1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Module.h" 37 #include <cstdarg> 38 39 using namespace clang; 40 using namespace CodeGen; 41 using llvm::Value; 42 43 //===----------------------------------------------------------------------===// 44 // Scalar Expression Emitter 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 49 /// Determine whether the given binary operation may overflow. 50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 52 /// the returned overflow check is precise. The returned value is 'true' for 53 /// all other opcodes, to be conservative. 54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 55 BinaryOperator::Opcode Opcode, bool Signed, 56 llvm::APInt &Result) { 57 // Assume overflow is possible, unless we can prove otherwise. 58 bool Overflow = true; 59 const auto &LHSAP = LHS->getValue(); 60 const auto &RHSAP = RHS->getValue(); 61 if (Opcode == BO_Add) { 62 if (Signed) 63 Result = LHSAP.sadd_ov(RHSAP, Overflow); 64 else 65 Result = LHSAP.uadd_ov(RHSAP, Overflow); 66 } else if (Opcode == BO_Sub) { 67 if (Signed) 68 Result = LHSAP.ssub_ov(RHSAP, Overflow); 69 else 70 Result = LHSAP.usub_ov(RHSAP, Overflow); 71 } else if (Opcode == BO_Mul) { 72 if (Signed) 73 Result = LHSAP.smul_ov(RHSAP, Overflow); 74 else 75 Result = LHSAP.umul_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 77 if (Signed && !RHS->isZero()) 78 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 79 else 80 return false; 81 } 82 return Overflow; 83 } 84 85 struct BinOpInfo { 86 Value *LHS; 87 Value *RHS; 88 QualType Ty; // Computation Type. 89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 90 FPOptions FPFeatures; 91 const Expr *E; // Entire expr, for error unsupported. May not be binop. 92 93 /// Check if the binop can result in integer overflow. 94 bool mayHaveIntegerOverflow() const { 95 // Without constant input, we can't rule out overflow. 96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 98 if (!LHSCI || !RHSCI) 99 return true; 100 101 llvm::APInt Result; 102 return ::mayHaveIntegerOverflow( 103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 104 } 105 106 /// Check if the binop computes a division or a remainder. 107 bool isDivremOp() const { 108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 109 Opcode == BO_RemAssign; 110 } 111 112 /// Check if the binop can result in an integer division by zero. 113 bool mayHaveIntegerDivisionByZero() const { 114 if (isDivremOp()) 115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 116 return CI->isZero(); 117 return true; 118 } 119 120 /// Check if the binop can result in a float division by zero. 121 bool mayHaveFloatDivisionByZero() const { 122 if (isDivremOp()) 123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 124 return CFP->isZero(); 125 return true; 126 } 127 }; 128 129 static bool MustVisitNullValue(const Expr *E) { 130 // If a null pointer expression's type is the C++0x nullptr_t, then 131 // it's not necessarily a simple constant and it must be evaluated 132 // for its potential side effects. 133 return E->getType()->isNullPtrType(); 134 } 135 136 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 138 const Expr *E) { 139 const Expr *Base = E->IgnoreImpCasts(); 140 if (E == Base) 141 return llvm::None; 142 143 QualType BaseTy = Base->getType(); 144 if (!BaseTy->isPromotableIntegerType() || 145 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 146 return llvm::None; 147 148 return BaseTy; 149 } 150 151 /// Check if \p E is a widened promoted integer. 152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 153 return getUnwidenedIntegerType(Ctx, E).hasValue(); 154 } 155 156 /// Check if we can skip the overflow check for \p Op. 157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 158 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 159 "Expected a unary or binary operator"); 160 161 // If the binop has constant inputs and we can prove there is no overflow, 162 // we can elide the overflow check. 163 if (!Op.mayHaveIntegerOverflow()) 164 return true; 165 166 // If a unary op has a widened operand, the op cannot overflow. 167 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 168 return !UO->canOverflow(); 169 170 // We usually don't need overflow checks for binops with widened operands. 171 // Multiplication with promoted unsigned operands is a special case. 172 const auto *BO = cast<BinaryOperator>(Op.E); 173 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 174 if (!OptionalLHSTy) 175 return false; 176 177 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 178 if (!OptionalRHSTy) 179 return false; 180 181 QualType LHSTy = *OptionalLHSTy; 182 QualType RHSTy = *OptionalRHSTy; 183 184 // This is the simple case: binops without unsigned multiplication, and with 185 // widened operands. No overflow check is needed here. 186 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 187 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 188 return true; 189 190 // For unsigned multiplication the overflow check can be elided if either one 191 // of the unpromoted types are less than half the size of the promoted type. 192 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 193 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 194 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 195 } 196 197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 198 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 199 FPOptions FPFeatures) { 200 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 201 } 202 203 /// Propagate fast-math flags from \p Op to the instruction in \p V. 204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 205 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 206 llvm::FastMathFlags FMF = I->getFastMathFlags(); 207 updateFastMathFlags(FMF, Op.FPFeatures); 208 I->setFastMathFlags(FMF); 209 } 210 return V; 211 } 212 213 class ScalarExprEmitter 214 : public StmtVisitor<ScalarExprEmitter, Value*> { 215 CodeGenFunction &CGF; 216 CGBuilderTy &Builder; 217 bool IgnoreResultAssign; 218 llvm::LLVMContext &VMContext; 219 public: 220 221 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 222 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 223 VMContext(cgf.getLLVMContext()) { 224 } 225 226 //===--------------------------------------------------------------------===// 227 // Utilities 228 //===--------------------------------------------------------------------===// 229 230 bool TestAndClearIgnoreResultAssign() { 231 bool I = IgnoreResultAssign; 232 IgnoreResultAssign = false; 233 return I; 234 } 235 236 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 237 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 238 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 239 return CGF.EmitCheckedLValue(E, TCK); 240 } 241 242 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 243 const BinOpInfo &Info); 244 245 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 246 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 247 } 248 249 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 250 const AlignValueAttr *AVAttr = nullptr; 251 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 252 const ValueDecl *VD = DRE->getDecl(); 253 254 if (VD->getType()->isReferenceType()) { 255 if (const auto *TTy = 256 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 257 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 258 } else { 259 // Assumptions for function parameters are emitted at the start of the 260 // function, so there is no need to repeat that here. 261 if (isa<ParmVarDecl>(VD)) 262 return; 263 264 AVAttr = VD->getAttr<AlignValueAttr>(); 265 } 266 } 267 268 if (!AVAttr) 269 if (const auto *TTy = 270 dyn_cast<TypedefType>(E->getType())) 271 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 272 273 if (!AVAttr) 274 return; 275 276 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 277 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 278 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 279 } 280 281 /// EmitLoadOfLValue - Given an expression with complex type that represents a 282 /// value l-value, this method emits the address of the l-value, then loads 283 /// and returns the result. 284 Value *EmitLoadOfLValue(const Expr *E) { 285 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 286 E->getExprLoc()); 287 288 EmitLValueAlignmentAssumption(E, V); 289 return V; 290 } 291 292 /// EmitConversionToBool - Convert the specified expression value to a 293 /// boolean (i1) truth value. This is equivalent to "Val != 0". 294 Value *EmitConversionToBool(Value *Src, QualType DstTy); 295 296 /// Emit a check that a conversion to or from a floating-point type does not 297 /// overflow. 298 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 299 Value *Src, QualType SrcType, QualType DstType, 300 llvm::Type *DstTy, SourceLocation Loc); 301 302 /// Known implicit conversion check kinds. 303 /// Keep in sync with the enum of the same name in ubsan_handlers.h 304 enum ImplicitConversionCheckKind : unsigned char { 305 ICCK_IntegerTruncation = 0, 306 }; 307 308 /// Emit a check that an [implicit] truncation of an integer does not 309 /// discard any bits. It is not UB, so we use the value after truncation. 310 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 311 QualType DstType, SourceLocation Loc); 312 313 /// Emit a conversion from the specified type to the specified destination 314 /// type, both of which are LLVM scalar types. 315 struct ScalarConversionOpts { 316 bool TreatBooleanAsSigned; 317 bool EmitImplicitIntegerTruncationChecks; 318 319 ScalarConversionOpts() 320 : TreatBooleanAsSigned(false), 321 EmitImplicitIntegerTruncationChecks(false) {} 322 }; 323 Value * 324 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 325 SourceLocation Loc, 326 ScalarConversionOpts Opts = ScalarConversionOpts()); 327 328 /// Emit a conversion from the specified complex type to the specified 329 /// destination type, where the destination type is an LLVM scalar type. 330 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 331 QualType SrcTy, QualType DstTy, 332 SourceLocation Loc); 333 334 /// EmitNullValue - Emit a value that corresponds to null for the given type. 335 Value *EmitNullValue(QualType Ty); 336 337 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 338 Value *EmitFloatToBoolConversion(Value *V) { 339 // Compare against 0.0 for fp scalars. 340 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 341 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 342 } 343 344 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 345 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 346 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 347 348 return Builder.CreateICmpNE(V, Zero, "tobool"); 349 } 350 351 Value *EmitIntToBoolConversion(Value *V) { 352 // Because of the type rules of C, we often end up computing a 353 // logical value, then zero extending it to int, then wanting it 354 // as a logical value again. Optimize this common case. 355 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 356 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 357 Value *Result = ZI->getOperand(0); 358 // If there aren't any more uses, zap the instruction to save space. 359 // Note that there can be more uses, for example if this 360 // is the result of an assignment. 361 if (ZI->use_empty()) 362 ZI->eraseFromParent(); 363 return Result; 364 } 365 } 366 367 return Builder.CreateIsNotNull(V, "tobool"); 368 } 369 370 //===--------------------------------------------------------------------===// 371 // Visitor Methods 372 //===--------------------------------------------------------------------===// 373 374 Value *Visit(Expr *E) { 375 ApplyDebugLocation DL(CGF, E); 376 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 377 } 378 379 Value *VisitStmt(Stmt *S) { 380 S->dump(CGF.getContext().getSourceManager()); 381 llvm_unreachable("Stmt can't have complex result type!"); 382 } 383 Value *VisitExpr(Expr *S); 384 385 Value *VisitParenExpr(ParenExpr *PE) { 386 return Visit(PE->getSubExpr()); 387 } 388 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 389 return Visit(E->getReplacement()); 390 } 391 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 392 return Visit(GE->getResultExpr()); 393 } 394 Value *VisitCoawaitExpr(CoawaitExpr *S) { 395 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 396 } 397 Value *VisitCoyieldExpr(CoyieldExpr *S) { 398 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 399 } 400 Value *VisitUnaryCoawait(const UnaryOperator *E) { 401 return Visit(E->getSubExpr()); 402 } 403 404 // Leaves. 405 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 406 return Builder.getInt(E->getValue()); 407 } 408 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 409 return Builder.getInt(E->getValue()); 410 } 411 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 412 return llvm::ConstantFP::get(VMContext, E->getValue()); 413 } 414 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 415 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 416 } 417 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 418 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 419 } 420 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 421 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 422 } 423 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 424 return EmitNullValue(E->getType()); 425 } 426 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 427 return EmitNullValue(E->getType()); 428 } 429 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 430 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 431 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 432 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 433 return Builder.CreateBitCast(V, ConvertType(E->getType())); 434 } 435 436 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 437 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 438 } 439 440 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 441 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 442 } 443 444 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 445 if (E->isGLValue()) 446 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 447 E->getExprLoc()); 448 449 // Otherwise, assume the mapping is the scalar directly. 450 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 451 } 452 453 Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant, 454 Expr *E) { 455 assert(Constant && "not a constant"); 456 if (Constant.isReference()) 457 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 458 E->getExprLoc()); 459 return Constant.getValue(); 460 } 461 462 // l-values. 463 Value *VisitDeclRefExpr(DeclRefExpr *E) { 464 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 465 return emitConstant(Constant, E); 466 return EmitLoadOfLValue(E); 467 } 468 469 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 470 return CGF.EmitObjCSelectorExpr(E); 471 } 472 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 473 return CGF.EmitObjCProtocolExpr(E); 474 } 475 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 476 return EmitLoadOfLValue(E); 477 } 478 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 479 if (E->getMethodDecl() && 480 E->getMethodDecl()->getReturnType()->isReferenceType()) 481 return EmitLoadOfLValue(E); 482 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 483 } 484 485 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 486 LValue LV = CGF.EmitObjCIsaExpr(E); 487 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 488 return V; 489 } 490 491 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 492 VersionTuple Version = E->getVersion(); 493 494 // If we're checking for a platform older than our minimum deployment 495 // target, we can fold the check away. 496 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 497 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 498 499 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 500 llvm::Value *Args[] = { 501 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 502 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 503 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 504 }; 505 506 return CGF.EmitBuiltinAvailable(Args); 507 } 508 509 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 510 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 511 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 512 Value *VisitMemberExpr(MemberExpr *E); 513 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 514 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 515 return EmitLoadOfLValue(E); 516 } 517 518 Value *VisitInitListExpr(InitListExpr *E); 519 520 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 521 assert(CGF.getArrayInitIndex() && 522 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 523 return CGF.getArrayInitIndex(); 524 } 525 526 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 527 return EmitNullValue(E->getType()); 528 } 529 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 530 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 531 return VisitCastExpr(E); 532 } 533 Value *VisitCastExpr(CastExpr *E); 534 535 Value *VisitCallExpr(const CallExpr *E) { 536 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 537 return EmitLoadOfLValue(E); 538 539 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 540 541 EmitLValueAlignmentAssumption(E, V); 542 return V; 543 } 544 545 Value *VisitStmtExpr(const StmtExpr *E); 546 547 // Unary Operators. 548 Value *VisitUnaryPostDec(const UnaryOperator *E) { 549 LValue LV = EmitLValue(E->getSubExpr()); 550 return EmitScalarPrePostIncDec(E, LV, false, false); 551 } 552 Value *VisitUnaryPostInc(const UnaryOperator *E) { 553 LValue LV = EmitLValue(E->getSubExpr()); 554 return EmitScalarPrePostIncDec(E, LV, true, false); 555 } 556 Value *VisitUnaryPreDec(const UnaryOperator *E) { 557 LValue LV = EmitLValue(E->getSubExpr()); 558 return EmitScalarPrePostIncDec(E, LV, false, true); 559 } 560 Value *VisitUnaryPreInc(const UnaryOperator *E) { 561 LValue LV = EmitLValue(E->getSubExpr()); 562 return EmitScalarPrePostIncDec(E, LV, true, true); 563 } 564 565 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 566 llvm::Value *InVal, 567 bool IsInc); 568 569 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 570 bool isInc, bool isPre); 571 572 573 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 574 if (isa<MemberPointerType>(E->getType())) // never sugared 575 return CGF.CGM.getMemberPointerConstant(E); 576 577 return EmitLValue(E->getSubExpr()).getPointer(); 578 } 579 Value *VisitUnaryDeref(const UnaryOperator *E) { 580 if (E->getType()->isVoidType()) 581 return Visit(E->getSubExpr()); // the actual value should be unused 582 return EmitLoadOfLValue(E); 583 } 584 Value *VisitUnaryPlus(const UnaryOperator *E) { 585 // This differs from gcc, though, most likely due to a bug in gcc. 586 TestAndClearIgnoreResultAssign(); 587 return Visit(E->getSubExpr()); 588 } 589 Value *VisitUnaryMinus (const UnaryOperator *E); 590 Value *VisitUnaryNot (const UnaryOperator *E); 591 Value *VisitUnaryLNot (const UnaryOperator *E); 592 Value *VisitUnaryReal (const UnaryOperator *E); 593 Value *VisitUnaryImag (const UnaryOperator *E); 594 Value *VisitUnaryExtension(const UnaryOperator *E) { 595 return Visit(E->getSubExpr()); 596 } 597 598 // C++ 599 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 600 return EmitLoadOfLValue(E); 601 } 602 603 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 604 return Visit(DAE->getExpr()); 605 } 606 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 607 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 608 return Visit(DIE->getExpr()); 609 } 610 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 611 return CGF.LoadCXXThis(); 612 } 613 614 Value *VisitExprWithCleanups(ExprWithCleanups *E); 615 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 616 return CGF.EmitCXXNewExpr(E); 617 } 618 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 619 CGF.EmitCXXDeleteExpr(E); 620 return nullptr; 621 } 622 623 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 624 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 625 } 626 627 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 628 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 629 } 630 631 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 632 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 633 } 634 635 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 636 // C++ [expr.pseudo]p1: 637 // The result shall only be used as the operand for the function call 638 // operator (), and the result of such a call has type void. The only 639 // effect is the evaluation of the postfix-expression before the dot or 640 // arrow. 641 CGF.EmitScalarExpr(E->getBase()); 642 return nullptr; 643 } 644 645 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 646 return EmitNullValue(E->getType()); 647 } 648 649 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 650 CGF.EmitCXXThrowExpr(E); 651 return nullptr; 652 } 653 654 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 655 return Builder.getInt1(E->getValue()); 656 } 657 658 // Binary Operators. 659 Value *EmitMul(const BinOpInfo &Ops) { 660 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 661 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 662 case LangOptions::SOB_Defined: 663 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 664 case LangOptions::SOB_Undefined: 665 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 666 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 667 // Fall through. 668 case LangOptions::SOB_Trapping: 669 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 670 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 671 return EmitOverflowCheckedBinOp(Ops); 672 } 673 } 674 675 if (Ops.Ty->isUnsignedIntegerType() && 676 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 677 !CanElideOverflowCheck(CGF.getContext(), Ops)) 678 return EmitOverflowCheckedBinOp(Ops); 679 680 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 681 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 682 return propagateFMFlags(V, Ops); 683 } 684 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 685 } 686 /// Create a binary op that checks for overflow. 687 /// Currently only supports +, - and *. 688 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 689 690 // Check for undefined division and modulus behaviors. 691 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 692 llvm::Value *Zero,bool isDiv); 693 // Common helper for getting how wide LHS of shift is. 694 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 695 Value *EmitDiv(const BinOpInfo &Ops); 696 Value *EmitRem(const BinOpInfo &Ops); 697 Value *EmitAdd(const BinOpInfo &Ops); 698 Value *EmitSub(const BinOpInfo &Ops); 699 Value *EmitShl(const BinOpInfo &Ops); 700 Value *EmitShr(const BinOpInfo &Ops); 701 Value *EmitAnd(const BinOpInfo &Ops) { 702 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 703 } 704 Value *EmitXor(const BinOpInfo &Ops) { 705 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 706 } 707 Value *EmitOr (const BinOpInfo &Ops) { 708 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 709 } 710 711 BinOpInfo EmitBinOps(const BinaryOperator *E); 712 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 713 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 714 Value *&Result); 715 716 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 717 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 718 719 // Binary operators and binary compound assignment operators. 720 #define HANDLEBINOP(OP) \ 721 Value *VisitBin ## OP(const BinaryOperator *E) { \ 722 return Emit ## OP(EmitBinOps(E)); \ 723 } \ 724 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 725 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 726 } 727 HANDLEBINOP(Mul) 728 HANDLEBINOP(Div) 729 HANDLEBINOP(Rem) 730 HANDLEBINOP(Add) 731 HANDLEBINOP(Sub) 732 HANDLEBINOP(Shl) 733 HANDLEBINOP(Shr) 734 HANDLEBINOP(And) 735 HANDLEBINOP(Xor) 736 HANDLEBINOP(Or) 737 #undef HANDLEBINOP 738 739 // Comparisons. 740 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 741 llvm::CmpInst::Predicate SICmpOpc, 742 llvm::CmpInst::Predicate FCmpOpc); 743 #define VISITCOMP(CODE, UI, SI, FP) \ 744 Value *VisitBin##CODE(const BinaryOperator *E) { \ 745 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 746 llvm::FCmpInst::FP); } 747 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 748 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 749 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 750 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 751 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 752 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 753 #undef VISITCOMP 754 755 Value *VisitBinAssign (const BinaryOperator *E); 756 757 Value *VisitBinLAnd (const BinaryOperator *E); 758 Value *VisitBinLOr (const BinaryOperator *E); 759 Value *VisitBinComma (const BinaryOperator *E); 760 761 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 762 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 763 764 // Other Operators. 765 Value *VisitBlockExpr(const BlockExpr *BE); 766 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 767 Value *VisitChooseExpr(ChooseExpr *CE); 768 Value *VisitVAArgExpr(VAArgExpr *VE); 769 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 770 return CGF.EmitObjCStringLiteral(E); 771 } 772 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 773 return CGF.EmitObjCBoxedExpr(E); 774 } 775 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 776 return CGF.EmitObjCArrayLiteral(E); 777 } 778 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 779 return CGF.EmitObjCDictionaryLiteral(E); 780 } 781 Value *VisitAsTypeExpr(AsTypeExpr *CE); 782 Value *VisitAtomicExpr(AtomicExpr *AE); 783 }; 784 } // end anonymous namespace. 785 786 //===----------------------------------------------------------------------===// 787 // Utilities 788 //===----------------------------------------------------------------------===// 789 790 /// EmitConversionToBool - Convert the specified expression value to a 791 /// boolean (i1) truth value. This is equivalent to "Val != 0". 792 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 793 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 794 795 if (SrcType->isRealFloatingType()) 796 return EmitFloatToBoolConversion(Src); 797 798 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 799 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 800 801 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 802 "Unknown scalar type to convert"); 803 804 if (isa<llvm::IntegerType>(Src->getType())) 805 return EmitIntToBoolConversion(Src); 806 807 assert(isa<llvm::PointerType>(Src->getType())); 808 return EmitPointerToBoolConversion(Src, SrcType); 809 } 810 811 void ScalarExprEmitter::EmitFloatConversionCheck( 812 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 813 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 814 CodeGenFunction::SanitizerScope SanScope(&CGF); 815 using llvm::APFloat; 816 using llvm::APSInt; 817 818 llvm::Type *SrcTy = Src->getType(); 819 820 llvm::Value *Check = nullptr; 821 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 822 // Integer to floating-point. This can fail for unsigned short -> __half 823 // or unsigned __int128 -> float. 824 assert(DstType->isFloatingType()); 825 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 826 827 APFloat LargestFloat = 828 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 829 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 830 831 bool IsExact; 832 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 833 &IsExact) != APFloat::opOK) 834 // The range of representable values of this floating point type includes 835 // all values of this integer type. Don't need an overflow check. 836 return; 837 838 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 839 if (SrcIsUnsigned) 840 Check = Builder.CreateICmpULE(Src, Max); 841 else { 842 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 843 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 844 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 845 Check = Builder.CreateAnd(GE, LE); 846 } 847 } else { 848 const llvm::fltSemantics &SrcSema = 849 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 850 if (isa<llvm::IntegerType>(DstTy)) { 851 // Floating-point to integer. This has undefined behavior if the source is 852 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 853 // to an integer). 854 unsigned Width = CGF.getContext().getIntWidth(DstType); 855 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 856 857 APSInt Min = APSInt::getMinValue(Width, Unsigned); 858 APFloat MinSrc(SrcSema, APFloat::uninitialized); 859 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 860 APFloat::opOverflow) 861 // Don't need an overflow check for lower bound. Just check for 862 // -Inf/NaN. 863 MinSrc = APFloat::getInf(SrcSema, true); 864 else 865 // Find the largest value which is too small to represent (before 866 // truncation toward zero). 867 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 868 869 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 870 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 871 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 872 APFloat::opOverflow) 873 // Don't need an overflow check for upper bound. Just check for 874 // +Inf/NaN. 875 MaxSrc = APFloat::getInf(SrcSema, false); 876 else 877 // Find the smallest value which is too large to represent (before 878 // truncation toward zero). 879 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 880 881 // If we're converting from __half, convert the range to float to match 882 // the type of src. 883 if (OrigSrcType->isHalfType()) { 884 const llvm::fltSemantics &Sema = 885 CGF.getContext().getFloatTypeSemantics(SrcType); 886 bool IsInexact; 887 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 888 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 889 } 890 891 llvm::Value *GE = 892 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 893 llvm::Value *LE = 894 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 895 Check = Builder.CreateAnd(GE, LE); 896 } else { 897 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 898 // 899 // Floating-point to floating-point. This has undefined behavior if the 900 // source is not in the range of representable values of the destination 901 // type. The C and C++ standards are spectacularly unclear here. We 902 // diagnose finite out-of-range conversions, but allow infinities and NaNs 903 // to convert to the corresponding value in the smaller type. 904 // 905 // C11 Annex F gives all such conversions defined behavior for IEC 60559 906 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 907 // does not. 908 909 // Converting from a lower rank to a higher rank can never have 910 // undefined behavior, since higher-rank types must have a superset 911 // of values of lower-rank types. 912 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 913 return; 914 915 assert(!OrigSrcType->isHalfType() && 916 "should not check conversion from __half, it has the lowest rank"); 917 918 const llvm::fltSemantics &DstSema = 919 CGF.getContext().getFloatTypeSemantics(DstType); 920 APFloat MinBad = APFloat::getLargest(DstSema, false); 921 APFloat MaxBad = APFloat::getInf(DstSema, false); 922 923 bool IsInexact; 924 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 925 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 926 927 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 928 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 929 llvm::Value *GE = 930 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 931 llvm::Value *LE = 932 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 933 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 934 } 935 } 936 937 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 938 CGF.EmitCheckTypeDescriptor(OrigSrcType), 939 CGF.EmitCheckTypeDescriptor(DstType)}; 940 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 941 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 942 } 943 944 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 945 Value *Dst, QualType DstType, 946 SourceLocation Loc) { 947 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerTruncation)) 948 return; 949 950 llvm::Type *SrcTy = Src->getType(); 951 llvm::Type *DstTy = Dst->getType(); 952 953 // We only care about int->int conversions here. 954 // We ignore conversions to/from pointer and/or bool. 955 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 956 return; 957 958 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 959 "clang integer type lowered to non-integer llvm type"); 960 961 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 962 unsigned DstBits = DstTy->getScalarSizeInBits(); 963 // This must be truncation. Else we do not care. 964 if (SrcBits <= DstBits) 965 return; 966 967 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 968 969 CodeGenFunction::SanitizerScope SanScope(&CGF); 970 971 llvm::Value *Check = nullptr; 972 973 // 1. Extend the truncated value back to the same width as the Src. 974 bool InputSigned = DstType->isSignedIntegerOrEnumerationType(); 975 Check = Builder.CreateIntCast(Dst, SrcTy, InputSigned, "anyext"); 976 // 2. Equality-compare with the original source value 977 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 978 // If the comparison result is 'i1 false', then the truncation was lossy. 979 980 llvm::Constant *StaticArgs[] = { 981 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 982 CGF.EmitCheckTypeDescriptor(DstType), 983 llvm::ConstantInt::get(Builder.getInt8Ty(), ICCK_IntegerTruncation)}; 984 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::ImplicitIntegerTruncation), 985 SanitizerHandler::ImplicitConversion, StaticArgs, {Src, Dst}); 986 } 987 988 /// Emit a conversion from the specified type to the specified destination type, 989 /// both of which are LLVM scalar types. 990 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 991 QualType DstType, 992 SourceLocation Loc, 993 ScalarConversionOpts Opts) { 994 QualType NoncanonicalSrcType = SrcType; 995 QualType NoncanonicalDstType = DstType; 996 997 SrcType = CGF.getContext().getCanonicalType(SrcType); 998 DstType = CGF.getContext().getCanonicalType(DstType); 999 if (SrcType == DstType) return Src; 1000 1001 if (DstType->isVoidType()) return nullptr; 1002 1003 llvm::Value *OrigSrc = Src; 1004 QualType OrigSrcType = SrcType; 1005 llvm::Type *SrcTy = Src->getType(); 1006 1007 // Handle conversions to bool first, they are special: comparisons against 0. 1008 if (DstType->isBooleanType()) 1009 return EmitConversionToBool(Src, SrcType); 1010 1011 llvm::Type *DstTy = ConvertType(DstType); 1012 1013 // Cast from half through float if half isn't a native type. 1014 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1015 // Cast to FP using the intrinsic if the half type itself isn't supported. 1016 if (DstTy->isFloatingPointTy()) { 1017 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1018 return Builder.CreateCall( 1019 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1020 Src); 1021 } else { 1022 // Cast to other types through float, using either the intrinsic or FPExt, 1023 // depending on whether the half type itself is supported 1024 // (as opposed to operations on half, available with NativeHalfType). 1025 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1026 Src = Builder.CreateCall( 1027 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1028 CGF.CGM.FloatTy), 1029 Src); 1030 } else { 1031 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1032 } 1033 SrcType = CGF.getContext().FloatTy; 1034 SrcTy = CGF.FloatTy; 1035 } 1036 } 1037 1038 // Ignore conversions like int -> uint. 1039 if (SrcTy == DstTy) 1040 return Src; 1041 1042 // Handle pointer conversions next: pointers can only be converted to/from 1043 // other pointers and integers. Check for pointer types in terms of LLVM, as 1044 // some native types (like Obj-C id) may map to a pointer type. 1045 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1046 // The source value may be an integer, or a pointer. 1047 if (isa<llvm::PointerType>(SrcTy)) 1048 return Builder.CreateBitCast(Src, DstTy, "conv"); 1049 1050 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1051 // First, convert to the correct width so that we control the kind of 1052 // extension. 1053 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1054 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1055 llvm::Value* IntResult = 1056 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1057 // Then, cast to pointer. 1058 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1059 } 1060 1061 if (isa<llvm::PointerType>(SrcTy)) { 1062 // Must be an ptr to int cast. 1063 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1064 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1065 } 1066 1067 // A scalar can be splatted to an extended vector of the same element type 1068 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1069 // Sema should add casts to make sure that the source expression's type is 1070 // the same as the vector's element type (sans qualifiers) 1071 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1072 SrcType.getTypePtr() && 1073 "Splatted expr doesn't match with vector element type?"); 1074 1075 // Splat the element across to all elements 1076 unsigned NumElements = DstTy->getVectorNumElements(); 1077 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1078 } 1079 1080 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1081 // Allow bitcast from vector to integer/fp of the same size. 1082 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1083 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1084 if (SrcSize == DstSize) 1085 return Builder.CreateBitCast(Src, DstTy, "conv"); 1086 1087 // Conversions between vectors of different sizes are not allowed except 1088 // when vectors of half are involved. Operations on storage-only half 1089 // vectors require promoting half vector operands to float vectors and 1090 // truncating the result, which is either an int or float vector, to a 1091 // short or half vector. 1092 1093 // Source and destination are both expected to be vectors. 1094 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1095 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1096 (void)DstElementTy; 1097 1098 assert(((SrcElementTy->isIntegerTy() && 1099 DstElementTy->isIntegerTy()) || 1100 (SrcElementTy->isFloatingPointTy() && 1101 DstElementTy->isFloatingPointTy())) && 1102 "unexpected conversion between a floating-point vector and an " 1103 "integer vector"); 1104 1105 // Truncate an i32 vector to an i16 vector. 1106 if (SrcElementTy->isIntegerTy()) 1107 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1108 1109 // Truncate a float vector to a half vector. 1110 if (SrcSize > DstSize) 1111 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1112 1113 // Promote a half vector to a float vector. 1114 return Builder.CreateFPExt(Src, DstTy, "conv"); 1115 } 1116 1117 // Finally, we have the arithmetic types: real int/float. 1118 Value *Res = nullptr; 1119 llvm::Type *ResTy = DstTy; 1120 1121 // An overflowing conversion has undefined behavior if either the source type 1122 // or the destination type is a floating-point type. 1123 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1124 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1125 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1126 Loc); 1127 1128 // Cast to half through float if half isn't a native type. 1129 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1130 // Make sure we cast in a single step if from another FP type. 1131 if (SrcTy->isFloatingPointTy()) { 1132 // Use the intrinsic if the half type itself isn't supported 1133 // (as opposed to operations on half, available with NativeHalfType). 1134 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1135 return Builder.CreateCall( 1136 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1137 // If the half type is supported, just use an fptrunc. 1138 return Builder.CreateFPTrunc(Src, DstTy); 1139 } 1140 DstTy = CGF.FloatTy; 1141 } 1142 1143 if (isa<llvm::IntegerType>(SrcTy)) { 1144 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1145 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1146 InputSigned = true; 1147 } 1148 if (isa<llvm::IntegerType>(DstTy)) 1149 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1150 else if (InputSigned) 1151 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1152 else 1153 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1154 } else if (isa<llvm::IntegerType>(DstTy)) { 1155 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1156 if (DstType->isSignedIntegerOrEnumerationType()) 1157 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1158 else 1159 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1160 } else { 1161 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1162 "Unknown real conversion"); 1163 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1164 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1165 else 1166 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1167 } 1168 1169 if (DstTy != ResTy) { 1170 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1171 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1172 Res = Builder.CreateCall( 1173 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1174 Res); 1175 } else { 1176 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1177 } 1178 } 1179 1180 if (Opts.EmitImplicitIntegerTruncationChecks) 1181 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1182 NoncanonicalDstType, Loc); 1183 1184 return Res; 1185 } 1186 1187 /// Emit a conversion from the specified complex type to the specified 1188 /// destination type, where the destination type is an LLVM scalar type. 1189 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1190 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1191 SourceLocation Loc) { 1192 // Get the source element type. 1193 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1194 1195 // Handle conversions to bool first, they are special: comparisons against 0. 1196 if (DstTy->isBooleanType()) { 1197 // Complex != 0 -> (Real != 0) | (Imag != 0) 1198 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1199 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1200 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1201 } 1202 1203 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1204 // the imaginary part of the complex value is discarded and the value of the 1205 // real part is converted according to the conversion rules for the 1206 // corresponding real type. 1207 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1208 } 1209 1210 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1211 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1212 } 1213 1214 /// Emit a sanitization check for the given "binary" operation (which 1215 /// might actually be a unary increment which has been lowered to a binary 1216 /// operation). The check passes if all values in \p Checks (which are \c i1), 1217 /// are \c true. 1218 void ScalarExprEmitter::EmitBinOpCheck( 1219 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1220 assert(CGF.IsSanitizerScope); 1221 SanitizerHandler Check; 1222 SmallVector<llvm::Constant *, 4> StaticData; 1223 SmallVector<llvm::Value *, 2> DynamicData; 1224 1225 BinaryOperatorKind Opcode = Info.Opcode; 1226 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1227 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1228 1229 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1230 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1231 if (UO && UO->getOpcode() == UO_Minus) { 1232 Check = SanitizerHandler::NegateOverflow; 1233 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1234 DynamicData.push_back(Info.RHS); 1235 } else { 1236 if (BinaryOperator::isShiftOp(Opcode)) { 1237 // Shift LHS negative or too large, or RHS out of bounds. 1238 Check = SanitizerHandler::ShiftOutOfBounds; 1239 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1240 StaticData.push_back( 1241 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1242 StaticData.push_back( 1243 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1244 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1245 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1246 Check = SanitizerHandler::DivremOverflow; 1247 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1248 } else { 1249 // Arithmetic overflow (+, -, *). 1250 switch (Opcode) { 1251 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1252 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1253 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1254 default: llvm_unreachable("unexpected opcode for bin op check"); 1255 } 1256 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1257 } 1258 DynamicData.push_back(Info.LHS); 1259 DynamicData.push_back(Info.RHS); 1260 } 1261 1262 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1263 } 1264 1265 //===----------------------------------------------------------------------===// 1266 // Visitor Methods 1267 //===----------------------------------------------------------------------===// 1268 1269 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1270 CGF.ErrorUnsupported(E, "scalar expression"); 1271 if (E->getType()->isVoidType()) 1272 return nullptr; 1273 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1274 } 1275 1276 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1277 // Vector Mask Case 1278 if (E->getNumSubExprs() == 2) { 1279 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1280 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1281 Value *Mask; 1282 1283 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1284 unsigned LHSElts = LTy->getNumElements(); 1285 1286 Mask = RHS; 1287 1288 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1289 1290 // Mask off the high bits of each shuffle index. 1291 Value *MaskBits = 1292 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1293 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1294 1295 // newv = undef 1296 // mask = mask & maskbits 1297 // for each elt 1298 // n = extract mask i 1299 // x = extract val n 1300 // newv = insert newv, x, i 1301 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1302 MTy->getNumElements()); 1303 Value* NewV = llvm::UndefValue::get(RTy); 1304 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1305 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1306 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1307 1308 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1309 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1310 } 1311 return NewV; 1312 } 1313 1314 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1315 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1316 1317 SmallVector<llvm::Constant*, 32> indices; 1318 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1319 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1320 // Check for -1 and output it as undef in the IR. 1321 if (Idx.isSigned() && Idx.isAllOnesValue()) 1322 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1323 else 1324 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1325 } 1326 1327 Value *SV = llvm::ConstantVector::get(indices); 1328 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1329 } 1330 1331 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1332 QualType SrcType = E->getSrcExpr()->getType(), 1333 DstType = E->getType(); 1334 1335 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1336 1337 SrcType = CGF.getContext().getCanonicalType(SrcType); 1338 DstType = CGF.getContext().getCanonicalType(DstType); 1339 if (SrcType == DstType) return Src; 1340 1341 assert(SrcType->isVectorType() && 1342 "ConvertVector source type must be a vector"); 1343 assert(DstType->isVectorType() && 1344 "ConvertVector destination type must be a vector"); 1345 1346 llvm::Type *SrcTy = Src->getType(); 1347 llvm::Type *DstTy = ConvertType(DstType); 1348 1349 // Ignore conversions like int -> uint. 1350 if (SrcTy == DstTy) 1351 return Src; 1352 1353 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1354 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1355 1356 assert(SrcTy->isVectorTy() && 1357 "ConvertVector source IR type must be a vector"); 1358 assert(DstTy->isVectorTy() && 1359 "ConvertVector destination IR type must be a vector"); 1360 1361 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1362 *DstEltTy = DstTy->getVectorElementType(); 1363 1364 if (DstEltType->isBooleanType()) { 1365 assert((SrcEltTy->isFloatingPointTy() || 1366 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1367 1368 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1369 if (SrcEltTy->isFloatingPointTy()) { 1370 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1371 } else { 1372 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1373 } 1374 } 1375 1376 // We have the arithmetic types: real int/float. 1377 Value *Res = nullptr; 1378 1379 if (isa<llvm::IntegerType>(SrcEltTy)) { 1380 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1381 if (isa<llvm::IntegerType>(DstEltTy)) 1382 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1383 else if (InputSigned) 1384 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1385 else 1386 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1387 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1388 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1389 if (DstEltType->isSignedIntegerOrEnumerationType()) 1390 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1391 else 1392 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1393 } else { 1394 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1395 "Unknown real conversion"); 1396 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1397 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1398 else 1399 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1400 } 1401 1402 return Res; 1403 } 1404 1405 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1406 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1407 CGF.EmitIgnoredExpr(E->getBase()); 1408 return emitConstant(Constant, E); 1409 } else { 1410 llvm::APSInt Value; 1411 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1412 CGF.EmitIgnoredExpr(E->getBase()); 1413 return Builder.getInt(Value); 1414 } 1415 } 1416 1417 return EmitLoadOfLValue(E); 1418 } 1419 1420 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1421 TestAndClearIgnoreResultAssign(); 1422 1423 // Emit subscript expressions in rvalue context's. For most cases, this just 1424 // loads the lvalue formed by the subscript expr. However, we have to be 1425 // careful, because the base of a vector subscript is occasionally an rvalue, 1426 // so we can't get it as an lvalue. 1427 if (!E->getBase()->getType()->isVectorType()) 1428 return EmitLoadOfLValue(E); 1429 1430 // Handle the vector case. The base must be a vector, the index must be an 1431 // integer value. 1432 Value *Base = Visit(E->getBase()); 1433 Value *Idx = Visit(E->getIdx()); 1434 QualType IdxTy = E->getIdx()->getType(); 1435 1436 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1437 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1438 1439 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1440 } 1441 1442 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1443 unsigned Off, llvm::Type *I32Ty) { 1444 int MV = SVI->getMaskValue(Idx); 1445 if (MV == -1) 1446 return llvm::UndefValue::get(I32Ty); 1447 return llvm::ConstantInt::get(I32Ty, Off+MV); 1448 } 1449 1450 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1451 if (C->getBitWidth() != 32) { 1452 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1453 C->getZExtValue()) && 1454 "Index operand too large for shufflevector mask!"); 1455 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1456 } 1457 return C; 1458 } 1459 1460 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1461 bool Ignore = TestAndClearIgnoreResultAssign(); 1462 (void)Ignore; 1463 assert (Ignore == false && "init list ignored"); 1464 unsigned NumInitElements = E->getNumInits(); 1465 1466 if (E->hadArrayRangeDesignator()) 1467 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1468 1469 llvm::VectorType *VType = 1470 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1471 1472 if (!VType) { 1473 if (NumInitElements == 0) { 1474 // C++11 value-initialization for the scalar. 1475 return EmitNullValue(E->getType()); 1476 } 1477 // We have a scalar in braces. Just use the first element. 1478 return Visit(E->getInit(0)); 1479 } 1480 1481 unsigned ResElts = VType->getNumElements(); 1482 1483 // Loop over initializers collecting the Value for each, and remembering 1484 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1485 // us to fold the shuffle for the swizzle into the shuffle for the vector 1486 // initializer, since LLVM optimizers generally do not want to touch 1487 // shuffles. 1488 unsigned CurIdx = 0; 1489 bool VIsUndefShuffle = false; 1490 llvm::Value *V = llvm::UndefValue::get(VType); 1491 for (unsigned i = 0; i != NumInitElements; ++i) { 1492 Expr *IE = E->getInit(i); 1493 Value *Init = Visit(IE); 1494 SmallVector<llvm::Constant*, 16> Args; 1495 1496 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1497 1498 // Handle scalar elements. If the scalar initializer is actually one 1499 // element of a different vector of the same width, use shuffle instead of 1500 // extract+insert. 1501 if (!VVT) { 1502 if (isa<ExtVectorElementExpr>(IE)) { 1503 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1504 1505 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1506 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1507 Value *LHS = nullptr, *RHS = nullptr; 1508 if (CurIdx == 0) { 1509 // insert into undef -> shuffle (src, undef) 1510 // shufflemask must use an i32 1511 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1512 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1513 1514 LHS = EI->getVectorOperand(); 1515 RHS = V; 1516 VIsUndefShuffle = true; 1517 } else if (VIsUndefShuffle) { 1518 // insert into undefshuffle && size match -> shuffle (v, src) 1519 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1520 for (unsigned j = 0; j != CurIdx; ++j) 1521 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1522 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1523 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1524 1525 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1526 RHS = EI->getVectorOperand(); 1527 VIsUndefShuffle = false; 1528 } 1529 if (!Args.empty()) { 1530 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1531 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1532 ++CurIdx; 1533 continue; 1534 } 1535 } 1536 } 1537 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1538 "vecinit"); 1539 VIsUndefShuffle = false; 1540 ++CurIdx; 1541 continue; 1542 } 1543 1544 unsigned InitElts = VVT->getNumElements(); 1545 1546 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1547 // input is the same width as the vector being constructed, generate an 1548 // optimized shuffle of the swizzle input into the result. 1549 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1550 if (isa<ExtVectorElementExpr>(IE)) { 1551 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1552 Value *SVOp = SVI->getOperand(0); 1553 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1554 1555 if (OpTy->getNumElements() == ResElts) { 1556 for (unsigned j = 0; j != CurIdx; ++j) { 1557 // If the current vector initializer is a shuffle with undef, merge 1558 // this shuffle directly into it. 1559 if (VIsUndefShuffle) { 1560 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1561 CGF.Int32Ty)); 1562 } else { 1563 Args.push_back(Builder.getInt32(j)); 1564 } 1565 } 1566 for (unsigned j = 0, je = InitElts; j != je; ++j) 1567 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1568 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1569 1570 if (VIsUndefShuffle) 1571 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1572 1573 Init = SVOp; 1574 } 1575 } 1576 1577 // Extend init to result vector length, and then shuffle its contribution 1578 // to the vector initializer into V. 1579 if (Args.empty()) { 1580 for (unsigned j = 0; j != InitElts; ++j) 1581 Args.push_back(Builder.getInt32(j)); 1582 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1583 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1584 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1585 Mask, "vext"); 1586 1587 Args.clear(); 1588 for (unsigned j = 0; j != CurIdx; ++j) 1589 Args.push_back(Builder.getInt32(j)); 1590 for (unsigned j = 0; j != InitElts; ++j) 1591 Args.push_back(Builder.getInt32(j+Offset)); 1592 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1593 } 1594 1595 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1596 // merging subsequent shuffles into this one. 1597 if (CurIdx == 0) 1598 std::swap(V, Init); 1599 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1600 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1601 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1602 CurIdx += InitElts; 1603 } 1604 1605 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1606 // Emit remaining default initializers. 1607 llvm::Type *EltTy = VType->getElementType(); 1608 1609 // Emit remaining default initializers 1610 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1611 Value *Idx = Builder.getInt32(CurIdx); 1612 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1613 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1614 } 1615 return V; 1616 } 1617 1618 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1619 const Expr *E = CE->getSubExpr(); 1620 1621 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1622 return false; 1623 1624 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1625 // We always assume that 'this' is never null. 1626 return false; 1627 } 1628 1629 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1630 // And that glvalue casts are never null. 1631 if (ICE->getValueKind() != VK_RValue) 1632 return false; 1633 } 1634 1635 return true; 1636 } 1637 1638 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1639 // have to handle a more broad range of conversions than explicit casts, as they 1640 // handle things like function to ptr-to-function decay etc. 1641 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1642 Expr *E = CE->getSubExpr(); 1643 QualType DestTy = CE->getType(); 1644 CastKind Kind = CE->getCastKind(); 1645 1646 // These cases are generally not written to ignore the result of 1647 // evaluating their sub-expressions, so we clear this now. 1648 bool Ignored = TestAndClearIgnoreResultAssign(); 1649 1650 // Since almost all cast kinds apply to scalars, this switch doesn't have 1651 // a default case, so the compiler will warn on a missing case. The cases 1652 // are in the same order as in the CastKind enum. 1653 switch (Kind) { 1654 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1655 case CK_BuiltinFnToFnPtr: 1656 llvm_unreachable("builtin functions are handled elsewhere"); 1657 1658 case CK_LValueBitCast: 1659 case CK_ObjCObjectLValueCast: { 1660 Address Addr = EmitLValue(E).getAddress(); 1661 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1662 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1663 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1664 } 1665 1666 case CK_CPointerToObjCPointerCast: 1667 case CK_BlockPointerToObjCPointerCast: 1668 case CK_AnyPointerToBlockPointerCast: 1669 case CK_BitCast: { 1670 Value *Src = Visit(const_cast<Expr*>(E)); 1671 llvm::Type *SrcTy = Src->getType(); 1672 llvm::Type *DstTy = ConvertType(DestTy); 1673 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1674 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1675 llvm_unreachable("wrong cast for pointers in different address spaces" 1676 "(must be an address space cast)!"); 1677 } 1678 1679 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1680 if (auto PT = DestTy->getAs<PointerType>()) 1681 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1682 /*MayBeNull=*/true, 1683 CodeGenFunction::CFITCK_UnrelatedCast, 1684 CE->getLocStart()); 1685 } 1686 1687 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1688 const QualType SrcType = E->getType(); 1689 1690 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 1691 // Casting to pointer that could carry dynamic information (provided by 1692 // invariant.group) requires launder. 1693 Src = Builder.CreateLaunderInvariantGroup(Src); 1694 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 1695 // Casting to pointer that does not carry dynamic information (provided 1696 // by invariant.group) requires stripping it. Note that we don't do it 1697 // if the source could not be dynamic type and destination could be 1698 // dynamic because dynamic information is already laundered. It is 1699 // because launder(strip(src)) == launder(src), so there is no need to 1700 // add extra strip before launder. 1701 Src = Builder.CreateStripInvariantGroup(Src); 1702 } 1703 } 1704 1705 return Builder.CreateBitCast(Src, DstTy); 1706 } 1707 case CK_AddressSpaceConversion: { 1708 Expr::EvalResult Result; 1709 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 1710 Result.Val.isNullPointer()) { 1711 // If E has side effect, it is emitted even if its final result is a 1712 // null pointer. In that case, a DCE pass should be able to 1713 // eliminate the useless instructions emitted during translating E. 1714 if (Result.HasSideEffects) 1715 Visit(E); 1716 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 1717 ConvertType(DestTy)), DestTy); 1718 } 1719 // Since target may map different address spaces in AST to the same address 1720 // space, an address space conversion may end up as a bitcast. 1721 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 1722 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 1723 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 1724 } 1725 case CK_AtomicToNonAtomic: 1726 case CK_NonAtomicToAtomic: 1727 case CK_NoOp: 1728 case CK_UserDefinedConversion: 1729 return Visit(const_cast<Expr*>(E)); 1730 1731 case CK_BaseToDerived: { 1732 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1733 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1734 1735 Address Base = CGF.EmitPointerWithAlignment(E); 1736 Address Derived = 1737 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1738 CE->path_begin(), CE->path_end(), 1739 CGF.ShouldNullCheckClassCastValue(CE)); 1740 1741 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1742 // performed and the object is not of the derived type. 1743 if (CGF.sanitizePerformTypeCheck()) 1744 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1745 Derived.getPointer(), DestTy->getPointeeType()); 1746 1747 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1748 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1749 Derived.getPointer(), 1750 /*MayBeNull=*/true, 1751 CodeGenFunction::CFITCK_DerivedCast, 1752 CE->getLocStart()); 1753 1754 return Derived.getPointer(); 1755 } 1756 case CK_UncheckedDerivedToBase: 1757 case CK_DerivedToBase: { 1758 // The EmitPointerWithAlignment path does this fine; just discard 1759 // the alignment. 1760 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1761 } 1762 1763 case CK_Dynamic: { 1764 Address V = CGF.EmitPointerWithAlignment(E); 1765 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1766 return CGF.EmitDynamicCast(V, DCE); 1767 } 1768 1769 case CK_ArrayToPointerDecay: 1770 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1771 case CK_FunctionToPointerDecay: 1772 return EmitLValue(E).getPointer(); 1773 1774 case CK_NullToPointer: 1775 if (MustVisitNullValue(E)) 1776 (void) Visit(E); 1777 1778 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 1779 DestTy); 1780 1781 case CK_NullToMemberPointer: { 1782 if (MustVisitNullValue(E)) 1783 (void) Visit(E); 1784 1785 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1786 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1787 } 1788 1789 case CK_ReinterpretMemberPointer: 1790 case CK_BaseToDerivedMemberPointer: 1791 case CK_DerivedToBaseMemberPointer: { 1792 Value *Src = Visit(E); 1793 1794 // Note that the AST doesn't distinguish between checked and 1795 // unchecked member pointer conversions, so we always have to 1796 // implement checked conversions here. This is inefficient when 1797 // actual control flow may be required in order to perform the 1798 // check, which it is for data member pointers (but not member 1799 // function pointers on Itanium and ARM). 1800 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1801 } 1802 1803 case CK_ARCProduceObject: 1804 return CGF.EmitARCRetainScalarExpr(E); 1805 case CK_ARCConsumeObject: 1806 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1807 case CK_ARCReclaimReturnedObject: 1808 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1809 case CK_ARCExtendBlockObject: 1810 return CGF.EmitARCExtendBlockObject(E); 1811 1812 case CK_CopyAndAutoreleaseBlockObject: 1813 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1814 1815 case CK_FloatingRealToComplex: 1816 case CK_FloatingComplexCast: 1817 case CK_IntegralRealToComplex: 1818 case CK_IntegralComplexCast: 1819 case CK_IntegralComplexToFloatingComplex: 1820 case CK_FloatingComplexToIntegralComplex: 1821 case CK_ConstructorConversion: 1822 case CK_ToUnion: 1823 llvm_unreachable("scalar cast to non-scalar value"); 1824 1825 case CK_LValueToRValue: 1826 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1827 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1828 return Visit(const_cast<Expr*>(E)); 1829 1830 case CK_IntegralToPointer: { 1831 Value *Src = Visit(const_cast<Expr*>(E)); 1832 1833 // First, convert to the correct width so that we control the kind of 1834 // extension. 1835 auto DestLLVMTy = ConvertType(DestTy); 1836 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 1837 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1838 llvm::Value* IntResult = 1839 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1840 1841 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 1842 1843 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1844 // Going from integer to pointer that could be dynamic requires reloading 1845 // dynamic information from invariant.group. 1846 if (DestTy.mayBeDynamicClass()) 1847 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 1848 } 1849 return IntToPtr; 1850 } 1851 case CK_PointerToIntegral: { 1852 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1853 auto *PtrExpr = Visit(E); 1854 1855 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 1856 const QualType SrcType = E->getType(); 1857 1858 // Casting to integer requires stripping dynamic information as it does 1859 // not carries it. 1860 if (SrcType.mayBeDynamicClass()) 1861 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 1862 } 1863 1864 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 1865 } 1866 case CK_ToVoid: { 1867 CGF.EmitIgnoredExpr(E); 1868 return nullptr; 1869 } 1870 case CK_VectorSplat: { 1871 llvm::Type *DstTy = ConvertType(DestTy); 1872 Value *Elt = Visit(const_cast<Expr*>(E)); 1873 // Splat the element across to all elements 1874 unsigned NumElements = DstTy->getVectorNumElements(); 1875 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1876 } 1877 1878 case CK_IntegralCast: { 1879 ScalarConversionOpts Opts; 1880 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerTruncation)) { 1881 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) 1882 Opts.EmitImplicitIntegerTruncationChecks = !ICE->isPartOfExplicitCast(); 1883 } 1884 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1885 CE->getExprLoc(), Opts); 1886 } 1887 case CK_IntegralToFloating: 1888 case CK_FloatingToIntegral: 1889 case CK_FloatingCast: 1890 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1891 CE->getExprLoc()); 1892 case CK_BooleanToSignedIntegral: { 1893 ScalarConversionOpts Opts; 1894 Opts.TreatBooleanAsSigned = true; 1895 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1896 CE->getExprLoc(), Opts); 1897 } 1898 case CK_IntegralToBoolean: 1899 return EmitIntToBoolConversion(Visit(E)); 1900 case CK_PointerToBoolean: 1901 return EmitPointerToBoolConversion(Visit(E), E->getType()); 1902 case CK_FloatingToBoolean: 1903 return EmitFloatToBoolConversion(Visit(E)); 1904 case CK_MemberPointerToBoolean: { 1905 llvm::Value *MemPtr = Visit(E); 1906 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1907 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1908 } 1909 1910 case CK_FloatingComplexToReal: 1911 case CK_IntegralComplexToReal: 1912 return CGF.EmitComplexExpr(E, false, true).first; 1913 1914 case CK_FloatingComplexToBoolean: 1915 case CK_IntegralComplexToBoolean: { 1916 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1917 1918 // TODO: kill this function off, inline appropriate case here 1919 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1920 CE->getExprLoc()); 1921 } 1922 1923 case CK_ZeroToOCLEvent: { 1924 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1925 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1926 } 1927 1928 case CK_ZeroToOCLQueue: { 1929 assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type"); 1930 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1931 } 1932 1933 case CK_IntToOCLSampler: 1934 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1935 1936 } // end of switch 1937 1938 llvm_unreachable("unknown scalar cast"); 1939 } 1940 1941 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1942 CodeGenFunction::StmtExprEvaluation eval(CGF); 1943 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1944 !E->getType()->isVoidType()); 1945 if (!RetAlloca.isValid()) 1946 return nullptr; 1947 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1948 E->getExprLoc()); 1949 } 1950 1951 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1952 CGF.enterFullExpression(E); 1953 CodeGenFunction::RunCleanupsScope Scope(CGF); 1954 Value *V = Visit(E->getSubExpr()); 1955 // Defend against dominance problems caused by jumps out of expression 1956 // evaluation through the shared cleanup block. 1957 Scope.ForceCleanup({&V}); 1958 return V; 1959 } 1960 1961 //===----------------------------------------------------------------------===// 1962 // Unary Operators 1963 //===----------------------------------------------------------------------===// 1964 1965 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1966 llvm::Value *InVal, bool IsInc) { 1967 BinOpInfo BinOp; 1968 BinOp.LHS = InVal; 1969 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1970 BinOp.Ty = E->getType(); 1971 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1972 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 1973 BinOp.E = E; 1974 return BinOp; 1975 } 1976 1977 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1978 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1979 llvm::Value *Amount = 1980 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1981 StringRef Name = IsInc ? "inc" : "dec"; 1982 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1983 case LangOptions::SOB_Defined: 1984 return Builder.CreateAdd(InVal, Amount, Name); 1985 case LangOptions::SOB_Undefined: 1986 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1987 return Builder.CreateNSWAdd(InVal, Amount, Name); 1988 // Fall through. 1989 case LangOptions::SOB_Trapping: 1990 if (!E->canOverflow()) 1991 return Builder.CreateNSWAdd(InVal, Amount, Name); 1992 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1993 } 1994 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1995 } 1996 1997 llvm::Value * 1998 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1999 bool isInc, bool isPre) { 2000 2001 QualType type = E->getSubExpr()->getType(); 2002 llvm::PHINode *atomicPHI = nullptr; 2003 llvm::Value *value; 2004 llvm::Value *input; 2005 2006 int amount = (isInc ? 1 : -1); 2007 bool isSubtraction = !isInc; 2008 2009 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2010 type = atomicTy->getValueType(); 2011 if (isInc && type->isBooleanType()) { 2012 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2013 if (isPre) { 2014 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2015 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2016 return Builder.getTrue(); 2017 } 2018 // For atomic bool increment, we just store true and return it for 2019 // preincrement, do an atomic swap with true for postincrement 2020 return Builder.CreateAtomicRMW( 2021 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2022 llvm::AtomicOrdering::SequentiallyConsistent); 2023 } 2024 // Special case for atomic increment / decrement on integers, emit 2025 // atomicrmw instructions. We skip this if we want to be doing overflow 2026 // checking, and fall into the slow path with the atomic cmpxchg loop. 2027 if (!type->isBooleanType() && type->isIntegerType() && 2028 !(type->isUnsignedIntegerType() && 2029 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2030 CGF.getLangOpts().getSignedOverflowBehavior() != 2031 LangOptions::SOB_Trapping) { 2032 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2033 llvm::AtomicRMWInst::Sub; 2034 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2035 llvm::Instruction::Sub; 2036 llvm::Value *amt = CGF.EmitToMemory( 2037 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2038 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2039 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2040 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2041 } 2042 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2043 input = value; 2044 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2045 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2046 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2047 value = CGF.EmitToMemory(value, type); 2048 Builder.CreateBr(opBB); 2049 Builder.SetInsertPoint(opBB); 2050 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2051 atomicPHI->addIncoming(value, startBB); 2052 value = atomicPHI; 2053 } else { 2054 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2055 input = value; 2056 } 2057 2058 // Special case of integer increment that we have to check first: bool++. 2059 // Due to promotion rules, we get: 2060 // bool++ -> bool = bool + 1 2061 // -> bool = (int)bool + 1 2062 // -> bool = ((int)bool + 1 != 0) 2063 // An interesting aspect of this is that increment is always true. 2064 // Decrement does not have this property. 2065 if (isInc && type->isBooleanType()) { 2066 value = Builder.getTrue(); 2067 2068 // Most common case by far: integer increment. 2069 } else if (type->isIntegerType()) { 2070 // Note that signed integer inc/dec with width less than int can't 2071 // overflow because of promotion rules; we're just eliding a few steps here. 2072 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2073 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2074 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2075 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2076 value = 2077 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2078 } else { 2079 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2080 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2081 } 2082 2083 // Next most common: pointer increment. 2084 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2085 QualType type = ptr->getPointeeType(); 2086 2087 // VLA types don't have constant size. 2088 if (const VariableArrayType *vla 2089 = CGF.getContext().getAsVariableArrayType(type)) { 2090 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2091 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2092 if (CGF.getLangOpts().isSignedOverflowDefined()) 2093 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2094 else 2095 value = CGF.EmitCheckedInBoundsGEP( 2096 value, numElts, /*SignedIndices=*/false, isSubtraction, 2097 E->getExprLoc(), "vla.inc"); 2098 2099 // Arithmetic on function pointers (!) is just +-1. 2100 } else if (type->isFunctionType()) { 2101 llvm::Value *amt = Builder.getInt32(amount); 2102 2103 value = CGF.EmitCastToVoidPtr(value); 2104 if (CGF.getLangOpts().isSignedOverflowDefined()) 2105 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2106 else 2107 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2108 isSubtraction, E->getExprLoc(), 2109 "incdec.funcptr"); 2110 value = Builder.CreateBitCast(value, input->getType()); 2111 2112 // For everything else, we can just do a simple increment. 2113 } else { 2114 llvm::Value *amt = Builder.getInt32(amount); 2115 if (CGF.getLangOpts().isSignedOverflowDefined()) 2116 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2117 else 2118 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2119 isSubtraction, E->getExprLoc(), 2120 "incdec.ptr"); 2121 } 2122 2123 // Vector increment/decrement. 2124 } else if (type->isVectorType()) { 2125 if (type->hasIntegerRepresentation()) { 2126 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2127 2128 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2129 } else { 2130 value = Builder.CreateFAdd( 2131 value, 2132 llvm::ConstantFP::get(value->getType(), amount), 2133 isInc ? "inc" : "dec"); 2134 } 2135 2136 // Floating point. 2137 } else if (type->isRealFloatingType()) { 2138 // Add the inc/dec to the real part. 2139 llvm::Value *amt; 2140 2141 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2142 // Another special case: half FP increment should be done via float 2143 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2144 value = Builder.CreateCall( 2145 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2146 CGF.CGM.FloatTy), 2147 input, "incdec.conv"); 2148 } else { 2149 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2150 } 2151 } 2152 2153 if (value->getType()->isFloatTy()) 2154 amt = llvm::ConstantFP::get(VMContext, 2155 llvm::APFloat(static_cast<float>(amount))); 2156 else if (value->getType()->isDoubleTy()) 2157 amt = llvm::ConstantFP::get(VMContext, 2158 llvm::APFloat(static_cast<double>(amount))); 2159 else { 2160 // Remaining types are Half, LongDouble or __float128. Convert from float. 2161 llvm::APFloat F(static_cast<float>(amount)); 2162 bool ignored; 2163 const llvm::fltSemantics *FS; 2164 // Don't use getFloatTypeSemantics because Half isn't 2165 // necessarily represented using the "half" LLVM type. 2166 if (value->getType()->isFP128Ty()) 2167 FS = &CGF.getTarget().getFloat128Format(); 2168 else if (value->getType()->isHalfTy()) 2169 FS = &CGF.getTarget().getHalfFormat(); 2170 else 2171 FS = &CGF.getTarget().getLongDoubleFormat(); 2172 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2173 amt = llvm::ConstantFP::get(VMContext, F); 2174 } 2175 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2176 2177 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2178 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2179 value = Builder.CreateCall( 2180 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2181 CGF.CGM.FloatTy), 2182 value, "incdec.conv"); 2183 } else { 2184 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2185 } 2186 } 2187 2188 // Objective-C pointer types. 2189 } else { 2190 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2191 value = CGF.EmitCastToVoidPtr(value); 2192 2193 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2194 if (!isInc) size = -size; 2195 llvm::Value *sizeValue = 2196 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2197 2198 if (CGF.getLangOpts().isSignedOverflowDefined()) 2199 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2200 else 2201 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2202 /*SignedIndices=*/false, isSubtraction, 2203 E->getExprLoc(), "incdec.objptr"); 2204 value = Builder.CreateBitCast(value, input->getType()); 2205 } 2206 2207 if (atomicPHI) { 2208 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2209 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2210 auto Pair = CGF.EmitAtomicCompareExchange( 2211 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2212 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2213 llvm::Value *success = Pair.second; 2214 atomicPHI->addIncoming(old, opBB); 2215 Builder.CreateCondBr(success, contBB, opBB); 2216 Builder.SetInsertPoint(contBB); 2217 return isPre ? value : input; 2218 } 2219 2220 // Store the updated result through the lvalue. 2221 if (LV.isBitField()) 2222 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2223 else 2224 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2225 2226 // If this is a postinc, return the value read from memory, otherwise use the 2227 // updated value. 2228 return isPre ? value : input; 2229 } 2230 2231 2232 2233 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2234 TestAndClearIgnoreResultAssign(); 2235 // Emit unary minus with EmitSub so we handle overflow cases etc. 2236 BinOpInfo BinOp; 2237 BinOp.RHS = Visit(E->getSubExpr()); 2238 2239 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2240 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2241 else 2242 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2243 BinOp.Ty = E->getType(); 2244 BinOp.Opcode = BO_Sub; 2245 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2246 BinOp.E = E; 2247 return EmitSub(BinOp); 2248 } 2249 2250 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2251 TestAndClearIgnoreResultAssign(); 2252 Value *Op = Visit(E->getSubExpr()); 2253 return Builder.CreateNot(Op, "neg"); 2254 } 2255 2256 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2257 // Perform vector logical not on comparison with zero vector. 2258 if (E->getType()->isExtVectorType()) { 2259 Value *Oper = Visit(E->getSubExpr()); 2260 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2261 Value *Result; 2262 if (Oper->getType()->isFPOrFPVectorTy()) 2263 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2264 else 2265 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2266 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2267 } 2268 2269 // Compare operand to zero. 2270 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2271 2272 // Invert value. 2273 // TODO: Could dynamically modify easy computations here. For example, if 2274 // the operand is an icmp ne, turn into icmp eq. 2275 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2276 2277 // ZExt result to the expr type. 2278 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2279 } 2280 2281 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2282 // Try folding the offsetof to a constant. 2283 llvm::APSInt Value; 2284 if (E->EvaluateAsInt(Value, CGF.getContext())) 2285 return Builder.getInt(Value); 2286 2287 // Loop over the components of the offsetof to compute the value. 2288 unsigned n = E->getNumComponents(); 2289 llvm::Type* ResultType = ConvertType(E->getType()); 2290 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2291 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2292 for (unsigned i = 0; i != n; ++i) { 2293 OffsetOfNode ON = E->getComponent(i); 2294 llvm::Value *Offset = nullptr; 2295 switch (ON.getKind()) { 2296 case OffsetOfNode::Array: { 2297 // Compute the index 2298 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2299 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2300 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2301 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2302 2303 // Save the element type 2304 CurrentType = 2305 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2306 2307 // Compute the element size 2308 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2309 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2310 2311 // Multiply out to compute the result 2312 Offset = Builder.CreateMul(Idx, ElemSize); 2313 break; 2314 } 2315 2316 case OffsetOfNode::Field: { 2317 FieldDecl *MemberDecl = ON.getField(); 2318 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2319 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2320 2321 // Compute the index of the field in its parent. 2322 unsigned i = 0; 2323 // FIXME: It would be nice if we didn't have to loop here! 2324 for (RecordDecl::field_iterator Field = RD->field_begin(), 2325 FieldEnd = RD->field_end(); 2326 Field != FieldEnd; ++Field, ++i) { 2327 if (*Field == MemberDecl) 2328 break; 2329 } 2330 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2331 2332 // Compute the offset to the field 2333 int64_t OffsetInt = RL.getFieldOffset(i) / 2334 CGF.getContext().getCharWidth(); 2335 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2336 2337 // Save the element type. 2338 CurrentType = MemberDecl->getType(); 2339 break; 2340 } 2341 2342 case OffsetOfNode::Identifier: 2343 llvm_unreachable("dependent __builtin_offsetof"); 2344 2345 case OffsetOfNode::Base: { 2346 if (ON.getBase()->isVirtual()) { 2347 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2348 continue; 2349 } 2350 2351 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2352 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2353 2354 // Save the element type. 2355 CurrentType = ON.getBase()->getType(); 2356 2357 // Compute the offset to the base. 2358 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2359 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2360 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2361 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2362 break; 2363 } 2364 } 2365 Result = Builder.CreateAdd(Result, Offset); 2366 } 2367 return Result; 2368 } 2369 2370 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2371 /// argument of the sizeof expression as an integer. 2372 Value * 2373 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2374 const UnaryExprOrTypeTraitExpr *E) { 2375 QualType TypeToSize = E->getTypeOfArgument(); 2376 if (E->getKind() == UETT_SizeOf) { 2377 if (const VariableArrayType *VAT = 2378 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2379 if (E->isArgumentType()) { 2380 // sizeof(type) - make sure to emit the VLA size. 2381 CGF.EmitVariablyModifiedType(TypeToSize); 2382 } else { 2383 // C99 6.5.3.4p2: If the argument is an expression of type 2384 // VLA, it is evaluated. 2385 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2386 } 2387 2388 auto VlaSize = CGF.getVLASize(VAT); 2389 llvm::Value *size = VlaSize.NumElts; 2390 2391 // Scale the number of non-VLA elements by the non-VLA element size. 2392 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2393 if (!eltSize.isOne()) 2394 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2395 2396 return size; 2397 } 2398 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2399 auto Alignment = 2400 CGF.getContext() 2401 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2402 E->getTypeOfArgument()->getPointeeType())) 2403 .getQuantity(); 2404 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2405 } 2406 2407 // If this isn't sizeof(vla), the result must be constant; use the constant 2408 // folding logic so we don't have to duplicate it here. 2409 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2410 } 2411 2412 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2413 Expr *Op = E->getSubExpr(); 2414 if (Op->getType()->isAnyComplexType()) { 2415 // If it's an l-value, load through the appropriate subobject l-value. 2416 // Note that we have to ask E because Op might be an l-value that 2417 // this won't work for, e.g. an Obj-C property. 2418 if (E->isGLValue()) 2419 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2420 E->getExprLoc()).getScalarVal(); 2421 2422 // Otherwise, calculate and project. 2423 return CGF.EmitComplexExpr(Op, false, true).first; 2424 } 2425 2426 return Visit(Op); 2427 } 2428 2429 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2430 Expr *Op = E->getSubExpr(); 2431 if (Op->getType()->isAnyComplexType()) { 2432 // If it's an l-value, load through the appropriate subobject l-value. 2433 // Note that we have to ask E because Op might be an l-value that 2434 // this won't work for, e.g. an Obj-C property. 2435 if (Op->isGLValue()) 2436 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2437 E->getExprLoc()).getScalarVal(); 2438 2439 // Otherwise, calculate and project. 2440 return CGF.EmitComplexExpr(Op, true, false).second; 2441 } 2442 2443 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2444 // effects are evaluated, but not the actual value. 2445 if (Op->isGLValue()) 2446 CGF.EmitLValue(Op); 2447 else 2448 CGF.EmitScalarExpr(Op, true); 2449 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2450 } 2451 2452 //===----------------------------------------------------------------------===// 2453 // Binary Operators 2454 //===----------------------------------------------------------------------===// 2455 2456 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2457 TestAndClearIgnoreResultAssign(); 2458 BinOpInfo Result; 2459 Result.LHS = Visit(E->getLHS()); 2460 Result.RHS = Visit(E->getRHS()); 2461 Result.Ty = E->getType(); 2462 Result.Opcode = E->getOpcode(); 2463 Result.FPFeatures = E->getFPFeatures(); 2464 Result.E = E; 2465 return Result; 2466 } 2467 2468 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2469 const CompoundAssignOperator *E, 2470 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2471 Value *&Result) { 2472 QualType LHSTy = E->getLHS()->getType(); 2473 BinOpInfo OpInfo; 2474 2475 if (E->getComputationResultType()->isAnyComplexType()) 2476 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2477 2478 // Emit the RHS first. __block variables need to have the rhs evaluated 2479 // first, plus this should improve codegen a little. 2480 OpInfo.RHS = Visit(E->getRHS()); 2481 OpInfo.Ty = E->getComputationResultType(); 2482 OpInfo.Opcode = E->getOpcode(); 2483 OpInfo.FPFeatures = E->getFPFeatures(); 2484 OpInfo.E = E; 2485 // Load/convert the LHS. 2486 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2487 2488 llvm::PHINode *atomicPHI = nullptr; 2489 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2490 QualType type = atomicTy->getValueType(); 2491 if (!type->isBooleanType() && type->isIntegerType() && 2492 !(type->isUnsignedIntegerType() && 2493 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2494 CGF.getLangOpts().getSignedOverflowBehavior() != 2495 LangOptions::SOB_Trapping) { 2496 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2497 switch (OpInfo.Opcode) { 2498 // We don't have atomicrmw operands for *, %, /, <<, >> 2499 case BO_MulAssign: case BO_DivAssign: 2500 case BO_RemAssign: 2501 case BO_ShlAssign: 2502 case BO_ShrAssign: 2503 break; 2504 case BO_AddAssign: 2505 aop = llvm::AtomicRMWInst::Add; 2506 break; 2507 case BO_SubAssign: 2508 aop = llvm::AtomicRMWInst::Sub; 2509 break; 2510 case BO_AndAssign: 2511 aop = llvm::AtomicRMWInst::And; 2512 break; 2513 case BO_XorAssign: 2514 aop = llvm::AtomicRMWInst::Xor; 2515 break; 2516 case BO_OrAssign: 2517 aop = llvm::AtomicRMWInst::Or; 2518 break; 2519 default: 2520 llvm_unreachable("Invalid compound assignment type"); 2521 } 2522 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2523 llvm::Value *amt = CGF.EmitToMemory( 2524 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2525 E->getExprLoc()), 2526 LHSTy); 2527 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2528 llvm::AtomicOrdering::SequentiallyConsistent); 2529 return LHSLV; 2530 } 2531 } 2532 // FIXME: For floating point types, we should be saving and restoring the 2533 // floating point environment in the loop. 2534 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2535 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2536 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2537 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2538 Builder.CreateBr(opBB); 2539 Builder.SetInsertPoint(opBB); 2540 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2541 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2542 OpInfo.LHS = atomicPHI; 2543 } 2544 else 2545 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2546 2547 SourceLocation Loc = E->getExprLoc(); 2548 OpInfo.LHS = 2549 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2550 2551 // Expand the binary operator. 2552 Result = (this->*Func)(OpInfo); 2553 2554 // Convert the result back to the LHS type. 2555 Result = 2556 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2557 2558 if (atomicPHI) { 2559 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2560 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2561 auto Pair = CGF.EmitAtomicCompareExchange( 2562 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2563 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2564 llvm::Value *success = Pair.second; 2565 atomicPHI->addIncoming(old, opBB); 2566 Builder.CreateCondBr(success, contBB, opBB); 2567 Builder.SetInsertPoint(contBB); 2568 return LHSLV; 2569 } 2570 2571 // Store the result value into the LHS lvalue. Bit-fields are handled 2572 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2573 // 'An assignment expression has the value of the left operand after the 2574 // assignment...'. 2575 if (LHSLV.isBitField()) 2576 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2577 else 2578 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2579 2580 return LHSLV; 2581 } 2582 2583 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2584 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2585 bool Ignore = TestAndClearIgnoreResultAssign(); 2586 Value *RHS; 2587 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2588 2589 // If the result is clearly ignored, return now. 2590 if (Ignore) 2591 return nullptr; 2592 2593 // The result of an assignment in C is the assigned r-value. 2594 if (!CGF.getLangOpts().CPlusPlus) 2595 return RHS; 2596 2597 // If the lvalue is non-volatile, return the computed value of the assignment. 2598 if (!LHS.isVolatileQualified()) 2599 return RHS; 2600 2601 // Otherwise, reload the value. 2602 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2603 } 2604 2605 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2606 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2607 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2608 2609 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2610 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2611 SanitizerKind::IntegerDivideByZero)); 2612 } 2613 2614 const auto *BO = cast<BinaryOperator>(Ops.E); 2615 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2616 Ops.Ty->hasSignedIntegerRepresentation() && 2617 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2618 Ops.mayHaveIntegerOverflow()) { 2619 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2620 2621 llvm::Value *IntMin = 2622 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2623 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2624 2625 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2626 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2627 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2628 Checks.push_back( 2629 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2630 } 2631 2632 if (Checks.size() > 0) 2633 EmitBinOpCheck(Checks, Ops); 2634 } 2635 2636 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2637 { 2638 CodeGenFunction::SanitizerScope SanScope(&CGF); 2639 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2640 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2641 Ops.Ty->isIntegerType() && 2642 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2643 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2644 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2645 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2646 Ops.Ty->isRealFloatingType() && 2647 Ops.mayHaveFloatDivisionByZero()) { 2648 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2649 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2650 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2651 Ops); 2652 } 2653 } 2654 2655 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2656 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2657 if (CGF.getLangOpts().OpenCL && 2658 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2659 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2660 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2661 // build option allows an application to specify that single precision 2662 // floating-point divide (x/y and 1/x) and sqrt used in the program 2663 // source are correctly rounded. 2664 llvm::Type *ValTy = Val->getType(); 2665 if (ValTy->isFloatTy() || 2666 (isa<llvm::VectorType>(ValTy) && 2667 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2668 CGF.SetFPAccuracy(Val, 2.5); 2669 } 2670 return Val; 2671 } 2672 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2673 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2674 else 2675 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2676 } 2677 2678 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2679 // Rem in C can't be a floating point type: C99 6.5.5p2. 2680 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2681 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2682 Ops.Ty->isIntegerType() && 2683 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2684 CodeGenFunction::SanitizerScope SanScope(&CGF); 2685 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2686 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2687 } 2688 2689 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2690 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2691 else 2692 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2693 } 2694 2695 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2696 unsigned IID; 2697 unsigned OpID = 0; 2698 2699 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2700 switch (Ops.Opcode) { 2701 case BO_Add: 2702 case BO_AddAssign: 2703 OpID = 1; 2704 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2705 llvm::Intrinsic::uadd_with_overflow; 2706 break; 2707 case BO_Sub: 2708 case BO_SubAssign: 2709 OpID = 2; 2710 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2711 llvm::Intrinsic::usub_with_overflow; 2712 break; 2713 case BO_Mul: 2714 case BO_MulAssign: 2715 OpID = 3; 2716 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2717 llvm::Intrinsic::umul_with_overflow; 2718 break; 2719 default: 2720 llvm_unreachable("Unsupported operation for overflow detection"); 2721 } 2722 OpID <<= 1; 2723 if (isSigned) 2724 OpID |= 1; 2725 2726 CodeGenFunction::SanitizerScope SanScope(&CGF); 2727 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2728 2729 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2730 2731 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2732 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2733 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2734 2735 // Handle overflow with llvm.trap if no custom handler has been specified. 2736 const std::string *handlerName = 2737 &CGF.getLangOpts().OverflowHandler; 2738 if (handlerName->empty()) { 2739 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2740 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2741 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2742 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2743 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2744 : SanitizerKind::UnsignedIntegerOverflow; 2745 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2746 } else 2747 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2748 return result; 2749 } 2750 2751 // Branch in case of overflow. 2752 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2753 llvm::BasicBlock *continueBB = 2754 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2755 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2756 2757 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2758 2759 // If an overflow handler is set, then we want to call it and then use its 2760 // result, if it returns. 2761 Builder.SetInsertPoint(overflowBB); 2762 2763 // Get the overflow handler. 2764 llvm::Type *Int8Ty = CGF.Int8Ty; 2765 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2766 llvm::FunctionType *handlerTy = 2767 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2768 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2769 2770 // Sign extend the args to 64-bit, so that we can use the same handler for 2771 // all types of overflow. 2772 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2773 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2774 2775 // Call the handler with the two arguments, the operation, and the size of 2776 // the result. 2777 llvm::Value *handlerArgs[] = { 2778 lhs, 2779 rhs, 2780 Builder.getInt8(OpID), 2781 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2782 }; 2783 llvm::Value *handlerResult = 2784 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2785 2786 // Truncate the result back to the desired size. 2787 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2788 Builder.CreateBr(continueBB); 2789 2790 Builder.SetInsertPoint(continueBB); 2791 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2792 phi->addIncoming(result, initialBB); 2793 phi->addIncoming(handlerResult, overflowBB); 2794 2795 return phi; 2796 } 2797 2798 /// Emit pointer + index arithmetic. 2799 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2800 const BinOpInfo &op, 2801 bool isSubtraction) { 2802 // Must have binary (not unary) expr here. Unary pointer 2803 // increment/decrement doesn't use this path. 2804 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2805 2806 Value *pointer = op.LHS; 2807 Expr *pointerOperand = expr->getLHS(); 2808 Value *index = op.RHS; 2809 Expr *indexOperand = expr->getRHS(); 2810 2811 // In a subtraction, the LHS is always the pointer. 2812 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2813 std::swap(pointer, index); 2814 std::swap(pointerOperand, indexOperand); 2815 } 2816 2817 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2818 2819 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2820 auto &DL = CGF.CGM.getDataLayout(); 2821 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 2822 2823 // Some versions of glibc and gcc use idioms (particularly in their malloc 2824 // routines) that add a pointer-sized integer (known to be a pointer value) 2825 // to a null pointer in order to cast the value back to an integer or as 2826 // part of a pointer alignment algorithm. This is undefined behavior, but 2827 // we'd like to be able to compile programs that use it. 2828 // 2829 // Normally, we'd generate a GEP with a null-pointer base here in response 2830 // to that code, but it's also UB to dereference a pointer created that 2831 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 2832 // generate a direct cast of the integer value to a pointer. 2833 // 2834 // The idiom (p = nullptr + N) is not met if any of the following are true: 2835 // 2836 // The operation is subtraction. 2837 // The index is not pointer-sized. 2838 // The pointer type is not byte-sized. 2839 // 2840 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 2841 op.Opcode, 2842 expr->getLHS(), 2843 expr->getRHS())) 2844 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 2845 2846 if (width != DL.getTypeSizeInBits(PtrTy)) { 2847 // Zero-extend or sign-extend the pointer value according to 2848 // whether the index is signed or not. 2849 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 2850 "idx.ext"); 2851 } 2852 2853 // If this is subtraction, negate the index. 2854 if (isSubtraction) 2855 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2856 2857 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2858 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2859 /*Accessed*/ false); 2860 2861 const PointerType *pointerType 2862 = pointerOperand->getType()->getAs<PointerType>(); 2863 if (!pointerType) { 2864 QualType objectType = pointerOperand->getType() 2865 ->castAs<ObjCObjectPointerType>() 2866 ->getPointeeType(); 2867 llvm::Value *objectSize 2868 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2869 2870 index = CGF.Builder.CreateMul(index, objectSize); 2871 2872 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2873 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2874 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2875 } 2876 2877 QualType elementType = pointerType->getPointeeType(); 2878 if (const VariableArrayType *vla 2879 = CGF.getContext().getAsVariableArrayType(elementType)) { 2880 // The element count here is the total number of non-VLA elements. 2881 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 2882 2883 // Effectively, the multiply by the VLA size is part of the GEP. 2884 // GEP indexes are signed, and scaling an index isn't permitted to 2885 // signed-overflow, so we use the same semantics for our explicit 2886 // multiply. We suppress this if overflow is not undefined behavior. 2887 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2888 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2889 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2890 } else { 2891 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2892 pointer = 2893 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2894 op.E->getExprLoc(), "add.ptr"); 2895 } 2896 return pointer; 2897 } 2898 2899 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2900 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2901 // future proof. 2902 if (elementType->isVoidType() || elementType->isFunctionType()) { 2903 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2904 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2905 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2906 } 2907 2908 if (CGF.getLangOpts().isSignedOverflowDefined()) 2909 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2910 2911 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2912 op.E->getExprLoc(), "add.ptr"); 2913 } 2914 2915 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2916 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2917 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2918 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2919 // efficient operations. 2920 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2921 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2922 bool negMul, bool negAdd) { 2923 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2924 2925 Value *MulOp0 = MulOp->getOperand(0); 2926 Value *MulOp1 = MulOp->getOperand(1); 2927 if (negMul) { 2928 MulOp0 = 2929 Builder.CreateFSub( 2930 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2931 "neg"); 2932 } else if (negAdd) { 2933 Addend = 2934 Builder.CreateFSub( 2935 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2936 "neg"); 2937 } 2938 2939 Value *FMulAdd = Builder.CreateCall( 2940 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2941 {MulOp0, MulOp1, Addend}); 2942 MulOp->eraseFromParent(); 2943 2944 return FMulAdd; 2945 } 2946 2947 // Check whether it would be legal to emit an fmuladd intrinsic call to 2948 // represent op and if so, build the fmuladd. 2949 // 2950 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2951 // Does NOT check the type of the operation - it's assumed that this function 2952 // will be called from contexts where it's known that the type is contractable. 2953 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2954 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2955 bool isSub=false) { 2956 2957 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2958 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2959 "Only fadd/fsub can be the root of an fmuladd."); 2960 2961 // Check whether this op is marked as fusable. 2962 if (!op.FPFeatures.allowFPContractWithinStatement()) 2963 return nullptr; 2964 2965 // We have a potentially fusable op. Look for a mul on one of the operands. 2966 // Also, make sure that the mul result isn't used directly. In that case, 2967 // there's no point creating a muladd operation. 2968 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2969 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2970 LHSBinOp->use_empty()) 2971 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2972 } 2973 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2974 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2975 RHSBinOp->use_empty()) 2976 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2977 } 2978 2979 return nullptr; 2980 } 2981 2982 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2983 if (op.LHS->getType()->isPointerTy() || 2984 op.RHS->getType()->isPointerTy()) 2985 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 2986 2987 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2988 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2989 case LangOptions::SOB_Defined: 2990 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2991 case LangOptions::SOB_Undefined: 2992 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2993 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2994 // Fall through. 2995 case LangOptions::SOB_Trapping: 2996 if (CanElideOverflowCheck(CGF.getContext(), op)) 2997 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2998 return EmitOverflowCheckedBinOp(op); 2999 } 3000 } 3001 3002 if (op.Ty->isUnsignedIntegerType() && 3003 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3004 !CanElideOverflowCheck(CGF.getContext(), op)) 3005 return EmitOverflowCheckedBinOp(op); 3006 3007 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3008 // Try to form an fmuladd. 3009 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3010 return FMulAdd; 3011 3012 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3013 return propagateFMFlags(V, op); 3014 } 3015 3016 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3017 } 3018 3019 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3020 // The LHS is always a pointer if either side is. 3021 if (!op.LHS->getType()->isPointerTy()) { 3022 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3023 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3024 case LangOptions::SOB_Defined: 3025 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3026 case LangOptions::SOB_Undefined: 3027 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3028 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3029 // Fall through. 3030 case LangOptions::SOB_Trapping: 3031 if (CanElideOverflowCheck(CGF.getContext(), op)) 3032 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3033 return EmitOverflowCheckedBinOp(op); 3034 } 3035 } 3036 3037 if (op.Ty->isUnsignedIntegerType() && 3038 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3039 !CanElideOverflowCheck(CGF.getContext(), op)) 3040 return EmitOverflowCheckedBinOp(op); 3041 3042 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3043 // Try to form an fmuladd. 3044 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3045 return FMulAdd; 3046 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3047 return propagateFMFlags(V, op); 3048 } 3049 3050 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3051 } 3052 3053 // If the RHS is not a pointer, then we have normal pointer 3054 // arithmetic. 3055 if (!op.RHS->getType()->isPointerTy()) 3056 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3057 3058 // Otherwise, this is a pointer subtraction. 3059 3060 // Do the raw subtraction part. 3061 llvm::Value *LHS 3062 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3063 llvm::Value *RHS 3064 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3065 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3066 3067 // Okay, figure out the element size. 3068 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3069 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3070 3071 llvm::Value *divisor = nullptr; 3072 3073 // For a variable-length array, this is going to be non-constant. 3074 if (const VariableArrayType *vla 3075 = CGF.getContext().getAsVariableArrayType(elementType)) { 3076 auto VlaSize = CGF.getVLASize(vla); 3077 elementType = VlaSize.Type; 3078 divisor = VlaSize.NumElts; 3079 3080 // Scale the number of non-VLA elements by the non-VLA element size. 3081 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3082 if (!eltSize.isOne()) 3083 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3084 3085 // For everything elese, we can just compute it, safe in the 3086 // assumption that Sema won't let anything through that we can't 3087 // safely compute the size of. 3088 } else { 3089 CharUnits elementSize; 3090 // Handle GCC extension for pointer arithmetic on void* and 3091 // function pointer types. 3092 if (elementType->isVoidType() || elementType->isFunctionType()) 3093 elementSize = CharUnits::One(); 3094 else 3095 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3096 3097 // Don't even emit the divide for element size of 1. 3098 if (elementSize.isOne()) 3099 return diffInChars; 3100 3101 divisor = CGF.CGM.getSize(elementSize); 3102 } 3103 3104 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3105 // pointer difference in C is only defined in the case where both operands 3106 // are pointing to elements of an array. 3107 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3108 } 3109 3110 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3111 llvm::IntegerType *Ty; 3112 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3113 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3114 else 3115 Ty = cast<llvm::IntegerType>(LHS->getType()); 3116 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3117 } 3118 3119 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3120 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3121 // RHS to the same size as the LHS. 3122 Value *RHS = Ops.RHS; 3123 if (Ops.LHS->getType() != RHS->getType()) 3124 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3125 3126 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3127 Ops.Ty->hasSignedIntegerRepresentation() && 3128 !CGF.getLangOpts().isSignedOverflowDefined(); 3129 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3130 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3131 if (CGF.getLangOpts().OpenCL) 3132 RHS = 3133 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3134 else if ((SanitizeBase || SanitizeExponent) && 3135 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3136 CodeGenFunction::SanitizerScope SanScope(&CGF); 3137 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3138 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3139 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3140 3141 if (SanitizeExponent) { 3142 Checks.push_back( 3143 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3144 } 3145 3146 if (SanitizeBase) { 3147 // Check whether we are shifting any non-zero bits off the top of the 3148 // integer. We only emit this check if exponent is valid - otherwise 3149 // instructions below will have undefined behavior themselves. 3150 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3151 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3152 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3153 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3154 llvm::Value *PromotedWidthMinusOne = 3155 (RHS == Ops.RHS) ? WidthMinusOne 3156 : GetWidthMinusOneValue(Ops.LHS, RHS); 3157 CGF.EmitBlock(CheckShiftBase); 3158 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3159 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3160 /*NUW*/ true, /*NSW*/ true), 3161 "shl.check"); 3162 if (CGF.getLangOpts().CPlusPlus) { 3163 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3164 // Under C++11's rules, shifting a 1 bit into the sign bit is 3165 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3166 // define signed left shifts, so we use the C99 and C++11 rules there). 3167 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3168 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3169 } 3170 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3171 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3172 CGF.EmitBlock(Cont); 3173 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3174 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3175 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3176 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3177 } 3178 3179 assert(!Checks.empty()); 3180 EmitBinOpCheck(Checks, Ops); 3181 } 3182 3183 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3184 } 3185 3186 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3187 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3188 // RHS to the same size as the LHS. 3189 Value *RHS = Ops.RHS; 3190 if (Ops.LHS->getType() != RHS->getType()) 3191 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3192 3193 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3194 if (CGF.getLangOpts().OpenCL) 3195 RHS = 3196 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3197 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3198 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3199 CodeGenFunction::SanitizerScope SanScope(&CGF); 3200 llvm::Value *Valid = 3201 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3202 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3203 } 3204 3205 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3206 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3207 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3208 } 3209 3210 enum IntrinsicType { VCMPEQ, VCMPGT }; 3211 // return corresponding comparison intrinsic for given vector type 3212 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3213 BuiltinType::Kind ElemKind) { 3214 switch (ElemKind) { 3215 default: llvm_unreachable("unexpected element type"); 3216 case BuiltinType::Char_U: 3217 case BuiltinType::UChar: 3218 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3219 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3220 case BuiltinType::Char_S: 3221 case BuiltinType::SChar: 3222 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3223 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3224 case BuiltinType::UShort: 3225 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3226 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3227 case BuiltinType::Short: 3228 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3229 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3230 case BuiltinType::UInt: 3231 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3232 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3233 case BuiltinType::Int: 3234 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3235 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3236 case BuiltinType::ULong: 3237 case BuiltinType::ULongLong: 3238 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3239 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3240 case BuiltinType::Long: 3241 case BuiltinType::LongLong: 3242 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3243 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3244 case BuiltinType::Float: 3245 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3246 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3247 case BuiltinType::Double: 3248 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3249 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3250 } 3251 } 3252 3253 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3254 llvm::CmpInst::Predicate UICmpOpc, 3255 llvm::CmpInst::Predicate SICmpOpc, 3256 llvm::CmpInst::Predicate FCmpOpc) { 3257 TestAndClearIgnoreResultAssign(); 3258 Value *Result; 3259 QualType LHSTy = E->getLHS()->getType(); 3260 QualType RHSTy = E->getRHS()->getType(); 3261 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3262 assert(E->getOpcode() == BO_EQ || 3263 E->getOpcode() == BO_NE); 3264 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3265 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3266 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3267 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3268 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3269 Value *LHS = Visit(E->getLHS()); 3270 Value *RHS = Visit(E->getRHS()); 3271 3272 // If AltiVec, the comparison results in a numeric type, so we use 3273 // intrinsics comparing vectors and giving 0 or 1 as a result 3274 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3275 // constants for mapping CR6 register bits to predicate result 3276 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3277 3278 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3279 3280 // in several cases vector arguments order will be reversed 3281 Value *FirstVecArg = LHS, 3282 *SecondVecArg = RHS; 3283 3284 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3285 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3286 BuiltinType::Kind ElementKind = BTy->getKind(); 3287 3288 switch(E->getOpcode()) { 3289 default: llvm_unreachable("is not a comparison operation"); 3290 case BO_EQ: 3291 CR6 = CR6_LT; 3292 ID = GetIntrinsic(VCMPEQ, ElementKind); 3293 break; 3294 case BO_NE: 3295 CR6 = CR6_EQ; 3296 ID = GetIntrinsic(VCMPEQ, ElementKind); 3297 break; 3298 case BO_LT: 3299 CR6 = CR6_LT; 3300 ID = GetIntrinsic(VCMPGT, ElementKind); 3301 std::swap(FirstVecArg, SecondVecArg); 3302 break; 3303 case BO_GT: 3304 CR6 = CR6_LT; 3305 ID = GetIntrinsic(VCMPGT, ElementKind); 3306 break; 3307 case BO_LE: 3308 if (ElementKind == BuiltinType::Float) { 3309 CR6 = CR6_LT; 3310 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3311 std::swap(FirstVecArg, SecondVecArg); 3312 } 3313 else { 3314 CR6 = CR6_EQ; 3315 ID = GetIntrinsic(VCMPGT, ElementKind); 3316 } 3317 break; 3318 case BO_GE: 3319 if (ElementKind == BuiltinType::Float) { 3320 CR6 = CR6_LT; 3321 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3322 } 3323 else { 3324 CR6 = CR6_EQ; 3325 ID = GetIntrinsic(VCMPGT, ElementKind); 3326 std::swap(FirstVecArg, SecondVecArg); 3327 } 3328 break; 3329 } 3330 3331 Value *CR6Param = Builder.getInt32(CR6); 3332 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3333 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3334 3335 // The result type of intrinsic may not be same as E->getType(). 3336 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3337 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3338 // do nothing, if ResultTy is not i1 at the same time, it will cause 3339 // crash later. 3340 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3341 if (ResultTy->getBitWidth() > 1 && 3342 E->getType() == CGF.getContext().BoolTy) 3343 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3344 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3345 E->getExprLoc()); 3346 } 3347 3348 if (LHS->getType()->isFPOrFPVectorTy()) { 3349 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3350 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3351 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3352 } else { 3353 // Unsigned integers and pointers. 3354 3355 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3356 !isa<llvm::ConstantPointerNull>(LHS) && 3357 !isa<llvm::ConstantPointerNull>(RHS)) { 3358 3359 // Dynamic information is required to be stripped for comparisons, 3360 // because it could leak the dynamic information. Based on comparisons 3361 // of pointers to dynamic objects, the optimizer can replace one pointer 3362 // with another, which might be incorrect in presence of invariant 3363 // groups. Comparison with null is safe because null does not carry any 3364 // dynamic information. 3365 if (LHSTy.mayBeDynamicClass()) 3366 LHS = Builder.CreateStripInvariantGroup(LHS); 3367 if (RHSTy.mayBeDynamicClass()) 3368 RHS = Builder.CreateStripInvariantGroup(RHS); 3369 } 3370 3371 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3372 } 3373 3374 // If this is a vector comparison, sign extend the result to the appropriate 3375 // vector integer type and return it (don't convert to bool). 3376 if (LHSTy->isVectorType()) 3377 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3378 3379 } else { 3380 // Complex Comparison: can only be an equality comparison. 3381 CodeGenFunction::ComplexPairTy LHS, RHS; 3382 QualType CETy; 3383 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3384 LHS = CGF.EmitComplexExpr(E->getLHS()); 3385 CETy = CTy->getElementType(); 3386 } else { 3387 LHS.first = Visit(E->getLHS()); 3388 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3389 CETy = LHSTy; 3390 } 3391 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3392 RHS = CGF.EmitComplexExpr(E->getRHS()); 3393 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3394 CTy->getElementType()) && 3395 "The element types must always match."); 3396 (void)CTy; 3397 } else { 3398 RHS.first = Visit(E->getRHS()); 3399 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3400 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3401 "The element types must always match."); 3402 } 3403 3404 Value *ResultR, *ResultI; 3405 if (CETy->isRealFloatingType()) { 3406 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3407 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3408 } else { 3409 // Complex comparisons can only be equality comparisons. As such, signed 3410 // and unsigned opcodes are the same. 3411 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3412 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3413 } 3414 3415 if (E->getOpcode() == BO_EQ) { 3416 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3417 } else { 3418 assert(E->getOpcode() == BO_NE && 3419 "Complex comparison other than == or != ?"); 3420 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3421 } 3422 } 3423 3424 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3425 E->getExprLoc()); 3426 } 3427 3428 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3429 bool Ignore = TestAndClearIgnoreResultAssign(); 3430 3431 Value *RHS; 3432 LValue LHS; 3433 3434 switch (E->getLHS()->getType().getObjCLifetime()) { 3435 case Qualifiers::OCL_Strong: 3436 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3437 break; 3438 3439 case Qualifiers::OCL_Autoreleasing: 3440 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3441 break; 3442 3443 case Qualifiers::OCL_ExplicitNone: 3444 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3445 break; 3446 3447 case Qualifiers::OCL_Weak: 3448 RHS = Visit(E->getRHS()); 3449 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3450 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3451 break; 3452 3453 case Qualifiers::OCL_None: 3454 // __block variables need to have the rhs evaluated first, plus 3455 // this should improve codegen just a little. 3456 RHS = Visit(E->getRHS()); 3457 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3458 3459 // Store the value into the LHS. Bit-fields are handled specially 3460 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3461 // 'An assignment expression has the value of the left operand after 3462 // the assignment...'. 3463 if (LHS.isBitField()) { 3464 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3465 } else { 3466 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3467 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3468 } 3469 } 3470 3471 // If the result is clearly ignored, return now. 3472 if (Ignore) 3473 return nullptr; 3474 3475 // The result of an assignment in C is the assigned r-value. 3476 if (!CGF.getLangOpts().CPlusPlus) 3477 return RHS; 3478 3479 // If the lvalue is non-volatile, return the computed value of the assignment. 3480 if (!LHS.isVolatileQualified()) 3481 return RHS; 3482 3483 // Otherwise, reload the value. 3484 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3485 } 3486 3487 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3488 // Perform vector logical and on comparisons with zero vectors. 3489 if (E->getType()->isVectorType()) { 3490 CGF.incrementProfileCounter(E); 3491 3492 Value *LHS = Visit(E->getLHS()); 3493 Value *RHS = Visit(E->getRHS()); 3494 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3495 if (LHS->getType()->isFPOrFPVectorTy()) { 3496 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3497 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3498 } else { 3499 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3500 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3501 } 3502 Value *And = Builder.CreateAnd(LHS, RHS); 3503 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3504 } 3505 3506 llvm::Type *ResTy = ConvertType(E->getType()); 3507 3508 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3509 // If we have 1 && X, just emit X without inserting the control flow. 3510 bool LHSCondVal; 3511 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3512 if (LHSCondVal) { // If we have 1 && X, just emit X. 3513 CGF.incrementProfileCounter(E); 3514 3515 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3516 // ZExt result to int or bool. 3517 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3518 } 3519 3520 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3521 if (!CGF.ContainsLabel(E->getRHS())) 3522 return llvm::Constant::getNullValue(ResTy); 3523 } 3524 3525 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3526 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3527 3528 CodeGenFunction::ConditionalEvaluation eval(CGF); 3529 3530 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3531 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3532 CGF.getProfileCount(E->getRHS())); 3533 3534 // Any edges into the ContBlock are now from an (indeterminate number of) 3535 // edges from this first condition. All of these values will be false. Start 3536 // setting up the PHI node in the Cont Block for this. 3537 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3538 "", ContBlock); 3539 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3540 PI != PE; ++PI) 3541 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3542 3543 eval.begin(CGF); 3544 CGF.EmitBlock(RHSBlock); 3545 CGF.incrementProfileCounter(E); 3546 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3547 eval.end(CGF); 3548 3549 // Reaquire the RHS block, as there may be subblocks inserted. 3550 RHSBlock = Builder.GetInsertBlock(); 3551 3552 // Emit an unconditional branch from this block to ContBlock. 3553 { 3554 // There is no need to emit line number for unconditional branch. 3555 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3556 CGF.EmitBlock(ContBlock); 3557 } 3558 // Insert an entry into the phi node for the edge with the value of RHSCond. 3559 PN->addIncoming(RHSCond, RHSBlock); 3560 3561 // Artificial location to preserve the scope information 3562 { 3563 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 3564 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 3565 } 3566 3567 // ZExt result to int. 3568 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3569 } 3570 3571 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3572 // Perform vector logical or on comparisons with zero vectors. 3573 if (E->getType()->isVectorType()) { 3574 CGF.incrementProfileCounter(E); 3575 3576 Value *LHS = Visit(E->getLHS()); 3577 Value *RHS = Visit(E->getRHS()); 3578 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3579 if (LHS->getType()->isFPOrFPVectorTy()) { 3580 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3581 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3582 } else { 3583 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3584 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3585 } 3586 Value *Or = Builder.CreateOr(LHS, RHS); 3587 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3588 } 3589 3590 llvm::Type *ResTy = ConvertType(E->getType()); 3591 3592 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3593 // If we have 0 || X, just emit X without inserting the control flow. 3594 bool LHSCondVal; 3595 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3596 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3597 CGF.incrementProfileCounter(E); 3598 3599 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3600 // ZExt result to int or bool. 3601 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3602 } 3603 3604 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3605 if (!CGF.ContainsLabel(E->getRHS())) 3606 return llvm::ConstantInt::get(ResTy, 1); 3607 } 3608 3609 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3610 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3611 3612 CodeGenFunction::ConditionalEvaluation eval(CGF); 3613 3614 // Branch on the LHS first. If it is true, go to the success (cont) block. 3615 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3616 CGF.getCurrentProfileCount() - 3617 CGF.getProfileCount(E->getRHS())); 3618 3619 // Any edges into the ContBlock are now from an (indeterminate number of) 3620 // edges from this first condition. All of these values will be true. Start 3621 // setting up the PHI node in the Cont Block for this. 3622 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3623 "", ContBlock); 3624 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3625 PI != PE; ++PI) 3626 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3627 3628 eval.begin(CGF); 3629 3630 // Emit the RHS condition as a bool value. 3631 CGF.EmitBlock(RHSBlock); 3632 CGF.incrementProfileCounter(E); 3633 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3634 3635 eval.end(CGF); 3636 3637 // Reaquire the RHS block, as there may be subblocks inserted. 3638 RHSBlock = Builder.GetInsertBlock(); 3639 3640 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3641 // into the phi node for the edge with the value of RHSCond. 3642 CGF.EmitBlock(ContBlock); 3643 PN->addIncoming(RHSCond, RHSBlock); 3644 3645 // ZExt result to int. 3646 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3647 } 3648 3649 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3650 CGF.EmitIgnoredExpr(E->getLHS()); 3651 CGF.EnsureInsertPoint(); 3652 return Visit(E->getRHS()); 3653 } 3654 3655 //===----------------------------------------------------------------------===// 3656 // Other Operators 3657 //===----------------------------------------------------------------------===// 3658 3659 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3660 /// expression is cheap enough and side-effect-free enough to evaluate 3661 /// unconditionally instead of conditionally. This is used to convert control 3662 /// flow into selects in some cases. 3663 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3664 CodeGenFunction &CGF) { 3665 // Anything that is an integer or floating point constant is fine. 3666 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3667 3668 // Even non-volatile automatic variables can't be evaluated unconditionally. 3669 // Referencing a thread_local may cause non-trivial initialization work to 3670 // occur. If we're inside a lambda and one of the variables is from the scope 3671 // outside the lambda, that function may have returned already. Reading its 3672 // locals is a bad idea. Also, these reads may introduce races there didn't 3673 // exist in the source-level program. 3674 } 3675 3676 3677 Value *ScalarExprEmitter:: 3678 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3679 TestAndClearIgnoreResultAssign(); 3680 3681 // Bind the common expression if necessary. 3682 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3683 3684 Expr *condExpr = E->getCond(); 3685 Expr *lhsExpr = E->getTrueExpr(); 3686 Expr *rhsExpr = E->getFalseExpr(); 3687 3688 // If the condition constant folds and can be elided, try to avoid emitting 3689 // the condition and the dead arm. 3690 bool CondExprBool; 3691 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3692 Expr *live = lhsExpr, *dead = rhsExpr; 3693 if (!CondExprBool) std::swap(live, dead); 3694 3695 // If the dead side doesn't have labels we need, just emit the Live part. 3696 if (!CGF.ContainsLabel(dead)) { 3697 if (CondExprBool) 3698 CGF.incrementProfileCounter(E); 3699 Value *Result = Visit(live); 3700 3701 // If the live part is a throw expression, it acts like it has a void 3702 // type, so evaluating it returns a null Value*. However, a conditional 3703 // with non-void type must return a non-null Value*. 3704 if (!Result && !E->getType()->isVoidType()) 3705 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3706 3707 return Result; 3708 } 3709 } 3710 3711 // OpenCL: If the condition is a vector, we can treat this condition like 3712 // the select function. 3713 if (CGF.getLangOpts().OpenCL 3714 && condExpr->getType()->isVectorType()) { 3715 CGF.incrementProfileCounter(E); 3716 3717 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3718 llvm::Value *LHS = Visit(lhsExpr); 3719 llvm::Value *RHS = Visit(rhsExpr); 3720 3721 llvm::Type *condType = ConvertType(condExpr->getType()); 3722 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3723 3724 unsigned numElem = vecTy->getNumElements(); 3725 llvm::Type *elemType = vecTy->getElementType(); 3726 3727 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3728 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3729 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3730 llvm::VectorType::get(elemType, 3731 numElem), 3732 "sext"); 3733 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3734 3735 // Cast float to int to perform ANDs if necessary. 3736 llvm::Value *RHSTmp = RHS; 3737 llvm::Value *LHSTmp = LHS; 3738 bool wasCast = false; 3739 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3740 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3741 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3742 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3743 wasCast = true; 3744 } 3745 3746 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3747 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3748 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3749 if (wasCast) 3750 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3751 3752 return tmp5; 3753 } 3754 3755 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3756 // select instead of as control flow. We can only do this if it is cheap and 3757 // safe to evaluate the LHS and RHS unconditionally. 3758 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3759 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3760 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3761 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 3762 3763 CGF.incrementProfileCounter(E, StepV); 3764 3765 llvm::Value *LHS = Visit(lhsExpr); 3766 llvm::Value *RHS = Visit(rhsExpr); 3767 if (!LHS) { 3768 // If the conditional has void type, make sure we return a null Value*. 3769 assert(!RHS && "LHS and RHS types must match"); 3770 return nullptr; 3771 } 3772 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3773 } 3774 3775 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3776 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3777 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3778 3779 CodeGenFunction::ConditionalEvaluation eval(CGF); 3780 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3781 CGF.getProfileCount(lhsExpr)); 3782 3783 CGF.EmitBlock(LHSBlock); 3784 CGF.incrementProfileCounter(E); 3785 eval.begin(CGF); 3786 Value *LHS = Visit(lhsExpr); 3787 eval.end(CGF); 3788 3789 LHSBlock = Builder.GetInsertBlock(); 3790 Builder.CreateBr(ContBlock); 3791 3792 CGF.EmitBlock(RHSBlock); 3793 eval.begin(CGF); 3794 Value *RHS = Visit(rhsExpr); 3795 eval.end(CGF); 3796 3797 RHSBlock = Builder.GetInsertBlock(); 3798 CGF.EmitBlock(ContBlock); 3799 3800 // If the LHS or RHS is a throw expression, it will be legitimately null. 3801 if (!LHS) 3802 return RHS; 3803 if (!RHS) 3804 return LHS; 3805 3806 // Create a PHI node for the real part. 3807 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3808 PN->addIncoming(LHS, LHSBlock); 3809 PN->addIncoming(RHS, RHSBlock); 3810 return PN; 3811 } 3812 3813 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3814 return Visit(E->getChosenSubExpr()); 3815 } 3816 3817 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3818 QualType Ty = VE->getType(); 3819 3820 if (Ty->isVariablyModifiedType()) 3821 CGF.EmitVariablyModifiedType(Ty); 3822 3823 Address ArgValue = Address::invalid(); 3824 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3825 3826 llvm::Type *ArgTy = ConvertType(VE->getType()); 3827 3828 // If EmitVAArg fails, emit an error. 3829 if (!ArgPtr.isValid()) { 3830 CGF.ErrorUnsupported(VE, "va_arg expression"); 3831 return llvm::UndefValue::get(ArgTy); 3832 } 3833 3834 // FIXME Volatility. 3835 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3836 3837 // If EmitVAArg promoted the type, we must truncate it. 3838 if (ArgTy != Val->getType()) { 3839 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3840 Val = Builder.CreateIntToPtr(Val, ArgTy); 3841 else 3842 Val = Builder.CreateTrunc(Val, ArgTy); 3843 } 3844 3845 return Val; 3846 } 3847 3848 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3849 return CGF.EmitBlockLiteral(block); 3850 } 3851 3852 // Convert a vec3 to vec4, or vice versa. 3853 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3854 Value *Src, unsigned NumElementsDst) { 3855 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3856 SmallVector<llvm::Constant*, 4> Args; 3857 Args.push_back(Builder.getInt32(0)); 3858 Args.push_back(Builder.getInt32(1)); 3859 Args.push_back(Builder.getInt32(2)); 3860 if (NumElementsDst == 4) 3861 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3862 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3863 return Builder.CreateShuffleVector(Src, UnV, Mask); 3864 } 3865 3866 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 3867 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 3868 // but could be scalar or vectors of different lengths, and either can be 3869 // pointer. 3870 // There are 4 cases: 3871 // 1. non-pointer -> non-pointer : needs 1 bitcast 3872 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 3873 // 3. pointer -> non-pointer 3874 // a) pointer -> intptr_t : needs 1 ptrtoint 3875 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 3876 // 4. non-pointer -> pointer 3877 // a) intptr_t -> pointer : needs 1 inttoptr 3878 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 3879 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 3880 // allow casting directly between pointer types and non-integer non-pointer 3881 // types. 3882 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 3883 const llvm::DataLayout &DL, 3884 Value *Src, llvm::Type *DstTy, 3885 StringRef Name = "") { 3886 auto SrcTy = Src->getType(); 3887 3888 // Case 1. 3889 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 3890 return Builder.CreateBitCast(Src, DstTy, Name); 3891 3892 // Case 2. 3893 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 3894 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 3895 3896 // Case 3. 3897 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 3898 // Case 3b. 3899 if (!DstTy->isIntegerTy()) 3900 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 3901 // Cases 3a and 3b. 3902 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 3903 } 3904 3905 // Case 4b. 3906 if (!SrcTy->isIntegerTy()) 3907 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 3908 // Cases 4a and 4b. 3909 return Builder.CreateIntToPtr(Src, DstTy, Name); 3910 } 3911 3912 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3913 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3914 llvm::Type *DstTy = ConvertType(E->getType()); 3915 3916 llvm::Type *SrcTy = Src->getType(); 3917 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3918 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3919 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3920 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3921 3922 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3923 // vector to get a vec4, then a bitcast if the target type is different. 3924 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3925 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3926 3927 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3928 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3929 DstTy); 3930 } 3931 3932 Src->setName("astype"); 3933 return Src; 3934 } 3935 3936 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3937 // to vec4 if the original type is not vec4, then a shuffle vector to 3938 // get a vec3. 3939 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3940 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3941 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3942 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3943 Vec4Ty); 3944 } 3945 3946 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3947 Src->setName("astype"); 3948 return Src; 3949 } 3950 3951 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 3952 Src, DstTy, "astype"); 3953 } 3954 3955 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3956 return CGF.EmitAtomicExpr(E).getScalarVal(); 3957 } 3958 3959 //===----------------------------------------------------------------------===// 3960 // Entry Point into this File 3961 //===----------------------------------------------------------------------===// 3962 3963 /// Emit the computation of the specified expression of scalar type, ignoring 3964 /// the result. 3965 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3966 assert(E && hasScalarEvaluationKind(E->getType()) && 3967 "Invalid scalar expression to emit"); 3968 3969 return ScalarExprEmitter(*this, IgnoreResultAssign) 3970 .Visit(const_cast<Expr *>(E)); 3971 } 3972 3973 /// Emit a conversion from the specified type to the specified destination type, 3974 /// both of which are LLVM scalar types. 3975 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3976 QualType DstTy, 3977 SourceLocation Loc) { 3978 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3979 "Invalid scalar expression to emit"); 3980 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3981 } 3982 3983 /// Emit a conversion from the specified complex type to the specified 3984 /// destination type, where the destination type is an LLVM scalar type. 3985 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3986 QualType SrcTy, 3987 QualType DstTy, 3988 SourceLocation Loc) { 3989 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3990 "Invalid complex -> scalar conversion"); 3991 return ScalarExprEmitter(*this) 3992 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3993 } 3994 3995 3996 llvm::Value *CodeGenFunction:: 3997 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3998 bool isInc, bool isPre) { 3999 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4000 } 4001 4002 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4003 // object->isa or (*object).isa 4004 // Generate code as for: *(Class*)object 4005 4006 Expr *BaseExpr = E->getBase(); 4007 Address Addr = Address::invalid(); 4008 if (BaseExpr->isRValue()) { 4009 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4010 } else { 4011 Addr = EmitLValue(BaseExpr).getAddress(); 4012 } 4013 4014 // Cast the address to Class*. 4015 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4016 return MakeAddrLValue(Addr, E->getType()); 4017 } 4018 4019 4020 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4021 const CompoundAssignOperator *E) { 4022 ScalarExprEmitter Scalar(*this); 4023 Value *Result = nullptr; 4024 switch (E->getOpcode()) { 4025 #define COMPOUND_OP(Op) \ 4026 case BO_##Op##Assign: \ 4027 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4028 Result) 4029 COMPOUND_OP(Mul); 4030 COMPOUND_OP(Div); 4031 COMPOUND_OP(Rem); 4032 COMPOUND_OP(Add); 4033 COMPOUND_OP(Sub); 4034 COMPOUND_OP(Shl); 4035 COMPOUND_OP(Shr); 4036 COMPOUND_OP(And); 4037 COMPOUND_OP(Xor); 4038 COMPOUND_OP(Or); 4039 #undef COMPOUND_OP 4040 4041 case BO_PtrMemD: 4042 case BO_PtrMemI: 4043 case BO_Mul: 4044 case BO_Div: 4045 case BO_Rem: 4046 case BO_Add: 4047 case BO_Sub: 4048 case BO_Shl: 4049 case BO_Shr: 4050 case BO_LT: 4051 case BO_GT: 4052 case BO_LE: 4053 case BO_GE: 4054 case BO_EQ: 4055 case BO_NE: 4056 case BO_Cmp: 4057 case BO_And: 4058 case BO_Xor: 4059 case BO_Or: 4060 case BO_LAnd: 4061 case BO_LOr: 4062 case BO_Assign: 4063 case BO_Comma: 4064 llvm_unreachable("Not valid compound assignment operators"); 4065 } 4066 4067 llvm_unreachable("Unhandled compound assignment operator"); 4068 } 4069 4070 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 4071 ArrayRef<Value *> IdxList, 4072 bool SignedIndices, 4073 bool IsSubtraction, 4074 SourceLocation Loc, 4075 const Twine &Name) { 4076 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4077 4078 // If the pointer overflow sanitizer isn't enabled, do nothing. 4079 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4080 return GEPVal; 4081 4082 // If the GEP has already been reduced to a constant, leave it be. 4083 if (isa<llvm::Constant>(GEPVal)) 4084 return GEPVal; 4085 4086 // Only check for overflows in the default address space. 4087 if (GEPVal->getType()->getPointerAddressSpace()) 4088 return GEPVal; 4089 4090 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4091 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4092 4093 SanitizerScope SanScope(this); 4094 auto &VMContext = getLLVMContext(); 4095 const auto &DL = CGM.getDataLayout(); 4096 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4097 4098 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4099 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4100 auto *SAddIntrinsic = 4101 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4102 auto *SMulIntrinsic = 4103 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4104 4105 // The total (signed) byte offset for the GEP. 4106 llvm::Value *TotalOffset = nullptr; 4107 // The offset overflow flag - true if the total offset overflows. 4108 llvm::Value *OffsetOverflows = Builder.getFalse(); 4109 4110 /// Return the result of the given binary operation. 4111 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4112 llvm::Value *RHS) -> llvm::Value * { 4113 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4114 4115 // If the operands are constants, return a constant result. 4116 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4117 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4118 llvm::APInt N; 4119 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4120 /*Signed=*/true, N); 4121 if (HasOverflow) 4122 OffsetOverflows = Builder.getTrue(); 4123 return llvm::ConstantInt::get(VMContext, N); 4124 } 4125 } 4126 4127 // Otherwise, compute the result with checked arithmetic. 4128 auto *ResultAndOverflow = Builder.CreateCall( 4129 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4130 OffsetOverflows = Builder.CreateOr( 4131 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4132 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4133 }; 4134 4135 // Determine the total byte offset by looking at each GEP operand. 4136 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4137 GTI != GTE; ++GTI) { 4138 llvm::Value *LocalOffset; 4139 auto *Index = GTI.getOperand(); 4140 // Compute the local offset contributed by this indexing step: 4141 if (auto *STy = GTI.getStructTypeOrNull()) { 4142 // For struct indexing, the local offset is the byte position of the 4143 // specified field. 4144 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4145 LocalOffset = llvm::ConstantInt::get( 4146 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4147 } else { 4148 // Otherwise this is array-like indexing. The local offset is the index 4149 // multiplied by the element size. 4150 auto *ElementSize = llvm::ConstantInt::get( 4151 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4152 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4153 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4154 } 4155 4156 // If this is the first offset, set it as the total offset. Otherwise, add 4157 // the local offset into the running total. 4158 if (!TotalOffset || TotalOffset == Zero) 4159 TotalOffset = LocalOffset; 4160 else 4161 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4162 } 4163 4164 // Common case: if the total offset is zero, don't emit a check. 4165 if (TotalOffset == Zero) 4166 return GEPVal; 4167 4168 // Now that we've computed the total offset, add it to the base pointer (with 4169 // wrapping semantics). 4170 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4171 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4172 4173 // The GEP is valid if: 4174 // 1) The total offset doesn't overflow, and 4175 // 2) The sign of the difference between the computed address and the base 4176 // pointer matches the sign of the total offset. 4177 llvm::Value *ValidGEP; 4178 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4179 if (SignedIndices) { 4180 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4181 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4182 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4183 ValidGEP = Builder.CreateAnd( 4184 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4185 NoOffsetOverflow); 4186 } else if (!SignedIndices && !IsSubtraction) { 4187 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4188 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4189 } else { 4190 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4191 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4192 } 4193 4194 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4195 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4196 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4197 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4198 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4199 4200 return GEPVal; 4201 } 4202