1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/FixedPointBuilder.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsPowerPC.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include <cstdarg> 44 45 using namespace clang; 46 using namespace CodeGen; 47 using llvm::Value; 48 49 //===----------------------------------------------------------------------===// 50 // Scalar Expression Emitter 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 55 /// Determine whether the given binary operation may overflow. 56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 58 /// the returned overflow check is precise. The returned value is 'true' for 59 /// all other opcodes, to be conservative. 60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 61 BinaryOperator::Opcode Opcode, bool Signed, 62 llvm::APInt &Result) { 63 // Assume overflow is possible, unless we can prove otherwise. 64 bool Overflow = true; 65 const auto &LHSAP = LHS->getValue(); 66 const auto &RHSAP = RHS->getValue(); 67 if (Opcode == BO_Add) { 68 if (Signed) 69 Result = LHSAP.sadd_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.uadd_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Sub) { 73 if (Signed) 74 Result = LHSAP.ssub_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.usub_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Mul) { 78 if (Signed) 79 Result = LHSAP.smul_ov(RHSAP, Overflow); 80 else 81 Result = LHSAP.umul_ov(RHSAP, Overflow); 82 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 83 if (Signed && !RHS->isZero()) 84 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 85 else 86 return false; 87 } 88 return Overflow; 89 } 90 91 struct BinOpInfo { 92 Value *LHS; 93 Value *RHS; 94 QualType Ty; // Computation Type. 95 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 96 FPOptions FPFeatures; 97 const Expr *E; // Entire expr, for error unsupported. May not be binop. 98 99 /// Check if the binop can result in integer overflow. 100 bool mayHaveIntegerOverflow() const { 101 // Without constant input, we can't rule out overflow. 102 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 103 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 104 if (!LHSCI || !RHSCI) 105 return true; 106 107 llvm::APInt Result; 108 return ::mayHaveIntegerOverflow( 109 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 110 } 111 112 /// Check if the binop computes a division or a remainder. 113 bool isDivremOp() const { 114 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 115 Opcode == BO_RemAssign; 116 } 117 118 /// Check if the binop can result in an integer division by zero. 119 bool mayHaveIntegerDivisionByZero() const { 120 if (isDivremOp()) 121 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 122 return CI->isZero(); 123 return true; 124 } 125 126 /// Check if the binop can result in a float division by zero. 127 bool mayHaveFloatDivisionByZero() const { 128 if (isDivremOp()) 129 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 130 return CFP->isZero(); 131 return true; 132 } 133 134 /// Check if at least one operand is a fixed point type. In such cases, this 135 /// operation did not follow usual arithmetic conversion and both operands 136 /// might not be of the same type. 137 bool isFixedPointOp() const { 138 // We cannot simply check the result type since comparison operations return 139 // an int. 140 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 141 QualType LHSType = BinOp->getLHS()->getType(); 142 QualType RHSType = BinOp->getRHS()->getType(); 143 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 144 } 145 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 146 return UnOp->getSubExpr()->getType()->isFixedPointType(); 147 return false; 148 } 149 }; 150 151 static bool MustVisitNullValue(const Expr *E) { 152 // If a null pointer expression's type is the C++0x nullptr_t, then 153 // it's not necessarily a simple constant and it must be evaluated 154 // for its potential side effects. 155 return E->getType()->isNullPtrType(); 156 } 157 158 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 160 const Expr *E) { 161 const Expr *Base = E->IgnoreImpCasts(); 162 if (E == Base) 163 return llvm::None; 164 165 QualType BaseTy = Base->getType(); 166 if (!BaseTy->isPromotableIntegerType() || 167 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 168 return llvm::None; 169 170 return BaseTy; 171 } 172 173 /// Check if \p E is a widened promoted integer. 174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 175 return getUnwidenedIntegerType(Ctx, E).hasValue(); 176 } 177 178 /// Check if we can skip the overflow check for \p Op. 179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 180 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 181 "Expected a unary or binary operator"); 182 183 // If the binop has constant inputs and we can prove there is no overflow, 184 // we can elide the overflow check. 185 if (!Op.mayHaveIntegerOverflow()) 186 return true; 187 188 // If a unary op has a widened operand, the op cannot overflow. 189 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 190 return !UO->canOverflow(); 191 192 // We usually don't need overflow checks for binops with widened operands. 193 // Multiplication with promoted unsigned operands is a special case. 194 const auto *BO = cast<BinaryOperator>(Op.E); 195 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 196 if (!OptionalLHSTy) 197 return false; 198 199 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 200 if (!OptionalRHSTy) 201 return false; 202 203 QualType LHSTy = *OptionalLHSTy; 204 QualType RHSTy = *OptionalRHSTy; 205 206 // This is the simple case: binops without unsigned multiplication, and with 207 // widened operands. No overflow check is needed here. 208 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 209 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 210 return true; 211 212 // For unsigned multiplication the overflow check can be elided if either one 213 // of the unpromoted types are less than half the size of the promoted type. 214 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 215 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 216 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 217 } 218 219 class ScalarExprEmitter 220 : public StmtVisitor<ScalarExprEmitter, Value*> { 221 CodeGenFunction &CGF; 222 CGBuilderTy &Builder; 223 bool IgnoreResultAssign; 224 llvm::LLVMContext &VMContext; 225 public: 226 227 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 228 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 229 VMContext(cgf.getLLVMContext()) { 230 } 231 232 //===--------------------------------------------------------------------===// 233 // Utilities 234 //===--------------------------------------------------------------------===// 235 236 bool TestAndClearIgnoreResultAssign() { 237 bool I = IgnoreResultAssign; 238 IgnoreResultAssign = false; 239 return I; 240 } 241 242 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 243 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 244 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 245 return CGF.EmitCheckedLValue(E, TCK); 246 } 247 248 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 249 const BinOpInfo &Info); 250 251 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 252 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 253 } 254 255 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 256 const AlignValueAttr *AVAttr = nullptr; 257 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 258 const ValueDecl *VD = DRE->getDecl(); 259 260 if (VD->getType()->isReferenceType()) { 261 if (const auto *TTy = 262 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 263 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 264 } else { 265 // Assumptions for function parameters are emitted at the start of the 266 // function, so there is no need to repeat that here, 267 // unless the alignment-assumption sanitizer is enabled, 268 // then we prefer the assumption over alignment attribute 269 // on IR function param. 270 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 271 return; 272 273 AVAttr = VD->getAttr<AlignValueAttr>(); 274 } 275 } 276 277 if (!AVAttr) 278 if (const auto *TTy = 279 dyn_cast<TypedefType>(E->getType())) 280 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 281 282 if (!AVAttr) 283 return; 284 285 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 286 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 287 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 288 } 289 290 /// EmitLoadOfLValue - Given an expression with complex type that represents a 291 /// value l-value, this method emits the address of the l-value, then loads 292 /// and returns the result. 293 Value *EmitLoadOfLValue(const Expr *E) { 294 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 295 E->getExprLoc()); 296 297 EmitLValueAlignmentAssumption(E, V); 298 return V; 299 } 300 301 /// EmitConversionToBool - Convert the specified expression value to a 302 /// boolean (i1) truth value. This is equivalent to "Val != 0". 303 Value *EmitConversionToBool(Value *Src, QualType DstTy); 304 305 /// Emit a check that a conversion from a floating-point type does not 306 /// overflow. 307 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 308 Value *Src, QualType SrcType, QualType DstType, 309 llvm::Type *DstTy, SourceLocation Loc); 310 311 /// Known implicit conversion check kinds. 312 /// Keep in sync with the enum of the same name in ubsan_handlers.h 313 enum ImplicitConversionCheckKind : unsigned char { 314 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 315 ICCK_UnsignedIntegerTruncation = 1, 316 ICCK_SignedIntegerTruncation = 2, 317 ICCK_IntegerSignChange = 3, 318 ICCK_SignedIntegerTruncationOrSignChange = 4, 319 }; 320 321 /// Emit a check that an [implicit] truncation of an integer does not 322 /// discard any bits. It is not UB, so we use the value after truncation. 323 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 324 QualType DstType, SourceLocation Loc); 325 326 /// Emit a check that an [implicit] conversion of an integer does not change 327 /// the sign of the value. It is not UB, so we use the value after conversion. 328 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 329 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 330 QualType DstType, SourceLocation Loc); 331 332 /// Emit a conversion from the specified type to the specified destination 333 /// type, both of which are LLVM scalar types. 334 struct ScalarConversionOpts { 335 bool TreatBooleanAsSigned; 336 bool EmitImplicitIntegerTruncationChecks; 337 bool EmitImplicitIntegerSignChangeChecks; 338 339 ScalarConversionOpts() 340 : TreatBooleanAsSigned(false), 341 EmitImplicitIntegerTruncationChecks(false), 342 EmitImplicitIntegerSignChangeChecks(false) {} 343 344 ScalarConversionOpts(clang::SanitizerSet SanOpts) 345 : TreatBooleanAsSigned(false), 346 EmitImplicitIntegerTruncationChecks( 347 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 348 EmitImplicitIntegerSignChangeChecks( 349 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 350 }; 351 Value * 352 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 353 SourceLocation Loc, 354 ScalarConversionOpts Opts = ScalarConversionOpts()); 355 356 /// Convert between either a fixed point and other fixed point or fixed point 357 /// and an integer. 358 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 359 SourceLocation Loc); 360 361 /// Emit a conversion from the specified complex type to the specified 362 /// destination type, where the destination type is an LLVM scalar type. 363 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 364 QualType SrcTy, QualType DstTy, 365 SourceLocation Loc); 366 367 /// EmitNullValue - Emit a value that corresponds to null for the given type. 368 Value *EmitNullValue(QualType Ty); 369 370 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 371 Value *EmitFloatToBoolConversion(Value *V) { 372 // Compare against 0.0 for fp scalars. 373 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 374 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 375 } 376 377 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 378 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 379 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 380 381 return Builder.CreateICmpNE(V, Zero, "tobool"); 382 } 383 384 Value *EmitIntToBoolConversion(Value *V) { 385 // Because of the type rules of C, we often end up computing a 386 // logical value, then zero extending it to int, then wanting it 387 // as a logical value again. Optimize this common case. 388 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 389 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 390 Value *Result = ZI->getOperand(0); 391 // If there aren't any more uses, zap the instruction to save space. 392 // Note that there can be more uses, for example if this 393 // is the result of an assignment. 394 if (ZI->use_empty()) 395 ZI->eraseFromParent(); 396 return Result; 397 } 398 } 399 400 return Builder.CreateIsNotNull(V, "tobool"); 401 } 402 403 //===--------------------------------------------------------------------===// 404 // Visitor Methods 405 //===--------------------------------------------------------------------===// 406 407 Value *Visit(Expr *E) { 408 ApplyDebugLocation DL(CGF, E); 409 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 410 } 411 412 Value *VisitStmt(Stmt *S) { 413 S->dump(llvm::errs(), CGF.getContext()); 414 llvm_unreachable("Stmt can't have complex result type!"); 415 } 416 Value *VisitExpr(Expr *S); 417 418 Value *VisitConstantExpr(ConstantExpr *E) { 419 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 420 if (E->isGLValue()) 421 return CGF.Builder.CreateLoad(Address( 422 Result, CGF.getContext().getTypeAlignInChars(E->getType()))); 423 return Result; 424 } 425 return Visit(E->getSubExpr()); 426 } 427 Value *VisitParenExpr(ParenExpr *PE) { 428 return Visit(PE->getSubExpr()); 429 } 430 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 431 return Visit(E->getReplacement()); 432 } 433 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 434 return Visit(GE->getResultExpr()); 435 } 436 Value *VisitCoawaitExpr(CoawaitExpr *S) { 437 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 438 } 439 Value *VisitCoyieldExpr(CoyieldExpr *S) { 440 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 441 } 442 Value *VisitUnaryCoawait(const UnaryOperator *E) { 443 return Visit(E->getSubExpr()); 444 } 445 446 // Leaves. 447 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 448 return Builder.getInt(E->getValue()); 449 } 450 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 451 return Builder.getInt(E->getValue()); 452 } 453 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 454 return llvm::ConstantFP::get(VMContext, E->getValue()); 455 } 456 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 457 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 458 } 459 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 460 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 461 } 462 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 463 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 464 } 465 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 466 return EmitNullValue(E->getType()); 467 } 468 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 469 return EmitNullValue(E->getType()); 470 } 471 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 472 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 473 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 474 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 475 return Builder.CreateBitCast(V, ConvertType(E->getType())); 476 } 477 478 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 479 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 480 } 481 482 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 483 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 484 } 485 486 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 487 if (E->isGLValue()) 488 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 489 E->getExprLoc()); 490 491 // Otherwise, assume the mapping is the scalar directly. 492 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 493 } 494 495 // l-values. 496 Value *VisitDeclRefExpr(DeclRefExpr *E) { 497 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 498 return CGF.emitScalarConstant(Constant, E); 499 return EmitLoadOfLValue(E); 500 } 501 502 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 503 return CGF.EmitObjCSelectorExpr(E); 504 } 505 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 506 return CGF.EmitObjCProtocolExpr(E); 507 } 508 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 509 return EmitLoadOfLValue(E); 510 } 511 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 512 if (E->getMethodDecl() && 513 E->getMethodDecl()->getReturnType()->isReferenceType()) 514 return EmitLoadOfLValue(E); 515 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 516 } 517 518 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 519 LValue LV = CGF.EmitObjCIsaExpr(E); 520 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 521 return V; 522 } 523 524 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 525 VersionTuple Version = E->getVersion(); 526 527 // If we're checking for a platform older than our minimum deployment 528 // target, we can fold the check away. 529 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 530 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 531 532 return CGF.EmitBuiltinAvailable(Version); 533 } 534 535 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 536 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 537 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 538 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 539 Value *VisitMemberExpr(MemberExpr *E); 540 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 541 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 542 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 543 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 544 // literals aren't l-values in C++. We do so simply because that's the 545 // cleanest way to handle compound literals in C++. 546 // See the discussion here: https://reviews.llvm.org/D64464 547 return EmitLoadOfLValue(E); 548 } 549 550 Value *VisitInitListExpr(InitListExpr *E); 551 552 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 553 assert(CGF.getArrayInitIndex() && 554 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 555 return CGF.getArrayInitIndex(); 556 } 557 558 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 559 return EmitNullValue(E->getType()); 560 } 561 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 562 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 563 return VisitCastExpr(E); 564 } 565 Value *VisitCastExpr(CastExpr *E); 566 567 Value *VisitCallExpr(const CallExpr *E) { 568 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 569 return EmitLoadOfLValue(E); 570 571 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 572 573 EmitLValueAlignmentAssumption(E, V); 574 return V; 575 } 576 577 Value *VisitStmtExpr(const StmtExpr *E); 578 579 // Unary Operators. 580 Value *VisitUnaryPostDec(const UnaryOperator *E) { 581 LValue LV = EmitLValue(E->getSubExpr()); 582 return EmitScalarPrePostIncDec(E, LV, false, false); 583 } 584 Value *VisitUnaryPostInc(const UnaryOperator *E) { 585 LValue LV = EmitLValue(E->getSubExpr()); 586 return EmitScalarPrePostIncDec(E, LV, true, false); 587 } 588 Value *VisitUnaryPreDec(const UnaryOperator *E) { 589 LValue LV = EmitLValue(E->getSubExpr()); 590 return EmitScalarPrePostIncDec(E, LV, false, true); 591 } 592 Value *VisitUnaryPreInc(const UnaryOperator *E) { 593 LValue LV = EmitLValue(E->getSubExpr()); 594 return EmitScalarPrePostIncDec(E, LV, true, true); 595 } 596 597 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 598 llvm::Value *InVal, 599 bool IsInc); 600 601 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 602 bool isInc, bool isPre); 603 604 605 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 606 if (isa<MemberPointerType>(E->getType())) // never sugared 607 return CGF.CGM.getMemberPointerConstant(E); 608 609 return EmitLValue(E->getSubExpr()).getPointer(CGF); 610 } 611 Value *VisitUnaryDeref(const UnaryOperator *E) { 612 if (E->getType()->isVoidType()) 613 return Visit(E->getSubExpr()); // the actual value should be unused 614 return EmitLoadOfLValue(E); 615 } 616 Value *VisitUnaryPlus(const UnaryOperator *E) { 617 // This differs from gcc, though, most likely due to a bug in gcc. 618 TestAndClearIgnoreResultAssign(); 619 return Visit(E->getSubExpr()); 620 } 621 Value *VisitUnaryMinus (const UnaryOperator *E); 622 Value *VisitUnaryNot (const UnaryOperator *E); 623 Value *VisitUnaryLNot (const UnaryOperator *E); 624 Value *VisitUnaryReal (const UnaryOperator *E); 625 Value *VisitUnaryImag (const UnaryOperator *E); 626 Value *VisitUnaryExtension(const UnaryOperator *E) { 627 return Visit(E->getSubExpr()); 628 } 629 630 // C++ 631 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 632 return EmitLoadOfLValue(E); 633 } 634 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 635 auto &Ctx = CGF.getContext(); 636 APValue Evaluated = 637 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 638 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 639 SLE->getType()); 640 } 641 642 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 643 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 644 return Visit(DAE->getExpr()); 645 } 646 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 647 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 648 return Visit(DIE->getExpr()); 649 } 650 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 651 return CGF.LoadCXXThis(); 652 } 653 654 Value *VisitExprWithCleanups(ExprWithCleanups *E); 655 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 656 return CGF.EmitCXXNewExpr(E); 657 } 658 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 659 CGF.EmitCXXDeleteExpr(E); 660 return nullptr; 661 } 662 663 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 664 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 665 } 666 667 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 668 return Builder.getInt1(E->isSatisfied()); 669 } 670 671 Value *VisitRequiresExpr(const RequiresExpr *E) { 672 return Builder.getInt1(E->isSatisfied()); 673 } 674 675 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 676 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 677 } 678 679 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 680 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 681 } 682 683 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 684 // C++ [expr.pseudo]p1: 685 // The result shall only be used as the operand for the function call 686 // operator (), and the result of such a call has type void. The only 687 // effect is the evaluation of the postfix-expression before the dot or 688 // arrow. 689 CGF.EmitScalarExpr(E->getBase()); 690 return nullptr; 691 } 692 693 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 694 return EmitNullValue(E->getType()); 695 } 696 697 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 698 CGF.EmitCXXThrowExpr(E); 699 return nullptr; 700 } 701 702 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 703 return Builder.getInt1(E->getValue()); 704 } 705 706 // Binary Operators. 707 Value *EmitMul(const BinOpInfo &Ops) { 708 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 709 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 710 case LangOptions::SOB_Defined: 711 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 712 case LangOptions::SOB_Undefined: 713 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 714 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 715 LLVM_FALLTHROUGH; 716 case LangOptions::SOB_Trapping: 717 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 718 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 719 return EmitOverflowCheckedBinOp(Ops); 720 } 721 } 722 723 if (Ops.Ty->isConstantMatrixType()) { 724 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 725 // We need to check the types of the operands of the operator to get the 726 // correct matrix dimensions. 727 auto *BO = cast<BinaryOperator>(Ops.E); 728 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 729 BO->getLHS()->getType().getCanonicalType()); 730 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 731 BO->getRHS()->getType().getCanonicalType()); 732 if (LHSMatTy && RHSMatTy) 733 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 734 LHSMatTy->getNumColumns(), 735 RHSMatTy->getNumColumns()); 736 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 737 } 738 739 if (Ops.Ty->isUnsignedIntegerType() && 740 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 741 !CanElideOverflowCheck(CGF.getContext(), Ops)) 742 return EmitOverflowCheckedBinOp(Ops); 743 744 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 745 // Preserve the old values 746 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 747 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 748 } 749 if (Ops.isFixedPointOp()) 750 return EmitFixedPointBinOp(Ops); 751 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 752 } 753 /// Create a binary op that checks for overflow. 754 /// Currently only supports +, - and *. 755 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 756 757 // Check for undefined division and modulus behaviors. 758 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 759 llvm::Value *Zero,bool isDiv); 760 // Common helper for getting how wide LHS of shift is. 761 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 762 763 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 764 // non powers of two. 765 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 766 767 Value *EmitDiv(const BinOpInfo &Ops); 768 Value *EmitRem(const BinOpInfo &Ops); 769 Value *EmitAdd(const BinOpInfo &Ops); 770 Value *EmitSub(const BinOpInfo &Ops); 771 Value *EmitShl(const BinOpInfo &Ops); 772 Value *EmitShr(const BinOpInfo &Ops); 773 Value *EmitAnd(const BinOpInfo &Ops) { 774 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 775 } 776 Value *EmitXor(const BinOpInfo &Ops) { 777 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 778 } 779 Value *EmitOr (const BinOpInfo &Ops) { 780 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 781 } 782 783 // Helper functions for fixed point binary operations. 784 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 785 786 BinOpInfo EmitBinOps(const BinaryOperator *E); 787 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 788 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 789 Value *&Result); 790 791 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 792 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 793 794 // Binary operators and binary compound assignment operators. 795 #define HANDLEBINOP(OP) \ 796 Value *VisitBin ## OP(const BinaryOperator *E) { \ 797 return Emit ## OP(EmitBinOps(E)); \ 798 } \ 799 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 800 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 801 } 802 HANDLEBINOP(Mul) 803 HANDLEBINOP(Div) 804 HANDLEBINOP(Rem) 805 HANDLEBINOP(Add) 806 HANDLEBINOP(Sub) 807 HANDLEBINOP(Shl) 808 HANDLEBINOP(Shr) 809 HANDLEBINOP(And) 810 HANDLEBINOP(Xor) 811 HANDLEBINOP(Or) 812 #undef HANDLEBINOP 813 814 // Comparisons. 815 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 816 llvm::CmpInst::Predicate SICmpOpc, 817 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 818 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 819 Value *VisitBin##CODE(const BinaryOperator *E) { \ 820 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 821 llvm::FCmpInst::FP, SIG); } 822 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 823 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 824 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 825 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 826 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 827 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 828 #undef VISITCOMP 829 830 Value *VisitBinAssign (const BinaryOperator *E); 831 832 Value *VisitBinLAnd (const BinaryOperator *E); 833 Value *VisitBinLOr (const BinaryOperator *E); 834 Value *VisitBinComma (const BinaryOperator *E); 835 836 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 837 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 838 839 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 840 return Visit(E->getSemanticForm()); 841 } 842 843 // Other Operators. 844 Value *VisitBlockExpr(const BlockExpr *BE); 845 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 846 Value *VisitChooseExpr(ChooseExpr *CE); 847 Value *VisitVAArgExpr(VAArgExpr *VE); 848 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 849 return CGF.EmitObjCStringLiteral(E); 850 } 851 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 852 return CGF.EmitObjCBoxedExpr(E); 853 } 854 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 855 return CGF.EmitObjCArrayLiteral(E); 856 } 857 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 858 return CGF.EmitObjCDictionaryLiteral(E); 859 } 860 Value *VisitAsTypeExpr(AsTypeExpr *CE); 861 Value *VisitAtomicExpr(AtomicExpr *AE); 862 }; 863 } // end anonymous namespace. 864 865 //===----------------------------------------------------------------------===// 866 // Utilities 867 //===----------------------------------------------------------------------===// 868 869 /// EmitConversionToBool - Convert the specified expression value to a 870 /// boolean (i1) truth value. This is equivalent to "Val != 0". 871 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 872 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 873 874 if (SrcType->isRealFloatingType()) 875 return EmitFloatToBoolConversion(Src); 876 877 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 878 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 879 880 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 881 "Unknown scalar type to convert"); 882 883 if (isa<llvm::IntegerType>(Src->getType())) 884 return EmitIntToBoolConversion(Src); 885 886 assert(isa<llvm::PointerType>(Src->getType())); 887 return EmitPointerToBoolConversion(Src, SrcType); 888 } 889 890 void ScalarExprEmitter::EmitFloatConversionCheck( 891 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 892 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 893 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 894 if (!isa<llvm::IntegerType>(DstTy)) 895 return; 896 897 CodeGenFunction::SanitizerScope SanScope(&CGF); 898 using llvm::APFloat; 899 using llvm::APSInt; 900 901 llvm::Value *Check = nullptr; 902 const llvm::fltSemantics &SrcSema = 903 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 904 905 // Floating-point to integer. This has undefined behavior if the source is 906 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 907 // to an integer). 908 unsigned Width = CGF.getContext().getIntWidth(DstType); 909 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 910 911 APSInt Min = APSInt::getMinValue(Width, Unsigned); 912 APFloat MinSrc(SrcSema, APFloat::uninitialized); 913 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 914 APFloat::opOverflow) 915 // Don't need an overflow check for lower bound. Just check for 916 // -Inf/NaN. 917 MinSrc = APFloat::getInf(SrcSema, true); 918 else 919 // Find the largest value which is too small to represent (before 920 // truncation toward zero). 921 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 922 923 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 924 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 925 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 926 APFloat::opOverflow) 927 // Don't need an overflow check for upper bound. Just check for 928 // +Inf/NaN. 929 MaxSrc = APFloat::getInf(SrcSema, false); 930 else 931 // Find the smallest value which is too large to represent (before 932 // truncation toward zero). 933 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 934 935 // If we're converting from __half, convert the range to float to match 936 // the type of src. 937 if (OrigSrcType->isHalfType()) { 938 const llvm::fltSemantics &Sema = 939 CGF.getContext().getFloatTypeSemantics(SrcType); 940 bool IsInexact; 941 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 942 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 943 } 944 945 llvm::Value *GE = 946 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 947 llvm::Value *LE = 948 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 949 Check = Builder.CreateAnd(GE, LE); 950 951 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 952 CGF.EmitCheckTypeDescriptor(OrigSrcType), 953 CGF.EmitCheckTypeDescriptor(DstType)}; 954 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 955 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 956 } 957 958 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 959 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 960 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 961 std::pair<llvm::Value *, SanitizerMask>> 962 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 963 QualType DstType, CGBuilderTy &Builder) { 964 llvm::Type *SrcTy = Src->getType(); 965 llvm::Type *DstTy = Dst->getType(); 966 (void)DstTy; // Only used in assert() 967 968 // This should be truncation of integral types. 969 assert(Src != Dst); 970 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 971 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 972 "non-integer llvm type"); 973 974 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 975 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 976 977 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 978 // Else, it is a signed truncation. 979 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 980 SanitizerMask Mask; 981 if (!SrcSigned && !DstSigned) { 982 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 983 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 984 } else { 985 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 986 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 987 } 988 989 llvm::Value *Check = nullptr; 990 // 1. Extend the truncated value back to the same width as the Src. 991 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 992 // 2. Equality-compare with the original source value 993 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 994 // If the comparison result is 'i1 false', then the truncation was lossy. 995 return std::make_pair(Kind, std::make_pair(Check, Mask)); 996 } 997 998 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 999 QualType SrcType, QualType DstType) { 1000 return SrcType->isIntegerType() && DstType->isIntegerType(); 1001 } 1002 1003 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1004 Value *Dst, QualType DstType, 1005 SourceLocation Loc) { 1006 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1007 return; 1008 1009 // We only care about int->int conversions here. 1010 // We ignore conversions to/from pointer and/or bool. 1011 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1012 DstType)) 1013 return; 1014 1015 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1016 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1017 // This must be truncation. Else we do not care. 1018 if (SrcBits <= DstBits) 1019 return; 1020 1021 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1022 1023 // If the integer sign change sanitizer is enabled, 1024 // and we are truncating from larger unsigned type to smaller signed type, 1025 // let that next sanitizer deal with it. 1026 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1027 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1028 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1029 (!SrcSigned && DstSigned)) 1030 return; 1031 1032 CodeGenFunction::SanitizerScope SanScope(&CGF); 1033 1034 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1035 std::pair<llvm::Value *, SanitizerMask>> 1036 Check = 1037 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1038 // If the comparison result is 'i1 false', then the truncation was lossy. 1039 1040 // Do we care about this type of truncation? 1041 if (!CGF.SanOpts.has(Check.second.second)) 1042 return; 1043 1044 llvm::Constant *StaticArgs[] = { 1045 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1046 CGF.EmitCheckTypeDescriptor(DstType), 1047 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1048 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1049 {Src, Dst}); 1050 } 1051 1052 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1053 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1054 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1055 std::pair<llvm::Value *, SanitizerMask>> 1056 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1057 QualType DstType, CGBuilderTy &Builder) { 1058 llvm::Type *SrcTy = Src->getType(); 1059 llvm::Type *DstTy = Dst->getType(); 1060 1061 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1062 "non-integer llvm type"); 1063 1064 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1065 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1066 (void)SrcSigned; // Only used in assert() 1067 (void)DstSigned; // Only used in assert() 1068 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1069 unsigned DstBits = DstTy->getScalarSizeInBits(); 1070 (void)SrcBits; // Only used in assert() 1071 (void)DstBits; // Only used in assert() 1072 1073 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1074 "either the widths should be different, or the signednesses."); 1075 1076 // NOTE: zero value is considered to be non-negative. 1077 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1078 const char *Name) -> Value * { 1079 // Is this value a signed type? 1080 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1081 llvm::Type *VTy = V->getType(); 1082 if (!VSigned) { 1083 // If the value is unsigned, then it is never negative. 1084 // FIXME: can we encounter non-scalar VTy here? 1085 return llvm::ConstantInt::getFalse(VTy->getContext()); 1086 } 1087 // Get the zero of the same type with which we will be comparing. 1088 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1089 // %V.isnegative = icmp slt %V, 0 1090 // I.e is %V *strictly* less than zero, does it have negative value? 1091 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1092 llvm::Twine(Name) + "." + V->getName() + 1093 ".negativitycheck"); 1094 }; 1095 1096 // 1. Was the old Value negative? 1097 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1098 // 2. Is the new Value negative? 1099 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1100 // 3. Now, was the 'negativity status' preserved during the conversion? 1101 // NOTE: conversion from negative to zero is considered to change the sign. 1102 // (We want to get 'false' when the conversion changed the sign) 1103 // So we should just equality-compare the negativity statuses. 1104 llvm::Value *Check = nullptr; 1105 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1106 // If the comparison result is 'false', then the conversion changed the sign. 1107 return std::make_pair( 1108 ScalarExprEmitter::ICCK_IntegerSignChange, 1109 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1110 } 1111 1112 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1113 Value *Dst, QualType DstType, 1114 SourceLocation Loc) { 1115 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1116 return; 1117 1118 llvm::Type *SrcTy = Src->getType(); 1119 llvm::Type *DstTy = Dst->getType(); 1120 1121 // We only care about int->int conversions here. 1122 // We ignore conversions to/from pointer and/or bool. 1123 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1124 DstType)) 1125 return; 1126 1127 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1128 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1129 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1130 unsigned DstBits = DstTy->getScalarSizeInBits(); 1131 1132 // Now, we do not need to emit the check in *all* of the cases. 1133 // We can avoid emitting it in some obvious cases where it would have been 1134 // dropped by the opt passes (instcombine) always anyways. 1135 // If it's a cast between effectively the same type, no check. 1136 // NOTE: this is *not* equivalent to checking the canonical types. 1137 if (SrcSigned == DstSigned && SrcBits == DstBits) 1138 return; 1139 // At least one of the values needs to have signed type. 1140 // If both are unsigned, then obviously, neither of them can be negative. 1141 if (!SrcSigned && !DstSigned) 1142 return; 1143 // If the conversion is to *larger* *signed* type, then no check is needed. 1144 // Because either sign-extension happens (so the sign will remain), 1145 // or zero-extension will happen (the sign bit will be zero.) 1146 if ((DstBits > SrcBits) && DstSigned) 1147 return; 1148 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1149 (SrcBits > DstBits) && SrcSigned) { 1150 // If the signed integer truncation sanitizer is enabled, 1151 // and this is a truncation from signed type, then no check is needed. 1152 // Because here sign change check is interchangeable with truncation check. 1153 return; 1154 } 1155 // That's it. We can't rule out any more cases with the data we have. 1156 1157 CodeGenFunction::SanitizerScope SanScope(&CGF); 1158 1159 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1160 std::pair<llvm::Value *, SanitizerMask>> 1161 Check; 1162 1163 // Each of these checks needs to return 'false' when an issue was detected. 1164 ImplicitConversionCheckKind CheckKind; 1165 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1166 // So we can 'and' all the checks together, and still get 'false', 1167 // if at least one of the checks detected an issue. 1168 1169 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1170 CheckKind = Check.first; 1171 Checks.emplace_back(Check.second); 1172 1173 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1174 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1175 // If the signed integer truncation sanitizer was enabled, 1176 // and we are truncating from larger unsigned type to smaller signed type, 1177 // let's handle the case we skipped in that check. 1178 Check = 1179 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1180 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1181 Checks.emplace_back(Check.second); 1182 // If the comparison result is 'i1 false', then the truncation was lossy. 1183 } 1184 1185 llvm::Constant *StaticArgs[] = { 1186 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1187 CGF.EmitCheckTypeDescriptor(DstType), 1188 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1189 // EmitCheck() will 'and' all the checks together. 1190 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1191 {Src, Dst}); 1192 } 1193 1194 /// Emit a conversion from the specified type to the specified destination type, 1195 /// both of which are LLVM scalar types. 1196 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1197 QualType DstType, 1198 SourceLocation Loc, 1199 ScalarConversionOpts Opts) { 1200 // All conversions involving fixed point types should be handled by the 1201 // EmitFixedPoint family functions. This is done to prevent bloating up this 1202 // function more, and although fixed point numbers are represented by 1203 // integers, we do not want to follow any logic that assumes they should be 1204 // treated as integers. 1205 // TODO(leonardchan): When necessary, add another if statement checking for 1206 // conversions to fixed point types from other types. 1207 if (SrcType->isFixedPointType()) { 1208 if (DstType->isBooleanType()) 1209 // It is important that we check this before checking if the dest type is 1210 // an integer because booleans are technically integer types. 1211 // We do not need to check the padding bit on unsigned types if unsigned 1212 // padding is enabled because overflow into this bit is undefined 1213 // behavior. 1214 return Builder.CreateIsNotNull(Src, "tobool"); 1215 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1216 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1217 1218 llvm_unreachable( 1219 "Unhandled scalar conversion from a fixed point type to another type."); 1220 } else if (DstType->isFixedPointType()) { 1221 if (SrcType->isIntegerType()) 1222 // This also includes converting booleans and enums to fixed point types. 1223 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1224 1225 llvm_unreachable( 1226 "Unhandled scalar conversion to a fixed point type from another type."); 1227 } 1228 1229 QualType NoncanonicalSrcType = SrcType; 1230 QualType NoncanonicalDstType = DstType; 1231 1232 SrcType = CGF.getContext().getCanonicalType(SrcType); 1233 DstType = CGF.getContext().getCanonicalType(DstType); 1234 if (SrcType == DstType) return Src; 1235 1236 if (DstType->isVoidType()) return nullptr; 1237 1238 llvm::Value *OrigSrc = Src; 1239 QualType OrigSrcType = SrcType; 1240 llvm::Type *SrcTy = Src->getType(); 1241 1242 // Handle conversions to bool first, they are special: comparisons against 0. 1243 if (DstType->isBooleanType()) 1244 return EmitConversionToBool(Src, SrcType); 1245 1246 llvm::Type *DstTy = ConvertType(DstType); 1247 1248 // Cast from half through float if half isn't a native type. 1249 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1250 // Cast to FP using the intrinsic if the half type itself isn't supported. 1251 if (DstTy->isFloatingPointTy()) { 1252 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1253 return Builder.CreateCall( 1254 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1255 Src); 1256 } else { 1257 // Cast to other types through float, using either the intrinsic or FPExt, 1258 // depending on whether the half type itself is supported 1259 // (as opposed to operations on half, available with NativeHalfType). 1260 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1261 Src = Builder.CreateCall( 1262 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1263 CGF.CGM.FloatTy), 1264 Src); 1265 } else { 1266 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1267 } 1268 SrcType = CGF.getContext().FloatTy; 1269 SrcTy = CGF.FloatTy; 1270 } 1271 } 1272 1273 // Ignore conversions like int -> uint. 1274 if (SrcTy == DstTy) { 1275 if (Opts.EmitImplicitIntegerSignChangeChecks) 1276 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1277 NoncanonicalDstType, Loc); 1278 1279 return Src; 1280 } 1281 1282 // Handle pointer conversions next: pointers can only be converted to/from 1283 // other pointers and integers. Check for pointer types in terms of LLVM, as 1284 // some native types (like Obj-C id) may map to a pointer type. 1285 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1286 // The source value may be an integer, or a pointer. 1287 if (isa<llvm::PointerType>(SrcTy)) 1288 return Builder.CreateBitCast(Src, DstTy, "conv"); 1289 1290 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1291 // First, convert to the correct width so that we control the kind of 1292 // extension. 1293 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1294 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1295 llvm::Value* IntResult = 1296 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1297 // Then, cast to pointer. 1298 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1299 } 1300 1301 if (isa<llvm::PointerType>(SrcTy)) { 1302 // Must be an ptr to int cast. 1303 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1304 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1305 } 1306 1307 // A scalar can be splatted to an extended vector of the same element type 1308 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1309 // Sema should add casts to make sure that the source expression's type is 1310 // the same as the vector's element type (sans qualifiers) 1311 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1312 SrcType.getTypePtr() && 1313 "Splatted expr doesn't match with vector element type?"); 1314 1315 // Splat the element across to all elements 1316 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 1317 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1318 } 1319 1320 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1321 // Allow bitcast from vector to integer/fp of the same size. 1322 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1323 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1324 if (SrcSize == DstSize) 1325 return Builder.CreateBitCast(Src, DstTy, "conv"); 1326 1327 // Conversions between vectors of different sizes are not allowed except 1328 // when vectors of half are involved. Operations on storage-only half 1329 // vectors require promoting half vector operands to float vectors and 1330 // truncating the result, which is either an int or float vector, to a 1331 // short or half vector. 1332 1333 // Source and destination are both expected to be vectors. 1334 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1335 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1336 (void)DstElementTy; 1337 1338 assert(((SrcElementTy->isIntegerTy() && 1339 DstElementTy->isIntegerTy()) || 1340 (SrcElementTy->isFloatingPointTy() && 1341 DstElementTy->isFloatingPointTy())) && 1342 "unexpected conversion between a floating-point vector and an " 1343 "integer vector"); 1344 1345 // Truncate an i32 vector to an i16 vector. 1346 if (SrcElementTy->isIntegerTy()) 1347 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1348 1349 // Truncate a float vector to a half vector. 1350 if (SrcSize > DstSize) 1351 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1352 1353 // Promote a half vector to a float vector. 1354 return Builder.CreateFPExt(Src, DstTy, "conv"); 1355 } 1356 1357 // Finally, we have the arithmetic types: real int/float. 1358 Value *Res = nullptr; 1359 llvm::Type *ResTy = DstTy; 1360 1361 // An overflowing conversion has undefined behavior if either the source type 1362 // or the destination type is a floating-point type. However, we consider the 1363 // range of representable values for all floating-point types to be 1364 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1365 // floating-point type. 1366 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1367 OrigSrcType->isFloatingType()) 1368 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1369 Loc); 1370 1371 // Cast to half through float if half isn't a native type. 1372 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1373 // Make sure we cast in a single step if from another FP type. 1374 if (SrcTy->isFloatingPointTy()) { 1375 // Use the intrinsic if the half type itself isn't supported 1376 // (as opposed to operations on half, available with NativeHalfType). 1377 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1378 return Builder.CreateCall( 1379 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1380 // If the half type is supported, just use an fptrunc. 1381 return Builder.CreateFPTrunc(Src, DstTy); 1382 } 1383 DstTy = CGF.FloatTy; 1384 } 1385 1386 if (isa<llvm::IntegerType>(SrcTy)) { 1387 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1388 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1389 InputSigned = true; 1390 } 1391 if (isa<llvm::IntegerType>(DstTy)) 1392 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1393 else if (InputSigned) 1394 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1395 else 1396 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1397 } else if (isa<llvm::IntegerType>(DstTy)) { 1398 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1399 if (DstType->isSignedIntegerOrEnumerationType()) 1400 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1401 else 1402 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1403 } else { 1404 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1405 "Unknown real conversion"); 1406 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1407 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1408 else 1409 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1410 } 1411 1412 if (DstTy != ResTy) { 1413 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1414 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1415 Res = Builder.CreateCall( 1416 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1417 Res); 1418 } else { 1419 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1420 } 1421 } 1422 1423 if (Opts.EmitImplicitIntegerTruncationChecks) 1424 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1425 NoncanonicalDstType, Loc); 1426 1427 if (Opts.EmitImplicitIntegerSignChangeChecks) 1428 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1429 NoncanonicalDstType, Loc); 1430 1431 return Res; 1432 } 1433 1434 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1435 QualType DstTy, 1436 SourceLocation Loc) { 1437 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1438 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1439 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 1440 llvm::Value *Result; 1441 if (DstTy->isIntegerType()) 1442 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, 1443 DstFPSema.getWidth(), 1444 DstFPSema.isSigned()); 1445 else if (SrcTy->isIntegerType()) 1446 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), 1447 DstFPSema); 1448 else 1449 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); 1450 return Result; 1451 } 1452 1453 /// Emit a conversion from the specified complex type to the specified 1454 /// destination type, where the destination type is an LLVM scalar type. 1455 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1456 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1457 SourceLocation Loc) { 1458 // Get the source element type. 1459 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1460 1461 // Handle conversions to bool first, they are special: comparisons against 0. 1462 if (DstTy->isBooleanType()) { 1463 // Complex != 0 -> (Real != 0) | (Imag != 0) 1464 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1465 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1466 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1467 } 1468 1469 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1470 // the imaginary part of the complex value is discarded and the value of the 1471 // real part is converted according to the conversion rules for the 1472 // corresponding real type. 1473 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1474 } 1475 1476 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1477 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1478 } 1479 1480 /// Emit a sanitization check for the given "binary" operation (which 1481 /// might actually be a unary increment which has been lowered to a binary 1482 /// operation). The check passes if all values in \p Checks (which are \c i1), 1483 /// are \c true. 1484 void ScalarExprEmitter::EmitBinOpCheck( 1485 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1486 assert(CGF.IsSanitizerScope); 1487 SanitizerHandler Check; 1488 SmallVector<llvm::Constant *, 4> StaticData; 1489 SmallVector<llvm::Value *, 2> DynamicData; 1490 1491 BinaryOperatorKind Opcode = Info.Opcode; 1492 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1493 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1494 1495 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1496 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1497 if (UO && UO->getOpcode() == UO_Minus) { 1498 Check = SanitizerHandler::NegateOverflow; 1499 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1500 DynamicData.push_back(Info.RHS); 1501 } else { 1502 if (BinaryOperator::isShiftOp(Opcode)) { 1503 // Shift LHS negative or too large, or RHS out of bounds. 1504 Check = SanitizerHandler::ShiftOutOfBounds; 1505 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1506 StaticData.push_back( 1507 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1508 StaticData.push_back( 1509 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1510 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1511 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1512 Check = SanitizerHandler::DivremOverflow; 1513 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1514 } else { 1515 // Arithmetic overflow (+, -, *). 1516 switch (Opcode) { 1517 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1518 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1519 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1520 default: llvm_unreachable("unexpected opcode for bin op check"); 1521 } 1522 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1523 } 1524 DynamicData.push_back(Info.LHS); 1525 DynamicData.push_back(Info.RHS); 1526 } 1527 1528 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1529 } 1530 1531 //===----------------------------------------------------------------------===// 1532 // Visitor Methods 1533 //===----------------------------------------------------------------------===// 1534 1535 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1536 CGF.ErrorUnsupported(E, "scalar expression"); 1537 if (E->getType()->isVoidType()) 1538 return nullptr; 1539 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1540 } 1541 1542 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1543 // Vector Mask Case 1544 if (E->getNumSubExprs() == 2) { 1545 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1546 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1547 Value *Mask; 1548 1549 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); 1550 unsigned LHSElts = LTy->getNumElements(); 1551 1552 Mask = RHS; 1553 1554 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); 1555 1556 // Mask off the high bits of each shuffle index. 1557 Value *MaskBits = 1558 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1559 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1560 1561 // newv = undef 1562 // mask = mask & maskbits 1563 // for each elt 1564 // n = extract mask i 1565 // x = extract val n 1566 // newv = insert newv, x, i 1567 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1568 MTy->getNumElements()); 1569 Value* NewV = llvm::UndefValue::get(RTy); 1570 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1571 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1572 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1573 1574 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1575 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1576 } 1577 return NewV; 1578 } 1579 1580 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1581 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1582 1583 SmallVector<int, 32> Indices; 1584 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1585 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1586 // Check for -1 and output it as undef in the IR. 1587 if (Idx.isSigned() && Idx.isAllOnesValue()) 1588 Indices.push_back(-1); 1589 else 1590 Indices.push_back(Idx.getZExtValue()); 1591 } 1592 1593 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1594 } 1595 1596 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1597 QualType SrcType = E->getSrcExpr()->getType(), 1598 DstType = E->getType(); 1599 1600 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1601 1602 SrcType = CGF.getContext().getCanonicalType(SrcType); 1603 DstType = CGF.getContext().getCanonicalType(DstType); 1604 if (SrcType == DstType) return Src; 1605 1606 assert(SrcType->isVectorType() && 1607 "ConvertVector source type must be a vector"); 1608 assert(DstType->isVectorType() && 1609 "ConvertVector destination type must be a vector"); 1610 1611 llvm::Type *SrcTy = Src->getType(); 1612 llvm::Type *DstTy = ConvertType(DstType); 1613 1614 // Ignore conversions like int -> uint. 1615 if (SrcTy == DstTy) 1616 return Src; 1617 1618 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1619 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1620 1621 assert(SrcTy->isVectorTy() && 1622 "ConvertVector source IR type must be a vector"); 1623 assert(DstTy->isVectorTy() && 1624 "ConvertVector destination IR type must be a vector"); 1625 1626 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1627 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1628 1629 if (DstEltType->isBooleanType()) { 1630 assert((SrcEltTy->isFloatingPointTy() || 1631 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1632 1633 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1634 if (SrcEltTy->isFloatingPointTy()) { 1635 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1636 } else { 1637 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1638 } 1639 } 1640 1641 // We have the arithmetic types: real int/float. 1642 Value *Res = nullptr; 1643 1644 if (isa<llvm::IntegerType>(SrcEltTy)) { 1645 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1646 if (isa<llvm::IntegerType>(DstEltTy)) 1647 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1648 else if (InputSigned) 1649 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1650 else 1651 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1652 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1653 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1654 if (DstEltType->isSignedIntegerOrEnumerationType()) 1655 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1656 else 1657 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1658 } else { 1659 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1660 "Unknown real conversion"); 1661 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1662 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1663 else 1664 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1665 } 1666 1667 return Res; 1668 } 1669 1670 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1671 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1672 CGF.EmitIgnoredExpr(E->getBase()); 1673 return CGF.emitScalarConstant(Constant, E); 1674 } else { 1675 Expr::EvalResult Result; 1676 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1677 llvm::APSInt Value = Result.Val.getInt(); 1678 CGF.EmitIgnoredExpr(E->getBase()); 1679 return Builder.getInt(Value); 1680 } 1681 } 1682 1683 return EmitLoadOfLValue(E); 1684 } 1685 1686 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1687 TestAndClearIgnoreResultAssign(); 1688 1689 // Emit subscript expressions in rvalue context's. For most cases, this just 1690 // loads the lvalue formed by the subscript expr. However, we have to be 1691 // careful, because the base of a vector subscript is occasionally an rvalue, 1692 // so we can't get it as an lvalue. 1693 if (!E->getBase()->getType()->isVectorType()) 1694 return EmitLoadOfLValue(E); 1695 1696 // Handle the vector case. The base must be a vector, the index must be an 1697 // integer value. 1698 Value *Base = Visit(E->getBase()); 1699 Value *Idx = Visit(E->getIdx()); 1700 QualType IdxTy = E->getIdx()->getType(); 1701 1702 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1703 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1704 1705 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1706 } 1707 1708 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1709 TestAndClearIgnoreResultAssign(); 1710 1711 // Handle the vector case. The base must be a vector, the index must be an 1712 // integer value. 1713 Value *RowIdx = Visit(E->getRowIdx()); 1714 Value *ColumnIdx = Visit(E->getColumnIdx()); 1715 Value *Matrix = Visit(E->getBase()); 1716 1717 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1718 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1719 return MB.CreateExtractElement( 1720 Matrix, RowIdx, ColumnIdx, 1721 E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows()); 1722 } 1723 1724 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1725 unsigned Off) { 1726 int MV = SVI->getMaskValue(Idx); 1727 if (MV == -1) 1728 return -1; 1729 return Off + MV; 1730 } 1731 1732 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1733 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1734 "Index operand too large for shufflevector mask!"); 1735 return C->getZExtValue(); 1736 } 1737 1738 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1739 bool Ignore = TestAndClearIgnoreResultAssign(); 1740 (void)Ignore; 1741 assert (Ignore == false && "init list ignored"); 1742 unsigned NumInitElements = E->getNumInits(); 1743 1744 if (E->hadArrayRangeDesignator()) 1745 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1746 1747 llvm::VectorType *VType = 1748 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1749 1750 if (!VType) { 1751 if (NumInitElements == 0) { 1752 // C++11 value-initialization for the scalar. 1753 return EmitNullValue(E->getType()); 1754 } 1755 // We have a scalar in braces. Just use the first element. 1756 return Visit(E->getInit(0)); 1757 } 1758 1759 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); 1760 1761 // Loop over initializers collecting the Value for each, and remembering 1762 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1763 // us to fold the shuffle for the swizzle into the shuffle for the vector 1764 // initializer, since LLVM optimizers generally do not want to touch 1765 // shuffles. 1766 unsigned CurIdx = 0; 1767 bool VIsUndefShuffle = false; 1768 llvm::Value *V = llvm::UndefValue::get(VType); 1769 for (unsigned i = 0; i != NumInitElements; ++i) { 1770 Expr *IE = E->getInit(i); 1771 Value *Init = Visit(IE); 1772 SmallVector<int, 16> Args; 1773 1774 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1775 1776 // Handle scalar elements. If the scalar initializer is actually one 1777 // element of a different vector of the same width, use shuffle instead of 1778 // extract+insert. 1779 if (!VVT) { 1780 if (isa<ExtVectorElementExpr>(IE)) { 1781 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1782 1783 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) 1784 ->getNumElements() == ResElts) { 1785 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1786 Value *LHS = nullptr, *RHS = nullptr; 1787 if (CurIdx == 0) { 1788 // insert into undef -> shuffle (src, undef) 1789 // shufflemask must use an i32 1790 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1791 Args.resize(ResElts, -1); 1792 1793 LHS = EI->getVectorOperand(); 1794 RHS = V; 1795 VIsUndefShuffle = true; 1796 } else if (VIsUndefShuffle) { 1797 // insert into undefshuffle && size match -> shuffle (v, src) 1798 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1799 for (unsigned j = 0; j != CurIdx; ++j) 1800 Args.push_back(getMaskElt(SVV, j, 0)); 1801 Args.push_back(ResElts + C->getZExtValue()); 1802 Args.resize(ResElts, -1); 1803 1804 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1805 RHS = EI->getVectorOperand(); 1806 VIsUndefShuffle = false; 1807 } 1808 if (!Args.empty()) { 1809 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1810 ++CurIdx; 1811 continue; 1812 } 1813 } 1814 } 1815 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1816 "vecinit"); 1817 VIsUndefShuffle = false; 1818 ++CurIdx; 1819 continue; 1820 } 1821 1822 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); 1823 1824 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1825 // input is the same width as the vector being constructed, generate an 1826 // optimized shuffle of the swizzle input into the result. 1827 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1828 if (isa<ExtVectorElementExpr>(IE)) { 1829 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1830 Value *SVOp = SVI->getOperand(0); 1831 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); 1832 1833 if (OpTy->getNumElements() == ResElts) { 1834 for (unsigned j = 0; j != CurIdx; ++j) { 1835 // If the current vector initializer is a shuffle with undef, merge 1836 // this shuffle directly into it. 1837 if (VIsUndefShuffle) { 1838 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1839 } else { 1840 Args.push_back(j); 1841 } 1842 } 1843 for (unsigned j = 0, je = InitElts; j != je; ++j) 1844 Args.push_back(getMaskElt(SVI, j, Offset)); 1845 Args.resize(ResElts, -1); 1846 1847 if (VIsUndefShuffle) 1848 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1849 1850 Init = SVOp; 1851 } 1852 } 1853 1854 // Extend init to result vector length, and then shuffle its contribution 1855 // to the vector initializer into V. 1856 if (Args.empty()) { 1857 for (unsigned j = 0; j != InitElts; ++j) 1858 Args.push_back(j); 1859 Args.resize(ResElts, -1); 1860 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args, 1861 "vext"); 1862 1863 Args.clear(); 1864 for (unsigned j = 0; j != CurIdx; ++j) 1865 Args.push_back(j); 1866 for (unsigned j = 0; j != InitElts; ++j) 1867 Args.push_back(j + Offset); 1868 Args.resize(ResElts, -1); 1869 } 1870 1871 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1872 // merging subsequent shuffles into this one. 1873 if (CurIdx == 0) 1874 std::swap(V, Init); 1875 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 1876 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1877 CurIdx += InitElts; 1878 } 1879 1880 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1881 // Emit remaining default initializers. 1882 llvm::Type *EltTy = VType->getElementType(); 1883 1884 // Emit remaining default initializers 1885 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1886 Value *Idx = Builder.getInt32(CurIdx); 1887 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1888 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1889 } 1890 return V; 1891 } 1892 1893 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1894 const Expr *E = CE->getSubExpr(); 1895 1896 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1897 return false; 1898 1899 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1900 // We always assume that 'this' is never null. 1901 return false; 1902 } 1903 1904 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1905 // And that glvalue casts are never null. 1906 if (ICE->getValueKind() != VK_RValue) 1907 return false; 1908 } 1909 1910 return true; 1911 } 1912 1913 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1914 // have to handle a more broad range of conversions than explicit casts, as they 1915 // handle things like function to ptr-to-function decay etc. 1916 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1917 Expr *E = CE->getSubExpr(); 1918 QualType DestTy = CE->getType(); 1919 CastKind Kind = CE->getCastKind(); 1920 1921 // These cases are generally not written to ignore the result of 1922 // evaluating their sub-expressions, so we clear this now. 1923 bool Ignored = TestAndClearIgnoreResultAssign(); 1924 1925 // Since almost all cast kinds apply to scalars, this switch doesn't have 1926 // a default case, so the compiler will warn on a missing case. The cases 1927 // are in the same order as in the CastKind enum. 1928 switch (Kind) { 1929 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1930 case CK_BuiltinFnToFnPtr: 1931 llvm_unreachable("builtin functions are handled elsewhere"); 1932 1933 case CK_LValueBitCast: 1934 case CK_ObjCObjectLValueCast: { 1935 Address Addr = EmitLValue(E).getAddress(CGF); 1936 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1937 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1938 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1939 } 1940 1941 case CK_LValueToRValueBitCast: { 1942 LValue SourceLVal = CGF.EmitLValue(E); 1943 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 1944 CGF.ConvertTypeForMem(DestTy)); 1945 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 1946 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 1947 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 1948 } 1949 1950 case CK_CPointerToObjCPointerCast: 1951 case CK_BlockPointerToObjCPointerCast: 1952 case CK_AnyPointerToBlockPointerCast: 1953 case CK_BitCast: { 1954 Value *Src = Visit(const_cast<Expr*>(E)); 1955 llvm::Type *SrcTy = Src->getType(); 1956 llvm::Type *DstTy = ConvertType(DestTy); 1957 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1958 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1959 llvm_unreachable("wrong cast for pointers in different address spaces" 1960 "(must be an address space cast)!"); 1961 } 1962 1963 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1964 if (auto PT = DestTy->getAs<PointerType>()) 1965 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1966 /*MayBeNull=*/true, 1967 CodeGenFunction::CFITCK_UnrelatedCast, 1968 CE->getBeginLoc()); 1969 } 1970 1971 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1972 const QualType SrcType = E->getType(); 1973 1974 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 1975 // Casting to pointer that could carry dynamic information (provided by 1976 // invariant.group) requires launder. 1977 Src = Builder.CreateLaunderInvariantGroup(Src); 1978 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 1979 // Casting to pointer that does not carry dynamic information (provided 1980 // by invariant.group) requires stripping it. Note that we don't do it 1981 // if the source could not be dynamic type and destination could be 1982 // dynamic because dynamic information is already laundered. It is 1983 // because launder(strip(src)) == launder(src), so there is no need to 1984 // add extra strip before launder. 1985 Src = Builder.CreateStripInvariantGroup(Src); 1986 } 1987 } 1988 1989 // Update heapallocsite metadata when there is an explicit pointer cast. 1990 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 1991 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { 1992 QualType PointeeType = DestTy->getPointeeType(); 1993 if (!PointeeType.isNull()) 1994 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 1995 CE->getExprLoc()); 1996 } 1997 } 1998 1999 // If Src is a fixed vector and Dst is a scalable vector, and both have the 2000 // same element type, use the llvm.experimental.vector.insert intrinsic to 2001 // perform the bitcast. 2002 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 2003 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { 2004 if (FixedSrc->getElementType() == ScalableDst->getElementType()) { 2005 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); 2006 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2007 return Builder.CreateInsertVector(DstTy, UndefVec, Src, Zero, 2008 "castScalableSve"); 2009 } 2010 } 2011 } 2012 2013 // If Src is a scalable vector and Dst is a fixed vector, and both have the 2014 // same element type, use the llvm.experimental.vector.extract intrinsic to 2015 // perform the bitcast. 2016 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { 2017 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { 2018 if (ScalableSrc->getElementType() == FixedDst->getElementType()) { 2019 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2020 return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve"); 2021 } 2022 } 2023 } 2024 2025 // Perform VLAT <-> VLST bitcast through memory. 2026 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics 2027 // require the element types of the vectors to be the same, we 2028 // need to keep this around for casting between predicates, or more 2029 // generally for bitcasts between VLAT <-> VLST where the element 2030 // types of the vectors are not the same, until we figure out a better 2031 // way of doing these casts. 2032 if ((isa<llvm::FixedVectorType>(SrcTy) && 2033 isa<llvm::ScalableVectorType>(DstTy)) || 2034 (isa<llvm::ScalableVectorType>(SrcTy) && 2035 isa<llvm::FixedVectorType>(DstTy))) { 2036 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 2037 // Call expressions can't have a scalar return unless the return type 2038 // is a reference type so an lvalue can't be emitted. Create a temp 2039 // alloca to store the call, bitcast the address then load. 2040 QualType RetTy = CE->getCallReturnType(CGF.getContext()); 2041 Address Addr = 2042 CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue"); 2043 LValue LV = CGF.MakeAddrLValue(Addr, RetTy); 2044 CGF.EmitStoreOfScalar(Src, LV); 2045 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy), 2046 "castFixedSve"); 2047 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2048 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2049 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2050 } 2051 2052 Address Addr = EmitLValue(E).getAddress(CGF); 2053 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2054 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2055 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2056 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2057 } 2058 2059 return Builder.CreateBitCast(Src, DstTy); 2060 } 2061 case CK_AddressSpaceConversion: { 2062 Expr::EvalResult Result; 2063 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2064 Result.Val.isNullPointer()) { 2065 // If E has side effect, it is emitted even if its final result is a 2066 // null pointer. In that case, a DCE pass should be able to 2067 // eliminate the useless instructions emitted during translating E. 2068 if (Result.HasSideEffects) 2069 Visit(E); 2070 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2071 ConvertType(DestTy)), DestTy); 2072 } 2073 // Since target may map different address spaces in AST to the same address 2074 // space, an address space conversion may end up as a bitcast. 2075 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2076 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2077 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2078 } 2079 case CK_AtomicToNonAtomic: 2080 case CK_NonAtomicToAtomic: 2081 case CK_NoOp: 2082 case CK_UserDefinedConversion: 2083 return Visit(const_cast<Expr*>(E)); 2084 2085 case CK_BaseToDerived: { 2086 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2087 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2088 2089 Address Base = CGF.EmitPointerWithAlignment(E); 2090 Address Derived = 2091 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2092 CE->path_begin(), CE->path_end(), 2093 CGF.ShouldNullCheckClassCastValue(CE)); 2094 2095 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2096 // performed and the object is not of the derived type. 2097 if (CGF.sanitizePerformTypeCheck()) 2098 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2099 Derived.getPointer(), DestTy->getPointeeType()); 2100 2101 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2102 CGF.EmitVTablePtrCheckForCast( 2103 DestTy->getPointeeType(), Derived.getPointer(), 2104 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2105 CE->getBeginLoc()); 2106 2107 return Derived.getPointer(); 2108 } 2109 case CK_UncheckedDerivedToBase: 2110 case CK_DerivedToBase: { 2111 // The EmitPointerWithAlignment path does this fine; just discard 2112 // the alignment. 2113 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2114 } 2115 2116 case CK_Dynamic: { 2117 Address V = CGF.EmitPointerWithAlignment(E); 2118 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2119 return CGF.EmitDynamicCast(V, DCE); 2120 } 2121 2122 case CK_ArrayToPointerDecay: 2123 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2124 case CK_FunctionToPointerDecay: 2125 return EmitLValue(E).getPointer(CGF); 2126 2127 case CK_NullToPointer: 2128 if (MustVisitNullValue(E)) 2129 CGF.EmitIgnoredExpr(E); 2130 2131 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2132 DestTy); 2133 2134 case CK_NullToMemberPointer: { 2135 if (MustVisitNullValue(E)) 2136 CGF.EmitIgnoredExpr(E); 2137 2138 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2139 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2140 } 2141 2142 case CK_ReinterpretMemberPointer: 2143 case CK_BaseToDerivedMemberPointer: 2144 case CK_DerivedToBaseMemberPointer: { 2145 Value *Src = Visit(E); 2146 2147 // Note that the AST doesn't distinguish between checked and 2148 // unchecked member pointer conversions, so we always have to 2149 // implement checked conversions here. This is inefficient when 2150 // actual control flow may be required in order to perform the 2151 // check, which it is for data member pointers (but not member 2152 // function pointers on Itanium and ARM). 2153 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2154 } 2155 2156 case CK_ARCProduceObject: 2157 return CGF.EmitARCRetainScalarExpr(E); 2158 case CK_ARCConsumeObject: 2159 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2160 case CK_ARCReclaimReturnedObject: 2161 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2162 case CK_ARCExtendBlockObject: 2163 return CGF.EmitARCExtendBlockObject(E); 2164 2165 case CK_CopyAndAutoreleaseBlockObject: 2166 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2167 2168 case CK_FloatingRealToComplex: 2169 case CK_FloatingComplexCast: 2170 case CK_IntegralRealToComplex: 2171 case CK_IntegralComplexCast: 2172 case CK_IntegralComplexToFloatingComplex: 2173 case CK_FloatingComplexToIntegralComplex: 2174 case CK_ConstructorConversion: 2175 case CK_ToUnion: 2176 llvm_unreachable("scalar cast to non-scalar value"); 2177 2178 case CK_LValueToRValue: 2179 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2180 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2181 return Visit(const_cast<Expr*>(E)); 2182 2183 case CK_IntegralToPointer: { 2184 Value *Src = Visit(const_cast<Expr*>(E)); 2185 2186 // First, convert to the correct width so that we control the kind of 2187 // extension. 2188 auto DestLLVMTy = ConvertType(DestTy); 2189 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2190 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2191 llvm::Value* IntResult = 2192 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2193 2194 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2195 2196 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2197 // Going from integer to pointer that could be dynamic requires reloading 2198 // dynamic information from invariant.group. 2199 if (DestTy.mayBeDynamicClass()) 2200 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2201 } 2202 return IntToPtr; 2203 } 2204 case CK_PointerToIntegral: { 2205 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2206 auto *PtrExpr = Visit(E); 2207 2208 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2209 const QualType SrcType = E->getType(); 2210 2211 // Casting to integer requires stripping dynamic information as it does 2212 // not carries it. 2213 if (SrcType.mayBeDynamicClass()) 2214 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2215 } 2216 2217 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2218 } 2219 case CK_ToVoid: { 2220 CGF.EmitIgnoredExpr(E); 2221 return nullptr; 2222 } 2223 case CK_VectorSplat: { 2224 llvm::Type *DstTy = ConvertType(DestTy); 2225 Value *Elt = Visit(const_cast<Expr*>(E)); 2226 // Splat the element across to all elements 2227 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 2228 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2229 } 2230 2231 case CK_FixedPointCast: 2232 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2233 CE->getExprLoc()); 2234 2235 case CK_FixedPointToBoolean: 2236 assert(E->getType()->isFixedPointType() && 2237 "Expected src type to be fixed point type"); 2238 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2239 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2240 CE->getExprLoc()); 2241 2242 case CK_FixedPointToIntegral: 2243 assert(E->getType()->isFixedPointType() && 2244 "Expected src type to be fixed point type"); 2245 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2246 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2247 CE->getExprLoc()); 2248 2249 case CK_IntegralToFixedPoint: 2250 assert(E->getType()->isIntegerType() && 2251 "Expected src type to be an integer"); 2252 assert(DestTy->isFixedPointType() && 2253 "Expected dest type to be fixed point type"); 2254 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2255 CE->getExprLoc()); 2256 2257 case CK_IntegralCast: { 2258 ScalarConversionOpts Opts; 2259 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2260 if (!ICE->isPartOfExplicitCast()) 2261 Opts = ScalarConversionOpts(CGF.SanOpts); 2262 } 2263 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2264 CE->getExprLoc(), Opts); 2265 } 2266 case CK_IntegralToFloating: 2267 case CK_FloatingToIntegral: 2268 case CK_FloatingCast: 2269 case CK_FixedPointToFloating: 2270 case CK_FloatingToFixedPoint: { 2271 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2272 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2273 CE->getExprLoc()); 2274 } 2275 case CK_BooleanToSignedIntegral: { 2276 ScalarConversionOpts Opts; 2277 Opts.TreatBooleanAsSigned = true; 2278 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2279 CE->getExprLoc(), Opts); 2280 } 2281 case CK_IntegralToBoolean: 2282 return EmitIntToBoolConversion(Visit(E)); 2283 case CK_PointerToBoolean: 2284 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2285 case CK_FloatingToBoolean: { 2286 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2287 return EmitFloatToBoolConversion(Visit(E)); 2288 } 2289 case CK_MemberPointerToBoolean: { 2290 llvm::Value *MemPtr = Visit(E); 2291 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2292 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2293 } 2294 2295 case CK_FloatingComplexToReal: 2296 case CK_IntegralComplexToReal: 2297 return CGF.EmitComplexExpr(E, false, true).first; 2298 2299 case CK_FloatingComplexToBoolean: 2300 case CK_IntegralComplexToBoolean: { 2301 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2302 2303 // TODO: kill this function off, inline appropriate case here 2304 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2305 CE->getExprLoc()); 2306 } 2307 2308 case CK_ZeroToOCLOpaqueType: { 2309 assert((DestTy->isEventT() || DestTy->isQueueT() || 2310 DestTy->isOCLIntelSubgroupAVCType()) && 2311 "CK_ZeroToOCLEvent cast on non-event type"); 2312 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2313 } 2314 2315 case CK_IntToOCLSampler: 2316 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2317 2318 } // end of switch 2319 2320 llvm_unreachable("unknown scalar cast"); 2321 } 2322 2323 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2324 CodeGenFunction::StmtExprEvaluation eval(CGF); 2325 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2326 !E->getType()->isVoidType()); 2327 if (!RetAlloca.isValid()) 2328 return nullptr; 2329 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2330 E->getExprLoc()); 2331 } 2332 2333 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2334 CodeGenFunction::RunCleanupsScope Scope(CGF); 2335 Value *V = Visit(E->getSubExpr()); 2336 // Defend against dominance problems caused by jumps out of expression 2337 // evaluation through the shared cleanup block. 2338 Scope.ForceCleanup({&V}); 2339 return V; 2340 } 2341 2342 //===----------------------------------------------------------------------===// 2343 // Unary Operators 2344 //===----------------------------------------------------------------------===// 2345 2346 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2347 llvm::Value *InVal, bool IsInc, 2348 FPOptions FPFeatures) { 2349 BinOpInfo BinOp; 2350 BinOp.LHS = InVal; 2351 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2352 BinOp.Ty = E->getType(); 2353 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2354 BinOp.FPFeatures = FPFeatures; 2355 BinOp.E = E; 2356 return BinOp; 2357 } 2358 2359 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2360 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2361 llvm::Value *Amount = 2362 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2363 StringRef Name = IsInc ? "inc" : "dec"; 2364 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2365 case LangOptions::SOB_Defined: 2366 return Builder.CreateAdd(InVal, Amount, Name); 2367 case LangOptions::SOB_Undefined: 2368 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2369 return Builder.CreateNSWAdd(InVal, Amount, Name); 2370 LLVM_FALLTHROUGH; 2371 case LangOptions::SOB_Trapping: 2372 if (!E->canOverflow()) 2373 return Builder.CreateNSWAdd(InVal, Amount, Name); 2374 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2375 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2376 } 2377 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2378 } 2379 2380 namespace { 2381 /// Handles check and update for lastprivate conditional variables. 2382 class OMPLastprivateConditionalUpdateRAII { 2383 private: 2384 CodeGenFunction &CGF; 2385 const UnaryOperator *E; 2386 2387 public: 2388 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2389 const UnaryOperator *E) 2390 : CGF(CGF), E(E) {} 2391 ~OMPLastprivateConditionalUpdateRAII() { 2392 if (CGF.getLangOpts().OpenMP) 2393 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2394 CGF, E->getSubExpr()); 2395 } 2396 }; 2397 } // namespace 2398 2399 llvm::Value * 2400 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2401 bool isInc, bool isPre) { 2402 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2403 QualType type = E->getSubExpr()->getType(); 2404 llvm::PHINode *atomicPHI = nullptr; 2405 llvm::Value *value; 2406 llvm::Value *input; 2407 2408 int amount = (isInc ? 1 : -1); 2409 bool isSubtraction = !isInc; 2410 2411 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2412 type = atomicTy->getValueType(); 2413 if (isInc && type->isBooleanType()) { 2414 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2415 if (isPre) { 2416 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2417 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2418 return Builder.getTrue(); 2419 } 2420 // For atomic bool increment, we just store true and return it for 2421 // preincrement, do an atomic swap with true for postincrement 2422 return Builder.CreateAtomicRMW( 2423 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2424 llvm::AtomicOrdering::SequentiallyConsistent); 2425 } 2426 // Special case for atomic increment / decrement on integers, emit 2427 // atomicrmw instructions. We skip this if we want to be doing overflow 2428 // checking, and fall into the slow path with the atomic cmpxchg loop. 2429 if (!type->isBooleanType() && type->isIntegerType() && 2430 !(type->isUnsignedIntegerType() && 2431 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2432 CGF.getLangOpts().getSignedOverflowBehavior() != 2433 LangOptions::SOB_Trapping) { 2434 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2435 llvm::AtomicRMWInst::Sub; 2436 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2437 llvm::Instruction::Sub; 2438 llvm::Value *amt = CGF.EmitToMemory( 2439 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2440 llvm::Value *old = 2441 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2442 llvm::AtomicOrdering::SequentiallyConsistent); 2443 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2444 } 2445 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2446 input = value; 2447 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2448 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2449 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2450 value = CGF.EmitToMemory(value, type); 2451 Builder.CreateBr(opBB); 2452 Builder.SetInsertPoint(opBB); 2453 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2454 atomicPHI->addIncoming(value, startBB); 2455 value = atomicPHI; 2456 } else { 2457 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2458 input = value; 2459 } 2460 2461 // Special case of integer increment that we have to check first: bool++. 2462 // Due to promotion rules, we get: 2463 // bool++ -> bool = bool + 1 2464 // -> bool = (int)bool + 1 2465 // -> bool = ((int)bool + 1 != 0) 2466 // An interesting aspect of this is that increment is always true. 2467 // Decrement does not have this property. 2468 if (isInc && type->isBooleanType()) { 2469 value = Builder.getTrue(); 2470 2471 // Most common case by far: integer increment. 2472 } else if (type->isIntegerType()) { 2473 QualType promotedType; 2474 bool canPerformLossyDemotionCheck = false; 2475 if (type->isPromotableIntegerType()) { 2476 promotedType = CGF.getContext().getPromotedIntegerType(type); 2477 assert(promotedType != type && "Shouldn't promote to the same type."); 2478 canPerformLossyDemotionCheck = true; 2479 canPerformLossyDemotionCheck &= 2480 CGF.getContext().getCanonicalType(type) != 2481 CGF.getContext().getCanonicalType(promotedType); 2482 canPerformLossyDemotionCheck &= 2483 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2484 type, promotedType); 2485 assert((!canPerformLossyDemotionCheck || 2486 type->isSignedIntegerOrEnumerationType() || 2487 promotedType->isSignedIntegerOrEnumerationType() || 2488 ConvertType(type)->getScalarSizeInBits() == 2489 ConvertType(promotedType)->getScalarSizeInBits()) && 2490 "The following check expects that if we do promotion to different " 2491 "underlying canonical type, at least one of the types (either " 2492 "base or promoted) will be signed, or the bitwidths will match."); 2493 } 2494 if (CGF.SanOpts.hasOneOf( 2495 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2496 canPerformLossyDemotionCheck) { 2497 // While `x += 1` (for `x` with width less than int) is modeled as 2498 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2499 // ease; inc/dec with width less than int can't overflow because of 2500 // promotion rules, so we omit promotion+demotion, which means that we can 2501 // not catch lossy "demotion". Because we still want to catch these cases 2502 // when the sanitizer is enabled, we perform the promotion, then perform 2503 // the increment/decrement in the wider type, and finally 2504 // perform the demotion. This will catch lossy demotions. 2505 2506 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2507 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2508 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2509 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2510 // emitted. 2511 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2512 ScalarConversionOpts(CGF.SanOpts)); 2513 2514 // Note that signed integer inc/dec with width less than int can't 2515 // overflow because of promotion rules; we're just eliding a few steps 2516 // here. 2517 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2518 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2519 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2520 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2521 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2522 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2523 } else { 2524 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2525 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2526 } 2527 2528 // Next most common: pointer increment. 2529 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2530 QualType type = ptr->getPointeeType(); 2531 2532 // VLA types don't have constant size. 2533 if (const VariableArrayType *vla 2534 = CGF.getContext().getAsVariableArrayType(type)) { 2535 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2536 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2537 if (CGF.getLangOpts().isSignedOverflowDefined()) 2538 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2539 else 2540 value = CGF.EmitCheckedInBoundsGEP( 2541 value, numElts, /*SignedIndices=*/false, isSubtraction, 2542 E->getExprLoc(), "vla.inc"); 2543 2544 // Arithmetic on function pointers (!) is just +-1. 2545 } else if (type->isFunctionType()) { 2546 llvm::Value *amt = Builder.getInt32(amount); 2547 2548 value = CGF.EmitCastToVoidPtr(value); 2549 if (CGF.getLangOpts().isSignedOverflowDefined()) 2550 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2551 else 2552 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2553 isSubtraction, E->getExprLoc(), 2554 "incdec.funcptr"); 2555 value = Builder.CreateBitCast(value, input->getType()); 2556 2557 // For everything else, we can just do a simple increment. 2558 } else { 2559 llvm::Value *amt = Builder.getInt32(amount); 2560 if (CGF.getLangOpts().isSignedOverflowDefined()) 2561 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2562 else 2563 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2564 isSubtraction, E->getExprLoc(), 2565 "incdec.ptr"); 2566 } 2567 2568 // Vector increment/decrement. 2569 } else if (type->isVectorType()) { 2570 if (type->hasIntegerRepresentation()) { 2571 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2572 2573 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2574 } else { 2575 value = Builder.CreateFAdd( 2576 value, 2577 llvm::ConstantFP::get(value->getType(), amount), 2578 isInc ? "inc" : "dec"); 2579 } 2580 2581 // Floating point. 2582 } else if (type->isRealFloatingType()) { 2583 // Add the inc/dec to the real part. 2584 llvm::Value *amt; 2585 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 2586 2587 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2588 // Another special case: half FP increment should be done via float 2589 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2590 value = Builder.CreateCall( 2591 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2592 CGF.CGM.FloatTy), 2593 input, "incdec.conv"); 2594 } else { 2595 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2596 } 2597 } 2598 2599 if (value->getType()->isFloatTy()) 2600 amt = llvm::ConstantFP::get(VMContext, 2601 llvm::APFloat(static_cast<float>(amount))); 2602 else if (value->getType()->isDoubleTy()) 2603 amt = llvm::ConstantFP::get(VMContext, 2604 llvm::APFloat(static_cast<double>(amount))); 2605 else { 2606 // Remaining types are Half, LongDouble or __float128. Convert from float. 2607 llvm::APFloat F(static_cast<float>(amount)); 2608 bool ignored; 2609 const llvm::fltSemantics *FS; 2610 // Don't use getFloatTypeSemantics because Half isn't 2611 // necessarily represented using the "half" LLVM type. 2612 if (value->getType()->isFP128Ty()) 2613 FS = &CGF.getTarget().getFloat128Format(); 2614 else if (value->getType()->isHalfTy()) 2615 FS = &CGF.getTarget().getHalfFormat(); 2616 else 2617 FS = &CGF.getTarget().getLongDoubleFormat(); 2618 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2619 amt = llvm::ConstantFP::get(VMContext, F); 2620 } 2621 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2622 2623 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2624 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2625 value = Builder.CreateCall( 2626 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2627 CGF.CGM.FloatTy), 2628 value, "incdec.conv"); 2629 } else { 2630 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2631 } 2632 } 2633 2634 // Fixed-point types. 2635 } else if (type->isFixedPointType()) { 2636 // Fixed-point types are tricky. In some cases, it isn't possible to 2637 // represent a 1 or a -1 in the type at all. Piggyback off of 2638 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2639 BinOpInfo Info; 2640 Info.E = E; 2641 Info.Ty = E->getType(); 2642 Info.Opcode = isInc ? BO_Add : BO_Sub; 2643 Info.LHS = value; 2644 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2645 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2646 // since -1 is guaranteed to be representable. 2647 if (type->isSignedFixedPointType()) { 2648 Info.Opcode = isInc ? BO_Sub : BO_Add; 2649 Info.RHS = Builder.CreateNeg(Info.RHS); 2650 } 2651 // Now, convert from our invented integer literal to the type of the unary 2652 // op. This will upscale and saturate if necessary. This value can become 2653 // undef in some cases. 2654 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 2655 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2656 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); 2657 value = EmitFixedPointBinOp(Info); 2658 2659 // Objective-C pointer types. 2660 } else { 2661 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2662 value = CGF.EmitCastToVoidPtr(value); 2663 2664 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2665 if (!isInc) size = -size; 2666 llvm::Value *sizeValue = 2667 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2668 2669 if (CGF.getLangOpts().isSignedOverflowDefined()) 2670 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2671 else 2672 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2673 /*SignedIndices=*/false, isSubtraction, 2674 E->getExprLoc(), "incdec.objptr"); 2675 value = Builder.CreateBitCast(value, input->getType()); 2676 } 2677 2678 if (atomicPHI) { 2679 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2680 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2681 auto Pair = CGF.EmitAtomicCompareExchange( 2682 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2683 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2684 llvm::Value *success = Pair.second; 2685 atomicPHI->addIncoming(old, curBlock); 2686 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2687 Builder.SetInsertPoint(contBB); 2688 return isPre ? value : input; 2689 } 2690 2691 // Store the updated result through the lvalue. 2692 if (LV.isBitField()) 2693 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2694 else 2695 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2696 2697 // If this is a postinc, return the value read from memory, otherwise use the 2698 // updated value. 2699 return isPre ? value : input; 2700 } 2701 2702 2703 2704 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2705 TestAndClearIgnoreResultAssign(); 2706 Value *Op = Visit(E->getSubExpr()); 2707 2708 // Generate a unary FNeg for FP ops. 2709 if (Op->getType()->isFPOrFPVectorTy()) 2710 return Builder.CreateFNeg(Op, "fneg"); 2711 2712 // Emit unary minus with EmitSub so we handle overflow cases etc. 2713 BinOpInfo BinOp; 2714 BinOp.RHS = Op; 2715 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2716 BinOp.Ty = E->getType(); 2717 BinOp.Opcode = BO_Sub; 2718 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2719 BinOp.E = E; 2720 return EmitSub(BinOp); 2721 } 2722 2723 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2724 TestAndClearIgnoreResultAssign(); 2725 Value *Op = Visit(E->getSubExpr()); 2726 return Builder.CreateNot(Op, "neg"); 2727 } 2728 2729 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2730 // Perform vector logical not on comparison with zero vector. 2731 if (E->getType()->isVectorType() && 2732 E->getType()->castAs<VectorType>()->getVectorKind() == 2733 VectorType::GenericVector) { 2734 Value *Oper = Visit(E->getSubExpr()); 2735 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2736 Value *Result; 2737 if (Oper->getType()->isFPOrFPVectorTy()) { 2738 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2739 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2740 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2741 } else 2742 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2743 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2744 } 2745 2746 // Compare operand to zero. 2747 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2748 2749 // Invert value. 2750 // TODO: Could dynamically modify easy computations here. For example, if 2751 // the operand is an icmp ne, turn into icmp eq. 2752 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2753 2754 // ZExt result to the expr type. 2755 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2756 } 2757 2758 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2759 // Try folding the offsetof to a constant. 2760 Expr::EvalResult EVResult; 2761 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2762 llvm::APSInt Value = EVResult.Val.getInt(); 2763 return Builder.getInt(Value); 2764 } 2765 2766 // Loop over the components of the offsetof to compute the value. 2767 unsigned n = E->getNumComponents(); 2768 llvm::Type* ResultType = ConvertType(E->getType()); 2769 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2770 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2771 for (unsigned i = 0; i != n; ++i) { 2772 OffsetOfNode ON = E->getComponent(i); 2773 llvm::Value *Offset = nullptr; 2774 switch (ON.getKind()) { 2775 case OffsetOfNode::Array: { 2776 // Compute the index 2777 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2778 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2779 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2780 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2781 2782 // Save the element type 2783 CurrentType = 2784 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2785 2786 // Compute the element size 2787 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2788 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2789 2790 // Multiply out to compute the result 2791 Offset = Builder.CreateMul(Idx, ElemSize); 2792 break; 2793 } 2794 2795 case OffsetOfNode::Field: { 2796 FieldDecl *MemberDecl = ON.getField(); 2797 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2798 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2799 2800 // Compute the index of the field in its parent. 2801 unsigned i = 0; 2802 // FIXME: It would be nice if we didn't have to loop here! 2803 for (RecordDecl::field_iterator Field = RD->field_begin(), 2804 FieldEnd = RD->field_end(); 2805 Field != FieldEnd; ++Field, ++i) { 2806 if (*Field == MemberDecl) 2807 break; 2808 } 2809 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2810 2811 // Compute the offset to the field 2812 int64_t OffsetInt = RL.getFieldOffset(i) / 2813 CGF.getContext().getCharWidth(); 2814 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2815 2816 // Save the element type. 2817 CurrentType = MemberDecl->getType(); 2818 break; 2819 } 2820 2821 case OffsetOfNode::Identifier: 2822 llvm_unreachable("dependent __builtin_offsetof"); 2823 2824 case OffsetOfNode::Base: { 2825 if (ON.getBase()->isVirtual()) { 2826 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2827 continue; 2828 } 2829 2830 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2831 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2832 2833 // Save the element type. 2834 CurrentType = ON.getBase()->getType(); 2835 2836 // Compute the offset to the base. 2837 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2838 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2839 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2840 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2841 break; 2842 } 2843 } 2844 Result = Builder.CreateAdd(Result, Offset); 2845 } 2846 return Result; 2847 } 2848 2849 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2850 /// argument of the sizeof expression as an integer. 2851 Value * 2852 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2853 const UnaryExprOrTypeTraitExpr *E) { 2854 QualType TypeToSize = E->getTypeOfArgument(); 2855 if (E->getKind() == UETT_SizeOf) { 2856 if (const VariableArrayType *VAT = 2857 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2858 if (E->isArgumentType()) { 2859 // sizeof(type) - make sure to emit the VLA size. 2860 CGF.EmitVariablyModifiedType(TypeToSize); 2861 } else { 2862 // C99 6.5.3.4p2: If the argument is an expression of type 2863 // VLA, it is evaluated. 2864 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2865 } 2866 2867 auto VlaSize = CGF.getVLASize(VAT); 2868 llvm::Value *size = VlaSize.NumElts; 2869 2870 // Scale the number of non-VLA elements by the non-VLA element size. 2871 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2872 if (!eltSize.isOne()) 2873 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2874 2875 return size; 2876 } 2877 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2878 auto Alignment = 2879 CGF.getContext() 2880 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2881 E->getTypeOfArgument()->getPointeeType())) 2882 .getQuantity(); 2883 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2884 } 2885 2886 // If this isn't sizeof(vla), the result must be constant; use the constant 2887 // folding logic so we don't have to duplicate it here. 2888 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2889 } 2890 2891 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2892 Expr *Op = E->getSubExpr(); 2893 if (Op->getType()->isAnyComplexType()) { 2894 // If it's an l-value, load through the appropriate subobject l-value. 2895 // Note that we have to ask E because Op might be an l-value that 2896 // this won't work for, e.g. an Obj-C property. 2897 if (E->isGLValue()) 2898 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2899 E->getExprLoc()).getScalarVal(); 2900 2901 // Otherwise, calculate and project. 2902 return CGF.EmitComplexExpr(Op, false, true).first; 2903 } 2904 2905 return Visit(Op); 2906 } 2907 2908 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2909 Expr *Op = E->getSubExpr(); 2910 if (Op->getType()->isAnyComplexType()) { 2911 // If it's an l-value, load through the appropriate subobject l-value. 2912 // Note that we have to ask E because Op might be an l-value that 2913 // this won't work for, e.g. an Obj-C property. 2914 if (Op->isGLValue()) 2915 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2916 E->getExprLoc()).getScalarVal(); 2917 2918 // Otherwise, calculate and project. 2919 return CGF.EmitComplexExpr(Op, true, false).second; 2920 } 2921 2922 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2923 // effects are evaluated, but not the actual value. 2924 if (Op->isGLValue()) 2925 CGF.EmitLValue(Op); 2926 else 2927 CGF.EmitScalarExpr(Op, true); 2928 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2929 } 2930 2931 //===----------------------------------------------------------------------===// 2932 // Binary Operators 2933 //===----------------------------------------------------------------------===// 2934 2935 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2936 TestAndClearIgnoreResultAssign(); 2937 BinOpInfo Result; 2938 Result.LHS = Visit(E->getLHS()); 2939 Result.RHS = Visit(E->getRHS()); 2940 Result.Ty = E->getType(); 2941 Result.Opcode = E->getOpcode(); 2942 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2943 Result.E = E; 2944 return Result; 2945 } 2946 2947 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2948 const CompoundAssignOperator *E, 2949 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2950 Value *&Result) { 2951 QualType LHSTy = E->getLHS()->getType(); 2952 BinOpInfo OpInfo; 2953 2954 if (E->getComputationResultType()->isAnyComplexType()) 2955 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2956 2957 // Emit the RHS first. __block variables need to have the rhs evaluated 2958 // first, plus this should improve codegen a little. 2959 OpInfo.RHS = Visit(E->getRHS()); 2960 OpInfo.Ty = E->getComputationResultType(); 2961 OpInfo.Opcode = E->getOpcode(); 2962 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2963 OpInfo.E = E; 2964 // Load/convert the LHS. 2965 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2966 2967 llvm::PHINode *atomicPHI = nullptr; 2968 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2969 QualType type = atomicTy->getValueType(); 2970 if (!type->isBooleanType() && type->isIntegerType() && 2971 !(type->isUnsignedIntegerType() && 2972 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2973 CGF.getLangOpts().getSignedOverflowBehavior() != 2974 LangOptions::SOB_Trapping) { 2975 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 2976 llvm::Instruction::BinaryOps Op; 2977 switch (OpInfo.Opcode) { 2978 // We don't have atomicrmw operands for *, %, /, <<, >> 2979 case BO_MulAssign: case BO_DivAssign: 2980 case BO_RemAssign: 2981 case BO_ShlAssign: 2982 case BO_ShrAssign: 2983 break; 2984 case BO_AddAssign: 2985 AtomicOp = llvm::AtomicRMWInst::Add; 2986 Op = llvm::Instruction::Add; 2987 break; 2988 case BO_SubAssign: 2989 AtomicOp = llvm::AtomicRMWInst::Sub; 2990 Op = llvm::Instruction::Sub; 2991 break; 2992 case BO_AndAssign: 2993 AtomicOp = llvm::AtomicRMWInst::And; 2994 Op = llvm::Instruction::And; 2995 break; 2996 case BO_XorAssign: 2997 AtomicOp = llvm::AtomicRMWInst::Xor; 2998 Op = llvm::Instruction::Xor; 2999 break; 3000 case BO_OrAssign: 3001 AtomicOp = llvm::AtomicRMWInst::Or; 3002 Op = llvm::Instruction::Or; 3003 break; 3004 default: 3005 llvm_unreachable("Invalid compound assignment type"); 3006 } 3007 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 3008 llvm::Value *Amt = CGF.EmitToMemory( 3009 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 3010 E->getExprLoc()), 3011 LHSTy); 3012 Value *OldVal = Builder.CreateAtomicRMW( 3013 AtomicOp, LHSLV.getPointer(CGF), Amt, 3014 llvm::AtomicOrdering::SequentiallyConsistent); 3015 3016 // Since operation is atomic, the result type is guaranteed to be the 3017 // same as the input in LLVM terms. 3018 Result = Builder.CreateBinOp(Op, OldVal, Amt); 3019 return LHSLV; 3020 } 3021 } 3022 // FIXME: For floating point types, we should be saving and restoring the 3023 // floating point environment in the loop. 3024 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 3025 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 3026 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3027 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 3028 Builder.CreateBr(opBB); 3029 Builder.SetInsertPoint(opBB); 3030 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 3031 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3032 OpInfo.LHS = atomicPHI; 3033 } 3034 else 3035 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3036 3037 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 3038 SourceLocation Loc = E->getExprLoc(); 3039 OpInfo.LHS = 3040 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3041 3042 // Expand the binary operator. 3043 Result = (this->*Func)(OpInfo); 3044 3045 // Convert the result back to the LHS type, 3046 // potentially with Implicit Conversion sanitizer check. 3047 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3048 Loc, ScalarConversionOpts(CGF.SanOpts)); 3049 3050 if (atomicPHI) { 3051 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3052 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3053 auto Pair = CGF.EmitAtomicCompareExchange( 3054 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3055 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3056 llvm::Value *success = Pair.second; 3057 atomicPHI->addIncoming(old, curBlock); 3058 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3059 Builder.SetInsertPoint(contBB); 3060 return LHSLV; 3061 } 3062 3063 // Store the result value into the LHS lvalue. Bit-fields are handled 3064 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3065 // 'An assignment expression has the value of the left operand after the 3066 // assignment...'. 3067 if (LHSLV.isBitField()) 3068 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3069 else 3070 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3071 3072 if (CGF.getLangOpts().OpenMP) 3073 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3074 E->getLHS()); 3075 return LHSLV; 3076 } 3077 3078 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3079 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3080 bool Ignore = TestAndClearIgnoreResultAssign(); 3081 Value *RHS = nullptr; 3082 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3083 3084 // If the result is clearly ignored, return now. 3085 if (Ignore) 3086 return nullptr; 3087 3088 // The result of an assignment in C is the assigned r-value. 3089 if (!CGF.getLangOpts().CPlusPlus) 3090 return RHS; 3091 3092 // If the lvalue is non-volatile, return the computed value of the assignment. 3093 if (!LHS.isVolatileQualified()) 3094 return RHS; 3095 3096 // Otherwise, reload the value. 3097 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3098 } 3099 3100 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3101 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3102 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3103 3104 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3105 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3106 SanitizerKind::IntegerDivideByZero)); 3107 } 3108 3109 const auto *BO = cast<BinaryOperator>(Ops.E); 3110 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3111 Ops.Ty->hasSignedIntegerRepresentation() && 3112 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3113 Ops.mayHaveIntegerOverflow()) { 3114 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3115 3116 llvm::Value *IntMin = 3117 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3118 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 3119 3120 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3121 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3122 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3123 Checks.push_back( 3124 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3125 } 3126 3127 if (Checks.size() > 0) 3128 EmitBinOpCheck(Checks, Ops); 3129 } 3130 3131 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3132 { 3133 CodeGenFunction::SanitizerScope SanScope(&CGF); 3134 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3135 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3136 Ops.Ty->isIntegerType() && 3137 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3138 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3139 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3140 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3141 Ops.Ty->isRealFloatingType() && 3142 Ops.mayHaveFloatDivisionByZero()) { 3143 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3144 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3145 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3146 Ops); 3147 } 3148 } 3149 3150 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3151 llvm::Value *Val; 3152 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3153 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3154 if (CGF.getLangOpts().OpenCL && 3155 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3156 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3157 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3158 // build option allows an application to specify that single precision 3159 // floating-point divide (x/y and 1/x) and sqrt used in the program 3160 // source are correctly rounded. 3161 llvm::Type *ValTy = Val->getType(); 3162 if (ValTy->isFloatTy() || 3163 (isa<llvm::VectorType>(ValTy) && 3164 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3165 CGF.SetFPAccuracy(Val, 2.5); 3166 } 3167 return Val; 3168 } 3169 else if (Ops.isFixedPointOp()) 3170 return EmitFixedPointBinOp(Ops); 3171 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3172 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3173 else 3174 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3175 } 3176 3177 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3178 // Rem in C can't be a floating point type: C99 6.5.5p2. 3179 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3180 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3181 Ops.Ty->isIntegerType() && 3182 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3183 CodeGenFunction::SanitizerScope SanScope(&CGF); 3184 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3185 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3186 } 3187 3188 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3189 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3190 else 3191 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3192 } 3193 3194 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3195 unsigned IID; 3196 unsigned OpID = 0; 3197 SanitizerHandler OverflowKind; 3198 3199 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3200 switch (Ops.Opcode) { 3201 case BO_Add: 3202 case BO_AddAssign: 3203 OpID = 1; 3204 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3205 llvm::Intrinsic::uadd_with_overflow; 3206 OverflowKind = SanitizerHandler::AddOverflow; 3207 break; 3208 case BO_Sub: 3209 case BO_SubAssign: 3210 OpID = 2; 3211 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3212 llvm::Intrinsic::usub_with_overflow; 3213 OverflowKind = SanitizerHandler::SubOverflow; 3214 break; 3215 case BO_Mul: 3216 case BO_MulAssign: 3217 OpID = 3; 3218 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3219 llvm::Intrinsic::umul_with_overflow; 3220 OverflowKind = SanitizerHandler::MulOverflow; 3221 break; 3222 default: 3223 llvm_unreachable("Unsupported operation for overflow detection"); 3224 } 3225 OpID <<= 1; 3226 if (isSigned) 3227 OpID |= 1; 3228 3229 CodeGenFunction::SanitizerScope SanScope(&CGF); 3230 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3231 3232 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3233 3234 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3235 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3236 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3237 3238 // Handle overflow with llvm.trap if no custom handler has been specified. 3239 const std::string *handlerName = 3240 &CGF.getLangOpts().OverflowHandler; 3241 if (handlerName->empty()) { 3242 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3243 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3244 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3245 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3246 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3247 : SanitizerKind::UnsignedIntegerOverflow; 3248 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3249 } else 3250 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); 3251 return result; 3252 } 3253 3254 // Branch in case of overflow. 3255 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3256 llvm::BasicBlock *continueBB = 3257 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3258 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3259 3260 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3261 3262 // If an overflow handler is set, then we want to call it and then use its 3263 // result, if it returns. 3264 Builder.SetInsertPoint(overflowBB); 3265 3266 // Get the overflow handler. 3267 llvm::Type *Int8Ty = CGF.Int8Ty; 3268 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3269 llvm::FunctionType *handlerTy = 3270 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3271 llvm::FunctionCallee handler = 3272 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3273 3274 // Sign extend the args to 64-bit, so that we can use the same handler for 3275 // all types of overflow. 3276 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3277 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3278 3279 // Call the handler with the two arguments, the operation, and the size of 3280 // the result. 3281 llvm::Value *handlerArgs[] = { 3282 lhs, 3283 rhs, 3284 Builder.getInt8(OpID), 3285 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3286 }; 3287 llvm::Value *handlerResult = 3288 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3289 3290 // Truncate the result back to the desired size. 3291 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3292 Builder.CreateBr(continueBB); 3293 3294 Builder.SetInsertPoint(continueBB); 3295 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3296 phi->addIncoming(result, initialBB); 3297 phi->addIncoming(handlerResult, overflowBB); 3298 3299 return phi; 3300 } 3301 3302 /// Emit pointer + index arithmetic. 3303 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3304 const BinOpInfo &op, 3305 bool isSubtraction) { 3306 // Must have binary (not unary) expr here. Unary pointer 3307 // increment/decrement doesn't use this path. 3308 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3309 3310 Value *pointer = op.LHS; 3311 Expr *pointerOperand = expr->getLHS(); 3312 Value *index = op.RHS; 3313 Expr *indexOperand = expr->getRHS(); 3314 3315 // In a subtraction, the LHS is always the pointer. 3316 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3317 std::swap(pointer, index); 3318 std::swap(pointerOperand, indexOperand); 3319 } 3320 3321 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3322 3323 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3324 auto &DL = CGF.CGM.getDataLayout(); 3325 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3326 3327 // Some versions of glibc and gcc use idioms (particularly in their malloc 3328 // routines) that add a pointer-sized integer (known to be a pointer value) 3329 // to a null pointer in order to cast the value back to an integer or as 3330 // part of a pointer alignment algorithm. This is undefined behavior, but 3331 // we'd like to be able to compile programs that use it. 3332 // 3333 // Normally, we'd generate a GEP with a null-pointer base here in response 3334 // to that code, but it's also UB to dereference a pointer created that 3335 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3336 // generate a direct cast of the integer value to a pointer. 3337 // 3338 // The idiom (p = nullptr + N) is not met if any of the following are true: 3339 // 3340 // The operation is subtraction. 3341 // The index is not pointer-sized. 3342 // The pointer type is not byte-sized. 3343 // 3344 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3345 op.Opcode, 3346 expr->getLHS(), 3347 expr->getRHS())) 3348 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3349 3350 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3351 // Zero-extend or sign-extend the pointer value according to 3352 // whether the index is signed or not. 3353 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3354 "idx.ext"); 3355 } 3356 3357 // If this is subtraction, negate the index. 3358 if (isSubtraction) 3359 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3360 3361 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3362 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3363 /*Accessed*/ false); 3364 3365 const PointerType *pointerType 3366 = pointerOperand->getType()->getAs<PointerType>(); 3367 if (!pointerType) { 3368 QualType objectType = pointerOperand->getType() 3369 ->castAs<ObjCObjectPointerType>() 3370 ->getPointeeType(); 3371 llvm::Value *objectSize 3372 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3373 3374 index = CGF.Builder.CreateMul(index, objectSize); 3375 3376 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3377 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3378 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3379 } 3380 3381 QualType elementType = pointerType->getPointeeType(); 3382 if (const VariableArrayType *vla 3383 = CGF.getContext().getAsVariableArrayType(elementType)) { 3384 // The element count here is the total number of non-VLA elements. 3385 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3386 3387 // Effectively, the multiply by the VLA size is part of the GEP. 3388 // GEP indexes are signed, and scaling an index isn't permitted to 3389 // signed-overflow, so we use the same semantics for our explicit 3390 // multiply. We suppress this if overflow is not undefined behavior. 3391 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3392 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3393 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3394 } else { 3395 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3396 pointer = 3397 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3398 op.E->getExprLoc(), "add.ptr"); 3399 } 3400 return pointer; 3401 } 3402 3403 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3404 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3405 // future proof. 3406 if (elementType->isVoidType() || elementType->isFunctionType()) { 3407 Value *result = CGF.EmitCastToVoidPtr(pointer); 3408 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3409 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3410 } 3411 3412 if (CGF.getLangOpts().isSignedOverflowDefined()) 3413 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3414 3415 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3416 op.E->getExprLoc(), "add.ptr"); 3417 } 3418 3419 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3420 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3421 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3422 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3423 // efficient operations. 3424 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3425 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3426 bool negMul, bool negAdd) { 3427 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3428 3429 Value *MulOp0 = MulOp->getOperand(0); 3430 Value *MulOp1 = MulOp->getOperand(1); 3431 if (negMul) 3432 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3433 if (negAdd) 3434 Addend = Builder.CreateFNeg(Addend, "neg"); 3435 3436 Value *FMulAdd = nullptr; 3437 if (Builder.getIsFPConstrained()) { 3438 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3439 "Only constrained operation should be created when Builder is in FP " 3440 "constrained mode"); 3441 FMulAdd = Builder.CreateConstrainedFPCall( 3442 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3443 Addend->getType()), 3444 {MulOp0, MulOp1, Addend}); 3445 } else { 3446 FMulAdd = Builder.CreateCall( 3447 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3448 {MulOp0, MulOp1, Addend}); 3449 } 3450 MulOp->eraseFromParent(); 3451 3452 return FMulAdd; 3453 } 3454 3455 // Check whether it would be legal to emit an fmuladd intrinsic call to 3456 // represent op and if so, build the fmuladd. 3457 // 3458 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3459 // Does NOT check the type of the operation - it's assumed that this function 3460 // will be called from contexts where it's known that the type is contractable. 3461 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3462 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3463 bool isSub=false) { 3464 3465 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3466 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3467 "Only fadd/fsub can be the root of an fmuladd."); 3468 3469 // Check whether this op is marked as fusable. 3470 if (!op.FPFeatures.allowFPContractWithinStatement()) 3471 return nullptr; 3472 3473 // We have a potentially fusable op. Look for a mul on one of the operands. 3474 // Also, make sure that the mul result isn't used directly. In that case, 3475 // there's no point creating a muladd operation. 3476 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3477 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3478 LHSBinOp->use_empty()) 3479 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3480 } 3481 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3482 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3483 RHSBinOp->use_empty()) 3484 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3485 } 3486 3487 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3488 if (LHSBinOp->getIntrinsicID() == 3489 llvm::Intrinsic::experimental_constrained_fmul && 3490 LHSBinOp->use_empty()) 3491 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3492 } 3493 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3494 if (RHSBinOp->getIntrinsicID() == 3495 llvm::Intrinsic::experimental_constrained_fmul && 3496 RHSBinOp->use_empty()) 3497 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3498 } 3499 3500 return nullptr; 3501 } 3502 3503 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3504 if (op.LHS->getType()->isPointerTy() || 3505 op.RHS->getType()->isPointerTy()) 3506 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3507 3508 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3509 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3510 case LangOptions::SOB_Defined: 3511 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3512 case LangOptions::SOB_Undefined: 3513 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3514 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3515 LLVM_FALLTHROUGH; 3516 case LangOptions::SOB_Trapping: 3517 if (CanElideOverflowCheck(CGF.getContext(), op)) 3518 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3519 return EmitOverflowCheckedBinOp(op); 3520 } 3521 } 3522 3523 if (op.Ty->isConstantMatrixType()) { 3524 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3525 return MB.CreateAdd(op.LHS, op.RHS); 3526 } 3527 3528 if (op.Ty->isUnsignedIntegerType() && 3529 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3530 !CanElideOverflowCheck(CGF.getContext(), op)) 3531 return EmitOverflowCheckedBinOp(op); 3532 3533 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3534 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3535 // Try to form an fmuladd. 3536 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3537 return FMulAdd; 3538 3539 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3540 } 3541 3542 if (op.isFixedPointOp()) 3543 return EmitFixedPointBinOp(op); 3544 3545 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3546 } 3547 3548 /// The resulting value must be calculated with exact precision, so the operands 3549 /// may not be the same type. 3550 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3551 using llvm::APSInt; 3552 using llvm::ConstantInt; 3553 3554 // This is either a binary operation where at least one of the operands is 3555 // a fixed-point type, or a unary operation where the operand is a fixed-point 3556 // type. The result type of a binary operation is determined by 3557 // Sema::handleFixedPointConversions(). 3558 QualType ResultTy = op.Ty; 3559 QualType LHSTy, RHSTy; 3560 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3561 RHSTy = BinOp->getRHS()->getType(); 3562 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3563 // For compound assignment, the effective type of the LHS at this point 3564 // is the computation LHS type, not the actual LHS type, and the final 3565 // result type is not the type of the expression but rather the 3566 // computation result type. 3567 LHSTy = CAO->getComputationLHSType(); 3568 ResultTy = CAO->getComputationResultType(); 3569 } else 3570 LHSTy = BinOp->getLHS()->getType(); 3571 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3572 LHSTy = UnOp->getSubExpr()->getType(); 3573 RHSTy = UnOp->getSubExpr()->getType(); 3574 } 3575 ASTContext &Ctx = CGF.getContext(); 3576 Value *LHS = op.LHS; 3577 Value *RHS = op.RHS; 3578 3579 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3580 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3581 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3582 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3583 3584 // Perform the actual operation. 3585 Value *Result; 3586 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 3587 switch (op.Opcode) { 3588 case BO_AddAssign: 3589 case BO_Add: 3590 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); 3591 break; 3592 case BO_SubAssign: 3593 case BO_Sub: 3594 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); 3595 break; 3596 case BO_MulAssign: 3597 case BO_Mul: 3598 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); 3599 break; 3600 case BO_DivAssign: 3601 case BO_Div: 3602 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); 3603 break; 3604 case BO_ShlAssign: 3605 case BO_Shl: 3606 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); 3607 break; 3608 case BO_ShrAssign: 3609 case BO_Shr: 3610 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); 3611 break; 3612 case BO_LT: 3613 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3614 case BO_GT: 3615 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3616 case BO_LE: 3617 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3618 case BO_GE: 3619 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3620 case BO_EQ: 3621 // For equality operations, we assume any padding bits on unsigned types are 3622 // zero'd out. They could be overwritten through non-saturating operations 3623 // that cause overflow, but this leads to undefined behavior. 3624 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); 3625 case BO_NE: 3626 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3627 case BO_Cmp: 3628 case BO_LAnd: 3629 case BO_LOr: 3630 llvm_unreachable("Found unimplemented fixed point binary operation"); 3631 case BO_PtrMemD: 3632 case BO_PtrMemI: 3633 case BO_Rem: 3634 case BO_Xor: 3635 case BO_And: 3636 case BO_Or: 3637 case BO_Assign: 3638 case BO_RemAssign: 3639 case BO_AndAssign: 3640 case BO_XorAssign: 3641 case BO_OrAssign: 3642 case BO_Comma: 3643 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3644 } 3645 3646 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || 3647 BinaryOperator::isShiftAssignOp(op.Opcode); 3648 // Convert to the result type. 3649 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema 3650 : CommonFixedSema, 3651 ResultFixedSema); 3652 } 3653 3654 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3655 // The LHS is always a pointer if either side is. 3656 if (!op.LHS->getType()->isPointerTy()) { 3657 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3658 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3659 case LangOptions::SOB_Defined: 3660 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3661 case LangOptions::SOB_Undefined: 3662 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3663 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3664 LLVM_FALLTHROUGH; 3665 case LangOptions::SOB_Trapping: 3666 if (CanElideOverflowCheck(CGF.getContext(), op)) 3667 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3668 return EmitOverflowCheckedBinOp(op); 3669 } 3670 } 3671 3672 if (op.Ty->isConstantMatrixType()) { 3673 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3674 return MB.CreateSub(op.LHS, op.RHS); 3675 } 3676 3677 if (op.Ty->isUnsignedIntegerType() && 3678 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3679 !CanElideOverflowCheck(CGF.getContext(), op)) 3680 return EmitOverflowCheckedBinOp(op); 3681 3682 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3683 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3684 // Try to form an fmuladd. 3685 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3686 return FMulAdd; 3687 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3688 } 3689 3690 if (op.isFixedPointOp()) 3691 return EmitFixedPointBinOp(op); 3692 3693 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3694 } 3695 3696 // If the RHS is not a pointer, then we have normal pointer 3697 // arithmetic. 3698 if (!op.RHS->getType()->isPointerTy()) 3699 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3700 3701 // Otherwise, this is a pointer subtraction. 3702 3703 // Do the raw subtraction part. 3704 llvm::Value *LHS 3705 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3706 llvm::Value *RHS 3707 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3708 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3709 3710 // Okay, figure out the element size. 3711 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3712 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3713 3714 llvm::Value *divisor = nullptr; 3715 3716 // For a variable-length array, this is going to be non-constant. 3717 if (const VariableArrayType *vla 3718 = CGF.getContext().getAsVariableArrayType(elementType)) { 3719 auto VlaSize = CGF.getVLASize(vla); 3720 elementType = VlaSize.Type; 3721 divisor = VlaSize.NumElts; 3722 3723 // Scale the number of non-VLA elements by the non-VLA element size. 3724 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3725 if (!eltSize.isOne()) 3726 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3727 3728 // For everything elese, we can just compute it, safe in the 3729 // assumption that Sema won't let anything through that we can't 3730 // safely compute the size of. 3731 } else { 3732 CharUnits elementSize; 3733 // Handle GCC extension for pointer arithmetic on void* and 3734 // function pointer types. 3735 if (elementType->isVoidType() || elementType->isFunctionType()) 3736 elementSize = CharUnits::One(); 3737 else 3738 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3739 3740 // Don't even emit the divide for element size of 1. 3741 if (elementSize.isOne()) 3742 return diffInChars; 3743 3744 divisor = CGF.CGM.getSize(elementSize); 3745 } 3746 3747 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3748 // pointer difference in C is only defined in the case where both operands 3749 // are pointing to elements of an array. 3750 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3751 } 3752 3753 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3754 llvm::IntegerType *Ty; 3755 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3756 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3757 else 3758 Ty = cast<llvm::IntegerType>(LHS->getType()); 3759 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3760 } 3761 3762 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 3763 const Twine &Name) { 3764 llvm::IntegerType *Ty; 3765 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3766 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3767 else 3768 Ty = cast<llvm::IntegerType>(LHS->getType()); 3769 3770 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 3771 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 3772 3773 return Builder.CreateURem( 3774 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 3775 } 3776 3777 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3778 // TODO: This misses out on the sanitizer check below. 3779 if (Ops.isFixedPointOp()) 3780 return EmitFixedPointBinOp(Ops); 3781 3782 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3783 // RHS to the same size as the LHS. 3784 Value *RHS = Ops.RHS; 3785 if (Ops.LHS->getType() != RHS->getType()) 3786 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3787 3788 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3789 Ops.Ty->hasSignedIntegerRepresentation() && 3790 !CGF.getLangOpts().isSignedOverflowDefined() && 3791 !CGF.getLangOpts().CPlusPlus20; 3792 bool SanitizeUnsignedBase = 3793 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && 3794 Ops.Ty->hasUnsignedIntegerRepresentation(); 3795 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; 3796 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3797 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3798 if (CGF.getLangOpts().OpenCL) 3799 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 3800 else if ((SanitizeBase || SanitizeExponent) && 3801 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3802 CodeGenFunction::SanitizerScope SanScope(&CGF); 3803 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3804 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3805 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3806 3807 if (SanitizeExponent) { 3808 Checks.push_back( 3809 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3810 } 3811 3812 if (SanitizeBase) { 3813 // Check whether we are shifting any non-zero bits off the top of the 3814 // integer. We only emit this check if exponent is valid - otherwise 3815 // instructions below will have undefined behavior themselves. 3816 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3817 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3818 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3819 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3820 llvm::Value *PromotedWidthMinusOne = 3821 (RHS == Ops.RHS) ? WidthMinusOne 3822 : GetWidthMinusOneValue(Ops.LHS, RHS); 3823 CGF.EmitBlock(CheckShiftBase); 3824 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3825 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3826 /*NUW*/ true, /*NSW*/ true), 3827 "shl.check"); 3828 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { 3829 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3830 // Under C++11's rules, shifting a 1 bit into the sign bit is 3831 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3832 // define signed left shifts, so we use the C99 and C++11 rules there). 3833 // Unsigned shifts can always shift into the top bit. 3834 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3835 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3836 } 3837 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3838 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3839 CGF.EmitBlock(Cont); 3840 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3841 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3842 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3843 Checks.push_back(std::make_pair( 3844 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase 3845 : SanitizerKind::UnsignedShiftBase)); 3846 } 3847 3848 assert(!Checks.empty()); 3849 EmitBinOpCheck(Checks, Ops); 3850 } 3851 3852 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3853 } 3854 3855 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3856 // TODO: This misses out on the sanitizer check below. 3857 if (Ops.isFixedPointOp()) 3858 return EmitFixedPointBinOp(Ops); 3859 3860 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3861 // RHS to the same size as the LHS. 3862 Value *RHS = Ops.RHS; 3863 if (Ops.LHS->getType() != RHS->getType()) 3864 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3865 3866 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3867 if (CGF.getLangOpts().OpenCL) 3868 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 3869 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3870 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3871 CodeGenFunction::SanitizerScope SanScope(&CGF); 3872 llvm::Value *Valid = 3873 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3874 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3875 } 3876 3877 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3878 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3879 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3880 } 3881 3882 enum IntrinsicType { VCMPEQ, VCMPGT }; 3883 // return corresponding comparison intrinsic for given vector type 3884 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3885 BuiltinType::Kind ElemKind) { 3886 switch (ElemKind) { 3887 default: llvm_unreachable("unexpected element type"); 3888 case BuiltinType::Char_U: 3889 case BuiltinType::UChar: 3890 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3891 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3892 case BuiltinType::Char_S: 3893 case BuiltinType::SChar: 3894 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3895 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3896 case BuiltinType::UShort: 3897 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3898 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3899 case BuiltinType::Short: 3900 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3901 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3902 case BuiltinType::UInt: 3903 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3904 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3905 case BuiltinType::Int: 3906 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3907 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3908 case BuiltinType::ULong: 3909 case BuiltinType::ULongLong: 3910 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3911 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3912 case BuiltinType::Long: 3913 case BuiltinType::LongLong: 3914 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3915 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3916 case BuiltinType::Float: 3917 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3918 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3919 case BuiltinType::Double: 3920 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3921 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3922 case BuiltinType::UInt128: 3923 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 3924 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; 3925 case BuiltinType::Int128: 3926 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 3927 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; 3928 } 3929 } 3930 3931 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3932 llvm::CmpInst::Predicate UICmpOpc, 3933 llvm::CmpInst::Predicate SICmpOpc, 3934 llvm::CmpInst::Predicate FCmpOpc, 3935 bool IsSignaling) { 3936 TestAndClearIgnoreResultAssign(); 3937 Value *Result; 3938 QualType LHSTy = E->getLHS()->getType(); 3939 QualType RHSTy = E->getRHS()->getType(); 3940 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3941 assert(E->getOpcode() == BO_EQ || 3942 E->getOpcode() == BO_NE); 3943 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3944 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3945 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3946 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3947 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3948 BinOpInfo BOInfo = EmitBinOps(E); 3949 Value *LHS = BOInfo.LHS; 3950 Value *RHS = BOInfo.RHS; 3951 3952 // If AltiVec, the comparison results in a numeric type, so we use 3953 // intrinsics comparing vectors and giving 0 or 1 as a result 3954 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3955 // constants for mapping CR6 register bits to predicate result 3956 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3957 3958 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3959 3960 // in several cases vector arguments order will be reversed 3961 Value *FirstVecArg = LHS, 3962 *SecondVecArg = RHS; 3963 3964 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3965 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 3966 3967 switch(E->getOpcode()) { 3968 default: llvm_unreachable("is not a comparison operation"); 3969 case BO_EQ: 3970 CR6 = CR6_LT; 3971 ID = GetIntrinsic(VCMPEQ, ElementKind); 3972 break; 3973 case BO_NE: 3974 CR6 = CR6_EQ; 3975 ID = GetIntrinsic(VCMPEQ, ElementKind); 3976 break; 3977 case BO_LT: 3978 CR6 = CR6_LT; 3979 ID = GetIntrinsic(VCMPGT, ElementKind); 3980 std::swap(FirstVecArg, SecondVecArg); 3981 break; 3982 case BO_GT: 3983 CR6 = CR6_LT; 3984 ID = GetIntrinsic(VCMPGT, ElementKind); 3985 break; 3986 case BO_LE: 3987 if (ElementKind == BuiltinType::Float) { 3988 CR6 = CR6_LT; 3989 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3990 std::swap(FirstVecArg, SecondVecArg); 3991 } 3992 else { 3993 CR6 = CR6_EQ; 3994 ID = GetIntrinsic(VCMPGT, ElementKind); 3995 } 3996 break; 3997 case BO_GE: 3998 if (ElementKind == BuiltinType::Float) { 3999 CR6 = CR6_LT; 4000 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4001 } 4002 else { 4003 CR6 = CR6_EQ; 4004 ID = GetIntrinsic(VCMPGT, ElementKind); 4005 std::swap(FirstVecArg, SecondVecArg); 4006 } 4007 break; 4008 } 4009 4010 Value *CR6Param = Builder.getInt32(CR6); 4011 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 4012 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 4013 4014 // The result type of intrinsic may not be same as E->getType(). 4015 // If E->getType() is not BoolTy, EmitScalarConversion will do the 4016 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 4017 // do nothing, if ResultTy is not i1 at the same time, it will cause 4018 // crash later. 4019 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 4020 if (ResultTy->getBitWidth() > 1 && 4021 E->getType() == CGF.getContext().BoolTy) 4022 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 4023 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4024 E->getExprLoc()); 4025 } 4026 4027 if (BOInfo.isFixedPointOp()) { 4028 Result = EmitFixedPointBinOp(BOInfo); 4029 } else if (LHS->getType()->isFPOrFPVectorTy()) { 4030 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 4031 if (!IsSignaling) 4032 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 4033 else 4034 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 4035 } else if (LHSTy->hasSignedIntegerRepresentation()) { 4036 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4037 } else { 4038 // Unsigned integers and pointers. 4039 4040 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4041 !isa<llvm::ConstantPointerNull>(LHS) && 4042 !isa<llvm::ConstantPointerNull>(RHS)) { 4043 4044 // Dynamic information is required to be stripped for comparisons, 4045 // because it could leak the dynamic information. Based on comparisons 4046 // of pointers to dynamic objects, the optimizer can replace one pointer 4047 // with another, which might be incorrect in presence of invariant 4048 // groups. Comparison with null is safe because null does not carry any 4049 // dynamic information. 4050 if (LHSTy.mayBeDynamicClass()) 4051 LHS = Builder.CreateStripInvariantGroup(LHS); 4052 if (RHSTy.mayBeDynamicClass()) 4053 RHS = Builder.CreateStripInvariantGroup(RHS); 4054 } 4055 4056 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4057 } 4058 4059 // If this is a vector comparison, sign extend the result to the appropriate 4060 // vector integer type and return it (don't convert to bool). 4061 if (LHSTy->isVectorType()) 4062 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4063 4064 } else { 4065 // Complex Comparison: can only be an equality comparison. 4066 CodeGenFunction::ComplexPairTy LHS, RHS; 4067 QualType CETy; 4068 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4069 LHS = CGF.EmitComplexExpr(E->getLHS()); 4070 CETy = CTy->getElementType(); 4071 } else { 4072 LHS.first = Visit(E->getLHS()); 4073 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4074 CETy = LHSTy; 4075 } 4076 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4077 RHS = CGF.EmitComplexExpr(E->getRHS()); 4078 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4079 CTy->getElementType()) && 4080 "The element types must always match."); 4081 (void)CTy; 4082 } else { 4083 RHS.first = Visit(E->getRHS()); 4084 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4085 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4086 "The element types must always match."); 4087 } 4088 4089 Value *ResultR, *ResultI; 4090 if (CETy->isRealFloatingType()) { 4091 // As complex comparisons can only be equality comparisons, they 4092 // are never signaling comparisons. 4093 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4094 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4095 } else { 4096 // Complex comparisons can only be equality comparisons. As such, signed 4097 // and unsigned opcodes are the same. 4098 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4099 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4100 } 4101 4102 if (E->getOpcode() == BO_EQ) { 4103 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4104 } else { 4105 assert(E->getOpcode() == BO_NE && 4106 "Complex comparison other than == or != ?"); 4107 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4108 } 4109 } 4110 4111 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4112 E->getExprLoc()); 4113 } 4114 4115 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4116 bool Ignore = TestAndClearIgnoreResultAssign(); 4117 4118 Value *RHS; 4119 LValue LHS; 4120 4121 switch (E->getLHS()->getType().getObjCLifetime()) { 4122 case Qualifiers::OCL_Strong: 4123 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4124 break; 4125 4126 case Qualifiers::OCL_Autoreleasing: 4127 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4128 break; 4129 4130 case Qualifiers::OCL_ExplicitNone: 4131 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4132 break; 4133 4134 case Qualifiers::OCL_Weak: 4135 RHS = Visit(E->getRHS()); 4136 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4137 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4138 break; 4139 4140 case Qualifiers::OCL_None: 4141 // __block variables need to have the rhs evaluated first, plus 4142 // this should improve codegen just a little. 4143 RHS = Visit(E->getRHS()); 4144 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4145 4146 // Store the value into the LHS. Bit-fields are handled specially 4147 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4148 // 'An assignment expression has the value of the left operand after 4149 // the assignment...'. 4150 if (LHS.isBitField()) { 4151 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4152 } else { 4153 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4154 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4155 } 4156 } 4157 4158 // If the result is clearly ignored, return now. 4159 if (Ignore) 4160 return nullptr; 4161 4162 // The result of an assignment in C is the assigned r-value. 4163 if (!CGF.getLangOpts().CPlusPlus) 4164 return RHS; 4165 4166 // If the lvalue is non-volatile, return the computed value of the assignment. 4167 if (!LHS.isVolatileQualified()) 4168 return RHS; 4169 4170 // Otherwise, reload the value. 4171 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4172 } 4173 4174 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4175 // Perform vector logical and on comparisons with zero vectors. 4176 if (E->getType()->isVectorType()) { 4177 CGF.incrementProfileCounter(E); 4178 4179 Value *LHS = Visit(E->getLHS()); 4180 Value *RHS = Visit(E->getRHS()); 4181 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4182 if (LHS->getType()->isFPOrFPVectorTy()) { 4183 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4184 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4185 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4186 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4187 } else { 4188 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4189 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4190 } 4191 Value *And = Builder.CreateAnd(LHS, RHS); 4192 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4193 } 4194 4195 llvm::Type *ResTy = ConvertType(E->getType()); 4196 4197 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4198 // If we have 1 && X, just emit X without inserting the control flow. 4199 bool LHSCondVal; 4200 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4201 if (LHSCondVal) { // If we have 1 && X, just emit X. 4202 CGF.incrementProfileCounter(E); 4203 4204 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4205 // ZExt result to int or bool. 4206 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4207 } 4208 4209 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4210 if (!CGF.ContainsLabel(E->getRHS())) 4211 return llvm::Constant::getNullValue(ResTy); 4212 } 4213 4214 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4215 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4216 4217 CodeGenFunction::ConditionalEvaluation eval(CGF); 4218 4219 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4220 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4221 CGF.getProfileCount(E->getRHS())); 4222 4223 // Any edges into the ContBlock are now from an (indeterminate number of) 4224 // edges from this first condition. All of these values will be false. Start 4225 // setting up the PHI node in the Cont Block for this. 4226 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4227 "", ContBlock); 4228 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4229 PI != PE; ++PI) 4230 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4231 4232 eval.begin(CGF); 4233 CGF.EmitBlock(RHSBlock); 4234 CGF.incrementProfileCounter(E); 4235 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4236 eval.end(CGF); 4237 4238 // Reaquire the RHS block, as there may be subblocks inserted. 4239 RHSBlock = Builder.GetInsertBlock(); 4240 4241 // Emit an unconditional branch from this block to ContBlock. 4242 { 4243 // There is no need to emit line number for unconditional branch. 4244 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4245 CGF.EmitBlock(ContBlock); 4246 } 4247 // Insert an entry into the phi node for the edge with the value of RHSCond. 4248 PN->addIncoming(RHSCond, RHSBlock); 4249 4250 // Artificial location to preserve the scope information 4251 { 4252 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4253 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4254 } 4255 4256 // ZExt result to int. 4257 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4258 } 4259 4260 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4261 // Perform vector logical or on comparisons with zero vectors. 4262 if (E->getType()->isVectorType()) { 4263 CGF.incrementProfileCounter(E); 4264 4265 Value *LHS = Visit(E->getLHS()); 4266 Value *RHS = Visit(E->getRHS()); 4267 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4268 if (LHS->getType()->isFPOrFPVectorTy()) { 4269 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4270 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4271 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4272 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4273 } else { 4274 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4275 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4276 } 4277 Value *Or = Builder.CreateOr(LHS, RHS); 4278 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4279 } 4280 4281 llvm::Type *ResTy = ConvertType(E->getType()); 4282 4283 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4284 // If we have 0 || X, just emit X without inserting the control flow. 4285 bool LHSCondVal; 4286 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4287 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4288 CGF.incrementProfileCounter(E); 4289 4290 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4291 // ZExt result to int or bool. 4292 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4293 } 4294 4295 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4296 if (!CGF.ContainsLabel(E->getRHS())) 4297 return llvm::ConstantInt::get(ResTy, 1); 4298 } 4299 4300 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4301 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4302 4303 CodeGenFunction::ConditionalEvaluation eval(CGF); 4304 4305 // Branch on the LHS first. If it is true, go to the success (cont) block. 4306 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4307 CGF.getCurrentProfileCount() - 4308 CGF.getProfileCount(E->getRHS())); 4309 4310 // Any edges into the ContBlock are now from an (indeterminate number of) 4311 // edges from this first condition. All of these values will be true. Start 4312 // setting up the PHI node in the Cont Block for this. 4313 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4314 "", ContBlock); 4315 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4316 PI != PE; ++PI) 4317 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4318 4319 eval.begin(CGF); 4320 4321 // Emit the RHS condition as a bool value. 4322 CGF.EmitBlock(RHSBlock); 4323 CGF.incrementProfileCounter(E); 4324 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4325 4326 eval.end(CGF); 4327 4328 // Reaquire the RHS block, as there may be subblocks inserted. 4329 RHSBlock = Builder.GetInsertBlock(); 4330 4331 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4332 // into the phi node for the edge with the value of RHSCond. 4333 CGF.EmitBlock(ContBlock); 4334 PN->addIncoming(RHSCond, RHSBlock); 4335 4336 // ZExt result to int. 4337 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4338 } 4339 4340 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4341 CGF.EmitIgnoredExpr(E->getLHS()); 4342 CGF.EnsureInsertPoint(); 4343 return Visit(E->getRHS()); 4344 } 4345 4346 //===----------------------------------------------------------------------===// 4347 // Other Operators 4348 //===----------------------------------------------------------------------===// 4349 4350 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4351 /// expression is cheap enough and side-effect-free enough to evaluate 4352 /// unconditionally instead of conditionally. This is used to convert control 4353 /// flow into selects in some cases. 4354 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4355 CodeGenFunction &CGF) { 4356 // Anything that is an integer or floating point constant is fine. 4357 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4358 4359 // Even non-volatile automatic variables can't be evaluated unconditionally. 4360 // Referencing a thread_local may cause non-trivial initialization work to 4361 // occur. If we're inside a lambda and one of the variables is from the scope 4362 // outside the lambda, that function may have returned already. Reading its 4363 // locals is a bad idea. Also, these reads may introduce races there didn't 4364 // exist in the source-level program. 4365 } 4366 4367 4368 Value *ScalarExprEmitter:: 4369 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4370 TestAndClearIgnoreResultAssign(); 4371 4372 // Bind the common expression if necessary. 4373 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4374 4375 Expr *condExpr = E->getCond(); 4376 Expr *lhsExpr = E->getTrueExpr(); 4377 Expr *rhsExpr = E->getFalseExpr(); 4378 4379 // If the condition constant folds and can be elided, try to avoid emitting 4380 // the condition and the dead arm. 4381 bool CondExprBool; 4382 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4383 Expr *live = lhsExpr, *dead = rhsExpr; 4384 if (!CondExprBool) std::swap(live, dead); 4385 4386 // If the dead side doesn't have labels we need, just emit the Live part. 4387 if (!CGF.ContainsLabel(dead)) { 4388 if (CondExprBool) 4389 CGF.incrementProfileCounter(E); 4390 Value *Result = Visit(live); 4391 4392 // If the live part is a throw expression, it acts like it has a void 4393 // type, so evaluating it returns a null Value*. However, a conditional 4394 // with non-void type must return a non-null Value*. 4395 if (!Result && !E->getType()->isVoidType()) 4396 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4397 4398 return Result; 4399 } 4400 } 4401 4402 // OpenCL: If the condition is a vector, we can treat this condition like 4403 // the select function. 4404 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4405 condExpr->getType()->isExtVectorType()) { 4406 CGF.incrementProfileCounter(E); 4407 4408 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4409 llvm::Value *LHS = Visit(lhsExpr); 4410 llvm::Value *RHS = Visit(rhsExpr); 4411 4412 llvm::Type *condType = ConvertType(condExpr->getType()); 4413 auto *vecTy = cast<llvm::FixedVectorType>(condType); 4414 4415 unsigned numElem = vecTy->getNumElements(); 4416 llvm::Type *elemType = vecTy->getElementType(); 4417 4418 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4419 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4420 llvm::Value *tmp = Builder.CreateSExt( 4421 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4422 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4423 4424 // Cast float to int to perform ANDs if necessary. 4425 llvm::Value *RHSTmp = RHS; 4426 llvm::Value *LHSTmp = LHS; 4427 bool wasCast = false; 4428 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4429 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4430 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4431 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4432 wasCast = true; 4433 } 4434 4435 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4436 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4437 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4438 if (wasCast) 4439 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4440 4441 return tmp5; 4442 } 4443 4444 if (condExpr->getType()->isVectorType()) { 4445 CGF.incrementProfileCounter(E); 4446 4447 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4448 llvm::Value *LHS = Visit(lhsExpr); 4449 llvm::Value *RHS = Visit(rhsExpr); 4450 4451 llvm::Type *CondType = ConvertType(condExpr->getType()); 4452 auto *VecTy = cast<llvm::VectorType>(CondType); 4453 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4454 4455 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4456 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4457 } 4458 4459 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4460 // select instead of as control flow. We can only do this if it is cheap and 4461 // safe to evaluate the LHS and RHS unconditionally. 4462 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4463 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4464 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4465 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4466 4467 CGF.incrementProfileCounter(E, StepV); 4468 4469 llvm::Value *LHS = Visit(lhsExpr); 4470 llvm::Value *RHS = Visit(rhsExpr); 4471 if (!LHS) { 4472 // If the conditional has void type, make sure we return a null Value*. 4473 assert(!RHS && "LHS and RHS types must match"); 4474 return nullptr; 4475 } 4476 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4477 } 4478 4479 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4480 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4481 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4482 4483 CodeGenFunction::ConditionalEvaluation eval(CGF); 4484 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4485 CGF.getProfileCount(lhsExpr)); 4486 4487 CGF.EmitBlock(LHSBlock); 4488 CGF.incrementProfileCounter(E); 4489 eval.begin(CGF); 4490 Value *LHS = Visit(lhsExpr); 4491 eval.end(CGF); 4492 4493 LHSBlock = Builder.GetInsertBlock(); 4494 Builder.CreateBr(ContBlock); 4495 4496 CGF.EmitBlock(RHSBlock); 4497 eval.begin(CGF); 4498 Value *RHS = Visit(rhsExpr); 4499 eval.end(CGF); 4500 4501 RHSBlock = Builder.GetInsertBlock(); 4502 CGF.EmitBlock(ContBlock); 4503 4504 // If the LHS or RHS is a throw expression, it will be legitimately null. 4505 if (!LHS) 4506 return RHS; 4507 if (!RHS) 4508 return LHS; 4509 4510 // Create a PHI node for the real part. 4511 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4512 PN->addIncoming(LHS, LHSBlock); 4513 PN->addIncoming(RHS, RHSBlock); 4514 return PN; 4515 } 4516 4517 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4518 return Visit(E->getChosenSubExpr()); 4519 } 4520 4521 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4522 QualType Ty = VE->getType(); 4523 4524 if (Ty->isVariablyModifiedType()) 4525 CGF.EmitVariablyModifiedType(Ty); 4526 4527 Address ArgValue = Address::invalid(); 4528 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4529 4530 llvm::Type *ArgTy = ConvertType(VE->getType()); 4531 4532 // If EmitVAArg fails, emit an error. 4533 if (!ArgPtr.isValid()) { 4534 CGF.ErrorUnsupported(VE, "va_arg expression"); 4535 return llvm::UndefValue::get(ArgTy); 4536 } 4537 4538 // FIXME Volatility. 4539 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4540 4541 // If EmitVAArg promoted the type, we must truncate it. 4542 if (ArgTy != Val->getType()) { 4543 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4544 Val = Builder.CreateIntToPtr(Val, ArgTy); 4545 else 4546 Val = Builder.CreateTrunc(Val, ArgTy); 4547 } 4548 4549 return Val; 4550 } 4551 4552 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4553 return CGF.EmitBlockLiteral(block); 4554 } 4555 4556 // Convert a vec3 to vec4, or vice versa. 4557 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4558 Value *Src, unsigned NumElementsDst) { 4559 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4560 static constexpr int Mask[] = {0, 1, 2, -1}; 4561 return Builder.CreateShuffleVector(Src, UnV, 4562 llvm::makeArrayRef(Mask, NumElementsDst)); 4563 } 4564 4565 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4566 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4567 // but could be scalar or vectors of different lengths, and either can be 4568 // pointer. 4569 // There are 4 cases: 4570 // 1. non-pointer -> non-pointer : needs 1 bitcast 4571 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4572 // 3. pointer -> non-pointer 4573 // a) pointer -> intptr_t : needs 1 ptrtoint 4574 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4575 // 4. non-pointer -> pointer 4576 // a) intptr_t -> pointer : needs 1 inttoptr 4577 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4578 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4579 // allow casting directly between pointer types and non-integer non-pointer 4580 // types. 4581 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4582 const llvm::DataLayout &DL, 4583 Value *Src, llvm::Type *DstTy, 4584 StringRef Name = "") { 4585 auto SrcTy = Src->getType(); 4586 4587 // Case 1. 4588 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4589 return Builder.CreateBitCast(Src, DstTy, Name); 4590 4591 // Case 2. 4592 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4593 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4594 4595 // Case 3. 4596 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4597 // Case 3b. 4598 if (!DstTy->isIntegerTy()) 4599 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4600 // Cases 3a and 3b. 4601 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4602 } 4603 4604 // Case 4b. 4605 if (!SrcTy->isIntegerTy()) 4606 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4607 // Cases 4a and 4b. 4608 return Builder.CreateIntToPtr(Src, DstTy, Name); 4609 } 4610 4611 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4612 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4613 llvm::Type *DstTy = ConvertType(E->getType()); 4614 4615 llvm::Type *SrcTy = Src->getType(); 4616 unsigned NumElementsSrc = 4617 isa<llvm::VectorType>(SrcTy) 4618 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() 4619 : 0; 4620 unsigned NumElementsDst = 4621 isa<llvm::VectorType>(DstTy) 4622 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() 4623 : 0; 4624 4625 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4626 // vector to get a vec4, then a bitcast if the target type is different. 4627 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4628 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4629 4630 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4631 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4632 DstTy); 4633 } 4634 4635 Src->setName("astype"); 4636 return Src; 4637 } 4638 4639 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4640 // to vec4 if the original type is not vec4, then a shuffle vector to 4641 // get a vec3. 4642 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4643 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4644 auto *Vec4Ty = llvm::FixedVectorType::get( 4645 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4646 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4647 Vec4Ty); 4648 } 4649 4650 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4651 Src->setName("astype"); 4652 return Src; 4653 } 4654 4655 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4656 Src, DstTy, "astype"); 4657 } 4658 4659 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4660 return CGF.EmitAtomicExpr(E).getScalarVal(); 4661 } 4662 4663 //===----------------------------------------------------------------------===// 4664 // Entry Point into this File 4665 //===----------------------------------------------------------------------===// 4666 4667 /// Emit the computation of the specified expression of scalar type, ignoring 4668 /// the result. 4669 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4670 assert(E && hasScalarEvaluationKind(E->getType()) && 4671 "Invalid scalar expression to emit"); 4672 4673 return ScalarExprEmitter(*this, IgnoreResultAssign) 4674 .Visit(const_cast<Expr *>(E)); 4675 } 4676 4677 /// Emit a conversion from the specified type to the specified destination type, 4678 /// both of which are LLVM scalar types. 4679 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4680 QualType DstTy, 4681 SourceLocation Loc) { 4682 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4683 "Invalid scalar expression to emit"); 4684 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4685 } 4686 4687 /// Emit a conversion from the specified complex type to the specified 4688 /// destination type, where the destination type is an LLVM scalar type. 4689 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4690 QualType SrcTy, 4691 QualType DstTy, 4692 SourceLocation Loc) { 4693 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4694 "Invalid complex -> scalar conversion"); 4695 return ScalarExprEmitter(*this) 4696 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4697 } 4698 4699 4700 llvm::Value *CodeGenFunction:: 4701 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4702 bool isInc, bool isPre) { 4703 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4704 } 4705 4706 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4707 // object->isa or (*object).isa 4708 // Generate code as for: *(Class*)object 4709 4710 Expr *BaseExpr = E->getBase(); 4711 Address Addr = Address::invalid(); 4712 if (BaseExpr->isRValue()) { 4713 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4714 } else { 4715 Addr = EmitLValue(BaseExpr).getAddress(*this); 4716 } 4717 4718 // Cast the address to Class*. 4719 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4720 return MakeAddrLValue(Addr, E->getType()); 4721 } 4722 4723 4724 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4725 const CompoundAssignOperator *E) { 4726 ScalarExprEmitter Scalar(*this); 4727 Value *Result = nullptr; 4728 switch (E->getOpcode()) { 4729 #define COMPOUND_OP(Op) \ 4730 case BO_##Op##Assign: \ 4731 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4732 Result) 4733 COMPOUND_OP(Mul); 4734 COMPOUND_OP(Div); 4735 COMPOUND_OP(Rem); 4736 COMPOUND_OP(Add); 4737 COMPOUND_OP(Sub); 4738 COMPOUND_OP(Shl); 4739 COMPOUND_OP(Shr); 4740 COMPOUND_OP(And); 4741 COMPOUND_OP(Xor); 4742 COMPOUND_OP(Or); 4743 #undef COMPOUND_OP 4744 4745 case BO_PtrMemD: 4746 case BO_PtrMemI: 4747 case BO_Mul: 4748 case BO_Div: 4749 case BO_Rem: 4750 case BO_Add: 4751 case BO_Sub: 4752 case BO_Shl: 4753 case BO_Shr: 4754 case BO_LT: 4755 case BO_GT: 4756 case BO_LE: 4757 case BO_GE: 4758 case BO_EQ: 4759 case BO_NE: 4760 case BO_Cmp: 4761 case BO_And: 4762 case BO_Xor: 4763 case BO_Or: 4764 case BO_LAnd: 4765 case BO_LOr: 4766 case BO_Assign: 4767 case BO_Comma: 4768 llvm_unreachable("Not valid compound assignment operators"); 4769 } 4770 4771 llvm_unreachable("Unhandled compound assignment operator"); 4772 } 4773 4774 struct GEPOffsetAndOverflow { 4775 // The total (signed) byte offset for the GEP. 4776 llvm::Value *TotalOffset; 4777 // The offset overflow flag - true if the total offset overflows. 4778 llvm::Value *OffsetOverflows; 4779 }; 4780 4781 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4782 /// and compute the total offset it applies from it's base pointer BasePtr. 4783 /// Returns offset in bytes and a boolean flag whether an overflow happened 4784 /// during evaluation. 4785 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4786 llvm::LLVMContext &VMContext, 4787 CodeGenModule &CGM, 4788 CGBuilderTy &Builder) { 4789 const auto &DL = CGM.getDataLayout(); 4790 4791 // The total (signed) byte offset for the GEP. 4792 llvm::Value *TotalOffset = nullptr; 4793 4794 // Was the GEP already reduced to a constant? 4795 if (isa<llvm::Constant>(GEPVal)) { 4796 // Compute the offset by casting both pointers to integers and subtracting: 4797 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4798 Value *BasePtr_int = 4799 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4800 Value *GEPVal_int = 4801 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4802 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4803 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4804 } 4805 4806 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4807 assert(GEP->getPointerOperand() == BasePtr && 4808 "BasePtr must be the the base of the GEP."); 4809 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4810 4811 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4812 4813 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4814 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4815 auto *SAddIntrinsic = 4816 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4817 auto *SMulIntrinsic = 4818 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4819 4820 // The offset overflow flag - true if the total offset overflows. 4821 llvm::Value *OffsetOverflows = Builder.getFalse(); 4822 4823 /// Return the result of the given binary operation. 4824 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4825 llvm::Value *RHS) -> llvm::Value * { 4826 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4827 4828 // If the operands are constants, return a constant result. 4829 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4830 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4831 llvm::APInt N; 4832 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4833 /*Signed=*/true, N); 4834 if (HasOverflow) 4835 OffsetOverflows = Builder.getTrue(); 4836 return llvm::ConstantInt::get(VMContext, N); 4837 } 4838 } 4839 4840 // Otherwise, compute the result with checked arithmetic. 4841 auto *ResultAndOverflow = Builder.CreateCall( 4842 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4843 OffsetOverflows = Builder.CreateOr( 4844 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4845 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4846 }; 4847 4848 // Determine the total byte offset by looking at each GEP operand. 4849 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4850 GTI != GTE; ++GTI) { 4851 llvm::Value *LocalOffset; 4852 auto *Index = GTI.getOperand(); 4853 // Compute the local offset contributed by this indexing step: 4854 if (auto *STy = GTI.getStructTypeOrNull()) { 4855 // For struct indexing, the local offset is the byte position of the 4856 // specified field. 4857 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4858 LocalOffset = llvm::ConstantInt::get( 4859 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4860 } else { 4861 // Otherwise this is array-like indexing. The local offset is the index 4862 // multiplied by the element size. 4863 auto *ElementSize = llvm::ConstantInt::get( 4864 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4865 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4866 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4867 } 4868 4869 // If this is the first offset, set it as the total offset. Otherwise, add 4870 // the local offset into the running total. 4871 if (!TotalOffset || TotalOffset == Zero) 4872 TotalOffset = LocalOffset; 4873 else 4874 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4875 } 4876 4877 return {TotalOffset, OffsetOverflows}; 4878 } 4879 4880 Value * 4881 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4882 bool SignedIndices, bool IsSubtraction, 4883 SourceLocation Loc, const Twine &Name) { 4884 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4885 4886 // If the pointer overflow sanitizer isn't enabled, do nothing. 4887 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4888 return GEPVal; 4889 4890 llvm::Type *PtrTy = Ptr->getType(); 4891 4892 // Perform nullptr-and-offset check unless the nullptr is defined. 4893 bool PerformNullCheck = !NullPointerIsDefined( 4894 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4895 // Check for overflows unless the GEP got constant-folded, 4896 // and only in the default address space 4897 bool PerformOverflowCheck = 4898 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4899 4900 if (!(PerformNullCheck || PerformOverflowCheck)) 4901 return GEPVal; 4902 4903 const auto &DL = CGM.getDataLayout(); 4904 4905 SanitizerScope SanScope(this); 4906 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4907 4908 GEPOffsetAndOverflow EvaluatedGEP = 4909 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4910 4911 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4912 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4913 "If the offset got constant-folded, we don't expect that there was an " 4914 "overflow."); 4915 4916 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4917 4918 // Common case: if the total offset is zero, and we are using C++ semantics, 4919 // where nullptr+0 is defined, don't emit a check. 4920 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4921 return GEPVal; 4922 4923 // Now that we've computed the total offset, add it to the base pointer (with 4924 // wrapping semantics). 4925 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4926 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4927 4928 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4929 4930 if (PerformNullCheck) { 4931 // In C++, if the base pointer evaluates to a null pointer value, 4932 // the only valid pointer this inbounds GEP can produce is also 4933 // a null pointer, so the offset must also evaluate to zero. 4934 // Likewise, if we have non-zero base pointer, we can not get null pointer 4935 // as a result, so the offset can not be -intptr_t(BasePtr). 4936 // In other words, both pointers are either null, or both are non-null, 4937 // or the behaviour is undefined. 4938 // 4939 // C, however, is more strict in this regard, and gives more 4940 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4941 // So both the input to the 'gep inbounds' AND the output must not be null. 4942 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4943 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4944 auto *Valid = 4945 CGM.getLangOpts().CPlusPlus 4946 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4947 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4948 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4949 } 4950 4951 if (PerformOverflowCheck) { 4952 // The GEP is valid if: 4953 // 1) The total offset doesn't overflow, and 4954 // 2) The sign of the difference between the computed address and the base 4955 // pointer matches the sign of the total offset. 4956 llvm::Value *ValidGEP; 4957 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4958 if (SignedIndices) { 4959 // GEP is computed as `unsigned base + signed offset`, therefore: 4960 // * If offset was positive, then the computed pointer can not be 4961 // [unsigned] less than the base pointer, unless it overflowed. 4962 // * If offset was negative, then the computed pointer can not be 4963 // [unsigned] greater than the bas pointere, unless it overflowed. 4964 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4965 auto *PosOrZeroOffset = 4966 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4967 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4968 ValidGEP = 4969 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4970 } else if (!IsSubtraction) { 4971 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4972 // computed pointer can not be [unsigned] less than base pointer, 4973 // unless there was an overflow. 4974 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4975 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4976 } else { 4977 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4978 // computed pointer can not be [unsigned] greater than base pointer, 4979 // unless there was an overflow. 4980 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4981 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4982 } 4983 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4984 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4985 } 4986 4987 assert(!Checks.empty() && "Should have produced some checks."); 4988 4989 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4990 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4991 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4992 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4993 4994 return GEPVal; 4995 } 4996