1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Module.h"
37 #include <cstdarg>
38 
39 using namespace clang;
40 using namespace CodeGen;
41 using llvm::Value;
42 
43 //===----------------------------------------------------------------------===//
44 //                         Scalar Expression Emitter
45 //===----------------------------------------------------------------------===//
46 
47 namespace {
48 
49 /// Determine whether the given binary operation may overflow.
50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
52 /// the returned overflow check is precise. The returned value is 'true' for
53 /// all other opcodes, to be conservative.
54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
55                              BinaryOperator::Opcode Opcode, bool Signed,
56                              llvm::APInt &Result) {
57   // Assume overflow is possible, unless we can prove otherwise.
58   bool Overflow = true;
59   const auto &LHSAP = LHS->getValue();
60   const auto &RHSAP = RHS->getValue();
61   if (Opcode == BO_Add) {
62     if (Signed)
63       Result = LHSAP.sadd_ov(RHSAP, Overflow);
64     else
65       Result = LHSAP.uadd_ov(RHSAP, Overflow);
66   } else if (Opcode == BO_Sub) {
67     if (Signed)
68       Result = LHSAP.ssub_ov(RHSAP, Overflow);
69     else
70       Result = LHSAP.usub_ov(RHSAP, Overflow);
71   } else if (Opcode == BO_Mul) {
72     if (Signed)
73       Result = LHSAP.smul_ov(RHSAP, Overflow);
74     else
75       Result = LHSAP.umul_ov(RHSAP, Overflow);
76   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
77     if (Signed && !RHS->isZero())
78       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
79     else
80       return false;
81   }
82   return Overflow;
83 }
84 
85 struct BinOpInfo {
86   Value *LHS;
87   Value *RHS;
88   QualType Ty;  // Computation Type.
89   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
90   FPOptions FPFeatures;
91   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
92 
93   /// Check if the binop can result in integer overflow.
94   bool mayHaveIntegerOverflow() const {
95     // Without constant input, we can't rule out overflow.
96     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
97     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
98     if (!LHSCI || !RHSCI)
99       return true;
100 
101     llvm::APInt Result;
102     return ::mayHaveIntegerOverflow(
103         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
104   }
105 
106   /// Check if the binop computes a division or a remainder.
107   bool isDivremOp() const {
108     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
109            Opcode == BO_RemAssign;
110   }
111 
112   /// Check if the binop can result in an integer division by zero.
113   bool mayHaveIntegerDivisionByZero() const {
114     if (isDivremOp())
115       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
116         return CI->isZero();
117     return true;
118   }
119 
120   /// Check if the binop can result in a float division by zero.
121   bool mayHaveFloatDivisionByZero() const {
122     if (isDivremOp())
123       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
124         return CFP->isZero();
125     return true;
126   }
127 };
128 
129 static bool MustVisitNullValue(const Expr *E) {
130   // If a null pointer expression's type is the C++0x nullptr_t, then
131   // it's not necessarily a simple constant and it must be evaluated
132   // for its potential side effects.
133   return E->getType()->isNullPtrType();
134 }
135 
136 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
138                                                         const Expr *E) {
139   const Expr *Base = E->IgnoreImpCasts();
140   if (E == Base)
141     return llvm::None;
142 
143   QualType BaseTy = Base->getType();
144   if (!BaseTy->isPromotableIntegerType() ||
145       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
146     return llvm::None;
147 
148   return BaseTy;
149 }
150 
151 /// Check if \p E is a widened promoted integer.
152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
153   return getUnwidenedIntegerType(Ctx, E).hasValue();
154 }
155 
156 /// Check if we can skip the overflow check for \p Op.
157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
158   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
159          "Expected a unary or binary operator");
160 
161   // If the binop has constant inputs and we can prove there is no overflow,
162   // we can elide the overflow check.
163   if (!Op.mayHaveIntegerOverflow())
164     return true;
165 
166   // If a unary op has a widened operand, the op cannot overflow.
167   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
168     return !UO->canOverflow();
169 
170   // We usually don't need overflow checks for binops with widened operands.
171   // Multiplication with promoted unsigned operands is a special case.
172   const auto *BO = cast<BinaryOperator>(Op.E);
173   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
174   if (!OptionalLHSTy)
175     return false;
176 
177   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
178   if (!OptionalRHSTy)
179     return false;
180 
181   QualType LHSTy = *OptionalLHSTy;
182   QualType RHSTy = *OptionalRHSTy;
183 
184   // This is the simple case: binops without unsigned multiplication, and with
185   // widened operands. No overflow check is needed here.
186   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
187       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
188     return true;
189 
190   // For unsigned multiplication the overflow check can be elided if either one
191   // of the unpromoted types are less than half the size of the promoted type.
192   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
193   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
194          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
195 }
196 
197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
198 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
199                                 FPOptions FPFeatures) {
200   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
201 }
202 
203 /// Propagate fast-math flags from \p Op to the instruction in \p V.
204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
205   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
206     llvm::FastMathFlags FMF = I->getFastMathFlags();
207     updateFastMathFlags(FMF, Op.FPFeatures);
208     I->setFastMathFlags(FMF);
209   }
210   return V;
211 }
212 
213 class ScalarExprEmitter
214   : public StmtVisitor<ScalarExprEmitter, Value*> {
215   CodeGenFunction &CGF;
216   CGBuilderTy &Builder;
217   bool IgnoreResultAssign;
218   llvm::LLVMContext &VMContext;
219 public:
220 
221   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
222     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
223       VMContext(cgf.getLLVMContext()) {
224   }
225 
226   //===--------------------------------------------------------------------===//
227   //                               Utilities
228   //===--------------------------------------------------------------------===//
229 
230   bool TestAndClearIgnoreResultAssign() {
231     bool I = IgnoreResultAssign;
232     IgnoreResultAssign = false;
233     return I;
234   }
235 
236   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
237   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
238   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
239     return CGF.EmitCheckedLValue(E, TCK);
240   }
241 
242   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
243                       const BinOpInfo &Info);
244 
245   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
246     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
247   }
248 
249   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
250     const AlignValueAttr *AVAttr = nullptr;
251     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
252       const ValueDecl *VD = DRE->getDecl();
253 
254       if (VD->getType()->isReferenceType()) {
255         if (const auto *TTy =
256             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
257           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
258       } else {
259         // Assumptions for function parameters are emitted at the start of the
260         // function, so there is no need to repeat that here.
261         if (isa<ParmVarDecl>(VD))
262           return;
263 
264         AVAttr = VD->getAttr<AlignValueAttr>();
265       }
266     }
267 
268     if (!AVAttr)
269       if (const auto *TTy =
270           dyn_cast<TypedefType>(E->getType()))
271         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
272 
273     if (!AVAttr)
274       return;
275 
276     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
277     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
278     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
279   }
280 
281   /// EmitLoadOfLValue - Given an expression with complex type that represents a
282   /// value l-value, this method emits the address of the l-value, then loads
283   /// and returns the result.
284   Value *EmitLoadOfLValue(const Expr *E) {
285     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
286                                 E->getExprLoc());
287 
288     EmitLValueAlignmentAssumption(E, V);
289     return V;
290   }
291 
292   /// EmitConversionToBool - Convert the specified expression value to a
293   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
294   Value *EmitConversionToBool(Value *Src, QualType DstTy);
295 
296   /// Emit a check that a conversion to or from a floating-point type does not
297   /// overflow.
298   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
299                                 Value *Src, QualType SrcType, QualType DstType,
300                                 llvm::Type *DstTy, SourceLocation Loc);
301 
302   /// Emit a conversion from the specified type to the specified destination
303   /// type, both of which are LLVM scalar types.
304   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
305                               SourceLocation Loc);
306 
307   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
308                               SourceLocation Loc, bool TreatBooleanAsSigned);
309 
310   /// Emit a conversion from the specified complex type to the specified
311   /// destination type, where the destination type is an LLVM scalar type.
312   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
313                                        QualType SrcTy, QualType DstTy,
314                                        SourceLocation Loc);
315 
316   /// EmitNullValue - Emit a value that corresponds to null for the given type.
317   Value *EmitNullValue(QualType Ty);
318 
319   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
320   Value *EmitFloatToBoolConversion(Value *V) {
321     // Compare against 0.0 for fp scalars.
322     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
323     return Builder.CreateFCmpUNE(V, Zero, "tobool");
324   }
325 
326   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
327   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
328     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
329 
330     return Builder.CreateICmpNE(V, Zero, "tobool");
331   }
332 
333   Value *EmitIntToBoolConversion(Value *V) {
334     // Because of the type rules of C, we often end up computing a
335     // logical value, then zero extending it to int, then wanting it
336     // as a logical value again.  Optimize this common case.
337     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
338       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
339         Value *Result = ZI->getOperand(0);
340         // If there aren't any more uses, zap the instruction to save space.
341         // Note that there can be more uses, for example if this
342         // is the result of an assignment.
343         if (ZI->use_empty())
344           ZI->eraseFromParent();
345         return Result;
346       }
347     }
348 
349     return Builder.CreateIsNotNull(V, "tobool");
350   }
351 
352   //===--------------------------------------------------------------------===//
353   //                            Visitor Methods
354   //===--------------------------------------------------------------------===//
355 
356   Value *Visit(Expr *E) {
357     ApplyDebugLocation DL(CGF, E);
358     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
359   }
360 
361   Value *VisitStmt(Stmt *S) {
362     S->dump(CGF.getContext().getSourceManager());
363     llvm_unreachable("Stmt can't have complex result type!");
364   }
365   Value *VisitExpr(Expr *S);
366 
367   Value *VisitParenExpr(ParenExpr *PE) {
368     return Visit(PE->getSubExpr());
369   }
370   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
371     return Visit(E->getReplacement());
372   }
373   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
374     return Visit(GE->getResultExpr());
375   }
376   Value *VisitCoawaitExpr(CoawaitExpr *S) {
377     return CGF.EmitCoawaitExpr(*S).getScalarVal();
378   }
379   Value *VisitCoyieldExpr(CoyieldExpr *S) {
380     return CGF.EmitCoyieldExpr(*S).getScalarVal();
381   }
382   Value *VisitUnaryCoawait(const UnaryOperator *E) {
383     return Visit(E->getSubExpr());
384   }
385 
386   // Leaves.
387   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
388     return Builder.getInt(E->getValue());
389   }
390   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
391     return Builder.getInt(E->getValue());
392   }
393   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
394     return llvm::ConstantFP::get(VMContext, E->getValue());
395   }
396   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
397     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
398   }
399   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
400     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
401   }
402   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
403     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
404   }
405   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
406     return EmitNullValue(E->getType());
407   }
408   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
409     return EmitNullValue(E->getType());
410   }
411   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
412   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
413   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
414     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
415     return Builder.CreateBitCast(V, ConvertType(E->getType()));
416   }
417 
418   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
419     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
420   }
421 
422   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
423     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
424   }
425 
426   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
427     if (E->isGLValue())
428       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
429                               E->getExprLoc());
430 
431     // Otherwise, assume the mapping is the scalar directly.
432     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
433   }
434 
435   Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant,
436                       Expr *E) {
437     assert(Constant && "not a constant");
438     if (Constant.isReference())
439       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
440                               E->getExprLoc());
441     return Constant.getValue();
442   }
443 
444   // l-values.
445   Value *VisitDeclRefExpr(DeclRefExpr *E) {
446     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
447       return emitConstant(Constant, E);
448     return EmitLoadOfLValue(E);
449   }
450 
451   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
452     return CGF.EmitObjCSelectorExpr(E);
453   }
454   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
455     return CGF.EmitObjCProtocolExpr(E);
456   }
457   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
458     return EmitLoadOfLValue(E);
459   }
460   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
461     if (E->getMethodDecl() &&
462         E->getMethodDecl()->getReturnType()->isReferenceType())
463       return EmitLoadOfLValue(E);
464     return CGF.EmitObjCMessageExpr(E).getScalarVal();
465   }
466 
467   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
468     LValue LV = CGF.EmitObjCIsaExpr(E);
469     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
470     return V;
471   }
472 
473   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
474     VersionTuple Version = E->getVersion();
475 
476     // If we're checking for a platform older than our minimum deployment
477     // target, we can fold the check away.
478     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
479       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
480 
481     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
482     llvm::Value *Args[] = {
483         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
484         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
485         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
486     };
487 
488     return CGF.EmitBuiltinAvailable(Args);
489   }
490 
491   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
492   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
493   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
494   Value *VisitMemberExpr(MemberExpr *E);
495   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
496   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
497     return EmitLoadOfLValue(E);
498   }
499 
500   Value *VisitInitListExpr(InitListExpr *E);
501 
502   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
503     assert(CGF.getArrayInitIndex() &&
504            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
505     return CGF.getArrayInitIndex();
506   }
507 
508   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
509     return EmitNullValue(E->getType());
510   }
511   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
512     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
513     return VisitCastExpr(E);
514   }
515   Value *VisitCastExpr(CastExpr *E);
516 
517   Value *VisitCallExpr(const CallExpr *E) {
518     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
519       return EmitLoadOfLValue(E);
520 
521     Value *V = CGF.EmitCallExpr(E).getScalarVal();
522 
523     EmitLValueAlignmentAssumption(E, V);
524     return V;
525   }
526 
527   Value *VisitStmtExpr(const StmtExpr *E);
528 
529   // Unary Operators.
530   Value *VisitUnaryPostDec(const UnaryOperator *E) {
531     LValue LV = EmitLValue(E->getSubExpr());
532     return EmitScalarPrePostIncDec(E, LV, false, false);
533   }
534   Value *VisitUnaryPostInc(const UnaryOperator *E) {
535     LValue LV = EmitLValue(E->getSubExpr());
536     return EmitScalarPrePostIncDec(E, LV, true, false);
537   }
538   Value *VisitUnaryPreDec(const UnaryOperator *E) {
539     LValue LV = EmitLValue(E->getSubExpr());
540     return EmitScalarPrePostIncDec(E, LV, false, true);
541   }
542   Value *VisitUnaryPreInc(const UnaryOperator *E) {
543     LValue LV = EmitLValue(E->getSubExpr());
544     return EmitScalarPrePostIncDec(E, LV, true, true);
545   }
546 
547   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
548                                                   llvm::Value *InVal,
549                                                   bool IsInc);
550 
551   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
552                                        bool isInc, bool isPre);
553 
554 
555   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
556     if (isa<MemberPointerType>(E->getType())) // never sugared
557       return CGF.CGM.getMemberPointerConstant(E);
558 
559     return EmitLValue(E->getSubExpr()).getPointer();
560   }
561   Value *VisitUnaryDeref(const UnaryOperator *E) {
562     if (E->getType()->isVoidType())
563       return Visit(E->getSubExpr()); // the actual value should be unused
564     return EmitLoadOfLValue(E);
565   }
566   Value *VisitUnaryPlus(const UnaryOperator *E) {
567     // This differs from gcc, though, most likely due to a bug in gcc.
568     TestAndClearIgnoreResultAssign();
569     return Visit(E->getSubExpr());
570   }
571   Value *VisitUnaryMinus    (const UnaryOperator *E);
572   Value *VisitUnaryNot      (const UnaryOperator *E);
573   Value *VisitUnaryLNot     (const UnaryOperator *E);
574   Value *VisitUnaryReal     (const UnaryOperator *E);
575   Value *VisitUnaryImag     (const UnaryOperator *E);
576   Value *VisitUnaryExtension(const UnaryOperator *E) {
577     return Visit(E->getSubExpr());
578   }
579 
580   // C++
581   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
582     return EmitLoadOfLValue(E);
583   }
584 
585   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
586     return Visit(DAE->getExpr());
587   }
588   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
589     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
590     return Visit(DIE->getExpr());
591   }
592   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
593     return CGF.LoadCXXThis();
594   }
595 
596   Value *VisitExprWithCleanups(ExprWithCleanups *E);
597   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
598     return CGF.EmitCXXNewExpr(E);
599   }
600   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
601     CGF.EmitCXXDeleteExpr(E);
602     return nullptr;
603   }
604 
605   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
606     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
607   }
608 
609   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
610     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
611   }
612 
613   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
614     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
615   }
616 
617   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
618     // C++ [expr.pseudo]p1:
619     //   The result shall only be used as the operand for the function call
620     //   operator (), and the result of such a call has type void. The only
621     //   effect is the evaluation of the postfix-expression before the dot or
622     //   arrow.
623     CGF.EmitScalarExpr(E->getBase());
624     return nullptr;
625   }
626 
627   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
628     return EmitNullValue(E->getType());
629   }
630 
631   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
632     CGF.EmitCXXThrowExpr(E);
633     return nullptr;
634   }
635 
636   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
637     return Builder.getInt1(E->getValue());
638   }
639 
640   // Binary Operators.
641   Value *EmitMul(const BinOpInfo &Ops) {
642     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
643       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
644       case LangOptions::SOB_Defined:
645         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
646       case LangOptions::SOB_Undefined:
647         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
648           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
649         // Fall through.
650       case LangOptions::SOB_Trapping:
651         if (CanElideOverflowCheck(CGF.getContext(), Ops))
652           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
653         return EmitOverflowCheckedBinOp(Ops);
654       }
655     }
656 
657     if (Ops.Ty->isUnsignedIntegerType() &&
658         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
659         !CanElideOverflowCheck(CGF.getContext(), Ops))
660       return EmitOverflowCheckedBinOp(Ops);
661 
662     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
663       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
664       return propagateFMFlags(V, Ops);
665     }
666     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
667   }
668   /// Create a binary op that checks for overflow.
669   /// Currently only supports +, - and *.
670   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
671 
672   // Check for undefined division and modulus behaviors.
673   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
674                                                   llvm::Value *Zero,bool isDiv);
675   // Common helper for getting how wide LHS of shift is.
676   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
677   Value *EmitDiv(const BinOpInfo &Ops);
678   Value *EmitRem(const BinOpInfo &Ops);
679   Value *EmitAdd(const BinOpInfo &Ops);
680   Value *EmitSub(const BinOpInfo &Ops);
681   Value *EmitShl(const BinOpInfo &Ops);
682   Value *EmitShr(const BinOpInfo &Ops);
683   Value *EmitAnd(const BinOpInfo &Ops) {
684     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
685   }
686   Value *EmitXor(const BinOpInfo &Ops) {
687     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
688   }
689   Value *EmitOr (const BinOpInfo &Ops) {
690     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
691   }
692 
693   BinOpInfo EmitBinOps(const BinaryOperator *E);
694   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
695                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
696                                   Value *&Result);
697 
698   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
699                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
700 
701   // Binary operators and binary compound assignment operators.
702 #define HANDLEBINOP(OP) \
703   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
704     return Emit ## OP(EmitBinOps(E));                                      \
705   }                                                                        \
706   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
707     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
708   }
709   HANDLEBINOP(Mul)
710   HANDLEBINOP(Div)
711   HANDLEBINOP(Rem)
712   HANDLEBINOP(Add)
713   HANDLEBINOP(Sub)
714   HANDLEBINOP(Shl)
715   HANDLEBINOP(Shr)
716   HANDLEBINOP(And)
717   HANDLEBINOP(Xor)
718   HANDLEBINOP(Or)
719 #undef HANDLEBINOP
720 
721   // Comparisons.
722   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
723                      llvm::CmpInst::Predicate SICmpOpc,
724                      llvm::CmpInst::Predicate FCmpOpc);
725 #define VISITCOMP(CODE, UI, SI, FP) \
726     Value *VisitBin##CODE(const BinaryOperator *E) { \
727       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
728                          llvm::FCmpInst::FP); }
729   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
730   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
731   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
732   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
733   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
734   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
735 #undef VISITCOMP
736 
737   Value *VisitBinAssign     (const BinaryOperator *E);
738 
739   Value *VisitBinLAnd       (const BinaryOperator *E);
740   Value *VisitBinLOr        (const BinaryOperator *E);
741   Value *VisitBinComma      (const BinaryOperator *E);
742 
743   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
744   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
745 
746   // Other Operators.
747   Value *VisitBlockExpr(const BlockExpr *BE);
748   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
749   Value *VisitChooseExpr(ChooseExpr *CE);
750   Value *VisitVAArgExpr(VAArgExpr *VE);
751   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
752     return CGF.EmitObjCStringLiteral(E);
753   }
754   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
755     return CGF.EmitObjCBoxedExpr(E);
756   }
757   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
758     return CGF.EmitObjCArrayLiteral(E);
759   }
760   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
761     return CGF.EmitObjCDictionaryLiteral(E);
762   }
763   Value *VisitAsTypeExpr(AsTypeExpr *CE);
764   Value *VisitAtomicExpr(AtomicExpr *AE);
765 };
766 }  // end anonymous namespace.
767 
768 //===----------------------------------------------------------------------===//
769 //                                Utilities
770 //===----------------------------------------------------------------------===//
771 
772 /// EmitConversionToBool - Convert the specified expression value to a
773 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
774 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
775   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
776 
777   if (SrcType->isRealFloatingType())
778     return EmitFloatToBoolConversion(Src);
779 
780   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
781     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
782 
783   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
784          "Unknown scalar type to convert");
785 
786   if (isa<llvm::IntegerType>(Src->getType()))
787     return EmitIntToBoolConversion(Src);
788 
789   assert(isa<llvm::PointerType>(Src->getType()));
790   return EmitPointerToBoolConversion(Src, SrcType);
791 }
792 
793 void ScalarExprEmitter::EmitFloatConversionCheck(
794     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
795     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
796   CodeGenFunction::SanitizerScope SanScope(&CGF);
797   using llvm::APFloat;
798   using llvm::APSInt;
799 
800   llvm::Type *SrcTy = Src->getType();
801 
802   llvm::Value *Check = nullptr;
803   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
804     // Integer to floating-point. This can fail for unsigned short -> __half
805     // or unsigned __int128 -> float.
806     assert(DstType->isFloatingType());
807     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
808 
809     APFloat LargestFloat =
810       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
811     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
812 
813     bool IsExact;
814     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
815                                       &IsExact) != APFloat::opOK)
816       // The range of representable values of this floating point type includes
817       // all values of this integer type. Don't need an overflow check.
818       return;
819 
820     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
821     if (SrcIsUnsigned)
822       Check = Builder.CreateICmpULE(Src, Max);
823     else {
824       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
825       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
826       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
827       Check = Builder.CreateAnd(GE, LE);
828     }
829   } else {
830     const llvm::fltSemantics &SrcSema =
831       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
832     if (isa<llvm::IntegerType>(DstTy)) {
833       // Floating-point to integer. This has undefined behavior if the source is
834       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
835       // to an integer).
836       unsigned Width = CGF.getContext().getIntWidth(DstType);
837       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
838 
839       APSInt Min = APSInt::getMinValue(Width, Unsigned);
840       APFloat MinSrc(SrcSema, APFloat::uninitialized);
841       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
842           APFloat::opOverflow)
843         // Don't need an overflow check for lower bound. Just check for
844         // -Inf/NaN.
845         MinSrc = APFloat::getInf(SrcSema, true);
846       else
847         // Find the largest value which is too small to represent (before
848         // truncation toward zero).
849         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
850 
851       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
852       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
853       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
854           APFloat::opOverflow)
855         // Don't need an overflow check for upper bound. Just check for
856         // +Inf/NaN.
857         MaxSrc = APFloat::getInf(SrcSema, false);
858       else
859         // Find the smallest value which is too large to represent (before
860         // truncation toward zero).
861         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
862 
863       // If we're converting from __half, convert the range to float to match
864       // the type of src.
865       if (OrigSrcType->isHalfType()) {
866         const llvm::fltSemantics &Sema =
867           CGF.getContext().getFloatTypeSemantics(SrcType);
868         bool IsInexact;
869         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
870         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
871       }
872 
873       llvm::Value *GE =
874         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
875       llvm::Value *LE =
876         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
877       Check = Builder.CreateAnd(GE, LE);
878     } else {
879       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
880       //
881       // Floating-point to floating-point. This has undefined behavior if the
882       // source is not in the range of representable values of the destination
883       // type. The C and C++ standards are spectacularly unclear here. We
884       // diagnose finite out-of-range conversions, but allow infinities and NaNs
885       // to convert to the corresponding value in the smaller type.
886       //
887       // C11 Annex F gives all such conversions defined behavior for IEC 60559
888       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
889       // does not.
890 
891       // Converting from a lower rank to a higher rank can never have
892       // undefined behavior, since higher-rank types must have a superset
893       // of values of lower-rank types.
894       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
895         return;
896 
897       assert(!OrigSrcType->isHalfType() &&
898              "should not check conversion from __half, it has the lowest rank");
899 
900       const llvm::fltSemantics &DstSema =
901         CGF.getContext().getFloatTypeSemantics(DstType);
902       APFloat MinBad = APFloat::getLargest(DstSema, false);
903       APFloat MaxBad = APFloat::getInf(DstSema, false);
904 
905       bool IsInexact;
906       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
907       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
908 
909       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
910         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
911       llvm::Value *GE =
912         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
913       llvm::Value *LE =
914         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
915       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
916     }
917   }
918 
919   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
920                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
921                                   CGF.EmitCheckTypeDescriptor(DstType)};
922   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
923                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
924 }
925 
926 /// Emit a conversion from the specified type to the specified destination type,
927 /// both of which are LLVM scalar types.
928 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
929                                                QualType DstType,
930                                                SourceLocation Loc) {
931   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
932 }
933 
934 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
935                                                QualType DstType,
936                                                SourceLocation Loc,
937                                                bool TreatBooleanAsSigned) {
938   SrcType = CGF.getContext().getCanonicalType(SrcType);
939   DstType = CGF.getContext().getCanonicalType(DstType);
940   if (SrcType == DstType) return Src;
941 
942   if (DstType->isVoidType()) return nullptr;
943 
944   llvm::Value *OrigSrc = Src;
945   QualType OrigSrcType = SrcType;
946   llvm::Type *SrcTy = Src->getType();
947 
948   // Handle conversions to bool first, they are special: comparisons against 0.
949   if (DstType->isBooleanType())
950     return EmitConversionToBool(Src, SrcType);
951 
952   llvm::Type *DstTy = ConvertType(DstType);
953 
954   // Cast from half through float if half isn't a native type.
955   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
956     // Cast to FP using the intrinsic if the half type itself isn't supported.
957     if (DstTy->isFloatingPointTy()) {
958       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
959         return Builder.CreateCall(
960             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
961             Src);
962     } else {
963       // Cast to other types through float, using either the intrinsic or FPExt,
964       // depending on whether the half type itself is supported
965       // (as opposed to operations on half, available with NativeHalfType).
966       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
967         Src = Builder.CreateCall(
968             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
969                                  CGF.CGM.FloatTy),
970             Src);
971       } else {
972         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
973       }
974       SrcType = CGF.getContext().FloatTy;
975       SrcTy = CGF.FloatTy;
976     }
977   }
978 
979   // Ignore conversions like int -> uint.
980   if (SrcTy == DstTy)
981     return Src;
982 
983   // Handle pointer conversions next: pointers can only be converted to/from
984   // other pointers and integers. Check for pointer types in terms of LLVM, as
985   // some native types (like Obj-C id) may map to a pointer type.
986   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
987     // The source value may be an integer, or a pointer.
988     if (isa<llvm::PointerType>(SrcTy))
989       return Builder.CreateBitCast(Src, DstTy, "conv");
990 
991     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
992     // First, convert to the correct width so that we control the kind of
993     // extension.
994     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
995     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
996     llvm::Value* IntResult =
997         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
998     // Then, cast to pointer.
999     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1000   }
1001 
1002   if (isa<llvm::PointerType>(SrcTy)) {
1003     // Must be an ptr to int cast.
1004     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1005     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1006   }
1007 
1008   // A scalar can be splatted to an extended vector of the same element type
1009   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1010     // Sema should add casts to make sure that the source expression's type is
1011     // the same as the vector's element type (sans qualifiers)
1012     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1013                SrcType.getTypePtr() &&
1014            "Splatted expr doesn't match with vector element type?");
1015 
1016     // Splat the element across to all elements
1017     unsigned NumElements = DstTy->getVectorNumElements();
1018     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1019   }
1020 
1021   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1022     // Allow bitcast from vector to integer/fp of the same size.
1023     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1024     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1025     if (SrcSize == DstSize)
1026       return Builder.CreateBitCast(Src, DstTy, "conv");
1027 
1028     // Conversions between vectors of different sizes are not allowed except
1029     // when vectors of half are involved. Operations on storage-only half
1030     // vectors require promoting half vector operands to float vectors and
1031     // truncating the result, which is either an int or float vector, to a
1032     // short or half vector.
1033 
1034     // Source and destination are both expected to be vectors.
1035     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1036     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1037     (void)DstElementTy;
1038 
1039     assert(((SrcElementTy->isIntegerTy() &&
1040              DstElementTy->isIntegerTy()) ||
1041             (SrcElementTy->isFloatingPointTy() &&
1042              DstElementTy->isFloatingPointTy())) &&
1043            "unexpected conversion between a floating-point vector and an "
1044            "integer vector");
1045 
1046     // Truncate an i32 vector to an i16 vector.
1047     if (SrcElementTy->isIntegerTy())
1048       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1049 
1050     // Truncate a float vector to a half vector.
1051     if (SrcSize > DstSize)
1052       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1053 
1054     // Promote a half vector to a float vector.
1055     return Builder.CreateFPExt(Src, DstTy, "conv");
1056   }
1057 
1058   // Finally, we have the arithmetic types: real int/float.
1059   Value *Res = nullptr;
1060   llvm::Type *ResTy = DstTy;
1061 
1062   // An overflowing conversion has undefined behavior if either the source type
1063   // or the destination type is a floating-point type.
1064   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1065       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1066     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1067                              Loc);
1068 
1069   // Cast to half through float if half isn't a native type.
1070   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1071     // Make sure we cast in a single step if from another FP type.
1072     if (SrcTy->isFloatingPointTy()) {
1073       // Use the intrinsic if the half type itself isn't supported
1074       // (as opposed to operations on half, available with NativeHalfType).
1075       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1076         return Builder.CreateCall(
1077             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1078       // If the half type is supported, just use an fptrunc.
1079       return Builder.CreateFPTrunc(Src, DstTy);
1080     }
1081     DstTy = CGF.FloatTy;
1082   }
1083 
1084   if (isa<llvm::IntegerType>(SrcTy)) {
1085     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1086     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
1087       InputSigned = true;
1088     }
1089     if (isa<llvm::IntegerType>(DstTy))
1090       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1091     else if (InputSigned)
1092       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1093     else
1094       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1095   } else if (isa<llvm::IntegerType>(DstTy)) {
1096     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1097     if (DstType->isSignedIntegerOrEnumerationType())
1098       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1099     else
1100       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1101   } else {
1102     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1103            "Unknown real conversion");
1104     if (DstTy->getTypeID() < SrcTy->getTypeID())
1105       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1106     else
1107       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1108   }
1109 
1110   if (DstTy != ResTy) {
1111     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1112       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1113       Res = Builder.CreateCall(
1114         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1115         Res);
1116     } else {
1117       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1118     }
1119   }
1120 
1121   return Res;
1122 }
1123 
1124 /// Emit a conversion from the specified complex type to the specified
1125 /// destination type, where the destination type is an LLVM scalar type.
1126 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1127     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1128     SourceLocation Loc) {
1129   // Get the source element type.
1130   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1131 
1132   // Handle conversions to bool first, they are special: comparisons against 0.
1133   if (DstTy->isBooleanType()) {
1134     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1135     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1136     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1137     return Builder.CreateOr(Src.first, Src.second, "tobool");
1138   }
1139 
1140   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1141   // the imaginary part of the complex value is discarded and the value of the
1142   // real part is converted according to the conversion rules for the
1143   // corresponding real type.
1144   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1145 }
1146 
1147 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1148   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1149 }
1150 
1151 /// Emit a sanitization check for the given "binary" operation (which
1152 /// might actually be a unary increment which has been lowered to a binary
1153 /// operation). The check passes if all values in \p Checks (which are \c i1),
1154 /// are \c true.
1155 void ScalarExprEmitter::EmitBinOpCheck(
1156     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1157   assert(CGF.IsSanitizerScope);
1158   SanitizerHandler Check;
1159   SmallVector<llvm::Constant *, 4> StaticData;
1160   SmallVector<llvm::Value *, 2> DynamicData;
1161 
1162   BinaryOperatorKind Opcode = Info.Opcode;
1163   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1164     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1165 
1166   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1167   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1168   if (UO && UO->getOpcode() == UO_Minus) {
1169     Check = SanitizerHandler::NegateOverflow;
1170     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1171     DynamicData.push_back(Info.RHS);
1172   } else {
1173     if (BinaryOperator::isShiftOp(Opcode)) {
1174       // Shift LHS negative or too large, or RHS out of bounds.
1175       Check = SanitizerHandler::ShiftOutOfBounds;
1176       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1177       StaticData.push_back(
1178         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1179       StaticData.push_back(
1180         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1181     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1182       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1183       Check = SanitizerHandler::DivremOverflow;
1184       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1185     } else {
1186       // Arithmetic overflow (+, -, *).
1187       switch (Opcode) {
1188       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1189       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1190       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1191       default: llvm_unreachable("unexpected opcode for bin op check");
1192       }
1193       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1194     }
1195     DynamicData.push_back(Info.LHS);
1196     DynamicData.push_back(Info.RHS);
1197   }
1198 
1199   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1200 }
1201 
1202 //===----------------------------------------------------------------------===//
1203 //                            Visitor Methods
1204 //===----------------------------------------------------------------------===//
1205 
1206 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1207   CGF.ErrorUnsupported(E, "scalar expression");
1208   if (E->getType()->isVoidType())
1209     return nullptr;
1210   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1211 }
1212 
1213 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1214   // Vector Mask Case
1215   if (E->getNumSubExprs() == 2) {
1216     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1217     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1218     Value *Mask;
1219 
1220     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1221     unsigned LHSElts = LTy->getNumElements();
1222 
1223     Mask = RHS;
1224 
1225     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1226 
1227     // Mask off the high bits of each shuffle index.
1228     Value *MaskBits =
1229         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1230     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1231 
1232     // newv = undef
1233     // mask = mask & maskbits
1234     // for each elt
1235     //   n = extract mask i
1236     //   x = extract val n
1237     //   newv = insert newv, x, i
1238     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1239                                                   MTy->getNumElements());
1240     Value* NewV = llvm::UndefValue::get(RTy);
1241     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1242       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1243       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1244 
1245       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1246       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1247     }
1248     return NewV;
1249   }
1250 
1251   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1252   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1253 
1254   SmallVector<llvm::Constant*, 32> indices;
1255   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1256     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1257     // Check for -1 and output it as undef in the IR.
1258     if (Idx.isSigned() && Idx.isAllOnesValue())
1259       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1260     else
1261       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1262   }
1263 
1264   Value *SV = llvm::ConstantVector::get(indices);
1265   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1266 }
1267 
1268 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1269   QualType SrcType = E->getSrcExpr()->getType(),
1270            DstType = E->getType();
1271 
1272   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1273 
1274   SrcType = CGF.getContext().getCanonicalType(SrcType);
1275   DstType = CGF.getContext().getCanonicalType(DstType);
1276   if (SrcType == DstType) return Src;
1277 
1278   assert(SrcType->isVectorType() &&
1279          "ConvertVector source type must be a vector");
1280   assert(DstType->isVectorType() &&
1281          "ConvertVector destination type must be a vector");
1282 
1283   llvm::Type *SrcTy = Src->getType();
1284   llvm::Type *DstTy = ConvertType(DstType);
1285 
1286   // Ignore conversions like int -> uint.
1287   if (SrcTy == DstTy)
1288     return Src;
1289 
1290   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1291            DstEltType = DstType->getAs<VectorType>()->getElementType();
1292 
1293   assert(SrcTy->isVectorTy() &&
1294          "ConvertVector source IR type must be a vector");
1295   assert(DstTy->isVectorTy() &&
1296          "ConvertVector destination IR type must be a vector");
1297 
1298   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1299              *DstEltTy = DstTy->getVectorElementType();
1300 
1301   if (DstEltType->isBooleanType()) {
1302     assert((SrcEltTy->isFloatingPointTy() ||
1303             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1304 
1305     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1306     if (SrcEltTy->isFloatingPointTy()) {
1307       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1308     } else {
1309       return Builder.CreateICmpNE(Src, Zero, "tobool");
1310     }
1311   }
1312 
1313   // We have the arithmetic types: real int/float.
1314   Value *Res = nullptr;
1315 
1316   if (isa<llvm::IntegerType>(SrcEltTy)) {
1317     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1318     if (isa<llvm::IntegerType>(DstEltTy))
1319       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1320     else if (InputSigned)
1321       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1322     else
1323       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1324   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1325     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1326     if (DstEltType->isSignedIntegerOrEnumerationType())
1327       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1328     else
1329       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1330   } else {
1331     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1332            "Unknown real conversion");
1333     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1334       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1335     else
1336       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1337   }
1338 
1339   return Res;
1340 }
1341 
1342 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1343   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1344     CGF.EmitIgnoredExpr(E->getBase());
1345     return emitConstant(Constant, E);
1346   } else {
1347     llvm::APSInt Value;
1348     if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1349       CGF.EmitIgnoredExpr(E->getBase());
1350       return Builder.getInt(Value);
1351     }
1352   }
1353 
1354   return EmitLoadOfLValue(E);
1355 }
1356 
1357 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1358   TestAndClearIgnoreResultAssign();
1359 
1360   // Emit subscript expressions in rvalue context's.  For most cases, this just
1361   // loads the lvalue formed by the subscript expr.  However, we have to be
1362   // careful, because the base of a vector subscript is occasionally an rvalue,
1363   // so we can't get it as an lvalue.
1364   if (!E->getBase()->getType()->isVectorType())
1365     return EmitLoadOfLValue(E);
1366 
1367   // Handle the vector case.  The base must be a vector, the index must be an
1368   // integer value.
1369   Value *Base = Visit(E->getBase());
1370   Value *Idx  = Visit(E->getIdx());
1371   QualType IdxTy = E->getIdx()->getType();
1372 
1373   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1374     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1375 
1376   return Builder.CreateExtractElement(Base, Idx, "vecext");
1377 }
1378 
1379 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1380                                   unsigned Off, llvm::Type *I32Ty) {
1381   int MV = SVI->getMaskValue(Idx);
1382   if (MV == -1)
1383     return llvm::UndefValue::get(I32Ty);
1384   return llvm::ConstantInt::get(I32Ty, Off+MV);
1385 }
1386 
1387 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1388   if (C->getBitWidth() != 32) {
1389       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1390                                                     C->getZExtValue()) &&
1391              "Index operand too large for shufflevector mask!");
1392       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1393   }
1394   return C;
1395 }
1396 
1397 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1398   bool Ignore = TestAndClearIgnoreResultAssign();
1399   (void)Ignore;
1400   assert (Ignore == false && "init list ignored");
1401   unsigned NumInitElements = E->getNumInits();
1402 
1403   if (E->hadArrayRangeDesignator())
1404     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1405 
1406   llvm::VectorType *VType =
1407     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1408 
1409   if (!VType) {
1410     if (NumInitElements == 0) {
1411       // C++11 value-initialization for the scalar.
1412       return EmitNullValue(E->getType());
1413     }
1414     // We have a scalar in braces. Just use the first element.
1415     return Visit(E->getInit(0));
1416   }
1417 
1418   unsigned ResElts = VType->getNumElements();
1419 
1420   // Loop over initializers collecting the Value for each, and remembering
1421   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1422   // us to fold the shuffle for the swizzle into the shuffle for the vector
1423   // initializer, since LLVM optimizers generally do not want to touch
1424   // shuffles.
1425   unsigned CurIdx = 0;
1426   bool VIsUndefShuffle = false;
1427   llvm::Value *V = llvm::UndefValue::get(VType);
1428   for (unsigned i = 0; i != NumInitElements; ++i) {
1429     Expr *IE = E->getInit(i);
1430     Value *Init = Visit(IE);
1431     SmallVector<llvm::Constant*, 16> Args;
1432 
1433     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1434 
1435     // Handle scalar elements.  If the scalar initializer is actually one
1436     // element of a different vector of the same width, use shuffle instead of
1437     // extract+insert.
1438     if (!VVT) {
1439       if (isa<ExtVectorElementExpr>(IE)) {
1440         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1441 
1442         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1443           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1444           Value *LHS = nullptr, *RHS = nullptr;
1445           if (CurIdx == 0) {
1446             // insert into undef -> shuffle (src, undef)
1447             // shufflemask must use an i32
1448             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1449             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1450 
1451             LHS = EI->getVectorOperand();
1452             RHS = V;
1453             VIsUndefShuffle = true;
1454           } else if (VIsUndefShuffle) {
1455             // insert into undefshuffle && size match -> shuffle (v, src)
1456             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1457             for (unsigned j = 0; j != CurIdx; ++j)
1458               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1459             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1460             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1461 
1462             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1463             RHS = EI->getVectorOperand();
1464             VIsUndefShuffle = false;
1465           }
1466           if (!Args.empty()) {
1467             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1468             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1469             ++CurIdx;
1470             continue;
1471           }
1472         }
1473       }
1474       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1475                                       "vecinit");
1476       VIsUndefShuffle = false;
1477       ++CurIdx;
1478       continue;
1479     }
1480 
1481     unsigned InitElts = VVT->getNumElements();
1482 
1483     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1484     // input is the same width as the vector being constructed, generate an
1485     // optimized shuffle of the swizzle input into the result.
1486     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1487     if (isa<ExtVectorElementExpr>(IE)) {
1488       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1489       Value *SVOp = SVI->getOperand(0);
1490       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1491 
1492       if (OpTy->getNumElements() == ResElts) {
1493         for (unsigned j = 0; j != CurIdx; ++j) {
1494           // If the current vector initializer is a shuffle with undef, merge
1495           // this shuffle directly into it.
1496           if (VIsUndefShuffle) {
1497             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1498                                       CGF.Int32Ty));
1499           } else {
1500             Args.push_back(Builder.getInt32(j));
1501           }
1502         }
1503         for (unsigned j = 0, je = InitElts; j != je; ++j)
1504           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1505         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1506 
1507         if (VIsUndefShuffle)
1508           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1509 
1510         Init = SVOp;
1511       }
1512     }
1513 
1514     // Extend init to result vector length, and then shuffle its contribution
1515     // to the vector initializer into V.
1516     if (Args.empty()) {
1517       for (unsigned j = 0; j != InitElts; ++j)
1518         Args.push_back(Builder.getInt32(j));
1519       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1520       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1521       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1522                                          Mask, "vext");
1523 
1524       Args.clear();
1525       for (unsigned j = 0; j != CurIdx; ++j)
1526         Args.push_back(Builder.getInt32(j));
1527       for (unsigned j = 0; j != InitElts; ++j)
1528         Args.push_back(Builder.getInt32(j+Offset));
1529       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1530     }
1531 
1532     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1533     // merging subsequent shuffles into this one.
1534     if (CurIdx == 0)
1535       std::swap(V, Init);
1536     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1537     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1538     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1539     CurIdx += InitElts;
1540   }
1541 
1542   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1543   // Emit remaining default initializers.
1544   llvm::Type *EltTy = VType->getElementType();
1545 
1546   // Emit remaining default initializers
1547   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1548     Value *Idx = Builder.getInt32(CurIdx);
1549     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1550     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1551   }
1552   return V;
1553 }
1554 
1555 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1556   const Expr *E = CE->getSubExpr();
1557 
1558   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1559     return false;
1560 
1561   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1562     // We always assume that 'this' is never null.
1563     return false;
1564   }
1565 
1566   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1567     // And that glvalue casts are never null.
1568     if (ICE->getValueKind() != VK_RValue)
1569       return false;
1570   }
1571 
1572   return true;
1573 }
1574 
1575 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1576 // have to handle a more broad range of conversions than explicit casts, as they
1577 // handle things like function to ptr-to-function decay etc.
1578 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1579   Expr *E = CE->getSubExpr();
1580   QualType DestTy = CE->getType();
1581   CastKind Kind = CE->getCastKind();
1582 
1583   // These cases are generally not written to ignore the result of
1584   // evaluating their sub-expressions, so we clear this now.
1585   bool Ignored = TestAndClearIgnoreResultAssign();
1586 
1587   // Since almost all cast kinds apply to scalars, this switch doesn't have
1588   // a default case, so the compiler will warn on a missing case.  The cases
1589   // are in the same order as in the CastKind enum.
1590   switch (Kind) {
1591   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1592   case CK_BuiltinFnToFnPtr:
1593     llvm_unreachable("builtin functions are handled elsewhere");
1594 
1595   case CK_LValueBitCast:
1596   case CK_ObjCObjectLValueCast: {
1597     Address Addr = EmitLValue(E).getAddress();
1598     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1599     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1600     return EmitLoadOfLValue(LV, CE->getExprLoc());
1601   }
1602 
1603   case CK_CPointerToObjCPointerCast:
1604   case CK_BlockPointerToObjCPointerCast:
1605   case CK_AnyPointerToBlockPointerCast:
1606   case CK_BitCast: {
1607     Value *Src = Visit(const_cast<Expr*>(E));
1608     llvm::Type *SrcTy = Src->getType();
1609     llvm::Type *DstTy = ConvertType(DestTy);
1610     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1611         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1612       llvm_unreachable("wrong cast for pointers in different address spaces"
1613                        "(must be an address space cast)!");
1614     }
1615 
1616     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1617       if (auto PT = DestTy->getAs<PointerType>())
1618         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1619                                       /*MayBeNull=*/true,
1620                                       CodeGenFunction::CFITCK_UnrelatedCast,
1621                                       CE->getLocStart());
1622     }
1623 
1624     return Builder.CreateBitCast(Src, DstTy);
1625   }
1626   case CK_AddressSpaceConversion: {
1627     Expr::EvalResult Result;
1628     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1629         Result.Val.isNullPointer()) {
1630       // If E has side effect, it is emitted even if its final result is a
1631       // null pointer. In that case, a DCE pass should be able to
1632       // eliminate the useless instructions emitted during translating E.
1633       if (Result.HasSideEffects)
1634         Visit(E);
1635       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1636           ConvertType(DestTy)), DestTy);
1637     }
1638     // Since target may map different address spaces in AST to the same address
1639     // space, an address space conversion may end up as a bitcast.
1640     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
1641         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
1642         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
1643   }
1644   case CK_AtomicToNonAtomic:
1645   case CK_NonAtomicToAtomic:
1646   case CK_NoOp:
1647   case CK_UserDefinedConversion:
1648     return Visit(const_cast<Expr*>(E));
1649 
1650   case CK_BaseToDerived: {
1651     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1652     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1653 
1654     Address Base = CGF.EmitPointerWithAlignment(E);
1655     Address Derived =
1656       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1657                                    CE->path_begin(), CE->path_end(),
1658                                    CGF.ShouldNullCheckClassCastValue(CE));
1659 
1660     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1661     // performed and the object is not of the derived type.
1662     if (CGF.sanitizePerformTypeCheck())
1663       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1664                         Derived.getPointer(), DestTy->getPointeeType());
1665 
1666     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1667       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1668                                     Derived.getPointer(),
1669                                     /*MayBeNull=*/true,
1670                                     CodeGenFunction::CFITCK_DerivedCast,
1671                                     CE->getLocStart());
1672 
1673     return Derived.getPointer();
1674   }
1675   case CK_UncheckedDerivedToBase:
1676   case CK_DerivedToBase: {
1677     // The EmitPointerWithAlignment path does this fine; just discard
1678     // the alignment.
1679     return CGF.EmitPointerWithAlignment(CE).getPointer();
1680   }
1681 
1682   case CK_Dynamic: {
1683     Address V = CGF.EmitPointerWithAlignment(E);
1684     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1685     return CGF.EmitDynamicCast(V, DCE);
1686   }
1687 
1688   case CK_ArrayToPointerDecay:
1689     return CGF.EmitArrayToPointerDecay(E).getPointer();
1690   case CK_FunctionToPointerDecay:
1691     return EmitLValue(E).getPointer();
1692 
1693   case CK_NullToPointer:
1694     if (MustVisitNullValue(E))
1695       (void) Visit(E);
1696 
1697     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1698                               DestTy);
1699 
1700   case CK_NullToMemberPointer: {
1701     if (MustVisitNullValue(E))
1702       (void) Visit(E);
1703 
1704     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1705     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1706   }
1707 
1708   case CK_ReinterpretMemberPointer:
1709   case CK_BaseToDerivedMemberPointer:
1710   case CK_DerivedToBaseMemberPointer: {
1711     Value *Src = Visit(E);
1712 
1713     // Note that the AST doesn't distinguish between checked and
1714     // unchecked member pointer conversions, so we always have to
1715     // implement checked conversions here.  This is inefficient when
1716     // actual control flow may be required in order to perform the
1717     // check, which it is for data member pointers (but not member
1718     // function pointers on Itanium and ARM).
1719     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1720   }
1721 
1722   case CK_ARCProduceObject:
1723     return CGF.EmitARCRetainScalarExpr(E);
1724   case CK_ARCConsumeObject:
1725     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1726   case CK_ARCReclaimReturnedObject:
1727     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1728   case CK_ARCExtendBlockObject:
1729     return CGF.EmitARCExtendBlockObject(E);
1730 
1731   case CK_CopyAndAutoreleaseBlockObject:
1732     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1733 
1734   case CK_FloatingRealToComplex:
1735   case CK_FloatingComplexCast:
1736   case CK_IntegralRealToComplex:
1737   case CK_IntegralComplexCast:
1738   case CK_IntegralComplexToFloatingComplex:
1739   case CK_FloatingComplexToIntegralComplex:
1740   case CK_ConstructorConversion:
1741   case CK_ToUnion:
1742     llvm_unreachable("scalar cast to non-scalar value");
1743 
1744   case CK_LValueToRValue:
1745     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1746     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1747     return Visit(const_cast<Expr*>(E));
1748 
1749   case CK_IntegralToPointer: {
1750     Value *Src = Visit(const_cast<Expr*>(E));
1751 
1752     // First, convert to the correct width so that we control the kind of
1753     // extension.
1754     auto DestLLVMTy = ConvertType(DestTy);
1755     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1756     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1757     llvm::Value* IntResult =
1758       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1759 
1760     return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1761   }
1762   case CK_PointerToIntegral:
1763     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1764     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1765 
1766   case CK_ToVoid: {
1767     CGF.EmitIgnoredExpr(E);
1768     return nullptr;
1769   }
1770   case CK_VectorSplat: {
1771     llvm::Type *DstTy = ConvertType(DestTy);
1772     Value *Elt = Visit(const_cast<Expr*>(E));
1773     // Splat the element across to all elements
1774     unsigned NumElements = DstTy->getVectorNumElements();
1775     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1776   }
1777 
1778   case CK_IntegralCast:
1779   case CK_IntegralToFloating:
1780   case CK_FloatingToIntegral:
1781   case CK_FloatingCast:
1782     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1783                                 CE->getExprLoc());
1784   case CK_BooleanToSignedIntegral:
1785     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1786                                 CE->getExprLoc(),
1787                                 /*TreatBooleanAsSigned=*/true);
1788   case CK_IntegralToBoolean:
1789     return EmitIntToBoolConversion(Visit(E));
1790   case CK_PointerToBoolean:
1791     return EmitPointerToBoolConversion(Visit(E), E->getType());
1792   case CK_FloatingToBoolean:
1793     return EmitFloatToBoolConversion(Visit(E));
1794   case CK_MemberPointerToBoolean: {
1795     llvm::Value *MemPtr = Visit(E);
1796     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1797     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1798   }
1799 
1800   case CK_FloatingComplexToReal:
1801   case CK_IntegralComplexToReal:
1802     return CGF.EmitComplexExpr(E, false, true).first;
1803 
1804   case CK_FloatingComplexToBoolean:
1805   case CK_IntegralComplexToBoolean: {
1806     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1807 
1808     // TODO: kill this function off, inline appropriate case here
1809     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1810                                          CE->getExprLoc());
1811   }
1812 
1813   case CK_ZeroToOCLEvent: {
1814     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1815     return llvm::Constant::getNullValue(ConvertType(DestTy));
1816   }
1817 
1818   case CK_ZeroToOCLQueue: {
1819     assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type");
1820     return llvm::Constant::getNullValue(ConvertType(DestTy));
1821   }
1822 
1823   case CK_IntToOCLSampler:
1824     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1825 
1826   } // end of switch
1827 
1828   llvm_unreachable("unknown scalar cast");
1829 }
1830 
1831 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1832   CodeGenFunction::StmtExprEvaluation eval(CGF);
1833   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1834                                            !E->getType()->isVoidType());
1835   if (!RetAlloca.isValid())
1836     return nullptr;
1837   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1838                               E->getExprLoc());
1839 }
1840 
1841 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1842   CGF.enterFullExpression(E);
1843   CodeGenFunction::RunCleanupsScope Scope(CGF);
1844   Value *V = Visit(E->getSubExpr());
1845   // Defend against dominance problems caused by jumps out of expression
1846   // evaluation through the shared cleanup block.
1847   Scope.ForceCleanup({&V});
1848   return V;
1849 }
1850 
1851 //===----------------------------------------------------------------------===//
1852 //                             Unary Operators
1853 //===----------------------------------------------------------------------===//
1854 
1855 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1856                                            llvm::Value *InVal, bool IsInc) {
1857   BinOpInfo BinOp;
1858   BinOp.LHS = InVal;
1859   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1860   BinOp.Ty = E->getType();
1861   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1862   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
1863   BinOp.E = E;
1864   return BinOp;
1865 }
1866 
1867 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1868     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1869   llvm::Value *Amount =
1870       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1871   StringRef Name = IsInc ? "inc" : "dec";
1872   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1873   case LangOptions::SOB_Defined:
1874     return Builder.CreateAdd(InVal, Amount, Name);
1875   case LangOptions::SOB_Undefined:
1876     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1877       return Builder.CreateNSWAdd(InVal, Amount, Name);
1878     // Fall through.
1879   case LangOptions::SOB_Trapping:
1880     if (!E->canOverflow())
1881       return Builder.CreateNSWAdd(InVal, Amount, Name);
1882     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1883   }
1884   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1885 }
1886 
1887 llvm::Value *
1888 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1889                                            bool isInc, bool isPre) {
1890 
1891   QualType type = E->getSubExpr()->getType();
1892   llvm::PHINode *atomicPHI = nullptr;
1893   llvm::Value *value;
1894   llvm::Value *input;
1895 
1896   int amount = (isInc ? 1 : -1);
1897   bool isSubtraction = !isInc;
1898 
1899   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1900     type = atomicTy->getValueType();
1901     if (isInc && type->isBooleanType()) {
1902       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1903       if (isPre) {
1904         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1905           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1906         return Builder.getTrue();
1907       }
1908       // For atomic bool increment, we just store true and return it for
1909       // preincrement, do an atomic swap with true for postincrement
1910       return Builder.CreateAtomicRMW(
1911           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1912           llvm::AtomicOrdering::SequentiallyConsistent);
1913     }
1914     // Special case for atomic increment / decrement on integers, emit
1915     // atomicrmw instructions.  We skip this if we want to be doing overflow
1916     // checking, and fall into the slow path with the atomic cmpxchg loop.
1917     if (!type->isBooleanType() && type->isIntegerType() &&
1918         !(type->isUnsignedIntegerType() &&
1919           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1920         CGF.getLangOpts().getSignedOverflowBehavior() !=
1921             LangOptions::SOB_Trapping) {
1922       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1923         llvm::AtomicRMWInst::Sub;
1924       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1925         llvm::Instruction::Sub;
1926       llvm::Value *amt = CGF.EmitToMemory(
1927           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1928       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1929           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1930       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1931     }
1932     value = EmitLoadOfLValue(LV, E->getExprLoc());
1933     input = value;
1934     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1935     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1936     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1937     value = CGF.EmitToMemory(value, type);
1938     Builder.CreateBr(opBB);
1939     Builder.SetInsertPoint(opBB);
1940     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1941     atomicPHI->addIncoming(value, startBB);
1942     value = atomicPHI;
1943   } else {
1944     value = EmitLoadOfLValue(LV, E->getExprLoc());
1945     input = value;
1946   }
1947 
1948   // Special case of integer increment that we have to check first: bool++.
1949   // Due to promotion rules, we get:
1950   //   bool++ -> bool = bool + 1
1951   //          -> bool = (int)bool + 1
1952   //          -> bool = ((int)bool + 1 != 0)
1953   // An interesting aspect of this is that increment is always true.
1954   // Decrement does not have this property.
1955   if (isInc && type->isBooleanType()) {
1956     value = Builder.getTrue();
1957 
1958   // Most common case by far: integer increment.
1959   } else if (type->isIntegerType()) {
1960     // Note that signed integer inc/dec with width less than int can't
1961     // overflow because of promotion rules; we're just eliding a few steps here.
1962     if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
1963       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1964     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
1965                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1966       value =
1967           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1968     } else {
1969       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1970       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1971     }
1972 
1973   // Next most common: pointer increment.
1974   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1975     QualType type = ptr->getPointeeType();
1976 
1977     // VLA types don't have constant size.
1978     if (const VariableArrayType *vla
1979           = CGF.getContext().getAsVariableArrayType(type)) {
1980       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
1981       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1982       if (CGF.getLangOpts().isSignedOverflowDefined())
1983         value = Builder.CreateGEP(value, numElts, "vla.inc");
1984       else
1985         value = CGF.EmitCheckedInBoundsGEP(
1986             value, numElts, /*SignedIndices=*/false, isSubtraction,
1987             E->getExprLoc(), "vla.inc");
1988 
1989     // Arithmetic on function pointers (!) is just +-1.
1990     } else if (type->isFunctionType()) {
1991       llvm::Value *amt = Builder.getInt32(amount);
1992 
1993       value = CGF.EmitCastToVoidPtr(value);
1994       if (CGF.getLangOpts().isSignedOverflowDefined())
1995         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1996       else
1997         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
1998                                            isSubtraction, E->getExprLoc(),
1999                                            "incdec.funcptr");
2000       value = Builder.CreateBitCast(value, input->getType());
2001 
2002     // For everything else, we can just do a simple increment.
2003     } else {
2004       llvm::Value *amt = Builder.getInt32(amount);
2005       if (CGF.getLangOpts().isSignedOverflowDefined())
2006         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2007       else
2008         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2009                                            isSubtraction, E->getExprLoc(),
2010                                            "incdec.ptr");
2011     }
2012 
2013   // Vector increment/decrement.
2014   } else if (type->isVectorType()) {
2015     if (type->hasIntegerRepresentation()) {
2016       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2017 
2018       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2019     } else {
2020       value = Builder.CreateFAdd(
2021                   value,
2022                   llvm::ConstantFP::get(value->getType(), amount),
2023                   isInc ? "inc" : "dec");
2024     }
2025 
2026   // Floating point.
2027   } else if (type->isRealFloatingType()) {
2028     // Add the inc/dec to the real part.
2029     llvm::Value *amt;
2030 
2031     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2032       // Another special case: half FP increment should be done via float
2033       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2034         value = Builder.CreateCall(
2035             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2036                                  CGF.CGM.FloatTy),
2037             input, "incdec.conv");
2038       } else {
2039         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2040       }
2041     }
2042 
2043     if (value->getType()->isFloatTy())
2044       amt = llvm::ConstantFP::get(VMContext,
2045                                   llvm::APFloat(static_cast<float>(amount)));
2046     else if (value->getType()->isDoubleTy())
2047       amt = llvm::ConstantFP::get(VMContext,
2048                                   llvm::APFloat(static_cast<double>(amount)));
2049     else {
2050       // Remaining types are Half, LongDouble or __float128. Convert from float.
2051       llvm::APFloat F(static_cast<float>(amount));
2052       bool ignored;
2053       const llvm::fltSemantics *FS;
2054       // Don't use getFloatTypeSemantics because Half isn't
2055       // necessarily represented using the "half" LLVM type.
2056       if (value->getType()->isFP128Ty())
2057         FS = &CGF.getTarget().getFloat128Format();
2058       else if (value->getType()->isHalfTy())
2059         FS = &CGF.getTarget().getHalfFormat();
2060       else
2061         FS = &CGF.getTarget().getLongDoubleFormat();
2062       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2063       amt = llvm::ConstantFP::get(VMContext, F);
2064     }
2065     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2066 
2067     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2068       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2069         value = Builder.CreateCall(
2070             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2071                                  CGF.CGM.FloatTy),
2072             value, "incdec.conv");
2073       } else {
2074         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2075       }
2076     }
2077 
2078   // Objective-C pointer types.
2079   } else {
2080     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2081     value = CGF.EmitCastToVoidPtr(value);
2082 
2083     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2084     if (!isInc) size = -size;
2085     llvm::Value *sizeValue =
2086       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2087 
2088     if (CGF.getLangOpts().isSignedOverflowDefined())
2089       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2090     else
2091       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2092                                          /*SignedIndices=*/false, isSubtraction,
2093                                          E->getExprLoc(), "incdec.objptr");
2094     value = Builder.CreateBitCast(value, input->getType());
2095   }
2096 
2097   if (atomicPHI) {
2098     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2099     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2100     auto Pair = CGF.EmitAtomicCompareExchange(
2101         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2102     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2103     llvm::Value *success = Pair.second;
2104     atomicPHI->addIncoming(old, opBB);
2105     Builder.CreateCondBr(success, contBB, opBB);
2106     Builder.SetInsertPoint(contBB);
2107     return isPre ? value : input;
2108   }
2109 
2110   // Store the updated result through the lvalue.
2111   if (LV.isBitField())
2112     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2113   else
2114     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2115 
2116   // If this is a postinc, return the value read from memory, otherwise use the
2117   // updated value.
2118   return isPre ? value : input;
2119 }
2120 
2121 
2122 
2123 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2124   TestAndClearIgnoreResultAssign();
2125   // Emit unary minus with EmitSub so we handle overflow cases etc.
2126   BinOpInfo BinOp;
2127   BinOp.RHS = Visit(E->getSubExpr());
2128 
2129   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2130     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2131   else
2132     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2133   BinOp.Ty = E->getType();
2134   BinOp.Opcode = BO_Sub;
2135   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2136   BinOp.E = E;
2137   return EmitSub(BinOp);
2138 }
2139 
2140 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2141   TestAndClearIgnoreResultAssign();
2142   Value *Op = Visit(E->getSubExpr());
2143   return Builder.CreateNot(Op, "neg");
2144 }
2145 
2146 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2147   // Perform vector logical not on comparison with zero vector.
2148   if (E->getType()->isExtVectorType()) {
2149     Value *Oper = Visit(E->getSubExpr());
2150     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2151     Value *Result;
2152     if (Oper->getType()->isFPOrFPVectorTy())
2153       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2154     else
2155       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2156     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2157   }
2158 
2159   // Compare operand to zero.
2160   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2161 
2162   // Invert value.
2163   // TODO: Could dynamically modify easy computations here.  For example, if
2164   // the operand is an icmp ne, turn into icmp eq.
2165   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2166 
2167   // ZExt result to the expr type.
2168   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2169 }
2170 
2171 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2172   // Try folding the offsetof to a constant.
2173   llvm::APSInt Value;
2174   if (E->EvaluateAsInt(Value, CGF.getContext()))
2175     return Builder.getInt(Value);
2176 
2177   // Loop over the components of the offsetof to compute the value.
2178   unsigned n = E->getNumComponents();
2179   llvm::Type* ResultType = ConvertType(E->getType());
2180   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2181   QualType CurrentType = E->getTypeSourceInfo()->getType();
2182   for (unsigned i = 0; i != n; ++i) {
2183     OffsetOfNode ON = E->getComponent(i);
2184     llvm::Value *Offset = nullptr;
2185     switch (ON.getKind()) {
2186     case OffsetOfNode::Array: {
2187       // Compute the index
2188       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2189       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2190       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2191       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2192 
2193       // Save the element type
2194       CurrentType =
2195           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2196 
2197       // Compute the element size
2198       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2199           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2200 
2201       // Multiply out to compute the result
2202       Offset = Builder.CreateMul(Idx, ElemSize);
2203       break;
2204     }
2205 
2206     case OffsetOfNode::Field: {
2207       FieldDecl *MemberDecl = ON.getField();
2208       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2209       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2210 
2211       // Compute the index of the field in its parent.
2212       unsigned i = 0;
2213       // FIXME: It would be nice if we didn't have to loop here!
2214       for (RecordDecl::field_iterator Field = RD->field_begin(),
2215                                       FieldEnd = RD->field_end();
2216            Field != FieldEnd; ++Field, ++i) {
2217         if (*Field == MemberDecl)
2218           break;
2219       }
2220       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2221 
2222       // Compute the offset to the field
2223       int64_t OffsetInt = RL.getFieldOffset(i) /
2224                           CGF.getContext().getCharWidth();
2225       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2226 
2227       // Save the element type.
2228       CurrentType = MemberDecl->getType();
2229       break;
2230     }
2231 
2232     case OffsetOfNode::Identifier:
2233       llvm_unreachable("dependent __builtin_offsetof");
2234 
2235     case OffsetOfNode::Base: {
2236       if (ON.getBase()->isVirtual()) {
2237         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2238         continue;
2239       }
2240 
2241       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2242       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2243 
2244       // Save the element type.
2245       CurrentType = ON.getBase()->getType();
2246 
2247       // Compute the offset to the base.
2248       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2249       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2250       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2251       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2252       break;
2253     }
2254     }
2255     Result = Builder.CreateAdd(Result, Offset);
2256   }
2257   return Result;
2258 }
2259 
2260 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2261 /// argument of the sizeof expression as an integer.
2262 Value *
2263 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2264                               const UnaryExprOrTypeTraitExpr *E) {
2265   QualType TypeToSize = E->getTypeOfArgument();
2266   if (E->getKind() == UETT_SizeOf) {
2267     if (const VariableArrayType *VAT =
2268           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2269       if (E->isArgumentType()) {
2270         // sizeof(type) - make sure to emit the VLA size.
2271         CGF.EmitVariablyModifiedType(TypeToSize);
2272       } else {
2273         // C99 6.5.3.4p2: If the argument is an expression of type
2274         // VLA, it is evaluated.
2275         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2276       }
2277 
2278       auto VlaSize = CGF.getVLASize(VAT);
2279       llvm::Value *size = VlaSize.NumElts;
2280 
2281       // Scale the number of non-VLA elements by the non-VLA element size.
2282       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2283       if (!eltSize.isOne())
2284         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2285 
2286       return size;
2287     }
2288   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2289     auto Alignment =
2290         CGF.getContext()
2291             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2292                 E->getTypeOfArgument()->getPointeeType()))
2293             .getQuantity();
2294     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2295   }
2296 
2297   // If this isn't sizeof(vla), the result must be constant; use the constant
2298   // folding logic so we don't have to duplicate it here.
2299   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2300 }
2301 
2302 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2303   Expr *Op = E->getSubExpr();
2304   if (Op->getType()->isAnyComplexType()) {
2305     // If it's an l-value, load through the appropriate subobject l-value.
2306     // Note that we have to ask E because Op might be an l-value that
2307     // this won't work for, e.g. an Obj-C property.
2308     if (E->isGLValue())
2309       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2310                                   E->getExprLoc()).getScalarVal();
2311 
2312     // Otherwise, calculate and project.
2313     return CGF.EmitComplexExpr(Op, false, true).first;
2314   }
2315 
2316   return Visit(Op);
2317 }
2318 
2319 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2320   Expr *Op = E->getSubExpr();
2321   if (Op->getType()->isAnyComplexType()) {
2322     // If it's an l-value, load through the appropriate subobject l-value.
2323     // Note that we have to ask E because Op might be an l-value that
2324     // this won't work for, e.g. an Obj-C property.
2325     if (Op->isGLValue())
2326       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2327                                   E->getExprLoc()).getScalarVal();
2328 
2329     // Otherwise, calculate and project.
2330     return CGF.EmitComplexExpr(Op, true, false).second;
2331   }
2332 
2333   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2334   // effects are evaluated, but not the actual value.
2335   if (Op->isGLValue())
2336     CGF.EmitLValue(Op);
2337   else
2338     CGF.EmitScalarExpr(Op, true);
2339   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2340 }
2341 
2342 //===----------------------------------------------------------------------===//
2343 //                           Binary Operators
2344 //===----------------------------------------------------------------------===//
2345 
2346 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2347   TestAndClearIgnoreResultAssign();
2348   BinOpInfo Result;
2349   Result.LHS = Visit(E->getLHS());
2350   Result.RHS = Visit(E->getRHS());
2351   Result.Ty  = E->getType();
2352   Result.Opcode = E->getOpcode();
2353   Result.FPFeatures = E->getFPFeatures();
2354   Result.E = E;
2355   return Result;
2356 }
2357 
2358 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2359                                               const CompoundAssignOperator *E,
2360                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2361                                                    Value *&Result) {
2362   QualType LHSTy = E->getLHS()->getType();
2363   BinOpInfo OpInfo;
2364 
2365   if (E->getComputationResultType()->isAnyComplexType())
2366     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2367 
2368   // Emit the RHS first.  __block variables need to have the rhs evaluated
2369   // first, plus this should improve codegen a little.
2370   OpInfo.RHS = Visit(E->getRHS());
2371   OpInfo.Ty = E->getComputationResultType();
2372   OpInfo.Opcode = E->getOpcode();
2373   OpInfo.FPFeatures = E->getFPFeatures();
2374   OpInfo.E = E;
2375   // Load/convert the LHS.
2376   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2377 
2378   llvm::PHINode *atomicPHI = nullptr;
2379   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2380     QualType type = atomicTy->getValueType();
2381     if (!type->isBooleanType() && type->isIntegerType() &&
2382         !(type->isUnsignedIntegerType() &&
2383           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2384         CGF.getLangOpts().getSignedOverflowBehavior() !=
2385             LangOptions::SOB_Trapping) {
2386       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2387       switch (OpInfo.Opcode) {
2388         // We don't have atomicrmw operands for *, %, /, <<, >>
2389         case BO_MulAssign: case BO_DivAssign:
2390         case BO_RemAssign:
2391         case BO_ShlAssign:
2392         case BO_ShrAssign:
2393           break;
2394         case BO_AddAssign:
2395           aop = llvm::AtomicRMWInst::Add;
2396           break;
2397         case BO_SubAssign:
2398           aop = llvm::AtomicRMWInst::Sub;
2399           break;
2400         case BO_AndAssign:
2401           aop = llvm::AtomicRMWInst::And;
2402           break;
2403         case BO_XorAssign:
2404           aop = llvm::AtomicRMWInst::Xor;
2405           break;
2406         case BO_OrAssign:
2407           aop = llvm::AtomicRMWInst::Or;
2408           break;
2409         default:
2410           llvm_unreachable("Invalid compound assignment type");
2411       }
2412       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2413         llvm::Value *amt = CGF.EmitToMemory(
2414             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2415                                  E->getExprLoc()),
2416             LHSTy);
2417         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2418             llvm::AtomicOrdering::SequentiallyConsistent);
2419         return LHSLV;
2420       }
2421     }
2422     // FIXME: For floating point types, we should be saving and restoring the
2423     // floating point environment in the loop.
2424     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2425     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2426     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2427     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2428     Builder.CreateBr(opBB);
2429     Builder.SetInsertPoint(opBB);
2430     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2431     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2432     OpInfo.LHS = atomicPHI;
2433   }
2434   else
2435     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2436 
2437   SourceLocation Loc = E->getExprLoc();
2438   OpInfo.LHS =
2439       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2440 
2441   // Expand the binary operator.
2442   Result = (this->*Func)(OpInfo);
2443 
2444   // Convert the result back to the LHS type.
2445   Result =
2446       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2447 
2448   if (atomicPHI) {
2449     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2450     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2451     auto Pair = CGF.EmitAtomicCompareExchange(
2452         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2453     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2454     llvm::Value *success = Pair.second;
2455     atomicPHI->addIncoming(old, opBB);
2456     Builder.CreateCondBr(success, contBB, opBB);
2457     Builder.SetInsertPoint(contBB);
2458     return LHSLV;
2459   }
2460 
2461   // Store the result value into the LHS lvalue. Bit-fields are handled
2462   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2463   // 'An assignment expression has the value of the left operand after the
2464   // assignment...'.
2465   if (LHSLV.isBitField())
2466     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2467   else
2468     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2469 
2470   return LHSLV;
2471 }
2472 
2473 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2474                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2475   bool Ignore = TestAndClearIgnoreResultAssign();
2476   Value *RHS;
2477   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2478 
2479   // If the result is clearly ignored, return now.
2480   if (Ignore)
2481     return nullptr;
2482 
2483   // The result of an assignment in C is the assigned r-value.
2484   if (!CGF.getLangOpts().CPlusPlus)
2485     return RHS;
2486 
2487   // If the lvalue is non-volatile, return the computed value of the assignment.
2488   if (!LHS.isVolatileQualified())
2489     return RHS;
2490 
2491   // Otherwise, reload the value.
2492   return EmitLoadOfLValue(LHS, E->getExprLoc());
2493 }
2494 
2495 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2496     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2497   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2498 
2499   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2500     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2501                                     SanitizerKind::IntegerDivideByZero));
2502   }
2503 
2504   const auto *BO = cast<BinaryOperator>(Ops.E);
2505   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2506       Ops.Ty->hasSignedIntegerRepresentation() &&
2507       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2508       Ops.mayHaveIntegerOverflow()) {
2509     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2510 
2511     llvm::Value *IntMin =
2512       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2513     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2514 
2515     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2516     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2517     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2518     Checks.push_back(
2519         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2520   }
2521 
2522   if (Checks.size() > 0)
2523     EmitBinOpCheck(Checks, Ops);
2524 }
2525 
2526 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2527   {
2528     CodeGenFunction::SanitizerScope SanScope(&CGF);
2529     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2530          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2531         Ops.Ty->isIntegerType() &&
2532         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2533       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2534       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2535     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2536                Ops.Ty->isRealFloatingType() &&
2537                Ops.mayHaveFloatDivisionByZero()) {
2538       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2539       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2540       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2541                      Ops);
2542     }
2543   }
2544 
2545   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2546     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2547     if (CGF.getLangOpts().OpenCL &&
2548         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2549       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2550       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2551       // build option allows an application to specify that single precision
2552       // floating-point divide (x/y and 1/x) and sqrt used in the program
2553       // source are correctly rounded.
2554       llvm::Type *ValTy = Val->getType();
2555       if (ValTy->isFloatTy() ||
2556           (isa<llvm::VectorType>(ValTy) &&
2557            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2558         CGF.SetFPAccuracy(Val, 2.5);
2559     }
2560     return Val;
2561   }
2562   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2563     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2564   else
2565     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2566 }
2567 
2568 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2569   // Rem in C can't be a floating point type: C99 6.5.5p2.
2570   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2571        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2572       Ops.Ty->isIntegerType() &&
2573       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2574     CodeGenFunction::SanitizerScope SanScope(&CGF);
2575     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2576     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2577   }
2578 
2579   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2580     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2581   else
2582     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2583 }
2584 
2585 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2586   unsigned IID;
2587   unsigned OpID = 0;
2588 
2589   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2590   switch (Ops.Opcode) {
2591   case BO_Add:
2592   case BO_AddAssign:
2593     OpID = 1;
2594     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2595                      llvm::Intrinsic::uadd_with_overflow;
2596     break;
2597   case BO_Sub:
2598   case BO_SubAssign:
2599     OpID = 2;
2600     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2601                      llvm::Intrinsic::usub_with_overflow;
2602     break;
2603   case BO_Mul:
2604   case BO_MulAssign:
2605     OpID = 3;
2606     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2607                      llvm::Intrinsic::umul_with_overflow;
2608     break;
2609   default:
2610     llvm_unreachable("Unsupported operation for overflow detection");
2611   }
2612   OpID <<= 1;
2613   if (isSigned)
2614     OpID |= 1;
2615 
2616   CodeGenFunction::SanitizerScope SanScope(&CGF);
2617   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2618 
2619   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2620 
2621   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2622   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2623   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2624 
2625   // Handle overflow with llvm.trap if no custom handler has been specified.
2626   const std::string *handlerName =
2627     &CGF.getLangOpts().OverflowHandler;
2628   if (handlerName->empty()) {
2629     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2630     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2631     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2632       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2633       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2634                               : SanitizerKind::UnsignedIntegerOverflow;
2635       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2636     } else
2637       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2638     return result;
2639   }
2640 
2641   // Branch in case of overflow.
2642   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2643   llvm::BasicBlock *continueBB =
2644       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2645   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2646 
2647   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2648 
2649   // If an overflow handler is set, then we want to call it and then use its
2650   // result, if it returns.
2651   Builder.SetInsertPoint(overflowBB);
2652 
2653   // Get the overflow handler.
2654   llvm::Type *Int8Ty = CGF.Int8Ty;
2655   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2656   llvm::FunctionType *handlerTy =
2657       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2658   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2659 
2660   // Sign extend the args to 64-bit, so that we can use the same handler for
2661   // all types of overflow.
2662   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2663   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2664 
2665   // Call the handler with the two arguments, the operation, and the size of
2666   // the result.
2667   llvm::Value *handlerArgs[] = {
2668     lhs,
2669     rhs,
2670     Builder.getInt8(OpID),
2671     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2672   };
2673   llvm::Value *handlerResult =
2674     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2675 
2676   // Truncate the result back to the desired size.
2677   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2678   Builder.CreateBr(continueBB);
2679 
2680   Builder.SetInsertPoint(continueBB);
2681   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2682   phi->addIncoming(result, initialBB);
2683   phi->addIncoming(handlerResult, overflowBB);
2684 
2685   return phi;
2686 }
2687 
2688 /// Emit pointer + index arithmetic.
2689 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2690                                     const BinOpInfo &op,
2691                                     bool isSubtraction) {
2692   // Must have binary (not unary) expr here.  Unary pointer
2693   // increment/decrement doesn't use this path.
2694   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2695 
2696   Value *pointer = op.LHS;
2697   Expr *pointerOperand = expr->getLHS();
2698   Value *index = op.RHS;
2699   Expr *indexOperand = expr->getRHS();
2700 
2701   // In a subtraction, the LHS is always the pointer.
2702   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2703     std::swap(pointer, index);
2704     std::swap(pointerOperand, indexOperand);
2705   }
2706 
2707   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2708 
2709   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2710   auto &DL = CGF.CGM.getDataLayout();
2711   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2712 
2713   // Some versions of glibc and gcc use idioms (particularly in their malloc
2714   // routines) that add a pointer-sized integer (known to be a pointer value)
2715   // to a null pointer in order to cast the value back to an integer or as
2716   // part of a pointer alignment algorithm.  This is undefined behavior, but
2717   // we'd like to be able to compile programs that use it.
2718   //
2719   // Normally, we'd generate a GEP with a null-pointer base here in response
2720   // to that code, but it's also UB to dereference a pointer created that
2721   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
2722   // generate a direct cast of the integer value to a pointer.
2723   //
2724   // The idiom (p = nullptr + N) is not met if any of the following are true:
2725   //
2726   //   The operation is subtraction.
2727   //   The index is not pointer-sized.
2728   //   The pointer type is not byte-sized.
2729   //
2730   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
2731                                                        op.Opcode,
2732                                                        expr->getLHS(),
2733                                                        expr->getRHS()))
2734     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
2735 
2736   if (width != DL.getTypeSizeInBits(PtrTy)) {
2737     // Zero-extend or sign-extend the pointer value according to
2738     // whether the index is signed or not.
2739     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2740                                       "idx.ext");
2741   }
2742 
2743   // If this is subtraction, negate the index.
2744   if (isSubtraction)
2745     index = CGF.Builder.CreateNeg(index, "idx.neg");
2746 
2747   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2748     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2749                         /*Accessed*/ false);
2750 
2751   const PointerType *pointerType
2752     = pointerOperand->getType()->getAs<PointerType>();
2753   if (!pointerType) {
2754     QualType objectType = pointerOperand->getType()
2755                                         ->castAs<ObjCObjectPointerType>()
2756                                         ->getPointeeType();
2757     llvm::Value *objectSize
2758       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2759 
2760     index = CGF.Builder.CreateMul(index, objectSize);
2761 
2762     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2763     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2764     return CGF.Builder.CreateBitCast(result, pointer->getType());
2765   }
2766 
2767   QualType elementType = pointerType->getPointeeType();
2768   if (const VariableArrayType *vla
2769         = CGF.getContext().getAsVariableArrayType(elementType)) {
2770     // The element count here is the total number of non-VLA elements.
2771     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
2772 
2773     // Effectively, the multiply by the VLA size is part of the GEP.
2774     // GEP indexes are signed, and scaling an index isn't permitted to
2775     // signed-overflow, so we use the same semantics for our explicit
2776     // multiply.  We suppress this if overflow is not undefined behavior.
2777     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2778       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2779       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2780     } else {
2781       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2782       pointer =
2783           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2784                                      op.E->getExprLoc(), "add.ptr");
2785     }
2786     return pointer;
2787   }
2788 
2789   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2790   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2791   // future proof.
2792   if (elementType->isVoidType() || elementType->isFunctionType()) {
2793     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2794     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2795     return CGF.Builder.CreateBitCast(result, pointer->getType());
2796   }
2797 
2798   if (CGF.getLangOpts().isSignedOverflowDefined())
2799     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2800 
2801   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2802                                     op.E->getExprLoc(), "add.ptr");
2803 }
2804 
2805 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2806 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2807 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2808 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2809 // efficient operations.
2810 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2811                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2812                            bool negMul, bool negAdd) {
2813   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2814 
2815   Value *MulOp0 = MulOp->getOperand(0);
2816   Value *MulOp1 = MulOp->getOperand(1);
2817   if (negMul) {
2818     MulOp0 =
2819       Builder.CreateFSub(
2820         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2821         "neg");
2822   } else if (negAdd) {
2823     Addend =
2824       Builder.CreateFSub(
2825         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2826         "neg");
2827   }
2828 
2829   Value *FMulAdd = Builder.CreateCall(
2830       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2831       {MulOp0, MulOp1, Addend});
2832    MulOp->eraseFromParent();
2833 
2834    return FMulAdd;
2835 }
2836 
2837 // Check whether it would be legal to emit an fmuladd intrinsic call to
2838 // represent op and if so, build the fmuladd.
2839 //
2840 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2841 // Does NOT check the type of the operation - it's assumed that this function
2842 // will be called from contexts where it's known that the type is contractable.
2843 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2844                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2845                          bool isSub=false) {
2846 
2847   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2848           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2849          "Only fadd/fsub can be the root of an fmuladd.");
2850 
2851   // Check whether this op is marked as fusable.
2852   if (!op.FPFeatures.allowFPContractWithinStatement())
2853     return nullptr;
2854 
2855   // We have a potentially fusable op. Look for a mul on one of the operands.
2856   // Also, make sure that the mul result isn't used directly. In that case,
2857   // there's no point creating a muladd operation.
2858   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2859     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2860         LHSBinOp->use_empty())
2861       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2862   }
2863   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2864     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2865         RHSBinOp->use_empty())
2866       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2867   }
2868 
2869   return nullptr;
2870 }
2871 
2872 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2873   if (op.LHS->getType()->isPointerTy() ||
2874       op.RHS->getType()->isPointerTy())
2875     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
2876 
2877   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2878     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2879     case LangOptions::SOB_Defined:
2880       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2881     case LangOptions::SOB_Undefined:
2882       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2883         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2884       // Fall through.
2885     case LangOptions::SOB_Trapping:
2886       if (CanElideOverflowCheck(CGF.getContext(), op))
2887         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2888       return EmitOverflowCheckedBinOp(op);
2889     }
2890   }
2891 
2892   if (op.Ty->isUnsignedIntegerType() &&
2893       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2894       !CanElideOverflowCheck(CGF.getContext(), op))
2895     return EmitOverflowCheckedBinOp(op);
2896 
2897   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2898     // Try to form an fmuladd.
2899     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2900       return FMulAdd;
2901 
2902     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
2903     return propagateFMFlags(V, op);
2904   }
2905 
2906   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2907 }
2908 
2909 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2910   // The LHS is always a pointer if either side is.
2911   if (!op.LHS->getType()->isPointerTy()) {
2912     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2913       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2914       case LangOptions::SOB_Defined:
2915         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2916       case LangOptions::SOB_Undefined:
2917         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2918           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2919         // Fall through.
2920       case LangOptions::SOB_Trapping:
2921         if (CanElideOverflowCheck(CGF.getContext(), op))
2922           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2923         return EmitOverflowCheckedBinOp(op);
2924       }
2925     }
2926 
2927     if (op.Ty->isUnsignedIntegerType() &&
2928         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2929         !CanElideOverflowCheck(CGF.getContext(), op))
2930       return EmitOverflowCheckedBinOp(op);
2931 
2932     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2933       // Try to form an fmuladd.
2934       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2935         return FMulAdd;
2936       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
2937       return propagateFMFlags(V, op);
2938     }
2939 
2940     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2941   }
2942 
2943   // If the RHS is not a pointer, then we have normal pointer
2944   // arithmetic.
2945   if (!op.RHS->getType()->isPointerTy())
2946     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
2947 
2948   // Otherwise, this is a pointer subtraction.
2949 
2950   // Do the raw subtraction part.
2951   llvm::Value *LHS
2952     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2953   llvm::Value *RHS
2954     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2955   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2956 
2957   // Okay, figure out the element size.
2958   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2959   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2960 
2961   llvm::Value *divisor = nullptr;
2962 
2963   // For a variable-length array, this is going to be non-constant.
2964   if (const VariableArrayType *vla
2965         = CGF.getContext().getAsVariableArrayType(elementType)) {
2966     auto VlaSize = CGF.getVLASize(vla);
2967     elementType = VlaSize.Type;
2968     divisor = VlaSize.NumElts;
2969 
2970     // Scale the number of non-VLA elements by the non-VLA element size.
2971     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2972     if (!eltSize.isOne())
2973       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2974 
2975   // For everything elese, we can just compute it, safe in the
2976   // assumption that Sema won't let anything through that we can't
2977   // safely compute the size of.
2978   } else {
2979     CharUnits elementSize;
2980     // Handle GCC extension for pointer arithmetic on void* and
2981     // function pointer types.
2982     if (elementType->isVoidType() || elementType->isFunctionType())
2983       elementSize = CharUnits::One();
2984     else
2985       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2986 
2987     // Don't even emit the divide for element size of 1.
2988     if (elementSize.isOne())
2989       return diffInChars;
2990 
2991     divisor = CGF.CGM.getSize(elementSize);
2992   }
2993 
2994   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2995   // pointer difference in C is only defined in the case where both operands
2996   // are pointing to elements of an array.
2997   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2998 }
2999 
3000 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3001   llvm::IntegerType *Ty;
3002   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3003     Ty = cast<llvm::IntegerType>(VT->getElementType());
3004   else
3005     Ty = cast<llvm::IntegerType>(LHS->getType());
3006   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3007 }
3008 
3009 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3010   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3011   // RHS to the same size as the LHS.
3012   Value *RHS = Ops.RHS;
3013   if (Ops.LHS->getType() != RHS->getType())
3014     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3015 
3016   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3017                       Ops.Ty->hasSignedIntegerRepresentation() &&
3018                       !CGF.getLangOpts().isSignedOverflowDefined();
3019   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3020   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3021   if (CGF.getLangOpts().OpenCL)
3022     RHS =
3023         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3024   else if ((SanitizeBase || SanitizeExponent) &&
3025            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3026     CodeGenFunction::SanitizerScope SanScope(&CGF);
3027     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3028     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3029     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3030 
3031     if (SanitizeExponent) {
3032       Checks.push_back(
3033           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3034     }
3035 
3036     if (SanitizeBase) {
3037       // Check whether we are shifting any non-zero bits off the top of the
3038       // integer. We only emit this check if exponent is valid - otherwise
3039       // instructions below will have undefined behavior themselves.
3040       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3041       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3042       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3043       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3044       llvm::Value *PromotedWidthMinusOne =
3045           (RHS == Ops.RHS) ? WidthMinusOne
3046                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3047       CGF.EmitBlock(CheckShiftBase);
3048       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3049           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3050                                      /*NUW*/ true, /*NSW*/ true),
3051           "shl.check");
3052       if (CGF.getLangOpts().CPlusPlus) {
3053         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3054         // Under C++11's rules, shifting a 1 bit into the sign bit is
3055         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3056         // define signed left shifts, so we use the C99 and C++11 rules there).
3057         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3058         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3059       }
3060       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3061       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3062       CGF.EmitBlock(Cont);
3063       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3064       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3065       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3066       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3067     }
3068 
3069     assert(!Checks.empty());
3070     EmitBinOpCheck(Checks, Ops);
3071   }
3072 
3073   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3074 }
3075 
3076 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3077   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3078   // RHS to the same size as the LHS.
3079   Value *RHS = Ops.RHS;
3080   if (Ops.LHS->getType() != RHS->getType())
3081     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3082 
3083   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3084   if (CGF.getLangOpts().OpenCL)
3085     RHS =
3086         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3087   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3088            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3089     CodeGenFunction::SanitizerScope SanScope(&CGF);
3090     llvm::Value *Valid =
3091         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3092     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3093   }
3094 
3095   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3096     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3097   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3098 }
3099 
3100 enum IntrinsicType { VCMPEQ, VCMPGT };
3101 // return corresponding comparison intrinsic for given vector type
3102 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3103                                         BuiltinType::Kind ElemKind) {
3104   switch (ElemKind) {
3105   default: llvm_unreachable("unexpected element type");
3106   case BuiltinType::Char_U:
3107   case BuiltinType::UChar:
3108     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3109                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3110   case BuiltinType::Char_S:
3111   case BuiltinType::SChar:
3112     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3113                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3114   case BuiltinType::UShort:
3115     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3116                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3117   case BuiltinType::Short:
3118     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3119                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3120   case BuiltinType::UInt:
3121     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3122                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3123   case BuiltinType::Int:
3124     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3125                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3126   case BuiltinType::ULong:
3127   case BuiltinType::ULongLong:
3128     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3129                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3130   case BuiltinType::Long:
3131   case BuiltinType::LongLong:
3132     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3133                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3134   case BuiltinType::Float:
3135     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3136                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3137   case BuiltinType::Double:
3138     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3139                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3140   }
3141 }
3142 
3143 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3144                                       llvm::CmpInst::Predicate UICmpOpc,
3145                                       llvm::CmpInst::Predicate SICmpOpc,
3146                                       llvm::CmpInst::Predicate FCmpOpc) {
3147   TestAndClearIgnoreResultAssign();
3148   Value *Result;
3149   QualType LHSTy = E->getLHS()->getType();
3150   QualType RHSTy = E->getRHS()->getType();
3151   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3152     assert(E->getOpcode() == BO_EQ ||
3153            E->getOpcode() == BO_NE);
3154     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3155     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3156     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3157                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3158   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3159     Value *LHS = Visit(E->getLHS());
3160     Value *RHS = Visit(E->getRHS());
3161 
3162     // If AltiVec, the comparison results in a numeric type, so we use
3163     // intrinsics comparing vectors and giving 0 or 1 as a result
3164     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3165       // constants for mapping CR6 register bits to predicate result
3166       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3167 
3168       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3169 
3170       // in several cases vector arguments order will be reversed
3171       Value *FirstVecArg = LHS,
3172             *SecondVecArg = RHS;
3173 
3174       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3175       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3176       BuiltinType::Kind ElementKind = BTy->getKind();
3177 
3178       switch(E->getOpcode()) {
3179       default: llvm_unreachable("is not a comparison operation");
3180       case BO_EQ:
3181         CR6 = CR6_LT;
3182         ID = GetIntrinsic(VCMPEQ, ElementKind);
3183         break;
3184       case BO_NE:
3185         CR6 = CR6_EQ;
3186         ID = GetIntrinsic(VCMPEQ, ElementKind);
3187         break;
3188       case BO_LT:
3189         CR6 = CR6_LT;
3190         ID = GetIntrinsic(VCMPGT, ElementKind);
3191         std::swap(FirstVecArg, SecondVecArg);
3192         break;
3193       case BO_GT:
3194         CR6 = CR6_LT;
3195         ID = GetIntrinsic(VCMPGT, ElementKind);
3196         break;
3197       case BO_LE:
3198         if (ElementKind == BuiltinType::Float) {
3199           CR6 = CR6_LT;
3200           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3201           std::swap(FirstVecArg, SecondVecArg);
3202         }
3203         else {
3204           CR6 = CR6_EQ;
3205           ID = GetIntrinsic(VCMPGT, ElementKind);
3206         }
3207         break;
3208       case BO_GE:
3209         if (ElementKind == BuiltinType::Float) {
3210           CR6 = CR6_LT;
3211           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3212         }
3213         else {
3214           CR6 = CR6_EQ;
3215           ID = GetIntrinsic(VCMPGT, ElementKind);
3216           std::swap(FirstVecArg, SecondVecArg);
3217         }
3218         break;
3219       }
3220 
3221       Value *CR6Param = Builder.getInt32(CR6);
3222       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3223       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3224 
3225       // The result type of intrinsic may not be same as E->getType().
3226       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3227       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3228       // do nothing, if ResultTy is not i1 at the same time, it will cause
3229       // crash later.
3230       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3231       if (ResultTy->getBitWidth() > 1 &&
3232           E->getType() == CGF.getContext().BoolTy)
3233         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3234       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3235                                   E->getExprLoc());
3236     }
3237 
3238     if (LHS->getType()->isFPOrFPVectorTy()) {
3239       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3240     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3241       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3242     } else {
3243       // Unsigned integers and pointers.
3244       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3245     }
3246 
3247     // If this is a vector comparison, sign extend the result to the appropriate
3248     // vector integer type and return it (don't convert to bool).
3249     if (LHSTy->isVectorType())
3250       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3251 
3252   } else {
3253     // Complex Comparison: can only be an equality comparison.
3254     CodeGenFunction::ComplexPairTy LHS, RHS;
3255     QualType CETy;
3256     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3257       LHS = CGF.EmitComplexExpr(E->getLHS());
3258       CETy = CTy->getElementType();
3259     } else {
3260       LHS.first = Visit(E->getLHS());
3261       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3262       CETy = LHSTy;
3263     }
3264     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3265       RHS = CGF.EmitComplexExpr(E->getRHS());
3266       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3267                                                      CTy->getElementType()) &&
3268              "The element types must always match.");
3269       (void)CTy;
3270     } else {
3271       RHS.first = Visit(E->getRHS());
3272       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3273       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3274              "The element types must always match.");
3275     }
3276 
3277     Value *ResultR, *ResultI;
3278     if (CETy->isRealFloatingType()) {
3279       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3280       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3281     } else {
3282       // Complex comparisons can only be equality comparisons.  As such, signed
3283       // and unsigned opcodes are the same.
3284       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3285       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3286     }
3287 
3288     if (E->getOpcode() == BO_EQ) {
3289       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3290     } else {
3291       assert(E->getOpcode() == BO_NE &&
3292              "Complex comparison other than == or != ?");
3293       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3294     }
3295   }
3296 
3297   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3298                               E->getExprLoc());
3299 }
3300 
3301 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3302   bool Ignore = TestAndClearIgnoreResultAssign();
3303 
3304   Value *RHS;
3305   LValue LHS;
3306 
3307   switch (E->getLHS()->getType().getObjCLifetime()) {
3308   case Qualifiers::OCL_Strong:
3309     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3310     break;
3311 
3312   case Qualifiers::OCL_Autoreleasing:
3313     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3314     break;
3315 
3316   case Qualifiers::OCL_ExplicitNone:
3317     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3318     break;
3319 
3320   case Qualifiers::OCL_Weak:
3321     RHS = Visit(E->getRHS());
3322     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3323     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3324     break;
3325 
3326   case Qualifiers::OCL_None:
3327     // __block variables need to have the rhs evaluated first, plus
3328     // this should improve codegen just a little.
3329     RHS = Visit(E->getRHS());
3330     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3331 
3332     // Store the value into the LHS.  Bit-fields are handled specially
3333     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3334     // 'An assignment expression has the value of the left operand after
3335     // the assignment...'.
3336     if (LHS.isBitField()) {
3337       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3338     } else {
3339       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3340       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3341     }
3342   }
3343 
3344   // If the result is clearly ignored, return now.
3345   if (Ignore)
3346     return nullptr;
3347 
3348   // The result of an assignment in C is the assigned r-value.
3349   if (!CGF.getLangOpts().CPlusPlus)
3350     return RHS;
3351 
3352   // If the lvalue is non-volatile, return the computed value of the assignment.
3353   if (!LHS.isVolatileQualified())
3354     return RHS;
3355 
3356   // Otherwise, reload the value.
3357   return EmitLoadOfLValue(LHS, E->getExprLoc());
3358 }
3359 
3360 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3361   // Perform vector logical and on comparisons with zero vectors.
3362   if (E->getType()->isVectorType()) {
3363     CGF.incrementProfileCounter(E);
3364 
3365     Value *LHS = Visit(E->getLHS());
3366     Value *RHS = Visit(E->getRHS());
3367     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3368     if (LHS->getType()->isFPOrFPVectorTy()) {
3369       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3370       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3371     } else {
3372       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3373       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3374     }
3375     Value *And = Builder.CreateAnd(LHS, RHS);
3376     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3377   }
3378 
3379   llvm::Type *ResTy = ConvertType(E->getType());
3380 
3381   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3382   // If we have 1 && X, just emit X without inserting the control flow.
3383   bool LHSCondVal;
3384   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3385     if (LHSCondVal) { // If we have 1 && X, just emit X.
3386       CGF.incrementProfileCounter(E);
3387 
3388       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3389       // ZExt result to int or bool.
3390       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3391     }
3392 
3393     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3394     if (!CGF.ContainsLabel(E->getRHS()))
3395       return llvm::Constant::getNullValue(ResTy);
3396   }
3397 
3398   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3399   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3400 
3401   CodeGenFunction::ConditionalEvaluation eval(CGF);
3402 
3403   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3404   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3405                            CGF.getProfileCount(E->getRHS()));
3406 
3407   // Any edges into the ContBlock are now from an (indeterminate number of)
3408   // edges from this first condition.  All of these values will be false.  Start
3409   // setting up the PHI node in the Cont Block for this.
3410   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3411                                             "", ContBlock);
3412   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3413        PI != PE; ++PI)
3414     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3415 
3416   eval.begin(CGF);
3417   CGF.EmitBlock(RHSBlock);
3418   CGF.incrementProfileCounter(E);
3419   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3420   eval.end(CGF);
3421 
3422   // Reaquire the RHS block, as there may be subblocks inserted.
3423   RHSBlock = Builder.GetInsertBlock();
3424 
3425   // Emit an unconditional branch from this block to ContBlock.
3426   {
3427     // There is no need to emit line number for unconditional branch.
3428     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3429     CGF.EmitBlock(ContBlock);
3430   }
3431   // Insert an entry into the phi node for the edge with the value of RHSCond.
3432   PN->addIncoming(RHSCond, RHSBlock);
3433 
3434   // Artificial location to preserve the scope information
3435   {
3436     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
3437     PN->setDebugLoc(Builder.getCurrentDebugLocation());
3438   }
3439 
3440   // ZExt result to int.
3441   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3442 }
3443 
3444 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3445   // Perform vector logical or on comparisons with zero vectors.
3446   if (E->getType()->isVectorType()) {
3447     CGF.incrementProfileCounter(E);
3448 
3449     Value *LHS = Visit(E->getLHS());
3450     Value *RHS = Visit(E->getRHS());
3451     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3452     if (LHS->getType()->isFPOrFPVectorTy()) {
3453       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3454       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3455     } else {
3456       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3457       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3458     }
3459     Value *Or = Builder.CreateOr(LHS, RHS);
3460     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3461   }
3462 
3463   llvm::Type *ResTy = ConvertType(E->getType());
3464 
3465   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3466   // If we have 0 || X, just emit X without inserting the control flow.
3467   bool LHSCondVal;
3468   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3469     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3470       CGF.incrementProfileCounter(E);
3471 
3472       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3473       // ZExt result to int or bool.
3474       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3475     }
3476 
3477     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3478     if (!CGF.ContainsLabel(E->getRHS()))
3479       return llvm::ConstantInt::get(ResTy, 1);
3480   }
3481 
3482   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3483   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3484 
3485   CodeGenFunction::ConditionalEvaluation eval(CGF);
3486 
3487   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3488   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3489                            CGF.getCurrentProfileCount() -
3490                                CGF.getProfileCount(E->getRHS()));
3491 
3492   // Any edges into the ContBlock are now from an (indeterminate number of)
3493   // edges from this first condition.  All of these values will be true.  Start
3494   // setting up the PHI node in the Cont Block for this.
3495   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3496                                             "", ContBlock);
3497   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3498        PI != PE; ++PI)
3499     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3500 
3501   eval.begin(CGF);
3502 
3503   // Emit the RHS condition as a bool value.
3504   CGF.EmitBlock(RHSBlock);
3505   CGF.incrementProfileCounter(E);
3506   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3507 
3508   eval.end(CGF);
3509 
3510   // Reaquire the RHS block, as there may be subblocks inserted.
3511   RHSBlock = Builder.GetInsertBlock();
3512 
3513   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3514   // into the phi node for the edge with the value of RHSCond.
3515   CGF.EmitBlock(ContBlock);
3516   PN->addIncoming(RHSCond, RHSBlock);
3517 
3518   // ZExt result to int.
3519   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3520 }
3521 
3522 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3523   CGF.EmitIgnoredExpr(E->getLHS());
3524   CGF.EnsureInsertPoint();
3525   return Visit(E->getRHS());
3526 }
3527 
3528 //===----------------------------------------------------------------------===//
3529 //                             Other Operators
3530 //===----------------------------------------------------------------------===//
3531 
3532 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3533 /// expression is cheap enough and side-effect-free enough to evaluate
3534 /// unconditionally instead of conditionally.  This is used to convert control
3535 /// flow into selects in some cases.
3536 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3537                                                    CodeGenFunction &CGF) {
3538   // Anything that is an integer or floating point constant is fine.
3539   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3540 
3541   // Even non-volatile automatic variables can't be evaluated unconditionally.
3542   // Referencing a thread_local may cause non-trivial initialization work to
3543   // occur. If we're inside a lambda and one of the variables is from the scope
3544   // outside the lambda, that function may have returned already. Reading its
3545   // locals is a bad idea. Also, these reads may introduce races there didn't
3546   // exist in the source-level program.
3547 }
3548 
3549 
3550 Value *ScalarExprEmitter::
3551 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3552   TestAndClearIgnoreResultAssign();
3553 
3554   // Bind the common expression if necessary.
3555   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3556 
3557   Expr *condExpr = E->getCond();
3558   Expr *lhsExpr = E->getTrueExpr();
3559   Expr *rhsExpr = E->getFalseExpr();
3560 
3561   // If the condition constant folds and can be elided, try to avoid emitting
3562   // the condition and the dead arm.
3563   bool CondExprBool;
3564   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3565     Expr *live = lhsExpr, *dead = rhsExpr;
3566     if (!CondExprBool) std::swap(live, dead);
3567 
3568     // If the dead side doesn't have labels we need, just emit the Live part.
3569     if (!CGF.ContainsLabel(dead)) {
3570       if (CondExprBool)
3571         CGF.incrementProfileCounter(E);
3572       Value *Result = Visit(live);
3573 
3574       // If the live part is a throw expression, it acts like it has a void
3575       // type, so evaluating it returns a null Value*.  However, a conditional
3576       // with non-void type must return a non-null Value*.
3577       if (!Result && !E->getType()->isVoidType())
3578         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3579 
3580       return Result;
3581     }
3582   }
3583 
3584   // OpenCL: If the condition is a vector, we can treat this condition like
3585   // the select function.
3586   if (CGF.getLangOpts().OpenCL
3587       && condExpr->getType()->isVectorType()) {
3588     CGF.incrementProfileCounter(E);
3589 
3590     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3591     llvm::Value *LHS = Visit(lhsExpr);
3592     llvm::Value *RHS = Visit(rhsExpr);
3593 
3594     llvm::Type *condType = ConvertType(condExpr->getType());
3595     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3596 
3597     unsigned numElem = vecTy->getNumElements();
3598     llvm::Type *elemType = vecTy->getElementType();
3599 
3600     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3601     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3602     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3603                                           llvm::VectorType::get(elemType,
3604                                                                 numElem),
3605                                           "sext");
3606     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3607 
3608     // Cast float to int to perform ANDs if necessary.
3609     llvm::Value *RHSTmp = RHS;
3610     llvm::Value *LHSTmp = LHS;
3611     bool wasCast = false;
3612     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3613     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3614       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3615       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3616       wasCast = true;
3617     }
3618 
3619     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3620     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3621     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3622     if (wasCast)
3623       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3624 
3625     return tmp5;
3626   }
3627 
3628   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3629   // select instead of as control flow.  We can only do this if it is cheap and
3630   // safe to evaluate the LHS and RHS unconditionally.
3631   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3632       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3633     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3634     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
3635 
3636     CGF.incrementProfileCounter(E, StepV);
3637 
3638     llvm::Value *LHS = Visit(lhsExpr);
3639     llvm::Value *RHS = Visit(rhsExpr);
3640     if (!LHS) {
3641       // If the conditional has void type, make sure we return a null Value*.
3642       assert(!RHS && "LHS and RHS types must match");
3643       return nullptr;
3644     }
3645     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3646   }
3647 
3648   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3649   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3650   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3651 
3652   CodeGenFunction::ConditionalEvaluation eval(CGF);
3653   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3654                            CGF.getProfileCount(lhsExpr));
3655 
3656   CGF.EmitBlock(LHSBlock);
3657   CGF.incrementProfileCounter(E);
3658   eval.begin(CGF);
3659   Value *LHS = Visit(lhsExpr);
3660   eval.end(CGF);
3661 
3662   LHSBlock = Builder.GetInsertBlock();
3663   Builder.CreateBr(ContBlock);
3664 
3665   CGF.EmitBlock(RHSBlock);
3666   eval.begin(CGF);
3667   Value *RHS = Visit(rhsExpr);
3668   eval.end(CGF);
3669 
3670   RHSBlock = Builder.GetInsertBlock();
3671   CGF.EmitBlock(ContBlock);
3672 
3673   // If the LHS or RHS is a throw expression, it will be legitimately null.
3674   if (!LHS)
3675     return RHS;
3676   if (!RHS)
3677     return LHS;
3678 
3679   // Create a PHI node for the real part.
3680   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3681   PN->addIncoming(LHS, LHSBlock);
3682   PN->addIncoming(RHS, RHSBlock);
3683   return PN;
3684 }
3685 
3686 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3687   return Visit(E->getChosenSubExpr());
3688 }
3689 
3690 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3691   QualType Ty = VE->getType();
3692 
3693   if (Ty->isVariablyModifiedType())
3694     CGF.EmitVariablyModifiedType(Ty);
3695 
3696   Address ArgValue = Address::invalid();
3697   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3698 
3699   llvm::Type *ArgTy = ConvertType(VE->getType());
3700 
3701   // If EmitVAArg fails, emit an error.
3702   if (!ArgPtr.isValid()) {
3703     CGF.ErrorUnsupported(VE, "va_arg expression");
3704     return llvm::UndefValue::get(ArgTy);
3705   }
3706 
3707   // FIXME Volatility.
3708   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3709 
3710   // If EmitVAArg promoted the type, we must truncate it.
3711   if (ArgTy != Val->getType()) {
3712     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3713       Val = Builder.CreateIntToPtr(Val, ArgTy);
3714     else
3715       Val = Builder.CreateTrunc(Val, ArgTy);
3716   }
3717 
3718   return Val;
3719 }
3720 
3721 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3722   return CGF.EmitBlockLiteral(block);
3723 }
3724 
3725 // Convert a vec3 to vec4, or vice versa.
3726 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3727                                  Value *Src, unsigned NumElementsDst) {
3728   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3729   SmallVector<llvm::Constant*, 4> Args;
3730   Args.push_back(Builder.getInt32(0));
3731   Args.push_back(Builder.getInt32(1));
3732   Args.push_back(Builder.getInt32(2));
3733   if (NumElementsDst == 4)
3734     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3735   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3736   return Builder.CreateShuffleVector(Src, UnV, Mask);
3737 }
3738 
3739 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3740 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3741 // but could be scalar or vectors of different lengths, and either can be
3742 // pointer.
3743 // There are 4 cases:
3744 // 1. non-pointer -> non-pointer  : needs 1 bitcast
3745 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
3746 // 3. pointer -> non-pointer
3747 //   a) pointer -> intptr_t       : needs 1 ptrtoint
3748 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
3749 // 4. non-pointer -> pointer
3750 //   a) intptr_t -> pointer       : needs 1 inttoptr
3751 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
3752 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3753 // allow casting directly between pointer types and non-integer non-pointer
3754 // types.
3755 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3756                                            const llvm::DataLayout &DL,
3757                                            Value *Src, llvm::Type *DstTy,
3758                                            StringRef Name = "") {
3759   auto SrcTy = Src->getType();
3760 
3761   // Case 1.
3762   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3763     return Builder.CreateBitCast(Src, DstTy, Name);
3764 
3765   // Case 2.
3766   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3767     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3768 
3769   // Case 3.
3770   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3771     // Case 3b.
3772     if (!DstTy->isIntegerTy())
3773       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3774     // Cases 3a and 3b.
3775     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3776   }
3777 
3778   // Case 4b.
3779   if (!SrcTy->isIntegerTy())
3780     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3781   // Cases 4a and 4b.
3782   return Builder.CreateIntToPtr(Src, DstTy, Name);
3783 }
3784 
3785 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3786   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3787   llvm::Type *DstTy = ConvertType(E->getType());
3788 
3789   llvm::Type *SrcTy = Src->getType();
3790   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3791     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3792   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3793     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3794 
3795   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3796   // vector to get a vec4, then a bitcast if the target type is different.
3797   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3798     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3799 
3800     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3801       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3802                                          DstTy);
3803     }
3804 
3805     Src->setName("astype");
3806     return Src;
3807   }
3808 
3809   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3810   // to vec4 if the original type is not vec4, then a shuffle vector to
3811   // get a vec3.
3812   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3813     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3814       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3815       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3816                                          Vec4Ty);
3817     }
3818 
3819     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3820     Src->setName("astype");
3821     return Src;
3822   }
3823 
3824   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3825                                             Src, DstTy, "astype");
3826 }
3827 
3828 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3829   return CGF.EmitAtomicExpr(E).getScalarVal();
3830 }
3831 
3832 //===----------------------------------------------------------------------===//
3833 //                         Entry Point into this File
3834 //===----------------------------------------------------------------------===//
3835 
3836 /// Emit the computation of the specified expression of scalar type, ignoring
3837 /// the result.
3838 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3839   assert(E && hasScalarEvaluationKind(E->getType()) &&
3840          "Invalid scalar expression to emit");
3841 
3842   return ScalarExprEmitter(*this, IgnoreResultAssign)
3843       .Visit(const_cast<Expr *>(E));
3844 }
3845 
3846 /// Emit a conversion from the specified type to the specified destination type,
3847 /// both of which are LLVM scalar types.
3848 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3849                                              QualType DstTy,
3850                                              SourceLocation Loc) {
3851   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3852          "Invalid scalar expression to emit");
3853   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3854 }
3855 
3856 /// Emit a conversion from the specified complex type to the specified
3857 /// destination type, where the destination type is an LLVM scalar type.
3858 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3859                                                       QualType SrcTy,
3860                                                       QualType DstTy,
3861                                                       SourceLocation Loc) {
3862   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3863          "Invalid complex -> scalar conversion");
3864   return ScalarExprEmitter(*this)
3865       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3866 }
3867 
3868 
3869 llvm::Value *CodeGenFunction::
3870 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3871                         bool isInc, bool isPre) {
3872   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3873 }
3874 
3875 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3876   // object->isa or (*object).isa
3877   // Generate code as for: *(Class*)object
3878 
3879   Expr *BaseExpr = E->getBase();
3880   Address Addr = Address::invalid();
3881   if (BaseExpr->isRValue()) {
3882     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3883   } else {
3884     Addr = EmitLValue(BaseExpr).getAddress();
3885   }
3886 
3887   // Cast the address to Class*.
3888   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3889   return MakeAddrLValue(Addr, E->getType());
3890 }
3891 
3892 
3893 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3894                                             const CompoundAssignOperator *E) {
3895   ScalarExprEmitter Scalar(*this);
3896   Value *Result = nullptr;
3897   switch (E->getOpcode()) {
3898 #define COMPOUND_OP(Op)                                                       \
3899     case BO_##Op##Assign:                                                     \
3900       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3901                                              Result)
3902   COMPOUND_OP(Mul);
3903   COMPOUND_OP(Div);
3904   COMPOUND_OP(Rem);
3905   COMPOUND_OP(Add);
3906   COMPOUND_OP(Sub);
3907   COMPOUND_OP(Shl);
3908   COMPOUND_OP(Shr);
3909   COMPOUND_OP(And);
3910   COMPOUND_OP(Xor);
3911   COMPOUND_OP(Or);
3912 #undef COMPOUND_OP
3913 
3914   case BO_PtrMemD:
3915   case BO_PtrMemI:
3916   case BO_Mul:
3917   case BO_Div:
3918   case BO_Rem:
3919   case BO_Add:
3920   case BO_Sub:
3921   case BO_Shl:
3922   case BO_Shr:
3923   case BO_LT:
3924   case BO_GT:
3925   case BO_LE:
3926   case BO_GE:
3927   case BO_EQ:
3928   case BO_NE:
3929   case BO_Cmp:
3930   case BO_And:
3931   case BO_Xor:
3932   case BO_Or:
3933   case BO_LAnd:
3934   case BO_LOr:
3935   case BO_Assign:
3936   case BO_Comma:
3937     llvm_unreachable("Not valid compound assignment operators");
3938   }
3939 
3940   llvm_unreachable("Unhandled compound assignment operator");
3941 }
3942 
3943 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
3944                                                ArrayRef<Value *> IdxList,
3945                                                bool SignedIndices,
3946                                                bool IsSubtraction,
3947                                                SourceLocation Loc,
3948                                                const Twine &Name) {
3949   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
3950 
3951   // If the pointer overflow sanitizer isn't enabled, do nothing.
3952   if (!SanOpts.has(SanitizerKind::PointerOverflow))
3953     return GEPVal;
3954 
3955   // If the GEP has already been reduced to a constant, leave it be.
3956   if (isa<llvm::Constant>(GEPVal))
3957     return GEPVal;
3958 
3959   // Only check for overflows in the default address space.
3960   if (GEPVal->getType()->getPointerAddressSpace())
3961     return GEPVal;
3962 
3963   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
3964   assert(GEP->isInBounds() && "Expected inbounds GEP");
3965 
3966   SanitizerScope SanScope(this);
3967   auto &VMContext = getLLVMContext();
3968   const auto &DL = CGM.getDataLayout();
3969   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
3970 
3971   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
3972   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
3973   auto *SAddIntrinsic =
3974       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
3975   auto *SMulIntrinsic =
3976       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
3977 
3978   // The total (signed) byte offset for the GEP.
3979   llvm::Value *TotalOffset = nullptr;
3980   // The offset overflow flag - true if the total offset overflows.
3981   llvm::Value *OffsetOverflows = Builder.getFalse();
3982 
3983   /// Return the result of the given binary operation.
3984   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
3985                   llvm::Value *RHS) -> llvm::Value * {
3986     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
3987 
3988     // If the operands are constants, return a constant result.
3989     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
3990       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
3991         llvm::APInt N;
3992         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
3993                                                   /*Signed=*/true, N);
3994         if (HasOverflow)
3995           OffsetOverflows = Builder.getTrue();
3996         return llvm::ConstantInt::get(VMContext, N);
3997       }
3998     }
3999 
4000     // Otherwise, compute the result with checked arithmetic.
4001     auto *ResultAndOverflow = Builder.CreateCall(
4002         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4003     OffsetOverflows = Builder.CreateOr(
4004         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4005     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4006   };
4007 
4008   // Determine the total byte offset by looking at each GEP operand.
4009   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4010        GTI != GTE; ++GTI) {
4011     llvm::Value *LocalOffset;
4012     auto *Index = GTI.getOperand();
4013     // Compute the local offset contributed by this indexing step:
4014     if (auto *STy = GTI.getStructTypeOrNull()) {
4015       // For struct indexing, the local offset is the byte position of the
4016       // specified field.
4017       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4018       LocalOffset = llvm::ConstantInt::get(
4019           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4020     } else {
4021       // Otherwise this is array-like indexing. The local offset is the index
4022       // multiplied by the element size.
4023       auto *ElementSize = llvm::ConstantInt::get(
4024           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4025       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4026       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4027     }
4028 
4029     // If this is the first offset, set it as the total offset. Otherwise, add
4030     // the local offset into the running total.
4031     if (!TotalOffset || TotalOffset == Zero)
4032       TotalOffset = LocalOffset;
4033     else
4034       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4035   }
4036 
4037   // Common case: if the total offset is zero, don't emit a check.
4038   if (TotalOffset == Zero)
4039     return GEPVal;
4040 
4041   // Now that we've computed the total offset, add it to the base pointer (with
4042   // wrapping semantics).
4043   auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4044   auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4045 
4046   // The GEP is valid if:
4047   // 1) The total offset doesn't overflow, and
4048   // 2) The sign of the difference between the computed address and the base
4049   // pointer matches the sign of the total offset.
4050   llvm::Value *ValidGEP;
4051   auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4052   if (SignedIndices) {
4053     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4054     auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4055     llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4056     ValidGEP = Builder.CreateAnd(
4057         Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4058         NoOffsetOverflow);
4059   } else if (!SignedIndices && !IsSubtraction) {
4060     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4061     ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4062   } else {
4063     auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4064     ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4065   }
4066 
4067   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4068   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4069   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4070   EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4071             SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4072 
4073   return GEPVal;
4074 }
4075