1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/FixedPoint.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicsPowerPC.h" 40 #include "llvm/IR/Module.h" 41 #include <cstdarg> 42 43 using namespace clang; 44 using namespace CodeGen; 45 using llvm::Value; 46 47 //===----------------------------------------------------------------------===// 48 // Scalar Expression Emitter 49 //===----------------------------------------------------------------------===// 50 51 namespace { 52 53 /// Determine whether the given binary operation may overflow. 54 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 55 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 56 /// the returned overflow check is precise. The returned value is 'true' for 57 /// all other opcodes, to be conservative. 58 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 59 BinaryOperator::Opcode Opcode, bool Signed, 60 llvm::APInt &Result) { 61 // Assume overflow is possible, unless we can prove otherwise. 62 bool Overflow = true; 63 const auto &LHSAP = LHS->getValue(); 64 const auto &RHSAP = RHS->getValue(); 65 if (Opcode == BO_Add) { 66 if (Signed) 67 Result = LHSAP.sadd_ov(RHSAP, Overflow); 68 else 69 Result = LHSAP.uadd_ov(RHSAP, Overflow); 70 } else if (Opcode == BO_Sub) { 71 if (Signed) 72 Result = LHSAP.ssub_ov(RHSAP, Overflow); 73 else 74 Result = LHSAP.usub_ov(RHSAP, Overflow); 75 } else if (Opcode == BO_Mul) { 76 if (Signed) 77 Result = LHSAP.smul_ov(RHSAP, Overflow); 78 else 79 Result = LHSAP.umul_ov(RHSAP, Overflow); 80 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 81 if (Signed && !RHS->isZero()) 82 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 83 else 84 return false; 85 } 86 return Overflow; 87 } 88 89 struct BinOpInfo { 90 Value *LHS; 91 Value *RHS; 92 QualType Ty; // Computation Type. 93 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 94 FPOptions FPFeatures; 95 const Expr *E; // Entire expr, for error unsupported. May not be binop. 96 97 /// Check if the binop can result in integer overflow. 98 bool mayHaveIntegerOverflow() const { 99 // Without constant input, we can't rule out overflow. 100 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 101 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 102 if (!LHSCI || !RHSCI) 103 return true; 104 105 llvm::APInt Result; 106 return ::mayHaveIntegerOverflow( 107 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 108 } 109 110 /// Check if the binop computes a division or a remainder. 111 bool isDivremOp() const { 112 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 113 Opcode == BO_RemAssign; 114 } 115 116 /// Check if the binop can result in an integer division by zero. 117 bool mayHaveIntegerDivisionByZero() const { 118 if (isDivremOp()) 119 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 120 return CI->isZero(); 121 return true; 122 } 123 124 /// Check if the binop can result in a float division by zero. 125 bool mayHaveFloatDivisionByZero() const { 126 if (isDivremOp()) 127 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 128 return CFP->isZero(); 129 return true; 130 } 131 132 /// Check if at least one operand is a fixed point type. In such cases, this 133 /// operation did not follow usual arithmetic conversion and both operands 134 /// might not be of the same type. 135 bool isFixedPointOp() const { 136 // We cannot simply check the result type since comparison operations return 137 // an int. 138 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 139 QualType LHSType = BinOp->getLHS()->getType(); 140 QualType RHSType = BinOp->getRHS()->getType(); 141 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 142 } 143 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 144 return UnOp->getSubExpr()->getType()->isFixedPointType(); 145 return false; 146 } 147 }; 148 149 static bool MustVisitNullValue(const Expr *E) { 150 // If a null pointer expression's type is the C++0x nullptr_t, then 151 // it's not necessarily a simple constant and it must be evaluated 152 // for its potential side effects. 153 return E->getType()->isNullPtrType(); 154 } 155 156 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 157 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 158 const Expr *E) { 159 const Expr *Base = E->IgnoreImpCasts(); 160 if (E == Base) 161 return llvm::None; 162 163 QualType BaseTy = Base->getType(); 164 if (!BaseTy->isPromotableIntegerType() || 165 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 166 return llvm::None; 167 168 return BaseTy; 169 } 170 171 /// Check if \p E is a widened promoted integer. 172 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 173 return getUnwidenedIntegerType(Ctx, E).hasValue(); 174 } 175 176 /// Check if we can skip the overflow check for \p Op. 177 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 178 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 179 "Expected a unary or binary operator"); 180 181 // If the binop has constant inputs and we can prove there is no overflow, 182 // we can elide the overflow check. 183 if (!Op.mayHaveIntegerOverflow()) 184 return true; 185 186 // If a unary op has a widened operand, the op cannot overflow. 187 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 188 return !UO->canOverflow(); 189 190 // We usually don't need overflow checks for binops with widened operands. 191 // Multiplication with promoted unsigned operands is a special case. 192 const auto *BO = cast<BinaryOperator>(Op.E); 193 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 194 if (!OptionalLHSTy) 195 return false; 196 197 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 198 if (!OptionalRHSTy) 199 return false; 200 201 QualType LHSTy = *OptionalLHSTy; 202 QualType RHSTy = *OptionalRHSTy; 203 204 // This is the simple case: binops without unsigned multiplication, and with 205 // widened operands. No overflow check is needed here. 206 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 207 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 208 return true; 209 210 // For unsigned multiplication the overflow check can be elided if either one 211 // of the unpromoted types are less than half the size of the promoted type. 212 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 213 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 214 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 215 } 216 217 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 218 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 219 FPOptions FPFeatures) { 220 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 221 } 222 223 /// Propagate fast-math flags from \p Op to the instruction in \p V. 224 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 225 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 226 llvm::FastMathFlags FMF = I->getFastMathFlags(); 227 updateFastMathFlags(FMF, Op.FPFeatures); 228 I->setFastMathFlags(FMF); 229 } 230 return V; 231 } 232 233 class ScalarExprEmitter 234 : public StmtVisitor<ScalarExprEmitter, Value*> { 235 CodeGenFunction &CGF; 236 CGBuilderTy &Builder; 237 bool IgnoreResultAssign; 238 llvm::LLVMContext &VMContext; 239 public: 240 241 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 242 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 243 VMContext(cgf.getLLVMContext()) { 244 } 245 246 //===--------------------------------------------------------------------===// 247 // Utilities 248 //===--------------------------------------------------------------------===// 249 250 bool TestAndClearIgnoreResultAssign() { 251 bool I = IgnoreResultAssign; 252 IgnoreResultAssign = false; 253 return I; 254 } 255 256 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 257 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 258 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 259 return CGF.EmitCheckedLValue(E, TCK); 260 } 261 262 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 263 const BinOpInfo &Info); 264 265 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 266 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 267 } 268 269 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 270 const AlignValueAttr *AVAttr = nullptr; 271 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 272 const ValueDecl *VD = DRE->getDecl(); 273 274 if (VD->getType()->isReferenceType()) { 275 if (const auto *TTy = 276 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 277 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 278 } else { 279 // Assumptions for function parameters are emitted at the start of the 280 // function, so there is no need to repeat that here, 281 // unless the alignment-assumption sanitizer is enabled, 282 // then we prefer the assumption over alignment attribute 283 // on IR function param. 284 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 285 return; 286 287 AVAttr = VD->getAttr<AlignValueAttr>(); 288 } 289 } 290 291 if (!AVAttr) 292 if (const auto *TTy = 293 dyn_cast<TypedefType>(E->getType())) 294 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 295 296 if (!AVAttr) 297 return; 298 299 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 300 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 301 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 302 } 303 304 /// EmitLoadOfLValue - Given an expression with complex type that represents a 305 /// value l-value, this method emits the address of the l-value, then loads 306 /// and returns the result. 307 Value *EmitLoadOfLValue(const Expr *E) { 308 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 309 E->getExprLoc()); 310 311 EmitLValueAlignmentAssumption(E, V); 312 return V; 313 } 314 315 /// EmitConversionToBool - Convert the specified expression value to a 316 /// boolean (i1) truth value. This is equivalent to "Val != 0". 317 Value *EmitConversionToBool(Value *Src, QualType DstTy); 318 319 /// Emit a check that a conversion from a floating-point type does not 320 /// overflow. 321 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 322 Value *Src, QualType SrcType, QualType DstType, 323 llvm::Type *DstTy, SourceLocation Loc); 324 325 /// Known implicit conversion check kinds. 326 /// Keep in sync with the enum of the same name in ubsan_handlers.h 327 enum ImplicitConversionCheckKind : unsigned char { 328 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 329 ICCK_UnsignedIntegerTruncation = 1, 330 ICCK_SignedIntegerTruncation = 2, 331 ICCK_IntegerSignChange = 3, 332 ICCK_SignedIntegerTruncationOrSignChange = 4, 333 }; 334 335 /// Emit a check that an [implicit] truncation of an integer does not 336 /// discard any bits. It is not UB, so we use the value after truncation. 337 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 338 QualType DstType, SourceLocation Loc); 339 340 /// Emit a check that an [implicit] conversion of an integer does not change 341 /// the sign of the value. It is not UB, so we use the value after conversion. 342 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 343 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 344 QualType DstType, SourceLocation Loc); 345 346 /// Emit a conversion from the specified type to the specified destination 347 /// type, both of which are LLVM scalar types. 348 struct ScalarConversionOpts { 349 bool TreatBooleanAsSigned; 350 bool EmitImplicitIntegerTruncationChecks; 351 bool EmitImplicitIntegerSignChangeChecks; 352 353 ScalarConversionOpts() 354 : TreatBooleanAsSigned(false), 355 EmitImplicitIntegerTruncationChecks(false), 356 EmitImplicitIntegerSignChangeChecks(false) {} 357 358 ScalarConversionOpts(clang::SanitizerSet SanOpts) 359 : TreatBooleanAsSigned(false), 360 EmitImplicitIntegerTruncationChecks( 361 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 362 EmitImplicitIntegerSignChangeChecks( 363 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 364 }; 365 Value * 366 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 367 SourceLocation Loc, 368 ScalarConversionOpts Opts = ScalarConversionOpts()); 369 370 /// Convert between either a fixed point and other fixed point or fixed point 371 /// and an integer. 372 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 373 SourceLocation Loc); 374 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 375 FixedPointSemantics &DstFixedSema, 376 SourceLocation Loc, 377 bool DstIsInteger = false); 378 379 /// Emit a conversion from the specified complex type to the specified 380 /// destination type, where the destination type is an LLVM scalar type. 381 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 382 QualType SrcTy, QualType DstTy, 383 SourceLocation Loc); 384 385 /// EmitNullValue - Emit a value that corresponds to null for the given type. 386 Value *EmitNullValue(QualType Ty); 387 388 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 389 Value *EmitFloatToBoolConversion(Value *V) { 390 // Compare against 0.0 for fp scalars. 391 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 392 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 393 } 394 395 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 396 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 397 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 398 399 return Builder.CreateICmpNE(V, Zero, "tobool"); 400 } 401 402 Value *EmitIntToBoolConversion(Value *V) { 403 // Because of the type rules of C, we often end up computing a 404 // logical value, then zero extending it to int, then wanting it 405 // as a logical value again. Optimize this common case. 406 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 407 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 408 Value *Result = ZI->getOperand(0); 409 // If there aren't any more uses, zap the instruction to save space. 410 // Note that there can be more uses, for example if this 411 // is the result of an assignment. 412 if (ZI->use_empty()) 413 ZI->eraseFromParent(); 414 return Result; 415 } 416 } 417 418 return Builder.CreateIsNotNull(V, "tobool"); 419 } 420 421 //===--------------------------------------------------------------------===// 422 // Visitor Methods 423 //===--------------------------------------------------------------------===// 424 425 Value *Visit(Expr *E) { 426 ApplyDebugLocation DL(CGF, E); 427 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 428 } 429 430 Value *VisitStmt(Stmt *S) { 431 S->dump(CGF.getContext().getSourceManager()); 432 llvm_unreachable("Stmt can't have complex result type!"); 433 } 434 Value *VisitExpr(Expr *S); 435 436 Value *VisitConstantExpr(ConstantExpr *E) { 437 return Visit(E->getSubExpr()); 438 } 439 Value *VisitParenExpr(ParenExpr *PE) { 440 return Visit(PE->getSubExpr()); 441 } 442 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 443 return Visit(E->getReplacement()); 444 } 445 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 446 return Visit(GE->getResultExpr()); 447 } 448 Value *VisitCoawaitExpr(CoawaitExpr *S) { 449 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 450 } 451 Value *VisitCoyieldExpr(CoyieldExpr *S) { 452 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 453 } 454 Value *VisitUnaryCoawait(const UnaryOperator *E) { 455 return Visit(E->getSubExpr()); 456 } 457 458 // Leaves. 459 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 460 return Builder.getInt(E->getValue()); 461 } 462 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 463 return Builder.getInt(E->getValue()); 464 } 465 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 466 return llvm::ConstantFP::get(VMContext, E->getValue()); 467 } 468 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 469 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 470 } 471 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 472 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 473 } 474 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 475 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 476 } 477 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 478 return EmitNullValue(E->getType()); 479 } 480 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 481 return EmitNullValue(E->getType()); 482 } 483 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 484 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 485 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 486 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 487 return Builder.CreateBitCast(V, ConvertType(E->getType())); 488 } 489 490 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 491 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 492 } 493 494 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 495 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 496 } 497 498 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 499 if (E->isGLValue()) 500 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 501 E->getExprLoc()); 502 503 // Otherwise, assume the mapping is the scalar directly. 504 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 505 } 506 507 // l-values. 508 Value *VisitDeclRefExpr(DeclRefExpr *E) { 509 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 510 return CGF.emitScalarConstant(Constant, E); 511 return EmitLoadOfLValue(E); 512 } 513 514 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 515 return CGF.EmitObjCSelectorExpr(E); 516 } 517 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 518 return CGF.EmitObjCProtocolExpr(E); 519 } 520 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 521 return EmitLoadOfLValue(E); 522 } 523 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 524 if (E->getMethodDecl() && 525 E->getMethodDecl()->getReturnType()->isReferenceType()) 526 return EmitLoadOfLValue(E); 527 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 528 } 529 530 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 531 LValue LV = CGF.EmitObjCIsaExpr(E); 532 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 533 return V; 534 } 535 536 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 537 VersionTuple Version = E->getVersion(); 538 539 // If we're checking for a platform older than our minimum deployment 540 // target, we can fold the check away. 541 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 542 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 543 544 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 545 llvm::Value *Args[] = { 546 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 547 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 548 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 549 }; 550 551 return CGF.EmitBuiltinAvailable(Args); 552 } 553 554 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 555 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 556 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 557 Value *VisitMemberExpr(MemberExpr *E); 558 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 559 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 560 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 561 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 562 // literals aren't l-values in C++. We do so simply because that's the 563 // cleanest way to handle compound literals in C++. 564 // See the discussion here: https://reviews.llvm.org/D64464 565 return EmitLoadOfLValue(E); 566 } 567 568 Value *VisitInitListExpr(InitListExpr *E); 569 570 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 571 assert(CGF.getArrayInitIndex() && 572 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 573 return CGF.getArrayInitIndex(); 574 } 575 576 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 577 return EmitNullValue(E->getType()); 578 } 579 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 580 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 581 return VisitCastExpr(E); 582 } 583 Value *VisitCastExpr(CastExpr *E); 584 585 Value *VisitCallExpr(const CallExpr *E) { 586 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 587 return EmitLoadOfLValue(E); 588 589 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 590 591 EmitLValueAlignmentAssumption(E, V); 592 return V; 593 } 594 595 Value *VisitStmtExpr(const StmtExpr *E); 596 597 // Unary Operators. 598 Value *VisitUnaryPostDec(const UnaryOperator *E) { 599 LValue LV = EmitLValue(E->getSubExpr()); 600 return EmitScalarPrePostIncDec(E, LV, false, false); 601 } 602 Value *VisitUnaryPostInc(const UnaryOperator *E) { 603 LValue LV = EmitLValue(E->getSubExpr()); 604 return EmitScalarPrePostIncDec(E, LV, true, false); 605 } 606 Value *VisitUnaryPreDec(const UnaryOperator *E) { 607 LValue LV = EmitLValue(E->getSubExpr()); 608 return EmitScalarPrePostIncDec(E, LV, false, true); 609 } 610 Value *VisitUnaryPreInc(const UnaryOperator *E) { 611 LValue LV = EmitLValue(E->getSubExpr()); 612 return EmitScalarPrePostIncDec(E, LV, true, true); 613 } 614 615 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 616 llvm::Value *InVal, 617 bool IsInc); 618 619 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 620 bool isInc, bool isPre); 621 622 623 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 624 if (isa<MemberPointerType>(E->getType())) // never sugared 625 return CGF.CGM.getMemberPointerConstant(E); 626 627 return EmitLValue(E->getSubExpr()).getPointer(CGF); 628 } 629 Value *VisitUnaryDeref(const UnaryOperator *E) { 630 if (E->getType()->isVoidType()) 631 return Visit(E->getSubExpr()); // the actual value should be unused 632 return EmitLoadOfLValue(E); 633 } 634 Value *VisitUnaryPlus(const UnaryOperator *E) { 635 // This differs from gcc, though, most likely due to a bug in gcc. 636 TestAndClearIgnoreResultAssign(); 637 return Visit(E->getSubExpr()); 638 } 639 Value *VisitUnaryMinus (const UnaryOperator *E); 640 Value *VisitUnaryNot (const UnaryOperator *E); 641 Value *VisitUnaryLNot (const UnaryOperator *E); 642 Value *VisitUnaryReal (const UnaryOperator *E); 643 Value *VisitUnaryImag (const UnaryOperator *E); 644 Value *VisitUnaryExtension(const UnaryOperator *E) { 645 return Visit(E->getSubExpr()); 646 } 647 648 // C++ 649 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 650 return EmitLoadOfLValue(E); 651 } 652 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 653 auto &Ctx = CGF.getContext(); 654 APValue Evaluated = 655 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 656 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 657 SLE->getType()); 658 } 659 660 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 661 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 662 return Visit(DAE->getExpr()); 663 } 664 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 665 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 666 return Visit(DIE->getExpr()); 667 } 668 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 669 return CGF.LoadCXXThis(); 670 } 671 672 Value *VisitExprWithCleanups(ExprWithCleanups *E); 673 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 674 return CGF.EmitCXXNewExpr(E); 675 } 676 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 677 CGF.EmitCXXDeleteExpr(E); 678 return nullptr; 679 } 680 681 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 682 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 683 } 684 685 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 686 return Builder.getInt1(E->isSatisfied()); 687 } 688 689 Value *VisitRequiresExpr(const RequiresExpr *E) { 690 return Builder.getInt1(E->isSatisfied()); 691 } 692 693 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 694 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 695 } 696 697 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 698 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 699 } 700 701 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 702 // C++ [expr.pseudo]p1: 703 // The result shall only be used as the operand for the function call 704 // operator (), and the result of such a call has type void. The only 705 // effect is the evaluation of the postfix-expression before the dot or 706 // arrow. 707 CGF.EmitScalarExpr(E->getBase()); 708 return nullptr; 709 } 710 711 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 712 return EmitNullValue(E->getType()); 713 } 714 715 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 716 CGF.EmitCXXThrowExpr(E); 717 return nullptr; 718 } 719 720 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 721 return Builder.getInt1(E->getValue()); 722 } 723 724 // Binary Operators. 725 Value *EmitMul(const BinOpInfo &Ops) { 726 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 727 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 728 case LangOptions::SOB_Defined: 729 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 730 case LangOptions::SOB_Undefined: 731 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 732 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 733 LLVM_FALLTHROUGH; 734 case LangOptions::SOB_Trapping: 735 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 736 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 737 return EmitOverflowCheckedBinOp(Ops); 738 } 739 } 740 741 if (Ops.Ty->isUnsignedIntegerType() && 742 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 743 !CanElideOverflowCheck(CGF.getContext(), Ops)) 744 return EmitOverflowCheckedBinOp(Ops); 745 746 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 747 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 748 return propagateFMFlags(V, Ops); 749 } 750 if (Ops.isFixedPointOp()) 751 return EmitFixedPointBinOp(Ops); 752 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 753 } 754 /// Create a binary op that checks for overflow. 755 /// Currently only supports +, - and *. 756 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 757 758 // Check for undefined division and modulus behaviors. 759 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 760 llvm::Value *Zero,bool isDiv); 761 // Common helper for getting how wide LHS of shift is. 762 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 763 Value *EmitDiv(const BinOpInfo &Ops); 764 Value *EmitRem(const BinOpInfo &Ops); 765 Value *EmitAdd(const BinOpInfo &Ops); 766 Value *EmitSub(const BinOpInfo &Ops); 767 Value *EmitShl(const BinOpInfo &Ops); 768 Value *EmitShr(const BinOpInfo &Ops); 769 Value *EmitAnd(const BinOpInfo &Ops) { 770 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 771 } 772 Value *EmitXor(const BinOpInfo &Ops) { 773 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 774 } 775 Value *EmitOr (const BinOpInfo &Ops) { 776 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 777 } 778 779 // Helper functions for fixed point binary operations. 780 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 781 782 BinOpInfo EmitBinOps(const BinaryOperator *E); 783 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 784 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 785 Value *&Result); 786 787 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 788 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 789 790 // Binary operators and binary compound assignment operators. 791 #define HANDLEBINOP(OP) \ 792 Value *VisitBin ## OP(const BinaryOperator *E) { \ 793 return Emit ## OP(EmitBinOps(E)); \ 794 } \ 795 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 796 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 797 } 798 HANDLEBINOP(Mul) 799 HANDLEBINOP(Div) 800 HANDLEBINOP(Rem) 801 HANDLEBINOP(Add) 802 HANDLEBINOP(Sub) 803 HANDLEBINOP(Shl) 804 HANDLEBINOP(Shr) 805 HANDLEBINOP(And) 806 HANDLEBINOP(Xor) 807 HANDLEBINOP(Or) 808 #undef HANDLEBINOP 809 810 // Comparisons. 811 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 812 llvm::CmpInst::Predicate SICmpOpc, 813 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 814 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 815 Value *VisitBin##CODE(const BinaryOperator *E) { \ 816 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 817 llvm::FCmpInst::FP, SIG); } 818 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 819 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 820 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 821 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 822 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 823 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 824 #undef VISITCOMP 825 826 Value *VisitBinAssign (const BinaryOperator *E); 827 828 Value *VisitBinLAnd (const BinaryOperator *E); 829 Value *VisitBinLOr (const BinaryOperator *E); 830 Value *VisitBinComma (const BinaryOperator *E); 831 832 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 833 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 834 835 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 836 return Visit(E->getSemanticForm()); 837 } 838 839 // Other Operators. 840 Value *VisitBlockExpr(const BlockExpr *BE); 841 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 842 Value *VisitChooseExpr(ChooseExpr *CE); 843 Value *VisitVAArgExpr(VAArgExpr *VE); 844 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 845 return CGF.EmitObjCStringLiteral(E); 846 } 847 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 848 return CGF.EmitObjCBoxedExpr(E); 849 } 850 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 851 return CGF.EmitObjCArrayLiteral(E); 852 } 853 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 854 return CGF.EmitObjCDictionaryLiteral(E); 855 } 856 Value *VisitAsTypeExpr(AsTypeExpr *CE); 857 Value *VisitAtomicExpr(AtomicExpr *AE); 858 }; 859 } // end anonymous namespace. 860 861 //===----------------------------------------------------------------------===// 862 // Utilities 863 //===----------------------------------------------------------------------===// 864 865 /// EmitConversionToBool - Convert the specified expression value to a 866 /// boolean (i1) truth value. This is equivalent to "Val != 0". 867 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 868 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 869 870 if (SrcType->isRealFloatingType()) 871 return EmitFloatToBoolConversion(Src); 872 873 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 874 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 875 876 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 877 "Unknown scalar type to convert"); 878 879 if (isa<llvm::IntegerType>(Src->getType())) 880 return EmitIntToBoolConversion(Src); 881 882 assert(isa<llvm::PointerType>(Src->getType())); 883 return EmitPointerToBoolConversion(Src, SrcType); 884 } 885 886 void ScalarExprEmitter::EmitFloatConversionCheck( 887 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 888 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 889 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 890 if (!isa<llvm::IntegerType>(DstTy)) 891 return; 892 893 CodeGenFunction::SanitizerScope SanScope(&CGF); 894 using llvm::APFloat; 895 using llvm::APSInt; 896 897 llvm::Value *Check = nullptr; 898 const llvm::fltSemantics &SrcSema = 899 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 900 901 // Floating-point to integer. This has undefined behavior if the source is 902 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 903 // to an integer). 904 unsigned Width = CGF.getContext().getIntWidth(DstType); 905 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 906 907 APSInt Min = APSInt::getMinValue(Width, Unsigned); 908 APFloat MinSrc(SrcSema, APFloat::uninitialized); 909 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 910 APFloat::opOverflow) 911 // Don't need an overflow check for lower bound. Just check for 912 // -Inf/NaN. 913 MinSrc = APFloat::getInf(SrcSema, true); 914 else 915 // Find the largest value which is too small to represent (before 916 // truncation toward zero). 917 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 918 919 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 920 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 921 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 922 APFloat::opOverflow) 923 // Don't need an overflow check for upper bound. Just check for 924 // +Inf/NaN. 925 MaxSrc = APFloat::getInf(SrcSema, false); 926 else 927 // Find the smallest value which is too large to represent (before 928 // truncation toward zero). 929 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 930 931 // If we're converting from __half, convert the range to float to match 932 // the type of src. 933 if (OrigSrcType->isHalfType()) { 934 const llvm::fltSemantics &Sema = 935 CGF.getContext().getFloatTypeSemantics(SrcType); 936 bool IsInexact; 937 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 938 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 939 } 940 941 llvm::Value *GE = 942 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 943 llvm::Value *LE = 944 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 945 Check = Builder.CreateAnd(GE, LE); 946 947 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 948 CGF.EmitCheckTypeDescriptor(OrigSrcType), 949 CGF.EmitCheckTypeDescriptor(DstType)}; 950 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 951 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 952 } 953 954 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 955 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 956 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 957 std::pair<llvm::Value *, SanitizerMask>> 958 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 959 QualType DstType, CGBuilderTy &Builder) { 960 llvm::Type *SrcTy = Src->getType(); 961 llvm::Type *DstTy = Dst->getType(); 962 (void)DstTy; // Only used in assert() 963 964 // This should be truncation of integral types. 965 assert(Src != Dst); 966 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 967 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 968 "non-integer llvm type"); 969 970 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 971 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 972 973 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 974 // Else, it is a signed truncation. 975 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 976 SanitizerMask Mask; 977 if (!SrcSigned && !DstSigned) { 978 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 979 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 980 } else { 981 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 982 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 983 } 984 985 llvm::Value *Check = nullptr; 986 // 1. Extend the truncated value back to the same width as the Src. 987 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 988 // 2. Equality-compare with the original source value 989 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 990 // If the comparison result is 'i1 false', then the truncation was lossy. 991 return std::make_pair(Kind, std::make_pair(Check, Mask)); 992 } 993 994 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 995 QualType SrcType, QualType DstType) { 996 return SrcType->isIntegerType() && DstType->isIntegerType(); 997 } 998 999 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1000 Value *Dst, QualType DstType, 1001 SourceLocation Loc) { 1002 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1003 return; 1004 1005 // We only care about int->int conversions here. 1006 // We ignore conversions to/from pointer and/or bool. 1007 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1008 DstType)) 1009 return; 1010 1011 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1012 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1013 // This must be truncation. Else we do not care. 1014 if (SrcBits <= DstBits) 1015 return; 1016 1017 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1018 1019 // If the integer sign change sanitizer is enabled, 1020 // and we are truncating from larger unsigned type to smaller signed type, 1021 // let that next sanitizer deal with it. 1022 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1023 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1024 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1025 (!SrcSigned && DstSigned)) 1026 return; 1027 1028 CodeGenFunction::SanitizerScope SanScope(&CGF); 1029 1030 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1031 std::pair<llvm::Value *, SanitizerMask>> 1032 Check = 1033 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1034 // If the comparison result is 'i1 false', then the truncation was lossy. 1035 1036 // Do we care about this type of truncation? 1037 if (!CGF.SanOpts.has(Check.second.second)) 1038 return; 1039 1040 llvm::Constant *StaticArgs[] = { 1041 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1042 CGF.EmitCheckTypeDescriptor(DstType), 1043 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1044 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1045 {Src, Dst}); 1046 } 1047 1048 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1049 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1050 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1051 std::pair<llvm::Value *, SanitizerMask>> 1052 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1053 QualType DstType, CGBuilderTy &Builder) { 1054 llvm::Type *SrcTy = Src->getType(); 1055 llvm::Type *DstTy = Dst->getType(); 1056 1057 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1058 "non-integer llvm type"); 1059 1060 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1061 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1062 (void)SrcSigned; // Only used in assert() 1063 (void)DstSigned; // Only used in assert() 1064 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1065 unsigned DstBits = DstTy->getScalarSizeInBits(); 1066 (void)SrcBits; // Only used in assert() 1067 (void)DstBits; // Only used in assert() 1068 1069 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1070 "either the widths should be different, or the signednesses."); 1071 1072 // NOTE: zero value is considered to be non-negative. 1073 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1074 const char *Name) -> Value * { 1075 // Is this value a signed type? 1076 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1077 llvm::Type *VTy = V->getType(); 1078 if (!VSigned) { 1079 // If the value is unsigned, then it is never negative. 1080 // FIXME: can we encounter non-scalar VTy here? 1081 return llvm::ConstantInt::getFalse(VTy->getContext()); 1082 } 1083 // Get the zero of the same type with which we will be comparing. 1084 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1085 // %V.isnegative = icmp slt %V, 0 1086 // I.e is %V *strictly* less than zero, does it have negative value? 1087 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1088 llvm::Twine(Name) + "." + V->getName() + 1089 ".negativitycheck"); 1090 }; 1091 1092 // 1. Was the old Value negative? 1093 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1094 // 2. Is the new Value negative? 1095 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1096 // 3. Now, was the 'negativity status' preserved during the conversion? 1097 // NOTE: conversion from negative to zero is considered to change the sign. 1098 // (We want to get 'false' when the conversion changed the sign) 1099 // So we should just equality-compare the negativity statuses. 1100 llvm::Value *Check = nullptr; 1101 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1102 // If the comparison result is 'false', then the conversion changed the sign. 1103 return std::make_pair( 1104 ScalarExprEmitter::ICCK_IntegerSignChange, 1105 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1106 } 1107 1108 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1109 Value *Dst, QualType DstType, 1110 SourceLocation Loc) { 1111 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1112 return; 1113 1114 llvm::Type *SrcTy = Src->getType(); 1115 llvm::Type *DstTy = Dst->getType(); 1116 1117 // We only care about int->int conversions here. 1118 // We ignore conversions to/from pointer and/or bool. 1119 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1120 DstType)) 1121 return; 1122 1123 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1124 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1125 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1126 unsigned DstBits = DstTy->getScalarSizeInBits(); 1127 1128 // Now, we do not need to emit the check in *all* of the cases. 1129 // We can avoid emitting it in some obvious cases where it would have been 1130 // dropped by the opt passes (instcombine) always anyways. 1131 // If it's a cast between effectively the same type, no check. 1132 // NOTE: this is *not* equivalent to checking the canonical types. 1133 if (SrcSigned == DstSigned && SrcBits == DstBits) 1134 return; 1135 // At least one of the values needs to have signed type. 1136 // If both are unsigned, then obviously, neither of them can be negative. 1137 if (!SrcSigned && !DstSigned) 1138 return; 1139 // If the conversion is to *larger* *signed* type, then no check is needed. 1140 // Because either sign-extension happens (so the sign will remain), 1141 // or zero-extension will happen (the sign bit will be zero.) 1142 if ((DstBits > SrcBits) && DstSigned) 1143 return; 1144 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1145 (SrcBits > DstBits) && SrcSigned) { 1146 // If the signed integer truncation sanitizer is enabled, 1147 // and this is a truncation from signed type, then no check is needed. 1148 // Because here sign change check is interchangeable with truncation check. 1149 return; 1150 } 1151 // That's it. We can't rule out any more cases with the data we have. 1152 1153 CodeGenFunction::SanitizerScope SanScope(&CGF); 1154 1155 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1156 std::pair<llvm::Value *, SanitizerMask>> 1157 Check; 1158 1159 // Each of these checks needs to return 'false' when an issue was detected. 1160 ImplicitConversionCheckKind CheckKind; 1161 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1162 // So we can 'and' all the checks together, and still get 'false', 1163 // if at least one of the checks detected an issue. 1164 1165 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1166 CheckKind = Check.first; 1167 Checks.emplace_back(Check.second); 1168 1169 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1170 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1171 // If the signed integer truncation sanitizer was enabled, 1172 // and we are truncating from larger unsigned type to smaller signed type, 1173 // let's handle the case we skipped in that check. 1174 Check = 1175 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1176 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1177 Checks.emplace_back(Check.second); 1178 // If the comparison result is 'i1 false', then the truncation was lossy. 1179 } 1180 1181 llvm::Constant *StaticArgs[] = { 1182 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1183 CGF.EmitCheckTypeDescriptor(DstType), 1184 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1185 // EmitCheck() will 'and' all the checks together. 1186 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1187 {Src, Dst}); 1188 } 1189 1190 /// Emit a conversion from the specified type to the specified destination type, 1191 /// both of which are LLVM scalar types. 1192 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1193 QualType DstType, 1194 SourceLocation Loc, 1195 ScalarConversionOpts Opts) { 1196 // All conversions involving fixed point types should be handled by the 1197 // EmitFixedPoint family functions. This is done to prevent bloating up this 1198 // function more, and although fixed point numbers are represented by 1199 // integers, we do not want to follow any logic that assumes they should be 1200 // treated as integers. 1201 // TODO(leonardchan): When necessary, add another if statement checking for 1202 // conversions to fixed point types from other types. 1203 if (SrcType->isFixedPointType()) { 1204 if (DstType->isBooleanType()) 1205 // It is important that we check this before checking if the dest type is 1206 // an integer because booleans are technically integer types. 1207 // We do not need to check the padding bit on unsigned types if unsigned 1208 // padding is enabled because overflow into this bit is undefined 1209 // behavior. 1210 return Builder.CreateIsNotNull(Src, "tobool"); 1211 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1212 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1213 1214 llvm_unreachable( 1215 "Unhandled scalar conversion from a fixed point type to another type."); 1216 } else if (DstType->isFixedPointType()) { 1217 if (SrcType->isIntegerType()) 1218 // This also includes converting booleans and enums to fixed point types. 1219 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1220 1221 llvm_unreachable( 1222 "Unhandled scalar conversion to a fixed point type from another type."); 1223 } 1224 1225 QualType NoncanonicalSrcType = SrcType; 1226 QualType NoncanonicalDstType = DstType; 1227 1228 SrcType = CGF.getContext().getCanonicalType(SrcType); 1229 DstType = CGF.getContext().getCanonicalType(DstType); 1230 if (SrcType == DstType) return Src; 1231 1232 if (DstType->isVoidType()) return nullptr; 1233 1234 llvm::Value *OrigSrc = Src; 1235 QualType OrigSrcType = SrcType; 1236 llvm::Type *SrcTy = Src->getType(); 1237 1238 // Handle conversions to bool first, they are special: comparisons against 0. 1239 if (DstType->isBooleanType()) 1240 return EmitConversionToBool(Src, SrcType); 1241 1242 llvm::Type *DstTy = ConvertType(DstType); 1243 1244 // Cast from half through float if half isn't a native type. 1245 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1246 // Cast to FP using the intrinsic if the half type itself isn't supported. 1247 if (DstTy->isFloatingPointTy()) { 1248 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1249 return Builder.CreateCall( 1250 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1251 Src); 1252 } else { 1253 // Cast to other types through float, using either the intrinsic or FPExt, 1254 // depending on whether the half type itself is supported 1255 // (as opposed to operations on half, available with NativeHalfType). 1256 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1257 Src = Builder.CreateCall( 1258 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1259 CGF.CGM.FloatTy), 1260 Src); 1261 } else { 1262 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1263 } 1264 SrcType = CGF.getContext().FloatTy; 1265 SrcTy = CGF.FloatTy; 1266 } 1267 } 1268 1269 // Ignore conversions like int -> uint. 1270 if (SrcTy == DstTy) { 1271 if (Opts.EmitImplicitIntegerSignChangeChecks) 1272 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1273 NoncanonicalDstType, Loc); 1274 1275 return Src; 1276 } 1277 1278 // Handle pointer conversions next: pointers can only be converted to/from 1279 // other pointers and integers. Check for pointer types in terms of LLVM, as 1280 // some native types (like Obj-C id) may map to a pointer type. 1281 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1282 // The source value may be an integer, or a pointer. 1283 if (isa<llvm::PointerType>(SrcTy)) 1284 return Builder.CreateBitCast(Src, DstTy, "conv"); 1285 1286 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1287 // First, convert to the correct width so that we control the kind of 1288 // extension. 1289 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1290 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1291 llvm::Value* IntResult = 1292 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1293 // Then, cast to pointer. 1294 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1295 } 1296 1297 if (isa<llvm::PointerType>(SrcTy)) { 1298 // Must be an ptr to int cast. 1299 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1300 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1301 } 1302 1303 // A scalar can be splatted to an extended vector of the same element type 1304 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1305 // Sema should add casts to make sure that the source expression's type is 1306 // the same as the vector's element type (sans qualifiers) 1307 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1308 SrcType.getTypePtr() && 1309 "Splatted expr doesn't match with vector element type?"); 1310 1311 // Splat the element across to all elements 1312 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1313 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1314 } 1315 1316 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1317 // Allow bitcast from vector to integer/fp of the same size. 1318 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1319 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1320 if (SrcSize == DstSize) 1321 return Builder.CreateBitCast(Src, DstTy, "conv"); 1322 1323 // Conversions between vectors of different sizes are not allowed except 1324 // when vectors of half are involved. Operations on storage-only half 1325 // vectors require promoting half vector operands to float vectors and 1326 // truncating the result, which is either an int or float vector, to a 1327 // short or half vector. 1328 1329 // Source and destination are both expected to be vectors. 1330 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1331 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1332 (void)DstElementTy; 1333 1334 assert(((SrcElementTy->isIntegerTy() && 1335 DstElementTy->isIntegerTy()) || 1336 (SrcElementTy->isFloatingPointTy() && 1337 DstElementTy->isFloatingPointTy())) && 1338 "unexpected conversion between a floating-point vector and an " 1339 "integer vector"); 1340 1341 // Truncate an i32 vector to an i16 vector. 1342 if (SrcElementTy->isIntegerTy()) 1343 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1344 1345 // Truncate a float vector to a half vector. 1346 if (SrcSize > DstSize) 1347 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1348 1349 // Promote a half vector to a float vector. 1350 return Builder.CreateFPExt(Src, DstTy, "conv"); 1351 } 1352 1353 // Finally, we have the arithmetic types: real int/float. 1354 Value *Res = nullptr; 1355 llvm::Type *ResTy = DstTy; 1356 1357 // An overflowing conversion has undefined behavior if either the source type 1358 // or the destination type is a floating-point type. However, we consider the 1359 // range of representable values for all floating-point types to be 1360 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1361 // floating-point type. 1362 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1363 OrigSrcType->isFloatingType()) 1364 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1365 Loc); 1366 1367 // Cast to half through float if half isn't a native type. 1368 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1369 // Make sure we cast in a single step if from another FP type. 1370 if (SrcTy->isFloatingPointTy()) { 1371 // Use the intrinsic if the half type itself isn't supported 1372 // (as opposed to operations on half, available with NativeHalfType). 1373 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1374 return Builder.CreateCall( 1375 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1376 // If the half type is supported, just use an fptrunc. 1377 return Builder.CreateFPTrunc(Src, DstTy); 1378 } 1379 DstTy = CGF.FloatTy; 1380 } 1381 1382 if (isa<llvm::IntegerType>(SrcTy)) { 1383 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1384 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1385 InputSigned = true; 1386 } 1387 if (isa<llvm::IntegerType>(DstTy)) 1388 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1389 else if (InputSigned) 1390 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1391 else 1392 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1393 } else if (isa<llvm::IntegerType>(DstTy)) { 1394 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1395 if (DstType->isSignedIntegerOrEnumerationType()) 1396 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1397 else 1398 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1399 } else { 1400 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1401 "Unknown real conversion"); 1402 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1403 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1404 else 1405 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1406 } 1407 1408 if (DstTy != ResTy) { 1409 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1410 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1411 Res = Builder.CreateCall( 1412 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1413 Res); 1414 } else { 1415 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1416 } 1417 } 1418 1419 if (Opts.EmitImplicitIntegerTruncationChecks) 1420 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1421 NoncanonicalDstType, Loc); 1422 1423 if (Opts.EmitImplicitIntegerSignChangeChecks) 1424 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1425 NoncanonicalDstType, Loc); 1426 1427 return Res; 1428 } 1429 1430 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1431 QualType DstTy, 1432 SourceLocation Loc) { 1433 FixedPointSemantics SrcFPSema = 1434 CGF.getContext().getFixedPointSemantics(SrcTy); 1435 FixedPointSemantics DstFPSema = 1436 CGF.getContext().getFixedPointSemantics(DstTy); 1437 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1438 DstTy->isIntegerType()); 1439 } 1440 1441 Value *ScalarExprEmitter::EmitFixedPointConversion( 1442 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1443 SourceLocation Loc, bool DstIsInteger) { 1444 using llvm::APInt; 1445 using llvm::ConstantInt; 1446 using llvm::Value; 1447 1448 unsigned SrcWidth = SrcFPSema.getWidth(); 1449 unsigned DstWidth = DstFPSema.getWidth(); 1450 unsigned SrcScale = SrcFPSema.getScale(); 1451 unsigned DstScale = DstFPSema.getScale(); 1452 bool SrcIsSigned = SrcFPSema.isSigned(); 1453 bool DstIsSigned = DstFPSema.isSigned(); 1454 1455 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1456 1457 Value *Result = Src; 1458 unsigned ResultWidth = SrcWidth; 1459 1460 // Downscale. 1461 if (DstScale < SrcScale) { 1462 // When converting to integers, we round towards zero. For negative numbers, 1463 // right shifting rounds towards negative infinity. In this case, we can 1464 // just round up before shifting. 1465 if (DstIsInteger && SrcIsSigned) { 1466 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1467 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1468 Value *LowBits = ConstantInt::get( 1469 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1470 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1471 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1472 } 1473 1474 Result = SrcIsSigned 1475 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1476 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1477 } 1478 1479 if (!DstFPSema.isSaturated()) { 1480 // Resize. 1481 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1482 1483 // Upscale. 1484 if (DstScale > SrcScale) 1485 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1486 } else { 1487 // Adjust the number of fractional bits. 1488 if (DstScale > SrcScale) { 1489 // Compare to DstWidth to prevent resizing twice. 1490 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1491 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1492 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1493 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1494 } 1495 1496 // Handle saturation. 1497 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1498 if (LessIntBits) { 1499 Value *Max = ConstantInt::get( 1500 CGF.getLLVMContext(), 1501 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1502 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1503 : Builder.CreateICmpUGT(Result, Max); 1504 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1505 } 1506 // Cannot overflow min to dest type if src is unsigned since all fixed 1507 // point types can cover the unsigned min of 0. 1508 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1509 Value *Min = ConstantInt::get( 1510 CGF.getLLVMContext(), 1511 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1512 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1513 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1514 } 1515 1516 // Resize the integer part to get the final destination size. 1517 if (ResultWidth != DstWidth) 1518 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1519 } 1520 return Result; 1521 } 1522 1523 /// Emit a conversion from the specified complex type to the specified 1524 /// destination type, where the destination type is an LLVM scalar type. 1525 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1526 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1527 SourceLocation Loc) { 1528 // Get the source element type. 1529 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1530 1531 // Handle conversions to bool first, they are special: comparisons against 0. 1532 if (DstTy->isBooleanType()) { 1533 // Complex != 0 -> (Real != 0) | (Imag != 0) 1534 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1535 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1536 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1537 } 1538 1539 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1540 // the imaginary part of the complex value is discarded and the value of the 1541 // real part is converted according to the conversion rules for the 1542 // corresponding real type. 1543 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1544 } 1545 1546 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1547 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1548 } 1549 1550 /// Emit a sanitization check for the given "binary" operation (which 1551 /// might actually be a unary increment which has been lowered to a binary 1552 /// operation). The check passes if all values in \p Checks (which are \c i1), 1553 /// are \c true. 1554 void ScalarExprEmitter::EmitBinOpCheck( 1555 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1556 assert(CGF.IsSanitizerScope); 1557 SanitizerHandler Check; 1558 SmallVector<llvm::Constant *, 4> StaticData; 1559 SmallVector<llvm::Value *, 2> DynamicData; 1560 1561 BinaryOperatorKind Opcode = Info.Opcode; 1562 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1563 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1564 1565 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1566 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1567 if (UO && UO->getOpcode() == UO_Minus) { 1568 Check = SanitizerHandler::NegateOverflow; 1569 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1570 DynamicData.push_back(Info.RHS); 1571 } else { 1572 if (BinaryOperator::isShiftOp(Opcode)) { 1573 // Shift LHS negative or too large, or RHS out of bounds. 1574 Check = SanitizerHandler::ShiftOutOfBounds; 1575 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1576 StaticData.push_back( 1577 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1578 StaticData.push_back( 1579 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1580 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1581 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1582 Check = SanitizerHandler::DivremOverflow; 1583 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1584 } else { 1585 // Arithmetic overflow (+, -, *). 1586 switch (Opcode) { 1587 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1588 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1589 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1590 default: llvm_unreachable("unexpected opcode for bin op check"); 1591 } 1592 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1593 } 1594 DynamicData.push_back(Info.LHS); 1595 DynamicData.push_back(Info.RHS); 1596 } 1597 1598 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1599 } 1600 1601 //===----------------------------------------------------------------------===// 1602 // Visitor Methods 1603 //===----------------------------------------------------------------------===// 1604 1605 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1606 CGF.ErrorUnsupported(E, "scalar expression"); 1607 if (E->getType()->isVoidType()) 1608 return nullptr; 1609 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1610 } 1611 1612 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1613 // Vector Mask Case 1614 if (E->getNumSubExprs() == 2) { 1615 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1616 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1617 Value *Mask; 1618 1619 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1620 unsigned LHSElts = LTy->getNumElements(); 1621 1622 Mask = RHS; 1623 1624 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1625 1626 // Mask off the high bits of each shuffle index. 1627 Value *MaskBits = 1628 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1629 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1630 1631 // newv = undef 1632 // mask = mask & maskbits 1633 // for each elt 1634 // n = extract mask i 1635 // x = extract val n 1636 // newv = insert newv, x, i 1637 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1638 MTy->getNumElements()); 1639 Value* NewV = llvm::UndefValue::get(RTy); 1640 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1641 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1642 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1643 1644 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1645 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1646 } 1647 return NewV; 1648 } 1649 1650 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1651 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1652 1653 SmallVector<int, 32> Indices; 1654 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1655 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1656 // Check for -1 and output it as undef in the IR. 1657 if (Idx.isSigned() && Idx.isAllOnesValue()) 1658 Indices.push_back(-1); 1659 else 1660 Indices.push_back(Idx.getZExtValue()); 1661 } 1662 1663 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1664 } 1665 1666 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1667 QualType SrcType = E->getSrcExpr()->getType(), 1668 DstType = E->getType(); 1669 1670 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1671 1672 SrcType = CGF.getContext().getCanonicalType(SrcType); 1673 DstType = CGF.getContext().getCanonicalType(DstType); 1674 if (SrcType == DstType) return Src; 1675 1676 assert(SrcType->isVectorType() && 1677 "ConvertVector source type must be a vector"); 1678 assert(DstType->isVectorType() && 1679 "ConvertVector destination type must be a vector"); 1680 1681 llvm::Type *SrcTy = Src->getType(); 1682 llvm::Type *DstTy = ConvertType(DstType); 1683 1684 // Ignore conversions like int -> uint. 1685 if (SrcTy == DstTy) 1686 return Src; 1687 1688 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1689 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1690 1691 assert(SrcTy->isVectorTy() && 1692 "ConvertVector source IR type must be a vector"); 1693 assert(DstTy->isVectorTy() && 1694 "ConvertVector destination IR type must be a vector"); 1695 1696 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1697 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1698 1699 if (DstEltType->isBooleanType()) { 1700 assert((SrcEltTy->isFloatingPointTy() || 1701 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1702 1703 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1704 if (SrcEltTy->isFloatingPointTy()) { 1705 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1706 } else { 1707 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1708 } 1709 } 1710 1711 // We have the arithmetic types: real int/float. 1712 Value *Res = nullptr; 1713 1714 if (isa<llvm::IntegerType>(SrcEltTy)) { 1715 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1716 if (isa<llvm::IntegerType>(DstEltTy)) 1717 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1718 else if (InputSigned) 1719 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1720 else 1721 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1722 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1723 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1724 if (DstEltType->isSignedIntegerOrEnumerationType()) 1725 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1726 else 1727 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1728 } else { 1729 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1730 "Unknown real conversion"); 1731 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1732 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1733 else 1734 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1735 } 1736 1737 return Res; 1738 } 1739 1740 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1741 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1742 CGF.EmitIgnoredExpr(E->getBase()); 1743 return CGF.emitScalarConstant(Constant, E); 1744 } else { 1745 Expr::EvalResult Result; 1746 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1747 llvm::APSInt Value = Result.Val.getInt(); 1748 CGF.EmitIgnoredExpr(E->getBase()); 1749 return Builder.getInt(Value); 1750 } 1751 } 1752 1753 return EmitLoadOfLValue(E); 1754 } 1755 1756 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1757 TestAndClearIgnoreResultAssign(); 1758 1759 // Emit subscript expressions in rvalue context's. For most cases, this just 1760 // loads the lvalue formed by the subscript expr. However, we have to be 1761 // careful, because the base of a vector subscript is occasionally an rvalue, 1762 // so we can't get it as an lvalue. 1763 if (!E->getBase()->getType()->isVectorType()) 1764 return EmitLoadOfLValue(E); 1765 1766 // Handle the vector case. The base must be a vector, the index must be an 1767 // integer value. 1768 Value *Base = Visit(E->getBase()); 1769 Value *Idx = Visit(E->getIdx()); 1770 QualType IdxTy = E->getIdx()->getType(); 1771 1772 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1773 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1774 1775 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1776 } 1777 1778 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1779 unsigned Off, llvm::Type *I32Ty) { 1780 int MV = SVI->getMaskValue(Idx); 1781 if (MV == -1) 1782 return llvm::UndefValue::get(I32Ty); 1783 return llvm::ConstantInt::get(I32Ty, Off+MV); 1784 } 1785 1786 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1787 if (C->getBitWidth() != 32) { 1788 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1789 C->getZExtValue()) && 1790 "Index operand too large for shufflevector mask!"); 1791 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1792 } 1793 return C; 1794 } 1795 1796 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1797 bool Ignore = TestAndClearIgnoreResultAssign(); 1798 (void)Ignore; 1799 assert (Ignore == false && "init list ignored"); 1800 unsigned NumInitElements = E->getNumInits(); 1801 1802 if (E->hadArrayRangeDesignator()) 1803 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1804 1805 llvm::VectorType *VType = 1806 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1807 1808 if (!VType) { 1809 if (NumInitElements == 0) { 1810 // C++11 value-initialization for the scalar. 1811 return EmitNullValue(E->getType()); 1812 } 1813 // We have a scalar in braces. Just use the first element. 1814 return Visit(E->getInit(0)); 1815 } 1816 1817 unsigned ResElts = VType->getNumElements(); 1818 1819 // Loop over initializers collecting the Value for each, and remembering 1820 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1821 // us to fold the shuffle for the swizzle into the shuffle for the vector 1822 // initializer, since LLVM optimizers generally do not want to touch 1823 // shuffles. 1824 unsigned CurIdx = 0; 1825 bool VIsUndefShuffle = false; 1826 llvm::Value *V = llvm::UndefValue::get(VType); 1827 for (unsigned i = 0; i != NumInitElements; ++i) { 1828 Expr *IE = E->getInit(i); 1829 Value *Init = Visit(IE); 1830 SmallVector<llvm::Constant*, 16> Args; 1831 1832 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1833 1834 // Handle scalar elements. If the scalar initializer is actually one 1835 // element of a different vector of the same width, use shuffle instead of 1836 // extract+insert. 1837 if (!VVT) { 1838 if (isa<ExtVectorElementExpr>(IE)) { 1839 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1840 1841 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1842 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1843 Value *LHS = nullptr, *RHS = nullptr; 1844 if (CurIdx == 0) { 1845 // insert into undef -> shuffle (src, undef) 1846 // shufflemask must use an i32 1847 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1848 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1849 1850 LHS = EI->getVectorOperand(); 1851 RHS = V; 1852 VIsUndefShuffle = true; 1853 } else if (VIsUndefShuffle) { 1854 // insert into undefshuffle && size match -> shuffle (v, src) 1855 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1856 for (unsigned j = 0; j != CurIdx; ++j) 1857 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1858 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1859 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1860 1861 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1862 RHS = EI->getVectorOperand(); 1863 VIsUndefShuffle = false; 1864 } 1865 if (!Args.empty()) { 1866 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1867 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1868 ++CurIdx; 1869 continue; 1870 } 1871 } 1872 } 1873 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1874 "vecinit"); 1875 VIsUndefShuffle = false; 1876 ++CurIdx; 1877 continue; 1878 } 1879 1880 unsigned InitElts = VVT->getNumElements(); 1881 1882 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1883 // input is the same width as the vector being constructed, generate an 1884 // optimized shuffle of the swizzle input into the result. 1885 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1886 if (isa<ExtVectorElementExpr>(IE)) { 1887 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1888 Value *SVOp = SVI->getOperand(0); 1889 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1890 1891 if (OpTy->getNumElements() == ResElts) { 1892 for (unsigned j = 0; j != CurIdx; ++j) { 1893 // If the current vector initializer is a shuffle with undef, merge 1894 // this shuffle directly into it. 1895 if (VIsUndefShuffle) { 1896 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1897 CGF.Int32Ty)); 1898 } else { 1899 Args.push_back(Builder.getInt32(j)); 1900 } 1901 } 1902 for (unsigned j = 0, je = InitElts; j != je; ++j) 1903 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1904 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1905 1906 if (VIsUndefShuffle) 1907 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1908 1909 Init = SVOp; 1910 } 1911 } 1912 1913 // Extend init to result vector length, and then shuffle its contribution 1914 // to the vector initializer into V. 1915 if (Args.empty()) { 1916 for (unsigned j = 0; j != InitElts; ++j) 1917 Args.push_back(Builder.getInt32(j)); 1918 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1919 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1920 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1921 Mask, "vext"); 1922 1923 Args.clear(); 1924 for (unsigned j = 0; j != CurIdx; ++j) 1925 Args.push_back(Builder.getInt32(j)); 1926 for (unsigned j = 0; j != InitElts; ++j) 1927 Args.push_back(Builder.getInt32(j+Offset)); 1928 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1929 } 1930 1931 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1932 // merging subsequent shuffles into this one. 1933 if (CurIdx == 0) 1934 std::swap(V, Init); 1935 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1936 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1937 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1938 CurIdx += InitElts; 1939 } 1940 1941 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1942 // Emit remaining default initializers. 1943 llvm::Type *EltTy = VType->getElementType(); 1944 1945 // Emit remaining default initializers 1946 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1947 Value *Idx = Builder.getInt32(CurIdx); 1948 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1949 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1950 } 1951 return V; 1952 } 1953 1954 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1955 const Expr *E = CE->getSubExpr(); 1956 1957 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1958 return false; 1959 1960 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1961 // We always assume that 'this' is never null. 1962 return false; 1963 } 1964 1965 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1966 // And that glvalue casts are never null. 1967 if (ICE->getValueKind() != VK_RValue) 1968 return false; 1969 } 1970 1971 return true; 1972 } 1973 1974 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1975 // have to handle a more broad range of conversions than explicit casts, as they 1976 // handle things like function to ptr-to-function decay etc. 1977 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1978 Expr *E = CE->getSubExpr(); 1979 QualType DestTy = CE->getType(); 1980 CastKind Kind = CE->getCastKind(); 1981 1982 // These cases are generally not written to ignore the result of 1983 // evaluating their sub-expressions, so we clear this now. 1984 bool Ignored = TestAndClearIgnoreResultAssign(); 1985 1986 // Since almost all cast kinds apply to scalars, this switch doesn't have 1987 // a default case, so the compiler will warn on a missing case. The cases 1988 // are in the same order as in the CastKind enum. 1989 switch (Kind) { 1990 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1991 case CK_BuiltinFnToFnPtr: 1992 llvm_unreachable("builtin functions are handled elsewhere"); 1993 1994 case CK_LValueBitCast: 1995 case CK_ObjCObjectLValueCast: { 1996 Address Addr = EmitLValue(E).getAddress(CGF); 1997 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1998 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1999 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2000 } 2001 2002 case CK_LValueToRValueBitCast: { 2003 LValue SourceLVal = CGF.EmitLValue(E); 2004 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 2005 CGF.ConvertTypeForMem(DestTy)); 2006 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2007 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2008 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2009 } 2010 2011 case CK_CPointerToObjCPointerCast: 2012 case CK_BlockPointerToObjCPointerCast: 2013 case CK_AnyPointerToBlockPointerCast: 2014 case CK_BitCast: { 2015 Value *Src = Visit(const_cast<Expr*>(E)); 2016 llvm::Type *SrcTy = Src->getType(); 2017 llvm::Type *DstTy = ConvertType(DestTy); 2018 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2019 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2020 llvm_unreachable("wrong cast for pointers in different address spaces" 2021 "(must be an address space cast)!"); 2022 } 2023 2024 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2025 if (auto PT = DestTy->getAs<PointerType>()) 2026 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2027 /*MayBeNull=*/true, 2028 CodeGenFunction::CFITCK_UnrelatedCast, 2029 CE->getBeginLoc()); 2030 } 2031 2032 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2033 const QualType SrcType = E->getType(); 2034 2035 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2036 // Casting to pointer that could carry dynamic information (provided by 2037 // invariant.group) requires launder. 2038 Src = Builder.CreateLaunderInvariantGroup(Src); 2039 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2040 // Casting to pointer that does not carry dynamic information (provided 2041 // by invariant.group) requires stripping it. Note that we don't do it 2042 // if the source could not be dynamic type and destination could be 2043 // dynamic because dynamic information is already laundered. It is 2044 // because launder(strip(src)) == launder(src), so there is no need to 2045 // add extra strip before launder. 2046 Src = Builder.CreateStripInvariantGroup(Src); 2047 } 2048 } 2049 2050 // Update heapallocsite metadata when there is an explicit cast. 2051 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2052 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2053 CGF.getDebugInfo()-> 2054 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2055 2056 return Builder.CreateBitCast(Src, DstTy); 2057 } 2058 case CK_AddressSpaceConversion: { 2059 Expr::EvalResult Result; 2060 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2061 Result.Val.isNullPointer()) { 2062 // If E has side effect, it is emitted even if its final result is a 2063 // null pointer. In that case, a DCE pass should be able to 2064 // eliminate the useless instructions emitted during translating E. 2065 if (Result.HasSideEffects) 2066 Visit(E); 2067 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2068 ConvertType(DestTy)), DestTy); 2069 } 2070 // Since target may map different address spaces in AST to the same address 2071 // space, an address space conversion may end up as a bitcast. 2072 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2073 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2074 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2075 } 2076 case CK_AtomicToNonAtomic: 2077 case CK_NonAtomicToAtomic: 2078 case CK_NoOp: 2079 case CK_UserDefinedConversion: 2080 return Visit(const_cast<Expr*>(E)); 2081 2082 case CK_BaseToDerived: { 2083 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2084 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2085 2086 Address Base = CGF.EmitPointerWithAlignment(E); 2087 Address Derived = 2088 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2089 CE->path_begin(), CE->path_end(), 2090 CGF.ShouldNullCheckClassCastValue(CE)); 2091 2092 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2093 // performed and the object is not of the derived type. 2094 if (CGF.sanitizePerformTypeCheck()) 2095 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2096 Derived.getPointer(), DestTy->getPointeeType()); 2097 2098 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2099 CGF.EmitVTablePtrCheckForCast( 2100 DestTy->getPointeeType(), Derived.getPointer(), 2101 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2102 CE->getBeginLoc()); 2103 2104 return Derived.getPointer(); 2105 } 2106 case CK_UncheckedDerivedToBase: 2107 case CK_DerivedToBase: { 2108 // The EmitPointerWithAlignment path does this fine; just discard 2109 // the alignment. 2110 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2111 } 2112 2113 case CK_Dynamic: { 2114 Address V = CGF.EmitPointerWithAlignment(E); 2115 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2116 return CGF.EmitDynamicCast(V, DCE); 2117 } 2118 2119 case CK_ArrayToPointerDecay: 2120 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2121 case CK_FunctionToPointerDecay: 2122 return EmitLValue(E).getPointer(CGF); 2123 2124 case CK_NullToPointer: 2125 if (MustVisitNullValue(E)) 2126 CGF.EmitIgnoredExpr(E); 2127 2128 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2129 DestTy); 2130 2131 case CK_NullToMemberPointer: { 2132 if (MustVisitNullValue(E)) 2133 CGF.EmitIgnoredExpr(E); 2134 2135 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2136 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2137 } 2138 2139 case CK_ReinterpretMemberPointer: 2140 case CK_BaseToDerivedMemberPointer: 2141 case CK_DerivedToBaseMemberPointer: { 2142 Value *Src = Visit(E); 2143 2144 // Note that the AST doesn't distinguish between checked and 2145 // unchecked member pointer conversions, so we always have to 2146 // implement checked conversions here. This is inefficient when 2147 // actual control flow may be required in order to perform the 2148 // check, which it is for data member pointers (but not member 2149 // function pointers on Itanium and ARM). 2150 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2151 } 2152 2153 case CK_ARCProduceObject: 2154 return CGF.EmitARCRetainScalarExpr(E); 2155 case CK_ARCConsumeObject: 2156 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2157 case CK_ARCReclaimReturnedObject: 2158 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2159 case CK_ARCExtendBlockObject: 2160 return CGF.EmitARCExtendBlockObject(E); 2161 2162 case CK_CopyAndAutoreleaseBlockObject: 2163 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2164 2165 case CK_FloatingRealToComplex: 2166 case CK_FloatingComplexCast: 2167 case CK_IntegralRealToComplex: 2168 case CK_IntegralComplexCast: 2169 case CK_IntegralComplexToFloatingComplex: 2170 case CK_FloatingComplexToIntegralComplex: 2171 case CK_ConstructorConversion: 2172 case CK_ToUnion: 2173 llvm_unreachable("scalar cast to non-scalar value"); 2174 2175 case CK_LValueToRValue: 2176 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2177 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2178 return Visit(const_cast<Expr*>(E)); 2179 2180 case CK_IntegralToPointer: { 2181 Value *Src = Visit(const_cast<Expr*>(E)); 2182 2183 // First, convert to the correct width so that we control the kind of 2184 // extension. 2185 auto DestLLVMTy = ConvertType(DestTy); 2186 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2187 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2188 llvm::Value* IntResult = 2189 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2190 2191 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2192 2193 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2194 // Going from integer to pointer that could be dynamic requires reloading 2195 // dynamic information from invariant.group. 2196 if (DestTy.mayBeDynamicClass()) 2197 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2198 } 2199 return IntToPtr; 2200 } 2201 case CK_PointerToIntegral: { 2202 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2203 auto *PtrExpr = Visit(E); 2204 2205 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2206 const QualType SrcType = E->getType(); 2207 2208 // Casting to integer requires stripping dynamic information as it does 2209 // not carries it. 2210 if (SrcType.mayBeDynamicClass()) 2211 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2212 } 2213 2214 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2215 } 2216 case CK_ToVoid: { 2217 CGF.EmitIgnoredExpr(E); 2218 return nullptr; 2219 } 2220 case CK_VectorSplat: { 2221 llvm::Type *DstTy = ConvertType(DestTy); 2222 Value *Elt = Visit(const_cast<Expr*>(E)); 2223 // Splat the element across to all elements 2224 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 2225 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2226 } 2227 2228 case CK_FixedPointCast: 2229 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2230 CE->getExprLoc()); 2231 2232 case CK_FixedPointToBoolean: 2233 assert(E->getType()->isFixedPointType() && 2234 "Expected src type to be fixed point type"); 2235 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2236 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2237 CE->getExprLoc()); 2238 2239 case CK_FixedPointToIntegral: 2240 assert(E->getType()->isFixedPointType() && 2241 "Expected src type to be fixed point type"); 2242 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2243 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2244 CE->getExprLoc()); 2245 2246 case CK_IntegralToFixedPoint: 2247 assert(E->getType()->isIntegerType() && 2248 "Expected src type to be an integer"); 2249 assert(DestTy->isFixedPointType() && 2250 "Expected dest type to be fixed point type"); 2251 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2252 CE->getExprLoc()); 2253 2254 case CK_IntegralCast: { 2255 ScalarConversionOpts Opts; 2256 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2257 if (!ICE->isPartOfExplicitCast()) 2258 Opts = ScalarConversionOpts(CGF.SanOpts); 2259 } 2260 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2261 CE->getExprLoc(), Opts); 2262 } 2263 case CK_IntegralToFloating: 2264 case CK_FloatingToIntegral: 2265 case CK_FloatingCast: 2266 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2267 CE->getExprLoc()); 2268 case CK_BooleanToSignedIntegral: { 2269 ScalarConversionOpts Opts; 2270 Opts.TreatBooleanAsSigned = true; 2271 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2272 CE->getExprLoc(), Opts); 2273 } 2274 case CK_IntegralToBoolean: 2275 return EmitIntToBoolConversion(Visit(E)); 2276 case CK_PointerToBoolean: 2277 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2278 case CK_FloatingToBoolean: 2279 return EmitFloatToBoolConversion(Visit(E)); 2280 case CK_MemberPointerToBoolean: { 2281 llvm::Value *MemPtr = Visit(E); 2282 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2283 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2284 } 2285 2286 case CK_FloatingComplexToReal: 2287 case CK_IntegralComplexToReal: 2288 return CGF.EmitComplexExpr(E, false, true).first; 2289 2290 case CK_FloatingComplexToBoolean: 2291 case CK_IntegralComplexToBoolean: { 2292 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2293 2294 // TODO: kill this function off, inline appropriate case here 2295 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2296 CE->getExprLoc()); 2297 } 2298 2299 case CK_ZeroToOCLOpaqueType: { 2300 assert((DestTy->isEventT() || DestTy->isQueueT() || 2301 DestTy->isOCLIntelSubgroupAVCType()) && 2302 "CK_ZeroToOCLEvent cast on non-event type"); 2303 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2304 } 2305 2306 case CK_IntToOCLSampler: 2307 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2308 2309 } // end of switch 2310 2311 llvm_unreachable("unknown scalar cast"); 2312 } 2313 2314 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2315 CodeGenFunction::StmtExprEvaluation eval(CGF); 2316 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2317 !E->getType()->isVoidType()); 2318 if (!RetAlloca.isValid()) 2319 return nullptr; 2320 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2321 E->getExprLoc()); 2322 } 2323 2324 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2325 CGF.enterFullExpression(E); 2326 CodeGenFunction::RunCleanupsScope Scope(CGF); 2327 Value *V = Visit(E->getSubExpr()); 2328 // Defend against dominance problems caused by jumps out of expression 2329 // evaluation through the shared cleanup block. 2330 Scope.ForceCleanup({&V}); 2331 return V; 2332 } 2333 2334 //===----------------------------------------------------------------------===// 2335 // Unary Operators 2336 //===----------------------------------------------------------------------===// 2337 2338 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2339 llvm::Value *InVal, bool IsInc) { 2340 BinOpInfo BinOp; 2341 BinOp.LHS = InVal; 2342 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2343 BinOp.Ty = E->getType(); 2344 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2345 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2346 BinOp.E = E; 2347 return BinOp; 2348 } 2349 2350 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2351 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2352 llvm::Value *Amount = 2353 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2354 StringRef Name = IsInc ? "inc" : "dec"; 2355 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2356 case LangOptions::SOB_Defined: 2357 return Builder.CreateAdd(InVal, Amount, Name); 2358 case LangOptions::SOB_Undefined: 2359 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2360 return Builder.CreateNSWAdd(InVal, Amount, Name); 2361 LLVM_FALLTHROUGH; 2362 case LangOptions::SOB_Trapping: 2363 if (!E->canOverflow()) 2364 return Builder.CreateNSWAdd(InVal, Amount, Name); 2365 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2366 } 2367 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2368 } 2369 2370 namespace { 2371 /// Handles check and update for lastprivate conditional variables. 2372 class OMPLastprivateConditionalUpdateRAII { 2373 private: 2374 CodeGenFunction &CGF; 2375 const UnaryOperator *E; 2376 2377 public: 2378 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2379 const UnaryOperator *E) 2380 : CGF(CGF), E(E) {} 2381 ~OMPLastprivateConditionalUpdateRAII() { 2382 if (CGF.getLangOpts().OpenMP) 2383 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2384 CGF, E->getSubExpr()); 2385 } 2386 }; 2387 } // namespace 2388 2389 llvm::Value * 2390 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2391 bool isInc, bool isPre) { 2392 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2393 QualType type = E->getSubExpr()->getType(); 2394 llvm::PHINode *atomicPHI = nullptr; 2395 llvm::Value *value; 2396 llvm::Value *input; 2397 2398 int amount = (isInc ? 1 : -1); 2399 bool isSubtraction = !isInc; 2400 2401 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2402 type = atomicTy->getValueType(); 2403 if (isInc && type->isBooleanType()) { 2404 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2405 if (isPre) { 2406 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2407 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2408 return Builder.getTrue(); 2409 } 2410 // For atomic bool increment, we just store true and return it for 2411 // preincrement, do an atomic swap with true for postincrement 2412 return Builder.CreateAtomicRMW( 2413 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2414 llvm::AtomicOrdering::SequentiallyConsistent); 2415 } 2416 // Special case for atomic increment / decrement on integers, emit 2417 // atomicrmw instructions. We skip this if we want to be doing overflow 2418 // checking, and fall into the slow path with the atomic cmpxchg loop. 2419 if (!type->isBooleanType() && type->isIntegerType() && 2420 !(type->isUnsignedIntegerType() && 2421 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2422 CGF.getLangOpts().getSignedOverflowBehavior() != 2423 LangOptions::SOB_Trapping) { 2424 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2425 llvm::AtomicRMWInst::Sub; 2426 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2427 llvm::Instruction::Sub; 2428 llvm::Value *amt = CGF.EmitToMemory( 2429 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2430 llvm::Value *old = 2431 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2432 llvm::AtomicOrdering::SequentiallyConsistent); 2433 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2434 } 2435 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2436 input = value; 2437 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2438 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2439 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2440 value = CGF.EmitToMemory(value, type); 2441 Builder.CreateBr(opBB); 2442 Builder.SetInsertPoint(opBB); 2443 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2444 atomicPHI->addIncoming(value, startBB); 2445 value = atomicPHI; 2446 } else { 2447 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2448 input = value; 2449 } 2450 2451 // Special case of integer increment that we have to check first: bool++. 2452 // Due to promotion rules, we get: 2453 // bool++ -> bool = bool + 1 2454 // -> bool = (int)bool + 1 2455 // -> bool = ((int)bool + 1 != 0) 2456 // An interesting aspect of this is that increment is always true. 2457 // Decrement does not have this property. 2458 if (isInc && type->isBooleanType()) { 2459 value = Builder.getTrue(); 2460 2461 // Most common case by far: integer increment. 2462 } else if (type->isIntegerType()) { 2463 QualType promotedType; 2464 bool canPerformLossyDemotionCheck = false; 2465 if (type->isPromotableIntegerType()) { 2466 promotedType = CGF.getContext().getPromotedIntegerType(type); 2467 assert(promotedType != type && "Shouldn't promote to the same type."); 2468 canPerformLossyDemotionCheck = true; 2469 canPerformLossyDemotionCheck &= 2470 CGF.getContext().getCanonicalType(type) != 2471 CGF.getContext().getCanonicalType(promotedType); 2472 canPerformLossyDemotionCheck &= 2473 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2474 type, promotedType); 2475 assert((!canPerformLossyDemotionCheck || 2476 type->isSignedIntegerOrEnumerationType() || 2477 promotedType->isSignedIntegerOrEnumerationType() || 2478 ConvertType(type)->getScalarSizeInBits() == 2479 ConvertType(promotedType)->getScalarSizeInBits()) && 2480 "The following check expects that if we do promotion to different " 2481 "underlying canonical type, at least one of the types (either " 2482 "base or promoted) will be signed, or the bitwidths will match."); 2483 } 2484 if (CGF.SanOpts.hasOneOf( 2485 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2486 canPerformLossyDemotionCheck) { 2487 // While `x += 1` (for `x` with width less than int) is modeled as 2488 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2489 // ease; inc/dec with width less than int can't overflow because of 2490 // promotion rules, so we omit promotion+demotion, which means that we can 2491 // not catch lossy "demotion". Because we still want to catch these cases 2492 // when the sanitizer is enabled, we perform the promotion, then perform 2493 // the increment/decrement in the wider type, and finally 2494 // perform the demotion. This will catch lossy demotions. 2495 2496 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2497 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2498 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2499 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2500 // emitted. 2501 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2502 ScalarConversionOpts(CGF.SanOpts)); 2503 2504 // Note that signed integer inc/dec with width less than int can't 2505 // overflow because of promotion rules; we're just eliding a few steps 2506 // here. 2507 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2508 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2509 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2510 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2511 value = 2512 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2513 } else { 2514 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2515 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2516 } 2517 2518 // Next most common: pointer increment. 2519 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2520 QualType type = ptr->getPointeeType(); 2521 2522 // VLA types don't have constant size. 2523 if (const VariableArrayType *vla 2524 = CGF.getContext().getAsVariableArrayType(type)) { 2525 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2526 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2527 if (CGF.getLangOpts().isSignedOverflowDefined()) 2528 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2529 else 2530 value = CGF.EmitCheckedInBoundsGEP( 2531 value, numElts, /*SignedIndices=*/false, isSubtraction, 2532 E->getExprLoc(), "vla.inc"); 2533 2534 // Arithmetic on function pointers (!) is just +-1. 2535 } else if (type->isFunctionType()) { 2536 llvm::Value *amt = Builder.getInt32(amount); 2537 2538 value = CGF.EmitCastToVoidPtr(value); 2539 if (CGF.getLangOpts().isSignedOverflowDefined()) 2540 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2541 else 2542 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2543 isSubtraction, E->getExprLoc(), 2544 "incdec.funcptr"); 2545 value = Builder.CreateBitCast(value, input->getType()); 2546 2547 // For everything else, we can just do a simple increment. 2548 } else { 2549 llvm::Value *amt = Builder.getInt32(amount); 2550 if (CGF.getLangOpts().isSignedOverflowDefined()) 2551 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2552 else 2553 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2554 isSubtraction, E->getExprLoc(), 2555 "incdec.ptr"); 2556 } 2557 2558 // Vector increment/decrement. 2559 } else if (type->isVectorType()) { 2560 if (type->hasIntegerRepresentation()) { 2561 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2562 2563 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2564 } else { 2565 value = Builder.CreateFAdd( 2566 value, 2567 llvm::ConstantFP::get(value->getType(), amount), 2568 isInc ? "inc" : "dec"); 2569 } 2570 2571 // Floating point. 2572 } else if (type->isRealFloatingType()) { 2573 // Add the inc/dec to the real part. 2574 llvm::Value *amt; 2575 2576 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2577 // Another special case: half FP increment should be done via float 2578 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2579 value = Builder.CreateCall( 2580 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2581 CGF.CGM.FloatTy), 2582 input, "incdec.conv"); 2583 } else { 2584 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2585 } 2586 } 2587 2588 if (value->getType()->isFloatTy()) 2589 amt = llvm::ConstantFP::get(VMContext, 2590 llvm::APFloat(static_cast<float>(amount))); 2591 else if (value->getType()->isDoubleTy()) 2592 amt = llvm::ConstantFP::get(VMContext, 2593 llvm::APFloat(static_cast<double>(amount))); 2594 else { 2595 // Remaining types are Half, LongDouble or __float128. Convert from float. 2596 llvm::APFloat F(static_cast<float>(amount)); 2597 bool ignored; 2598 const llvm::fltSemantics *FS; 2599 // Don't use getFloatTypeSemantics because Half isn't 2600 // necessarily represented using the "half" LLVM type. 2601 if (value->getType()->isFP128Ty()) 2602 FS = &CGF.getTarget().getFloat128Format(); 2603 else if (value->getType()->isHalfTy()) 2604 FS = &CGF.getTarget().getHalfFormat(); 2605 else 2606 FS = &CGF.getTarget().getLongDoubleFormat(); 2607 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2608 amt = llvm::ConstantFP::get(VMContext, F); 2609 } 2610 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2611 2612 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2613 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2614 value = Builder.CreateCall( 2615 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2616 CGF.CGM.FloatTy), 2617 value, "incdec.conv"); 2618 } else { 2619 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2620 } 2621 } 2622 2623 // Fixed-point types. 2624 } else if (type->isFixedPointType()) { 2625 // Fixed-point types are tricky. In some cases, it isn't possible to 2626 // represent a 1 or a -1 in the type at all. Piggyback off of 2627 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2628 BinOpInfo Info; 2629 Info.E = E; 2630 Info.Ty = E->getType(); 2631 Info.Opcode = isInc ? BO_Add : BO_Sub; 2632 Info.LHS = value; 2633 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2634 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2635 // since -1 is guaranteed to be representable. 2636 if (type->isSignedFixedPointType()) { 2637 Info.Opcode = isInc ? BO_Sub : BO_Add; 2638 Info.RHS = Builder.CreateNeg(Info.RHS); 2639 } 2640 // Now, convert from our invented integer literal to the type of the unary 2641 // op. This will upscale and saturate if necessary. This value can become 2642 // undef in some cases. 2643 FixedPointSemantics SrcSema = 2644 FixedPointSemantics::GetIntegerSemantics(value->getType() 2645 ->getScalarSizeInBits(), 2646 /*IsSigned=*/true); 2647 FixedPointSemantics DstSema = 2648 CGF.getContext().getFixedPointSemantics(Info.Ty); 2649 Info.RHS = EmitFixedPointConversion(Info.RHS, SrcSema, DstSema, 2650 E->getExprLoc()); 2651 value = EmitFixedPointBinOp(Info); 2652 2653 // Objective-C pointer types. 2654 } else { 2655 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2656 value = CGF.EmitCastToVoidPtr(value); 2657 2658 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2659 if (!isInc) size = -size; 2660 llvm::Value *sizeValue = 2661 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2662 2663 if (CGF.getLangOpts().isSignedOverflowDefined()) 2664 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2665 else 2666 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2667 /*SignedIndices=*/false, isSubtraction, 2668 E->getExprLoc(), "incdec.objptr"); 2669 value = Builder.CreateBitCast(value, input->getType()); 2670 } 2671 2672 if (atomicPHI) { 2673 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2674 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2675 auto Pair = CGF.EmitAtomicCompareExchange( 2676 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2677 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2678 llvm::Value *success = Pair.second; 2679 atomicPHI->addIncoming(old, curBlock); 2680 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2681 Builder.SetInsertPoint(contBB); 2682 return isPre ? value : input; 2683 } 2684 2685 // Store the updated result through the lvalue. 2686 if (LV.isBitField()) 2687 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2688 else 2689 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2690 2691 // If this is a postinc, return the value read from memory, otherwise use the 2692 // updated value. 2693 return isPre ? value : input; 2694 } 2695 2696 2697 2698 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2699 TestAndClearIgnoreResultAssign(); 2700 Value *Op = Visit(E->getSubExpr()); 2701 2702 // Generate a unary FNeg for FP ops. 2703 if (Op->getType()->isFPOrFPVectorTy()) 2704 return Builder.CreateFNeg(Op, "fneg"); 2705 2706 // Emit unary minus with EmitSub so we handle overflow cases etc. 2707 BinOpInfo BinOp; 2708 BinOp.RHS = Op; 2709 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2710 BinOp.Ty = E->getType(); 2711 BinOp.Opcode = BO_Sub; 2712 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2713 BinOp.E = E; 2714 return EmitSub(BinOp); 2715 } 2716 2717 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2718 TestAndClearIgnoreResultAssign(); 2719 Value *Op = Visit(E->getSubExpr()); 2720 return Builder.CreateNot(Op, "neg"); 2721 } 2722 2723 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2724 // Perform vector logical not on comparison with zero vector. 2725 if (E->getType()->isExtVectorType()) { 2726 Value *Oper = Visit(E->getSubExpr()); 2727 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2728 Value *Result; 2729 if (Oper->getType()->isFPOrFPVectorTy()) 2730 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2731 else 2732 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2733 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2734 } 2735 2736 // Compare operand to zero. 2737 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2738 2739 // Invert value. 2740 // TODO: Could dynamically modify easy computations here. For example, if 2741 // the operand is an icmp ne, turn into icmp eq. 2742 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2743 2744 // ZExt result to the expr type. 2745 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2746 } 2747 2748 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2749 // Try folding the offsetof to a constant. 2750 Expr::EvalResult EVResult; 2751 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2752 llvm::APSInt Value = EVResult.Val.getInt(); 2753 return Builder.getInt(Value); 2754 } 2755 2756 // Loop over the components of the offsetof to compute the value. 2757 unsigned n = E->getNumComponents(); 2758 llvm::Type* ResultType = ConvertType(E->getType()); 2759 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2760 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2761 for (unsigned i = 0; i != n; ++i) { 2762 OffsetOfNode ON = E->getComponent(i); 2763 llvm::Value *Offset = nullptr; 2764 switch (ON.getKind()) { 2765 case OffsetOfNode::Array: { 2766 // Compute the index 2767 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2768 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2769 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2770 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2771 2772 // Save the element type 2773 CurrentType = 2774 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2775 2776 // Compute the element size 2777 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2778 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2779 2780 // Multiply out to compute the result 2781 Offset = Builder.CreateMul(Idx, ElemSize); 2782 break; 2783 } 2784 2785 case OffsetOfNode::Field: { 2786 FieldDecl *MemberDecl = ON.getField(); 2787 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2788 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2789 2790 // Compute the index of the field in its parent. 2791 unsigned i = 0; 2792 // FIXME: It would be nice if we didn't have to loop here! 2793 for (RecordDecl::field_iterator Field = RD->field_begin(), 2794 FieldEnd = RD->field_end(); 2795 Field != FieldEnd; ++Field, ++i) { 2796 if (*Field == MemberDecl) 2797 break; 2798 } 2799 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2800 2801 // Compute the offset to the field 2802 int64_t OffsetInt = RL.getFieldOffset(i) / 2803 CGF.getContext().getCharWidth(); 2804 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2805 2806 // Save the element type. 2807 CurrentType = MemberDecl->getType(); 2808 break; 2809 } 2810 2811 case OffsetOfNode::Identifier: 2812 llvm_unreachable("dependent __builtin_offsetof"); 2813 2814 case OffsetOfNode::Base: { 2815 if (ON.getBase()->isVirtual()) { 2816 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2817 continue; 2818 } 2819 2820 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2821 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2822 2823 // Save the element type. 2824 CurrentType = ON.getBase()->getType(); 2825 2826 // Compute the offset to the base. 2827 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2828 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2829 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2830 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2831 break; 2832 } 2833 } 2834 Result = Builder.CreateAdd(Result, Offset); 2835 } 2836 return Result; 2837 } 2838 2839 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2840 /// argument of the sizeof expression as an integer. 2841 Value * 2842 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2843 const UnaryExprOrTypeTraitExpr *E) { 2844 QualType TypeToSize = E->getTypeOfArgument(); 2845 if (E->getKind() == UETT_SizeOf) { 2846 if (const VariableArrayType *VAT = 2847 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2848 if (E->isArgumentType()) { 2849 // sizeof(type) - make sure to emit the VLA size. 2850 CGF.EmitVariablyModifiedType(TypeToSize); 2851 } else { 2852 // C99 6.5.3.4p2: If the argument is an expression of type 2853 // VLA, it is evaluated. 2854 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2855 } 2856 2857 auto VlaSize = CGF.getVLASize(VAT); 2858 llvm::Value *size = VlaSize.NumElts; 2859 2860 // Scale the number of non-VLA elements by the non-VLA element size. 2861 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2862 if (!eltSize.isOne()) 2863 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2864 2865 return size; 2866 } 2867 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2868 auto Alignment = 2869 CGF.getContext() 2870 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2871 E->getTypeOfArgument()->getPointeeType())) 2872 .getQuantity(); 2873 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2874 } 2875 2876 // If this isn't sizeof(vla), the result must be constant; use the constant 2877 // folding logic so we don't have to duplicate it here. 2878 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2879 } 2880 2881 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2882 Expr *Op = E->getSubExpr(); 2883 if (Op->getType()->isAnyComplexType()) { 2884 // If it's an l-value, load through the appropriate subobject l-value. 2885 // Note that we have to ask E because Op might be an l-value that 2886 // this won't work for, e.g. an Obj-C property. 2887 if (E->isGLValue()) 2888 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2889 E->getExprLoc()).getScalarVal(); 2890 2891 // Otherwise, calculate and project. 2892 return CGF.EmitComplexExpr(Op, false, true).first; 2893 } 2894 2895 return Visit(Op); 2896 } 2897 2898 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2899 Expr *Op = E->getSubExpr(); 2900 if (Op->getType()->isAnyComplexType()) { 2901 // If it's an l-value, load through the appropriate subobject l-value. 2902 // Note that we have to ask E because Op might be an l-value that 2903 // this won't work for, e.g. an Obj-C property. 2904 if (Op->isGLValue()) 2905 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2906 E->getExprLoc()).getScalarVal(); 2907 2908 // Otherwise, calculate and project. 2909 return CGF.EmitComplexExpr(Op, true, false).second; 2910 } 2911 2912 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2913 // effects are evaluated, but not the actual value. 2914 if (Op->isGLValue()) 2915 CGF.EmitLValue(Op); 2916 else 2917 CGF.EmitScalarExpr(Op, true); 2918 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2919 } 2920 2921 //===----------------------------------------------------------------------===// 2922 // Binary Operators 2923 //===----------------------------------------------------------------------===// 2924 2925 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2926 TestAndClearIgnoreResultAssign(); 2927 BinOpInfo Result; 2928 Result.LHS = Visit(E->getLHS()); 2929 Result.RHS = Visit(E->getRHS()); 2930 Result.Ty = E->getType(); 2931 Result.Opcode = E->getOpcode(); 2932 Result.FPFeatures = E->getFPFeatures(); 2933 Result.E = E; 2934 return Result; 2935 } 2936 2937 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2938 const CompoundAssignOperator *E, 2939 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2940 Value *&Result) { 2941 QualType LHSTy = E->getLHS()->getType(); 2942 BinOpInfo OpInfo; 2943 2944 if (E->getComputationResultType()->isAnyComplexType()) 2945 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2946 2947 // Emit the RHS first. __block variables need to have the rhs evaluated 2948 // first, plus this should improve codegen a little. 2949 OpInfo.RHS = Visit(E->getRHS()); 2950 OpInfo.Ty = E->getComputationResultType(); 2951 OpInfo.Opcode = E->getOpcode(); 2952 OpInfo.FPFeatures = E->getFPFeatures(); 2953 OpInfo.E = E; 2954 // Load/convert the LHS. 2955 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2956 2957 llvm::PHINode *atomicPHI = nullptr; 2958 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2959 QualType type = atomicTy->getValueType(); 2960 if (!type->isBooleanType() && type->isIntegerType() && 2961 !(type->isUnsignedIntegerType() && 2962 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2963 CGF.getLangOpts().getSignedOverflowBehavior() != 2964 LangOptions::SOB_Trapping) { 2965 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 2966 llvm::Instruction::BinaryOps Op; 2967 switch (OpInfo.Opcode) { 2968 // We don't have atomicrmw operands for *, %, /, <<, >> 2969 case BO_MulAssign: case BO_DivAssign: 2970 case BO_RemAssign: 2971 case BO_ShlAssign: 2972 case BO_ShrAssign: 2973 break; 2974 case BO_AddAssign: 2975 AtomicOp = llvm::AtomicRMWInst::Add; 2976 Op = llvm::Instruction::Add; 2977 break; 2978 case BO_SubAssign: 2979 AtomicOp = llvm::AtomicRMWInst::Sub; 2980 Op = llvm::Instruction::Sub; 2981 break; 2982 case BO_AndAssign: 2983 AtomicOp = llvm::AtomicRMWInst::And; 2984 Op = llvm::Instruction::And; 2985 break; 2986 case BO_XorAssign: 2987 AtomicOp = llvm::AtomicRMWInst::Xor; 2988 Op = llvm::Instruction::Xor; 2989 break; 2990 case BO_OrAssign: 2991 AtomicOp = llvm::AtomicRMWInst::Or; 2992 Op = llvm::Instruction::Or; 2993 break; 2994 default: 2995 llvm_unreachable("Invalid compound assignment type"); 2996 } 2997 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 2998 llvm::Value *Amt = CGF.EmitToMemory( 2999 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 3000 E->getExprLoc()), 3001 LHSTy); 3002 Value *OldVal = Builder.CreateAtomicRMW( 3003 AtomicOp, LHSLV.getPointer(CGF), Amt, 3004 llvm::AtomicOrdering::SequentiallyConsistent); 3005 3006 // Since operation is atomic, the result type is guaranteed to be the 3007 // same as the input in LLVM terms. 3008 Result = Builder.CreateBinOp(Op, OldVal, Amt); 3009 return LHSLV; 3010 } 3011 } 3012 // FIXME: For floating point types, we should be saving and restoring the 3013 // floating point environment in the loop. 3014 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 3015 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 3016 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3017 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 3018 Builder.CreateBr(opBB); 3019 Builder.SetInsertPoint(opBB); 3020 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 3021 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3022 OpInfo.LHS = atomicPHI; 3023 } 3024 else 3025 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3026 3027 SourceLocation Loc = E->getExprLoc(); 3028 OpInfo.LHS = 3029 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3030 3031 // Expand the binary operator. 3032 Result = (this->*Func)(OpInfo); 3033 3034 // Convert the result back to the LHS type, 3035 // potentially with Implicit Conversion sanitizer check. 3036 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3037 Loc, ScalarConversionOpts(CGF.SanOpts)); 3038 3039 if (atomicPHI) { 3040 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3041 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3042 auto Pair = CGF.EmitAtomicCompareExchange( 3043 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3044 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3045 llvm::Value *success = Pair.second; 3046 atomicPHI->addIncoming(old, curBlock); 3047 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3048 Builder.SetInsertPoint(contBB); 3049 return LHSLV; 3050 } 3051 3052 // Store the result value into the LHS lvalue. Bit-fields are handled 3053 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3054 // 'An assignment expression has the value of the left operand after the 3055 // assignment...'. 3056 if (LHSLV.isBitField()) 3057 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3058 else 3059 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3060 3061 if (CGF.getLangOpts().OpenMP) 3062 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3063 E->getLHS()); 3064 return LHSLV; 3065 } 3066 3067 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3068 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3069 bool Ignore = TestAndClearIgnoreResultAssign(); 3070 Value *RHS = nullptr; 3071 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3072 3073 // If the result is clearly ignored, return now. 3074 if (Ignore) 3075 return nullptr; 3076 3077 // The result of an assignment in C is the assigned r-value. 3078 if (!CGF.getLangOpts().CPlusPlus) 3079 return RHS; 3080 3081 // If the lvalue is non-volatile, return the computed value of the assignment. 3082 if (!LHS.isVolatileQualified()) 3083 return RHS; 3084 3085 // Otherwise, reload the value. 3086 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3087 } 3088 3089 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3090 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3091 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3092 3093 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3094 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3095 SanitizerKind::IntegerDivideByZero)); 3096 } 3097 3098 const auto *BO = cast<BinaryOperator>(Ops.E); 3099 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3100 Ops.Ty->hasSignedIntegerRepresentation() && 3101 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3102 Ops.mayHaveIntegerOverflow()) { 3103 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3104 3105 llvm::Value *IntMin = 3106 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3107 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 3108 3109 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3110 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3111 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3112 Checks.push_back( 3113 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3114 } 3115 3116 if (Checks.size() > 0) 3117 EmitBinOpCheck(Checks, Ops); 3118 } 3119 3120 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3121 { 3122 CodeGenFunction::SanitizerScope SanScope(&CGF); 3123 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3124 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3125 Ops.Ty->isIntegerType() && 3126 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3127 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3128 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3129 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3130 Ops.Ty->isRealFloatingType() && 3131 Ops.mayHaveFloatDivisionByZero()) { 3132 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3133 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3134 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3135 Ops); 3136 } 3137 } 3138 3139 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3140 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3141 if (CGF.getLangOpts().OpenCL && 3142 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3143 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3144 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3145 // build option allows an application to specify that single precision 3146 // floating-point divide (x/y and 1/x) and sqrt used in the program 3147 // source are correctly rounded. 3148 llvm::Type *ValTy = Val->getType(); 3149 if (ValTy->isFloatTy() || 3150 (isa<llvm::VectorType>(ValTy) && 3151 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3152 CGF.SetFPAccuracy(Val, 2.5); 3153 } 3154 return Val; 3155 } 3156 else if (Ops.isFixedPointOp()) 3157 return EmitFixedPointBinOp(Ops); 3158 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3159 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3160 else 3161 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3162 } 3163 3164 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3165 // Rem in C can't be a floating point type: C99 6.5.5p2. 3166 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3167 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3168 Ops.Ty->isIntegerType() && 3169 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3170 CodeGenFunction::SanitizerScope SanScope(&CGF); 3171 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3172 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3173 } 3174 3175 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3176 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3177 else 3178 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3179 } 3180 3181 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3182 unsigned IID; 3183 unsigned OpID = 0; 3184 3185 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3186 switch (Ops.Opcode) { 3187 case BO_Add: 3188 case BO_AddAssign: 3189 OpID = 1; 3190 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3191 llvm::Intrinsic::uadd_with_overflow; 3192 break; 3193 case BO_Sub: 3194 case BO_SubAssign: 3195 OpID = 2; 3196 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3197 llvm::Intrinsic::usub_with_overflow; 3198 break; 3199 case BO_Mul: 3200 case BO_MulAssign: 3201 OpID = 3; 3202 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3203 llvm::Intrinsic::umul_with_overflow; 3204 break; 3205 default: 3206 llvm_unreachable("Unsupported operation for overflow detection"); 3207 } 3208 OpID <<= 1; 3209 if (isSigned) 3210 OpID |= 1; 3211 3212 CodeGenFunction::SanitizerScope SanScope(&CGF); 3213 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3214 3215 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3216 3217 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3218 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3219 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3220 3221 // Handle overflow with llvm.trap if no custom handler has been specified. 3222 const std::string *handlerName = 3223 &CGF.getLangOpts().OverflowHandler; 3224 if (handlerName->empty()) { 3225 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3226 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3227 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3228 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3229 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3230 : SanitizerKind::UnsignedIntegerOverflow; 3231 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3232 } else 3233 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3234 return result; 3235 } 3236 3237 // Branch in case of overflow. 3238 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3239 llvm::BasicBlock *continueBB = 3240 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3241 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3242 3243 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3244 3245 // If an overflow handler is set, then we want to call it and then use its 3246 // result, if it returns. 3247 Builder.SetInsertPoint(overflowBB); 3248 3249 // Get the overflow handler. 3250 llvm::Type *Int8Ty = CGF.Int8Ty; 3251 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3252 llvm::FunctionType *handlerTy = 3253 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3254 llvm::FunctionCallee handler = 3255 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3256 3257 // Sign extend the args to 64-bit, so that we can use the same handler for 3258 // all types of overflow. 3259 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3260 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3261 3262 // Call the handler with the two arguments, the operation, and the size of 3263 // the result. 3264 llvm::Value *handlerArgs[] = { 3265 lhs, 3266 rhs, 3267 Builder.getInt8(OpID), 3268 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3269 }; 3270 llvm::Value *handlerResult = 3271 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3272 3273 // Truncate the result back to the desired size. 3274 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3275 Builder.CreateBr(continueBB); 3276 3277 Builder.SetInsertPoint(continueBB); 3278 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3279 phi->addIncoming(result, initialBB); 3280 phi->addIncoming(handlerResult, overflowBB); 3281 3282 return phi; 3283 } 3284 3285 /// Emit pointer + index arithmetic. 3286 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3287 const BinOpInfo &op, 3288 bool isSubtraction) { 3289 // Must have binary (not unary) expr here. Unary pointer 3290 // increment/decrement doesn't use this path. 3291 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3292 3293 Value *pointer = op.LHS; 3294 Expr *pointerOperand = expr->getLHS(); 3295 Value *index = op.RHS; 3296 Expr *indexOperand = expr->getRHS(); 3297 3298 // In a subtraction, the LHS is always the pointer. 3299 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3300 std::swap(pointer, index); 3301 std::swap(pointerOperand, indexOperand); 3302 } 3303 3304 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3305 3306 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3307 auto &DL = CGF.CGM.getDataLayout(); 3308 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3309 3310 // Some versions of glibc and gcc use idioms (particularly in their malloc 3311 // routines) that add a pointer-sized integer (known to be a pointer value) 3312 // to a null pointer in order to cast the value back to an integer or as 3313 // part of a pointer alignment algorithm. This is undefined behavior, but 3314 // we'd like to be able to compile programs that use it. 3315 // 3316 // Normally, we'd generate a GEP with a null-pointer base here in response 3317 // to that code, but it's also UB to dereference a pointer created that 3318 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3319 // generate a direct cast of the integer value to a pointer. 3320 // 3321 // The idiom (p = nullptr + N) is not met if any of the following are true: 3322 // 3323 // The operation is subtraction. 3324 // The index is not pointer-sized. 3325 // The pointer type is not byte-sized. 3326 // 3327 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3328 op.Opcode, 3329 expr->getLHS(), 3330 expr->getRHS())) 3331 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3332 3333 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3334 // Zero-extend or sign-extend the pointer value according to 3335 // whether the index is signed or not. 3336 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3337 "idx.ext"); 3338 } 3339 3340 // If this is subtraction, negate the index. 3341 if (isSubtraction) 3342 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3343 3344 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3345 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3346 /*Accessed*/ false); 3347 3348 const PointerType *pointerType 3349 = pointerOperand->getType()->getAs<PointerType>(); 3350 if (!pointerType) { 3351 QualType objectType = pointerOperand->getType() 3352 ->castAs<ObjCObjectPointerType>() 3353 ->getPointeeType(); 3354 llvm::Value *objectSize 3355 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3356 3357 index = CGF.Builder.CreateMul(index, objectSize); 3358 3359 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3360 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3361 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3362 } 3363 3364 QualType elementType = pointerType->getPointeeType(); 3365 if (const VariableArrayType *vla 3366 = CGF.getContext().getAsVariableArrayType(elementType)) { 3367 // The element count here is the total number of non-VLA elements. 3368 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3369 3370 // Effectively, the multiply by the VLA size is part of the GEP. 3371 // GEP indexes are signed, and scaling an index isn't permitted to 3372 // signed-overflow, so we use the same semantics for our explicit 3373 // multiply. We suppress this if overflow is not undefined behavior. 3374 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3375 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3376 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3377 } else { 3378 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3379 pointer = 3380 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3381 op.E->getExprLoc(), "add.ptr"); 3382 } 3383 return pointer; 3384 } 3385 3386 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3387 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3388 // future proof. 3389 if (elementType->isVoidType() || elementType->isFunctionType()) { 3390 Value *result = CGF.EmitCastToVoidPtr(pointer); 3391 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3392 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3393 } 3394 3395 if (CGF.getLangOpts().isSignedOverflowDefined()) 3396 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3397 3398 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3399 op.E->getExprLoc(), "add.ptr"); 3400 } 3401 3402 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3403 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3404 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3405 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3406 // efficient operations. 3407 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3408 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3409 bool negMul, bool negAdd) { 3410 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3411 3412 Value *MulOp0 = MulOp->getOperand(0); 3413 Value *MulOp1 = MulOp->getOperand(1); 3414 if (negMul) 3415 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3416 if (negAdd) 3417 Addend = Builder.CreateFNeg(Addend, "neg"); 3418 3419 Value *FMulAdd = nullptr; 3420 if (Builder.getIsFPConstrained()) { 3421 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3422 "Only constrained operation should be created when Builder is in FP " 3423 "constrained mode"); 3424 FMulAdd = Builder.CreateConstrainedFPCall( 3425 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3426 Addend->getType()), 3427 {MulOp0, MulOp1, Addend}); 3428 } else { 3429 FMulAdd = Builder.CreateCall( 3430 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3431 {MulOp0, MulOp1, Addend}); 3432 } 3433 MulOp->eraseFromParent(); 3434 3435 return FMulAdd; 3436 } 3437 3438 // Check whether it would be legal to emit an fmuladd intrinsic call to 3439 // represent op and if so, build the fmuladd. 3440 // 3441 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3442 // Does NOT check the type of the operation - it's assumed that this function 3443 // will be called from contexts where it's known that the type is contractable. 3444 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3445 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3446 bool isSub=false) { 3447 3448 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3449 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3450 "Only fadd/fsub can be the root of an fmuladd."); 3451 3452 // Check whether this op is marked as fusable. 3453 if (!op.FPFeatures.allowFPContractWithinStatement()) 3454 return nullptr; 3455 3456 // We have a potentially fusable op. Look for a mul on one of the operands. 3457 // Also, make sure that the mul result isn't used directly. In that case, 3458 // there's no point creating a muladd operation. 3459 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3460 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3461 LHSBinOp->use_empty()) 3462 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3463 } 3464 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3465 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3466 RHSBinOp->use_empty()) 3467 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3468 } 3469 3470 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3471 if (LHSBinOp->getIntrinsicID() == 3472 llvm::Intrinsic::experimental_constrained_fmul && 3473 LHSBinOp->use_empty()) 3474 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3475 } 3476 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3477 if (RHSBinOp->getIntrinsicID() == 3478 llvm::Intrinsic::experimental_constrained_fmul && 3479 RHSBinOp->use_empty()) 3480 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3481 } 3482 3483 return nullptr; 3484 } 3485 3486 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3487 if (op.LHS->getType()->isPointerTy() || 3488 op.RHS->getType()->isPointerTy()) 3489 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3490 3491 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3492 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3493 case LangOptions::SOB_Defined: 3494 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3495 case LangOptions::SOB_Undefined: 3496 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3497 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3498 LLVM_FALLTHROUGH; 3499 case LangOptions::SOB_Trapping: 3500 if (CanElideOverflowCheck(CGF.getContext(), op)) 3501 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3502 return EmitOverflowCheckedBinOp(op); 3503 } 3504 } 3505 3506 if (op.Ty->isUnsignedIntegerType() && 3507 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3508 !CanElideOverflowCheck(CGF.getContext(), op)) 3509 return EmitOverflowCheckedBinOp(op); 3510 3511 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3512 // Try to form an fmuladd. 3513 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3514 return FMulAdd; 3515 3516 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3517 return propagateFMFlags(V, op); 3518 } 3519 3520 if (op.isFixedPointOp()) 3521 return EmitFixedPointBinOp(op); 3522 3523 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3524 } 3525 3526 /// The resulting value must be calculated with exact precision, so the operands 3527 /// may not be the same type. 3528 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3529 using llvm::APSInt; 3530 using llvm::ConstantInt; 3531 3532 // This is either a binary operation where at least one of the operands is 3533 // a fixed-point type, or a unary operation where the operand is a fixed-point 3534 // type. The result type of a binary operation is determined by 3535 // Sema::handleFixedPointConversions(). 3536 QualType ResultTy = op.Ty; 3537 QualType LHSTy, RHSTy; 3538 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3539 RHSTy = BinOp->getRHS()->getType(); 3540 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3541 // For compound assignment, the effective type of the LHS at this point 3542 // is the computation LHS type, not the actual LHS type, and the final 3543 // result type is not the type of the expression but rather the 3544 // computation result type. 3545 LHSTy = CAO->getComputationLHSType(); 3546 ResultTy = CAO->getComputationResultType(); 3547 } else 3548 LHSTy = BinOp->getLHS()->getType(); 3549 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3550 LHSTy = UnOp->getSubExpr()->getType(); 3551 RHSTy = UnOp->getSubExpr()->getType(); 3552 } 3553 ASTContext &Ctx = CGF.getContext(); 3554 Value *LHS = op.LHS; 3555 Value *RHS = op.RHS; 3556 3557 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3558 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3559 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3560 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3561 3562 // Convert the operands to the full precision type. 3563 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3564 op.E->getExprLoc()); 3565 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3566 op.E->getExprLoc()); 3567 3568 // Perform the actual operation. 3569 Value *Result; 3570 switch (op.Opcode) { 3571 case BO_AddAssign: 3572 case BO_Add: { 3573 if (ResultFixedSema.isSaturated()) { 3574 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3575 ? llvm::Intrinsic::sadd_sat 3576 : llvm::Intrinsic::uadd_sat; 3577 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3578 } else { 3579 Result = Builder.CreateAdd(FullLHS, FullRHS); 3580 } 3581 break; 3582 } 3583 case BO_SubAssign: 3584 case BO_Sub: { 3585 if (ResultFixedSema.isSaturated()) { 3586 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3587 ? llvm::Intrinsic::ssub_sat 3588 : llvm::Intrinsic::usub_sat; 3589 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3590 } else { 3591 Result = Builder.CreateSub(FullLHS, FullRHS); 3592 } 3593 break; 3594 } 3595 case BO_MulAssign: 3596 case BO_Mul: { 3597 llvm::Intrinsic::ID IID; 3598 if (ResultFixedSema.isSaturated()) 3599 IID = ResultFixedSema.isSigned() 3600 ? llvm::Intrinsic::smul_fix_sat 3601 : llvm::Intrinsic::umul_fix_sat; 3602 else 3603 IID = ResultFixedSema.isSigned() 3604 ? llvm::Intrinsic::smul_fix 3605 : llvm::Intrinsic::umul_fix; 3606 Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()}, 3607 {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())}); 3608 break; 3609 } 3610 case BO_DivAssign: 3611 case BO_Div: { 3612 llvm::Intrinsic::ID IID; 3613 if (ResultFixedSema.isSaturated()) 3614 IID = ResultFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix_sat 3615 : llvm::Intrinsic::udiv_fix_sat; 3616 else 3617 IID = ResultFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix 3618 : llvm::Intrinsic::udiv_fix; 3619 Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()}, 3620 {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())}); 3621 break; 3622 } 3623 case BO_LT: 3624 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3625 : Builder.CreateICmpULT(FullLHS, FullRHS); 3626 case BO_GT: 3627 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3628 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3629 case BO_LE: 3630 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3631 : Builder.CreateICmpULE(FullLHS, FullRHS); 3632 case BO_GE: 3633 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3634 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3635 case BO_EQ: 3636 // For equality operations, we assume any padding bits on unsigned types are 3637 // zero'd out. They could be overwritten through non-saturating operations 3638 // that cause overflow, but this leads to undefined behavior. 3639 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3640 case BO_NE: 3641 return Builder.CreateICmpNE(FullLHS, FullRHS); 3642 case BO_Shl: 3643 case BO_Shr: 3644 case BO_Cmp: 3645 case BO_LAnd: 3646 case BO_LOr: 3647 case BO_ShlAssign: 3648 case BO_ShrAssign: 3649 llvm_unreachable("Found unimplemented fixed point binary operation"); 3650 case BO_PtrMemD: 3651 case BO_PtrMemI: 3652 case BO_Rem: 3653 case BO_Xor: 3654 case BO_And: 3655 case BO_Or: 3656 case BO_Assign: 3657 case BO_RemAssign: 3658 case BO_AndAssign: 3659 case BO_XorAssign: 3660 case BO_OrAssign: 3661 case BO_Comma: 3662 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3663 } 3664 3665 // Convert to the result type. 3666 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3667 op.E->getExprLoc()); 3668 } 3669 3670 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3671 // The LHS is always a pointer if either side is. 3672 if (!op.LHS->getType()->isPointerTy()) { 3673 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3674 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3675 case LangOptions::SOB_Defined: 3676 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3677 case LangOptions::SOB_Undefined: 3678 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3679 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3680 LLVM_FALLTHROUGH; 3681 case LangOptions::SOB_Trapping: 3682 if (CanElideOverflowCheck(CGF.getContext(), op)) 3683 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3684 return EmitOverflowCheckedBinOp(op); 3685 } 3686 } 3687 3688 if (op.Ty->isUnsignedIntegerType() && 3689 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3690 !CanElideOverflowCheck(CGF.getContext(), op)) 3691 return EmitOverflowCheckedBinOp(op); 3692 3693 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3694 // Try to form an fmuladd. 3695 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3696 return FMulAdd; 3697 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3698 return propagateFMFlags(V, op); 3699 } 3700 3701 if (op.isFixedPointOp()) 3702 return EmitFixedPointBinOp(op); 3703 3704 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3705 } 3706 3707 // If the RHS is not a pointer, then we have normal pointer 3708 // arithmetic. 3709 if (!op.RHS->getType()->isPointerTy()) 3710 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3711 3712 // Otherwise, this is a pointer subtraction. 3713 3714 // Do the raw subtraction part. 3715 llvm::Value *LHS 3716 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3717 llvm::Value *RHS 3718 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3719 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3720 3721 // Okay, figure out the element size. 3722 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3723 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3724 3725 llvm::Value *divisor = nullptr; 3726 3727 // For a variable-length array, this is going to be non-constant. 3728 if (const VariableArrayType *vla 3729 = CGF.getContext().getAsVariableArrayType(elementType)) { 3730 auto VlaSize = CGF.getVLASize(vla); 3731 elementType = VlaSize.Type; 3732 divisor = VlaSize.NumElts; 3733 3734 // Scale the number of non-VLA elements by the non-VLA element size. 3735 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3736 if (!eltSize.isOne()) 3737 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3738 3739 // For everything elese, we can just compute it, safe in the 3740 // assumption that Sema won't let anything through that we can't 3741 // safely compute the size of. 3742 } else { 3743 CharUnits elementSize; 3744 // Handle GCC extension for pointer arithmetic on void* and 3745 // function pointer types. 3746 if (elementType->isVoidType() || elementType->isFunctionType()) 3747 elementSize = CharUnits::One(); 3748 else 3749 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3750 3751 // Don't even emit the divide for element size of 1. 3752 if (elementSize.isOne()) 3753 return diffInChars; 3754 3755 divisor = CGF.CGM.getSize(elementSize); 3756 } 3757 3758 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3759 // pointer difference in C is only defined in the case where both operands 3760 // are pointing to elements of an array. 3761 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3762 } 3763 3764 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3765 llvm::IntegerType *Ty; 3766 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3767 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3768 else 3769 Ty = cast<llvm::IntegerType>(LHS->getType()); 3770 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3771 } 3772 3773 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3774 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3775 // RHS to the same size as the LHS. 3776 Value *RHS = Ops.RHS; 3777 if (Ops.LHS->getType() != RHS->getType()) 3778 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3779 3780 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3781 Ops.Ty->hasSignedIntegerRepresentation() && 3782 !CGF.getLangOpts().isSignedOverflowDefined() && 3783 !CGF.getLangOpts().CPlusPlus2a; 3784 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3785 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3786 if (CGF.getLangOpts().OpenCL) 3787 RHS = 3788 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3789 else if ((SanitizeBase || SanitizeExponent) && 3790 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3791 CodeGenFunction::SanitizerScope SanScope(&CGF); 3792 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3793 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3794 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3795 3796 if (SanitizeExponent) { 3797 Checks.push_back( 3798 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3799 } 3800 3801 if (SanitizeBase) { 3802 // Check whether we are shifting any non-zero bits off the top of the 3803 // integer. We only emit this check if exponent is valid - otherwise 3804 // instructions below will have undefined behavior themselves. 3805 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3806 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3807 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3808 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3809 llvm::Value *PromotedWidthMinusOne = 3810 (RHS == Ops.RHS) ? WidthMinusOne 3811 : GetWidthMinusOneValue(Ops.LHS, RHS); 3812 CGF.EmitBlock(CheckShiftBase); 3813 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3814 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3815 /*NUW*/ true, /*NSW*/ true), 3816 "shl.check"); 3817 if (CGF.getLangOpts().CPlusPlus) { 3818 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3819 // Under C++11's rules, shifting a 1 bit into the sign bit is 3820 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3821 // define signed left shifts, so we use the C99 and C++11 rules there). 3822 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3823 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3824 } 3825 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3826 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3827 CGF.EmitBlock(Cont); 3828 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3829 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3830 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3831 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3832 } 3833 3834 assert(!Checks.empty()); 3835 EmitBinOpCheck(Checks, Ops); 3836 } 3837 3838 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3839 } 3840 3841 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3842 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3843 // RHS to the same size as the LHS. 3844 Value *RHS = Ops.RHS; 3845 if (Ops.LHS->getType() != RHS->getType()) 3846 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3847 3848 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3849 if (CGF.getLangOpts().OpenCL) 3850 RHS = 3851 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3852 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3853 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3854 CodeGenFunction::SanitizerScope SanScope(&CGF); 3855 llvm::Value *Valid = 3856 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3857 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3858 } 3859 3860 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3861 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3862 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3863 } 3864 3865 enum IntrinsicType { VCMPEQ, VCMPGT }; 3866 // return corresponding comparison intrinsic for given vector type 3867 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3868 BuiltinType::Kind ElemKind) { 3869 switch (ElemKind) { 3870 default: llvm_unreachable("unexpected element type"); 3871 case BuiltinType::Char_U: 3872 case BuiltinType::UChar: 3873 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3874 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3875 case BuiltinType::Char_S: 3876 case BuiltinType::SChar: 3877 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3878 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3879 case BuiltinType::UShort: 3880 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3881 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3882 case BuiltinType::Short: 3883 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3884 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3885 case BuiltinType::UInt: 3886 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3887 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3888 case BuiltinType::Int: 3889 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3890 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3891 case BuiltinType::ULong: 3892 case BuiltinType::ULongLong: 3893 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3894 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3895 case BuiltinType::Long: 3896 case BuiltinType::LongLong: 3897 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3898 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3899 case BuiltinType::Float: 3900 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3901 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3902 case BuiltinType::Double: 3903 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3904 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3905 } 3906 } 3907 3908 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3909 llvm::CmpInst::Predicate UICmpOpc, 3910 llvm::CmpInst::Predicate SICmpOpc, 3911 llvm::CmpInst::Predicate FCmpOpc, 3912 bool IsSignaling) { 3913 TestAndClearIgnoreResultAssign(); 3914 Value *Result; 3915 QualType LHSTy = E->getLHS()->getType(); 3916 QualType RHSTy = E->getRHS()->getType(); 3917 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3918 assert(E->getOpcode() == BO_EQ || 3919 E->getOpcode() == BO_NE); 3920 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3921 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3922 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3923 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3924 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3925 BinOpInfo BOInfo = EmitBinOps(E); 3926 Value *LHS = BOInfo.LHS; 3927 Value *RHS = BOInfo.RHS; 3928 3929 // If AltiVec, the comparison results in a numeric type, so we use 3930 // intrinsics comparing vectors and giving 0 or 1 as a result 3931 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3932 // constants for mapping CR6 register bits to predicate result 3933 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3934 3935 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3936 3937 // in several cases vector arguments order will be reversed 3938 Value *FirstVecArg = LHS, 3939 *SecondVecArg = RHS; 3940 3941 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3942 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 3943 3944 switch(E->getOpcode()) { 3945 default: llvm_unreachable("is not a comparison operation"); 3946 case BO_EQ: 3947 CR6 = CR6_LT; 3948 ID = GetIntrinsic(VCMPEQ, ElementKind); 3949 break; 3950 case BO_NE: 3951 CR6 = CR6_EQ; 3952 ID = GetIntrinsic(VCMPEQ, ElementKind); 3953 break; 3954 case BO_LT: 3955 CR6 = CR6_LT; 3956 ID = GetIntrinsic(VCMPGT, ElementKind); 3957 std::swap(FirstVecArg, SecondVecArg); 3958 break; 3959 case BO_GT: 3960 CR6 = CR6_LT; 3961 ID = GetIntrinsic(VCMPGT, ElementKind); 3962 break; 3963 case BO_LE: 3964 if (ElementKind == BuiltinType::Float) { 3965 CR6 = CR6_LT; 3966 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3967 std::swap(FirstVecArg, SecondVecArg); 3968 } 3969 else { 3970 CR6 = CR6_EQ; 3971 ID = GetIntrinsic(VCMPGT, ElementKind); 3972 } 3973 break; 3974 case BO_GE: 3975 if (ElementKind == BuiltinType::Float) { 3976 CR6 = CR6_LT; 3977 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3978 } 3979 else { 3980 CR6 = CR6_EQ; 3981 ID = GetIntrinsic(VCMPGT, ElementKind); 3982 std::swap(FirstVecArg, SecondVecArg); 3983 } 3984 break; 3985 } 3986 3987 Value *CR6Param = Builder.getInt32(CR6); 3988 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3989 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3990 3991 // The result type of intrinsic may not be same as E->getType(). 3992 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3993 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3994 // do nothing, if ResultTy is not i1 at the same time, it will cause 3995 // crash later. 3996 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3997 if (ResultTy->getBitWidth() > 1 && 3998 E->getType() == CGF.getContext().BoolTy) 3999 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 4000 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4001 E->getExprLoc()); 4002 } 4003 4004 if (BOInfo.isFixedPointOp()) { 4005 Result = EmitFixedPointBinOp(BOInfo); 4006 } else if (LHS->getType()->isFPOrFPVectorTy()) { 4007 if (!IsSignaling) 4008 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 4009 else 4010 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 4011 } else if (LHSTy->hasSignedIntegerRepresentation()) { 4012 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4013 } else { 4014 // Unsigned integers and pointers. 4015 4016 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4017 !isa<llvm::ConstantPointerNull>(LHS) && 4018 !isa<llvm::ConstantPointerNull>(RHS)) { 4019 4020 // Dynamic information is required to be stripped for comparisons, 4021 // because it could leak the dynamic information. Based on comparisons 4022 // of pointers to dynamic objects, the optimizer can replace one pointer 4023 // with another, which might be incorrect in presence of invariant 4024 // groups. Comparison with null is safe because null does not carry any 4025 // dynamic information. 4026 if (LHSTy.mayBeDynamicClass()) 4027 LHS = Builder.CreateStripInvariantGroup(LHS); 4028 if (RHSTy.mayBeDynamicClass()) 4029 RHS = Builder.CreateStripInvariantGroup(RHS); 4030 } 4031 4032 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4033 } 4034 4035 // If this is a vector comparison, sign extend the result to the appropriate 4036 // vector integer type and return it (don't convert to bool). 4037 if (LHSTy->isVectorType()) 4038 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4039 4040 } else { 4041 // Complex Comparison: can only be an equality comparison. 4042 CodeGenFunction::ComplexPairTy LHS, RHS; 4043 QualType CETy; 4044 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4045 LHS = CGF.EmitComplexExpr(E->getLHS()); 4046 CETy = CTy->getElementType(); 4047 } else { 4048 LHS.first = Visit(E->getLHS()); 4049 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4050 CETy = LHSTy; 4051 } 4052 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4053 RHS = CGF.EmitComplexExpr(E->getRHS()); 4054 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4055 CTy->getElementType()) && 4056 "The element types must always match."); 4057 (void)CTy; 4058 } else { 4059 RHS.first = Visit(E->getRHS()); 4060 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4061 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4062 "The element types must always match."); 4063 } 4064 4065 Value *ResultR, *ResultI; 4066 if (CETy->isRealFloatingType()) { 4067 // As complex comparisons can only be equality comparisons, they 4068 // are never signaling comparisons. 4069 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4070 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4071 } else { 4072 // Complex comparisons can only be equality comparisons. As such, signed 4073 // and unsigned opcodes are the same. 4074 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4075 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4076 } 4077 4078 if (E->getOpcode() == BO_EQ) { 4079 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4080 } else { 4081 assert(E->getOpcode() == BO_NE && 4082 "Complex comparison other than == or != ?"); 4083 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4084 } 4085 } 4086 4087 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4088 E->getExprLoc()); 4089 } 4090 4091 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4092 bool Ignore = TestAndClearIgnoreResultAssign(); 4093 4094 Value *RHS; 4095 LValue LHS; 4096 4097 switch (E->getLHS()->getType().getObjCLifetime()) { 4098 case Qualifiers::OCL_Strong: 4099 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4100 break; 4101 4102 case Qualifiers::OCL_Autoreleasing: 4103 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4104 break; 4105 4106 case Qualifiers::OCL_ExplicitNone: 4107 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4108 break; 4109 4110 case Qualifiers::OCL_Weak: 4111 RHS = Visit(E->getRHS()); 4112 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4113 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4114 break; 4115 4116 case Qualifiers::OCL_None: 4117 // __block variables need to have the rhs evaluated first, plus 4118 // this should improve codegen just a little. 4119 RHS = Visit(E->getRHS()); 4120 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4121 4122 // Store the value into the LHS. Bit-fields are handled specially 4123 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4124 // 'An assignment expression has the value of the left operand after 4125 // the assignment...'. 4126 if (LHS.isBitField()) { 4127 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4128 } else { 4129 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4130 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4131 } 4132 } 4133 4134 // If the result is clearly ignored, return now. 4135 if (Ignore) 4136 return nullptr; 4137 4138 // The result of an assignment in C is the assigned r-value. 4139 if (!CGF.getLangOpts().CPlusPlus) 4140 return RHS; 4141 4142 // If the lvalue is non-volatile, return the computed value of the assignment. 4143 if (!LHS.isVolatileQualified()) 4144 return RHS; 4145 4146 // Otherwise, reload the value. 4147 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4148 } 4149 4150 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4151 // Perform vector logical and on comparisons with zero vectors. 4152 if (E->getType()->isVectorType()) { 4153 CGF.incrementProfileCounter(E); 4154 4155 Value *LHS = Visit(E->getLHS()); 4156 Value *RHS = Visit(E->getRHS()); 4157 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4158 if (LHS->getType()->isFPOrFPVectorTy()) { 4159 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4160 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4161 } else { 4162 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4163 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4164 } 4165 Value *And = Builder.CreateAnd(LHS, RHS); 4166 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4167 } 4168 4169 llvm::Type *ResTy = ConvertType(E->getType()); 4170 4171 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4172 // If we have 1 && X, just emit X without inserting the control flow. 4173 bool LHSCondVal; 4174 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4175 if (LHSCondVal) { // If we have 1 && X, just emit X. 4176 CGF.incrementProfileCounter(E); 4177 4178 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4179 // ZExt result to int or bool. 4180 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4181 } 4182 4183 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4184 if (!CGF.ContainsLabel(E->getRHS())) 4185 return llvm::Constant::getNullValue(ResTy); 4186 } 4187 4188 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4189 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4190 4191 CodeGenFunction::ConditionalEvaluation eval(CGF); 4192 4193 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4194 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4195 CGF.getProfileCount(E->getRHS())); 4196 4197 // Any edges into the ContBlock are now from an (indeterminate number of) 4198 // edges from this first condition. All of these values will be false. Start 4199 // setting up the PHI node in the Cont Block for this. 4200 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4201 "", ContBlock); 4202 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4203 PI != PE; ++PI) 4204 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4205 4206 eval.begin(CGF); 4207 CGF.EmitBlock(RHSBlock); 4208 CGF.incrementProfileCounter(E); 4209 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4210 eval.end(CGF); 4211 4212 // Reaquire the RHS block, as there may be subblocks inserted. 4213 RHSBlock = Builder.GetInsertBlock(); 4214 4215 // Emit an unconditional branch from this block to ContBlock. 4216 { 4217 // There is no need to emit line number for unconditional branch. 4218 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4219 CGF.EmitBlock(ContBlock); 4220 } 4221 // Insert an entry into the phi node for the edge with the value of RHSCond. 4222 PN->addIncoming(RHSCond, RHSBlock); 4223 4224 // Artificial location to preserve the scope information 4225 { 4226 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4227 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4228 } 4229 4230 // ZExt result to int. 4231 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4232 } 4233 4234 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4235 // Perform vector logical or on comparisons with zero vectors. 4236 if (E->getType()->isVectorType()) { 4237 CGF.incrementProfileCounter(E); 4238 4239 Value *LHS = Visit(E->getLHS()); 4240 Value *RHS = Visit(E->getRHS()); 4241 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4242 if (LHS->getType()->isFPOrFPVectorTy()) { 4243 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4244 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4245 } else { 4246 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4247 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4248 } 4249 Value *Or = Builder.CreateOr(LHS, RHS); 4250 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4251 } 4252 4253 llvm::Type *ResTy = ConvertType(E->getType()); 4254 4255 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4256 // If we have 0 || X, just emit X without inserting the control flow. 4257 bool LHSCondVal; 4258 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4259 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4260 CGF.incrementProfileCounter(E); 4261 4262 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4263 // ZExt result to int or bool. 4264 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4265 } 4266 4267 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4268 if (!CGF.ContainsLabel(E->getRHS())) 4269 return llvm::ConstantInt::get(ResTy, 1); 4270 } 4271 4272 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4273 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4274 4275 CodeGenFunction::ConditionalEvaluation eval(CGF); 4276 4277 // Branch on the LHS first. If it is true, go to the success (cont) block. 4278 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4279 CGF.getCurrentProfileCount() - 4280 CGF.getProfileCount(E->getRHS())); 4281 4282 // Any edges into the ContBlock are now from an (indeterminate number of) 4283 // edges from this first condition. All of these values will be true. Start 4284 // setting up the PHI node in the Cont Block for this. 4285 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4286 "", ContBlock); 4287 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4288 PI != PE; ++PI) 4289 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4290 4291 eval.begin(CGF); 4292 4293 // Emit the RHS condition as a bool value. 4294 CGF.EmitBlock(RHSBlock); 4295 CGF.incrementProfileCounter(E); 4296 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4297 4298 eval.end(CGF); 4299 4300 // Reaquire the RHS block, as there may be subblocks inserted. 4301 RHSBlock = Builder.GetInsertBlock(); 4302 4303 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4304 // into the phi node for the edge with the value of RHSCond. 4305 CGF.EmitBlock(ContBlock); 4306 PN->addIncoming(RHSCond, RHSBlock); 4307 4308 // ZExt result to int. 4309 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4310 } 4311 4312 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4313 CGF.EmitIgnoredExpr(E->getLHS()); 4314 CGF.EnsureInsertPoint(); 4315 return Visit(E->getRHS()); 4316 } 4317 4318 //===----------------------------------------------------------------------===// 4319 // Other Operators 4320 //===----------------------------------------------------------------------===// 4321 4322 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4323 /// expression is cheap enough and side-effect-free enough to evaluate 4324 /// unconditionally instead of conditionally. This is used to convert control 4325 /// flow into selects in some cases. 4326 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4327 CodeGenFunction &CGF) { 4328 // Anything that is an integer or floating point constant is fine. 4329 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4330 4331 // Even non-volatile automatic variables can't be evaluated unconditionally. 4332 // Referencing a thread_local may cause non-trivial initialization work to 4333 // occur. If we're inside a lambda and one of the variables is from the scope 4334 // outside the lambda, that function may have returned already. Reading its 4335 // locals is a bad idea. Also, these reads may introduce races there didn't 4336 // exist in the source-level program. 4337 } 4338 4339 4340 Value *ScalarExprEmitter:: 4341 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4342 TestAndClearIgnoreResultAssign(); 4343 4344 // Bind the common expression if necessary. 4345 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4346 4347 Expr *condExpr = E->getCond(); 4348 Expr *lhsExpr = E->getTrueExpr(); 4349 Expr *rhsExpr = E->getFalseExpr(); 4350 4351 // If the condition constant folds and can be elided, try to avoid emitting 4352 // the condition and the dead arm. 4353 bool CondExprBool; 4354 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4355 Expr *live = lhsExpr, *dead = rhsExpr; 4356 if (!CondExprBool) std::swap(live, dead); 4357 4358 // If the dead side doesn't have labels we need, just emit the Live part. 4359 if (!CGF.ContainsLabel(dead)) { 4360 if (CondExprBool) 4361 CGF.incrementProfileCounter(E); 4362 Value *Result = Visit(live); 4363 4364 // If the live part is a throw expression, it acts like it has a void 4365 // type, so evaluating it returns a null Value*. However, a conditional 4366 // with non-void type must return a non-null Value*. 4367 if (!Result && !E->getType()->isVoidType()) 4368 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4369 4370 return Result; 4371 } 4372 } 4373 4374 // OpenCL: If the condition is a vector, we can treat this condition like 4375 // the select function. 4376 if (CGF.getLangOpts().OpenCL 4377 && condExpr->getType()->isVectorType()) { 4378 CGF.incrementProfileCounter(E); 4379 4380 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4381 llvm::Value *LHS = Visit(lhsExpr); 4382 llvm::Value *RHS = Visit(rhsExpr); 4383 4384 llvm::Type *condType = ConvertType(condExpr->getType()); 4385 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4386 4387 unsigned numElem = vecTy->getNumElements(); 4388 llvm::Type *elemType = vecTy->getElementType(); 4389 4390 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4391 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4392 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4393 llvm::VectorType::get(elemType, 4394 numElem), 4395 "sext"); 4396 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4397 4398 // Cast float to int to perform ANDs if necessary. 4399 llvm::Value *RHSTmp = RHS; 4400 llvm::Value *LHSTmp = LHS; 4401 bool wasCast = false; 4402 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4403 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4404 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4405 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4406 wasCast = true; 4407 } 4408 4409 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4410 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4411 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4412 if (wasCast) 4413 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4414 4415 return tmp5; 4416 } 4417 4418 if (condExpr->getType()->isVectorType()) { 4419 CGF.incrementProfileCounter(E); 4420 4421 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4422 llvm::Value *LHS = Visit(lhsExpr); 4423 llvm::Value *RHS = Visit(rhsExpr); 4424 4425 llvm::Type *CondType = ConvertType(condExpr->getType()); 4426 auto *VecTy = cast<llvm::VectorType>(CondType); 4427 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4428 4429 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4430 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4431 } 4432 4433 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4434 // select instead of as control flow. We can only do this if it is cheap and 4435 // safe to evaluate the LHS and RHS unconditionally. 4436 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4437 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4438 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4439 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4440 4441 CGF.incrementProfileCounter(E, StepV); 4442 4443 llvm::Value *LHS = Visit(lhsExpr); 4444 llvm::Value *RHS = Visit(rhsExpr); 4445 if (!LHS) { 4446 // If the conditional has void type, make sure we return a null Value*. 4447 assert(!RHS && "LHS and RHS types must match"); 4448 return nullptr; 4449 } 4450 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4451 } 4452 4453 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4454 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4455 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4456 4457 CodeGenFunction::ConditionalEvaluation eval(CGF); 4458 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4459 CGF.getProfileCount(lhsExpr)); 4460 4461 CGF.EmitBlock(LHSBlock); 4462 CGF.incrementProfileCounter(E); 4463 eval.begin(CGF); 4464 Value *LHS = Visit(lhsExpr); 4465 eval.end(CGF); 4466 4467 LHSBlock = Builder.GetInsertBlock(); 4468 Builder.CreateBr(ContBlock); 4469 4470 CGF.EmitBlock(RHSBlock); 4471 eval.begin(CGF); 4472 Value *RHS = Visit(rhsExpr); 4473 eval.end(CGF); 4474 4475 RHSBlock = Builder.GetInsertBlock(); 4476 CGF.EmitBlock(ContBlock); 4477 4478 // If the LHS or RHS is a throw expression, it will be legitimately null. 4479 if (!LHS) 4480 return RHS; 4481 if (!RHS) 4482 return LHS; 4483 4484 // Create a PHI node for the real part. 4485 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4486 PN->addIncoming(LHS, LHSBlock); 4487 PN->addIncoming(RHS, RHSBlock); 4488 return PN; 4489 } 4490 4491 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4492 return Visit(E->getChosenSubExpr()); 4493 } 4494 4495 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4496 QualType Ty = VE->getType(); 4497 4498 if (Ty->isVariablyModifiedType()) 4499 CGF.EmitVariablyModifiedType(Ty); 4500 4501 Address ArgValue = Address::invalid(); 4502 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4503 4504 llvm::Type *ArgTy = ConvertType(VE->getType()); 4505 4506 // If EmitVAArg fails, emit an error. 4507 if (!ArgPtr.isValid()) { 4508 CGF.ErrorUnsupported(VE, "va_arg expression"); 4509 return llvm::UndefValue::get(ArgTy); 4510 } 4511 4512 // FIXME Volatility. 4513 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4514 4515 // If EmitVAArg promoted the type, we must truncate it. 4516 if (ArgTy != Val->getType()) { 4517 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4518 Val = Builder.CreateIntToPtr(Val, ArgTy); 4519 else 4520 Val = Builder.CreateTrunc(Val, ArgTy); 4521 } 4522 4523 return Val; 4524 } 4525 4526 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4527 return CGF.EmitBlockLiteral(block); 4528 } 4529 4530 // Convert a vec3 to vec4, or vice versa. 4531 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4532 Value *Src, unsigned NumElementsDst) { 4533 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4534 static constexpr int Mask[] = {0, 1, 2, -1}; 4535 return Builder.CreateShuffleVector(Src, UnV, 4536 llvm::makeArrayRef(Mask, NumElementsDst)); 4537 } 4538 4539 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4540 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4541 // but could be scalar or vectors of different lengths, and either can be 4542 // pointer. 4543 // There are 4 cases: 4544 // 1. non-pointer -> non-pointer : needs 1 bitcast 4545 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4546 // 3. pointer -> non-pointer 4547 // a) pointer -> intptr_t : needs 1 ptrtoint 4548 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4549 // 4. non-pointer -> pointer 4550 // a) intptr_t -> pointer : needs 1 inttoptr 4551 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4552 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4553 // allow casting directly between pointer types and non-integer non-pointer 4554 // types. 4555 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4556 const llvm::DataLayout &DL, 4557 Value *Src, llvm::Type *DstTy, 4558 StringRef Name = "") { 4559 auto SrcTy = Src->getType(); 4560 4561 // Case 1. 4562 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4563 return Builder.CreateBitCast(Src, DstTy, Name); 4564 4565 // Case 2. 4566 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4567 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4568 4569 // Case 3. 4570 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4571 // Case 3b. 4572 if (!DstTy->isIntegerTy()) 4573 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4574 // Cases 3a and 3b. 4575 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4576 } 4577 4578 // Case 4b. 4579 if (!SrcTy->isIntegerTy()) 4580 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4581 // Cases 4a and 4b. 4582 return Builder.CreateIntToPtr(Src, DstTy, Name); 4583 } 4584 4585 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4586 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4587 llvm::Type *DstTy = ConvertType(E->getType()); 4588 4589 llvm::Type *SrcTy = Src->getType(); 4590 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4591 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4592 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4593 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4594 4595 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4596 // vector to get a vec4, then a bitcast if the target type is different. 4597 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4598 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4599 4600 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4601 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4602 DstTy); 4603 } 4604 4605 Src->setName("astype"); 4606 return Src; 4607 } 4608 4609 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4610 // to vec4 if the original type is not vec4, then a shuffle vector to 4611 // get a vec3. 4612 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4613 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4614 auto Vec4Ty = llvm::VectorType::get( 4615 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4616 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4617 Vec4Ty); 4618 } 4619 4620 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4621 Src->setName("astype"); 4622 return Src; 4623 } 4624 4625 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4626 Src, DstTy, "astype"); 4627 } 4628 4629 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4630 return CGF.EmitAtomicExpr(E).getScalarVal(); 4631 } 4632 4633 //===----------------------------------------------------------------------===// 4634 // Entry Point into this File 4635 //===----------------------------------------------------------------------===// 4636 4637 /// Emit the computation of the specified expression of scalar type, ignoring 4638 /// the result. 4639 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4640 assert(E && hasScalarEvaluationKind(E->getType()) && 4641 "Invalid scalar expression to emit"); 4642 4643 return ScalarExprEmitter(*this, IgnoreResultAssign) 4644 .Visit(const_cast<Expr *>(E)); 4645 } 4646 4647 /// Emit a conversion from the specified type to the specified destination type, 4648 /// both of which are LLVM scalar types. 4649 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4650 QualType DstTy, 4651 SourceLocation Loc) { 4652 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4653 "Invalid scalar expression to emit"); 4654 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4655 } 4656 4657 /// Emit a conversion from the specified complex type to the specified 4658 /// destination type, where the destination type is an LLVM scalar type. 4659 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4660 QualType SrcTy, 4661 QualType DstTy, 4662 SourceLocation Loc) { 4663 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4664 "Invalid complex -> scalar conversion"); 4665 return ScalarExprEmitter(*this) 4666 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4667 } 4668 4669 4670 llvm::Value *CodeGenFunction:: 4671 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4672 bool isInc, bool isPre) { 4673 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4674 } 4675 4676 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4677 // object->isa or (*object).isa 4678 // Generate code as for: *(Class*)object 4679 4680 Expr *BaseExpr = E->getBase(); 4681 Address Addr = Address::invalid(); 4682 if (BaseExpr->isRValue()) { 4683 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4684 } else { 4685 Addr = EmitLValue(BaseExpr).getAddress(*this); 4686 } 4687 4688 // Cast the address to Class*. 4689 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4690 return MakeAddrLValue(Addr, E->getType()); 4691 } 4692 4693 4694 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4695 const CompoundAssignOperator *E) { 4696 ScalarExprEmitter Scalar(*this); 4697 Value *Result = nullptr; 4698 switch (E->getOpcode()) { 4699 #define COMPOUND_OP(Op) \ 4700 case BO_##Op##Assign: \ 4701 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4702 Result) 4703 COMPOUND_OP(Mul); 4704 COMPOUND_OP(Div); 4705 COMPOUND_OP(Rem); 4706 COMPOUND_OP(Add); 4707 COMPOUND_OP(Sub); 4708 COMPOUND_OP(Shl); 4709 COMPOUND_OP(Shr); 4710 COMPOUND_OP(And); 4711 COMPOUND_OP(Xor); 4712 COMPOUND_OP(Or); 4713 #undef COMPOUND_OP 4714 4715 case BO_PtrMemD: 4716 case BO_PtrMemI: 4717 case BO_Mul: 4718 case BO_Div: 4719 case BO_Rem: 4720 case BO_Add: 4721 case BO_Sub: 4722 case BO_Shl: 4723 case BO_Shr: 4724 case BO_LT: 4725 case BO_GT: 4726 case BO_LE: 4727 case BO_GE: 4728 case BO_EQ: 4729 case BO_NE: 4730 case BO_Cmp: 4731 case BO_And: 4732 case BO_Xor: 4733 case BO_Or: 4734 case BO_LAnd: 4735 case BO_LOr: 4736 case BO_Assign: 4737 case BO_Comma: 4738 llvm_unreachable("Not valid compound assignment operators"); 4739 } 4740 4741 llvm_unreachable("Unhandled compound assignment operator"); 4742 } 4743 4744 struct GEPOffsetAndOverflow { 4745 // The total (signed) byte offset for the GEP. 4746 llvm::Value *TotalOffset; 4747 // The offset overflow flag - true if the total offset overflows. 4748 llvm::Value *OffsetOverflows; 4749 }; 4750 4751 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4752 /// and compute the total offset it applies from it's base pointer BasePtr. 4753 /// Returns offset in bytes and a boolean flag whether an overflow happened 4754 /// during evaluation. 4755 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4756 llvm::LLVMContext &VMContext, 4757 CodeGenModule &CGM, 4758 CGBuilderTy &Builder) { 4759 const auto &DL = CGM.getDataLayout(); 4760 4761 // The total (signed) byte offset for the GEP. 4762 llvm::Value *TotalOffset = nullptr; 4763 4764 // Was the GEP already reduced to a constant? 4765 if (isa<llvm::Constant>(GEPVal)) { 4766 // Compute the offset by casting both pointers to integers and subtracting: 4767 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4768 Value *BasePtr_int = 4769 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4770 Value *GEPVal_int = 4771 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4772 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4773 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4774 } 4775 4776 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4777 assert(GEP->getPointerOperand() == BasePtr && 4778 "BasePtr must be the the base of the GEP."); 4779 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4780 4781 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4782 4783 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4784 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4785 auto *SAddIntrinsic = 4786 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4787 auto *SMulIntrinsic = 4788 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4789 4790 // The offset overflow flag - true if the total offset overflows. 4791 llvm::Value *OffsetOverflows = Builder.getFalse(); 4792 4793 /// Return the result of the given binary operation. 4794 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4795 llvm::Value *RHS) -> llvm::Value * { 4796 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4797 4798 // If the operands are constants, return a constant result. 4799 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4800 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4801 llvm::APInt N; 4802 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4803 /*Signed=*/true, N); 4804 if (HasOverflow) 4805 OffsetOverflows = Builder.getTrue(); 4806 return llvm::ConstantInt::get(VMContext, N); 4807 } 4808 } 4809 4810 // Otherwise, compute the result with checked arithmetic. 4811 auto *ResultAndOverflow = Builder.CreateCall( 4812 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4813 OffsetOverflows = Builder.CreateOr( 4814 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4815 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4816 }; 4817 4818 // Determine the total byte offset by looking at each GEP operand. 4819 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4820 GTI != GTE; ++GTI) { 4821 llvm::Value *LocalOffset; 4822 auto *Index = GTI.getOperand(); 4823 // Compute the local offset contributed by this indexing step: 4824 if (auto *STy = GTI.getStructTypeOrNull()) { 4825 // For struct indexing, the local offset is the byte position of the 4826 // specified field. 4827 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4828 LocalOffset = llvm::ConstantInt::get( 4829 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4830 } else { 4831 // Otherwise this is array-like indexing. The local offset is the index 4832 // multiplied by the element size. 4833 auto *ElementSize = llvm::ConstantInt::get( 4834 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4835 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4836 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4837 } 4838 4839 // If this is the first offset, set it as the total offset. Otherwise, add 4840 // the local offset into the running total. 4841 if (!TotalOffset || TotalOffset == Zero) 4842 TotalOffset = LocalOffset; 4843 else 4844 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4845 } 4846 4847 return {TotalOffset, OffsetOverflows}; 4848 } 4849 4850 Value * 4851 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4852 bool SignedIndices, bool IsSubtraction, 4853 SourceLocation Loc, const Twine &Name) { 4854 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4855 4856 // If the pointer overflow sanitizer isn't enabled, do nothing. 4857 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4858 return GEPVal; 4859 4860 llvm::Type *PtrTy = Ptr->getType(); 4861 4862 // Perform nullptr-and-offset check unless the nullptr is defined. 4863 bool PerformNullCheck = !NullPointerIsDefined( 4864 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4865 // Check for overflows unless the GEP got constant-folded, 4866 // and only in the default address space 4867 bool PerformOverflowCheck = 4868 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4869 4870 if (!(PerformNullCheck || PerformOverflowCheck)) 4871 return GEPVal; 4872 4873 const auto &DL = CGM.getDataLayout(); 4874 4875 SanitizerScope SanScope(this); 4876 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4877 4878 GEPOffsetAndOverflow EvaluatedGEP = 4879 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4880 4881 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4882 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4883 "If the offset got constant-folded, we don't expect that there was an " 4884 "overflow."); 4885 4886 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4887 4888 // Common case: if the total offset is zero, and we are using C++ semantics, 4889 // where nullptr+0 is defined, don't emit a check. 4890 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4891 return GEPVal; 4892 4893 // Now that we've computed the total offset, add it to the base pointer (with 4894 // wrapping semantics). 4895 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4896 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4897 4898 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4899 4900 if (PerformNullCheck) { 4901 // In C++, if the base pointer evaluates to a null pointer value, 4902 // the only valid pointer this inbounds GEP can produce is also 4903 // a null pointer, so the offset must also evaluate to zero. 4904 // Likewise, if we have non-zero base pointer, we can not get null pointer 4905 // as a result, so the offset can not be -intptr_t(BasePtr). 4906 // In other words, both pointers are either null, or both are non-null, 4907 // or the behaviour is undefined. 4908 // 4909 // C, however, is more strict in this regard, and gives more 4910 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4911 // So both the input to the 'gep inbounds' AND the output must not be null. 4912 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4913 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4914 auto *Valid = 4915 CGM.getLangOpts().CPlusPlus 4916 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4917 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4918 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4919 } 4920 4921 if (PerformOverflowCheck) { 4922 // The GEP is valid if: 4923 // 1) The total offset doesn't overflow, and 4924 // 2) The sign of the difference between the computed address and the base 4925 // pointer matches the sign of the total offset. 4926 llvm::Value *ValidGEP; 4927 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4928 if (SignedIndices) { 4929 // GEP is computed as `unsigned base + signed offset`, therefore: 4930 // * If offset was positive, then the computed pointer can not be 4931 // [unsigned] less than the base pointer, unless it overflowed. 4932 // * If offset was negative, then the computed pointer can not be 4933 // [unsigned] greater than the bas pointere, unless it overflowed. 4934 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4935 auto *PosOrZeroOffset = 4936 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4937 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4938 ValidGEP = 4939 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4940 } else if (!IsSubtraction) { 4941 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4942 // computed pointer can not be [unsigned] less than base pointer, 4943 // unless there was an overflow. 4944 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4945 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4946 } else { 4947 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4948 // computed pointer can not be [unsigned] greater than base pointer, 4949 // unless there was an overflow. 4950 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4951 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4952 } 4953 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4954 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4955 } 4956 4957 assert(!Checks.empty() && "Should have produced some checks."); 4958 4959 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4960 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4961 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4962 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4963 4964 return GEPVal; 4965 } 4966