202       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
203 
204     // Otherwise, assume the mapping is the scalar directly.
205     return CGF.getOpaqueRValueMapping(E).getScalarVal();
206   }
207 
208   // l-values.
209   Value *VisitDeclRefExpr(DeclRefExpr *E) {
210     Expr::EvalResult Result;
211     if (!E->Evaluate(Result, CGF.getContext()))
212       return EmitLoadOfLValue(E);
213 
214     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
215 
216     llvm::Constant *C;
217     if (Result.Val.isInt())
218       C = Builder.getInt(Result.Val.getInt());
219     else if (Result.Val.isFloat())
220       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
221     else
222       return EmitLoadOfLValue(E);
223 
224     // Make sure we emit a debug reference to the global variable.
225     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
226       if (!CGF.getContext().DeclMustBeEmitted(VD))
227         CGF.EmitDeclRefExprDbgValue(E, C);
228     } else if (isa<EnumConstantDecl>(E->getDecl())) {
229       CGF.EmitDeclRefExprDbgValue(E, C);
230     }
231 
232     return C;
233   }
234   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
235     return CGF.EmitObjCSelectorExpr(E);
236   }
237   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
238     return CGF.EmitObjCProtocolExpr(E);
239   }
240   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
241     return EmitLoadOfLValue(E);
242   }
243   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
244     assert(E->getObjectKind() == OK_Ordinary &&
245            "reached property reference without lvalue-to-rvalue");
246     return EmitLoadOfLValue(E);
247   }
248   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
249     if (E->getMethodDecl() &&
250         E->getMethodDecl()->getResultType()->isReferenceType())
251       return EmitLoadOfLValue(E);
252     return CGF.EmitObjCMessageExpr(E).getScalarVal();
253   }
254 
255   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
256     LValue LV = CGF.EmitObjCIsaExpr(E);
257     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
258     return V;
259   }
260 
261   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
262   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
263   Value *VisitMemberExpr(MemberExpr *E);
264   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
265   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
266     return EmitLoadOfLValue(E);
267   }
268 
269   Value *VisitInitListExpr(InitListExpr *E);
270 
271   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
272     return CGF.CGM.EmitNullConstant(E->getType());
273   }
274   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
275     if (E->getType()->isVariablyModifiedType())
276       CGF.EmitVariablyModifiedType(E->getType());
277     return VisitCastExpr(E);
278   }
279   Value *VisitCastExpr(CastExpr *E);
280 
281   Value *VisitCallExpr(const CallExpr *E) {
282     if (E->getCallReturnType()->isReferenceType())
283       return EmitLoadOfLValue(E);
284 
285     return CGF.EmitCallExpr(E).getScalarVal();
286   }
287 
288   Value *VisitStmtExpr(const StmtExpr *E);
289 
290   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
291 
292   // Unary Operators.
293   Value *VisitUnaryPostDec(const UnaryOperator *E) {
294     LValue LV = EmitLValue(E->getSubExpr());
295     return EmitScalarPrePostIncDec(E, LV, false, false);
296   }
297   Value *VisitUnaryPostInc(const UnaryOperator *E) {
298     LValue LV = EmitLValue(E->getSubExpr());
299     return EmitScalarPrePostIncDec(E, LV, true, false);
300   }
301   Value *VisitUnaryPreDec(const UnaryOperator *E) {
302     LValue LV = EmitLValue(E->getSubExpr());
303     return EmitScalarPrePostIncDec(E, LV, false, true);
304   }
305   Value *VisitUnaryPreInc(const UnaryOperator *E) {
306     LValue LV = EmitLValue(E->getSubExpr());
307     return EmitScalarPrePostIncDec(E, LV, true, true);
308   }
309 
310   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
311                                                llvm::Value *InVal,
312                                                llvm::Value *NextVal,
313                                                bool IsInc);
314 
315   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
316                                        bool isInc, bool isPre);
317 
318 
319   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
320     if (isa<MemberPointerType>(E->getType())) // never sugared
321       return CGF.CGM.getMemberPointerConstant(E);
322 
323     return EmitLValue(E->getSubExpr()).getAddress();
324   }
325   Value *VisitUnaryDeref(const UnaryOperator *E) {
326     if (E->getType()->isVoidType())
327       return Visit(E->getSubExpr()); // the actual value should be unused
328     return EmitLoadOfLValue(E);
329   }
330   Value *VisitUnaryPlus(const UnaryOperator *E) {
331     // This differs from gcc, though, most likely due to a bug in gcc.
332     TestAndClearIgnoreResultAssign();
333     return Visit(E->getSubExpr());
334   }
335   Value *VisitUnaryMinus    (const UnaryOperator *E);
336   Value *VisitUnaryNot      (const UnaryOperator *E);
337   Value *VisitUnaryLNot     (const UnaryOperator *E);
338   Value *VisitUnaryReal     (const UnaryOperator *E);
339   Value *VisitUnaryImag     (const UnaryOperator *E);
340   Value *VisitUnaryExtension(const UnaryOperator *E) {
341     return Visit(E->getSubExpr());
342   }
343 
344   // C++
345   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
346     return EmitLoadOfLValue(E);
347   }
348 
349   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
350     return Visit(DAE->getExpr());
351   }
352   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
353     return CGF.LoadCXXThis();
354   }
355 
356   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
357     return CGF.EmitExprWithCleanups(E).getScalarVal();
358   }
359   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
360     return CGF.EmitCXXNewExpr(E);
361   }
362   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
363     CGF.EmitCXXDeleteExpr(E);
364     return 0;
365   }
366   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
367     return Builder.getInt1(E->getValue());
368   }
369 
370   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
371     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
372   }
373 
374   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
375     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
376   }
377 
378   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
379     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
380   }
381 
382   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
383     // C++ [expr.pseudo]p1:
384     //   The result shall only be used as the operand for the function call
385     //   operator (), and the result of such a call has type void. The only
386     //   effect is the evaluation of the postfix-expression before the dot or
387     //   arrow.
388     CGF.EmitScalarExpr(E->getBase());
389     return 0;
390   }
391 
392   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
393     return EmitNullValue(E->getType());
394   }
395 
396   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
397     CGF.EmitCXXThrowExpr(E);
398     return 0;
399   }
400 
401   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
402     return Builder.getInt1(E->getValue());
403   }
404 
405   // Binary Operators.
406   Value *EmitMul(const BinOpInfo &Ops) {
407     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
408       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
409       case LangOptions::SOB_Undefined:
410         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
411       case LangOptions::SOB_Defined:
412         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
413       case LangOptions::SOB_Trapping:
414         return EmitOverflowCheckedBinOp(Ops);
415       }
416     }
417 
418     if (Ops.LHS->getType()->isFPOrFPVectorTy())
419       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
420     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
421   }
422   bool isTrapvOverflowBehavior() {
423     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
424                == LangOptions::SOB_Trapping;
425   }
426   /// Create a binary op that checks for overflow.
427   /// Currently only supports +, - and *.
428   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
429   // Emit the overflow BB when -ftrapv option is activated.
430   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
431     Builder.SetInsertPoint(overflowBB);
432     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
433     Builder.CreateCall(Trap);
434     Builder.CreateUnreachable();
435   }
436   // Check for undefined division and modulus behaviors.
437   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
438                                                   llvm::Value *Zero,bool isDiv);
439   Value *EmitDiv(const BinOpInfo &Ops);
440   Value *EmitRem(const BinOpInfo &Ops);
441   Value *EmitAdd(const BinOpInfo &Ops);
442   Value *EmitSub(const BinOpInfo &Ops);
443   Value *EmitShl(const BinOpInfo &Ops);
444   Value *EmitShr(const BinOpInfo &Ops);
445   Value *EmitAnd(const BinOpInfo &Ops) {
446     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
447   }
448   Value *EmitXor(const BinOpInfo &Ops) {
449     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
450   }
451   Value *EmitOr (const BinOpInfo &Ops) {
452     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
453   }
454 
455   BinOpInfo EmitBinOps(const BinaryOperator *E);
456   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
457                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
458                                   Value *&Result);
459 
460   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
461                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
462 
463   // Binary operators and binary compound assignment operators.
464 #define HANDLEBINOP(OP) \
465   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
466     return Emit ## OP(EmitBinOps(E));                                      \
467   }                                                                        \
468   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
469     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
470   }
471   HANDLEBINOP(Mul)
472   HANDLEBINOP(Div)
473   HANDLEBINOP(Rem)
474   HANDLEBINOP(Add)
475   HANDLEBINOP(Sub)
476   HANDLEBINOP(Shl)
477   HANDLEBINOP(Shr)
478   HANDLEBINOP(And)
479   HANDLEBINOP(Xor)
480   HANDLEBINOP(Or)
481 #undef HANDLEBINOP
482 
483   // Comparisons.
484   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
485                      unsigned SICmpOpc, unsigned FCmpOpc);
486 #define VISITCOMP(CODE, UI, SI, FP) \
487     Value *VisitBin##CODE(const BinaryOperator *E) { \
488       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
489                          llvm::FCmpInst::FP); }
490   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
491   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
492   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
493   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
494   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
495   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
496 #undef VISITCOMP
497 
498   Value *VisitBinAssign     (const BinaryOperator *E);
499 
500   Value *VisitBinLAnd       (const BinaryOperator *E);
501   Value *VisitBinLOr        (const BinaryOperator *E);
502   Value *VisitBinComma      (const BinaryOperator *E);
503 
504   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
505   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
506 
507   // Other Operators.
508   Value *VisitBlockExpr(const BlockExpr *BE);
509   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
510   Value *VisitChooseExpr(ChooseExpr *CE);
511   Value *VisitVAArgExpr(VAArgExpr *VE);
512   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
513     return CGF.EmitObjCStringLiteral(E);
514   }
515   Value *VisitAsTypeExpr(AsTypeExpr *CE);
516   Value *VisitAtomicExpr(AtomicExpr *AE);
517 };
518 }  // end anonymous namespace.
519 
520 //===----------------------------------------------------------------------===//
521 //                                Utilities
522 //===----------------------------------------------------------------------===//
523 
524 /// EmitConversionToBool - Convert the specified expression value to a
525 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
526 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
527   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
528 
529   if (SrcType->isRealFloatingType())
530     return EmitFloatToBoolConversion(Src);
531 
532   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
533     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
534 
535   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
536          "Unknown scalar type to convert");
537 
538   if (isa<llvm::IntegerType>(Src->getType()))
539     return EmitIntToBoolConversion(Src);
540 
541   assert(isa<llvm::PointerType>(Src->getType()));
542   return EmitPointerToBoolConversion(Src);
543 }
544 
545 /// EmitScalarConversion - Emit a conversion from the specified type to the
546 /// specified destination type, both of which are LLVM scalar types.
547 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
548                                                QualType DstType) {
549   SrcType = CGF.getContext().getCanonicalType(SrcType);
550   DstType = CGF.getContext().getCanonicalType(DstType);
551   if (SrcType == DstType) return Src;
552 
553   if (DstType->isVoidType()) return 0;
554 
555   // Handle conversions to bool first, they are special: comparisons against 0.
556   if (DstType->isBooleanType())
557     return EmitConversionToBool(Src, SrcType);
558 
559   llvm::Type *DstTy = ConvertType(DstType);
560 
561   // Ignore conversions like int -> uint.
562   if (Src->getType() == DstTy)
563     return Src;
564 
565   // Handle pointer conversions next: pointers can only be converted to/from
566   // other pointers and integers. Check for pointer types in terms of LLVM, as
567   // some native types (like Obj-C id) may map to a pointer type.
568   if (isa<llvm::PointerType>(DstTy)) {
569     // The source value may be an integer, or a pointer.
570     if (isa<llvm::PointerType>(Src->getType()))
571       return Builder.CreateBitCast(Src, DstTy, "conv");
572 
573     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
574     // First, convert to the correct width so that we control the kind of
575     // extension.
576     llvm::Type *MiddleTy = CGF.IntPtrTy;
577     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
578     llvm::Value* IntResult =
579         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
580     // Then, cast to pointer.
581     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
582   }
583 
584   if (isa<llvm::PointerType>(Src->getType())) {
585     // Must be an ptr to int cast.
586     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
587     return Builder.CreatePtrToInt(Src, DstTy, "conv");
588   }
589 
590   // A scalar can be splatted to an extended vector of the same element type
591   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
592     // Cast the scalar to element type
593     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
594     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
595 
596     // Insert the element in element zero of an undef vector
597     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
598     llvm::Value *Idx = Builder.getInt32(0);
599     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
600 
601     // Splat the element across to all elements
602     SmallVector<llvm::Constant*, 16> Args;
603     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
604     for (unsigned i = 0; i != NumElements; ++i)
605       Args.push_back(Builder.getInt32(0));
606 
607     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
608     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
609     return Yay;
610   }
611 
612   // Allow bitcast from vector to integer/fp of the same size.
613   if (isa<llvm::VectorType>(Src->getType()) ||
614       isa<llvm::VectorType>(DstTy))
615     return Builder.CreateBitCast(Src, DstTy, "conv");
616 
617   // Finally, we have the arithmetic types: real int/float.
618   if (isa<llvm::IntegerType>(Src->getType())) {
619     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
620     if (isa<llvm::IntegerType>(DstTy))
621       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
622     else if (InputSigned)
623       return Builder.CreateSIToFP(Src, DstTy, "conv");
624     else
625       return Builder.CreateUIToFP(Src, DstTy, "conv");
626   }
627 
628   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
629   if (isa<llvm::IntegerType>(DstTy)) {
630     if (DstType->isSignedIntegerOrEnumerationType())
631       return Builder.CreateFPToSI(Src, DstTy, "conv");
632     else
633       return Builder.CreateFPToUI(Src, DstTy, "conv");
634   }
635 
636   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
637   if (DstTy->getTypeID() < Src->getType()->getTypeID())
638     return Builder.CreateFPTrunc(Src, DstTy, "conv");
639   else
640     return Builder.CreateFPExt(Src, DstTy, "conv");
641 }
642 
643 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
644 /// type to the specified destination type, where the destination type is an
645 /// LLVM scalar type.
646 Value *ScalarExprEmitter::
647 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
648                               QualType SrcTy, QualType DstTy) {
649   // Get the source element type.
650   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
651 
652   // Handle conversions to bool first, they are special: comparisons against 0.
653   if (DstTy->isBooleanType()) {
654     //  Complex != 0  -> (Real != 0) | (Imag != 0)
655     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
656     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
657     return Builder.CreateOr(Src.first, Src.second, "tobool");
658   }
659 
660   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
661   // the imaginary part of the complex value is discarded and the value of the
662   // real part is converted according to the conversion rules for the
663   // corresponding real type.
664   return EmitScalarConversion(Src.first, SrcTy, DstTy);
665 }
666 
667 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
668   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
669     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
670 
671   return llvm::Constant::getNullValue(ConvertType(Ty));
672 }
673 
674 //===----------------------------------------------------------------------===//
675 //                            Visitor Methods
676 //===----------------------------------------------------------------------===//
677 
678 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
679   CGF.ErrorUnsupported(E, "scalar expression");
680   if (E->getType()->isVoidType())
681     return 0;
682   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
683 }
684 
685 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
686   // Vector Mask Case
687   if (E->getNumSubExprs() == 2 ||
688       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
689     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
690     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
691     Value *Mask;
692 
693     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
694     unsigned LHSElts = LTy->getNumElements();
695 
696     if (E->getNumSubExprs() == 3) {
697       Mask = CGF.EmitScalarExpr(E->getExpr(2));
698 
699       // Shuffle LHS & RHS into one input vector.
700       SmallVector<llvm::Constant*, 32> concat;
701       for (unsigned i = 0; i != LHSElts; ++i) {
702         concat.push_back(Builder.getInt32(2*i));
703         concat.push_back(Builder.getInt32(2*i+1));
704       }
705 
706       Value* CV = llvm::ConstantVector::get(concat);
707       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
708       LHSElts *= 2;
709     } else {
710       Mask = RHS;
711     }
712 
713     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
714     llvm::Constant* EltMask;
715 
716     // Treat vec3 like vec4.
717     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
718       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
719                                        (1 << llvm::Log2_32(LHSElts+2))-1);
720     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
721       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
722                                        (1 << llvm::Log2_32(LHSElts+1))-1);
723     else
724       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
725                                        (1 << llvm::Log2_32(LHSElts))-1);
726 
727     // Mask off the high bits of each shuffle index.
728     SmallVector<llvm::Constant *, 32> MaskV;
729     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
730       MaskV.push_back(EltMask);
731 
732     Value* MaskBits = llvm::ConstantVector::get(MaskV);
733     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
734 
735     // newv = undef
736     // mask = mask & maskbits
737     // for each elt
738     //   n = extract mask i
739     //   x = extract val n
740     //   newv = insert newv, x, i
741     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
742                                                         MTy->getNumElements());
743     Value* NewV = llvm::UndefValue::get(RTy);
744     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
745       Value *Indx = Builder.getInt32(i);
746       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
747       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
748 
749       // Handle vec3 special since the index will be off by one for the RHS.
750       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
751         Value *cmpIndx, *newIndx;
752         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
753                                         "cmp_shuf_idx");
754         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
755         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
756       }
757       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
758       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
759     }
760     return NewV;
761   }
762 
763   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
764   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
765 
766   // Handle vec3 special since the index will be off by one for the RHS.
767   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
768   SmallVector<llvm::Constant*, 32> indices;
769   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
770     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
771     if (VTy->getNumElements() == 3 && Idx > 3)
772       Idx -= 1;
773     indices.push_back(Builder.getInt32(Idx));
774   }
775 
776   Value *SV = llvm::ConstantVector::get(indices);
777   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
778 }
779 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
780   Expr::EvalResult Result;
781   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
782     if (E->isArrow())
783       CGF.EmitScalarExpr(E->getBase());
784     else
785       EmitLValue(E->getBase());
786     return Builder.getInt(Result.Val.getInt());
787   }
788 
789   // Emit debug info for aggregate now, if it was delayed to reduce
790   // debug info size.
791   CGDebugInfo *DI = CGF.getDebugInfo();
792   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
793     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
794     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
795       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
796         DI->getOrCreateRecordType(PTy->getPointeeType(),
797                                   M->getParent()->getLocation());
798   }
799   return EmitLoadOfLValue(E);
800 }
801 
802 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
803   TestAndClearIgnoreResultAssign();
804 
805   // Emit subscript expressions in rvalue context's.  For most cases, this just
806   // loads the lvalue formed by the subscript expr.  However, we have to be
807   // careful, because the base of a vector subscript is occasionally an rvalue,
808   // so we can't get it as an lvalue.
809   if (!E->getBase()->getType()->isVectorType())
810     return EmitLoadOfLValue(E);
811 
812   // Handle the vector case.  The base must be a vector, the index must be an
813   // integer value.
814   Value *Base = Visit(E->getBase());
815   Value *Idx  = Visit(E->getIdx());
816   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
817   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
818   return Builder.CreateExtractElement(Base, Idx, "vecext");
819 }
820 
821 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
822                                   unsigned Off, llvm::Type *I32Ty) {
823   int MV = SVI->getMaskValue(Idx);
824   if (MV == -1)
825     return llvm::UndefValue::get(I32Ty);
826   return llvm::ConstantInt::get(I32Ty, Off+MV);
827 }
828 
829 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
830   bool Ignore = TestAndClearIgnoreResultAssign();
831   (void)Ignore;
832   assert (Ignore == false && "init list ignored");
833   unsigned NumInitElements = E->getNumInits();
834 
835   if (E->hadArrayRangeDesignator())
836     CGF.ErrorUnsupported(E, "GNU array range designator extension");
837 
838   llvm::VectorType *VType =
839     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
840 
841   if (!VType) {
842     if (NumInitElements == 0) {
843       // C++11 value-initialization for the scalar.
844       return EmitNullValue(E->getType());
845     }
846     // We have a scalar in braces. Just use the first element.
847     return Visit(E->getInit(0));
848   }
849 
850   unsigned ResElts = VType->getNumElements();
851 
852   // Loop over initializers collecting the Value for each, and remembering
853   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
854   // us to fold the shuffle for the swizzle into the shuffle for the vector
855   // initializer, since LLVM optimizers generally do not want to touch
856   // shuffles.
857   unsigned CurIdx = 0;
858   bool VIsUndefShuffle = false;
859   llvm::Value *V = llvm::UndefValue::get(VType);
860   for (unsigned i = 0; i != NumInitElements; ++i) {
861     Expr *IE = E->getInit(i);
862     Value *Init = Visit(IE);
863     SmallVector<llvm::Constant*, 16> Args;
864 
865     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
866 
867     // Handle scalar elements.  If the scalar initializer is actually one
868     // element of a different vector of the same width, use shuffle instead of
869     // extract+insert.
870     if (!VVT) {
871       if (isa<ExtVectorElementExpr>(IE)) {
872         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
873 
874         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
875           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
876           Value *LHS = 0, *RHS = 0;
877           if (CurIdx == 0) {
878             // insert into undef -> shuffle (src, undef)
879             Args.push_back(C);
880             for (unsigned j = 1; j != ResElts; ++j)
881               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
882 
883             LHS = EI->getVectorOperand();
884             RHS = V;
885             VIsUndefShuffle = true;
886           } else if (VIsUndefShuffle) {
887             // insert into undefshuffle && size match -> shuffle (v, src)
888             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
889             for (unsigned j = 0; j != CurIdx; ++j)
890               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
891             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
892             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
893               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
894 
895             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
896             RHS = EI->getVectorOperand();
897             VIsUndefShuffle = false;
898           }
899           if (!Args.empty()) {
900             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
901             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
902             ++CurIdx;
903             continue;
904           }
905         }
906       }
907       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
908                                       "vecinit");
909       VIsUndefShuffle = false;
910       ++CurIdx;
911       continue;
912     }
913 
914     unsigned InitElts = VVT->getNumElements();
915 
916     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
917     // input is the same width as the vector being constructed, generate an
918     // optimized shuffle of the swizzle input into the result.
919     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
920     if (isa<ExtVectorElementExpr>(IE)) {
921       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
922       Value *SVOp = SVI->getOperand(0);
923       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
924 
925       if (OpTy->getNumElements() == ResElts) {
926         for (unsigned j = 0; j != CurIdx; ++j) {
927           // If the current vector initializer is a shuffle with undef, merge
928           // this shuffle directly into it.
929           if (VIsUndefShuffle) {
930             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
931                                       CGF.Int32Ty));
932           } else {
933             Args.push_back(Builder.getInt32(j));
934           }
935         }
936         for (unsigned j = 0, je = InitElts; j != je; ++j)
937           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
938         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
939           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
940 
941         if (VIsUndefShuffle)
942           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
943 
944         Init = SVOp;
945       }
946     }
947 
948     // Extend init to result vector length, and then shuffle its contribution
949     // to the vector initializer into V.
950     if (Args.empty()) {
951       for (unsigned j = 0; j != InitElts; ++j)
952         Args.push_back(Builder.getInt32(j));
953       for (unsigned j = InitElts; j != ResElts; ++j)
954         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
955       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
956       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
957                                          Mask, "vext");
958 
959       Args.clear();
960       for (unsigned j = 0; j != CurIdx; ++j)
961         Args.push_back(Builder.getInt32(j));
962       for (unsigned j = 0; j != InitElts; ++j)
963         Args.push_back(Builder.getInt32(j+Offset));
964       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
965         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
966     }
967 
968     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
969     // merging subsequent shuffles into this one.
970     if (CurIdx == 0)
971       std::swap(V, Init);
972     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
973     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
974     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
975     CurIdx += InitElts;
976   }
977 
978   // FIXME: evaluate codegen vs. shuffling against constant null vector.
979   // Emit remaining default initializers.
980   llvm::Type *EltTy = VType->getElementType();
981 
982   // Emit remaining default initializers
983   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
984     Value *Idx = Builder.getInt32(CurIdx);
985     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
986     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
987   }
988   return V;
989 }
990 
991 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
992   const Expr *E = CE->getSubExpr();
993 
994   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
995     return false;
996 
997   if (isa<CXXThisExpr>(E)) {
998     // We always assume that 'this' is never null.
999     return false;
1000   }
1001 
1002   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1003     // And that glvalue casts are never null.
1004     if (ICE->getValueKind() != VK_RValue)
1005       return false;
1006   }
1007 
1008   return true;
1009 }
1010 
1011 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1012 // have to handle a more broad range of conversions than explicit casts, as they
1013 // handle things like function to ptr-to-function decay etc.
1014 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1015   Expr *E = CE->getSubExpr();
1016   QualType DestTy = CE->getType();
1017   CastKind Kind = CE->getCastKind();
1018 
1019   if (!DestTy->isVoidType())
1020     TestAndClearIgnoreResultAssign();
1021 
1022   // Since almost all cast kinds apply to scalars, this switch doesn't have
1023   // a default case, so the compiler will warn on a missing case.  The cases
1024   // are in the same order as in the CastKind enum.
1025   switch (Kind) {
1026   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1027 
1028   case CK_LValueBitCast:
1029   case CK_ObjCObjectLValueCast: {
1030     Value *V = EmitLValue(E).getAddress();
1031     V = Builder.CreateBitCast(V,
1032                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1033     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy));
1034   }
1035 
1036   case CK_CPointerToObjCPointerCast:
1037   case CK_BlockPointerToObjCPointerCast:
1038   case CK_AnyPointerToBlockPointerCast:
1039   case CK_BitCast: {
1040     Value *Src = Visit(const_cast<Expr*>(E));
1041     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1042   }
1043   case CK_NoOp:
1044   case CK_UserDefinedConversion:
1045     return Visit(const_cast<Expr*>(E));
1046 
1047   case CK_BaseToDerived: {
1048     const CXXRecordDecl *DerivedClassDecl =
1049       DestTy->getCXXRecordDeclForPointerType();
1050 
1051     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1052                                         CE->path_begin(), CE->path_end(),
1053                                         ShouldNullCheckClassCastValue(CE));
1054   }
1055   case CK_UncheckedDerivedToBase:
1056   case CK_DerivedToBase: {
1057     const RecordType *DerivedClassTy =
1058       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1059     CXXRecordDecl *DerivedClassDecl =
1060       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1061 
1062     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1063                                      CE->path_begin(), CE->path_end(),
1064                                      ShouldNullCheckClassCastValue(CE));
1065   }
1066   case CK_Dynamic: {
1067     Value *V = Visit(const_cast<Expr*>(E));
1068     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1069     return CGF.EmitDynamicCast(V, DCE);
1070   }
1071 
1072   case CK_ArrayToPointerDecay: {
1073     assert(E->getType()->isArrayType() &&
1074            "Array to pointer decay must have array source type!");
1075 
1076     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1077 
1078     // Note that VLA pointers are always decayed, so we don't need to do
1079     // anything here.
1080     if (!E->getType()->isVariableArrayType()) {
1081       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1082       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1083                                  ->getElementType()) &&
1084              "Expected pointer to array");
1085       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1086     }
1087 
1088     // Make sure the array decay ends up being the right type.  This matters if
1089     // the array type was of an incomplete type.
1090     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1091   }
1092   case CK_FunctionToPointerDecay:
1093     return EmitLValue(E).getAddress();
1094 
1095   case CK_NullToPointer:
1096     if (MustVisitNullValue(E))
1097       (void) Visit(E);
1098 
1099     return llvm::ConstantPointerNull::get(
1100                                cast<llvm::PointerType>(ConvertType(DestTy)));
1101 
1102   case CK_NullToMemberPointer: {
1103     if (MustVisitNullValue(E))
1104       (void) Visit(E);
1105 
1106     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1107     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1108   }
1109 
1110   case CK_BaseToDerivedMemberPointer:
1111   case CK_DerivedToBaseMemberPointer: {
1112     Value *Src = Visit(E);
1113 
1114     // Note that the AST doesn't distinguish between checked and
1115     // unchecked member pointer conversions, so we always have to
1116     // implement checked conversions here.  This is inefficient when
1117     // actual control flow may be required in order to perform the
1118     // check, which it is for data member pointers (but not member
1119     // function pointers on Itanium and ARM).
1120     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1121   }
1122 
1123   case CK_ARCProduceObject:
1124     return CGF.EmitARCRetainScalarExpr(E);
1125   case CK_ARCConsumeObject:
1126     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1127   case CK_ARCReclaimReturnedObject: {
1128     llvm::Value *value = Visit(E);
1129     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1130     return CGF.EmitObjCConsumeObject(E->getType(), value);
1131   }
1132   case CK_ARCExtendBlockObject:
1133     return CGF.EmitARCExtendBlockObject(E);
1134 
1135   case CK_FloatingRealToComplex:
1136   case CK_FloatingComplexCast:
1137   case CK_IntegralRealToComplex:
1138   case CK_IntegralComplexCast:
1139   case CK_IntegralComplexToFloatingComplex:
1140   case CK_FloatingComplexToIntegralComplex:
1141   case CK_ConstructorConversion:
1142   case CK_ToUnion:
1143     llvm_unreachable("scalar cast to non-scalar value");
1144     break;
1145 
1146   case CK_GetObjCProperty: {
1147     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1148     assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1149            "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1150     RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E));
1151     return RV.getScalarVal();
1152   }
1153 
1154   case CK_LValueToRValue:
1155     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1156     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1157     return Visit(const_cast<Expr*>(E));
1158 
1159   case CK_IntegralToPointer: {
1160     Value *Src = Visit(const_cast<Expr*>(E));
1161 
1162     // First, convert to the correct width so that we control the kind of
1163     // extension.
1164     llvm::Type *MiddleTy = CGF.IntPtrTy;
1165     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1166     llvm::Value* IntResult =
1167       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1168 
1169     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1170   }
1171   case CK_PointerToIntegral:
1172     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1173     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1174 
1175   case CK_ToVoid: {
1176     CGF.EmitIgnoredExpr(E);
1177     return 0;
1178   }
1179   case CK_VectorSplat: {
1180     llvm::Type *DstTy = ConvertType(DestTy);
1181     Value *Elt = Visit(const_cast<Expr*>(E));
1182 
1183     // Insert the element in element zero of an undef vector
1184     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1185     llvm::Value *Idx = Builder.getInt32(0);
1186     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1187 
1188     // Splat the element across to all elements
1189     SmallVector<llvm::Constant*, 16> Args;
1190     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1191     llvm::Constant *Zero = Builder.getInt32(0);
1192     for (unsigned i = 0; i < NumElements; i++)
1193       Args.push_back(Zero);
1194 
1195     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1196     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1197     return Yay;
1198   }
1199 
1200   case CK_IntegralCast:
1201   case CK_IntegralToFloating:
1202   case CK_FloatingToIntegral:
1203   case CK_FloatingCast:
1204     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1205 
1206   case CK_IntegralToBoolean:
1207     return EmitIntToBoolConversion(Visit(E));
1208   case CK_PointerToBoolean:
1209     return EmitPointerToBoolConversion(Visit(E));
1210   case CK_FloatingToBoolean:
1211     return EmitFloatToBoolConversion(Visit(E));
1212   case CK_MemberPointerToBoolean: {
1213     llvm::Value *MemPtr = Visit(E);
1214     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1215     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1216   }
1217 
1218   case CK_FloatingComplexToReal:
1219   case CK_IntegralComplexToReal:
1220     return CGF.EmitComplexExpr(E, false, true).first;
1221 
1222   case CK_FloatingComplexToBoolean:
1223   case CK_IntegralComplexToBoolean: {
1224     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1225 
1226     // TODO: kill this function off, inline appropriate case here
1227     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1228   }
1229 
1230   }
1231 
1232   llvm_unreachable("unknown scalar cast");
1233   return 0;
1234 }
1235 
1236 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1237   CodeGenFunction::StmtExprEvaluation eval(CGF);
1238   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1239     .getScalarVal();
1240 }
1241 
1242 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1243   LValue LV = CGF.EmitBlockDeclRefLValue(E);
1244   return CGF.EmitLoadOfLValue(LV).getScalarVal();
1245 }
1246 
1247 //===----------------------------------------------------------------------===//
1248 //                             Unary Operators
1249 //===----------------------------------------------------------------------===//
1250 
1251 llvm::Value *ScalarExprEmitter::
1252 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1253                                 llvm::Value *InVal,
1254                                 llvm::Value *NextVal, bool IsInc) {
1255   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1256   case LangOptions::SOB_Undefined:
1257     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1258     break;
1259   case LangOptions::SOB_Defined:
1260     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1261     break;
1262   case LangOptions::SOB_Trapping:
1263     BinOpInfo BinOp;
1264     BinOp.LHS = InVal;
1265     BinOp.RHS = NextVal;
1266     BinOp.Ty = E->getType();
1267     BinOp.Opcode = BO_Add;
1268     BinOp.E = E;
1269     return EmitOverflowCheckedBinOp(BinOp);
1270   }
1271   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1272 }
1273 
1274 llvm::Value *
1275 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1276                                            bool isInc, bool isPre) {
1277 
1278   QualType type = E->getSubExpr()->getType();
1279   llvm::Value *value = EmitLoadOfLValue(LV);
1280   llvm::Value *input = value;
1281 
1282   int amount = (isInc ? 1 : -1);
1283 
1284   // Special case of integer increment that we have to check first: bool++.
1285   // Due to promotion rules, we get:
1286   //   bool++ -> bool = bool + 1
1287   //          -> bool = (int)bool + 1
1288   //          -> bool = ((int)bool + 1 != 0)
1289   // An interesting aspect of this is that increment is always true.
1290   // Decrement does not have this property.
1291   if (isInc && type->isBooleanType()) {
1292     value = Builder.getTrue();
1293 
1294   // Most common case by far: integer increment.
1295   } else if (type->isIntegerType()) {
1296 
1297     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1298 
1299     // Note that signed integer inc/dec with width less than int can't
1300     // overflow because of promotion rules; we're just eliding a few steps here.
1301     if (type->isSignedIntegerOrEnumerationType() &&
1302         value->getType()->getPrimitiveSizeInBits() >=
1303             CGF.IntTy->getBitWidth())
1304       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1305     else
1306       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1307 
1308   // Next most common: pointer increment.
1309   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1310     QualType type = ptr->getPointeeType();
1311 
1312     // VLA types don't have constant size.
1313     if (const VariableArrayType *vla
1314           = CGF.getContext().getAsVariableArrayType(type)) {
1315       llvm::Value *numElts = CGF.getVLASize(vla).first;
1316       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1317       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1318         value = Builder.CreateGEP(value, numElts, "vla.inc");
1319       else
1320         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1321 
1322     // Arithmetic on function pointers (!) is just +-1.
1323     } else if (type->isFunctionType()) {
1324       llvm::Value *amt = Builder.getInt32(amount);
1325 
1326       value = CGF.EmitCastToVoidPtr(value);
1327       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1328         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1329       else
1330         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1331       value = Builder.CreateBitCast(value, input->getType());
1332 
1333     // For everything else, we can just do a simple increment.
1334     } else {
1335       llvm::Value *amt = Builder.getInt32(amount);
1336       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1337         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1338       else
1339         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1340     }
1341 
1342   // Vector increment/decrement.
1343   } else if (type->isVectorType()) {
1344     if (type->hasIntegerRepresentation()) {
1345       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1346 
1347       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1348     } else {
1349       value = Builder.CreateFAdd(
1350                   value,
1351                   llvm::ConstantFP::get(value->getType(), amount),
1352                   isInc ? "inc" : "dec");
1353     }
1354 
1355   // Floating point.
1356   } else if (type->isRealFloatingType()) {
1357     // Add the inc/dec to the real part.
1358     llvm::Value *amt;
1359     if (value->getType()->isFloatTy())
1360       amt = llvm::ConstantFP::get(VMContext,
1361                                   llvm::APFloat(static_cast<float>(amount)));
1362     else if (value->getType()->isDoubleTy())
1363       amt = llvm::ConstantFP::get(VMContext,
1364                                   llvm::APFloat(static_cast<double>(amount)));
1365     else {
1366       llvm::APFloat F(static_cast<float>(amount));
1367       bool ignored;
1368       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1369                 &ignored);
1370       amt = llvm::ConstantFP::get(VMContext, F);
1371     }
1372     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1373 
1374   // Objective-C pointer types.
1375   } else {
1376     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1377     value = CGF.EmitCastToVoidPtr(value);
1378 
1379     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1380     if (!isInc) size = -size;
1381     llvm::Value *sizeValue =
1382       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1383 
1384     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1385       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1386     else
1387       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1388     value = Builder.CreateBitCast(value, input->getType());
1389   }
1390 
1391   // Store the updated result through the lvalue.
1392   if (LV.isBitField())
1393     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1394   else
1395     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1396 
1397   // If this is a postinc, return the value read from memory, otherwise use the
1398   // updated value.
1399   return isPre ? value : input;
1400 }
1401 
1402 
1403 
1404 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1405   TestAndClearIgnoreResultAssign();
1406   // Emit unary minus with EmitSub so we handle overflow cases etc.
1407   BinOpInfo BinOp;
1408   BinOp.RHS = Visit(E->getSubExpr());
1409 
1410   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1411     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1412   else
1413     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1414   BinOp.Ty = E->getType();
1415   BinOp.Opcode = BO_Sub;
1416   BinOp.E = E;
1417   return EmitSub(BinOp);
1418 }
1419 
1420 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1421   TestAndClearIgnoreResultAssign();
1422   Value *Op = Visit(E->getSubExpr());
1423   return Builder.CreateNot(Op, "neg");
1424 }
1425 
1426 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1427   // Compare operand to zero.
1428   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1429 
1430   // Invert value.
1431   // TODO: Could dynamically modify easy computations here.  For example, if
1432   // the operand is an icmp ne, turn into icmp eq.
1433   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1434 
1435   // ZExt result to the expr type.
1436   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1437 }
1438 
1439 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1440   // Try folding the offsetof to a constant.
1441   Expr::EvalResult EvalResult;
1442   if (E->Evaluate(EvalResult, CGF.getContext()))
1443     return Builder.getInt(EvalResult.Val.getInt());
1444 
1445   // Loop over the components of the offsetof to compute the value.
1446   unsigned n = E->getNumComponents();
1447   llvm::Type* ResultType = ConvertType(E->getType());
1448   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1449   QualType CurrentType = E->getTypeSourceInfo()->getType();
1450   for (unsigned i = 0; i != n; ++i) {
1451     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1452     llvm::Value *Offset = 0;
1453     switch (ON.getKind()) {
1454     case OffsetOfExpr::OffsetOfNode::Array: {
1455       // Compute the index
1456       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1457       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1458       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1459       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1460 
1461       // Save the element type
1462       CurrentType =
1463           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1464 
1465       // Compute the element size
1466       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1467           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1468 
1469       // Multiply out to compute the result
1470       Offset = Builder.CreateMul(Idx, ElemSize);
1471       break;
1472     }
1473 
1474     case OffsetOfExpr::OffsetOfNode::Field: {
1475       FieldDecl *MemberDecl = ON.getField();
1476       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1477       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1478 
1479       // Compute the index of the field in its parent.
1480       unsigned i = 0;
1481       // FIXME: It would be nice if we didn't have to loop here!
1482       for (RecordDecl::field_iterator Field = RD->field_begin(),
1483                                       FieldEnd = RD->field_end();
1484            Field != FieldEnd; (void)++Field, ++i) {
1485         if (*Field == MemberDecl)
1486           break;
1487       }
1488       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1489 
1490       // Compute the offset to the field
1491       int64_t OffsetInt = RL.getFieldOffset(i) /
1492                           CGF.getContext().getCharWidth();
1493       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1494 
1495       // Save the element type.
1496       CurrentType = MemberDecl->getType();
1497       break;
1498     }
1499 
1500     case OffsetOfExpr::OffsetOfNode::Identifier:
1501       llvm_unreachable("dependent __builtin_offsetof");
1502 
1503     case OffsetOfExpr::OffsetOfNode::Base: {
1504       if (ON.getBase()->isVirtual()) {
1505         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1506         continue;
1507       }
1508 
1509       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1510       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1511 
1512       // Save the element type.
1513       CurrentType = ON.getBase()->getType();
1514 
1515       // Compute the offset to the base.
1516       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1517       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1518       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1519                           CGF.getContext().getCharWidth();
1520       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1521       break;
1522     }
1523     }
1524     Result = Builder.CreateAdd(Result, Offset);
1525   }
1526   return Result;
1527 }
1528 
1529 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1530 /// argument of the sizeof expression as an integer.
1531 Value *
1532 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1533                               const UnaryExprOrTypeTraitExpr *E) {
1534   QualType TypeToSize = E->getTypeOfArgument();
1535   if (E->getKind() == UETT_SizeOf) {
1536     if (const VariableArrayType *VAT =
1537           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1538       if (E->isArgumentType()) {
1539         // sizeof(type) - make sure to emit the VLA size.
1540         CGF.EmitVariablyModifiedType(TypeToSize);
1541       } else {
1542         // C99 6.5.3.4p2: If the argument is an expression of type
1543         // VLA, it is evaluated.
1544         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1545       }
1546 
1547       QualType eltType;
1548       llvm::Value *numElts;
1549       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1550 
1551       llvm::Value *size = numElts;
1552 
1553       // Scale the number of non-VLA elements by the non-VLA element size.
1554       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1555       if (!eltSize.isOne())
1556         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1557 
1558       return size;
1559     }
1560   }
1561 
1562   // If this isn't sizeof(vla), the result must be constant; use the constant
1563   // folding logic so we don't have to duplicate it here.
1564   Expr::EvalResult Result;
1565   E->Evaluate(Result, CGF.getContext());
1566   return Builder.getInt(Result.Val.getInt());
1567 }
1568 
1569 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1570   Expr *Op = E->getSubExpr();
1571   if (Op->getType()->isAnyComplexType()) {
1572     // If it's an l-value, load through the appropriate subobject l-value.
1573     // Note that we have to ask E because Op might be an l-value that
1574     // this won't work for, e.g. an Obj-C property.
1575     if (E->isGLValue())
1576       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1577 
1578     // Otherwise, calculate and project.
1579     return CGF.EmitComplexExpr(Op, false, true).first;
1580   }
1581 
1582   return Visit(Op);
1583 }
1584 
1585 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1586   Expr *Op = E->getSubExpr();
1587   if (Op->getType()->isAnyComplexType()) {
1588     // If it's an l-value, load through the appropriate subobject l-value.
1589     // Note that we have to ask E because Op might be an l-value that
1590     // this won't work for, e.g. an Obj-C property.
1591     if (Op->isGLValue())
1592       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1593 
1594     // Otherwise, calculate and project.
1595     return CGF.EmitComplexExpr(Op, true, false).second;
1596   }
1597 
1598   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1599   // effects are evaluated, but not the actual value.
1600   CGF.EmitScalarExpr(Op, true);
1601   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1602 }
1603 
1604 //===----------------------------------------------------------------------===//
1605 //                           Binary Operators
1606 //===----------------------------------------------------------------------===//
1607 
1608 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1609   TestAndClearIgnoreResultAssign();
1610   BinOpInfo Result;
1611   Result.LHS = Visit(E->getLHS());
1612   Result.RHS = Visit(E->getRHS());
1613   Result.Ty  = E->getType();
1614   Result.Opcode = E->getOpcode();
1615   Result.E = E;
1616   return Result;
1617 }
1618 
1619 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1620                                               const CompoundAssignOperator *E,
1621                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1622                                                    Value *&Result) {
1623   QualType LHSTy = E->getLHS()->getType();
1624   BinOpInfo OpInfo;
1625 
1626   if (E->getComputationResultType()->isAnyComplexType()) {
1627     // This needs to go through the complex expression emitter, but it's a tad
1628     // complicated to do that... I'm leaving it out for now.  (Note that we do
1629     // actually need the imaginary part of the RHS for multiplication and
1630     // division.)
1631     CGF.ErrorUnsupported(E, "complex compound assignment");
1632     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1633     return LValue();
1634   }
1635 
1636   // Emit the RHS first.  __block variables need to have the rhs evaluated
1637   // first, plus this should improve codegen a little.
1638   OpInfo.RHS = Visit(E->getRHS());
1639   OpInfo.Ty = E->getComputationResultType();
1640   OpInfo.Opcode = E->getOpcode();
1641   OpInfo.E = E;
1642   // Load/convert the LHS.
1643   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1644   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1645   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1646                                     E->getComputationLHSType());
1647 
1648   // Expand the binary operator.
1649   Result = (this->*Func)(OpInfo);
1650 
1651   // Convert the result back to the LHS type.
1652   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1653 
1654   // Store the result value into the LHS lvalue. Bit-fields are handled
1655   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1656   // 'An assignment expression has the value of the left operand after the
1657   // assignment...'.
1658   if (LHSLV.isBitField())
1659     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1660   else
1661     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1662 
1663   return LHSLV;
1664 }
1665 
1666 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1667                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1668   bool Ignore = TestAndClearIgnoreResultAssign();
1669   Value *RHS;
1670   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1671 
1672   // If the result is clearly ignored, return now.
1673   if (Ignore)
1674     return 0;
1675 
1676   // The result of an assignment in C is the assigned r-value.
1677   if (!CGF.getContext().getLangOptions().CPlusPlus)
1678     return RHS;
1679 
1680   // Objective-C property assignment never reloads the value following a store.
1681   if (LHS.isPropertyRef())
1682     return RHS;
1683 
1684   // If the lvalue is non-volatile, return the computed value of the assignment.
1685   if (!LHS.isVolatileQualified())
1686     return RHS;
1687 
1688   // Otherwise, reload the value.
1689   return EmitLoadOfLValue(LHS);
1690 }
1691 
1692 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1693      					    const BinOpInfo &Ops,
1694 				     	    llvm::Value *Zero, bool isDiv) {
1695   llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1696   llvm::BasicBlock *contBB =
1697     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1698                          llvm::next(insertPt));
1699   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1700 
1701   llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1702 
1703   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1704     llvm::Value *IntMin =
1705       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1706     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1707 
1708     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1709     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1710     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1711     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1712     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1713                          overflowBB, contBB);
1714   } else {
1715     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1716                              overflowBB, contBB);
1717   }
1718   EmitOverflowBB(overflowBB);
1719   Builder.SetInsertPoint(contBB);
1720 }
1721 
1722 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1723   if (isTrapvOverflowBehavior()) {
1724     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1725 
1726     if (Ops.Ty->isIntegerType())
1727       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1728     else if (Ops.Ty->isRealFloatingType()) {
1729       llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1730       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1731                                                        llvm::next(insertPt));
1732       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1733                                                           CGF.CurFn);
1734       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1735                                overflowBB, DivCont);
1736       EmitOverflowBB(overflowBB);
1737       Builder.SetInsertPoint(DivCont);
1738     }
1739   }
1740   if (Ops.LHS->getType()->isFPOrFPVectorTy())
1741     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1742   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1743     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1744   else
1745     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1746 }
1747 
1748 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1749   // Rem in C can't be a floating point type: C99 6.5.5p2.
1750   if (isTrapvOverflowBehavior()) {
1751     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1752 
1753     if (Ops.Ty->isIntegerType())
1754       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1755   }
1756 
1757   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1758     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1759   else
1760     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1761 }
1762 
1763 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1764   unsigned IID;
1765   unsigned OpID = 0;
1766 
1767   switch (Ops.Opcode) {
1768   case BO_Add:
1769   case BO_AddAssign:
1770     OpID = 1;
1771     IID = llvm::Intrinsic::sadd_with_overflow;
1772     break;
1773   case BO_Sub:
1774   case BO_SubAssign:
1775     OpID = 2;
1776     IID = llvm::Intrinsic::ssub_with_overflow;
1777     break;
1778   case BO_Mul:
1779   case BO_MulAssign:
1780     OpID = 3;
1781     IID = llvm::Intrinsic::smul_with_overflow;
1782     break;
1783   default:
1784     llvm_unreachable("Unsupported operation for overflow detection");
1785     IID = 0;
1786   }
1787   OpID <<= 1;
1788   OpID |= 1;
1789 
1790   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1791 
1792   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1793 
1794   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1795   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1796   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1797 
1798   // Branch in case of overflow.
1799   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1800   llvm::Function::iterator insertPt = initialBB;
1801   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1802                                                       llvm::next(insertPt));
1803   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1804 
1805   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1806 
1807   // Handle overflow with llvm.trap.
1808   const std::string *handlerName =
1809     &CGF.getContext().getLangOptions().OverflowHandler;
1810   if (handlerName->empty()) {
1811     EmitOverflowBB(overflowBB);
1812     Builder.SetInsertPoint(continueBB);
1813     return result;
1814   }
1815 
1816   // If an overflow handler is set, then we want to call it and then use its
1817   // result, if it returns.
1818   Builder.SetInsertPoint(overflowBB);
1819 
1820   // Get the overflow handler.
1821   llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1822   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1823   llvm::FunctionType *handlerTy =
1824       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1825   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1826 
1827   // Sign extend the args to 64-bit, so that we can use the same handler for
1828   // all types of overflow.
1829   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1830   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1831 
1832   // Call the handler with the two arguments, the operation, and the size of
1833   // the result.
1834   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1835       Builder.getInt8(OpID),
1836       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1837 
1838   // Truncate the result back to the desired size.
1839   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1840   Builder.CreateBr(continueBB);
1841 
1842   Builder.SetInsertPoint(continueBB);
1843   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1844   phi->addIncoming(result, initialBB);
1845   phi->addIncoming(handlerResult, overflowBB);
1846 
1847   return phi;
1848 }
1849 
1850 /// Emit pointer + index arithmetic.
1851 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1852                                     const BinOpInfo &op,
1853                                     bool isSubtraction) {
1854   // Must have binary (not unary) expr here.  Unary pointer
1855   // increment/decrement doesn't use this path.
1856   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1857 
1858   Value *pointer = op.LHS;
1859   Expr *pointerOperand = expr->getLHS();
1860   Value *index = op.RHS;
1861   Expr *indexOperand = expr->getRHS();
1862 
1863   // In a subtraction, the LHS is always the pointer.
1864   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1865     std::swap(pointer, index);
1866     std::swap(pointerOperand, indexOperand);
1867   }
1868 
1869   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1870   if (width != CGF.PointerWidthInBits) {
1871     // Zero-extend or sign-extend the pointer value according to
1872     // whether the index is signed or not.
1873     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1874     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1875                                       "idx.ext");
1876   }
1877 
1878   // If this is subtraction, negate the index.
1879   if (isSubtraction)
1880     index = CGF.Builder.CreateNeg(index, "idx.neg");
1881 
1882   const PointerType *pointerType
1883     = pointerOperand->getType()->getAs<PointerType>();
1884   if (!pointerType) {
1885     QualType objectType = pointerOperand->getType()
1886                                         ->castAs<ObjCObjectPointerType>()
1887                                         ->getPointeeType();
1888     llvm::Value *objectSize
1889       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1890 
1891     index = CGF.Builder.CreateMul(index, objectSize);
1892 
1893     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1894     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1895     return CGF.Builder.CreateBitCast(result, pointer->getType());
1896   }
1897 
1898   QualType elementType = pointerType->getPointeeType();
1899   if (const VariableArrayType *vla
1900         = CGF.getContext().getAsVariableArrayType(elementType)) {
1901     // The element count here is the total number of non-VLA elements.
1902     llvm::Value *numElements = CGF.getVLASize(vla).first;
1903 
1904     // Effectively, the multiply by the VLA size is part of the GEP.
1905     // GEP indexes are signed, and scaling an index isn't permitted to
1906     // signed-overflow, so we use the same semantics for our explicit
1907     // multiply.  We suppress this if overflow is not undefined behavior.
1908     if (CGF.getLangOptions().isSignedOverflowDefined()) {
1909       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1910       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1911     } else {
1912       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1913       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1914     }
1915     return pointer;
1916   }
1917 
1918   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1919   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1920   // future proof.
1921   if (elementType->isVoidType() || elementType->isFunctionType()) {
1922     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1923     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1924     return CGF.Builder.CreateBitCast(result, pointer->getType());
1925   }
1926 
1927   if (CGF.getLangOptions().isSignedOverflowDefined())
1928     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1929 
1930   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1931 }
1932 
1933 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
1934   if (op.LHS->getType()->isPointerTy() ||
1935       op.RHS->getType()->isPointerTy())
1936     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
1937 
1938   if (op.Ty->isSignedIntegerOrEnumerationType()) {
1939     switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1940     case LangOptions::SOB_Undefined:
1941       return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
1942     case LangOptions::SOB_Defined:
1943       return Builder.CreateAdd(op.LHS, op.RHS, "add");
1944     case LangOptions::SOB_Trapping:
1945       return EmitOverflowCheckedBinOp(op);
1946     }
1947   }
1948 
1949   if (op.LHS->getType()->isFPOrFPVectorTy())
1950     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
1951 
1952   return Builder.CreateAdd(op.LHS, op.RHS, "add");
1953 }
1954 
1955 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
1956   // The LHS is always a pointer if either side is.
1957   if (!op.LHS->getType()->isPointerTy()) {
1958     if (op.Ty->isSignedIntegerOrEnumerationType()) {
1959       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1960       case LangOptions::SOB_Undefined:
1961         return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
1962       case LangOptions::SOB_Defined:
1963         return Builder.CreateSub(op.LHS, op.RHS, "sub");
1964       case LangOptions::SOB_Trapping:
1965         return EmitOverflowCheckedBinOp(op);
1966       }
1967     }
1968 
1969     if (op.LHS->getType()->isFPOrFPVectorTy())
1970       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
1971 
1972     return Builder.CreateSub(op.LHS, op.RHS, "sub");
1973   }
1974 
1975   // If the RHS is not a pointer, then we have normal pointer
1976   // arithmetic.
1977   if (!op.RHS->getType()->isPointerTy())
1978     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
1979 
1980   // Otherwise, this is a pointer subtraction.
1981 
1982   // Do the raw subtraction part.
1983   llvm::Value *LHS
1984     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
1985   llvm::Value *RHS
1986     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
1987   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1988 
1989   // Okay, figure out the element size.
1990   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1991   QualType elementType = expr->getLHS()->getType()->getPointeeType();
1992 
1993   llvm::Value *divisor = 0;
1994 
1995   // For a variable-length array, this is going to be non-constant.
1996   if (const VariableArrayType *vla
1997         = CGF.getContext().getAsVariableArrayType(elementType)) {
1998     llvm::Value *numElements;
1999     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2000 
2001     divisor = numElements;
2002 
2003     // Scale the number of non-VLA elements by the non-VLA element size.
2004     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2005     if (!eltSize.isOne())
2006       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2007 
2008   // For everything elese, we can just compute it, safe in the
2009   // assumption that Sema won't let anything through that we can't
2010   // safely compute the size of.
2011   } else {
2012     CharUnits elementSize;
2013     // Handle GCC extension for pointer arithmetic on void* and
2014     // function pointer types.
2015     if (elementType->isVoidType() || elementType->isFunctionType())
2016       elementSize = CharUnits::One();
2017     else
2018       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2019 
2020     // Don't even emit the divide for element size of 1.
2021     if (elementSize.isOne())
2022       return diffInChars;
2023 
2024     divisor = CGF.CGM.getSize(elementSize);
2025   }
2026 
2027   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2028   // pointer difference in C is only defined in the case where both operands
2029   // are pointing to elements of an array.
2030   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2031 }
2032 
2033 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2034   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2035   // RHS to the same size as the LHS.
2036   Value *RHS = Ops.RHS;
2037   if (Ops.LHS->getType() != RHS->getType())
2038     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2039 
2040   if (CGF.CatchUndefined
2041       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2042     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2043     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2044     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2045                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2046                              Cont, CGF.getTrapBB());
2047     CGF.EmitBlock(Cont);
2048   }
2049 
2050   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2051 }
2052 
2053 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2054   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2055   // RHS to the same size as the LHS.
2056   Value *RHS = Ops.RHS;
2057   if (Ops.LHS->getType() != RHS->getType())
2058     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2059 
2060   if (CGF.CatchUndefined
2061       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2062     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2063     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2064     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2065                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2066                              Cont, CGF.getTrapBB());
2067     CGF.EmitBlock(Cont);
2068   }
2069 
2070   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2071     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2072   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2073 }
2074 
2075 enum IntrinsicType { VCMPEQ, VCMPGT };
2076 // return corresponding comparison intrinsic for given vector type
2077 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2078                                         BuiltinType::Kind ElemKind) {
2079   switch (ElemKind) {
2080   default: llvm_unreachable("unexpected element type");
2081   case BuiltinType::Char_U:
2082   case BuiltinType::UChar:
2083     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2084                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2085     break;
2086   case BuiltinType::Char_S:
2087   case BuiltinType::SChar:
2088     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2089                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2090     break;
2091   case BuiltinType::UShort:
2092     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2093                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2094     break;
2095   case BuiltinType::Short:
2096     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2097                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2098     break;
2099   case BuiltinType::UInt:
2100   case BuiltinType::ULong:
2101     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2102                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2103     break;
2104   case BuiltinType::Int:
2105   case BuiltinType::Long:
2106     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2107                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2108     break;
2109   case BuiltinType::Float:
2110     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2111                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2112     break;
2113   }
2114   return llvm::Intrinsic::not_intrinsic;
2115 }
2116 
2117 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2118                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2119   TestAndClearIgnoreResultAssign();
2120   Value *Result;
2121   QualType LHSTy = E->getLHS()->getType();
2122   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2123     assert(E->getOpcode() == BO_EQ ||
2124            E->getOpcode() == BO_NE);
2125     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2126     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2127     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2128                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2129   } else if (!LHSTy->isAnyComplexType()) {
2130     Value *LHS = Visit(E->getLHS());
2131     Value *RHS = Visit(E->getRHS());
2132 
2133     // If AltiVec, the comparison results in a numeric type, so we use
2134     // intrinsics comparing vectors and giving 0 or 1 as a result
2135     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2136       // constants for mapping CR6 register bits to predicate result
2137       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2138 
2139       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2140 
2141       // in several cases vector arguments order will be reversed
2142       Value *FirstVecArg = LHS,
2143             *SecondVecArg = RHS;
2144 
2145       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2146       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2147       BuiltinType::Kind ElementKind = BTy->getKind();
2148 
2149       switch(E->getOpcode()) {
2150       default: llvm_unreachable("is not a comparison operation");
2151       case BO_EQ:
2152         CR6 = CR6_LT;
2153         ID = GetIntrinsic(VCMPEQ, ElementKind);
2154         break;
2155       case BO_NE:
2156         CR6 = CR6_EQ;
2157         ID = GetIntrinsic(VCMPEQ, ElementKind);
2158         break;
2159       case BO_LT:
2160         CR6 = CR6_LT;
2161         ID = GetIntrinsic(VCMPGT, ElementKind);
2162         std::swap(FirstVecArg, SecondVecArg);
2163         break;
2164       case BO_GT:
2165         CR6 = CR6_LT;
2166         ID = GetIntrinsic(VCMPGT, ElementKind);
2167         break;
2168       case BO_LE:
2169         if (ElementKind == BuiltinType::Float) {
2170           CR6 = CR6_LT;
2171           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2172           std::swap(FirstVecArg, SecondVecArg);
2173         }
2174         else {
2175           CR6 = CR6_EQ;
2176           ID = GetIntrinsic(VCMPGT, ElementKind);
2177         }
2178         break;
2179       case BO_GE:
2180         if (ElementKind == BuiltinType::Float) {
2181           CR6 = CR6_LT;
2182           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2183         }
2184         else {
2185           CR6 = CR6_EQ;
2186           ID = GetIntrinsic(VCMPGT, ElementKind);
2187           std::swap(FirstVecArg, SecondVecArg);
2188         }
2189         break;
2190       }
2191 
2192       Value *CR6Param = Builder.getInt32(CR6);
2193       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2194       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2195       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2196     }
2197 
2198     if (LHS->getType()->isFPOrFPVectorTy()) {
2199       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2200                                   LHS, RHS, "cmp");
2201     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2202       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2203                                   LHS, RHS, "cmp");
2204     } else {
2205       // Unsigned integers and pointers.
2206       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2207                                   LHS, RHS, "cmp");
2208     }
2209 
2210     // If this is a vector comparison, sign extend the result to the appropriate
2211     // vector integer type and return it (don't convert to bool).
2212     if (LHSTy->isVectorType())
2213       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2214 
2215   } else {
2216     // Complex Comparison: can only be an equality comparison.
2217     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2218     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2219 
2220     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2221 
2222     Value *ResultR, *ResultI;
2223     if (CETy->isRealFloatingType()) {
2224       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2225                                    LHS.first, RHS.first, "cmp.r");
2226       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2227                                    LHS.second, RHS.second, "cmp.i");
2228     } else {
2229       // Complex comparisons can only be equality comparisons.  As such, signed
2230       // and unsigned opcodes are the same.
2231       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2232                                    LHS.first, RHS.first, "cmp.r");
2233       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2234                                    LHS.second, RHS.second, "cmp.i");
2235     }
2236 
2237     if (E->getOpcode() == BO_EQ) {
2238       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2239     } else {
2240       assert(E->getOpcode() == BO_NE &&
2241              "Complex comparison other than == or != ?");
2242       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2243     }
2244   }
2245 
2246   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2247 }
2248 
2249 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2250   bool Ignore = TestAndClearIgnoreResultAssign();
2251 
2252   Value *RHS;
2253   LValue LHS;
2254 
2255   switch (E->getLHS()->getType().getObjCLifetime()) {
2256   case Qualifiers::OCL_Strong:
2257     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2258     break;
2259 
2260   case Qualifiers::OCL_Autoreleasing:
2261     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2262     break;
2263 
2264   case Qualifiers::OCL_Weak:
2265     RHS = Visit(E->getRHS());
2266     LHS = EmitCheckedLValue(E->getLHS());
2267     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2268     break;
2269 
2270   // No reason to do any of these differently.
2271   case Qualifiers::OCL_None:
2272   case Qualifiers::OCL_ExplicitNone:
2273     // __block variables need to have the rhs evaluated first, plus
2274     // this should improve codegen just a little.
2275     RHS = Visit(E->getRHS());
2276     LHS = EmitCheckedLValue(E->getLHS());
2277 
2278     // Store the value into the LHS.  Bit-fields are handled specially
2279     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2280     // 'An assignment expression has the value of the left operand after
2281     // the assignment...'.
2282     if (LHS.isBitField())
2283       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2284     else
2285       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2286   }
2287 
2288   // If the result is clearly ignored, return now.
2289   if (Ignore)
2290     return 0;
2291 
2292   // The result of an assignment in C is the assigned r-value.
2293   if (!CGF.getContext().getLangOptions().CPlusPlus)
2294     return RHS;
2295 
2296   // Objective-C property assignment never reloads the value following a store.
2297   if (LHS.isPropertyRef())
2298     return RHS;
2299 
2300   // If the lvalue is non-volatile, return the computed value of the assignment.
2301   if (!LHS.isVolatileQualified())
2302     return RHS;
2303 
2304   // Otherwise, reload the value.
2305   return EmitLoadOfLValue(LHS);
2306 }
2307 
2308 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2309   llvm::Type *ResTy = ConvertType(E->getType());
2310 
2311   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2312   // If we have 1 && X, just emit X without inserting the control flow.
2313   bool LHSCondVal;
2314   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2315     if (LHSCondVal) { // If we have 1 && X, just emit X.
2316       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2317       // ZExt result to int or bool.
2318       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2319     }
2320 
2321     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2322     if (!CGF.ContainsLabel(E->getRHS()))
2323       return llvm::Constant::getNullValue(ResTy);
2324   }
2325 
2326   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2327   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2328 
2329   CodeGenFunction::ConditionalEvaluation eval(CGF);
2330 
2331   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2332   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2333 
2334   // Any edges into the ContBlock are now from an (indeterminate number of)
2335   // edges from this first condition.  All of these values will be false.  Start
2336   // setting up the PHI node in the Cont Block for this.
2337   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2338                                             "", ContBlock);
2339   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2340        PI != PE; ++PI)
2341     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2342 
2343   eval.begin(CGF);
2344   CGF.EmitBlock(RHSBlock);
2345   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2346   eval.end(CGF);
2347 
2348   // Reaquire the RHS block, as there may be subblocks inserted.
2349   RHSBlock = Builder.GetInsertBlock();
2350 
2351   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2352   // into the phi node for the edge with the value of RHSCond.
2353   if (CGF.getDebugInfo())
2354     // There is no need to emit line number for unconditional branch.
2355     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2356   CGF.EmitBlock(ContBlock);
2357   PN->addIncoming(RHSCond, RHSBlock);
2358 
2359   // ZExt result to int.
2360   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2361 }
2362 
2363 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2364   llvm::Type *ResTy = ConvertType(E->getType());
2365 
2366   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2367   // If we have 0 || X, just emit X without inserting the control flow.
2368   bool LHSCondVal;
2369   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2370     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2371       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2372       // ZExt result to int or bool.
2373       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2374     }
2375 
2376     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2377     if (!CGF.ContainsLabel(E->getRHS()))
2378       return llvm::ConstantInt::get(ResTy, 1);
2379   }
2380 
2381   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2382   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2383 
2384   CodeGenFunction::ConditionalEvaluation eval(CGF);
2385 
2386   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2387   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2388 
2389   // Any edges into the ContBlock are now from an (indeterminate number of)
2390   // edges from this first condition.  All of these values will be true.  Start
2391   // setting up the PHI node in the Cont Block for this.
2392   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2393                                             "", ContBlock);
2394   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2395        PI != PE; ++PI)
2396     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2397 
2398   eval.begin(CGF);
2399 
2400   // Emit the RHS condition as a bool value.
2401   CGF.EmitBlock(RHSBlock);
2402   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2403 
2404   eval.end(CGF);
2405 
2406   // Reaquire the RHS block, as there may be subblocks inserted.
2407   RHSBlock = Builder.GetInsertBlock();
2408 
2409   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2410   // into the phi node for the edge with the value of RHSCond.
2411   CGF.EmitBlock(ContBlock);
2412   PN->addIncoming(RHSCond, RHSBlock);
2413 
2414   // ZExt result to int.
2415   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2416 }
2417 
2418 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2419   CGF.EmitIgnoredExpr(E->getLHS());
2420   CGF.EnsureInsertPoint();
2421   return Visit(E->getRHS());
2422 }
2423 
2424 //===----------------------------------------------------------------------===//
2425 //                             Other Operators
2426 //===----------------------------------------------------------------------===//
2427 
2428 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2429 /// expression is cheap enough and side-effect-free enough to evaluate
2430 /// unconditionally instead of conditionally.  This is used to convert control
2431 /// flow into selects in some cases.
2432 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2433                                                    CodeGenFunction &CGF) {
2434   E = E->IgnoreParens();
2435 
2436   // Anything that is an integer or floating point constant is fine.
2437   if (E->isConstantInitializer(CGF.getContext(), false))
2438     return true;
2439 
2440   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2441   // X and Y are local variables.
2442   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2443     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2444       if (VD->hasLocalStorage() && !(CGF.getContext()
2445                                      .getCanonicalType(VD->getType())
2446                                      .isVolatileQualified()))
2447         return true;
2448 
2449   return false;
2450 }
2451 
2452 
2453 Value *ScalarExprEmitter::
2454 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2455   TestAndClearIgnoreResultAssign();
2456 
2457   // Bind the common expression if necessary.
2458   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2459 
2460   Expr *condExpr = E->getCond();
2461   Expr *lhsExpr = E->getTrueExpr();
2462   Expr *rhsExpr = E->getFalseExpr();
2463 
2464   // If the condition constant folds and can be elided, try to avoid emitting
2465   // the condition and the dead arm.
2466   bool CondExprBool;
2467   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2468     Expr *live = lhsExpr, *dead = rhsExpr;
2469     if (!CondExprBool) std::swap(live, dead);
2470 
2471     // If the dead side doesn't have labels we need, and if the Live side isn't
2472     // the gnu missing ?: extension (which we could handle, but don't bother
2473     // to), just emit the Live part.
2474     if (!CGF.ContainsLabel(dead))
2475       return Visit(live);
2476   }
2477 
2478   // OpenCL: If the condition is a vector, we can treat this condition like
2479   // the select function.
2480   if (CGF.getContext().getLangOptions().OpenCL
2481       && condExpr->getType()->isVectorType()) {
2482     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2483     llvm::Value *LHS = Visit(lhsExpr);
2484     llvm::Value *RHS = Visit(rhsExpr);
2485 
2486     llvm::Type *condType = ConvertType(condExpr->getType());
2487     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2488 
2489     unsigned numElem = vecTy->getNumElements();
2490     llvm::Type *elemType = vecTy->getElementType();
2491 
2492     std::vector<llvm::Constant*> Zvals;
2493     for (unsigned i = 0; i < numElem; ++i)
2494       Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2495 
2496     llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2497     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2498     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2499                                           llvm::VectorType::get(elemType,
2500                                                                 numElem),
2501                                           "sext");
2502     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2503 
2504     // Cast float to int to perform ANDs if necessary.
2505     llvm::Value *RHSTmp = RHS;
2506     llvm::Value *LHSTmp = LHS;
2507     bool wasCast = false;
2508     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2509     if (rhsVTy->getElementType()->isFloatTy()) {
2510       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2511       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2512       wasCast = true;
2513     }
2514 
2515     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2516     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2517     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2518     if (wasCast)
2519       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2520 
2521     return tmp5;
2522   }
2523 
2524   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2525   // select instead of as control flow.  We can only do this if it is cheap and
2526   // safe to evaluate the LHS and RHS unconditionally.
2527   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2528       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2529     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2530     llvm::Value *LHS = Visit(lhsExpr);
2531     llvm::Value *RHS = Visit(rhsExpr);
2532     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2533   }
2534 
2535   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2536   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2537   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2538 
2539   CodeGenFunction::ConditionalEvaluation eval(CGF);
2540   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2541 
2542   CGF.EmitBlock(LHSBlock);
2543   eval.begin(CGF);
2544   Value *LHS = Visit(lhsExpr);
2545   eval.end(CGF);
2546 
2547   LHSBlock = Builder.GetInsertBlock();
2548   Builder.CreateBr(ContBlock);
2549 
2550   CGF.EmitBlock(RHSBlock);
2551   eval.begin(CGF);
2552   Value *RHS = Visit(rhsExpr);
2553   eval.end(CGF);
2554 
2555   RHSBlock = Builder.GetInsertBlock();
2556   CGF.EmitBlock(ContBlock);
2557 
2558   // If the LHS or RHS is a throw expression, it will be legitimately null.
2559   if (!LHS)
2560     return RHS;
2561   if (!RHS)
2562     return LHS;
2563 
2564   // Create a PHI node for the real part.
2565   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2566   PN->addIncoming(LHS, LHSBlock);
2567   PN->addIncoming(RHS, RHSBlock);
2568   return PN;
2569 }
2570 
2571 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2572   return Visit(E->getChosenSubExpr(CGF.getContext()));
2573 }
2574 
2575 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2576   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2577   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2578 
2579   // If EmitVAArg fails, we fall back to the LLVM instruction.
2580   if (!ArgPtr)
2581     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2582 
2583   // FIXME Volatility.
2584   return Builder.CreateLoad(ArgPtr);
2585 }
2586 
2587 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2588   return CGF.EmitBlockLiteral(block);
2589 }
2590 
2591 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2592   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2593   llvm::Type *DstTy = ConvertType(E->getType());
2594 
2595   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2596   // a shuffle vector instead of a bitcast.
2597   llvm::Type *SrcTy = Src->getType();
2598   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2599     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2600     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2601     if ((numElementsDst == 3 && numElementsSrc == 4)
2602         || (numElementsDst == 4 && numElementsSrc == 3)) {
2603 
2604 
2605       // In the case of going from int4->float3, a bitcast is needed before
2606       // doing a shuffle.
2607       llvm::Type *srcElemTy =
2608       cast<llvm::VectorType>(SrcTy)->getElementType();
2609       llvm::Type *dstElemTy =
2610       cast<llvm::VectorType>(DstTy)->getElementType();
2611 
2612       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2613           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2614         // Create a float type of the same size as the source or destination.
2615         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2616                                                                  numElementsSrc);
2617 
2618         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2619       }
2620 
2621       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2622 
2623       SmallVector<llvm::Constant*, 3> Args;
2624       Args.push_back(Builder.getInt32(0));
2625       Args.push_back(Builder.getInt32(1));
2626       Args.push_back(Builder.getInt32(2));
2627 
2628       if (numElementsDst == 4)
2629         Args.push_back(llvm::UndefValue::get(
2630                                              llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2631 
2632       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2633 
2634       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2635     }
2636   }
2637 
2638   return Builder.CreateBitCast(Src, DstTy, "astype");
2639 }
2640 
2641 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2642   return CGF.EmitAtomicExpr(E).getScalarVal();
2643 }
2644 
2645 //===----------------------------------------------------------------------===//
2646 //                         Entry Point into this File
2647 //===----------------------------------------------------------------------===//
2648 
2649 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2650 /// type, ignoring the result.
2651 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2652   assert(E && !hasAggregateLLVMType(E->getType()) &&
2653          "Invalid scalar expression to emit");
2654 
2655   if (isa<CXXDefaultArgExpr>(E))
2656     disableDebugInfo();
2657   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2658     .Visit(const_cast<Expr*>(E));
2659   if (isa<CXXDefaultArgExpr>(E))
2660     enableDebugInfo();
2661   return V;
2662 }
2663 
2664 /// EmitScalarConversion - Emit a conversion from the specified type to the
2665 /// specified destination type, both of which are LLVM scalar types.
2666 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2667                                              QualType DstTy) {
2668   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2669          "Invalid scalar expression to emit");
2670   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2671 }
2672 
2673 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2674 /// type to the specified destination type, where the destination type is an
2675 /// LLVM scalar type.
2676 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2677                                                       QualType SrcTy,
2678                                                       QualType DstTy) {
2679   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2680          "Invalid complex -> scalar conversion");
2681   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2682                                                                 DstTy);
2683 }
2684 
2685 
2686 llvm::Value *CodeGenFunction::
2687 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2688                         bool isInc, bool isPre) {
2689   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2690 }
2691 
2692 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2693   llvm::Value *V;
2694   // object->isa or (*object).isa
2695   // Generate code as for: *(Class*)object
2696   // build Class* type
2697   llvm::Type *ClassPtrTy = ConvertType(E->getType());
2698 
2699   Expr *BaseExpr = E->getBase();
2700   if (BaseExpr->isRValue()) {
2701     V = CreateTempAlloca(ClassPtrTy, "resval");
2702     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2703     Builder.CreateStore(Src, V);
2704     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2705       MakeAddrLValue(V, E->getType()));
2706   } else {
2707     if (E->isArrow())
2708       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2709     else
2710       V = EmitLValue(BaseExpr).getAddress();
2711   }
2712 
2713   // build Class* type
2714   ClassPtrTy = ClassPtrTy->getPointerTo();
2715   V = Builder.CreateBitCast(V, ClassPtrTy);
2716   return MakeAddrLValue(V, E->getType());
2717 }
2718 
2719 
2720 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2721                                             const CompoundAssignOperator *E) {
2722   ScalarExprEmitter Scalar(*this);
2723   Value *Result = 0;
2724   switch (E->getOpcode()) {
2725 #define COMPOUND_OP(Op)                                                       \
2726     case BO_##Op##Assign:                                                     \
2727       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2728                                              Result)
2729   COMPOUND_OP(Mul);
2730   COMPOUND_OP(Div);
2731   COMPOUND_OP(Rem);
2732   COMPOUND_OP(Add);
2733   COMPOUND_OP(Sub);
2734   COMPOUND_OP(Shl);
2735   COMPOUND_OP(Shr);
2736   COMPOUND_OP(And);
2737   COMPOUND_OP(Xor);
2738   COMPOUND_OP(Or);
2739 #undef COMPOUND_OP
2740 
2741   case BO_PtrMemD:
2742   case BO_PtrMemI:
2743   case BO_Mul:
2744   case BO_Div:
2745   case BO_Rem:
2746   case BO_Add:
2747   case BO_Sub:
2748   case BO_Shl:
2749   case BO_Shr:
2750   case BO_LT:
2751   case BO_GT:
2752   case BO_LE:
2753   case BO_GE:
2754   case BO_EQ:
2755   case BO_NE:
2756   case BO_And:
2757   case BO_Xor:
2758   case BO_Or:
2759   case BO_LAnd:
2760   case BO_LOr:
2761   case BO_Assign:
2762   case BO_Comma:
2763     llvm_unreachable("Not valid compound assignment operators");
2764   }
2765 
2766   llvm_unreachable("Unhandled compound assignment operator");
2767 }
2768