1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Module.h" 37 #include <cstdarg> 38 39 using namespace clang; 40 using namespace CodeGen; 41 using llvm::Value; 42 43 //===----------------------------------------------------------------------===// 44 // Scalar Expression Emitter 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 49 /// Determine whether the given binary operation may overflow. 50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 52 /// the returned overflow check is precise. The returned value is 'true' for 53 /// all other opcodes, to be conservative. 54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 55 BinaryOperator::Opcode Opcode, bool Signed, 56 llvm::APInt &Result) { 57 // Assume overflow is possible, unless we can prove otherwise. 58 bool Overflow = true; 59 const auto &LHSAP = LHS->getValue(); 60 const auto &RHSAP = RHS->getValue(); 61 if (Opcode == BO_Add) { 62 if (Signed) 63 Result = LHSAP.sadd_ov(RHSAP, Overflow); 64 else 65 Result = LHSAP.uadd_ov(RHSAP, Overflow); 66 } else if (Opcode == BO_Sub) { 67 if (Signed) 68 Result = LHSAP.ssub_ov(RHSAP, Overflow); 69 else 70 Result = LHSAP.usub_ov(RHSAP, Overflow); 71 } else if (Opcode == BO_Mul) { 72 if (Signed) 73 Result = LHSAP.smul_ov(RHSAP, Overflow); 74 else 75 Result = LHSAP.umul_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 77 if (Signed && !RHS->isZero()) 78 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 79 else 80 return false; 81 } 82 return Overflow; 83 } 84 85 struct BinOpInfo { 86 Value *LHS; 87 Value *RHS; 88 QualType Ty; // Computation Type. 89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 90 FPOptions FPFeatures; 91 const Expr *E; // Entire expr, for error unsupported. May not be binop. 92 93 /// Check if the binop can result in integer overflow. 94 bool mayHaveIntegerOverflow() const { 95 // Without constant input, we can't rule out overflow. 96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 98 if (!LHSCI || !RHSCI) 99 return true; 100 101 llvm::APInt Result; 102 return ::mayHaveIntegerOverflow( 103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 104 } 105 106 /// Check if the binop computes a division or a remainder. 107 bool isDivremOp() const { 108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 109 Opcode == BO_RemAssign; 110 } 111 112 /// Check if the binop can result in an integer division by zero. 113 bool mayHaveIntegerDivisionByZero() const { 114 if (isDivremOp()) 115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 116 return CI->isZero(); 117 return true; 118 } 119 120 /// Check if the binop can result in a float division by zero. 121 bool mayHaveFloatDivisionByZero() const { 122 if (isDivremOp()) 123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 124 return CFP->isZero(); 125 return true; 126 } 127 }; 128 129 static bool MustVisitNullValue(const Expr *E) { 130 // If a null pointer expression's type is the C++0x nullptr_t, then 131 // it's not necessarily a simple constant and it must be evaluated 132 // for its potential side effects. 133 return E->getType()->isNullPtrType(); 134 } 135 136 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 138 const Expr *E) { 139 const Expr *Base = E->IgnoreImpCasts(); 140 if (E == Base) 141 return llvm::None; 142 143 QualType BaseTy = Base->getType(); 144 if (!BaseTy->isPromotableIntegerType() || 145 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 146 return llvm::None; 147 148 return BaseTy; 149 } 150 151 /// Check if \p E is a widened promoted integer. 152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 153 return getUnwidenedIntegerType(Ctx, E).hasValue(); 154 } 155 156 /// Check if we can skip the overflow check for \p Op. 157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 158 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 159 "Expected a unary or binary operator"); 160 161 // If the binop has constant inputs and we can prove there is no overflow, 162 // we can elide the overflow check. 163 if (!Op.mayHaveIntegerOverflow()) 164 return true; 165 166 // If a unary op has a widened operand, the op cannot overflow. 167 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 168 return !UO->canOverflow(); 169 170 // We usually don't need overflow checks for binops with widened operands. 171 // Multiplication with promoted unsigned operands is a special case. 172 const auto *BO = cast<BinaryOperator>(Op.E); 173 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 174 if (!OptionalLHSTy) 175 return false; 176 177 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 178 if (!OptionalRHSTy) 179 return false; 180 181 QualType LHSTy = *OptionalLHSTy; 182 QualType RHSTy = *OptionalRHSTy; 183 184 // This is the simple case: binops without unsigned multiplication, and with 185 // widened operands. No overflow check is needed here. 186 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 187 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 188 return true; 189 190 // For unsigned multiplication the overflow check can be elided if either one 191 // of the unpromoted types are less than half the size of the promoted type. 192 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 193 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 194 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 195 } 196 197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 198 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 199 FPOptions FPFeatures) { 200 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 201 } 202 203 /// Propagate fast-math flags from \p Op to the instruction in \p V. 204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 205 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 206 llvm::FastMathFlags FMF = I->getFastMathFlags(); 207 updateFastMathFlags(FMF, Op.FPFeatures); 208 I->setFastMathFlags(FMF); 209 } 210 return V; 211 } 212 213 class ScalarExprEmitter 214 : public StmtVisitor<ScalarExprEmitter, Value*> { 215 CodeGenFunction &CGF; 216 CGBuilderTy &Builder; 217 bool IgnoreResultAssign; 218 llvm::LLVMContext &VMContext; 219 public: 220 221 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 222 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 223 VMContext(cgf.getLLVMContext()) { 224 } 225 226 //===--------------------------------------------------------------------===// 227 // Utilities 228 //===--------------------------------------------------------------------===// 229 230 bool TestAndClearIgnoreResultAssign() { 231 bool I = IgnoreResultAssign; 232 IgnoreResultAssign = false; 233 return I; 234 } 235 236 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 237 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 238 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 239 return CGF.EmitCheckedLValue(E, TCK); 240 } 241 242 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 243 const BinOpInfo &Info); 244 245 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 246 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 247 } 248 249 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 250 const AlignValueAttr *AVAttr = nullptr; 251 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 252 const ValueDecl *VD = DRE->getDecl(); 253 254 if (VD->getType()->isReferenceType()) { 255 if (const auto *TTy = 256 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 257 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 258 } else { 259 // Assumptions for function parameters are emitted at the start of the 260 // function, so there is no need to repeat that here. 261 if (isa<ParmVarDecl>(VD)) 262 return; 263 264 AVAttr = VD->getAttr<AlignValueAttr>(); 265 } 266 } 267 268 if (!AVAttr) 269 if (const auto *TTy = 270 dyn_cast<TypedefType>(E->getType())) 271 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 272 273 if (!AVAttr) 274 return; 275 276 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 277 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 278 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 279 } 280 281 /// EmitLoadOfLValue - Given an expression with complex type that represents a 282 /// value l-value, this method emits the address of the l-value, then loads 283 /// and returns the result. 284 Value *EmitLoadOfLValue(const Expr *E) { 285 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 286 E->getExprLoc()); 287 288 EmitLValueAlignmentAssumption(E, V); 289 return V; 290 } 291 292 /// EmitConversionToBool - Convert the specified expression value to a 293 /// boolean (i1) truth value. This is equivalent to "Val != 0". 294 Value *EmitConversionToBool(Value *Src, QualType DstTy); 295 296 /// Emit a check that a conversion to or from a floating-point type does not 297 /// overflow. 298 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 299 Value *Src, QualType SrcType, QualType DstType, 300 llvm::Type *DstTy, SourceLocation Loc); 301 302 /// Emit a conversion from the specified type to the specified destination 303 /// type, both of which are LLVM scalar types. 304 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 305 SourceLocation Loc); 306 307 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 308 SourceLocation Loc, bool TreatBooleanAsSigned); 309 310 /// Emit a conversion from the specified complex type to the specified 311 /// destination type, where the destination type is an LLVM scalar type. 312 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 313 QualType SrcTy, QualType DstTy, 314 SourceLocation Loc); 315 316 /// EmitNullValue - Emit a value that corresponds to null for the given type. 317 Value *EmitNullValue(QualType Ty); 318 319 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 320 Value *EmitFloatToBoolConversion(Value *V) { 321 // Compare against 0.0 for fp scalars. 322 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 323 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 324 } 325 326 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 327 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 328 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 329 330 return Builder.CreateICmpNE(V, Zero, "tobool"); 331 } 332 333 Value *EmitIntToBoolConversion(Value *V) { 334 // Because of the type rules of C, we often end up computing a 335 // logical value, then zero extending it to int, then wanting it 336 // as a logical value again. Optimize this common case. 337 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 338 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 339 Value *Result = ZI->getOperand(0); 340 // If there aren't any more uses, zap the instruction to save space. 341 // Note that there can be more uses, for example if this 342 // is the result of an assignment. 343 if (ZI->use_empty()) 344 ZI->eraseFromParent(); 345 return Result; 346 } 347 } 348 349 return Builder.CreateIsNotNull(V, "tobool"); 350 } 351 352 //===--------------------------------------------------------------------===// 353 // Visitor Methods 354 //===--------------------------------------------------------------------===// 355 356 Value *Visit(Expr *E) { 357 ApplyDebugLocation DL(CGF, E); 358 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 359 } 360 361 Value *VisitStmt(Stmt *S) { 362 S->dump(CGF.getContext().getSourceManager()); 363 llvm_unreachable("Stmt can't have complex result type!"); 364 } 365 Value *VisitExpr(Expr *S); 366 367 Value *VisitParenExpr(ParenExpr *PE) { 368 return Visit(PE->getSubExpr()); 369 } 370 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 371 return Visit(E->getReplacement()); 372 } 373 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 374 return Visit(GE->getResultExpr()); 375 } 376 Value *VisitCoawaitExpr(CoawaitExpr *S) { 377 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 378 } 379 Value *VisitCoyieldExpr(CoyieldExpr *S) { 380 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 381 } 382 Value *VisitUnaryCoawait(const UnaryOperator *E) { 383 return Visit(E->getSubExpr()); 384 } 385 386 // Leaves. 387 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 388 return Builder.getInt(E->getValue()); 389 } 390 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 391 return Builder.getInt(E->getValue()); 392 } 393 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 394 return llvm::ConstantFP::get(VMContext, E->getValue()); 395 } 396 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 397 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 398 } 399 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 400 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 401 } 402 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 403 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 404 } 405 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 406 return EmitNullValue(E->getType()); 407 } 408 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 409 return EmitNullValue(E->getType()); 410 } 411 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 412 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 413 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 414 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 415 return Builder.CreateBitCast(V, ConvertType(E->getType())); 416 } 417 418 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 419 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 420 } 421 422 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 423 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 424 } 425 426 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 427 if (E->isGLValue()) 428 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 429 E->getExprLoc()); 430 431 // Otherwise, assume the mapping is the scalar directly. 432 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 433 } 434 435 Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant, 436 Expr *E) { 437 assert(Constant && "not a constant"); 438 if (Constant.isReference()) 439 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 440 E->getExprLoc()); 441 return Constant.getValue(); 442 } 443 444 // l-values. 445 Value *VisitDeclRefExpr(DeclRefExpr *E) { 446 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 447 return emitConstant(Constant, E); 448 return EmitLoadOfLValue(E); 449 } 450 451 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 452 return CGF.EmitObjCSelectorExpr(E); 453 } 454 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 455 return CGF.EmitObjCProtocolExpr(E); 456 } 457 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 458 return EmitLoadOfLValue(E); 459 } 460 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 461 if (E->getMethodDecl() && 462 E->getMethodDecl()->getReturnType()->isReferenceType()) 463 return EmitLoadOfLValue(E); 464 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 465 } 466 467 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 468 LValue LV = CGF.EmitObjCIsaExpr(E); 469 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 470 return V; 471 } 472 473 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 474 VersionTuple Version = E->getVersion(); 475 476 // If we're checking for a platform older than our minimum deployment 477 // target, we can fold the check away. 478 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 479 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 480 481 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 482 llvm::Value *Args[] = { 483 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 484 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 485 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 486 }; 487 488 return CGF.EmitBuiltinAvailable(Args); 489 } 490 491 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 492 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 493 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 494 Value *VisitMemberExpr(MemberExpr *E); 495 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 496 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 497 return EmitLoadOfLValue(E); 498 } 499 500 Value *VisitInitListExpr(InitListExpr *E); 501 502 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 503 assert(CGF.getArrayInitIndex() && 504 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 505 return CGF.getArrayInitIndex(); 506 } 507 508 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 509 return EmitNullValue(E->getType()); 510 } 511 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 512 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 513 return VisitCastExpr(E); 514 } 515 Value *VisitCastExpr(CastExpr *E); 516 517 Value *VisitCallExpr(const CallExpr *E) { 518 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 519 return EmitLoadOfLValue(E); 520 521 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 522 523 EmitLValueAlignmentAssumption(E, V); 524 return V; 525 } 526 527 Value *VisitStmtExpr(const StmtExpr *E); 528 529 // Unary Operators. 530 Value *VisitUnaryPostDec(const UnaryOperator *E) { 531 LValue LV = EmitLValue(E->getSubExpr()); 532 return EmitScalarPrePostIncDec(E, LV, false, false); 533 } 534 Value *VisitUnaryPostInc(const UnaryOperator *E) { 535 LValue LV = EmitLValue(E->getSubExpr()); 536 return EmitScalarPrePostIncDec(E, LV, true, false); 537 } 538 Value *VisitUnaryPreDec(const UnaryOperator *E) { 539 LValue LV = EmitLValue(E->getSubExpr()); 540 return EmitScalarPrePostIncDec(E, LV, false, true); 541 } 542 Value *VisitUnaryPreInc(const UnaryOperator *E) { 543 LValue LV = EmitLValue(E->getSubExpr()); 544 return EmitScalarPrePostIncDec(E, LV, true, true); 545 } 546 547 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 548 llvm::Value *InVal, 549 bool IsInc); 550 551 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 552 bool isInc, bool isPre); 553 554 555 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 556 if (isa<MemberPointerType>(E->getType())) // never sugared 557 return CGF.CGM.getMemberPointerConstant(E); 558 559 return EmitLValue(E->getSubExpr()).getPointer(); 560 } 561 Value *VisitUnaryDeref(const UnaryOperator *E) { 562 if (E->getType()->isVoidType()) 563 return Visit(E->getSubExpr()); // the actual value should be unused 564 return EmitLoadOfLValue(E); 565 } 566 Value *VisitUnaryPlus(const UnaryOperator *E) { 567 // This differs from gcc, though, most likely due to a bug in gcc. 568 TestAndClearIgnoreResultAssign(); 569 return Visit(E->getSubExpr()); 570 } 571 Value *VisitUnaryMinus (const UnaryOperator *E); 572 Value *VisitUnaryNot (const UnaryOperator *E); 573 Value *VisitUnaryLNot (const UnaryOperator *E); 574 Value *VisitUnaryReal (const UnaryOperator *E); 575 Value *VisitUnaryImag (const UnaryOperator *E); 576 Value *VisitUnaryExtension(const UnaryOperator *E) { 577 return Visit(E->getSubExpr()); 578 } 579 580 // C++ 581 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 582 return EmitLoadOfLValue(E); 583 } 584 585 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 586 return Visit(DAE->getExpr()); 587 } 588 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 589 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 590 return Visit(DIE->getExpr()); 591 } 592 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 593 return CGF.LoadCXXThis(); 594 } 595 596 Value *VisitExprWithCleanups(ExprWithCleanups *E); 597 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 598 return CGF.EmitCXXNewExpr(E); 599 } 600 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 601 CGF.EmitCXXDeleteExpr(E); 602 return nullptr; 603 } 604 605 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 606 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 607 } 608 609 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 610 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 611 } 612 613 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 614 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 615 } 616 617 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 618 // C++ [expr.pseudo]p1: 619 // The result shall only be used as the operand for the function call 620 // operator (), and the result of such a call has type void. The only 621 // effect is the evaluation of the postfix-expression before the dot or 622 // arrow. 623 CGF.EmitScalarExpr(E->getBase()); 624 return nullptr; 625 } 626 627 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 628 return EmitNullValue(E->getType()); 629 } 630 631 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 632 CGF.EmitCXXThrowExpr(E); 633 return nullptr; 634 } 635 636 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 637 return Builder.getInt1(E->getValue()); 638 } 639 640 // Binary Operators. 641 Value *EmitMul(const BinOpInfo &Ops) { 642 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 643 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 644 case LangOptions::SOB_Defined: 645 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 646 case LangOptions::SOB_Undefined: 647 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 648 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 649 // Fall through. 650 case LangOptions::SOB_Trapping: 651 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 652 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 653 return EmitOverflowCheckedBinOp(Ops); 654 } 655 } 656 657 if (Ops.Ty->isUnsignedIntegerType() && 658 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 659 !CanElideOverflowCheck(CGF.getContext(), Ops)) 660 return EmitOverflowCheckedBinOp(Ops); 661 662 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 663 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 664 return propagateFMFlags(V, Ops); 665 } 666 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 667 } 668 /// Create a binary op that checks for overflow. 669 /// Currently only supports +, - and *. 670 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 671 672 // Check for undefined division and modulus behaviors. 673 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 674 llvm::Value *Zero,bool isDiv); 675 // Common helper for getting how wide LHS of shift is. 676 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 677 Value *EmitDiv(const BinOpInfo &Ops); 678 Value *EmitRem(const BinOpInfo &Ops); 679 Value *EmitAdd(const BinOpInfo &Ops); 680 Value *EmitSub(const BinOpInfo &Ops); 681 Value *EmitShl(const BinOpInfo &Ops); 682 Value *EmitShr(const BinOpInfo &Ops); 683 Value *EmitAnd(const BinOpInfo &Ops) { 684 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 685 } 686 Value *EmitXor(const BinOpInfo &Ops) { 687 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 688 } 689 Value *EmitOr (const BinOpInfo &Ops) { 690 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 691 } 692 693 BinOpInfo EmitBinOps(const BinaryOperator *E); 694 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 695 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 696 Value *&Result); 697 698 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 699 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 700 701 // Binary operators and binary compound assignment operators. 702 #define HANDLEBINOP(OP) \ 703 Value *VisitBin ## OP(const BinaryOperator *E) { \ 704 return Emit ## OP(EmitBinOps(E)); \ 705 } \ 706 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 707 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 708 } 709 HANDLEBINOP(Mul) 710 HANDLEBINOP(Div) 711 HANDLEBINOP(Rem) 712 HANDLEBINOP(Add) 713 HANDLEBINOP(Sub) 714 HANDLEBINOP(Shl) 715 HANDLEBINOP(Shr) 716 HANDLEBINOP(And) 717 HANDLEBINOP(Xor) 718 HANDLEBINOP(Or) 719 #undef HANDLEBINOP 720 721 // Comparisons. 722 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 723 llvm::CmpInst::Predicate SICmpOpc, 724 llvm::CmpInst::Predicate FCmpOpc); 725 #define VISITCOMP(CODE, UI, SI, FP) \ 726 Value *VisitBin##CODE(const BinaryOperator *E) { \ 727 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 728 llvm::FCmpInst::FP); } 729 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 730 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 731 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 732 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 733 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 734 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 735 #undef VISITCOMP 736 737 Value *VisitBinAssign (const BinaryOperator *E); 738 739 Value *VisitBinLAnd (const BinaryOperator *E); 740 Value *VisitBinLOr (const BinaryOperator *E); 741 Value *VisitBinComma (const BinaryOperator *E); 742 743 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 744 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 745 746 // Other Operators. 747 Value *VisitBlockExpr(const BlockExpr *BE); 748 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 749 Value *VisitChooseExpr(ChooseExpr *CE); 750 Value *VisitVAArgExpr(VAArgExpr *VE); 751 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 752 return CGF.EmitObjCStringLiteral(E); 753 } 754 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 755 return CGF.EmitObjCBoxedExpr(E); 756 } 757 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 758 return CGF.EmitObjCArrayLiteral(E); 759 } 760 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 761 return CGF.EmitObjCDictionaryLiteral(E); 762 } 763 Value *VisitAsTypeExpr(AsTypeExpr *CE); 764 Value *VisitAtomicExpr(AtomicExpr *AE); 765 }; 766 } // end anonymous namespace. 767 768 //===----------------------------------------------------------------------===// 769 // Utilities 770 //===----------------------------------------------------------------------===// 771 772 /// EmitConversionToBool - Convert the specified expression value to a 773 /// boolean (i1) truth value. This is equivalent to "Val != 0". 774 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 775 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 776 777 if (SrcType->isRealFloatingType()) 778 return EmitFloatToBoolConversion(Src); 779 780 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 781 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 782 783 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 784 "Unknown scalar type to convert"); 785 786 if (isa<llvm::IntegerType>(Src->getType())) 787 return EmitIntToBoolConversion(Src); 788 789 assert(isa<llvm::PointerType>(Src->getType())); 790 return EmitPointerToBoolConversion(Src, SrcType); 791 } 792 793 void ScalarExprEmitter::EmitFloatConversionCheck( 794 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 795 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 796 CodeGenFunction::SanitizerScope SanScope(&CGF); 797 using llvm::APFloat; 798 using llvm::APSInt; 799 800 llvm::Type *SrcTy = Src->getType(); 801 802 llvm::Value *Check = nullptr; 803 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 804 // Integer to floating-point. This can fail for unsigned short -> __half 805 // or unsigned __int128 -> float. 806 assert(DstType->isFloatingType()); 807 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 808 809 APFloat LargestFloat = 810 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 811 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 812 813 bool IsExact; 814 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 815 &IsExact) != APFloat::opOK) 816 // The range of representable values of this floating point type includes 817 // all values of this integer type. Don't need an overflow check. 818 return; 819 820 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 821 if (SrcIsUnsigned) 822 Check = Builder.CreateICmpULE(Src, Max); 823 else { 824 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 825 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 826 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 827 Check = Builder.CreateAnd(GE, LE); 828 } 829 } else { 830 const llvm::fltSemantics &SrcSema = 831 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 832 if (isa<llvm::IntegerType>(DstTy)) { 833 // Floating-point to integer. This has undefined behavior if the source is 834 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 835 // to an integer). 836 unsigned Width = CGF.getContext().getIntWidth(DstType); 837 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 838 839 APSInt Min = APSInt::getMinValue(Width, Unsigned); 840 APFloat MinSrc(SrcSema, APFloat::uninitialized); 841 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 842 APFloat::opOverflow) 843 // Don't need an overflow check for lower bound. Just check for 844 // -Inf/NaN. 845 MinSrc = APFloat::getInf(SrcSema, true); 846 else 847 // Find the largest value which is too small to represent (before 848 // truncation toward zero). 849 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 850 851 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 852 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 853 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 854 APFloat::opOverflow) 855 // Don't need an overflow check for upper bound. Just check for 856 // +Inf/NaN. 857 MaxSrc = APFloat::getInf(SrcSema, false); 858 else 859 // Find the smallest value which is too large to represent (before 860 // truncation toward zero). 861 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 862 863 // If we're converting from __half, convert the range to float to match 864 // the type of src. 865 if (OrigSrcType->isHalfType()) { 866 const llvm::fltSemantics &Sema = 867 CGF.getContext().getFloatTypeSemantics(SrcType); 868 bool IsInexact; 869 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 870 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 871 } 872 873 llvm::Value *GE = 874 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 875 llvm::Value *LE = 876 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 877 Check = Builder.CreateAnd(GE, LE); 878 } else { 879 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 880 // 881 // Floating-point to floating-point. This has undefined behavior if the 882 // source is not in the range of representable values of the destination 883 // type. The C and C++ standards are spectacularly unclear here. We 884 // diagnose finite out-of-range conversions, but allow infinities and NaNs 885 // to convert to the corresponding value in the smaller type. 886 // 887 // C11 Annex F gives all such conversions defined behavior for IEC 60559 888 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 889 // does not. 890 891 // Converting from a lower rank to a higher rank can never have 892 // undefined behavior, since higher-rank types must have a superset 893 // of values of lower-rank types. 894 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 895 return; 896 897 assert(!OrigSrcType->isHalfType() && 898 "should not check conversion from __half, it has the lowest rank"); 899 900 const llvm::fltSemantics &DstSema = 901 CGF.getContext().getFloatTypeSemantics(DstType); 902 APFloat MinBad = APFloat::getLargest(DstSema, false); 903 APFloat MaxBad = APFloat::getInf(DstSema, false); 904 905 bool IsInexact; 906 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 907 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 908 909 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 910 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 911 llvm::Value *GE = 912 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 913 llvm::Value *LE = 914 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 915 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 916 } 917 } 918 919 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 920 CGF.EmitCheckTypeDescriptor(OrigSrcType), 921 CGF.EmitCheckTypeDescriptor(DstType)}; 922 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 923 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 924 } 925 926 /// Emit a conversion from the specified type to the specified destination type, 927 /// both of which are LLVM scalar types. 928 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 929 QualType DstType, 930 SourceLocation Loc) { 931 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 932 } 933 934 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 935 QualType DstType, 936 SourceLocation Loc, 937 bool TreatBooleanAsSigned) { 938 SrcType = CGF.getContext().getCanonicalType(SrcType); 939 DstType = CGF.getContext().getCanonicalType(DstType); 940 if (SrcType == DstType) return Src; 941 942 if (DstType->isVoidType()) return nullptr; 943 944 llvm::Value *OrigSrc = Src; 945 QualType OrigSrcType = SrcType; 946 llvm::Type *SrcTy = Src->getType(); 947 948 // Handle conversions to bool first, they are special: comparisons against 0. 949 if (DstType->isBooleanType()) 950 return EmitConversionToBool(Src, SrcType); 951 952 llvm::Type *DstTy = ConvertType(DstType); 953 954 // Cast from half through float if half isn't a native type. 955 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 956 // Cast to FP using the intrinsic if the half type itself isn't supported. 957 if (DstTy->isFloatingPointTy()) { 958 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 959 return Builder.CreateCall( 960 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 961 Src); 962 } else { 963 // Cast to other types through float, using either the intrinsic or FPExt, 964 // depending on whether the half type itself is supported 965 // (as opposed to operations on half, available with NativeHalfType). 966 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 967 Src = Builder.CreateCall( 968 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 969 CGF.CGM.FloatTy), 970 Src); 971 } else { 972 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 973 } 974 SrcType = CGF.getContext().FloatTy; 975 SrcTy = CGF.FloatTy; 976 } 977 } 978 979 // Ignore conversions like int -> uint. 980 if (SrcTy == DstTy) 981 return Src; 982 983 // Handle pointer conversions next: pointers can only be converted to/from 984 // other pointers and integers. Check for pointer types in terms of LLVM, as 985 // some native types (like Obj-C id) may map to a pointer type. 986 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 987 // The source value may be an integer, or a pointer. 988 if (isa<llvm::PointerType>(SrcTy)) 989 return Builder.CreateBitCast(Src, DstTy, "conv"); 990 991 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 992 // First, convert to the correct width so that we control the kind of 993 // extension. 994 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 995 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 996 llvm::Value* IntResult = 997 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 998 // Then, cast to pointer. 999 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1000 } 1001 1002 if (isa<llvm::PointerType>(SrcTy)) { 1003 // Must be an ptr to int cast. 1004 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1005 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1006 } 1007 1008 // A scalar can be splatted to an extended vector of the same element type 1009 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1010 // Sema should add casts to make sure that the source expression's type is 1011 // the same as the vector's element type (sans qualifiers) 1012 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1013 SrcType.getTypePtr() && 1014 "Splatted expr doesn't match with vector element type?"); 1015 1016 // Splat the element across to all elements 1017 unsigned NumElements = DstTy->getVectorNumElements(); 1018 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1019 } 1020 1021 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1022 // Allow bitcast from vector to integer/fp of the same size. 1023 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1024 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1025 if (SrcSize == DstSize) 1026 return Builder.CreateBitCast(Src, DstTy, "conv"); 1027 1028 // Conversions between vectors of different sizes are not allowed except 1029 // when vectors of half are involved. Operations on storage-only half 1030 // vectors require promoting half vector operands to float vectors and 1031 // truncating the result, which is either an int or float vector, to a 1032 // short or half vector. 1033 1034 // Source and destination are both expected to be vectors. 1035 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1036 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1037 (void)DstElementTy; 1038 1039 assert(((SrcElementTy->isIntegerTy() && 1040 DstElementTy->isIntegerTy()) || 1041 (SrcElementTy->isFloatingPointTy() && 1042 DstElementTy->isFloatingPointTy())) && 1043 "unexpected conversion between a floating-point vector and an " 1044 "integer vector"); 1045 1046 // Truncate an i32 vector to an i16 vector. 1047 if (SrcElementTy->isIntegerTy()) 1048 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1049 1050 // Truncate a float vector to a half vector. 1051 if (SrcSize > DstSize) 1052 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1053 1054 // Promote a half vector to a float vector. 1055 return Builder.CreateFPExt(Src, DstTy, "conv"); 1056 } 1057 1058 // Finally, we have the arithmetic types: real int/float. 1059 Value *Res = nullptr; 1060 llvm::Type *ResTy = DstTy; 1061 1062 // An overflowing conversion has undefined behavior if either the source type 1063 // or the destination type is a floating-point type. 1064 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1065 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1066 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1067 Loc); 1068 1069 // Cast to half through float if half isn't a native type. 1070 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1071 // Make sure we cast in a single step if from another FP type. 1072 if (SrcTy->isFloatingPointTy()) { 1073 // Use the intrinsic if the half type itself isn't supported 1074 // (as opposed to operations on half, available with NativeHalfType). 1075 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1076 return Builder.CreateCall( 1077 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1078 // If the half type is supported, just use an fptrunc. 1079 return Builder.CreateFPTrunc(Src, DstTy); 1080 } 1081 DstTy = CGF.FloatTy; 1082 } 1083 1084 if (isa<llvm::IntegerType>(SrcTy)) { 1085 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1086 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 1087 InputSigned = true; 1088 } 1089 if (isa<llvm::IntegerType>(DstTy)) 1090 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1091 else if (InputSigned) 1092 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1093 else 1094 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1095 } else if (isa<llvm::IntegerType>(DstTy)) { 1096 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1097 if (DstType->isSignedIntegerOrEnumerationType()) 1098 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1099 else 1100 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1101 } else { 1102 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1103 "Unknown real conversion"); 1104 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1105 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1106 else 1107 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1108 } 1109 1110 if (DstTy != ResTy) { 1111 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1112 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1113 Res = Builder.CreateCall( 1114 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1115 Res); 1116 } else { 1117 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1118 } 1119 } 1120 1121 return Res; 1122 } 1123 1124 /// Emit a conversion from the specified complex type to the specified 1125 /// destination type, where the destination type is an LLVM scalar type. 1126 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1127 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1128 SourceLocation Loc) { 1129 // Get the source element type. 1130 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1131 1132 // Handle conversions to bool first, they are special: comparisons against 0. 1133 if (DstTy->isBooleanType()) { 1134 // Complex != 0 -> (Real != 0) | (Imag != 0) 1135 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1136 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1137 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1138 } 1139 1140 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1141 // the imaginary part of the complex value is discarded and the value of the 1142 // real part is converted according to the conversion rules for the 1143 // corresponding real type. 1144 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1145 } 1146 1147 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1148 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1149 } 1150 1151 /// Emit a sanitization check for the given "binary" operation (which 1152 /// might actually be a unary increment which has been lowered to a binary 1153 /// operation). The check passes if all values in \p Checks (which are \c i1), 1154 /// are \c true. 1155 void ScalarExprEmitter::EmitBinOpCheck( 1156 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1157 assert(CGF.IsSanitizerScope); 1158 SanitizerHandler Check; 1159 SmallVector<llvm::Constant *, 4> StaticData; 1160 SmallVector<llvm::Value *, 2> DynamicData; 1161 1162 BinaryOperatorKind Opcode = Info.Opcode; 1163 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1164 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1165 1166 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1167 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1168 if (UO && UO->getOpcode() == UO_Minus) { 1169 Check = SanitizerHandler::NegateOverflow; 1170 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1171 DynamicData.push_back(Info.RHS); 1172 } else { 1173 if (BinaryOperator::isShiftOp(Opcode)) { 1174 // Shift LHS negative or too large, or RHS out of bounds. 1175 Check = SanitizerHandler::ShiftOutOfBounds; 1176 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1177 StaticData.push_back( 1178 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1179 StaticData.push_back( 1180 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1181 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1182 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1183 Check = SanitizerHandler::DivremOverflow; 1184 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1185 } else { 1186 // Arithmetic overflow (+, -, *). 1187 switch (Opcode) { 1188 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1189 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1190 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1191 default: llvm_unreachable("unexpected opcode for bin op check"); 1192 } 1193 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1194 } 1195 DynamicData.push_back(Info.LHS); 1196 DynamicData.push_back(Info.RHS); 1197 } 1198 1199 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1200 } 1201 1202 //===----------------------------------------------------------------------===// 1203 // Visitor Methods 1204 //===----------------------------------------------------------------------===// 1205 1206 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1207 CGF.ErrorUnsupported(E, "scalar expression"); 1208 if (E->getType()->isVoidType()) 1209 return nullptr; 1210 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1211 } 1212 1213 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1214 // Vector Mask Case 1215 if (E->getNumSubExprs() == 2) { 1216 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1217 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1218 Value *Mask; 1219 1220 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1221 unsigned LHSElts = LTy->getNumElements(); 1222 1223 Mask = RHS; 1224 1225 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1226 1227 // Mask off the high bits of each shuffle index. 1228 Value *MaskBits = 1229 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1230 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1231 1232 // newv = undef 1233 // mask = mask & maskbits 1234 // for each elt 1235 // n = extract mask i 1236 // x = extract val n 1237 // newv = insert newv, x, i 1238 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1239 MTy->getNumElements()); 1240 Value* NewV = llvm::UndefValue::get(RTy); 1241 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1242 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1243 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1244 1245 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1246 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1247 } 1248 return NewV; 1249 } 1250 1251 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1252 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1253 1254 SmallVector<llvm::Constant*, 32> indices; 1255 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1256 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1257 // Check for -1 and output it as undef in the IR. 1258 if (Idx.isSigned() && Idx.isAllOnesValue()) 1259 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1260 else 1261 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1262 } 1263 1264 Value *SV = llvm::ConstantVector::get(indices); 1265 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1266 } 1267 1268 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1269 QualType SrcType = E->getSrcExpr()->getType(), 1270 DstType = E->getType(); 1271 1272 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1273 1274 SrcType = CGF.getContext().getCanonicalType(SrcType); 1275 DstType = CGF.getContext().getCanonicalType(DstType); 1276 if (SrcType == DstType) return Src; 1277 1278 assert(SrcType->isVectorType() && 1279 "ConvertVector source type must be a vector"); 1280 assert(DstType->isVectorType() && 1281 "ConvertVector destination type must be a vector"); 1282 1283 llvm::Type *SrcTy = Src->getType(); 1284 llvm::Type *DstTy = ConvertType(DstType); 1285 1286 // Ignore conversions like int -> uint. 1287 if (SrcTy == DstTy) 1288 return Src; 1289 1290 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1291 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1292 1293 assert(SrcTy->isVectorTy() && 1294 "ConvertVector source IR type must be a vector"); 1295 assert(DstTy->isVectorTy() && 1296 "ConvertVector destination IR type must be a vector"); 1297 1298 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1299 *DstEltTy = DstTy->getVectorElementType(); 1300 1301 if (DstEltType->isBooleanType()) { 1302 assert((SrcEltTy->isFloatingPointTy() || 1303 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1304 1305 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1306 if (SrcEltTy->isFloatingPointTy()) { 1307 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1308 } else { 1309 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1310 } 1311 } 1312 1313 // We have the arithmetic types: real int/float. 1314 Value *Res = nullptr; 1315 1316 if (isa<llvm::IntegerType>(SrcEltTy)) { 1317 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1318 if (isa<llvm::IntegerType>(DstEltTy)) 1319 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1320 else if (InputSigned) 1321 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1322 else 1323 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1324 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1325 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1326 if (DstEltType->isSignedIntegerOrEnumerationType()) 1327 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1328 else 1329 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1330 } else { 1331 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1332 "Unknown real conversion"); 1333 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1334 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1335 else 1336 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1337 } 1338 1339 return Res; 1340 } 1341 1342 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1343 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1344 CGF.EmitIgnoredExpr(E->getBase()); 1345 return emitConstant(Constant, E); 1346 } else { 1347 llvm::APSInt Value; 1348 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1349 CGF.EmitIgnoredExpr(E->getBase()); 1350 return Builder.getInt(Value); 1351 } 1352 } 1353 1354 return EmitLoadOfLValue(E); 1355 } 1356 1357 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1358 TestAndClearIgnoreResultAssign(); 1359 1360 // Emit subscript expressions in rvalue context's. For most cases, this just 1361 // loads the lvalue formed by the subscript expr. However, we have to be 1362 // careful, because the base of a vector subscript is occasionally an rvalue, 1363 // so we can't get it as an lvalue. 1364 if (!E->getBase()->getType()->isVectorType()) 1365 return EmitLoadOfLValue(E); 1366 1367 // Handle the vector case. The base must be a vector, the index must be an 1368 // integer value. 1369 Value *Base = Visit(E->getBase()); 1370 Value *Idx = Visit(E->getIdx()); 1371 QualType IdxTy = E->getIdx()->getType(); 1372 1373 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1374 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1375 1376 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1377 } 1378 1379 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1380 unsigned Off, llvm::Type *I32Ty) { 1381 int MV = SVI->getMaskValue(Idx); 1382 if (MV == -1) 1383 return llvm::UndefValue::get(I32Ty); 1384 return llvm::ConstantInt::get(I32Ty, Off+MV); 1385 } 1386 1387 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1388 if (C->getBitWidth() != 32) { 1389 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1390 C->getZExtValue()) && 1391 "Index operand too large for shufflevector mask!"); 1392 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1393 } 1394 return C; 1395 } 1396 1397 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1398 bool Ignore = TestAndClearIgnoreResultAssign(); 1399 (void)Ignore; 1400 assert (Ignore == false && "init list ignored"); 1401 unsigned NumInitElements = E->getNumInits(); 1402 1403 if (E->hadArrayRangeDesignator()) 1404 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1405 1406 llvm::VectorType *VType = 1407 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1408 1409 if (!VType) { 1410 if (NumInitElements == 0) { 1411 // C++11 value-initialization for the scalar. 1412 return EmitNullValue(E->getType()); 1413 } 1414 // We have a scalar in braces. Just use the first element. 1415 return Visit(E->getInit(0)); 1416 } 1417 1418 unsigned ResElts = VType->getNumElements(); 1419 1420 // Loop over initializers collecting the Value for each, and remembering 1421 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1422 // us to fold the shuffle for the swizzle into the shuffle for the vector 1423 // initializer, since LLVM optimizers generally do not want to touch 1424 // shuffles. 1425 unsigned CurIdx = 0; 1426 bool VIsUndefShuffle = false; 1427 llvm::Value *V = llvm::UndefValue::get(VType); 1428 for (unsigned i = 0; i != NumInitElements; ++i) { 1429 Expr *IE = E->getInit(i); 1430 Value *Init = Visit(IE); 1431 SmallVector<llvm::Constant*, 16> Args; 1432 1433 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1434 1435 // Handle scalar elements. If the scalar initializer is actually one 1436 // element of a different vector of the same width, use shuffle instead of 1437 // extract+insert. 1438 if (!VVT) { 1439 if (isa<ExtVectorElementExpr>(IE)) { 1440 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1441 1442 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1443 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1444 Value *LHS = nullptr, *RHS = nullptr; 1445 if (CurIdx == 0) { 1446 // insert into undef -> shuffle (src, undef) 1447 // shufflemask must use an i32 1448 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1449 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1450 1451 LHS = EI->getVectorOperand(); 1452 RHS = V; 1453 VIsUndefShuffle = true; 1454 } else if (VIsUndefShuffle) { 1455 // insert into undefshuffle && size match -> shuffle (v, src) 1456 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1457 for (unsigned j = 0; j != CurIdx; ++j) 1458 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1459 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1460 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1461 1462 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1463 RHS = EI->getVectorOperand(); 1464 VIsUndefShuffle = false; 1465 } 1466 if (!Args.empty()) { 1467 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1468 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1469 ++CurIdx; 1470 continue; 1471 } 1472 } 1473 } 1474 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1475 "vecinit"); 1476 VIsUndefShuffle = false; 1477 ++CurIdx; 1478 continue; 1479 } 1480 1481 unsigned InitElts = VVT->getNumElements(); 1482 1483 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1484 // input is the same width as the vector being constructed, generate an 1485 // optimized shuffle of the swizzle input into the result. 1486 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1487 if (isa<ExtVectorElementExpr>(IE)) { 1488 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1489 Value *SVOp = SVI->getOperand(0); 1490 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1491 1492 if (OpTy->getNumElements() == ResElts) { 1493 for (unsigned j = 0; j != CurIdx; ++j) { 1494 // If the current vector initializer is a shuffle with undef, merge 1495 // this shuffle directly into it. 1496 if (VIsUndefShuffle) { 1497 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1498 CGF.Int32Ty)); 1499 } else { 1500 Args.push_back(Builder.getInt32(j)); 1501 } 1502 } 1503 for (unsigned j = 0, je = InitElts; j != je; ++j) 1504 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1505 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1506 1507 if (VIsUndefShuffle) 1508 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1509 1510 Init = SVOp; 1511 } 1512 } 1513 1514 // Extend init to result vector length, and then shuffle its contribution 1515 // to the vector initializer into V. 1516 if (Args.empty()) { 1517 for (unsigned j = 0; j != InitElts; ++j) 1518 Args.push_back(Builder.getInt32(j)); 1519 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1520 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1521 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1522 Mask, "vext"); 1523 1524 Args.clear(); 1525 for (unsigned j = 0; j != CurIdx; ++j) 1526 Args.push_back(Builder.getInt32(j)); 1527 for (unsigned j = 0; j != InitElts; ++j) 1528 Args.push_back(Builder.getInt32(j+Offset)); 1529 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1530 } 1531 1532 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1533 // merging subsequent shuffles into this one. 1534 if (CurIdx == 0) 1535 std::swap(V, Init); 1536 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1537 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1538 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1539 CurIdx += InitElts; 1540 } 1541 1542 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1543 // Emit remaining default initializers. 1544 llvm::Type *EltTy = VType->getElementType(); 1545 1546 // Emit remaining default initializers 1547 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1548 Value *Idx = Builder.getInt32(CurIdx); 1549 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1550 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1551 } 1552 return V; 1553 } 1554 1555 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1556 const Expr *E = CE->getSubExpr(); 1557 1558 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1559 return false; 1560 1561 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1562 // We always assume that 'this' is never null. 1563 return false; 1564 } 1565 1566 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1567 // And that glvalue casts are never null. 1568 if (ICE->getValueKind() != VK_RValue) 1569 return false; 1570 } 1571 1572 return true; 1573 } 1574 1575 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1576 // have to handle a more broad range of conversions than explicit casts, as they 1577 // handle things like function to ptr-to-function decay etc. 1578 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1579 Expr *E = CE->getSubExpr(); 1580 QualType DestTy = CE->getType(); 1581 CastKind Kind = CE->getCastKind(); 1582 1583 // These cases are generally not written to ignore the result of 1584 // evaluating their sub-expressions, so we clear this now. 1585 bool Ignored = TestAndClearIgnoreResultAssign(); 1586 1587 // Since almost all cast kinds apply to scalars, this switch doesn't have 1588 // a default case, so the compiler will warn on a missing case. The cases 1589 // are in the same order as in the CastKind enum. 1590 switch (Kind) { 1591 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1592 case CK_BuiltinFnToFnPtr: 1593 llvm_unreachable("builtin functions are handled elsewhere"); 1594 1595 case CK_LValueBitCast: 1596 case CK_ObjCObjectLValueCast: { 1597 Address Addr = EmitLValue(E).getAddress(); 1598 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1599 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1600 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1601 } 1602 1603 case CK_CPointerToObjCPointerCast: 1604 case CK_BlockPointerToObjCPointerCast: 1605 case CK_AnyPointerToBlockPointerCast: 1606 case CK_BitCast: { 1607 Value *Src = Visit(const_cast<Expr*>(E)); 1608 llvm::Type *SrcTy = Src->getType(); 1609 llvm::Type *DstTy = ConvertType(DestTy); 1610 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1611 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1612 llvm_unreachable("wrong cast for pointers in different address spaces" 1613 "(must be an address space cast)!"); 1614 } 1615 1616 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1617 if (auto PT = DestTy->getAs<PointerType>()) 1618 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1619 /*MayBeNull=*/true, 1620 CodeGenFunction::CFITCK_UnrelatedCast, 1621 CE->getLocStart()); 1622 } 1623 1624 return Builder.CreateBitCast(Src, DstTy); 1625 } 1626 case CK_AddressSpaceConversion: { 1627 Expr::EvalResult Result; 1628 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 1629 Result.Val.isNullPointer()) { 1630 // If E has side effect, it is emitted even if its final result is a 1631 // null pointer. In that case, a DCE pass should be able to 1632 // eliminate the useless instructions emitted during translating E. 1633 if (Result.HasSideEffects) 1634 Visit(E); 1635 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 1636 ConvertType(DestTy)), DestTy); 1637 } 1638 // Since target may map different address spaces in AST to the same address 1639 // space, an address space conversion may end up as a bitcast. 1640 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 1641 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 1642 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 1643 } 1644 case CK_AtomicToNonAtomic: 1645 case CK_NonAtomicToAtomic: 1646 case CK_NoOp: 1647 case CK_UserDefinedConversion: 1648 return Visit(const_cast<Expr*>(E)); 1649 1650 case CK_BaseToDerived: { 1651 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1652 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1653 1654 Address Base = CGF.EmitPointerWithAlignment(E); 1655 Address Derived = 1656 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1657 CE->path_begin(), CE->path_end(), 1658 CGF.ShouldNullCheckClassCastValue(CE)); 1659 1660 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1661 // performed and the object is not of the derived type. 1662 if (CGF.sanitizePerformTypeCheck()) 1663 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1664 Derived.getPointer(), DestTy->getPointeeType()); 1665 1666 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1667 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1668 Derived.getPointer(), 1669 /*MayBeNull=*/true, 1670 CodeGenFunction::CFITCK_DerivedCast, 1671 CE->getLocStart()); 1672 1673 return Derived.getPointer(); 1674 } 1675 case CK_UncheckedDerivedToBase: 1676 case CK_DerivedToBase: { 1677 // The EmitPointerWithAlignment path does this fine; just discard 1678 // the alignment. 1679 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1680 } 1681 1682 case CK_Dynamic: { 1683 Address V = CGF.EmitPointerWithAlignment(E); 1684 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1685 return CGF.EmitDynamicCast(V, DCE); 1686 } 1687 1688 case CK_ArrayToPointerDecay: 1689 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1690 case CK_FunctionToPointerDecay: 1691 return EmitLValue(E).getPointer(); 1692 1693 case CK_NullToPointer: 1694 if (MustVisitNullValue(E)) 1695 (void) Visit(E); 1696 1697 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 1698 DestTy); 1699 1700 case CK_NullToMemberPointer: { 1701 if (MustVisitNullValue(E)) 1702 (void) Visit(E); 1703 1704 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1705 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1706 } 1707 1708 case CK_ReinterpretMemberPointer: 1709 case CK_BaseToDerivedMemberPointer: 1710 case CK_DerivedToBaseMemberPointer: { 1711 Value *Src = Visit(E); 1712 1713 // Note that the AST doesn't distinguish between checked and 1714 // unchecked member pointer conversions, so we always have to 1715 // implement checked conversions here. This is inefficient when 1716 // actual control flow may be required in order to perform the 1717 // check, which it is for data member pointers (but not member 1718 // function pointers on Itanium and ARM). 1719 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1720 } 1721 1722 case CK_ARCProduceObject: 1723 return CGF.EmitARCRetainScalarExpr(E); 1724 case CK_ARCConsumeObject: 1725 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1726 case CK_ARCReclaimReturnedObject: 1727 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1728 case CK_ARCExtendBlockObject: 1729 return CGF.EmitARCExtendBlockObject(E); 1730 1731 case CK_CopyAndAutoreleaseBlockObject: 1732 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1733 1734 case CK_FloatingRealToComplex: 1735 case CK_FloatingComplexCast: 1736 case CK_IntegralRealToComplex: 1737 case CK_IntegralComplexCast: 1738 case CK_IntegralComplexToFloatingComplex: 1739 case CK_FloatingComplexToIntegralComplex: 1740 case CK_ConstructorConversion: 1741 case CK_ToUnion: 1742 llvm_unreachable("scalar cast to non-scalar value"); 1743 1744 case CK_LValueToRValue: 1745 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1746 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1747 return Visit(const_cast<Expr*>(E)); 1748 1749 case CK_IntegralToPointer: { 1750 Value *Src = Visit(const_cast<Expr*>(E)); 1751 1752 // First, convert to the correct width so that we control the kind of 1753 // extension. 1754 auto DestLLVMTy = ConvertType(DestTy); 1755 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 1756 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1757 llvm::Value* IntResult = 1758 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1759 1760 return Builder.CreateIntToPtr(IntResult, DestLLVMTy); 1761 } 1762 case CK_PointerToIntegral: 1763 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1764 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1765 1766 case CK_ToVoid: { 1767 CGF.EmitIgnoredExpr(E); 1768 return nullptr; 1769 } 1770 case CK_VectorSplat: { 1771 llvm::Type *DstTy = ConvertType(DestTy); 1772 Value *Elt = Visit(const_cast<Expr*>(E)); 1773 // Splat the element across to all elements 1774 unsigned NumElements = DstTy->getVectorNumElements(); 1775 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1776 } 1777 1778 case CK_IntegralCast: 1779 case CK_IntegralToFloating: 1780 case CK_FloatingToIntegral: 1781 case CK_FloatingCast: 1782 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1783 CE->getExprLoc()); 1784 case CK_BooleanToSignedIntegral: 1785 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1786 CE->getExprLoc(), 1787 /*TreatBooleanAsSigned=*/true); 1788 case CK_IntegralToBoolean: 1789 return EmitIntToBoolConversion(Visit(E)); 1790 case CK_PointerToBoolean: 1791 return EmitPointerToBoolConversion(Visit(E), E->getType()); 1792 case CK_FloatingToBoolean: 1793 return EmitFloatToBoolConversion(Visit(E)); 1794 case CK_MemberPointerToBoolean: { 1795 llvm::Value *MemPtr = Visit(E); 1796 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1797 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1798 } 1799 1800 case CK_FloatingComplexToReal: 1801 case CK_IntegralComplexToReal: 1802 return CGF.EmitComplexExpr(E, false, true).first; 1803 1804 case CK_FloatingComplexToBoolean: 1805 case CK_IntegralComplexToBoolean: { 1806 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1807 1808 // TODO: kill this function off, inline appropriate case here 1809 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1810 CE->getExprLoc()); 1811 } 1812 1813 case CK_ZeroToOCLEvent: { 1814 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1815 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1816 } 1817 1818 case CK_ZeroToOCLQueue: { 1819 assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type"); 1820 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1821 } 1822 1823 case CK_IntToOCLSampler: 1824 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1825 1826 } // end of switch 1827 1828 llvm_unreachable("unknown scalar cast"); 1829 } 1830 1831 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1832 CodeGenFunction::StmtExprEvaluation eval(CGF); 1833 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1834 !E->getType()->isVoidType()); 1835 if (!RetAlloca.isValid()) 1836 return nullptr; 1837 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1838 E->getExprLoc()); 1839 } 1840 1841 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1842 CGF.enterFullExpression(E); 1843 CodeGenFunction::RunCleanupsScope Scope(CGF); 1844 Value *V = Visit(E->getSubExpr()); 1845 // Defend against dominance problems caused by jumps out of expression 1846 // evaluation through the shared cleanup block. 1847 Scope.ForceCleanup({&V}); 1848 return V; 1849 } 1850 1851 //===----------------------------------------------------------------------===// 1852 // Unary Operators 1853 //===----------------------------------------------------------------------===// 1854 1855 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1856 llvm::Value *InVal, bool IsInc) { 1857 BinOpInfo BinOp; 1858 BinOp.LHS = InVal; 1859 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1860 BinOp.Ty = E->getType(); 1861 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1862 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 1863 BinOp.E = E; 1864 return BinOp; 1865 } 1866 1867 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1868 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1869 llvm::Value *Amount = 1870 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1871 StringRef Name = IsInc ? "inc" : "dec"; 1872 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1873 case LangOptions::SOB_Defined: 1874 return Builder.CreateAdd(InVal, Amount, Name); 1875 case LangOptions::SOB_Undefined: 1876 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1877 return Builder.CreateNSWAdd(InVal, Amount, Name); 1878 // Fall through. 1879 case LangOptions::SOB_Trapping: 1880 if (!E->canOverflow()) 1881 return Builder.CreateNSWAdd(InVal, Amount, Name); 1882 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1883 } 1884 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1885 } 1886 1887 llvm::Value * 1888 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1889 bool isInc, bool isPre) { 1890 1891 QualType type = E->getSubExpr()->getType(); 1892 llvm::PHINode *atomicPHI = nullptr; 1893 llvm::Value *value; 1894 llvm::Value *input; 1895 1896 int amount = (isInc ? 1 : -1); 1897 bool isSubtraction = !isInc; 1898 1899 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1900 type = atomicTy->getValueType(); 1901 if (isInc && type->isBooleanType()) { 1902 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1903 if (isPre) { 1904 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1905 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1906 return Builder.getTrue(); 1907 } 1908 // For atomic bool increment, we just store true and return it for 1909 // preincrement, do an atomic swap with true for postincrement 1910 return Builder.CreateAtomicRMW( 1911 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1912 llvm::AtomicOrdering::SequentiallyConsistent); 1913 } 1914 // Special case for atomic increment / decrement on integers, emit 1915 // atomicrmw instructions. We skip this if we want to be doing overflow 1916 // checking, and fall into the slow path with the atomic cmpxchg loop. 1917 if (!type->isBooleanType() && type->isIntegerType() && 1918 !(type->isUnsignedIntegerType() && 1919 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1920 CGF.getLangOpts().getSignedOverflowBehavior() != 1921 LangOptions::SOB_Trapping) { 1922 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1923 llvm::AtomicRMWInst::Sub; 1924 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1925 llvm::Instruction::Sub; 1926 llvm::Value *amt = CGF.EmitToMemory( 1927 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1928 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1929 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1930 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1931 } 1932 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1933 input = value; 1934 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1935 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1936 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1937 value = CGF.EmitToMemory(value, type); 1938 Builder.CreateBr(opBB); 1939 Builder.SetInsertPoint(opBB); 1940 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1941 atomicPHI->addIncoming(value, startBB); 1942 value = atomicPHI; 1943 } else { 1944 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1945 input = value; 1946 } 1947 1948 // Special case of integer increment that we have to check first: bool++. 1949 // Due to promotion rules, we get: 1950 // bool++ -> bool = bool + 1 1951 // -> bool = (int)bool + 1 1952 // -> bool = ((int)bool + 1 != 0) 1953 // An interesting aspect of this is that increment is always true. 1954 // Decrement does not have this property. 1955 if (isInc && type->isBooleanType()) { 1956 value = Builder.getTrue(); 1957 1958 // Most common case by far: integer increment. 1959 } else if (type->isIntegerType()) { 1960 // Note that signed integer inc/dec with width less than int can't 1961 // overflow because of promotion rules; we're just eliding a few steps here. 1962 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 1963 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1964 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 1965 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1966 value = 1967 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1968 } else { 1969 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1970 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1971 } 1972 1973 // Next most common: pointer increment. 1974 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1975 QualType type = ptr->getPointeeType(); 1976 1977 // VLA types don't have constant size. 1978 if (const VariableArrayType *vla 1979 = CGF.getContext().getAsVariableArrayType(type)) { 1980 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 1981 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1982 if (CGF.getLangOpts().isSignedOverflowDefined()) 1983 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1984 else 1985 value = CGF.EmitCheckedInBoundsGEP( 1986 value, numElts, /*SignedIndices=*/false, isSubtraction, 1987 E->getExprLoc(), "vla.inc"); 1988 1989 // Arithmetic on function pointers (!) is just +-1. 1990 } else if (type->isFunctionType()) { 1991 llvm::Value *amt = Builder.getInt32(amount); 1992 1993 value = CGF.EmitCastToVoidPtr(value); 1994 if (CGF.getLangOpts().isSignedOverflowDefined()) 1995 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1996 else 1997 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 1998 isSubtraction, E->getExprLoc(), 1999 "incdec.funcptr"); 2000 value = Builder.CreateBitCast(value, input->getType()); 2001 2002 // For everything else, we can just do a simple increment. 2003 } else { 2004 llvm::Value *amt = Builder.getInt32(amount); 2005 if (CGF.getLangOpts().isSignedOverflowDefined()) 2006 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2007 else 2008 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2009 isSubtraction, E->getExprLoc(), 2010 "incdec.ptr"); 2011 } 2012 2013 // Vector increment/decrement. 2014 } else if (type->isVectorType()) { 2015 if (type->hasIntegerRepresentation()) { 2016 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2017 2018 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2019 } else { 2020 value = Builder.CreateFAdd( 2021 value, 2022 llvm::ConstantFP::get(value->getType(), amount), 2023 isInc ? "inc" : "dec"); 2024 } 2025 2026 // Floating point. 2027 } else if (type->isRealFloatingType()) { 2028 // Add the inc/dec to the real part. 2029 llvm::Value *amt; 2030 2031 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2032 // Another special case: half FP increment should be done via float 2033 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2034 value = Builder.CreateCall( 2035 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2036 CGF.CGM.FloatTy), 2037 input, "incdec.conv"); 2038 } else { 2039 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2040 } 2041 } 2042 2043 if (value->getType()->isFloatTy()) 2044 amt = llvm::ConstantFP::get(VMContext, 2045 llvm::APFloat(static_cast<float>(amount))); 2046 else if (value->getType()->isDoubleTy()) 2047 amt = llvm::ConstantFP::get(VMContext, 2048 llvm::APFloat(static_cast<double>(amount))); 2049 else { 2050 // Remaining types are Half, LongDouble or __float128. Convert from float. 2051 llvm::APFloat F(static_cast<float>(amount)); 2052 bool ignored; 2053 const llvm::fltSemantics *FS; 2054 // Don't use getFloatTypeSemantics because Half isn't 2055 // necessarily represented using the "half" LLVM type. 2056 if (value->getType()->isFP128Ty()) 2057 FS = &CGF.getTarget().getFloat128Format(); 2058 else if (value->getType()->isHalfTy()) 2059 FS = &CGF.getTarget().getHalfFormat(); 2060 else 2061 FS = &CGF.getTarget().getLongDoubleFormat(); 2062 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2063 amt = llvm::ConstantFP::get(VMContext, F); 2064 } 2065 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2066 2067 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2068 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2069 value = Builder.CreateCall( 2070 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2071 CGF.CGM.FloatTy), 2072 value, "incdec.conv"); 2073 } else { 2074 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2075 } 2076 } 2077 2078 // Objective-C pointer types. 2079 } else { 2080 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2081 value = CGF.EmitCastToVoidPtr(value); 2082 2083 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2084 if (!isInc) size = -size; 2085 llvm::Value *sizeValue = 2086 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2087 2088 if (CGF.getLangOpts().isSignedOverflowDefined()) 2089 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2090 else 2091 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2092 /*SignedIndices=*/false, isSubtraction, 2093 E->getExprLoc(), "incdec.objptr"); 2094 value = Builder.CreateBitCast(value, input->getType()); 2095 } 2096 2097 if (atomicPHI) { 2098 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2099 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2100 auto Pair = CGF.EmitAtomicCompareExchange( 2101 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2102 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2103 llvm::Value *success = Pair.second; 2104 atomicPHI->addIncoming(old, opBB); 2105 Builder.CreateCondBr(success, contBB, opBB); 2106 Builder.SetInsertPoint(contBB); 2107 return isPre ? value : input; 2108 } 2109 2110 // Store the updated result through the lvalue. 2111 if (LV.isBitField()) 2112 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2113 else 2114 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2115 2116 // If this is a postinc, return the value read from memory, otherwise use the 2117 // updated value. 2118 return isPre ? value : input; 2119 } 2120 2121 2122 2123 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2124 TestAndClearIgnoreResultAssign(); 2125 // Emit unary minus with EmitSub so we handle overflow cases etc. 2126 BinOpInfo BinOp; 2127 BinOp.RHS = Visit(E->getSubExpr()); 2128 2129 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2130 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2131 else 2132 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2133 BinOp.Ty = E->getType(); 2134 BinOp.Opcode = BO_Sub; 2135 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2136 BinOp.E = E; 2137 return EmitSub(BinOp); 2138 } 2139 2140 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2141 TestAndClearIgnoreResultAssign(); 2142 Value *Op = Visit(E->getSubExpr()); 2143 return Builder.CreateNot(Op, "neg"); 2144 } 2145 2146 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2147 // Perform vector logical not on comparison with zero vector. 2148 if (E->getType()->isExtVectorType()) { 2149 Value *Oper = Visit(E->getSubExpr()); 2150 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2151 Value *Result; 2152 if (Oper->getType()->isFPOrFPVectorTy()) 2153 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2154 else 2155 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2156 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2157 } 2158 2159 // Compare operand to zero. 2160 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2161 2162 // Invert value. 2163 // TODO: Could dynamically modify easy computations here. For example, if 2164 // the operand is an icmp ne, turn into icmp eq. 2165 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2166 2167 // ZExt result to the expr type. 2168 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2169 } 2170 2171 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2172 // Try folding the offsetof to a constant. 2173 llvm::APSInt Value; 2174 if (E->EvaluateAsInt(Value, CGF.getContext())) 2175 return Builder.getInt(Value); 2176 2177 // Loop over the components of the offsetof to compute the value. 2178 unsigned n = E->getNumComponents(); 2179 llvm::Type* ResultType = ConvertType(E->getType()); 2180 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2181 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2182 for (unsigned i = 0; i != n; ++i) { 2183 OffsetOfNode ON = E->getComponent(i); 2184 llvm::Value *Offset = nullptr; 2185 switch (ON.getKind()) { 2186 case OffsetOfNode::Array: { 2187 // Compute the index 2188 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2189 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2190 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2191 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2192 2193 // Save the element type 2194 CurrentType = 2195 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2196 2197 // Compute the element size 2198 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2199 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2200 2201 // Multiply out to compute the result 2202 Offset = Builder.CreateMul(Idx, ElemSize); 2203 break; 2204 } 2205 2206 case OffsetOfNode::Field: { 2207 FieldDecl *MemberDecl = ON.getField(); 2208 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2209 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2210 2211 // Compute the index of the field in its parent. 2212 unsigned i = 0; 2213 // FIXME: It would be nice if we didn't have to loop here! 2214 for (RecordDecl::field_iterator Field = RD->field_begin(), 2215 FieldEnd = RD->field_end(); 2216 Field != FieldEnd; ++Field, ++i) { 2217 if (*Field == MemberDecl) 2218 break; 2219 } 2220 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2221 2222 // Compute the offset to the field 2223 int64_t OffsetInt = RL.getFieldOffset(i) / 2224 CGF.getContext().getCharWidth(); 2225 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2226 2227 // Save the element type. 2228 CurrentType = MemberDecl->getType(); 2229 break; 2230 } 2231 2232 case OffsetOfNode::Identifier: 2233 llvm_unreachable("dependent __builtin_offsetof"); 2234 2235 case OffsetOfNode::Base: { 2236 if (ON.getBase()->isVirtual()) { 2237 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2238 continue; 2239 } 2240 2241 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2242 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2243 2244 // Save the element type. 2245 CurrentType = ON.getBase()->getType(); 2246 2247 // Compute the offset to the base. 2248 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2249 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2250 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2251 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2252 break; 2253 } 2254 } 2255 Result = Builder.CreateAdd(Result, Offset); 2256 } 2257 return Result; 2258 } 2259 2260 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2261 /// argument of the sizeof expression as an integer. 2262 Value * 2263 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2264 const UnaryExprOrTypeTraitExpr *E) { 2265 QualType TypeToSize = E->getTypeOfArgument(); 2266 if (E->getKind() == UETT_SizeOf) { 2267 if (const VariableArrayType *VAT = 2268 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2269 if (E->isArgumentType()) { 2270 // sizeof(type) - make sure to emit the VLA size. 2271 CGF.EmitVariablyModifiedType(TypeToSize); 2272 } else { 2273 // C99 6.5.3.4p2: If the argument is an expression of type 2274 // VLA, it is evaluated. 2275 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2276 } 2277 2278 auto VlaSize = CGF.getVLASize(VAT); 2279 llvm::Value *size = VlaSize.NumElts; 2280 2281 // Scale the number of non-VLA elements by the non-VLA element size. 2282 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2283 if (!eltSize.isOne()) 2284 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2285 2286 return size; 2287 } 2288 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2289 auto Alignment = 2290 CGF.getContext() 2291 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2292 E->getTypeOfArgument()->getPointeeType())) 2293 .getQuantity(); 2294 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2295 } 2296 2297 // If this isn't sizeof(vla), the result must be constant; use the constant 2298 // folding logic so we don't have to duplicate it here. 2299 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2300 } 2301 2302 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2303 Expr *Op = E->getSubExpr(); 2304 if (Op->getType()->isAnyComplexType()) { 2305 // If it's an l-value, load through the appropriate subobject l-value. 2306 // Note that we have to ask E because Op might be an l-value that 2307 // this won't work for, e.g. an Obj-C property. 2308 if (E->isGLValue()) 2309 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2310 E->getExprLoc()).getScalarVal(); 2311 2312 // Otherwise, calculate and project. 2313 return CGF.EmitComplexExpr(Op, false, true).first; 2314 } 2315 2316 return Visit(Op); 2317 } 2318 2319 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2320 Expr *Op = E->getSubExpr(); 2321 if (Op->getType()->isAnyComplexType()) { 2322 // If it's an l-value, load through the appropriate subobject l-value. 2323 // Note that we have to ask E because Op might be an l-value that 2324 // this won't work for, e.g. an Obj-C property. 2325 if (Op->isGLValue()) 2326 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2327 E->getExprLoc()).getScalarVal(); 2328 2329 // Otherwise, calculate and project. 2330 return CGF.EmitComplexExpr(Op, true, false).second; 2331 } 2332 2333 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2334 // effects are evaluated, but not the actual value. 2335 if (Op->isGLValue()) 2336 CGF.EmitLValue(Op); 2337 else 2338 CGF.EmitScalarExpr(Op, true); 2339 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2340 } 2341 2342 //===----------------------------------------------------------------------===// 2343 // Binary Operators 2344 //===----------------------------------------------------------------------===// 2345 2346 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2347 TestAndClearIgnoreResultAssign(); 2348 BinOpInfo Result; 2349 Result.LHS = Visit(E->getLHS()); 2350 Result.RHS = Visit(E->getRHS()); 2351 Result.Ty = E->getType(); 2352 Result.Opcode = E->getOpcode(); 2353 Result.FPFeatures = E->getFPFeatures(); 2354 Result.E = E; 2355 return Result; 2356 } 2357 2358 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2359 const CompoundAssignOperator *E, 2360 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2361 Value *&Result) { 2362 QualType LHSTy = E->getLHS()->getType(); 2363 BinOpInfo OpInfo; 2364 2365 if (E->getComputationResultType()->isAnyComplexType()) 2366 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2367 2368 // Emit the RHS first. __block variables need to have the rhs evaluated 2369 // first, plus this should improve codegen a little. 2370 OpInfo.RHS = Visit(E->getRHS()); 2371 OpInfo.Ty = E->getComputationResultType(); 2372 OpInfo.Opcode = E->getOpcode(); 2373 OpInfo.FPFeatures = E->getFPFeatures(); 2374 OpInfo.E = E; 2375 // Load/convert the LHS. 2376 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2377 2378 llvm::PHINode *atomicPHI = nullptr; 2379 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2380 QualType type = atomicTy->getValueType(); 2381 if (!type->isBooleanType() && type->isIntegerType() && 2382 !(type->isUnsignedIntegerType() && 2383 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2384 CGF.getLangOpts().getSignedOverflowBehavior() != 2385 LangOptions::SOB_Trapping) { 2386 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2387 switch (OpInfo.Opcode) { 2388 // We don't have atomicrmw operands for *, %, /, <<, >> 2389 case BO_MulAssign: case BO_DivAssign: 2390 case BO_RemAssign: 2391 case BO_ShlAssign: 2392 case BO_ShrAssign: 2393 break; 2394 case BO_AddAssign: 2395 aop = llvm::AtomicRMWInst::Add; 2396 break; 2397 case BO_SubAssign: 2398 aop = llvm::AtomicRMWInst::Sub; 2399 break; 2400 case BO_AndAssign: 2401 aop = llvm::AtomicRMWInst::And; 2402 break; 2403 case BO_XorAssign: 2404 aop = llvm::AtomicRMWInst::Xor; 2405 break; 2406 case BO_OrAssign: 2407 aop = llvm::AtomicRMWInst::Or; 2408 break; 2409 default: 2410 llvm_unreachable("Invalid compound assignment type"); 2411 } 2412 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2413 llvm::Value *amt = CGF.EmitToMemory( 2414 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2415 E->getExprLoc()), 2416 LHSTy); 2417 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2418 llvm::AtomicOrdering::SequentiallyConsistent); 2419 return LHSLV; 2420 } 2421 } 2422 // FIXME: For floating point types, we should be saving and restoring the 2423 // floating point environment in the loop. 2424 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2425 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2426 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2427 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2428 Builder.CreateBr(opBB); 2429 Builder.SetInsertPoint(opBB); 2430 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2431 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2432 OpInfo.LHS = atomicPHI; 2433 } 2434 else 2435 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2436 2437 SourceLocation Loc = E->getExprLoc(); 2438 OpInfo.LHS = 2439 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2440 2441 // Expand the binary operator. 2442 Result = (this->*Func)(OpInfo); 2443 2444 // Convert the result back to the LHS type. 2445 Result = 2446 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2447 2448 if (atomicPHI) { 2449 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2450 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2451 auto Pair = CGF.EmitAtomicCompareExchange( 2452 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2453 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2454 llvm::Value *success = Pair.second; 2455 atomicPHI->addIncoming(old, opBB); 2456 Builder.CreateCondBr(success, contBB, opBB); 2457 Builder.SetInsertPoint(contBB); 2458 return LHSLV; 2459 } 2460 2461 // Store the result value into the LHS lvalue. Bit-fields are handled 2462 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2463 // 'An assignment expression has the value of the left operand after the 2464 // assignment...'. 2465 if (LHSLV.isBitField()) 2466 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2467 else 2468 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2469 2470 return LHSLV; 2471 } 2472 2473 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2474 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2475 bool Ignore = TestAndClearIgnoreResultAssign(); 2476 Value *RHS; 2477 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2478 2479 // If the result is clearly ignored, return now. 2480 if (Ignore) 2481 return nullptr; 2482 2483 // The result of an assignment in C is the assigned r-value. 2484 if (!CGF.getLangOpts().CPlusPlus) 2485 return RHS; 2486 2487 // If the lvalue is non-volatile, return the computed value of the assignment. 2488 if (!LHS.isVolatileQualified()) 2489 return RHS; 2490 2491 // Otherwise, reload the value. 2492 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2493 } 2494 2495 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2496 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2497 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2498 2499 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2500 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2501 SanitizerKind::IntegerDivideByZero)); 2502 } 2503 2504 const auto *BO = cast<BinaryOperator>(Ops.E); 2505 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2506 Ops.Ty->hasSignedIntegerRepresentation() && 2507 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2508 Ops.mayHaveIntegerOverflow()) { 2509 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2510 2511 llvm::Value *IntMin = 2512 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2513 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2514 2515 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2516 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2517 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2518 Checks.push_back( 2519 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2520 } 2521 2522 if (Checks.size() > 0) 2523 EmitBinOpCheck(Checks, Ops); 2524 } 2525 2526 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2527 { 2528 CodeGenFunction::SanitizerScope SanScope(&CGF); 2529 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2530 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2531 Ops.Ty->isIntegerType() && 2532 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2533 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2534 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2535 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2536 Ops.Ty->isRealFloatingType() && 2537 Ops.mayHaveFloatDivisionByZero()) { 2538 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2539 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2540 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2541 Ops); 2542 } 2543 } 2544 2545 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2546 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2547 if (CGF.getLangOpts().OpenCL && 2548 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2549 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2550 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2551 // build option allows an application to specify that single precision 2552 // floating-point divide (x/y and 1/x) and sqrt used in the program 2553 // source are correctly rounded. 2554 llvm::Type *ValTy = Val->getType(); 2555 if (ValTy->isFloatTy() || 2556 (isa<llvm::VectorType>(ValTy) && 2557 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2558 CGF.SetFPAccuracy(Val, 2.5); 2559 } 2560 return Val; 2561 } 2562 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2563 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2564 else 2565 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2566 } 2567 2568 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2569 // Rem in C can't be a floating point type: C99 6.5.5p2. 2570 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2571 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2572 Ops.Ty->isIntegerType() && 2573 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2574 CodeGenFunction::SanitizerScope SanScope(&CGF); 2575 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2576 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2577 } 2578 2579 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2580 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2581 else 2582 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2583 } 2584 2585 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2586 unsigned IID; 2587 unsigned OpID = 0; 2588 2589 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2590 switch (Ops.Opcode) { 2591 case BO_Add: 2592 case BO_AddAssign: 2593 OpID = 1; 2594 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2595 llvm::Intrinsic::uadd_with_overflow; 2596 break; 2597 case BO_Sub: 2598 case BO_SubAssign: 2599 OpID = 2; 2600 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2601 llvm::Intrinsic::usub_with_overflow; 2602 break; 2603 case BO_Mul: 2604 case BO_MulAssign: 2605 OpID = 3; 2606 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2607 llvm::Intrinsic::umul_with_overflow; 2608 break; 2609 default: 2610 llvm_unreachable("Unsupported operation for overflow detection"); 2611 } 2612 OpID <<= 1; 2613 if (isSigned) 2614 OpID |= 1; 2615 2616 CodeGenFunction::SanitizerScope SanScope(&CGF); 2617 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2618 2619 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2620 2621 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2622 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2623 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2624 2625 // Handle overflow with llvm.trap if no custom handler has been specified. 2626 const std::string *handlerName = 2627 &CGF.getLangOpts().OverflowHandler; 2628 if (handlerName->empty()) { 2629 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2630 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2631 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2632 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2633 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2634 : SanitizerKind::UnsignedIntegerOverflow; 2635 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2636 } else 2637 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2638 return result; 2639 } 2640 2641 // Branch in case of overflow. 2642 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2643 llvm::BasicBlock *continueBB = 2644 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2645 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2646 2647 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2648 2649 // If an overflow handler is set, then we want to call it and then use its 2650 // result, if it returns. 2651 Builder.SetInsertPoint(overflowBB); 2652 2653 // Get the overflow handler. 2654 llvm::Type *Int8Ty = CGF.Int8Ty; 2655 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2656 llvm::FunctionType *handlerTy = 2657 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2658 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2659 2660 // Sign extend the args to 64-bit, so that we can use the same handler for 2661 // all types of overflow. 2662 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2663 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2664 2665 // Call the handler with the two arguments, the operation, and the size of 2666 // the result. 2667 llvm::Value *handlerArgs[] = { 2668 lhs, 2669 rhs, 2670 Builder.getInt8(OpID), 2671 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2672 }; 2673 llvm::Value *handlerResult = 2674 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2675 2676 // Truncate the result back to the desired size. 2677 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2678 Builder.CreateBr(continueBB); 2679 2680 Builder.SetInsertPoint(continueBB); 2681 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2682 phi->addIncoming(result, initialBB); 2683 phi->addIncoming(handlerResult, overflowBB); 2684 2685 return phi; 2686 } 2687 2688 /// Emit pointer + index arithmetic. 2689 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2690 const BinOpInfo &op, 2691 bool isSubtraction) { 2692 // Must have binary (not unary) expr here. Unary pointer 2693 // increment/decrement doesn't use this path. 2694 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2695 2696 Value *pointer = op.LHS; 2697 Expr *pointerOperand = expr->getLHS(); 2698 Value *index = op.RHS; 2699 Expr *indexOperand = expr->getRHS(); 2700 2701 // In a subtraction, the LHS is always the pointer. 2702 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2703 std::swap(pointer, index); 2704 std::swap(pointerOperand, indexOperand); 2705 } 2706 2707 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2708 2709 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2710 auto &DL = CGF.CGM.getDataLayout(); 2711 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 2712 2713 // Some versions of glibc and gcc use idioms (particularly in their malloc 2714 // routines) that add a pointer-sized integer (known to be a pointer value) 2715 // to a null pointer in order to cast the value back to an integer or as 2716 // part of a pointer alignment algorithm. This is undefined behavior, but 2717 // we'd like to be able to compile programs that use it. 2718 // 2719 // Normally, we'd generate a GEP with a null-pointer base here in response 2720 // to that code, but it's also UB to dereference a pointer created that 2721 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 2722 // generate a direct cast of the integer value to a pointer. 2723 // 2724 // The idiom (p = nullptr + N) is not met if any of the following are true: 2725 // 2726 // The operation is subtraction. 2727 // The index is not pointer-sized. 2728 // The pointer type is not byte-sized. 2729 // 2730 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 2731 op.Opcode, 2732 expr->getLHS(), 2733 expr->getRHS())) 2734 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 2735 2736 if (width != DL.getTypeSizeInBits(PtrTy)) { 2737 // Zero-extend or sign-extend the pointer value according to 2738 // whether the index is signed or not. 2739 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 2740 "idx.ext"); 2741 } 2742 2743 // If this is subtraction, negate the index. 2744 if (isSubtraction) 2745 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2746 2747 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2748 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2749 /*Accessed*/ false); 2750 2751 const PointerType *pointerType 2752 = pointerOperand->getType()->getAs<PointerType>(); 2753 if (!pointerType) { 2754 QualType objectType = pointerOperand->getType() 2755 ->castAs<ObjCObjectPointerType>() 2756 ->getPointeeType(); 2757 llvm::Value *objectSize 2758 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2759 2760 index = CGF.Builder.CreateMul(index, objectSize); 2761 2762 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2763 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2764 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2765 } 2766 2767 QualType elementType = pointerType->getPointeeType(); 2768 if (const VariableArrayType *vla 2769 = CGF.getContext().getAsVariableArrayType(elementType)) { 2770 // The element count here is the total number of non-VLA elements. 2771 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 2772 2773 // Effectively, the multiply by the VLA size is part of the GEP. 2774 // GEP indexes are signed, and scaling an index isn't permitted to 2775 // signed-overflow, so we use the same semantics for our explicit 2776 // multiply. We suppress this if overflow is not undefined behavior. 2777 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2778 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2779 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2780 } else { 2781 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2782 pointer = 2783 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2784 op.E->getExprLoc(), "add.ptr"); 2785 } 2786 return pointer; 2787 } 2788 2789 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2790 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2791 // future proof. 2792 if (elementType->isVoidType() || elementType->isFunctionType()) { 2793 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2794 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2795 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2796 } 2797 2798 if (CGF.getLangOpts().isSignedOverflowDefined()) 2799 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2800 2801 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2802 op.E->getExprLoc(), "add.ptr"); 2803 } 2804 2805 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2806 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2807 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2808 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2809 // efficient operations. 2810 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2811 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2812 bool negMul, bool negAdd) { 2813 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2814 2815 Value *MulOp0 = MulOp->getOperand(0); 2816 Value *MulOp1 = MulOp->getOperand(1); 2817 if (negMul) { 2818 MulOp0 = 2819 Builder.CreateFSub( 2820 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2821 "neg"); 2822 } else if (negAdd) { 2823 Addend = 2824 Builder.CreateFSub( 2825 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2826 "neg"); 2827 } 2828 2829 Value *FMulAdd = Builder.CreateCall( 2830 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2831 {MulOp0, MulOp1, Addend}); 2832 MulOp->eraseFromParent(); 2833 2834 return FMulAdd; 2835 } 2836 2837 // Check whether it would be legal to emit an fmuladd intrinsic call to 2838 // represent op and if so, build the fmuladd. 2839 // 2840 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2841 // Does NOT check the type of the operation - it's assumed that this function 2842 // will be called from contexts where it's known that the type is contractable. 2843 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2844 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2845 bool isSub=false) { 2846 2847 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2848 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2849 "Only fadd/fsub can be the root of an fmuladd."); 2850 2851 // Check whether this op is marked as fusable. 2852 if (!op.FPFeatures.allowFPContractWithinStatement()) 2853 return nullptr; 2854 2855 // We have a potentially fusable op. Look for a mul on one of the operands. 2856 // Also, make sure that the mul result isn't used directly. In that case, 2857 // there's no point creating a muladd operation. 2858 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2859 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2860 LHSBinOp->use_empty()) 2861 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2862 } 2863 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2864 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2865 RHSBinOp->use_empty()) 2866 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2867 } 2868 2869 return nullptr; 2870 } 2871 2872 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2873 if (op.LHS->getType()->isPointerTy() || 2874 op.RHS->getType()->isPointerTy()) 2875 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 2876 2877 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2878 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2879 case LangOptions::SOB_Defined: 2880 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2881 case LangOptions::SOB_Undefined: 2882 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2883 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2884 // Fall through. 2885 case LangOptions::SOB_Trapping: 2886 if (CanElideOverflowCheck(CGF.getContext(), op)) 2887 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2888 return EmitOverflowCheckedBinOp(op); 2889 } 2890 } 2891 2892 if (op.Ty->isUnsignedIntegerType() && 2893 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2894 !CanElideOverflowCheck(CGF.getContext(), op)) 2895 return EmitOverflowCheckedBinOp(op); 2896 2897 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2898 // Try to form an fmuladd. 2899 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2900 return FMulAdd; 2901 2902 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2903 return propagateFMFlags(V, op); 2904 } 2905 2906 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2907 } 2908 2909 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2910 // The LHS is always a pointer if either side is. 2911 if (!op.LHS->getType()->isPointerTy()) { 2912 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2913 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2914 case LangOptions::SOB_Defined: 2915 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2916 case LangOptions::SOB_Undefined: 2917 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2918 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2919 // Fall through. 2920 case LangOptions::SOB_Trapping: 2921 if (CanElideOverflowCheck(CGF.getContext(), op)) 2922 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2923 return EmitOverflowCheckedBinOp(op); 2924 } 2925 } 2926 2927 if (op.Ty->isUnsignedIntegerType() && 2928 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2929 !CanElideOverflowCheck(CGF.getContext(), op)) 2930 return EmitOverflowCheckedBinOp(op); 2931 2932 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2933 // Try to form an fmuladd. 2934 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2935 return FMulAdd; 2936 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2937 return propagateFMFlags(V, op); 2938 } 2939 2940 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2941 } 2942 2943 // If the RHS is not a pointer, then we have normal pointer 2944 // arithmetic. 2945 if (!op.RHS->getType()->isPointerTy()) 2946 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 2947 2948 // Otherwise, this is a pointer subtraction. 2949 2950 // Do the raw subtraction part. 2951 llvm::Value *LHS 2952 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2953 llvm::Value *RHS 2954 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2955 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2956 2957 // Okay, figure out the element size. 2958 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2959 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2960 2961 llvm::Value *divisor = nullptr; 2962 2963 // For a variable-length array, this is going to be non-constant. 2964 if (const VariableArrayType *vla 2965 = CGF.getContext().getAsVariableArrayType(elementType)) { 2966 auto VlaSize = CGF.getVLASize(vla); 2967 elementType = VlaSize.Type; 2968 divisor = VlaSize.NumElts; 2969 2970 // Scale the number of non-VLA elements by the non-VLA element size. 2971 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2972 if (!eltSize.isOne()) 2973 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2974 2975 // For everything elese, we can just compute it, safe in the 2976 // assumption that Sema won't let anything through that we can't 2977 // safely compute the size of. 2978 } else { 2979 CharUnits elementSize; 2980 // Handle GCC extension for pointer arithmetic on void* and 2981 // function pointer types. 2982 if (elementType->isVoidType() || elementType->isFunctionType()) 2983 elementSize = CharUnits::One(); 2984 else 2985 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2986 2987 // Don't even emit the divide for element size of 1. 2988 if (elementSize.isOne()) 2989 return diffInChars; 2990 2991 divisor = CGF.CGM.getSize(elementSize); 2992 } 2993 2994 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2995 // pointer difference in C is only defined in the case where both operands 2996 // are pointing to elements of an array. 2997 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2998 } 2999 3000 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3001 llvm::IntegerType *Ty; 3002 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3003 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3004 else 3005 Ty = cast<llvm::IntegerType>(LHS->getType()); 3006 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3007 } 3008 3009 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3010 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3011 // RHS to the same size as the LHS. 3012 Value *RHS = Ops.RHS; 3013 if (Ops.LHS->getType() != RHS->getType()) 3014 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3015 3016 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3017 Ops.Ty->hasSignedIntegerRepresentation() && 3018 !CGF.getLangOpts().isSignedOverflowDefined(); 3019 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3020 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3021 if (CGF.getLangOpts().OpenCL) 3022 RHS = 3023 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3024 else if ((SanitizeBase || SanitizeExponent) && 3025 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3026 CodeGenFunction::SanitizerScope SanScope(&CGF); 3027 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3028 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3029 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3030 3031 if (SanitizeExponent) { 3032 Checks.push_back( 3033 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3034 } 3035 3036 if (SanitizeBase) { 3037 // Check whether we are shifting any non-zero bits off the top of the 3038 // integer. We only emit this check if exponent is valid - otherwise 3039 // instructions below will have undefined behavior themselves. 3040 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3041 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3042 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3043 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3044 llvm::Value *PromotedWidthMinusOne = 3045 (RHS == Ops.RHS) ? WidthMinusOne 3046 : GetWidthMinusOneValue(Ops.LHS, RHS); 3047 CGF.EmitBlock(CheckShiftBase); 3048 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3049 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3050 /*NUW*/ true, /*NSW*/ true), 3051 "shl.check"); 3052 if (CGF.getLangOpts().CPlusPlus) { 3053 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3054 // Under C++11's rules, shifting a 1 bit into the sign bit is 3055 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3056 // define signed left shifts, so we use the C99 and C++11 rules there). 3057 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3058 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3059 } 3060 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3061 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3062 CGF.EmitBlock(Cont); 3063 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3064 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3065 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3066 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3067 } 3068 3069 assert(!Checks.empty()); 3070 EmitBinOpCheck(Checks, Ops); 3071 } 3072 3073 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3074 } 3075 3076 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3077 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3078 // RHS to the same size as the LHS. 3079 Value *RHS = Ops.RHS; 3080 if (Ops.LHS->getType() != RHS->getType()) 3081 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3082 3083 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3084 if (CGF.getLangOpts().OpenCL) 3085 RHS = 3086 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3087 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3088 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3089 CodeGenFunction::SanitizerScope SanScope(&CGF); 3090 llvm::Value *Valid = 3091 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3092 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3093 } 3094 3095 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3096 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3097 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3098 } 3099 3100 enum IntrinsicType { VCMPEQ, VCMPGT }; 3101 // return corresponding comparison intrinsic for given vector type 3102 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3103 BuiltinType::Kind ElemKind) { 3104 switch (ElemKind) { 3105 default: llvm_unreachable("unexpected element type"); 3106 case BuiltinType::Char_U: 3107 case BuiltinType::UChar: 3108 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3109 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3110 case BuiltinType::Char_S: 3111 case BuiltinType::SChar: 3112 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3113 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3114 case BuiltinType::UShort: 3115 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3116 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3117 case BuiltinType::Short: 3118 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3119 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3120 case BuiltinType::UInt: 3121 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3122 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3123 case BuiltinType::Int: 3124 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3125 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3126 case BuiltinType::ULong: 3127 case BuiltinType::ULongLong: 3128 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3129 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3130 case BuiltinType::Long: 3131 case BuiltinType::LongLong: 3132 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3133 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3134 case BuiltinType::Float: 3135 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3136 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3137 case BuiltinType::Double: 3138 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3139 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3140 } 3141 } 3142 3143 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3144 llvm::CmpInst::Predicate UICmpOpc, 3145 llvm::CmpInst::Predicate SICmpOpc, 3146 llvm::CmpInst::Predicate FCmpOpc) { 3147 TestAndClearIgnoreResultAssign(); 3148 Value *Result; 3149 QualType LHSTy = E->getLHS()->getType(); 3150 QualType RHSTy = E->getRHS()->getType(); 3151 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3152 assert(E->getOpcode() == BO_EQ || 3153 E->getOpcode() == BO_NE); 3154 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3155 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3156 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3157 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3158 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3159 Value *LHS = Visit(E->getLHS()); 3160 Value *RHS = Visit(E->getRHS()); 3161 3162 // If AltiVec, the comparison results in a numeric type, so we use 3163 // intrinsics comparing vectors and giving 0 or 1 as a result 3164 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3165 // constants for mapping CR6 register bits to predicate result 3166 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3167 3168 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3169 3170 // in several cases vector arguments order will be reversed 3171 Value *FirstVecArg = LHS, 3172 *SecondVecArg = RHS; 3173 3174 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3175 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3176 BuiltinType::Kind ElementKind = BTy->getKind(); 3177 3178 switch(E->getOpcode()) { 3179 default: llvm_unreachable("is not a comparison operation"); 3180 case BO_EQ: 3181 CR6 = CR6_LT; 3182 ID = GetIntrinsic(VCMPEQ, ElementKind); 3183 break; 3184 case BO_NE: 3185 CR6 = CR6_EQ; 3186 ID = GetIntrinsic(VCMPEQ, ElementKind); 3187 break; 3188 case BO_LT: 3189 CR6 = CR6_LT; 3190 ID = GetIntrinsic(VCMPGT, ElementKind); 3191 std::swap(FirstVecArg, SecondVecArg); 3192 break; 3193 case BO_GT: 3194 CR6 = CR6_LT; 3195 ID = GetIntrinsic(VCMPGT, ElementKind); 3196 break; 3197 case BO_LE: 3198 if (ElementKind == BuiltinType::Float) { 3199 CR6 = CR6_LT; 3200 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3201 std::swap(FirstVecArg, SecondVecArg); 3202 } 3203 else { 3204 CR6 = CR6_EQ; 3205 ID = GetIntrinsic(VCMPGT, ElementKind); 3206 } 3207 break; 3208 case BO_GE: 3209 if (ElementKind == BuiltinType::Float) { 3210 CR6 = CR6_LT; 3211 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3212 } 3213 else { 3214 CR6 = CR6_EQ; 3215 ID = GetIntrinsic(VCMPGT, ElementKind); 3216 std::swap(FirstVecArg, SecondVecArg); 3217 } 3218 break; 3219 } 3220 3221 Value *CR6Param = Builder.getInt32(CR6); 3222 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3223 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3224 3225 // The result type of intrinsic may not be same as E->getType(). 3226 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3227 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3228 // do nothing, if ResultTy is not i1 at the same time, it will cause 3229 // crash later. 3230 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3231 if (ResultTy->getBitWidth() > 1 && 3232 E->getType() == CGF.getContext().BoolTy) 3233 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3234 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3235 E->getExprLoc()); 3236 } 3237 3238 if (LHS->getType()->isFPOrFPVectorTy()) { 3239 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3240 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3241 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3242 } else { 3243 // Unsigned integers and pointers. 3244 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3245 } 3246 3247 // If this is a vector comparison, sign extend the result to the appropriate 3248 // vector integer type and return it (don't convert to bool). 3249 if (LHSTy->isVectorType()) 3250 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3251 3252 } else { 3253 // Complex Comparison: can only be an equality comparison. 3254 CodeGenFunction::ComplexPairTy LHS, RHS; 3255 QualType CETy; 3256 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3257 LHS = CGF.EmitComplexExpr(E->getLHS()); 3258 CETy = CTy->getElementType(); 3259 } else { 3260 LHS.first = Visit(E->getLHS()); 3261 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3262 CETy = LHSTy; 3263 } 3264 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3265 RHS = CGF.EmitComplexExpr(E->getRHS()); 3266 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3267 CTy->getElementType()) && 3268 "The element types must always match."); 3269 (void)CTy; 3270 } else { 3271 RHS.first = Visit(E->getRHS()); 3272 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3273 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3274 "The element types must always match."); 3275 } 3276 3277 Value *ResultR, *ResultI; 3278 if (CETy->isRealFloatingType()) { 3279 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3280 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3281 } else { 3282 // Complex comparisons can only be equality comparisons. As such, signed 3283 // and unsigned opcodes are the same. 3284 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3285 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3286 } 3287 3288 if (E->getOpcode() == BO_EQ) { 3289 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3290 } else { 3291 assert(E->getOpcode() == BO_NE && 3292 "Complex comparison other than == or != ?"); 3293 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3294 } 3295 } 3296 3297 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3298 E->getExprLoc()); 3299 } 3300 3301 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3302 bool Ignore = TestAndClearIgnoreResultAssign(); 3303 3304 Value *RHS; 3305 LValue LHS; 3306 3307 switch (E->getLHS()->getType().getObjCLifetime()) { 3308 case Qualifiers::OCL_Strong: 3309 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3310 break; 3311 3312 case Qualifiers::OCL_Autoreleasing: 3313 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3314 break; 3315 3316 case Qualifiers::OCL_ExplicitNone: 3317 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3318 break; 3319 3320 case Qualifiers::OCL_Weak: 3321 RHS = Visit(E->getRHS()); 3322 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3323 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3324 break; 3325 3326 case Qualifiers::OCL_None: 3327 // __block variables need to have the rhs evaluated first, plus 3328 // this should improve codegen just a little. 3329 RHS = Visit(E->getRHS()); 3330 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3331 3332 // Store the value into the LHS. Bit-fields are handled specially 3333 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3334 // 'An assignment expression has the value of the left operand after 3335 // the assignment...'. 3336 if (LHS.isBitField()) { 3337 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3338 } else { 3339 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3340 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3341 } 3342 } 3343 3344 // If the result is clearly ignored, return now. 3345 if (Ignore) 3346 return nullptr; 3347 3348 // The result of an assignment in C is the assigned r-value. 3349 if (!CGF.getLangOpts().CPlusPlus) 3350 return RHS; 3351 3352 // If the lvalue is non-volatile, return the computed value of the assignment. 3353 if (!LHS.isVolatileQualified()) 3354 return RHS; 3355 3356 // Otherwise, reload the value. 3357 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3358 } 3359 3360 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3361 // Perform vector logical and on comparisons with zero vectors. 3362 if (E->getType()->isVectorType()) { 3363 CGF.incrementProfileCounter(E); 3364 3365 Value *LHS = Visit(E->getLHS()); 3366 Value *RHS = Visit(E->getRHS()); 3367 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3368 if (LHS->getType()->isFPOrFPVectorTy()) { 3369 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3370 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3371 } else { 3372 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3373 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3374 } 3375 Value *And = Builder.CreateAnd(LHS, RHS); 3376 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3377 } 3378 3379 llvm::Type *ResTy = ConvertType(E->getType()); 3380 3381 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3382 // If we have 1 && X, just emit X without inserting the control flow. 3383 bool LHSCondVal; 3384 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3385 if (LHSCondVal) { // If we have 1 && X, just emit X. 3386 CGF.incrementProfileCounter(E); 3387 3388 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3389 // ZExt result to int or bool. 3390 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3391 } 3392 3393 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3394 if (!CGF.ContainsLabel(E->getRHS())) 3395 return llvm::Constant::getNullValue(ResTy); 3396 } 3397 3398 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3399 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3400 3401 CodeGenFunction::ConditionalEvaluation eval(CGF); 3402 3403 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3404 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3405 CGF.getProfileCount(E->getRHS())); 3406 3407 // Any edges into the ContBlock are now from an (indeterminate number of) 3408 // edges from this first condition. All of these values will be false. Start 3409 // setting up the PHI node in the Cont Block for this. 3410 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3411 "", ContBlock); 3412 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3413 PI != PE; ++PI) 3414 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3415 3416 eval.begin(CGF); 3417 CGF.EmitBlock(RHSBlock); 3418 CGF.incrementProfileCounter(E); 3419 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3420 eval.end(CGF); 3421 3422 // Reaquire the RHS block, as there may be subblocks inserted. 3423 RHSBlock = Builder.GetInsertBlock(); 3424 3425 // Emit an unconditional branch from this block to ContBlock. 3426 { 3427 // There is no need to emit line number for unconditional branch. 3428 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3429 CGF.EmitBlock(ContBlock); 3430 } 3431 // Insert an entry into the phi node for the edge with the value of RHSCond. 3432 PN->addIncoming(RHSCond, RHSBlock); 3433 3434 // Artificial location to preserve the scope information 3435 { 3436 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 3437 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 3438 } 3439 3440 // ZExt result to int. 3441 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3442 } 3443 3444 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3445 // Perform vector logical or on comparisons with zero vectors. 3446 if (E->getType()->isVectorType()) { 3447 CGF.incrementProfileCounter(E); 3448 3449 Value *LHS = Visit(E->getLHS()); 3450 Value *RHS = Visit(E->getRHS()); 3451 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3452 if (LHS->getType()->isFPOrFPVectorTy()) { 3453 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3454 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3455 } else { 3456 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3457 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3458 } 3459 Value *Or = Builder.CreateOr(LHS, RHS); 3460 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3461 } 3462 3463 llvm::Type *ResTy = ConvertType(E->getType()); 3464 3465 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3466 // If we have 0 || X, just emit X without inserting the control flow. 3467 bool LHSCondVal; 3468 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3469 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3470 CGF.incrementProfileCounter(E); 3471 3472 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3473 // ZExt result to int or bool. 3474 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3475 } 3476 3477 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3478 if (!CGF.ContainsLabel(E->getRHS())) 3479 return llvm::ConstantInt::get(ResTy, 1); 3480 } 3481 3482 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3483 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3484 3485 CodeGenFunction::ConditionalEvaluation eval(CGF); 3486 3487 // Branch on the LHS first. If it is true, go to the success (cont) block. 3488 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3489 CGF.getCurrentProfileCount() - 3490 CGF.getProfileCount(E->getRHS())); 3491 3492 // Any edges into the ContBlock are now from an (indeterminate number of) 3493 // edges from this first condition. All of these values will be true. Start 3494 // setting up the PHI node in the Cont Block for this. 3495 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3496 "", ContBlock); 3497 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3498 PI != PE; ++PI) 3499 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3500 3501 eval.begin(CGF); 3502 3503 // Emit the RHS condition as a bool value. 3504 CGF.EmitBlock(RHSBlock); 3505 CGF.incrementProfileCounter(E); 3506 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3507 3508 eval.end(CGF); 3509 3510 // Reaquire the RHS block, as there may be subblocks inserted. 3511 RHSBlock = Builder.GetInsertBlock(); 3512 3513 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3514 // into the phi node for the edge with the value of RHSCond. 3515 CGF.EmitBlock(ContBlock); 3516 PN->addIncoming(RHSCond, RHSBlock); 3517 3518 // ZExt result to int. 3519 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3520 } 3521 3522 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3523 CGF.EmitIgnoredExpr(E->getLHS()); 3524 CGF.EnsureInsertPoint(); 3525 return Visit(E->getRHS()); 3526 } 3527 3528 //===----------------------------------------------------------------------===// 3529 // Other Operators 3530 //===----------------------------------------------------------------------===// 3531 3532 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3533 /// expression is cheap enough and side-effect-free enough to evaluate 3534 /// unconditionally instead of conditionally. This is used to convert control 3535 /// flow into selects in some cases. 3536 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3537 CodeGenFunction &CGF) { 3538 // Anything that is an integer or floating point constant is fine. 3539 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3540 3541 // Even non-volatile automatic variables can't be evaluated unconditionally. 3542 // Referencing a thread_local may cause non-trivial initialization work to 3543 // occur. If we're inside a lambda and one of the variables is from the scope 3544 // outside the lambda, that function may have returned already. Reading its 3545 // locals is a bad idea. Also, these reads may introduce races there didn't 3546 // exist in the source-level program. 3547 } 3548 3549 3550 Value *ScalarExprEmitter:: 3551 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3552 TestAndClearIgnoreResultAssign(); 3553 3554 // Bind the common expression if necessary. 3555 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3556 3557 Expr *condExpr = E->getCond(); 3558 Expr *lhsExpr = E->getTrueExpr(); 3559 Expr *rhsExpr = E->getFalseExpr(); 3560 3561 // If the condition constant folds and can be elided, try to avoid emitting 3562 // the condition and the dead arm. 3563 bool CondExprBool; 3564 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3565 Expr *live = lhsExpr, *dead = rhsExpr; 3566 if (!CondExprBool) std::swap(live, dead); 3567 3568 // If the dead side doesn't have labels we need, just emit the Live part. 3569 if (!CGF.ContainsLabel(dead)) { 3570 if (CondExprBool) 3571 CGF.incrementProfileCounter(E); 3572 Value *Result = Visit(live); 3573 3574 // If the live part is a throw expression, it acts like it has a void 3575 // type, so evaluating it returns a null Value*. However, a conditional 3576 // with non-void type must return a non-null Value*. 3577 if (!Result && !E->getType()->isVoidType()) 3578 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3579 3580 return Result; 3581 } 3582 } 3583 3584 // OpenCL: If the condition is a vector, we can treat this condition like 3585 // the select function. 3586 if (CGF.getLangOpts().OpenCL 3587 && condExpr->getType()->isVectorType()) { 3588 CGF.incrementProfileCounter(E); 3589 3590 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3591 llvm::Value *LHS = Visit(lhsExpr); 3592 llvm::Value *RHS = Visit(rhsExpr); 3593 3594 llvm::Type *condType = ConvertType(condExpr->getType()); 3595 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3596 3597 unsigned numElem = vecTy->getNumElements(); 3598 llvm::Type *elemType = vecTy->getElementType(); 3599 3600 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3601 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3602 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3603 llvm::VectorType::get(elemType, 3604 numElem), 3605 "sext"); 3606 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3607 3608 // Cast float to int to perform ANDs if necessary. 3609 llvm::Value *RHSTmp = RHS; 3610 llvm::Value *LHSTmp = LHS; 3611 bool wasCast = false; 3612 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3613 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3614 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3615 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3616 wasCast = true; 3617 } 3618 3619 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3620 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3621 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3622 if (wasCast) 3623 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3624 3625 return tmp5; 3626 } 3627 3628 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3629 // select instead of as control flow. We can only do this if it is cheap and 3630 // safe to evaluate the LHS and RHS unconditionally. 3631 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3632 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3633 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3634 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 3635 3636 CGF.incrementProfileCounter(E, StepV); 3637 3638 llvm::Value *LHS = Visit(lhsExpr); 3639 llvm::Value *RHS = Visit(rhsExpr); 3640 if (!LHS) { 3641 // If the conditional has void type, make sure we return a null Value*. 3642 assert(!RHS && "LHS and RHS types must match"); 3643 return nullptr; 3644 } 3645 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3646 } 3647 3648 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3649 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3650 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3651 3652 CodeGenFunction::ConditionalEvaluation eval(CGF); 3653 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3654 CGF.getProfileCount(lhsExpr)); 3655 3656 CGF.EmitBlock(LHSBlock); 3657 CGF.incrementProfileCounter(E); 3658 eval.begin(CGF); 3659 Value *LHS = Visit(lhsExpr); 3660 eval.end(CGF); 3661 3662 LHSBlock = Builder.GetInsertBlock(); 3663 Builder.CreateBr(ContBlock); 3664 3665 CGF.EmitBlock(RHSBlock); 3666 eval.begin(CGF); 3667 Value *RHS = Visit(rhsExpr); 3668 eval.end(CGF); 3669 3670 RHSBlock = Builder.GetInsertBlock(); 3671 CGF.EmitBlock(ContBlock); 3672 3673 // If the LHS or RHS is a throw expression, it will be legitimately null. 3674 if (!LHS) 3675 return RHS; 3676 if (!RHS) 3677 return LHS; 3678 3679 // Create a PHI node for the real part. 3680 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3681 PN->addIncoming(LHS, LHSBlock); 3682 PN->addIncoming(RHS, RHSBlock); 3683 return PN; 3684 } 3685 3686 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3687 return Visit(E->getChosenSubExpr()); 3688 } 3689 3690 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3691 QualType Ty = VE->getType(); 3692 3693 if (Ty->isVariablyModifiedType()) 3694 CGF.EmitVariablyModifiedType(Ty); 3695 3696 Address ArgValue = Address::invalid(); 3697 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3698 3699 llvm::Type *ArgTy = ConvertType(VE->getType()); 3700 3701 // If EmitVAArg fails, emit an error. 3702 if (!ArgPtr.isValid()) { 3703 CGF.ErrorUnsupported(VE, "va_arg expression"); 3704 return llvm::UndefValue::get(ArgTy); 3705 } 3706 3707 // FIXME Volatility. 3708 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3709 3710 // If EmitVAArg promoted the type, we must truncate it. 3711 if (ArgTy != Val->getType()) { 3712 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3713 Val = Builder.CreateIntToPtr(Val, ArgTy); 3714 else 3715 Val = Builder.CreateTrunc(Val, ArgTy); 3716 } 3717 3718 return Val; 3719 } 3720 3721 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3722 return CGF.EmitBlockLiteral(block); 3723 } 3724 3725 // Convert a vec3 to vec4, or vice versa. 3726 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3727 Value *Src, unsigned NumElementsDst) { 3728 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3729 SmallVector<llvm::Constant*, 4> Args; 3730 Args.push_back(Builder.getInt32(0)); 3731 Args.push_back(Builder.getInt32(1)); 3732 Args.push_back(Builder.getInt32(2)); 3733 if (NumElementsDst == 4) 3734 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3735 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3736 return Builder.CreateShuffleVector(Src, UnV, Mask); 3737 } 3738 3739 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 3740 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 3741 // but could be scalar or vectors of different lengths, and either can be 3742 // pointer. 3743 // There are 4 cases: 3744 // 1. non-pointer -> non-pointer : needs 1 bitcast 3745 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 3746 // 3. pointer -> non-pointer 3747 // a) pointer -> intptr_t : needs 1 ptrtoint 3748 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 3749 // 4. non-pointer -> pointer 3750 // a) intptr_t -> pointer : needs 1 inttoptr 3751 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 3752 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 3753 // allow casting directly between pointer types and non-integer non-pointer 3754 // types. 3755 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 3756 const llvm::DataLayout &DL, 3757 Value *Src, llvm::Type *DstTy, 3758 StringRef Name = "") { 3759 auto SrcTy = Src->getType(); 3760 3761 // Case 1. 3762 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 3763 return Builder.CreateBitCast(Src, DstTy, Name); 3764 3765 // Case 2. 3766 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 3767 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 3768 3769 // Case 3. 3770 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 3771 // Case 3b. 3772 if (!DstTy->isIntegerTy()) 3773 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 3774 // Cases 3a and 3b. 3775 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 3776 } 3777 3778 // Case 4b. 3779 if (!SrcTy->isIntegerTy()) 3780 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 3781 // Cases 4a and 4b. 3782 return Builder.CreateIntToPtr(Src, DstTy, Name); 3783 } 3784 3785 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3786 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3787 llvm::Type *DstTy = ConvertType(E->getType()); 3788 3789 llvm::Type *SrcTy = Src->getType(); 3790 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3791 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3792 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3793 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3794 3795 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3796 // vector to get a vec4, then a bitcast if the target type is different. 3797 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3798 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3799 3800 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3801 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3802 DstTy); 3803 } 3804 3805 Src->setName("astype"); 3806 return Src; 3807 } 3808 3809 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3810 // to vec4 if the original type is not vec4, then a shuffle vector to 3811 // get a vec3. 3812 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3813 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3814 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3815 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3816 Vec4Ty); 3817 } 3818 3819 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3820 Src->setName("astype"); 3821 return Src; 3822 } 3823 3824 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 3825 Src, DstTy, "astype"); 3826 } 3827 3828 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3829 return CGF.EmitAtomicExpr(E).getScalarVal(); 3830 } 3831 3832 //===----------------------------------------------------------------------===// 3833 // Entry Point into this File 3834 //===----------------------------------------------------------------------===// 3835 3836 /// Emit the computation of the specified expression of scalar type, ignoring 3837 /// the result. 3838 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3839 assert(E && hasScalarEvaluationKind(E->getType()) && 3840 "Invalid scalar expression to emit"); 3841 3842 return ScalarExprEmitter(*this, IgnoreResultAssign) 3843 .Visit(const_cast<Expr *>(E)); 3844 } 3845 3846 /// Emit a conversion from the specified type to the specified destination type, 3847 /// both of which are LLVM scalar types. 3848 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3849 QualType DstTy, 3850 SourceLocation Loc) { 3851 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3852 "Invalid scalar expression to emit"); 3853 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3854 } 3855 3856 /// Emit a conversion from the specified complex type to the specified 3857 /// destination type, where the destination type is an LLVM scalar type. 3858 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3859 QualType SrcTy, 3860 QualType DstTy, 3861 SourceLocation Loc) { 3862 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3863 "Invalid complex -> scalar conversion"); 3864 return ScalarExprEmitter(*this) 3865 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3866 } 3867 3868 3869 llvm::Value *CodeGenFunction:: 3870 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3871 bool isInc, bool isPre) { 3872 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3873 } 3874 3875 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3876 // object->isa or (*object).isa 3877 // Generate code as for: *(Class*)object 3878 3879 Expr *BaseExpr = E->getBase(); 3880 Address Addr = Address::invalid(); 3881 if (BaseExpr->isRValue()) { 3882 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3883 } else { 3884 Addr = EmitLValue(BaseExpr).getAddress(); 3885 } 3886 3887 // Cast the address to Class*. 3888 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3889 return MakeAddrLValue(Addr, E->getType()); 3890 } 3891 3892 3893 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3894 const CompoundAssignOperator *E) { 3895 ScalarExprEmitter Scalar(*this); 3896 Value *Result = nullptr; 3897 switch (E->getOpcode()) { 3898 #define COMPOUND_OP(Op) \ 3899 case BO_##Op##Assign: \ 3900 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3901 Result) 3902 COMPOUND_OP(Mul); 3903 COMPOUND_OP(Div); 3904 COMPOUND_OP(Rem); 3905 COMPOUND_OP(Add); 3906 COMPOUND_OP(Sub); 3907 COMPOUND_OP(Shl); 3908 COMPOUND_OP(Shr); 3909 COMPOUND_OP(And); 3910 COMPOUND_OP(Xor); 3911 COMPOUND_OP(Or); 3912 #undef COMPOUND_OP 3913 3914 case BO_PtrMemD: 3915 case BO_PtrMemI: 3916 case BO_Mul: 3917 case BO_Div: 3918 case BO_Rem: 3919 case BO_Add: 3920 case BO_Sub: 3921 case BO_Shl: 3922 case BO_Shr: 3923 case BO_LT: 3924 case BO_GT: 3925 case BO_LE: 3926 case BO_GE: 3927 case BO_EQ: 3928 case BO_NE: 3929 case BO_Cmp: 3930 case BO_And: 3931 case BO_Xor: 3932 case BO_Or: 3933 case BO_LAnd: 3934 case BO_LOr: 3935 case BO_Assign: 3936 case BO_Comma: 3937 llvm_unreachable("Not valid compound assignment operators"); 3938 } 3939 3940 llvm_unreachable("Unhandled compound assignment operator"); 3941 } 3942 3943 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 3944 ArrayRef<Value *> IdxList, 3945 bool SignedIndices, 3946 bool IsSubtraction, 3947 SourceLocation Loc, 3948 const Twine &Name) { 3949 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 3950 3951 // If the pointer overflow sanitizer isn't enabled, do nothing. 3952 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 3953 return GEPVal; 3954 3955 // If the GEP has already been reduced to a constant, leave it be. 3956 if (isa<llvm::Constant>(GEPVal)) 3957 return GEPVal; 3958 3959 // Only check for overflows in the default address space. 3960 if (GEPVal->getType()->getPointerAddressSpace()) 3961 return GEPVal; 3962 3963 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 3964 assert(GEP->isInBounds() && "Expected inbounds GEP"); 3965 3966 SanitizerScope SanScope(this); 3967 auto &VMContext = getLLVMContext(); 3968 const auto &DL = CGM.getDataLayout(); 3969 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 3970 3971 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 3972 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 3973 auto *SAddIntrinsic = 3974 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 3975 auto *SMulIntrinsic = 3976 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 3977 3978 // The total (signed) byte offset for the GEP. 3979 llvm::Value *TotalOffset = nullptr; 3980 // The offset overflow flag - true if the total offset overflows. 3981 llvm::Value *OffsetOverflows = Builder.getFalse(); 3982 3983 /// Return the result of the given binary operation. 3984 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 3985 llvm::Value *RHS) -> llvm::Value * { 3986 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 3987 3988 // If the operands are constants, return a constant result. 3989 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 3990 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 3991 llvm::APInt N; 3992 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 3993 /*Signed=*/true, N); 3994 if (HasOverflow) 3995 OffsetOverflows = Builder.getTrue(); 3996 return llvm::ConstantInt::get(VMContext, N); 3997 } 3998 } 3999 4000 // Otherwise, compute the result with checked arithmetic. 4001 auto *ResultAndOverflow = Builder.CreateCall( 4002 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4003 OffsetOverflows = Builder.CreateOr( 4004 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4005 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4006 }; 4007 4008 // Determine the total byte offset by looking at each GEP operand. 4009 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4010 GTI != GTE; ++GTI) { 4011 llvm::Value *LocalOffset; 4012 auto *Index = GTI.getOperand(); 4013 // Compute the local offset contributed by this indexing step: 4014 if (auto *STy = GTI.getStructTypeOrNull()) { 4015 // For struct indexing, the local offset is the byte position of the 4016 // specified field. 4017 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4018 LocalOffset = llvm::ConstantInt::get( 4019 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4020 } else { 4021 // Otherwise this is array-like indexing. The local offset is the index 4022 // multiplied by the element size. 4023 auto *ElementSize = llvm::ConstantInt::get( 4024 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4025 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4026 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4027 } 4028 4029 // If this is the first offset, set it as the total offset. Otherwise, add 4030 // the local offset into the running total. 4031 if (!TotalOffset || TotalOffset == Zero) 4032 TotalOffset = LocalOffset; 4033 else 4034 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4035 } 4036 4037 // Common case: if the total offset is zero, don't emit a check. 4038 if (TotalOffset == Zero) 4039 return GEPVal; 4040 4041 // Now that we've computed the total offset, add it to the base pointer (with 4042 // wrapping semantics). 4043 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4044 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4045 4046 // The GEP is valid if: 4047 // 1) The total offset doesn't overflow, and 4048 // 2) The sign of the difference between the computed address and the base 4049 // pointer matches the sign of the total offset. 4050 llvm::Value *ValidGEP; 4051 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4052 if (SignedIndices) { 4053 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4054 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4055 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4056 ValidGEP = Builder.CreateAnd( 4057 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4058 NoOffsetOverflow); 4059 } else if (!SignedIndices && !IsSubtraction) { 4060 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4061 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4062 } else { 4063 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4064 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4065 } 4066 4067 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4068 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4069 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4070 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4071 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4072 4073 return GEPVal; 4074 } 4075