1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/FixedPointBuilder.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsPowerPC.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include <cstdarg> 44 45 using namespace clang; 46 using namespace CodeGen; 47 using llvm::Value; 48 49 //===----------------------------------------------------------------------===// 50 // Scalar Expression Emitter 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 55 /// Determine whether the given binary operation may overflow. 56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 58 /// the returned overflow check is precise. The returned value is 'true' for 59 /// all other opcodes, to be conservative. 60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 61 BinaryOperator::Opcode Opcode, bool Signed, 62 llvm::APInt &Result) { 63 // Assume overflow is possible, unless we can prove otherwise. 64 bool Overflow = true; 65 const auto &LHSAP = LHS->getValue(); 66 const auto &RHSAP = RHS->getValue(); 67 if (Opcode == BO_Add) { 68 if (Signed) 69 Result = LHSAP.sadd_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.uadd_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Sub) { 73 if (Signed) 74 Result = LHSAP.ssub_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.usub_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Mul) { 78 if (Signed) 79 Result = LHSAP.smul_ov(RHSAP, Overflow); 80 else 81 Result = LHSAP.umul_ov(RHSAP, Overflow); 82 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 83 if (Signed && !RHS->isZero()) 84 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 85 else 86 return false; 87 } 88 return Overflow; 89 } 90 91 struct BinOpInfo { 92 Value *LHS; 93 Value *RHS; 94 QualType Ty; // Computation Type. 95 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 96 FPOptions FPFeatures; 97 const Expr *E; // Entire expr, for error unsupported. May not be binop. 98 99 /// Check if the binop can result in integer overflow. 100 bool mayHaveIntegerOverflow() const { 101 // Without constant input, we can't rule out overflow. 102 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 103 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 104 if (!LHSCI || !RHSCI) 105 return true; 106 107 llvm::APInt Result; 108 return ::mayHaveIntegerOverflow( 109 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 110 } 111 112 /// Check if the binop computes a division or a remainder. 113 bool isDivremOp() const { 114 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 115 Opcode == BO_RemAssign; 116 } 117 118 /// Check if the binop can result in an integer division by zero. 119 bool mayHaveIntegerDivisionByZero() const { 120 if (isDivremOp()) 121 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 122 return CI->isZero(); 123 return true; 124 } 125 126 /// Check if the binop can result in a float division by zero. 127 bool mayHaveFloatDivisionByZero() const { 128 if (isDivremOp()) 129 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 130 return CFP->isZero(); 131 return true; 132 } 133 134 /// Check if at least one operand is a fixed point type. In such cases, this 135 /// operation did not follow usual arithmetic conversion and both operands 136 /// might not be of the same type. 137 bool isFixedPointOp() const { 138 // We cannot simply check the result type since comparison operations return 139 // an int. 140 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 141 QualType LHSType = BinOp->getLHS()->getType(); 142 QualType RHSType = BinOp->getRHS()->getType(); 143 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 144 } 145 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 146 return UnOp->getSubExpr()->getType()->isFixedPointType(); 147 return false; 148 } 149 }; 150 151 static bool MustVisitNullValue(const Expr *E) { 152 // If a null pointer expression's type is the C++0x nullptr_t, then 153 // it's not necessarily a simple constant and it must be evaluated 154 // for its potential side effects. 155 return E->getType()->isNullPtrType(); 156 } 157 158 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 160 const Expr *E) { 161 const Expr *Base = E->IgnoreImpCasts(); 162 if (E == Base) 163 return llvm::None; 164 165 QualType BaseTy = Base->getType(); 166 if (!BaseTy->isPromotableIntegerType() || 167 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 168 return llvm::None; 169 170 return BaseTy; 171 } 172 173 /// Check if \p E is a widened promoted integer. 174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 175 return getUnwidenedIntegerType(Ctx, E).hasValue(); 176 } 177 178 /// Check if we can skip the overflow check for \p Op. 179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 180 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 181 "Expected a unary or binary operator"); 182 183 // If the binop has constant inputs and we can prove there is no overflow, 184 // we can elide the overflow check. 185 if (!Op.mayHaveIntegerOverflow()) 186 return true; 187 188 // If a unary op has a widened operand, the op cannot overflow. 189 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 190 return !UO->canOverflow(); 191 192 // We usually don't need overflow checks for binops with widened operands. 193 // Multiplication with promoted unsigned operands is a special case. 194 const auto *BO = cast<BinaryOperator>(Op.E); 195 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 196 if (!OptionalLHSTy) 197 return false; 198 199 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 200 if (!OptionalRHSTy) 201 return false; 202 203 QualType LHSTy = *OptionalLHSTy; 204 QualType RHSTy = *OptionalRHSTy; 205 206 // This is the simple case: binops without unsigned multiplication, and with 207 // widened operands. No overflow check is needed here. 208 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 209 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 210 return true; 211 212 // For unsigned multiplication the overflow check can be elided if either one 213 // of the unpromoted types are less than half the size of the promoted type. 214 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 215 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 216 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 217 } 218 219 class ScalarExprEmitter 220 : public StmtVisitor<ScalarExprEmitter, Value*> { 221 CodeGenFunction &CGF; 222 CGBuilderTy &Builder; 223 bool IgnoreResultAssign; 224 llvm::LLVMContext &VMContext; 225 public: 226 227 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 228 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 229 VMContext(cgf.getLLVMContext()) { 230 } 231 232 //===--------------------------------------------------------------------===// 233 // Utilities 234 //===--------------------------------------------------------------------===// 235 236 bool TestAndClearIgnoreResultAssign() { 237 bool I = IgnoreResultAssign; 238 IgnoreResultAssign = false; 239 return I; 240 } 241 242 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 243 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 244 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 245 return CGF.EmitCheckedLValue(E, TCK); 246 } 247 248 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 249 const BinOpInfo &Info); 250 251 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 252 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 253 } 254 255 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 256 const AlignValueAttr *AVAttr = nullptr; 257 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 258 const ValueDecl *VD = DRE->getDecl(); 259 260 if (VD->getType()->isReferenceType()) { 261 if (const auto *TTy = 262 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 263 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 264 } else { 265 // Assumptions for function parameters are emitted at the start of the 266 // function, so there is no need to repeat that here, 267 // unless the alignment-assumption sanitizer is enabled, 268 // then we prefer the assumption over alignment attribute 269 // on IR function param. 270 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 271 return; 272 273 AVAttr = VD->getAttr<AlignValueAttr>(); 274 } 275 } 276 277 if (!AVAttr) 278 if (const auto *TTy = 279 dyn_cast<TypedefType>(E->getType())) 280 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 281 282 if (!AVAttr) 283 return; 284 285 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 286 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 287 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 288 } 289 290 /// EmitLoadOfLValue - Given an expression with complex type that represents a 291 /// value l-value, this method emits the address of the l-value, then loads 292 /// and returns the result. 293 Value *EmitLoadOfLValue(const Expr *E) { 294 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 295 E->getExprLoc()); 296 297 EmitLValueAlignmentAssumption(E, V); 298 return V; 299 } 300 301 /// EmitConversionToBool - Convert the specified expression value to a 302 /// boolean (i1) truth value. This is equivalent to "Val != 0". 303 Value *EmitConversionToBool(Value *Src, QualType DstTy); 304 305 /// Emit a check that a conversion from a floating-point type does not 306 /// overflow. 307 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 308 Value *Src, QualType SrcType, QualType DstType, 309 llvm::Type *DstTy, SourceLocation Loc); 310 311 /// Known implicit conversion check kinds. 312 /// Keep in sync with the enum of the same name in ubsan_handlers.h 313 enum ImplicitConversionCheckKind : unsigned char { 314 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 315 ICCK_UnsignedIntegerTruncation = 1, 316 ICCK_SignedIntegerTruncation = 2, 317 ICCK_IntegerSignChange = 3, 318 ICCK_SignedIntegerTruncationOrSignChange = 4, 319 }; 320 321 /// Emit a check that an [implicit] truncation of an integer does not 322 /// discard any bits. It is not UB, so we use the value after truncation. 323 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 324 QualType DstType, SourceLocation Loc); 325 326 /// Emit a check that an [implicit] conversion of an integer does not change 327 /// the sign of the value. It is not UB, so we use the value after conversion. 328 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 329 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 330 QualType DstType, SourceLocation Loc); 331 332 /// Emit a conversion from the specified type to the specified destination 333 /// type, both of which are LLVM scalar types. 334 struct ScalarConversionOpts { 335 bool TreatBooleanAsSigned; 336 bool EmitImplicitIntegerTruncationChecks; 337 bool EmitImplicitIntegerSignChangeChecks; 338 339 ScalarConversionOpts() 340 : TreatBooleanAsSigned(false), 341 EmitImplicitIntegerTruncationChecks(false), 342 EmitImplicitIntegerSignChangeChecks(false) {} 343 344 ScalarConversionOpts(clang::SanitizerSet SanOpts) 345 : TreatBooleanAsSigned(false), 346 EmitImplicitIntegerTruncationChecks( 347 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 348 EmitImplicitIntegerSignChangeChecks( 349 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 350 }; 351 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, 352 llvm::Type *SrcTy, llvm::Type *DstTy, 353 ScalarConversionOpts Opts); 354 Value * 355 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 356 SourceLocation Loc, 357 ScalarConversionOpts Opts = ScalarConversionOpts()); 358 359 /// Convert between either a fixed point and other fixed point or fixed point 360 /// and an integer. 361 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 362 SourceLocation Loc); 363 364 /// Emit a conversion from the specified complex type to the specified 365 /// destination type, where the destination type is an LLVM scalar type. 366 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 367 QualType SrcTy, QualType DstTy, 368 SourceLocation Loc); 369 370 /// EmitNullValue - Emit a value that corresponds to null for the given type. 371 Value *EmitNullValue(QualType Ty); 372 373 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 374 Value *EmitFloatToBoolConversion(Value *V) { 375 // Compare against 0.0 for fp scalars. 376 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 377 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 378 } 379 380 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 381 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 382 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 383 384 return Builder.CreateICmpNE(V, Zero, "tobool"); 385 } 386 387 Value *EmitIntToBoolConversion(Value *V) { 388 // Because of the type rules of C, we often end up computing a 389 // logical value, then zero extending it to int, then wanting it 390 // as a logical value again. Optimize this common case. 391 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 392 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 393 Value *Result = ZI->getOperand(0); 394 // If there aren't any more uses, zap the instruction to save space. 395 // Note that there can be more uses, for example if this 396 // is the result of an assignment. 397 if (ZI->use_empty()) 398 ZI->eraseFromParent(); 399 return Result; 400 } 401 } 402 403 return Builder.CreateIsNotNull(V, "tobool"); 404 } 405 406 //===--------------------------------------------------------------------===// 407 // Visitor Methods 408 //===--------------------------------------------------------------------===// 409 410 Value *Visit(Expr *E) { 411 ApplyDebugLocation DL(CGF, E); 412 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 413 } 414 415 Value *VisitStmt(Stmt *S) { 416 S->dump(llvm::errs(), CGF.getContext()); 417 llvm_unreachable("Stmt can't have complex result type!"); 418 } 419 Value *VisitExpr(Expr *S); 420 421 Value *VisitConstantExpr(ConstantExpr *E) { 422 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 423 if (E->isGLValue()) 424 return CGF.Builder.CreateLoad(Address( 425 Result, CGF.getContext().getTypeAlignInChars(E->getType()))); 426 return Result; 427 } 428 return Visit(E->getSubExpr()); 429 } 430 Value *VisitParenExpr(ParenExpr *PE) { 431 return Visit(PE->getSubExpr()); 432 } 433 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 434 return Visit(E->getReplacement()); 435 } 436 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 437 return Visit(GE->getResultExpr()); 438 } 439 Value *VisitCoawaitExpr(CoawaitExpr *S) { 440 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 441 } 442 Value *VisitCoyieldExpr(CoyieldExpr *S) { 443 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 444 } 445 Value *VisitUnaryCoawait(const UnaryOperator *E) { 446 return Visit(E->getSubExpr()); 447 } 448 449 // Leaves. 450 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 451 return Builder.getInt(E->getValue()); 452 } 453 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 454 return Builder.getInt(E->getValue()); 455 } 456 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 457 return llvm::ConstantFP::get(VMContext, E->getValue()); 458 } 459 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 460 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 461 } 462 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 463 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 464 } 465 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 466 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 467 } 468 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 469 return EmitNullValue(E->getType()); 470 } 471 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 472 return EmitNullValue(E->getType()); 473 } 474 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 475 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 476 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 477 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 478 return Builder.CreateBitCast(V, ConvertType(E->getType())); 479 } 480 481 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 482 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 483 } 484 485 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 486 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 487 } 488 489 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E); 490 491 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 492 if (E->isGLValue()) 493 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 494 E->getExprLoc()); 495 496 // Otherwise, assume the mapping is the scalar directly. 497 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 498 } 499 500 // l-values. 501 Value *VisitDeclRefExpr(DeclRefExpr *E) { 502 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 503 return CGF.emitScalarConstant(Constant, E); 504 return EmitLoadOfLValue(E); 505 } 506 507 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 508 return CGF.EmitObjCSelectorExpr(E); 509 } 510 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 511 return CGF.EmitObjCProtocolExpr(E); 512 } 513 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 514 return EmitLoadOfLValue(E); 515 } 516 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 517 if (E->getMethodDecl() && 518 E->getMethodDecl()->getReturnType()->isReferenceType()) 519 return EmitLoadOfLValue(E); 520 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 521 } 522 523 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 524 LValue LV = CGF.EmitObjCIsaExpr(E); 525 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 526 return V; 527 } 528 529 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 530 VersionTuple Version = E->getVersion(); 531 532 // If we're checking for a platform older than our minimum deployment 533 // target, we can fold the check away. 534 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 535 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 536 537 return CGF.EmitBuiltinAvailable(Version); 538 } 539 540 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 541 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 542 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 543 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 544 Value *VisitMemberExpr(MemberExpr *E); 545 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 546 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 547 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 548 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 549 // literals aren't l-values in C++. We do so simply because that's the 550 // cleanest way to handle compound literals in C++. 551 // See the discussion here: https://reviews.llvm.org/D64464 552 return EmitLoadOfLValue(E); 553 } 554 555 Value *VisitInitListExpr(InitListExpr *E); 556 557 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 558 assert(CGF.getArrayInitIndex() && 559 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 560 return CGF.getArrayInitIndex(); 561 } 562 563 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 564 return EmitNullValue(E->getType()); 565 } 566 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 567 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 568 return VisitCastExpr(E); 569 } 570 Value *VisitCastExpr(CastExpr *E); 571 572 Value *VisitCallExpr(const CallExpr *E) { 573 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 574 return EmitLoadOfLValue(E); 575 576 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 577 578 EmitLValueAlignmentAssumption(E, V); 579 return V; 580 } 581 582 Value *VisitStmtExpr(const StmtExpr *E); 583 584 // Unary Operators. 585 Value *VisitUnaryPostDec(const UnaryOperator *E) { 586 LValue LV = EmitLValue(E->getSubExpr()); 587 return EmitScalarPrePostIncDec(E, LV, false, false); 588 } 589 Value *VisitUnaryPostInc(const UnaryOperator *E) { 590 LValue LV = EmitLValue(E->getSubExpr()); 591 return EmitScalarPrePostIncDec(E, LV, true, false); 592 } 593 Value *VisitUnaryPreDec(const UnaryOperator *E) { 594 LValue LV = EmitLValue(E->getSubExpr()); 595 return EmitScalarPrePostIncDec(E, LV, false, true); 596 } 597 Value *VisitUnaryPreInc(const UnaryOperator *E) { 598 LValue LV = EmitLValue(E->getSubExpr()); 599 return EmitScalarPrePostIncDec(E, LV, true, true); 600 } 601 602 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 603 llvm::Value *InVal, 604 bool IsInc); 605 606 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 607 bool isInc, bool isPre); 608 609 610 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 611 if (isa<MemberPointerType>(E->getType())) // never sugared 612 return CGF.CGM.getMemberPointerConstant(E); 613 614 return EmitLValue(E->getSubExpr()).getPointer(CGF); 615 } 616 Value *VisitUnaryDeref(const UnaryOperator *E) { 617 if (E->getType()->isVoidType()) 618 return Visit(E->getSubExpr()); // the actual value should be unused 619 return EmitLoadOfLValue(E); 620 } 621 Value *VisitUnaryPlus(const UnaryOperator *E) { 622 // This differs from gcc, though, most likely due to a bug in gcc. 623 TestAndClearIgnoreResultAssign(); 624 return Visit(E->getSubExpr()); 625 } 626 Value *VisitUnaryMinus (const UnaryOperator *E); 627 Value *VisitUnaryNot (const UnaryOperator *E); 628 Value *VisitUnaryLNot (const UnaryOperator *E); 629 Value *VisitUnaryReal (const UnaryOperator *E); 630 Value *VisitUnaryImag (const UnaryOperator *E); 631 Value *VisitUnaryExtension(const UnaryOperator *E) { 632 return Visit(E->getSubExpr()); 633 } 634 635 // C++ 636 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 637 return EmitLoadOfLValue(E); 638 } 639 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 640 auto &Ctx = CGF.getContext(); 641 APValue Evaluated = 642 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 643 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 644 SLE->getType()); 645 } 646 647 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 648 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 649 return Visit(DAE->getExpr()); 650 } 651 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 652 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 653 return Visit(DIE->getExpr()); 654 } 655 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 656 return CGF.LoadCXXThis(); 657 } 658 659 Value *VisitExprWithCleanups(ExprWithCleanups *E); 660 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 661 return CGF.EmitCXXNewExpr(E); 662 } 663 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 664 CGF.EmitCXXDeleteExpr(E); 665 return nullptr; 666 } 667 668 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 669 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 670 } 671 672 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 673 return Builder.getInt1(E->isSatisfied()); 674 } 675 676 Value *VisitRequiresExpr(const RequiresExpr *E) { 677 return Builder.getInt1(E->isSatisfied()); 678 } 679 680 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 681 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 682 } 683 684 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 685 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 686 } 687 688 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 689 // C++ [expr.pseudo]p1: 690 // The result shall only be used as the operand for the function call 691 // operator (), and the result of such a call has type void. The only 692 // effect is the evaluation of the postfix-expression before the dot or 693 // arrow. 694 CGF.EmitScalarExpr(E->getBase()); 695 return nullptr; 696 } 697 698 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 699 return EmitNullValue(E->getType()); 700 } 701 702 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 703 CGF.EmitCXXThrowExpr(E); 704 return nullptr; 705 } 706 707 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 708 return Builder.getInt1(E->getValue()); 709 } 710 711 // Binary Operators. 712 Value *EmitMul(const BinOpInfo &Ops) { 713 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 714 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 715 case LangOptions::SOB_Defined: 716 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 717 case LangOptions::SOB_Undefined: 718 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 719 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 720 LLVM_FALLTHROUGH; 721 case LangOptions::SOB_Trapping: 722 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 723 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 724 return EmitOverflowCheckedBinOp(Ops); 725 } 726 } 727 728 if (Ops.Ty->isConstantMatrixType()) { 729 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 730 // We need to check the types of the operands of the operator to get the 731 // correct matrix dimensions. 732 auto *BO = cast<BinaryOperator>(Ops.E); 733 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 734 BO->getLHS()->getType().getCanonicalType()); 735 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 736 BO->getRHS()->getType().getCanonicalType()); 737 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 738 if (LHSMatTy && RHSMatTy) 739 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 740 LHSMatTy->getNumColumns(), 741 RHSMatTy->getNumColumns()); 742 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 743 } 744 745 if (Ops.Ty->isUnsignedIntegerType() && 746 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 747 !CanElideOverflowCheck(CGF.getContext(), Ops)) 748 return EmitOverflowCheckedBinOp(Ops); 749 750 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 751 // Preserve the old values 752 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 753 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 754 } 755 if (Ops.isFixedPointOp()) 756 return EmitFixedPointBinOp(Ops); 757 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 758 } 759 /// Create a binary op that checks for overflow. 760 /// Currently only supports +, - and *. 761 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 762 763 // Check for undefined division and modulus behaviors. 764 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 765 llvm::Value *Zero,bool isDiv); 766 // Common helper for getting how wide LHS of shift is. 767 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 768 769 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 770 // non powers of two. 771 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 772 773 Value *EmitDiv(const BinOpInfo &Ops); 774 Value *EmitRem(const BinOpInfo &Ops); 775 Value *EmitAdd(const BinOpInfo &Ops); 776 Value *EmitSub(const BinOpInfo &Ops); 777 Value *EmitShl(const BinOpInfo &Ops); 778 Value *EmitShr(const BinOpInfo &Ops); 779 Value *EmitAnd(const BinOpInfo &Ops) { 780 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 781 } 782 Value *EmitXor(const BinOpInfo &Ops) { 783 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 784 } 785 Value *EmitOr (const BinOpInfo &Ops) { 786 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 787 } 788 789 // Helper functions for fixed point binary operations. 790 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 791 792 BinOpInfo EmitBinOps(const BinaryOperator *E); 793 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 794 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 795 Value *&Result); 796 797 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 798 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 799 800 // Binary operators and binary compound assignment operators. 801 #define HANDLEBINOP(OP) \ 802 Value *VisitBin ## OP(const BinaryOperator *E) { \ 803 return Emit ## OP(EmitBinOps(E)); \ 804 } \ 805 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 806 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 807 } 808 HANDLEBINOP(Mul) 809 HANDLEBINOP(Div) 810 HANDLEBINOP(Rem) 811 HANDLEBINOP(Add) 812 HANDLEBINOP(Sub) 813 HANDLEBINOP(Shl) 814 HANDLEBINOP(Shr) 815 HANDLEBINOP(And) 816 HANDLEBINOP(Xor) 817 HANDLEBINOP(Or) 818 #undef HANDLEBINOP 819 820 // Comparisons. 821 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 822 llvm::CmpInst::Predicate SICmpOpc, 823 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 824 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 825 Value *VisitBin##CODE(const BinaryOperator *E) { \ 826 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 827 llvm::FCmpInst::FP, SIG); } 828 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 829 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 830 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 831 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 832 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 833 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 834 #undef VISITCOMP 835 836 Value *VisitBinAssign (const BinaryOperator *E); 837 838 Value *VisitBinLAnd (const BinaryOperator *E); 839 Value *VisitBinLOr (const BinaryOperator *E); 840 Value *VisitBinComma (const BinaryOperator *E); 841 842 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 843 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 844 845 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 846 return Visit(E->getSemanticForm()); 847 } 848 849 // Other Operators. 850 Value *VisitBlockExpr(const BlockExpr *BE); 851 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 852 Value *VisitChooseExpr(ChooseExpr *CE); 853 Value *VisitVAArgExpr(VAArgExpr *VE); 854 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 855 return CGF.EmitObjCStringLiteral(E); 856 } 857 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 858 return CGF.EmitObjCBoxedExpr(E); 859 } 860 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 861 return CGF.EmitObjCArrayLiteral(E); 862 } 863 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 864 return CGF.EmitObjCDictionaryLiteral(E); 865 } 866 Value *VisitAsTypeExpr(AsTypeExpr *CE); 867 Value *VisitAtomicExpr(AtomicExpr *AE); 868 }; 869 } // end anonymous namespace. 870 871 //===----------------------------------------------------------------------===// 872 // Utilities 873 //===----------------------------------------------------------------------===// 874 875 /// EmitConversionToBool - Convert the specified expression value to a 876 /// boolean (i1) truth value. This is equivalent to "Val != 0". 877 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 878 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 879 880 if (SrcType->isRealFloatingType()) 881 return EmitFloatToBoolConversion(Src); 882 883 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 884 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 885 886 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 887 "Unknown scalar type to convert"); 888 889 if (isa<llvm::IntegerType>(Src->getType())) 890 return EmitIntToBoolConversion(Src); 891 892 assert(isa<llvm::PointerType>(Src->getType())); 893 return EmitPointerToBoolConversion(Src, SrcType); 894 } 895 896 void ScalarExprEmitter::EmitFloatConversionCheck( 897 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 898 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 899 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 900 if (!isa<llvm::IntegerType>(DstTy)) 901 return; 902 903 CodeGenFunction::SanitizerScope SanScope(&CGF); 904 using llvm::APFloat; 905 using llvm::APSInt; 906 907 llvm::Value *Check = nullptr; 908 const llvm::fltSemantics &SrcSema = 909 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 910 911 // Floating-point to integer. This has undefined behavior if the source is 912 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 913 // to an integer). 914 unsigned Width = CGF.getContext().getIntWidth(DstType); 915 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 916 917 APSInt Min = APSInt::getMinValue(Width, Unsigned); 918 APFloat MinSrc(SrcSema, APFloat::uninitialized); 919 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 920 APFloat::opOverflow) 921 // Don't need an overflow check for lower bound. Just check for 922 // -Inf/NaN. 923 MinSrc = APFloat::getInf(SrcSema, true); 924 else 925 // Find the largest value which is too small to represent (before 926 // truncation toward zero). 927 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 928 929 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 930 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 931 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 932 APFloat::opOverflow) 933 // Don't need an overflow check for upper bound. Just check for 934 // +Inf/NaN. 935 MaxSrc = APFloat::getInf(SrcSema, false); 936 else 937 // Find the smallest value which is too large to represent (before 938 // truncation toward zero). 939 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 940 941 // If we're converting from __half, convert the range to float to match 942 // the type of src. 943 if (OrigSrcType->isHalfType()) { 944 const llvm::fltSemantics &Sema = 945 CGF.getContext().getFloatTypeSemantics(SrcType); 946 bool IsInexact; 947 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 948 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 949 } 950 951 llvm::Value *GE = 952 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 953 llvm::Value *LE = 954 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 955 Check = Builder.CreateAnd(GE, LE); 956 957 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 958 CGF.EmitCheckTypeDescriptor(OrigSrcType), 959 CGF.EmitCheckTypeDescriptor(DstType)}; 960 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 961 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 962 } 963 964 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 965 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 966 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 967 std::pair<llvm::Value *, SanitizerMask>> 968 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 969 QualType DstType, CGBuilderTy &Builder) { 970 llvm::Type *SrcTy = Src->getType(); 971 llvm::Type *DstTy = Dst->getType(); 972 (void)DstTy; // Only used in assert() 973 974 // This should be truncation of integral types. 975 assert(Src != Dst); 976 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 977 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 978 "non-integer llvm type"); 979 980 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 981 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 982 983 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 984 // Else, it is a signed truncation. 985 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 986 SanitizerMask Mask; 987 if (!SrcSigned && !DstSigned) { 988 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 989 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 990 } else { 991 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 992 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 993 } 994 995 llvm::Value *Check = nullptr; 996 // 1. Extend the truncated value back to the same width as the Src. 997 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 998 // 2. Equality-compare with the original source value 999 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 1000 // If the comparison result is 'i1 false', then the truncation was lossy. 1001 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1002 } 1003 1004 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 1005 QualType SrcType, QualType DstType) { 1006 return SrcType->isIntegerType() && DstType->isIntegerType(); 1007 } 1008 1009 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1010 Value *Dst, QualType DstType, 1011 SourceLocation Loc) { 1012 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1013 return; 1014 1015 // We only care about int->int conversions here. 1016 // We ignore conversions to/from pointer and/or bool. 1017 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1018 DstType)) 1019 return; 1020 1021 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1022 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1023 // This must be truncation. Else we do not care. 1024 if (SrcBits <= DstBits) 1025 return; 1026 1027 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1028 1029 // If the integer sign change sanitizer is enabled, 1030 // and we are truncating from larger unsigned type to smaller signed type, 1031 // let that next sanitizer deal with it. 1032 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1033 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1034 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1035 (!SrcSigned && DstSigned)) 1036 return; 1037 1038 CodeGenFunction::SanitizerScope SanScope(&CGF); 1039 1040 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1041 std::pair<llvm::Value *, SanitizerMask>> 1042 Check = 1043 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1044 // If the comparison result is 'i1 false', then the truncation was lossy. 1045 1046 // Do we care about this type of truncation? 1047 if (!CGF.SanOpts.has(Check.second.second)) 1048 return; 1049 1050 llvm::Constant *StaticArgs[] = { 1051 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1052 CGF.EmitCheckTypeDescriptor(DstType), 1053 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1054 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1055 {Src, Dst}); 1056 } 1057 1058 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1059 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1060 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1061 std::pair<llvm::Value *, SanitizerMask>> 1062 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1063 QualType DstType, CGBuilderTy &Builder) { 1064 llvm::Type *SrcTy = Src->getType(); 1065 llvm::Type *DstTy = Dst->getType(); 1066 1067 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1068 "non-integer llvm type"); 1069 1070 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1071 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1072 (void)SrcSigned; // Only used in assert() 1073 (void)DstSigned; // Only used in assert() 1074 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1075 unsigned DstBits = DstTy->getScalarSizeInBits(); 1076 (void)SrcBits; // Only used in assert() 1077 (void)DstBits; // Only used in assert() 1078 1079 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1080 "either the widths should be different, or the signednesses."); 1081 1082 // NOTE: zero value is considered to be non-negative. 1083 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1084 const char *Name) -> Value * { 1085 // Is this value a signed type? 1086 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1087 llvm::Type *VTy = V->getType(); 1088 if (!VSigned) { 1089 // If the value is unsigned, then it is never negative. 1090 // FIXME: can we encounter non-scalar VTy here? 1091 return llvm::ConstantInt::getFalse(VTy->getContext()); 1092 } 1093 // Get the zero of the same type with which we will be comparing. 1094 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1095 // %V.isnegative = icmp slt %V, 0 1096 // I.e is %V *strictly* less than zero, does it have negative value? 1097 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1098 llvm::Twine(Name) + "." + V->getName() + 1099 ".negativitycheck"); 1100 }; 1101 1102 // 1. Was the old Value negative? 1103 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1104 // 2. Is the new Value negative? 1105 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1106 // 3. Now, was the 'negativity status' preserved during the conversion? 1107 // NOTE: conversion from negative to zero is considered to change the sign. 1108 // (We want to get 'false' when the conversion changed the sign) 1109 // So we should just equality-compare the negativity statuses. 1110 llvm::Value *Check = nullptr; 1111 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1112 // If the comparison result is 'false', then the conversion changed the sign. 1113 return std::make_pair( 1114 ScalarExprEmitter::ICCK_IntegerSignChange, 1115 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1116 } 1117 1118 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1119 Value *Dst, QualType DstType, 1120 SourceLocation Loc) { 1121 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1122 return; 1123 1124 llvm::Type *SrcTy = Src->getType(); 1125 llvm::Type *DstTy = Dst->getType(); 1126 1127 // We only care about int->int conversions here. 1128 // We ignore conversions to/from pointer and/or bool. 1129 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1130 DstType)) 1131 return; 1132 1133 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1134 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1135 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1136 unsigned DstBits = DstTy->getScalarSizeInBits(); 1137 1138 // Now, we do not need to emit the check in *all* of the cases. 1139 // We can avoid emitting it in some obvious cases where it would have been 1140 // dropped by the opt passes (instcombine) always anyways. 1141 // If it's a cast between effectively the same type, no check. 1142 // NOTE: this is *not* equivalent to checking the canonical types. 1143 if (SrcSigned == DstSigned && SrcBits == DstBits) 1144 return; 1145 // At least one of the values needs to have signed type. 1146 // If both are unsigned, then obviously, neither of them can be negative. 1147 if (!SrcSigned && !DstSigned) 1148 return; 1149 // If the conversion is to *larger* *signed* type, then no check is needed. 1150 // Because either sign-extension happens (so the sign will remain), 1151 // or zero-extension will happen (the sign bit will be zero.) 1152 if ((DstBits > SrcBits) && DstSigned) 1153 return; 1154 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1155 (SrcBits > DstBits) && SrcSigned) { 1156 // If the signed integer truncation sanitizer is enabled, 1157 // and this is a truncation from signed type, then no check is needed. 1158 // Because here sign change check is interchangeable with truncation check. 1159 return; 1160 } 1161 // That's it. We can't rule out any more cases with the data we have. 1162 1163 CodeGenFunction::SanitizerScope SanScope(&CGF); 1164 1165 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1166 std::pair<llvm::Value *, SanitizerMask>> 1167 Check; 1168 1169 // Each of these checks needs to return 'false' when an issue was detected. 1170 ImplicitConversionCheckKind CheckKind; 1171 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1172 // So we can 'and' all the checks together, and still get 'false', 1173 // if at least one of the checks detected an issue. 1174 1175 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1176 CheckKind = Check.first; 1177 Checks.emplace_back(Check.second); 1178 1179 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1180 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1181 // If the signed integer truncation sanitizer was enabled, 1182 // and we are truncating from larger unsigned type to smaller signed type, 1183 // let's handle the case we skipped in that check. 1184 Check = 1185 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1186 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1187 Checks.emplace_back(Check.second); 1188 // If the comparison result is 'i1 false', then the truncation was lossy. 1189 } 1190 1191 llvm::Constant *StaticArgs[] = { 1192 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1193 CGF.EmitCheckTypeDescriptor(DstType), 1194 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1195 // EmitCheck() will 'and' all the checks together. 1196 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1197 {Src, Dst}); 1198 } 1199 1200 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, 1201 QualType DstType, llvm::Type *SrcTy, 1202 llvm::Type *DstTy, 1203 ScalarConversionOpts Opts) { 1204 // The Element types determine the type of cast to perform. 1205 llvm::Type *SrcElementTy; 1206 llvm::Type *DstElementTy; 1207 QualType SrcElementType; 1208 QualType DstElementType; 1209 if (SrcType->isMatrixType() && DstType->isMatrixType()) { 1210 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1211 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1212 SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); 1213 DstElementType = DstType->castAs<MatrixType>()->getElementType(); 1214 } else { 1215 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && 1216 "cannot cast between matrix and non-matrix types"); 1217 SrcElementTy = SrcTy; 1218 DstElementTy = DstTy; 1219 SrcElementType = SrcType; 1220 DstElementType = DstType; 1221 } 1222 1223 if (isa<llvm::IntegerType>(SrcElementTy)) { 1224 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); 1225 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1226 InputSigned = true; 1227 } 1228 1229 if (isa<llvm::IntegerType>(DstElementTy)) 1230 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1231 if (InputSigned) 1232 return Builder.CreateSIToFP(Src, DstTy, "conv"); 1233 return Builder.CreateUIToFP(Src, DstTy, "conv"); 1234 } 1235 1236 if (isa<llvm::IntegerType>(DstElementTy)) { 1237 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion"); 1238 if (DstElementType->isSignedIntegerOrEnumerationType()) 1239 return Builder.CreateFPToSI(Src, DstTy, "conv"); 1240 return Builder.CreateFPToUI(Src, DstTy, "conv"); 1241 } 1242 1243 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) 1244 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1245 return Builder.CreateFPExt(Src, DstTy, "conv"); 1246 } 1247 1248 /// Emit a conversion from the specified type to the specified destination type, 1249 /// both of which are LLVM scalar types. 1250 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1251 QualType DstType, 1252 SourceLocation Loc, 1253 ScalarConversionOpts Opts) { 1254 // All conversions involving fixed point types should be handled by the 1255 // EmitFixedPoint family functions. This is done to prevent bloating up this 1256 // function more, and although fixed point numbers are represented by 1257 // integers, we do not want to follow any logic that assumes they should be 1258 // treated as integers. 1259 // TODO(leonardchan): When necessary, add another if statement checking for 1260 // conversions to fixed point types from other types. 1261 if (SrcType->isFixedPointType()) { 1262 if (DstType->isBooleanType()) 1263 // It is important that we check this before checking if the dest type is 1264 // an integer because booleans are technically integer types. 1265 // We do not need to check the padding bit on unsigned types if unsigned 1266 // padding is enabled because overflow into this bit is undefined 1267 // behavior. 1268 return Builder.CreateIsNotNull(Src, "tobool"); 1269 if (DstType->isFixedPointType() || DstType->isIntegerType() || 1270 DstType->isRealFloatingType()) 1271 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1272 1273 llvm_unreachable( 1274 "Unhandled scalar conversion from a fixed point type to another type."); 1275 } else if (DstType->isFixedPointType()) { 1276 if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) 1277 // This also includes converting booleans and enums to fixed point types. 1278 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1279 1280 llvm_unreachable( 1281 "Unhandled scalar conversion to a fixed point type from another type."); 1282 } 1283 1284 QualType NoncanonicalSrcType = SrcType; 1285 QualType NoncanonicalDstType = DstType; 1286 1287 SrcType = CGF.getContext().getCanonicalType(SrcType); 1288 DstType = CGF.getContext().getCanonicalType(DstType); 1289 if (SrcType == DstType) return Src; 1290 1291 if (DstType->isVoidType()) return nullptr; 1292 1293 llvm::Value *OrigSrc = Src; 1294 QualType OrigSrcType = SrcType; 1295 llvm::Type *SrcTy = Src->getType(); 1296 1297 // Handle conversions to bool first, they are special: comparisons against 0. 1298 if (DstType->isBooleanType()) 1299 return EmitConversionToBool(Src, SrcType); 1300 1301 llvm::Type *DstTy = ConvertType(DstType); 1302 1303 // Cast from half through float if half isn't a native type. 1304 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1305 // Cast to FP using the intrinsic if the half type itself isn't supported. 1306 if (DstTy->isFloatingPointTy()) { 1307 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1308 return Builder.CreateCall( 1309 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1310 Src); 1311 } else { 1312 // Cast to other types through float, using either the intrinsic or FPExt, 1313 // depending on whether the half type itself is supported 1314 // (as opposed to operations on half, available with NativeHalfType). 1315 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1316 Src = Builder.CreateCall( 1317 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1318 CGF.CGM.FloatTy), 1319 Src); 1320 } else { 1321 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1322 } 1323 SrcType = CGF.getContext().FloatTy; 1324 SrcTy = CGF.FloatTy; 1325 } 1326 } 1327 1328 // Ignore conversions like int -> uint. 1329 if (SrcTy == DstTy) { 1330 if (Opts.EmitImplicitIntegerSignChangeChecks) 1331 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1332 NoncanonicalDstType, Loc); 1333 1334 return Src; 1335 } 1336 1337 // Handle pointer conversions next: pointers can only be converted to/from 1338 // other pointers and integers. Check for pointer types in terms of LLVM, as 1339 // some native types (like Obj-C id) may map to a pointer type. 1340 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1341 // The source value may be an integer, or a pointer. 1342 if (isa<llvm::PointerType>(SrcTy)) 1343 return Builder.CreateBitCast(Src, DstTy, "conv"); 1344 1345 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1346 // First, convert to the correct width so that we control the kind of 1347 // extension. 1348 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1349 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1350 llvm::Value* IntResult = 1351 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1352 // Then, cast to pointer. 1353 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1354 } 1355 1356 if (isa<llvm::PointerType>(SrcTy)) { 1357 // Must be an ptr to int cast. 1358 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1359 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1360 } 1361 1362 // A scalar can be splatted to an extended vector of the same element type 1363 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1364 // Sema should add casts to make sure that the source expression's type is 1365 // the same as the vector's element type (sans qualifiers) 1366 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1367 SrcType.getTypePtr() && 1368 "Splatted expr doesn't match with vector element type?"); 1369 1370 // Splat the element across to all elements 1371 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 1372 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1373 } 1374 1375 if (SrcType->isMatrixType() && DstType->isMatrixType()) 1376 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1377 1378 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1379 // Allow bitcast from vector to integer/fp of the same size. 1380 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1381 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1382 if (SrcSize == DstSize) 1383 return Builder.CreateBitCast(Src, DstTy, "conv"); 1384 1385 // Conversions between vectors of different sizes are not allowed except 1386 // when vectors of half are involved. Operations on storage-only half 1387 // vectors require promoting half vector operands to float vectors and 1388 // truncating the result, which is either an int or float vector, to a 1389 // short or half vector. 1390 1391 // Source and destination are both expected to be vectors. 1392 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1393 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1394 (void)DstElementTy; 1395 1396 assert(((SrcElementTy->isIntegerTy() && 1397 DstElementTy->isIntegerTy()) || 1398 (SrcElementTy->isFloatingPointTy() && 1399 DstElementTy->isFloatingPointTy())) && 1400 "unexpected conversion between a floating-point vector and an " 1401 "integer vector"); 1402 1403 // Truncate an i32 vector to an i16 vector. 1404 if (SrcElementTy->isIntegerTy()) 1405 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1406 1407 // Truncate a float vector to a half vector. 1408 if (SrcSize > DstSize) 1409 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1410 1411 // Promote a half vector to a float vector. 1412 return Builder.CreateFPExt(Src, DstTy, "conv"); 1413 } 1414 1415 // Finally, we have the arithmetic types: real int/float. 1416 Value *Res = nullptr; 1417 llvm::Type *ResTy = DstTy; 1418 1419 // An overflowing conversion has undefined behavior if either the source type 1420 // or the destination type is a floating-point type. However, we consider the 1421 // range of representable values for all floating-point types to be 1422 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1423 // floating-point type. 1424 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1425 OrigSrcType->isFloatingType()) 1426 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1427 Loc); 1428 1429 // Cast to half through float if half isn't a native type. 1430 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1431 // Make sure we cast in a single step if from another FP type. 1432 if (SrcTy->isFloatingPointTy()) { 1433 // Use the intrinsic if the half type itself isn't supported 1434 // (as opposed to operations on half, available with NativeHalfType). 1435 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1436 return Builder.CreateCall( 1437 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1438 // If the half type is supported, just use an fptrunc. 1439 return Builder.CreateFPTrunc(Src, DstTy); 1440 } 1441 DstTy = CGF.FloatTy; 1442 } 1443 1444 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1445 1446 if (DstTy != ResTy) { 1447 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1448 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1449 Res = Builder.CreateCall( 1450 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1451 Res); 1452 } else { 1453 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1454 } 1455 } 1456 1457 if (Opts.EmitImplicitIntegerTruncationChecks) 1458 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1459 NoncanonicalDstType, Loc); 1460 1461 if (Opts.EmitImplicitIntegerSignChangeChecks) 1462 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1463 NoncanonicalDstType, Loc); 1464 1465 return Res; 1466 } 1467 1468 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1469 QualType DstTy, 1470 SourceLocation Loc) { 1471 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 1472 llvm::Value *Result; 1473 if (SrcTy->isRealFloatingType()) 1474 Result = FPBuilder.CreateFloatingToFixed(Src, 1475 CGF.getContext().getFixedPointSemantics(DstTy)); 1476 else if (DstTy->isRealFloatingType()) 1477 Result = FPBuilder.CreateFixedToFloating(Src, 1478 CGF.getContext().getFixedPointSemantics(SrcTy), 1479 ConvertType(DstTy)); 1480 else { 1481 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1482 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1483 1484 if (DstTy->isIntegerType()) 1485 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, 1486 DstFPSema.getWidth(), 1487 DstFPSema.isSigned()); 1488 else if (SrcTy->isIntegerType()) 1489 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), 1490 DstFPSema); 1491 else 1492 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); 1493 } 1494 return Result; 1495 } 1496 1497 /// Emit a conversion from the specified complex type to the specified 1498 /// destination type, where the destination type is an LLVM scalar type. 1499 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1500 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1501 SourceLocation Loc) { 1502 // Get the source element type. 1503 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1504 1505 // Handle conversions to bool first, they are special: comparisons against 0. 1506 if (DstTy->isBooleanType()) { 1507 // Complex != 0 -> (Real != 0) | (Imag != 0) 1508 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1509 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1510 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1511 } 1512 1513 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1514 // the imaginary part of the complex value is discarded and the value of the 1515 // real part is converted according to the conversion rules for the 1516 // corresponding real type. 1517 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1518 } 1519 1520 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1521 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1522 } 1523 1524 /// Emit a sanitization check for the given "binary" operation (which 1525 /// might actually be a unary increment which has been lowered to a binary 1526 /// operation). The check passes if all values in \p Checks (which are \c i1), 1527 /// are \c true. 1528 void ScalarExprEmitter::EmitBinOpCheck( 1529 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1530 assert(CGF.IsSanitizerScope); 1531 SanitizerHandler Check; 1532 SmallVector<llvm::Constant *, 4> StaticData; 1533 SmallVector<llvm::Value *, 2> DynamicData; 1534 1535 BinaryOperatorKind Opcode = Info.Opcode; 1536 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1537 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1538 1539 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1540 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1541 if (UO && UO->getOpcode() == UO_Minus) { 1542 Check = SanitizerHandler::NegateOverflow; 1543 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1544 DynamicData.push_back(Info.RHS); 1545 } else { 1546 if (BinaryOperator::isShiftOp(Opcode)) { 1547 // Shift LHS negative or too large, or RHS out of bounds. 1548 Check = SanitizerHandler::ShiftOutOfBounds; 1549 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1550 StaticData.push_back( 1551 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1552 StaticData.push_back( 1553 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1554 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1555 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1556 Check = SanitizerHandler::DivremOverflow; 1557 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1558 } else { 1559 // Arithmetic overflow (+, -, *). 1560 switch (Opcode) { 1561 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1562 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1563 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1564 default: llvm_unreachable("unexpected opcode for bin op check"); 1565 } 1566 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1567 } 1568 DynamicData.push_back(Info.LHS); 1569 DynamicData.push_back(Info.RHS); 1570 } 1571 1572 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1573 } 1574 1575 //===----------------------------------------------------------------------===// 1576 // Visitor Methods 1577 //===----------------------------------------------------------------------===// 1578 1579 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1580 CGF.ErrorUnsupported(E, "scalar expression"); 1581 if (E->getType()->isVoidType()) 1582 return nullptr; 1583 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1584 } 1585 1586 Value * 1587 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) { 1588 ASTContext &Context = CGF.getContext(); 1589 llvm::Optional<LangAS> GlobalAS = 1590 Context.getTargetInfo().getConstantAddressSpace(); 1591 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr( 1592 E->ComputeName(Context), "__usn_str", 1593 static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default))); 1594 1595 unsigned ExprAS = Context.getTargetAddressSpace(E->getType()); 1596 1597 if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS) 1598 return GlobalConstStr; 1599 1600 llvm::Type *EltTy = GlobalConstStr->getType()->getPointerElementType(); 1601 llvm::PointerType *NewPtrTy = llvm::PointerType::get(EltTy, ExprAS); 1602 return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast"); 1603 } 1604 1605 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1606 // Vector Mask Case 1607 if (E->getNumSubExprs() == 2) { 1608 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1609 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1610 Value *Mask; 1611 1612 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); 1613 unsigned LHSElts = LTy->getNumElements(); 1614 1615 Mask = RHS; 1616 1617 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); 1618 1619 // Mask off the high bits of each shuffle index. 1620 Value *MaskBits = 1621 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1622 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1623 1624 // newv = undef 1625 // mask = mask & maskbits 1626 // for each elt 1627 // n = extract mask i 1628 // x = extract val n 1629 // newv = insert newv, x, i 1630 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1631 MTy->getNumElements()); 1632 Value* NewV = llvm::UndefValue::get(RTy); 1633 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1634 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1635 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1636 1637 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1638 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1639 } 1640 return NewV; 1641 } 1642 1643 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1644 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1645 1646 SmallVector<int, 32> Indices; 1647 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1648 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1649 // Check for -1 and output it as undef in the IR. 1650 if (Idx.isSigned() && Idx.isAllOnesValue()) 1651 Indices.push_back(-1); 1652 else 1653 Indices.push_back(Idx.getZExtValue()); 1654 } 1655 1656 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1657 } 1658 1659 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1660 QualType SrcType = E->getSrcExpr()->getType(), 1661 DstType = E->getType(); 1662 1663 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1664 1665 SrcType = CGF.getContext().getCanonicalType(SrcType); 1666 DstType = CGF.getContext().getCanonicalType(DstType); 1667 if (SrcType == DstType) return Src; 1668 1669 assert(SrcType->isVectorType() && 1670 "ConvertVector source type must be a vector"); 1671 assert(DstType->isVectorType() && 1672 "ConvertVector destination type must be a vector"); 1673 1674 llvm::Type *SrcTy = Src->getType(); 1675 llvm::Type *DstTy = ConvertType(DstType); 1676 1677 // Ignore conversions like int -> uint. 1678 if (SrcTy == DstTy) 1679 return Src; 1680 1681 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1682 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1683 1684 assert(SrcTy->isVectorTy() && 1685 "ConvertVector source IR type must be a vector"); 1686 assert(DstTy->isVectorTy() && 1687 "ConvertVector destination IR type must be a vector"); 1688 1689 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1690 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1691 1692 if (DstEltType->isBooleanType()) { 1693 assert((SrcEltTy->isFloatingPointTy() || 1694 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1695 1696 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1697 if (SrcEltTy->isFloatingPointTy()) { 1698 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1699 } else { 1700 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1701 } 1702 } 1703 1704 // We have the arithmetic types: real int/float. 1705 Value *Res = nullptr; 1706 1707 if (isa<llvm::IntegerType>(SrcEltTy)) { 1708 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1709 if (isa<llvm::IntegerType>(DstEltTy)) 1710 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1711 else if (InputSigned) 1712 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1713 else 1714 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1715 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1716 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1717 if (DstEltType->isSignedIntegerOrEnumerationType()) 1718 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1719 else 1720 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1721 } else { 1722 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1723 "Unknown real conversion"); 1724 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1725 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1726 else 1727 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1728 } 1729 1730 return Res; 1731 } 1732 1733 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1734 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1735 CGF.EmitIgnoredExpr(E->getBase()); 1736 return CGF.emitScalarConstant(Constant, E); 1737 } else { 1738 Expr::EvalResult Result; 1739 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1740 llvm::APSInt Value = Result.Val.getInt(); 1741 CGF.EmitIgnoredExpr(E->getBase()); 1742 return Builder.getInt(Value); 1743 } 1744 } 1745 1746 return EmitLoadOfLValue(E); 1747 } 1748 1749 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1750 TestAndClearIgnoreResultAssign(); 1751 1752 // Emit subscript expressions in rvalue context's. For most cases, this just 1753 // loads the lvalue formed by the subscript expr. However, we have to be 1754 // careful, because the base of a vector subscript is occasionally an rvalue, 1755 // so we can't get it as an lvalue. 1756 if (!E->getBase()->getType()->isVectorType()) 1757 return EmitLoadOfLValue(E); 1758 1759 // Handle the vector case. The base must be a vector, the index must be an 1760 // integer value. 1761 Value *Base = Visit(E->getBase()); 1762 Value *Idx = Visit(E->getIdx()); 1763 QualType IdxTy = E->getIdx()->getType(); 1764 1765 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1766 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1767 1768 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1769 } 1770 1771 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1772 TestAndClearIgnoreResultAssign(); 1773 1774 // Handle the vector case. The base must be a vector, the index must be an 1775 // integer value. 1776 Value *RowIdx = Visit(E->getRowIdx()); 1777 Value *ColumnIdx = Visit(E->getColumnIdx()); 1778 1779 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>(); 1780 unsigned NumRows = MatrixTy->getNumRows(); 1781 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1782 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows); 1783 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0) 1784 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened()); 1785 1786 Value *Matrix = Visit(E->getBase()); 1787 1788 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1789 return Builder.CreateExtractElement(Matrix, Idx, "matrixext"); 1790 } 1791 1792 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1793 unsigned Off) { 1794 int MV = SVI->getMaskValue(Idx); 1795 if (MV == -1) 1796 return -1; 1797 return Off + MV; 1798 } 1799 1800 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1801 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1802 "Index operand too large for shufflevector mask!"); 1803 return C->getZExtValue(); 1804 } 1805 1806 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1807 bool Ignore = TestAndClearIgnoreResultAssign(); 1808 (void)Ignore; 1809 assert (Ignore == false && "init list ignored"); 1810 unsigned NumInitElements = E->getNumInits(); 1811 1812 if (E->hadArrayRangeDesignator()) 1813 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1814 1815 llvm::VectorType *VType = 1816 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1817 1818 if (!VType) { 1819 if (NumInitElements == 0) { 1820 // C++11 value-initialization for the scalar. 1821 return EmitNullValue(E->getType()); 1822 } 1823 // We have a scalar in braces. Just use the first element. 1824 return Visit(E->getInit(0)); 1825 } 1826 1827 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); 1828 1829 // Loop over initializers collecting the Value for each, and remembering 1830 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1831 // us to fold the shuffle for the swizzle into the shuffle for the vector 1832 // initializer, since LLVM optimizers generally do not want to touch 1833 // shuffles. 1834 unsigned CurIdx = 0; 1835 bool VIsUndefShuffle = false; 1836 llvm::Value *V = llvm::UndefValue::get(VType); 1837 for (unsigned i = 0; i != NumInitElements; ++i) { 1838 Expr *IE = E->getInit(i); 1839 Value *Init = Visit(IE); 1840 SmallVector<int, 16> Args; 1841 1842 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1843 1844 // Handle scalar elements. If the scalar initializer is actually one 1845 // element of a different vector of the same width, use shuffle instead of 1846 // extract+insert. 1847 if (!VVT) { 1848 if (isa<ExtVectorElementExpr>(IE)) { 1849 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1850 1851 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) 1852 ->getNumElements() == ResElts) { 1853 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1854 Value *LHS = nullptr, *RHS = nullptr; 1855 if (CurIdx == 0) { 1856 // insert into undef -> shuffle (src, undef) 1857 // shufflemask must use an i32 1858 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1859 Args.resize(ResElts, -1); 1860 1861 LHS = EI->getVectorOperand(); 1862 RHS = V; 1863 VIsUndefShuffle = true; 1864 } else if (VIsUndefShuffle) { 1865 // insert into undefshuffle && size match -> shuffle (v, src) 1866 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1867 for (unsigned j = 0; j != CurIdx; ++j) 1868 Args.push_back(getMaskElt(SVV, j, 0)); 1869 Args.push_back(ResElts + C->getZExtValue()); 1870 Args.resize(ResElts, -1); 1871 1872 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1873 RHS = EI->getVectorOperand(); 1874 VIsUndefShuffle = false; 1875 } 1876 if (!Args.empty()) { 1877 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1878 ++CurIdx; 1879 continue; 1880 } 1881 } 1882 } 1883 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1884 "vecinit"); 1885 VIsUndefShuffle = false; 1886 ++CurIdx; 1887 continue; 1888 } 1889 1890 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); 1891 1892 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1893 // input is the same width as the vector being constructed, generate an 1894 // optimized shuffle of the swizzle input into the result. 1895 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1896 if (isa<ExtVectorElementExpr>(IE)) { 1897 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1898 Value *SVOp = SVI->getOperand(0); 1899 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); 1900 1901 if (OpTy->getNumElements() == ResElts) { 1902 for (unsigned j = 0; j != CurIdx; ++j) { 1903 // If the current vector initializer is a shuffle with undef, merge 1904 // this shuffle directly into it. 1905 if (VIsUndefShuffle) { 1906 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1907 } else { 1908 Args.push_back(j); 1909 } 1910 } 1911 for (unsigned j = 0, je = InitElts; j != je; ++j) 1912 Args.push_back(getMaskElt(SVI, j, Offset)); 1913 Args.resize(ResElts, -1); 1914 1915 if (VIsUndefShuffle) 1916 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1917 1918 Init = SVOp; 1919 } 1920 } 1921 1922 // Extend init to result vector length, and then shuffle its contribution 1923 // to the vector initializer into V. 1924 if (Args.empty()) { 1925 for (unsigned j = 0; j != InitElts; ++j) 1926 Args.push_back(j); 1927 Args.resize(ResElts, -1); 1928 Init = Builder.CreateShuffleVector(Init, Args, "vext"); 1929 1930 Args.clear(); 1931 for (unsigned j = 0; j != CurIdx; ++j) 1932 Args.push_back(j); 1933 for (unsigned j = 0; j != InitElts; ++j) 1934 Args.push_back(j + Offset); 1935 Args.resize(ResElts, -1); 1936 } 1937 1938 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1939 // merging subsequent shuffles into this one. 1940 if (CurIdx == 0) 1941 std::swap(V, Init); 1942 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 1943 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1944 CurIdx += InitElts; 1945 } 1946 1947 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1948 // Emit remaining default initializers. 1949 llvm::Type *EltTy = VType->getElementType(); 1950 1951 // Emit remaining default initializers 1952 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1953 Value *Idx = Builder.getInt32(CurIdx); 1954 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1955 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1956 } 1957 return V; 1958 } 1959 1960 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1961 const Expr *E = CE->getSubExpr(); 1962 1963 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1964 return false; 1965 1966 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1967 // We always assume that 'this' is never null. 1968 return false; 1969 } 1970 1971 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1972 // And that glvalue casts are never null. 1973 if (ICE->isGLValue()) 1974 return false; 1975 } 1976 1977 return true; 1978 } 1979 1980 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1981 // have to handle a more broad range of conversions than explicit casts, as they 1982 // handle things like function to ptr-to-function decay etc. 1983 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1984 Expr *E = CE->getSubExpr(); 1985 QualType DestTy = CE->getType(); 1986 CastKind Kind = CE->getCastKind(); 1987 1988 // These cases are generally not written to ignore the result of 1989 // evaluating their sub-expressions, so we clear this now. 1990 bool Ignored = TestAndClearIgnoreResultAssign(); 1991 1992 // Since almost all cast kinds apply to scalars, this switch doesn't have 1993 // a default case, so the compiler will warn on a missing case. The cases 1994 // are in the same order as in the CastKind enum. 1995 switch (Kind) { 1996 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1997 case CK_BuiltinFnToFnPtr: 1998 llvm_unreachable("builtin functions are handled elsewhere"); 1999 2000 case CK_LValueBitCast: 2001 case CK_ObjCObjectLValueCast: { 2002 Address Addr = EmitLValue(E).getAddress(CGF); 2003 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2004 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 2005 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2006 } 2007 2008 case CK_LValueToRValueBitCast: { 2009 LValue SourceLVal = CGF.EmitLValue(E); 2010 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 2011 CGF.ConvertTypeForMem(DestTy)); 2012 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2013 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2014 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2015 } 2016 2017 case CK_CPointerToObjCPointerCast: 2018 case CK_BlockPointerToObjCPointerCast: 2019 case CK_AnyPointerToBlockPointerCast: 2020 case CK_BitCast: { 2021 Value *Src = Visit(const_cast<Expr*>(E)); 2022 llvm::Type *SrcTy = Src->getType(); 2023 llvm::Type *DstTy = ConvertType(DestTy); 2024 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2025 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2026 llvm_unreachable("wrong cast for pointers in different address spaces" 2027 "(must be an address space cast)!"); 2028 } 2029 2030 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2031 if (auto PT = DestTy->getAs<PointerType>()) 2032 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2033 /*MayBeNull=*/true, 2034 CodeGenFunction::CFITCK_UnrelatedCast, 2035 CE->getBeginLoc()); 2036 } 2037 2038 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2039 const QualType SrcType = E->getType(); 2040 2041 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2042 // Casting to pointer that could carry dynamic information (provided by 2043 // invariant.group) requires launder. 2044 Src = Builder.CreateLaunderInvariantGroup(Src); 2045 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2046 // Casting to pointer that does not carry dynamic information (provided 2047 // by invariant.group) requires stripping it. Note that we don't do it 2048 // if the source could not be dynamic type and destination could be 2049 // dynamic because dynamic information is already laundered. It is 2050 // because launder(strip(src)) == launder(src), so there is no need to 2051 // add extra strip before launder. 2052 Src = Builder.CreateStripInvariantGroup(Src); 2053 } 2054 } 2055 2056 // Update heapallocsite metadata when there is an explicit pointer cast. 2057 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 2058 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { 2059 QualType PointeeType = DestTy->getPointeeType(); 2060 if (!PointeeType.isNull()) 2061 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 2062 CE->getExprLoc()); 2063 } 2064 } 2065 2066 // If Src is a fixed vector and Dst is a scalable vector, and both have the 2067 // same element type, use the llvm.experimental.vector.insert intrinsic to 2068 // perform the bitcast. 2069 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 2070 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { 2071 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 2072 // vector, use a vector insert and bitcast the result. 2073 bool NeedsBitCast = false; 2074 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2075 llvm::Type *OrigType = DstTy; 2076 if (ScalableDst == PredType && 2077 FixedSrc->getElementType() == Builder.getInt8Ty()) { 2078 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2079 ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy); 2080 NeedsBitCast = true; 2081 } 2082 if (FixedSrc->getElementType() == ScalableDst->getElementType()) { 2083 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); 2084 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2085 llvm::Value *Result = Builder.CreateInsertVector( 2086 DstTy, UndefVec, Src, Zero, "castScalableSve"); 2087 if (NeedsBitCast) 2088 Result = Builder.CreateBitCast(Result, OrigType); 2089 return Result; 2090 } 2091 } 2092 } 2093 2094 // If Src is a scalable vector and Dst is a fixed vector, and both have the 2095 // same element type, use the llvm.experimental.vector.extract intrinsic to 2096 // perform the bitcast. 2097 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { 2098 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { 2099 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2100 // vector, bitcast the source and use a vector extract. 2101 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2102 if (ScalableSrc == PredType && 2103 FixedDst->getElementType() == Builder.getInt8Ty()) { 2104 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2105 ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy); 2106 Src = Builder.CreateBitCast(Src, SrcTy); 2107 } 2108 if (ScalableSrc->getElementType() == FixedDst->getElementType()) { 2109 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2110 return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve"); 2111 } 2112 } 2113 } 2114 2115 // Perform VLAT <-> VLST bitcast through memory. 2116 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics 2117 // require the element types of the vectors to be the same, we 2118 // need to keep this around for bitcasts between VLAT <-> VLST where 2119 // the element types of the vectors are not the same, until we figure 2120 // out a better way of doing these casts. 2121 if ((isa<llvm::FixedVectorType>(SrcTy) && 2122 isa<llvm::ScalableVectorType>(DstTy)) || 2123 (isa<llvm::ScalableVectorType>(SrcTy) && 2124 isa<llvm::FixedVectorType>(DstTy))) { 2125 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value"); 2126 LValue LV = CGF.MakeAddrLValue(Addr, E->getType()); 2127 CGF.EmitStoreOfScalar(Src, LV); 2128 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy), 2129 "castFixedSve"); 2130 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2131 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2132 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2133 } 2134 2135 return Builder.CreateBitCast(Src, DstTy); 2136 } 2137 case CK_AddressSpaceConversion: { 2138 Expr::EvalResult Result; 2139 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2140 Result.Val.isNullPointer()) { 2141 // If E has side effect, it is emitted even if its final result is a 2142 // null pointer. In that case, a DCE pass should be able to 2143 // eliminate the useless instructions emitted during translating E. 2144 if (Result.HasSideEffects) 2145 Visit(E); 2146 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2147 ConvertType(DestTy)), DestTy); 2148 } 2149 // Since target may map different address spaces in AST to the same address 2150 // space, an address space conversion may end up as a bitcast. 2151 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2152 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2153 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2154 } 2155 case CK_AtomicToNonAtomic: 2156 case CK_NonAtomicToAtomic: 2157 case CK_NoOp: 2158 case CK_UserDefinedConversion: 2159 return Visit(const_cast<Expr*>(E)); 2160 2161 case CK_BaseToDerived: { 2162 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2163 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2164 2165 Address Base = CGF.EmitPointerWithAlignment(E); 2166 Address Derived = 2167 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2168 CE->path_begin(), CE->path_end(), 2169 CGF.ShouldNullCheckClassCastValue(CE)); 2170 2171 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2172 // performed and the object is not of the derived type. 2173 if (CGF.sanitizePerformTypeCheck()) 2174 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2175 Derived.getPointer(), DestTy->getPointeeType()); 2176 2177 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2178 CGF.EmitVTablePtrCheckForCast( 2179 DestTy->getPointeeType(), Derived.getPointer(), 2180 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2181 CE->getBeginLoc()); 2182 2183 return Derived.getPointer(); 2184 } 2185 case CK_UncheckedDerivedToBase: 2186 case CK_DerivedToBase: { 2187 // The EmitPointerWithAlignment path does this fine; just discard 2188 // the alignment. 2189 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2190 } 2191 2192 case CK_Dynamic: { 2193 Address V = CGF.EmitPointerWithAlignment(E); 2194 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2195 return CGF.EmitDynamicCast(V, DCE); 2196 } 2197 2198 case CK_ArrayToPointerDecay: 2199 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2200 case CK_FunctionToPointerDecay: 2201 return EmitLValue(E).getPointer(CGF); 2202 2203 case CK_NullToPointer: 2204 if (MustVisitNullValue(E)) 2205 CGF.EmitIgnoredExpr(E); 2206 2207 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2208 DestTy); 2209 2210 case CK_NullToMemberPointer: { 2211 if (MustVisitNullValue(E)) 2212 CGF.EmitIgnoredExpr(E); 2213 2214 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2215 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2216 } 2217 2218 case CK_ReinterpretMemberPointer: 2219 case CK_BaseToDerivedMemberPointer: 2220 case CK_DerivedToBaseMemberPointer: { 2221 Value *Src = Visit(E); 2222 2223 // Note that the AST doesn't distinguish between checked and 2224 // unchecked member pointer conversions, so we always have to 2225 // implement checked conversions here. This is inefficient when 2226 // actual control flow may be required in order to perform the 2227 // check, which it is for data member pointers (but not member 2228 // function pointers on Itanium and ARM). 2229 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2230 } 2231 2232 case CK_ARCProduceObject: 2233 return CGF.EmitARCRetainScalarExpr(E); 2234 case CK_ARCConsumeObject: 2235 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2236 case CK_ARCReclaimReturnedObject: 2237 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2238 case CK_ARCExtendBlockObject: 2239 return CGF.EmitARCExtendBlockObject(E); 2240 2241 case CK_CopyAndAutoreleaseBlockObject: 2242 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2243 2244 case CK_FloatingRealToComplex: 2245 case CK_FloatingComplexCast: 2246 case CK_IntegralRealToComplex: 2247 case CK_IntegralComplexCast: 2248 case CK_IntegralComplexToFloatingComplex: 2249 case CK_FloatingComplexToIntegralComplex: 2250 case CK_ConstructorConversion: 2251 case CK_ToUnion: 2252 llvm_unreachable("scalar cast to non-scalar value"); 2253 2254 case CK_LValueToRValue: 2255 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2256 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2257 return Visit(const_cast<Expr*>(E)); 2258 2259 case CK_IntegralToPointer: { 2260 Value *Src = Visit(const_cast<Expr*>(E)); 2261 2262 // First, convert to the correct width so that we control the kind of 2263 // extension. 2264 auto DestLLVMTy = ConvertType(DestTy); 2265 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2266 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2267 llvm::Value* IntResult = 2268 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2269 2270 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2271 2272 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2273 // Going from integer to pointer that could be dynamic requires reloading 2274 // dynamic information from invariant.group. 2275 if (DestTy.mayBeDynamicClass()) 2276 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2277 } 2278 return IntToPtr; 2279 } 2280 case CK_PointerToIntegral: { 2281 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2282 auto *PtrExpr = Visit(E); 2283 2284 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2285 const QualType SrcType = E->getType(); 2286 2287 // Casting to integer requires stripping dynamic information as it does 2288 // not carries it. 2289 if (SrcType.mayBeDynamicClass()) 2290 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2291 } 2292 2293 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2294 } 2295 case CK_ToVoid: { 2296 CGF.EmitIgnoredExpr(E); 2297 return nullptr; 2298 } 2299 case CK_MatrixCast: { 2300 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2301 CE->getExprLoc()); 2302 } 2303 case CK_VectorSplat: { 2304 llvm::Type *DstTy = ConvertType(DestTy); 2305 Value *Elt = Visit(const_cast<Expr*>(E)); 2306 // Splat the element across to all elements 2307 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 2308 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2309 } 2310 2311 case CK_FixedPointCast: 2312 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2313 CE->getExprLoc()); 2314 2315 case CK_FixedPointToBoolean: 2316 assert(E->getType()->isFixedPointType() && 2317 "Expected src type to be fixed point type"); 2318 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2319 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2320 CE->getExprLoc()); 2321 2322 case CK_FixedPointToIntegral: 2323 assert(E->getType()->isFixedPointType() && 2324 "Expected src type to be fixed point type"); 2325 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2326 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2327 CE->getExprLoc()); 2328 2329 case CK_IntegralToFixedPoint: 2330 assert(E->getType()->isIntegerType() && 2331 "Expected src type to be an integer"); 2332 assert(DestTy->isFixedPointType() && 2333 "Expected dest type to be fixed point type"); 2334 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2335 CE->getExprLoc()); 2336 2337 case CK_IntegralCast: { 2338 ScalarConversionOpts Opts; 2339 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2340 if (!ICE->isPartOfExplicitCast()) 2341 Opts = ScalarConversionOpts(CGF.SanOpts); 2342 } 2343 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2344 CE->getExprLoc(), Opts); 2345 } 2346 case CK_IntegralToFloating: 2347 case CK_FloatingToIntegral: 2348 case CK_FloatingCast: 2349 case CK_FixedPointToFloating: 2350 case CK_FloatingToFixedPoint: { 2351 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2352 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2353 CE->getExprLoc()); 2354 } 2355 case CK_BooleanToSignedIntegral: { 2356 ScalarConversionOpts Opts; 2357 Opts.TreatBooleanAsSigned = true; 2358 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2359 CE->getExprLoc(), Opts); 2360 } 2361 case CK_IntegralToBoolean: 2362 return EmitIntToBoolConversion(Visit(E)); 2363 case CK_PointerToBoolean: 2364 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2365 case CK_FloatingToBoolean: { 2366 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2367 return EmitFloatToBoolConversion(Visit(E)); 2368 } 2369 case CK_MemberPointerToBoolean: { 2370 llvm::Value *MemPtr = Visit(E); 2371 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2372 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2373 } 2374 2375 case CK_FloatingComplexToReal: 2376 case CK_IntegralComplexToReal: 2377 return CGF.EmitComplexExpr(E, false, true).first; 2378 2379 case CK_FloatingComplexToBoolean: 2380 case CK_IntegralComplexToBoolean: { 2381 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2382 2383 // TODO: kill this function off, inline appropriate case here 2384 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2385 CE->getExprLoc()); 2386 } 2387 2388 case CK_ZeroToOCLOpaqueType: { 2389 assert((DestTy->isEventT() || DestTy->isQueueT() || 2390 DestTy->isOCLIntelSubgroupAVCType()) && 2391 "CK_ZeroToOCLEvent cast on non-event type"); 2392 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2393 } 2394 2395 case CK_IntToOCLSampler: 2396 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2397 2398 } // end of switch 2399 2400 llvm_unreachable("unknown scalar cast"); 2401 } 2402 2403 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2404 CodeGenFunction::StmtExprEvaluation eval(CGF); 2405 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2406 !E->getType()->isVoidType()); 2407 if (!RetAlloca.isValid()) 2408 return nullptr; 2409 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2410 E->getExprLoc()); 2411 } 2412 2413 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2414 CodeGenFunction::RunCleanupsScope Scope(CGF); 2415 Value *V = Visit(E->getSubExpr()); 2416 // Defend against dominance problems caused by jumps out of expression 2417 // evaluation through the shared cleanup block. 2418 Scope.ForceCleanup({&V}); 2419 return V; 2420 } 2421 2422 //===----------------------------------------------------------------------===// 2423 // Unary Operators 2424 //===----------------------------------------------------------------------===// 2425 2426 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2427 llvm::Value *InVal, bool IsInc, 2428 FPOptions FPFeatures) { 2429 BinOpInfo BinOp; 2430 BinOp.LHS = InVal; 2431 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2432 BinOp.Ty = E->getType(); 2433 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2434 BinOp.FPFeatures = FPFeatures; 2435 BinOp.E = E; 2436 return BinOp; 2437 } 2438 2439 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2440 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2441 llvm::Value *Amount = 2442 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2443 StringRef Name = IsInc ? "inc" : "dec"; 2444 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2445 case LangOptions::SOB_Defined: 2446 return Builder.CreateAdd(InVal, Amount, Name); 2447 case LangOptions::SOB_Undefined: 2448 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2449 return Builder.CreateNSWAdd(InVal, Amount, Name); 2450 LLVM_FALLTHROUGH; 2451 case LangOptions::SOB_Trapping: 2452 if (!E->canOverflow()) 2453 return Builder.CreateNSWAdd(InVal, Amount, Name); 2454 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2455 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2456 } 2457 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2458 } 2459 2460 namespace { 2461 /// Handles check and update for lastprivate conditional variables. 2462 class OMPLastprivateConditionalUpdateRAII { 2463 private: 2464 CodeGenFunction &CGF; 2465 const UnaryOperator *E; 2466 2467 public: 2468 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2469 const UnaryOperator *E) 2470 : CGF(CGF), E(E) {} 2471 ~OMPLastprivateConditionalUpdateRAII() { 2472 if (CGF.getLangOpts().OpenMP) 2473 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2474 CGF, E->getSubExpr()); 2475 } 2476 }; 2477 } // namespace 2478 2479 llvm::Value * 2480 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2481 bool isInc, bool isPre) { 2482 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2483 QualType type = E->getSubExpr()->getType(); 2484 llvm::PHINode *atomicPHI = nullptr; 2485 llvm::Value *value; 2486 llvm::Value *input; 2487 2488 int amount = (isInc ? 1 : -1); 2489 bool isSubtraction = !isInc; 2490 2491 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2492 type = atomicTy->getValueType(); 2493 if (isInc && type->isBooleanType()) { 2494 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2495 if (isPre) { 2496 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2497 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2498 return Builder.getTrue(); 2499 } 2500 // For atomic bool increment, we just store true and return it for 2501 // preincrement, do an atomic swap with true for postincrement 2502 return Builder.CreateAtomicRMW( 2503 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2504 llvm::AtomicOrdering::SequentiallyConsistent); 2505 } 2506 // Special case for atomic increment / decrement on integers, emit 2507 // atomicrmw instructions. We skip this if we want to be doing overflow 2508 // checking, and fall into the slow path with the atomic cmpxchg loop. 2509 if (!type->isBooleanType() && type->isIntegerType() && 2510 !(type->isUnsignedIntegerType() && 2511 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2512 CGF.getLangOpts().getSignedOverflowBehavior() != 2513 LangOptions::SOB_Trapping) { 2514 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2515 llvm::AtomicRMWInst::Sub; 2516 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2517 llvm::Instruction::Sub; 2518 llvm::Value *amt = CGF.EmitToMemory( 2519 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2520 llvm::Value *old = 2521 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2522 llvm::AtomicOrdering::SequentiallyConsistent); 2523 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2524 } 2525 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2526 input = value; 2527 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2528 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2529 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2530 value = CGF.EmitToMemory(value, type); 2531 Builder.CreateBr(opBB); 2532 Builder.SetInsertPoint(opBB); 2533 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2534 atomicPHI->addIncoming(value, startBB); 2535 value = atomicPHI; 2536 } else { 2537 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2538 input = value; 2539 } 2540 2541 // Special case of integer increment that we have to check first: bool++. 2542 // Due to promotion rules, we get: 2543 // bool++ -> bool = bool + 1 2544 // -> bool = (int)bool + 1 2545 // -> bool = ((int)bool + 1 != 0) 2546 // An interesting aspect of this is that increment is always true. 2547 // Decrement does not have this property. 2548 if (isInc && type->isBooleanType()) { 2549 value = Builder.getTrue(); 2550 2551 // Most common case by far: integer increment. 2552 } else if (type->isIntegerType()) { 2553 QualType promotedType; 2554 bool canPerformLossyDemotionCheck = false; 2555 if (type->isPromotableIntegerType()) { 2556 promotedType = CGF.getContext().getPromotedIntegerType(type); 2557 assert(promotedType != type && "Shouldn't promote to the same type."); 2558 canPerformLossyDemotionCheck = true; 2559 canPerformLossyDemotionCheck &= 2560 CGF.getContext().getCanonicalType(type) != 2561 CGF.getContext().getCanonicalType(promotedType); 2562 canPerformLossyDemotionCheck &= 2563 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2564 type, promotedType); 2565 assert((!canPerformLossyDemotionCheck || 2566 type->isSignedIntegerOrEnumerationType() || 2567 promotedType->isSignedIntegerOrEnumerationType() || 2568 ConvertType(type)->getScalarSizeInBits() == 2569 ConvertType(promotedType)->getScalarSizeInBits()) && 2570 "The following check expects that if we do promotion to different " 2571 "underlying canonical type, at least one of the types (either " 2572 "base or promoted) will be signed, or the bitwidths will match."); 2573 } 2574 if (CGF.SanOpts.hasOneOf( 2575 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2576 canPerformLossyDemotionCheck) { 2577 // While `x += 1` (for `x` with width less than int) is modeled as 2578 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2579 // ease; inc/dec with width less than int can't overflow because of 2580 // promotion rules, so we omit promotion+demotion, which means that we can 2581 // not catch lossy "demotion". Because we still want to catch these cases 2582 // when the sanitizer is enabled, we perform the promotion, then perform 2583 // the increment/decrement in the wider type, and finally 2584 // perform the demotion. This will catch lossy demotions. 2585 2586 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2587 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2588 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2589 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2590 // emitted. 2591 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2592 ScalarConversionOpts(CGF.SanOpts)); 2593 2594 // Note that signed integer inc/dec with width less than int can't 2595 // overflow because of promotion rules; we're just eliding a few steps 2596 // here. 2597 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2598 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2599 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2600 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2601 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2602 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2603 } else { 2604 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2605 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2606 } 2607 2608 // Next most common: pointer increment. 2609 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2610 QualType type = ptr->getPointeeType(); 2611 2612 // VLA types don't have constant size. 2613 if (const VariableArrayType *vla 2614 = CGF.getContext().getAsVariableArrayType(type)) { 2615 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2616 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2617 if (CGF.getLangOpts().isSignedOverflowDefined()) 2618 value = Builder.CreateGEP(value->getType()->getPointerElementType(), 2619 value, numElts, "vla.inc"); 2620 else 2621 value = CGF.EmitCheckedInBoundsGEP( 2622 value, numElts, /*SignedIndices=*/false, isSubtraction, 2623 E->getExprLoc(), "vla.inc"); 2624 2625 // Arithmetic on function pointers (!) is just +-1. 2626 } else if (type->isFunctionType()) { 2627 llvm::Value *amt = Builder.getInt32(amount); 2628 2629 value = CGF.EmitCastToVoidPtr(value); 2630 if (CGF.getLangOpts().isSignedOverflowDefined()) 2631 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr"); 2632 else 2633 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2634 isSubtraction, E->getExprLoc(), 2635 "incdec.funcptr"); 2636 value = Builder.CreateBitCast(value, input->getType()); 2637 2638 // For everything else, we can just do a simple increment. 2639 } else { 2640 llvm::Value *amt = Builder.getInt32(amount); 2641 if (CGF.getLangOpts().isSignedOverflowDefined()) 2642 value = Builder.CreateGEP(value->getType()->getPointerElementType(), 2643 value, amt, "incdec.ptr"); 2644 else 2645 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2646 isSubtraction, E->getExprLoc(), 2647 "incdec.ptr"); 2648 } 2649 2650 // Vector increment/decrement. 2651 } else if (type->isVectorType()) { 2652 if (type->hasIntegerRepresentation()) { 2653 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2654 2655 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2656 } else { 2657 value = Builder.CreateFAdd( 2658 value, 2659 llvm::ConstantFP::get(value->getType(), amount), 2660 isInc ? "inc" : "dec"); 2661 } 2662 2663 // Floating point. 2664 } else if (type->isRealFloatingType()) { 2665 // Add the inc/dec to the real part. 2666 llvm::Value *amt; 2667 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 2668 2669 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2670 // Another special case: half FP increment should be done via float 2671 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2672 value = Builder.CreateCall( 2673 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2674 CGF.CGM.FloatTy), 2675 input, "incdec.conv"); 2676 } else { 2677 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2678 } 2679 } 2680 2681 if (value->getType()->isFloatTy()) 2682 amt = llvm::ConstantFP::get(VMContext, 2683 llvm::APFloat(static_cast<float>(amount))); 2684 else if (value->getType()->isDoubleTy()) 2685 amt = llvm::ConstantFP::get(VMContext, 2686 llvm::APFloat(static_cast<double>(amount))); 2687 else { 2688 // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert 2689 // from float. 2690 llvm::APFloat F(static_cast<float>(amount)); 2691 bool ignored; 2692 const llvm::fltSemantics *FS; 2693 // Don't use getFloatTypeSemantics because Half isn't 2694 // necessarily represented using the "half" LLVM type. 2695 if (value->getType()->isFP128Ty()) 2696 FS = &CGF.getTarget().getFloat128Format(); 2697 else if (value->getType()->isHalfTy()) 2698 FS = &CGF.getTarget().getHalfFormat(); 2699 else if (value->getType()->isPPC_FP128Ty()) 2700 FS = &CGF.getTarget().getIbm128Format(); 2701 else 2702 FS = &CGF.getTarget().getLongDoubleFormat(); 2703 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2704 amt = llvm::ConstantFP::get(VMContext, F); 2705 } 2706 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2707 2708 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2709 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2710 value = Builder.CreateCall( 2711 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2712 CGF.CGM.FloatTy), 2713 value, "incdec.conv"); 2714 } else { 2715 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2716 } 2717 } 2718 2719 // Fixed-point types. 2720 } else if (type->isFixedPointType()) { 2721 // Fixed-point types are tricky. In some cases, it isn't possible to 2722 // represent a 1 or a -1 in the type at all. Piggyback off of 2723 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2724 BinOpInfo Info; 2725 Info.E = E; 2726 Info.Ty = E->getType(); 2727 Info.Opcode = isInc ? BO_Add : BO_Sub; 2728 Info.LHS = value; 2729 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2730 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2731 // since -1 is guaranteed to be representable. 2732 if (type->isSignedFixedPointType()) { 2733 Info.Opcode = isInc ? BO_Sub : BO_Add; 2734 Info.RHS = Builder.CreateNeg(Info.RHS); 2735 } 2736 // Now, convert from our invented integer literal to the type of the unary 2737 // op. This will upscale and saturate if necessary. This value can become 2738 // undef in some cases. 2739 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 2740 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2741 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); 2742 value = EmitFixedPointBinOp(Info); 2743 2744 // Objective-C pointer types. 2745 } else { 2746 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2747 value = CGF.EmitCastToVoidPtr(value); 2748 2749 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2750 if (!isInc) size = -size; 2751 llvm::Value *sizeValue = 2752 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2753 2754 if (CGF.getLangOpts().isSignedOverflowDefined()) 2755 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr"); 2756 else 2757 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2758 /*SignedIndices=*/false, isSubtraction, 2759 E->getExprLoc(), "incdec.objptr"); 2760 value = Builder.CreateBitCast(value, input->getType()); 2761 } 2762 2763 if (atomicPHI) { 2764 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2765 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2766 auto Pair = CGF.EmitAtomicCompareExchange( 2767 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2768 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2769 llvm::Value *success = Pair.second; 2770 atomicPHI->addIncoming(old, curBlock); 2771 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2772 Builder.SetInsertPoint(contBB); 2773 return isPre ? value : input; 2774 } 2775 2776 // Store the updated result through the lvalue. 2777 if (LV.isBitField()) 2778 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2779 else 2780 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2781 2782 // If this is a postinc, return the value read from memory, otherwise use the 2783 // updated value. 2784 return isPre ? value : input; 2785 } 2786 2787 2788 2789 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2790 TestAndClearIgnoreResultAssign(); 2791 Value *Op = Visit(E->getSubExpr()); 2792 2793 // Generate a unary FNeg for FP ops. 2794 if (Op->getType()->isFPOrFPVectorTy()) 2795 return Builder.CreateFNeg(Op, "fneg"); 2796 2797 // Emit unary minus with EmitSub so we handle overflow cases etc. 2798 BinOpInfo BinOp; 2799 BinOp.RHS = Op; 2800 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2801 BinOp.Ty = E->getType(); 2802 BinOp.Opcode = BO_Sub; 2803 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2804 BinOp.E = E; 2805 return EmitSub(BinOp); 2806 } 2807 2808 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2809 TestAndClearIgnoreResultAssign(); 2810 Value *Op = Visit(E->getSubExpr()); 2811 return Builder.CreateNot(Op, "neg"); 2812 } 2813 2814 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2815 // Perform vector logical not on comparison with zero vector. 2816 if (E->getType()->isVectorType() && 2817 E->getType()->castAs<VectorType>()->getVectorKind() == 2818 VectorType::GenericVector) { 2819 Value *Oper = Visit(E->getSubExpr()); 2820 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2821 Value *Result; 2822 if (Oper->getType()->isFPOrFPVectorTy()) { 2823 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2824 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2825 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2826 } else 2827 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2828 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2829 } 2830 2831 // Compare operand to zero. 2832 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2833 2834 // Invert value. 2835 // TODO: Could dynamically modify easy computations here. For example, if 2836 // the operand is an icmp ne, turn into icmp eq. 2837 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2838 2839 // ZExt result to the expr type. 2840 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2841 } 2842 2843 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2844 // Try folding the offsetof to a constant. 2845 Expr::EvalResult EVResult; 2846 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2847 llvm::APSInt Value = EVResult.Val.getInt(); 2848 return Builder.getInt(Value); 2849 } 2850 2851 // Loop over the components of the offsetof to compute the value. 2852 unsigned n = E->getNumComponents(); 2853 llvm::Type* ResultType = ConvertType(E->getType()); 2854 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2855 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2856 for (unsigned i = 0; i != n; ++i) { 2857 OffsetOfNode ON = E->getComponent(i); 2858 llvm::Value *Offset = nullptr; 2859 switch (ON.getKind()) { 2860 case OffsetOfNode::Array: { 2861 // Compute the index 2862 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2863 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2864 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2865 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2866 2867 // Save the element type 2868 CurrentType = 2869 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2870 2871 // Compute the element size 2872 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2873 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2874 2875 // Multiply out to compute the result 2876 Offset = Builder.CreateMul(Idx, ElemSize); 2877 break; 2878 } 2879 2880 case OffsetOfNode::Field: { 2881 FieldDecl *MemberDecl = ON.getField(); 2882 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2883 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2884 2885 // Compute the index of the field in its parent. 2886 unsigned i = 0; 2887 // FIXME: It would be nice if we didn't have to loop here! 2888 for (RecordDecl::field_iterator Field = RD->field_begin(), 2889 FieldEnd = RD->field_end(); 2890 Field != FieldEnd; ++Field, ++i) { 2891 if (*Field == MemberDecl) 2892 break; 2893 } 2894 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2895 2896 // Compute the offset to the field 2897 int64_t OffsetInt = RL.getFieldOffset(i) / 2898 CGF.getContext().getCharWidth(); 2899 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2900 2901 // Save the element type. 2902 CurrentType = MemberDecl->getType(); 2903 break; 2904 } 2905 2906 case OffsetOfNode::Identifier: 2907 llvm_unreachable("dependent __builtin_offsetof"); 2908 2909 case OffsetOfNode::Base: { 2910 if (ON.getBase()->isVirtual()) { 2911 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2912 continue; 2913 } 2914 2915 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2916 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2917 2918 // Save the element type. 2919 CurrentType = ON.getBase()->getType(); 2920 2921 // Compute the offset to the base. 2922 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2923 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2924 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2925 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2926 break; 2927 } 2928 } 2929 Result = Builder.CreateAdd(Result, Offset); 2930 } 2931 return Result; 2932 } 2933 2934 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2935 /// argument of the sizeof expression as an integer. 2936 Value * 2937 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2938 const UnaryExprOrTypeTraitExpr *E) { 2939 QualType TypeToSize = E->getTypeOfArgument(); 2940 if (E->getKind() == UETT_SizeOf) { 2941 if (const VariableArrayType *VAT = 2942 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2943 if (E->isArgumentType()) { 2944 // sizeof(type) - make sure to emit the VLA size. 2945 CGF.EmitVariablyModifiedType(TypeToSize); 2946 } else { 2947 // C99 6.5.3.4p2: If the argument is an expression of type 2948 // VLA, it is evaluated. 2949 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2950 } 2951 2952 auto VlaSize = CGF.getVLASize(VAT); 2953 llvm::Value *size = VlaSize.NumElts; 2954 2955 // Scale the number of non-VLA elements by the non-VLA element size. 2956 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2957 if (!eltSize.isOne()) 2958 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2959 2960 return size; 2961 } 2962 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2963 auto Alignment = 2964 CGF.getContext() 2965 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2966 E->getTypeOfArgument()->getPointeeType())) 2967 .getQuantity(); 2968 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2969 } 2970 2971 // If this isn't sizeof(vla), the result must be constant; use the constant 2972 // folding logic so we don't have to duplicate it here. 2973 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2974 } 2975 2976 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2977 Expr *Op = E->getSubExpr(); 2978 if (Op->getType()->isAnyComplexType()) { 2979 // If it's an l-value, load through the appropriate subobject l-value. 2980 // Note that we have to ask E because Op might be an l-value that 2981 // this won't work for, e.g. an Obj-C property. 2982 if (E->isGLValue()) 2983 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2984 E->getExprLoc()).getScalarVal(); 2985 2986 // Otherwise, calculate and project. 2987 return CGF.EmitComplexExpr(Op, false, true).first; 2988 } 2989 2990 return Visit(Op); 2991 } 2992 2993 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2994 Expr *Op = E->getSubExpr(); 2995 if (Op->getType()->isAnyComplexType()) { 2996 // If it's an l-value, load through the appropriate subobject l-value. 2997 // Note that we have to ask E because Op might be an l-value that 2998 // this won't work for, e.g. an Obj-C property. 2999 if (Op->isGLValue()) 3000 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 3001 E->getExprLoc()).getScalarVal(); 3002 3003 // Otherwise, calculate and project. 3004 return CGF.EmitComplexExpr(Op, true, false).second; 3005 } 3006 3007 // __imag on a scalar returns zero. Emit the subexpr to ensure side 3008 // effects are evaluated, but not the actual value. 3009 if (Op->isGLValue()) 3010 CGF.EmitLValue(Op); 3011 else 3012 CGF.EmitScalarExpr(Op, true); 3013 return llvm::Constant::getNullValue(ConvertType(E->getType())); 3014 } 3015 3016 //===----------------------------------------------------------------------===// 3017 // Binary Operators 3018 //===----------------------------------------------------------------------===// 3019 3020 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 3021 TestAndClearIgnoreResultAssign(); 3022 BinOpInfo Result; 3023 Result.LHS = Visit(E->getLHS()); 3024 Result.RHS = Visit(E->getRHS()); 3025 Result.Ty = E->getType(); 3026 Result.Opcode = E->getOpcode(); 3027 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3028 Result.E = E; 3029 return Result; 3030 } 3031 3032 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 3033 const CompoundAssignOperator *E, 3034 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 3035 Value *&Result) { 3036 QualType LHSTy = E->getLHS()->getType(); 3037 BinOpInfo OpInfo; 3038 3039 if (E->getComputationResultType()->isAnyComplexType()) 3040 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 3041 3042 // Emit the RHS first. __block variables need to have the rhs evaluated 3043 // first, plus this should improve codegen a little. 3044 OpInfo.RHS = Visit(E->getRHS()); 3045 OpInfo.Ty = E->getComputationResultType(); 3046 OpInfo.Opcode = E->getOpcode(); 3047 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3048 OpInfo.E = E; 3049 // Load/convert the LHS. 3050 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3051 3052 llvm::PHINode *atomicPHI = nullptr; 3053 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 3054 QualType type = atomicTy->getValueType(); 3055 if (!type->isBooleanType() && type->isIntegerType() && 3056 !(type->isUnsignedIntegerType() && 3057 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 3058 CGF.getLangOpts().getSignedOverflowBehavior() != 3059 LangOptions::SOB_Trapping) { 3060 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 3061 llvm::Instruction::BinaryOps Op; 3062 switch (OpInfo.Opcode) { 3063 // We don't have atomicrmw operands for *, %, /, <<, >> 3064 case BO_MulAssign: case BO_DivAssign: 3065 case BO_RemAssign: 3066 case BO_ShlAssign: 3067 case BO_ShrAssign: 3068 break; 3069 case BO_AddAssign: 3070 AtomicOp = llvm::AtomicRMWInst::Add; 3071 Op = llvm::Instruction::Add; 3072 break; 3073 case BO_SubAssign: 3074 AtomicOp = llvm::AtomicRMWInst::Sub; 3075 Op = llvm::Instruction::Sub; 3076 break; 3077 case BO_AndAssign: 3078 AtomicOp = llvm::AtomicRMWInst::And; 3079 Op = llvm::Instruction::And; 3080 break; 3081 case BO_XorAssign: 3082 AtomicOp = llvm::AtomicRMWInst::Xor; 3083 Op = llvm::Instruction::Xor; 3084 break; 3085 case BO_OrAssign: 3086 AtomicOp = llvm::AtomicRMWInst::Or; 3087 Op = llvm::Instruction::Or; 3088 break; 3089 default: 3090 llvm_unreachable("Invalid compound assignment type"); 3091 } 3092 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 3093 llvm::Value *Amt = CGF.EmitToMemory( 3094 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 3095 E->getExprLoc()), 3096 LHSTy); 3097 Value *OldVal = Builder.CreateAtomicRMW( 3098 AtomicOp, LHSLV.getPointer(CGF), Amt, 3099 llvm::AtomicOrdering::SequentiallyConsistent); 3100 3101 // Since operation is atomic, the result type is guaranteed to be the 3102 // same as the input in LLVM terms. 3103 Result = Builder.CreateBinOp(Op, OldVal, Amt); 3104 return LHSLV; 3105 } 3106 } 3107 // FIXME: For floating point types, we should be saving and restoring the 3108 // floating point environment in the loop. 3109 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 3110 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 3111 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3112 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 3113 Builder.CreateBr(opBB); 3114 Builder.SetInsertPoint(opBB); 3115 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 3116 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3117 OpInfo.LHS = atomicPHI; 3118 } 3119 else 3120 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3121 3122 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 3123 SourceLocation Loc = E->getExprLoc(); 3124 OpInfo.LHS = 3125 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3126 3127 // Expand the binary operator. 3128 Result = (this->*Func)(OpInfo); 3129 3130 // Convert the result back to the LHS type, 3131 // potentially with Implicit Conversion sanitizer check. 3132 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3133 Loc, ScalarConversionOpts(CGF.SanOpts)); 3134 3135 if (atomicPHI) { 3136 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3137 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3138 auto Pair = CGF.EmitAtomicCompareExchange( 3139 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3140 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3141 llvm::Value *success = Pair.second; 3142 atomicPHI->addIncoming(old, curBlock); 3143 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3144 Builder.SetInsertPoint(contBB); 3145 return LHSLV; 3146 } 3147 3148 // Store the result value into the LHS lvalue. Bit-fields are handled 3149 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3150 // 'An assignment expression has the value of the left operand after the 3151 // assignment...'. 3152 if (LHSLV.isBitField()) 3153 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3154 else 3155 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3156 3157 if (CGF.getLangOpts().OpenMP) 3158 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3159 E->getLHS()); 3160 return LHSLV; 3161 } 3162 3163 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3164 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3165 bool Ignore = TestAndClearIgnoreResultAssign(); 3166 Value *RHS = nullptr; 3167 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3168 3169 // If the result is clearly ignored, return now. 3170 if (Ignore) 3171 return nullptr; 3172 3173 // The result of an assignment in C is the assigned r-value. 3174 if (!CGF.getLangOpts().CPlusPlus) 3175 return RHS; 3176 3177 // If the lvalue is non-volatile, return the computed value of the assignment. 3178 if (!LHS.isVolatileQualified()) 3179 return RHS; 3180 3181 // Otherwise, reload the value. 3182 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3183 } 3184 3185 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3186 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3187 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3188 3189 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3190 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3191 SanitizerKind::IntegerDivideByZero)); 3192 } 3193 3194 const auto *BO = cast<BinaryOperator>(Ops.E); 3195 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3196 Ops.Ty->hasSignedIntegerRepresentation() && 3197 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3198 Ops.mayHaveIntegerOverflow()) { 3199 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3200 3201 llvm::Value *IntMin = 3202 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3203 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); 3204 3205 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3206 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3207 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3208 Checks.push_back( 3209 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3210 } 3211 3212 if (Checks.size() > 0) 3213 EmitBinOpCheck(Checks, Ops); 3214 } 3215 3216 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3217 { 3218 CodeGenFunction::SanitizerScope SanScope(&CGF); 3219 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3220 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3221 Ops.Ty->isIntegerType() && 3222 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3223 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3224 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3225 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3226 Ops.Ty->isRealFloatingType() && 3227 Ops.mayHaveFloatDivisionByZero()) { 3228 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3229 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3230 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3231 Ops); 3232 } 3233 } 3234 3235 if (Ops.Ty->isConstantMatrixType()) { 3236 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3237 // We need to check the types of the operands of the operator to get the 3238 // correct matrix dimensions. 3239 auto *BO = cast<BinaryOperator>(Ops.E); 3240 (void)BO; 3241 assert( 3242 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && 3243 "first operand must be a matrix"); 3244 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && 3245 "second operand must be an arithmetic type"); 3246 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3247 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS, 3248 Ops.Ty->hasUnsignedIntegerRepresentation()); 3249 } 3250 3251 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3252 llvm::Value *Val; 3253 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3254 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3255 if ((CGF.getLangOpts().OpenCL && 3256 !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || 3257 (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice && 3258 !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { 3259 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3260 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3261 // build option allows an application to specify that single precision 3262 // floating-point divide (x/y and 1/x) and sqrt used in the program 3263 // source are correctly rounded. 3264 llvm::Type *ValTy = Val->getType(); 3265 if (ValTy->isFloatTy() || 3266 (isa<llvm::VectorType>(ValTy) && 3267 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3268 CGF.SetFPAccuracy(Val, 2.5); 3269 } 3270 return Val; 3271 } 3272 else if (Ops.isFixedPointOp()) 3273 return EmitFixedPointBinOp(Ops); 3274 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3275 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3276 else 3277 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3278 } 3279 3280 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3281 // Rem in C can't be a floating point type: C99 6.5.5p2. 3282 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3283 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3284 Ops.Ty->isIntegerType() && 3285 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3286 CodeGenFunction::SanitizerScope SanScope(&CGF); 3287 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3288 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3289 } 3290 3291 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3292 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3293 else 3294 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3295 } 3296 3297 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3298 unsigned IID; 3299 unsigned OpID = 0; 3300 SanitizerHandler OverflowKind; 3301 3302 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3303 switch (Ops.Opcode) { 3304 case BO_Add: 3305 case BO_AddAssign: 3306 OpID = 1; 3307 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3308 llvm::Intrinsic::uadd_with_overflow; 3309 OverflowKind = SanitizerHandler::AddOverflow; 3310 break; 3311 case BO_Sub: 3312 case BO_SubAssign: 3313 OpID = 2; 3314 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3315 llvm::Intrinsic::usub_with_overflow; 3316 OverflowKind = SanitizerHandler::SubOverflow; 3317 break; 3318 case BO_Mul: 3319 case BO_MulAssign: 3320 OpID = 3; 3321 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3322 llvm::Intrinsic::umul_with_overflow; 3323 OverflowKind = SanitizerHandler::MulOverflow; 3324 break; 3325 default: 3326 llvm_unreachable("Unsupported operation for overflow detection"); 3327 } 3328 OpID <<= 1; 3329 if (isSigned) 3330 OpID |= 1; 3331 3332 CodeGenFunction::SanitizerScope SanScope(&CGF); 3333 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3334 3335 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3336 3337 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3338 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3339 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3340 3341 // Handle overflow with llvm.trap if no custom handler has been specified. 3342 const std::string *handlerName = 3343 &CGF.getLangOpts().OverflowHandler; 3344 if (handlerName->empty()) { 3345 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3346 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3347 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3348 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3349 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3350 : SanitizerKind::UnsignedIntegerOverflow; 3351 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3352 } else 3353 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); 3354 return result; 3355 } 3356 3357 // Branch in case of overflow. 3358 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3359 llvm::BasicBlock *continueBB = 3360 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3361 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3362 3363 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3364 3365 // If an overflow handler is set, then we want to call it and then use its 3366 // result, if it returns. 3367 Builder.SetInsertPoint(overflowBB); 3368 3369 // Get the overflow handler. 3370 llvm::Type *Int8Ty = CGF.Int8Ty; 3371 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3372 llvm::FunctionType *handlerTy = 3373 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3374 llvm::FunctionCallee handler = 3375 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3376 3377 // Sign extend the args to 64-bit, so that we can use the same handler for 3378 // all types of overflow. 3379 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3380 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3381 3382 // Call the handler with the two arguments, the operation, and the size of 3383 // the result. 3384 llvm::Value *handlerArgs[] = { 3385 lhs, 3386 rhs, 3387 Builder.getInt8(OpID), 3388 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3389 }; 3390 llvm::Value *handlerResult = 3391 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3392 3393 // Truncate the result back to the desired size. 3394 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3395 Builder.CreateBr(continueBB); 3396 3397 Builder.SetInsertPoint(continueBB); 3398 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3399 phi->addIncoming(result, initialBB); 3400 phi->addIncoming(handlerResult, overflowBB); 3401 3402 return phi; 3403 } 3404 3405 /// Emit pointer + index arithmetic. 3406 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3407 const BinOpInfo &op, 3408 bool isSubtraction) { 3409 // Must have binary (not unary) expr here. Unary pointer 3410 // increment/decrement doesn't use this path. 3411 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3412 3413 Value *pointer = op.LHS; 3414 Expr *pointerOperand = expr->getLHS(); 3415 Value *index = op.RHS; 3416 Expr *indexOperand = expr->getRHS(); 3417 3418 // In a subtraction, the LHS is always the pointer. 3419 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3420 std::swap(pointer, index); 3421 std::swap(pointerOperand, indexOperand); 3422 } 3423 3424 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3425 3426 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3427 auto &DL = CGF.CGM.getDataLayout(); 3428 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3429 3430 // Some versions of glibc and gcc use idioms (particularly in their malloc 3431 // routines) that add a pointer-sized integer (known to be a pointer value) 3432 // to a null pointer in order to cast the value back to an integer or as 3433 // part of a pointer alignment algorithm. This is undefined behavior, but 3434 // we'd like to be able to compile programs that use it. 3435 // 3436 // Normally, we'd generate a GEP with a null-pointer base here in response 3437 // to that code, but it's also UB to dereference a pointer created that 3438 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3439 // generate a direct cast of the integer value to a pointer. 3440 // 3441 // The idiom (p = nullptr + N) is not met if any of the following are true: 3442 // 3443 // The operation is subtraction. 3444 // The index is not pointer-sized. 3445 // The pointer type is not byte-sized. 3446 // 3447 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3448 op.Opcode, 3449 expr->getLHS(), 3450 expr->getRHS())) 3451 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3452 3453 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3454 // Zero-extend or sign-extend the pointer value according to 3455 // whether the index is signed or not. 3456 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3457 "idx.ext"); 3458 } 3459 3460 // If this is subtraction, negate the index. 3461 if (isSubtraction) 3462 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3463 3464 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3465 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3466 /*Accessed*/ false); 3467 3468 const PointerType *pointerType 3469 = pointerOperand->getType()->getAs<PointerType>(); 3470 if (!pointerType) { 3471 QualType objectType = pointerOperand->getType() 3472 ->castAs<ObjCObjectPointerType>() 3473 ->getPointeeType(); 3474 llvm::Value *objectSize 3475 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3476 3477 index = CGF.Builder.CreateMul(index, objectSize); 3478 3479 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3480 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3481 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3482 } 3483 3484 QualType elementType = pointerType->getPointeeType(); 3485 if (const VariableArrayType *vla 3486 = CGF.getContext().getAsVariableArrayType(elementType)) { 3487 // The element count here is the total number of non-VLA elements. 3488 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3489 3490 // Effectively, the multiply by the VLA size is part of the GEP. 3491 // GEP indexes are signed, and scaling an index isn't permitted to 3492 // signed-overflow, so we use the same semantics for our explicit 3493 // multiply. We suppress this if overflow is not undefined behavior. 3494 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3495 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3496 pointer = CGF.Builder.CreateGEP( 3497 pointer->getType()->getPointerElementType(), pointer, index, 3498 "add.ptr"); 3499 } else { 3500 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3501 pointer = 3502 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3503 op.E->getExprLoc(), "add.ptr"); 3504 } 3505 return pointer; 3506 } 3507 3508 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3509 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3510 // future proof. 3511 if (elementType->isVoidType() || elementType->isFunctionType()) { 3512 Value *result = CGF.EmitCastToVoidPtr(pointer); 3513 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3514 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3515 } 3516 3517 if (CGF.getLangOpts().isSignedOverflowDefined()) 3518 return CGF.Builder.CreateGEP( 3519 pointer->getType()->getPointerElementType(), pointer, index, "add.ptr"); 3520 3521 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3522 op.E->getExprLoc(), "add.ptr"); 3523 } 3524 3525 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3526 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3527 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3528 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3529 // efficient operations. 3530 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3531 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3532 bool negMul, bool negAdd) { 3533 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3534 3535 Value *MulOp0 = MulOp->getOperand(0); 3536 Value *MulOp1 = MulOp->getOperand(1); 3537 if (negMul) 3538 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3539 if (negAdd) 3540 Addend = Builder.CreateFNeg(Addend, "neg"); 3541 3542 Value *FMulAdd = nullptr; 3543 if (Builder.getIsFPConstrained()) { 3544 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3545 "Only constrained operation should be created when Builder is in FP " 3546 "constrained mode"); 3547 FMulAdd = Builder.CreateConstrainedFPCall( 3548 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3549 Addend->getType()), 3550 {MulOp0, MulOp1, Addend}); 3551 } else { 3552 FMulAdd = Builder.CreateCall( 3553 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3554 {MulOp0, MulOp1, Addend}); 3555 } 3556 MulOp->eraseFromParent(); 3557 3558 return FMulAdd; 3559 } 3560 3561 // Check whether it would be legal to emit an fmuladd intrinsic call to 3562 // represent op and if so, build the fmuladd. 3563 // 3564 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3565 // Does NOT check the type of the operation - it's assumed that this function 3566 // will be called from contexts where it's known that the type is contractable. 3567 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3568 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3569 bool isSub=false) { 3570 3571 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3572 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3573 "Only fadd/fsub can be the root of an fmuladd."); 3574 3575 // Check whether this op is marked as fusable. 3576 if (!op.FPFeatures.allowFPContractWithinStatement()) 3577 return nullptr; 3578 3579 // We have a potentially fusable op. Look for a mul on one of the operands. 3580 // Also, make sure that the mul result isn't used directly. In that case, 3581 // there's no point creating a muladd operation. 3582 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3583 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3584 LHSBinOp->use_empty()) 3585 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3586 } 3587 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3588 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3589 RHSBinOp->use_empty()) 3590 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3591 } 3592 3593 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3594 if (LHSBinOp->getIntrinsicID() == 3595 llvm::Intrinsic::experimental_constrained_fmul && 3596 LHSBinOp->use_empty()) 3597 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3598 } 3599 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3600 if (RHSBinOp->getIntrinsicID() == 3601 llvm::Intrinsic::experimental_constrained_fmul && 3602 RHSBinOp->use_empty()) 3603 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3604 } 3605 3606 return nullptr; 3607 } 3608 3609 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3610 if (op.LHS->getType()->isPointerTy() || 3611 op.RHS->getType()->isPointerTy()) 3612 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3613 3614 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3615 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3616 case LangOptions::SOB_Defined: 3617 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3618 case LangOptions::SOB_Undefined: 3619 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3620 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3621 LLVM_FALLTHROUGH; 3622 case LangOptions::SOB_Trapping: 3623 if (CanElideOverflowCheck(CGF.getContext(), op)) 3624 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3625 return EmitOverflowCheckedBinOp(op); 3626 } 3627 } 3628 3629 if (op.Ty->isConstantMatrixType()) { 3630 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3631 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3632 return MB.CreateAdd(op.LHS, op.RHS); 3633 } 3634 3635 if (op.Ty->isUnsignedIntegerType() && 3636 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3637 !CanElideOverflowCheck(CGF.getContext(), op)) 3638 return EmitOverflowCheckedBinOp(op); 3639 3640 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3641 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3642 // Try to form an fmuladd. 3643 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3644 return FMulAdd; 3645 3646 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3647 } 3648 3649 if (op.isFixedPointOp()) 3650 return EmitFixedPointBinOp(op); 3651 3652 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3653 } 3654 3655 /// The resulting value must be calculated with exact precision, so the operands 3656 /// may not be the same type. 3657 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3658 using llvm::APSInt; 3659 using llvm::ConstantInt; 3660 3661 // This is either a binary operation where at least one of the operands is 3662 // a fixed-point type, or a unary operation where the operand is a fixed-point 3663 // type. The result type of a binary operation is determined by 3664 // Sema::handleFixedPointConversions(). 3665 QualType ResultTy = op.Ty; 3666 QualType LHSTy, RHSTy; 3667 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3668 RHSTy = BinOp->getRHS()->getType(); 3669 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3670 // For compound assignment, the effective type of the LHS at this point 3671 // is the computation LHS type, not the actual LHS type, and the final 3672 // result type is not the type of the expression but rather the 3673 // computation result type. 3674 LHSTy = CAO->getComputationLHSType(); 3675 ResultTy = CAO->getComputationResultType(); 3676 } else 3677 LHSTy = BinOp->getLHS()->getType(); 3678 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3679 LHSTy = UnOp->getSubExpr()->getType(); 3680 RHSTy = UnOp->getSubExpr()->getType(); 3681 } 3682 ASTContext &Ctx = CGF.getContext(); 3683 Value *LHS = op.LHS; 3684 Value *RHS = op.RHS; 3685 3686 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3687 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3688 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3689 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3690 3691 // Perform the actual operation. 3692 Value *Result; 3693 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 3694 switch (op.Opcode) { 3695 case BO_AddAssign: 3696 case BO_Add: 3697 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); 3698 break; 3699 case BO_SubAssign: 3700 case BO_Sub: 3701 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); 3702 break; 3703 case BO_MulAssign: 3704 case BO_Mul: 3705 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); 3706 break; 3707 case BO_DivAssign: 3708 case BO_Div: 3709 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); 3710 break; 3711 case BO_ShlAssign: 3712 case BO_Shl: 3713 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); 3714 break; 3715 case BO_ShrAssign: 3716 case BO_Shr: 3717 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); 3718 break; 3719 case BO_LT: 3720 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3721 case BO_GT: 3722 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3723 case BO_LE: 3724 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3725 case BO_GE: 3726 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3727 case BO_EQ: 3728 // For equality operations, we assume any padding bits on unsigned types are 3729 // zero'd out. They could be overwritten through non-saturating operations 3730 // that cause overflow, but this leads to undefined behavior. 3731 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); 3732 case BO_NE: 3733 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3734 case BO_Cmp: 3735 case BO_LAnd: 3736 case BO_LOr: 3737 llvm_unreachable("Found unimplemented fixed point binary operation"); 3738 case BO_PtrMemD: 3739 case BO_PtrMemI: 3740 case BO_Rem: 3741 case BO_Xor: 3742 case BO_And: 3743 case BO_Or: 3744 case BO_Assign: 3745 case BO_RemAssign: 3746 case BO_AndAssign: 3747 case BO_XorAssign: 3748 case BO_OrAssign: 3749 case BO_Comma: 3750 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3751 } 3752 3753 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || 3754 BinaryOperator::isShiftAssignOp(op.Opcode); 3755 // Convert to the result type. 3756 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema 3757 : CommonFixedSema, 3758 ResultFixedSema); 3759 } 3760 3761 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3762 // The LHS is always a pointer if either side is. 3763 if (!op.LHS->getType()->isPointerTy()) { 3764 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3765 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3766 case LangOptions::SOB_Defined: 3767 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3768 case LangOptions::SOB_Undefined: 3769 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3770 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3771 LLVM_FALLTHROUGH; 3772 case LangOptions::SOB_Trapping: 3773 if (CanElideOverflowCheck(CGF.getContext(), op)) 3774 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3775 return EmitOverflowCheckedBinOp(op); 3776 } 3777 } 3778 3779 if (op.Ty->isConstantMatrixType()) { 3780 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3781 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3782 return MB.CreateSub(op.LHS, op.RHS); 3783 } 3784 3785 if (op.Ty->isUnsignedIntegerType() && 3786 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3787 !CanElideOverflowCheck(CGF.getContext(), op)) 3788 return EmitOverflowCheckedBinOp(op); 3789 3790 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3791 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3792 // Try to form an fmuladd. 3793 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3794 return FMulAdd; 3795 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3796 } 3797 3798 if (op.isFixedPointOp()) 3799 return EmitFixedPointBinOp(op); 3800 3801 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3802 } 3803 3804 // If the RHS is not a pointer, then we have normal pointer 3805 // arithmetic. 3806 if (!op.RHS->getType()->isPointerTy()) 3807 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3808 3809 // Otherwise, this is a pointer subtraction. 3810 3811 // Do the raw subtraction part. 3812 llvm::Value *LHS 3813 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3814 llvm::Value *RHS 3815 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3816 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3817 3818 // Okay, figure out the element size. 3819 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3820 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3821 3822 llvm::Value *divisor = nullptr; 3823 3824 // For a variable-length array, this is going to be non-constant. 3825 if (const VariableArrayType *vla 3826 = CGF.getContext().getAsVariableArrayType(elementType)) { 3827 auto VlaSize = CGF.getVLASize(vla); 3828 elementType = VlaSize.Type; 3829 divisor = VlaSize.NumElts; 3830 3831 // Scale the number of non-VLA elements by the non-VLA element size. 3832 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3833 if (!eltSize.isOne()) 3834 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3835 3836 // For everything elese, we can just compute it, safe in the 3837 // assumption that Sema won't let anything through that we can't 3838 // safely compute the size of. 3839 } else { 3840 CharUnits elementSize; 3841 // Handle GCC extension for pointer arithmetic on void* and 3842 // function pointer types. 3843 if (elementType->isVoidType() || elementType->isFunctionType()) 3844 elementSize = CharUnits::One(); 3845 else 3846 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3847 3848 // Don't even emit the divide for element size of 1. 3849 if (elementSize.isOne()) 3850 return diffInChars; 3851 3852 divisor = CGF.CGM.getSize(elementSize); 3853 } 3854 3855 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3856 // pointer difference in C is only defined in the case where both operands 3857 // are pointing to elements of an array. 3858 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3859 } 3860 3861 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3862 llvm::IntegerType *Ty; 3863 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3864 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3865 else 3866 Ty = cast<llvm::IntegerType>(LHS->getType()); 3867 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3868 } 3869 3870 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 3871 const Twine &Name) { 3872 llvm::IntegerType *Ty; 3873 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3874 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3875 else 3876 Ty = cast<llvm::IntegerType>(LHS->getType()); 3877 3878 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 3879 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 3880 3881 return Builder.CreateURem( 3882 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 3883 } 3884 3885 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3886 // TODO: This misses out on the sanitizer check below. 3887 if (Ops.isFixedPointOp()) 3888 return EmitFixedPointBinOp(Ops); 3889 3890 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3891 // RHS to the same size as the LHS. 3892 Value *RHS = Ops.RHS; 3893 if (Ops.LHS->getType() != RHS->getType()) 3894 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3895 3896 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3897 Ops.Ty->hasSignedIntegerRepresentation() && 3898 !CGF.getLangOpts().isSignedOverflowDefined() && 3899 !CGF.getLangOpts().CPlusPlus20; 3900 bool SanitizeUnsignedBase = 3901 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && 3902 Ops.Ty->hasUnsignedIntegerRepresentation(); 3903 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; 3904 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3905 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3906 if (CGF.getLangOpts().OpenCL) 3907 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 3908 else if ((SanitizeBase || SanitizeExponent) && 3909 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3910 CodeGenFunction::SanitizerScope SanScope(&CGF); 3911 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3912 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3913 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3914 3915 if (SanitizeExponent) { 3916 Checks.push_back( 3917 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3918 } 3919 3920 if (SanitizeBase) { 3921 // Check whether we are shifting any non-zero bits off the top of the 3922 // integer. We only emit this check if exponent is valid - otherwise 3923 // instructions below will have undefined behavior themselves. 3924 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3925 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3926 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3927 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3928 llvm::Value *PromotedWidthMinusOne = 3929 (RHS == Ops.RHS) ? WidthMinusOne 3930 : GetWidthMinusOneValue(Ops.LHS, RHS); 3931 CGF.EmitBlock(CheckShiftBase); 3932 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3933 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3934 /*NUW*/ true, /*NSW*/ true), 3935 "shl.check"); 3936 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { 3937 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3938 // Under C++11's rules, shifting a 1 bit into the sign bit is 3939 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3940 // define signed left shifts, so we use the C99 and C++11 rules there). 3941 // Unsigned shifts can always shift into the top bit. 3942 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3943 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3944 } 3945 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3946 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3947 CGF.EmitBlock(Cont); 3948 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3949 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3950 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3951 Checks.push_back(std::make_pair( 3952 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase 3953 : SanitizerKind::UnsignedShiftBase)); 3954 } 3955 3956 assert(!Checks.empty()); 3957 EmitBinOpCheck(Checks, Ops); 3958 } 3959 3960 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3961 } 3962 3963 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3964 // TODO: This misses out on the sanitizer check below. 3965 if (Ops.isFixedPointOp()) 3966 return EmitFixedPointBinOp(Ops); 3967 3968 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3969 // RHS to the same size as the LHS. 3970 Value *RHS = Ops.RHS; 3971 if (Ops.LHS->getType() != RHS->getType()) 3972 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3973 3974 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3975 if (CGF.getLangOpts().OpenCL) 3976 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 3977 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3978 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3979 CodeGenFunction::SanitizerScope SanScope(&CGF); 3980 llvm::Value *Valid = 3981 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3982 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3983 } 3984 3985 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3986 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3987 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3988 } 3989 3990 enum IntrinsicType { VCMPEQ, VCMPGT }; 3991 // return corresponding comparison intrinsic for given vector type 3992 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3993 BuiltinType::Kind ElemKind) { 3994 switch (ElemKind) { 3995 default: llvm_unreachable("unexpected element type"); 3996 case BuiltinType::Char_U: 3997 case BuiltinType::UChar: 3998 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3999 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 4000 case BuiltinType::Char_S: 4001 case BuiltinType::SChar: 4002 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4003 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 4004 case BuiltinType::UShort: 4005 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4006 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 4007 case BuiltinType::Short: 4008 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4009 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 4010 case BuiltinType::UInt: 4011 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4012 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 4013 case BuiltinType::Int: 4014 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4015 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 4016 case BuiltinType::ULong: 4017 case BuiltinType::ULongLong: 4018 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4019 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 4020 case BuiltinType::Long: 4021 case BuiltinType::LongLong: 4022 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4023 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 4024 case BuiltinType::Float: 4025 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 4026 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 4027 case BuiltinType::Double: 4028 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 4029 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 4030 case BuiltinType::UInt128: 4031 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4032 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; 4033 case BuiltinType::Int128: 4034 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4035 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; 4036 } 4037 } 4038 4039 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 4040 llvm::CmpInst::Predicate UICmpOpc, 4041 llvm::CmpInst::Predicate SICmpOpc, 4042 llvm::CmpInst::Predicate FCmpOpc, 4043 bool IsSignaling) { 4044 TestAndClearIgnoreResultAssign(); 4045 Value *Result; 4046 QualType LHSTy = E->getLHS()->getType(); 4047 QualType RHSTy = E->getRHS()->getType(); 4048 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 4049 assert(E->getOpcode() == BO_EQ || 4050 E->getOpcode() == BO_NE); 4051 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 4052 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 4053 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 4054 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 4055 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 4056 BinOpInfo BOInfo = EmitBinOps(E); 4057 Value *LHS = BOInfo.LHS; 4058 Value *RHS = BOInfo.RHS; 4059 4060 // If AltiVec, the comparison results in a numeric type, so we use 4061 // intrinsics comparing vectors and giving 0 or 1 as a result 4062 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 4063 // constants for mapping CR6 register bits to predicate result 4064 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 4065 4066 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 4067 4068 // in several cases vector arguments order will be reversed 4069 Value *FirstVecArg = LHS, 4070 *SecondVecArg = RHS; 4071 4072 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 4073 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 4074 4075 switch(E->getOpcode()) { 4076 default: llvm_unreachable("is not a comparison operation"); 4077 case BO_EQ: 4078 CR6 = CR6_LT; 4079 ID = GetIntrinsic(VCMPEQ, ElementKind); 4080 break; 4081 case BO_NE: 4082 CR6 = CR6_EQ; 4083 ID = GetIntrinsic(VCMPEQ, ElementKind); 4084 break; 4085 case BO_LT: 4086 CR6 = CR6_LT; 4087 ID = GetIntrinsic(VCMPGT, ElementKind); 4088 std::swap(FirstVecArg, SecondVecArg); 4089 break; 4090 case BO_GT: 4091 CR6 = CR6_LT; 4092 ID = GetIntrinsic(VCMPGT, ElementKind); 4093 break; 4094 case BO_LE: 4095 if (ElementKind == BuiltinType::Float) { 4096 CR6 = CR6_LT; 4097 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4098 std::swap(FirstVecArg, SecondVecArg); 4099 } 4100 else { 4101 CR6 = CR6_EQ; 4102 ID = GetIntrinsic(VCMPGT, ElementKind); 4103 } 4104 break; 4105 case BO_GE: 4106 if (ElementKind == BuiltinType::Float) { 4107 CR6 = CR6_LT; 4108 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4109 } 4110 else { 4111 CR6 = CR6_EQ; 4112 ID = GetIntrinsic(VCMPGT, ElementKind); 4113 std::swap(FirstVecArg, SecondVecArg); 4114 } 4115 break; 4116 } 4117 4118 Value *CR6Param = Builder.getInt32(CR6); 4119 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 4120 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 4121 4122 // The result type of intrinsic may not be same as E->getType(). 4123 // If E->getType() is not BoolTy, EmitScalarConversion will do the 4124 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 4125 // do nothing, if ResultTy is not i1 at the same time, it will cause 4126 // crash later. 4127 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 4128 if (ResultTy->getBitWidth() > 1 && 4129 E->getType() == CGF.getContext().BoolTy) 4130 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 4131 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4132 E->getExprLoc()); 4133 } 4134 4135 if (BOInfo.isFixedPointOp()) { 4136 Result = EmitFixedPointBinOp(BOInfo); 4137 } else if (LHS->getType()->isFPOrFPVectorTy()) { 4138 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 4139 if (!IsSignaling) 4140 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 4141 else 4142 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 4143 } else if (LHSTy->hasSignedIntegerRepresentation()) { 4144 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4145 } else { 4146 // Unsigned integers and pointers. 4147 4148 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4149 !isa<llvm::ConstantPointerNull>(LHS) && 4150 !isa<llvm::ConstantPointerNull>(RHS)) { 4151 4152 // Dynamic information is required to be stripped for comparisons, 4153 // because it could leak the dynamic information. Based on comparisons 4154 // of pointers to dynamic objects, the optimizer can replace one pointer 4155 // with another, which might be incorrect in presence of invariant 4156 // groups. Comparison with null is safe because null does not carry any 4157 // dynamic information. 4158 if (LHSTy.mayBeDynamicClass()) 4159 LHS = Builder.CreateStripInvariantGroup(LHS); 4160 if (RHSTy.mayBeDynamicClass()) 4161 RHS = Builder.CreateStripInvariantGroup(RHS); 4162 } 4163 4164 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4165 } 4166 4167 // If this is a vector comparison, sign extend the result to the appropriate 4168 // vector integer type and return it (don't convert to bool). 4169 if (LHSTy->isVectorType()) 4170 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4171 4172 } else { 4173 // Complex Comparison: can only be an equality comparison. 4174 CodeGenFunction::ComplexPairTy LHS, RHS; 4175 QualType CETy; 4176 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4177 LHS = CGF.EmitComplexExpr(E->getLHS()); 4178 CETy = CTy->getElementType(); 4179 } else { 4180 LHS.first = Visit(E->getLHS()); 4181 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4182 CETy = LHSTy; 4183 } 4184 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4185 RHS = CGF.EmitComplexExpr(E->getRHS()); 4186 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4187 CTy->getElementType()) && 4188 "The element types must always match."); 4189 (void)CTy; 4190 } else { 4191 RHS.first = Visit(E->getRHS()); 4192 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4193 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4194 "The element types must always match."); 4195 } 4196 4197 Value *ResultR, *ResultI; 4198 if (CETy->isRealFloatingType()) { 4199 // As complex comparisons can only be equality comparisons, they 4200 // are never signaling comparisons. 4201 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4202 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4203 } else { 4204 // Complex comparisons can only be equality comparisons. As such, signed 4205 // and unsigned opcodes are the same. 4206 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4207 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4208 } 4209 4210 if (E->getOpcode() == BO_EQ) { 4211 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4212 } else { 4213 assert(E->getOpcode() == BO_NE && 4214 "Complex comparison other than == or != ?"); 4215 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4216 } 4217 } 4218 4219 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4220 E->getExprLoc()); 4221 } 4222 4223 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4224 bool Ignore = TestAndClearIgnoreResultAssign(); 4225 4226 Value *RHS; 4227 LValue LHS; 4228 4229 switch (E->getLHS()->getType().getObjCLifetime()) { 4230 case Qualifiers::OCL_Strong: 4231 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4232 break; 4233 4234 case Qualifiers::OCL_Autoreleasing: 4235 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4236 break; 4237 4238 case Qualifiers::OCL_ExplicitNone: 4239 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4240 break; 4241 4242 case Qualifiers::OCL_Weak: 4243 RHS = Visit(E->getRHS()); 4244 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4245 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4246 break; 4247 4248 case Qualifiers::OCL_None: 4249 // __block variables need to have the rhs evaluated first, plus 4250 // this should improve codegen just a little. 4251 RHS = Visit(E->getRHS()); 4252 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4253 4254 // Store the value into the LHS. Bit-fields are handled specially 4255 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4256 // 'An assignment expression has the value of the left operand after 4257 // the assignment...'. 4258 if (LHS.isBitField()) { 4259 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4260 } else { 4261 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4262 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4263 } 4264 } 4265 4266 // If the result is clearly ignored, return now. 4267 if (Ignore) 4268 return nullptr; 4269 4270 // The result of an assignment in C is the assigned r-value. 4271 if (!CGF.getLangOpts().CPlusPlus) 4272 return RHS; 4273 4274 // If the lvalue is non-volatile, return the computed value of the assignment. 4275 if (!LHS.isVolatileQualified()) 4276 return RHS; 4277 4278 // Otherwise, reload the value. 4279 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4280 } 4281 4282 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4283 // Perform vector logical and on comparisons with zero vectors. 4284 if (E->getType()->isVectorType()) { 4285 CGF.incrementProfileCounter(E); 4286 4287 Value *LHS = Visit(E->getLHS()); 4288 Value *RHS = Visit(E->getRHS()); 4289 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4290 if (LHS->getType()->isFPOrFPVectorTy()) { 4291 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4292 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4293 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4294 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4295 } else { 4296 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4297 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4298 } 4299 Value *And = Builder.CreateAnd(LHS, RHS); 4300 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4301 } 4302 4303 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4304 llvm::Type *ResTy = ConvertType(E->getType()); 4305 4306 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4307 // If we have 1 && X, just emit X without inserting the control flow. 4308 bool LHSCondVal; 4309 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4310 if (LHSCondVal) { // If we have 1 && X, just emit X. 4311 CGF.incrementProfileCounter(E); 4312 4313 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4314 4315 // If we're generating for profiling or coverage, generate a branch to a 4316 // block that increments the RHS counter needed to track branch condition 4317 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4318 // "FalseBlock" after the increment is done. 4319 if (InstrumentRegions && 4320 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4321 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end"); 4322 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4323 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock); 4324 CGF.EmitBlock(RHSBlockCnt); 4325 CGF.incrementProfileCounter(E->getRHS()); 4326 CGF.EmitBranch(FBlock); 4327 CGF.EmitBlock(FBlock); 4328 } 4329 4330 // ZExt result to int or bool. 4331 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4332 } 4333 4334 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4335 if (!CGF.ContainsLabel(E->getRHS())) 4336 return llvm::Constant::getNullValue(ResTy); 4337 } 4338 4339 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4340 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4341 4342 CodeGenFunction::ConditionalEvaluation eval(CGF); 4343 4344 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4345 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4346 CGF.getProfileCount(E->getRHS())); 4347 4348 // Any edges into the ContBlock are now from an (indeterminate number of) 4349 // edges from this first condition. All of these values will be false. Start 4350 // setting up the PHI node in the Cont Block for this. 4351 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4352 "", ContBlock); 4353 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4354 PI != PE; ++PI) 4355 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4356 4357 eval.begin(CGF); 4358 CGF.EmitBlock(RHSBlock); 4359 CGF.incrementProfileCounter(E); 4360 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4361 eval.end(CGF); 4362 4363 // Reaquire the RHS block, as there may be subblocks inserted. 4364 RHSBlock = Builder.GetInsertBlock(); 4365 4366 // If we're generating for profiling or coverage, generate a branch on the 4367 // RHS to a block that increments the RHS true counter needed to track branch 4368 // condition coverage. 4369 if (InstrumentRegions && 4370 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4371 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4372 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock); 4373 CGF.EmitBlock(RHSBlockCnt); 4374 CGF.incrementProfileCounter(E->getRHS()); 4375 CGF.EmitBranch(ContBlock); 4376 PN->addIncoming(RHSCond, RHSBlockCnt); 4377 } 4378 4379 // Emit an unconditional branch from this block to ContBlock. 4380 { 4381 // There is no need to emit line number for unconditional branch. 4382 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4383 CGF.EmitBlock(ContBlock); 4384 } 4385 // Insert an entry into the phi node for the edge with the value of RHSCond. 4386 PN->addIncoming(RHSCond, RHSBlock); 4387 4388 // Artificial location to preserve the scope information 4389 { 4390 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4391 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4392 } 4393 4394 // ZExt result to int. 4395 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4396 } 4397 4398 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4399 // Perform vector logical or on comparisons with zero vectors. 4400 if (E->getType()->isVectorType()) { 4401 CGF.incrementProfileCounter(E); 4402 4403 Value *LHS = Visit(E->getLHS()); 4404 Value *RHS = Visit(E->getRHS()); 4405 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4406 if (LHS->getType()->isFPOrFPVectorTy()) { 4407 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4408 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4409 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4410 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4411 } else { 4412 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4413 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4414 } 4415 Value *Or = Builder.CreateOr(LHS, RHS); 4416 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4417 } 4418 4419 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4420 llvm::Type *ResTy = ConvertType(E->getType()); 4421 4422 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4423 // If we have 0 || X, just emit X without inserting the control flow. 4424 bool LHSCondVal; 4425 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4426 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4427 CGF.incrementProfileCounter(E); 4428 4429 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4430 4431 // If we're generating for profiling or coverage, generate a branch to a 4432 // block that increments the RHS counter need to track branch condition 4433 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4434 // "FalseBlock" after the increment is done. 4435 if (InstrumentRegions && 4436 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4437 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end"); 4438 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4439 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt); 4440 CGF.EmitBlock(RHSBlockCnt); 4441 CGF.incrementProfileCounter(E->getRHS()); 4442 CGF.EmitBranch(FBlock); 4443 CGF.EmitBlock(FBlock); 4444 } 4445 4446 // ZExt result to int or bool. 4447 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4448 } 4449 4450 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4451 if (!CGF.ContainsLabel(E->getRHS())) 4452 return llvm::ConstantInt::get(ResTy, 1); 4453 } 4454 4455 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4456 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4457 4458 CodeGenFunction::ConditionalEvaluation eval(CGF); 4459 4460 // Branch on the LHS first. If it is true, go to the success (cont) block. 4461 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4462 CGF.getCurrentProfileCount() - 4463 CGF.getProfileCount(E->getRHS())); 4464 4465 // Any edges into the ContBlock are now from an (indeterminate number of) 4466 // edges from this first condition. All of these values will be true. Start 4467 // setting up the PHI node in the Cont Block for this. 4468 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4469 "", ContBlock); 4470 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4471 PI != PE; ++PI) 4472 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4473 4474 eval.begin(CGF); 4475 4476 // Emit the RHS condition as a bool value. 4477 CGF.EmitBlock(RHSBlock); 4478 CGF.incrementProfileCounter(E); 4479 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4480 4481 eval.end(CGF); 4482 4483 // Reaquire the RHS block, as there may be subblocks inserted. 4484 RHSBlock = Builder.GetInsertBlock(); 4485 4486 // If we're generating for profiling or coverage, generate a branch on the 4487 // RHS to a block that increments the RHS true counter needed to track branch 4488 // condition coverage. 4489 if (InstrumentRegions && 4490 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4491 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4492 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt); 4493 CGF.EmitBlock(RHSBlockCnt); 4494 CGF.incrementProfileCounter(E->getRHS()); 4495 CGF.EmitBranch(ContBlock); 4496 PN->addIncoming(RHSCond, RHSBlockCnt); 4497 } 4498 4499 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4500 // into the phi node for the edge with the value of RHSCond. 4501 CGF.EmitBlock(ContBlock); 4502 PN->addIncoming(RHSCond, RHSBlock); 4503 4504 // ZExt result to int. 4505 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4506 } 4507 4508 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4509 CGF.EmitIgnoredExpr(E->getLHS()); 4510 CGF.EnsureInsertPoint(); 4511 return Visit(E->getRHS()); 4512 } 4513 4514 //===----------------------------------------------------------------------===// 4515 // Other Operators 4516 //===----------------------------------------------------------------------===// 4517 4518 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4519 /// expression is cheap enough and side-effect-free enough to evaluate 4520 /// unconditionally instead of conditionally. This is used to convert control 4521 /// flow into selects in some cases. 4522 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4523 CodeGenFunction &CGF) { 4524 // Anything that is an integer or floating point constant is fine. 4525 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4526 4527 // Even non-volatile automatic variables can't be evaluated unconditionally. 4528 // Referencing a thread_local may cause non-trivial initialization work to 4529 // occur. If we're inside a lambda and one of the variables is from the scope 4530 // outside the lambda, that function may have returned already. Reading its 4531 // locals is a bad idea. Also, these reads may introduce races there didn't 4532 // exist in the source-level program. 4533 } 4534 4535 4536 Value *ScalarExprEmitter:: 4537 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4538 TestAndClearIgnoreResultAssign(); 4539 4540 // Bind the common expression if necessary. 4541 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4542 4543 Expr *condExpr = E->getCond(); 4544 Expr *lhsExpr = E->getTrueExpr(); 4545 Expr *rhsExpr = E->getFalseExpr(); 4546 4547 // If the condition constant folds and can be elided, try to avoid emitting 4548 // the condition and the dead arm. 4549 bool CondExprBool; 4550 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4551 Expr *live = lhsExpr, *dead = rhsExpr; 4552 if (!CondExprBool) std::swap(live, dead); 4553 4554 // If the dead side doesn't have labels we need, just emit the Live part. 4555 if (!CGF.ContainsLabel(dead)) { 4556 if (CondExprBool) 4557 CGF.incrementProfileCounter(E); 4558 Value *Result = Visit(live); 4559 4560 // If the live part is a throw expression, it acts like it has a void 4561 // type, so evaluating it returns a null Value*. However, a conditional 4562 // with non-void type must return a non-null Value*. 4563 if (!Result && !E->getType()->isVoidType()) 4564 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4565 4566 return Result; 4567 } 4568 } 4569 4570 // OpenCL: If the condition is a vector, we can treat this condition like 4571 // the select function. 4572 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4573 condExpr->getType()->isExtVectorType()) { 4574 CGF.incrementProfileCounter(E); 4575 4576 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4577 llvm::Value *LHS = Visit(lhsExpr); 4578 llvm::Value *RHS = Visit(rhsExpr); 4579 4580 llvm::Type *condType = ConvertType(condExpr->getType()); 4581 auto *vecTy = cast<llvm::FixedVectorType>(condType); 4582 4583 unsigned numElem = vecTy->getNumElements(); 4584 llvm::Type *elemType = vecTy->getElementType(); 4585 4586 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4587 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4588 llvm::Value *tmp = Builder.CreateSExt( 4589 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4590 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4591 4592 // Cast float to int to perform ANDs if necessary. 4593 llvm::Value *RHSTmp = RHS; 4594 llvm::Value *LHSTmp = LHS; 4595 bool wasCast = false; 4596 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4597 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4598 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4599 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4600 wasCast = true; 4601 } 4602 4603 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4604 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4605 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4606 if (wasCast) 4607 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4608 4609 return tmp5; 4610 } 4611 4612 if (condExpr->getType()->isVectorType()) { 4613 CGF.incrementProfileCounter(E); 4614 4615 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4616 llvm::Value *LHS = Visit(lhsExpr); 4617 llvm::Value *RHS = Visit(rhsExpr); 4618 4619 llvm::Type *CondType = ConvertType(condExpr->getType()); 4620 auto *VecTy = cast<llvm::VectorType>(CondType); 4621 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4622 4623 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4624 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4625 } 4626 4627 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4628 // select instead of as control flow. We can only do this if it is cheap and 4629 // safe to evaluate the LHS and RHS unconditionally. 4630 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4631 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4632 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4633 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4634 4635 CGF.incrementProfileCounter(E, StepV); 4636 4637 llvm::Value *LHS = Visit(lhsExpr); 4638 llvm::Value *RHS = Visit(rhsExpr); 4639 if (!LHS) { 4640 // If the conditional has void type, make sure we return a null Value*. 4641 assert(!RHS && "LHS and RHS types must match"); 4642 return nullptr; 4643 } 4644 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4645 } 4646 4647 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4648 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4649 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4650 4651 CodeGenFunction::ConditionalEvaluation eval(CGF); 4652 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4653 CGF.getProfileCount(lhsExpr)); 4654 4655 CGF.EmitBlock(LHSBlock); 4656 CGF.incrementProfileCounter(E); 4657 eval.begin(CGF); 4658 Value *LHS = Visit(lhsExpr); 4659 eval.end(CGF); 4660 4661 LHSBlock = Builder.GetInsertBlock(); 4662 Builder.CreateBr(ContBlock); 4663 4664 CGF.EmitBlock(RHSBlock); 4665 eval.begin(CGF); 4666 Value *RHS = Visit(rhsExpr); 4667 eval.end(CGF); 4668 4669 RHSBlock = Builder.GetInsertBlock(); 4670 CGF.EmitBlock(ContBlock); 4671 4672 // If the LHS or RHS is a throw expression, it will be legitimately null. 4673 if (!LHS) 4674 return RHS; 4675 if (!RHS) 4676 return LHS; 4677 4678 // Create a PHI node for the real part. 4679 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4680 PN->addIncoming(LHS, LHSBlock); 4681 PN->addIncoming(RHS, RHSBlock); 4682 return PN; 4683 } 4684 4685 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4686 return Visit(E->getChosenSubExpr()); 4687 } 4688 4689 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4690 QualType Ty = VE->getType(); 4691 4692 if (Ty->isVariablyModifiedType()) 4693 CGF.EmitVariablyModifiedType(Ty); 4694 4695 Address ArgValue = Address::invalid(); 4696 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4697 4698 llvm::Type *ArgTy = ConvertType(VE->getType()); 4699 4700 // If EmitVAArg fails, emit an error. 4701 if (!ArgPtr.isValid()) { 4702 CGF.ErrorUnsupported(VE, "va_arg expression"); 4703 return llvm::UndefValue::get(ArgTy); 4704 } 4705 4706 // FIXME Volatility. 4707 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4708 4709 // If EmitVAArg promoted the type, we must truncate it. 4710 if (ArgTy != Val->getType()) { 4711 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4712 Val = Builder.CreateIntToPtr(Val, ArgTy); 4713 else 4714 Val = Builder.CreateTrunc(Val, ArgTy); 4715 } 4716 4717 return Val; 4718 } 4719 4720 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4721 return CGF.EmitBlockLiteral(block); 4722 } 4723 4724 // Convert a vec3 to vec4, or vice versa. 4725 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4726 Value *Src, unsigned NumElementsDst) { 4727 static constexpr int Mask[] = {0, 1, 2, -1}; 4728 return Builder.CreateShuffleVector(Src, 4729 llvm::makeArrayRef(Mask, NumElementsDst)); 4730 } 4731 4732 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4733 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4734 // but could be scalar or vectors of different lengths, and either can be 4735 // pointer. 4736 // There are 4 cases: 4737 // 1. non-pointer -> non-pointer : needs 1 bitcast 4738 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4739 // 3. pointer -> non-pointer 4740 // a) pointer -> intptr_t : needs 1 ptrtoint 4741 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4742 // 4. non-pointer -> pointer 4743 // a) intptr_t -> pointer : needs 1 inttoptr 4744 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4745 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4746 // allow casting directly between pointer types and non-integer non-pointer 4747 // types. 4748 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4749 const llvm::DataLayout &DL, 4750 Value *Src, llvm::Type *DstTy, 4751 StringRef Name = "") { 4752 auto SrcTy = Src->getType(); 4753 4754 // Case 1. 4755 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4756 return Builder.CreateBitCast(Src, DstTy, Name); 4757 4758 // Case 2. 4759 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4760 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4761 4762 // Case 3. 4763 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4764 // Case 3b. 4765 if (!DstTy->isIntegerTy()) 4766 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4767 // Cases 3a and 3b. 4768 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4769 } 4770 4771 // Case 4b. 4772 if (!SrcTy->isIntegerTy()) 4773 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4774 // Cases 4a and 4b. 4775 return Builder.CreateIntToPtr(Src, DstTy, Name); 4776 } 4777 4778 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4779 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4780 llvm::Type *DstTy = ConvertType(E->getType()); 4781 4782 llvm::Type *SrcTy = Src->getType(); 4783 unsigned NumElementsSrc = 4784 isa<llvm::VectorType>(SrcTy) 4785 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() 4786 : 0; 4787 unsigned NumElementsDst = 4788 isa<llvm::VectorType>(DstTy) 4789 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() 4790 : 0; 4791 4792 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4793 // vector to get a vec4, then a bitcast if the target type is different. 4794 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4795 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4796 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4797 DstTy); 4798 4799 Src->setName("astype"); 4800 return Src; 4801 } 4802 4803 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4804 // to vec4 if the original type is not vec4, then a shuffle vector to 4805 // get a vec3. 4806 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4807 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4808 auto *Vec4Ty = llvm::FixedVectorType::get( 4809 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4810 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4811 Vec4Ty); 4812 } 4813 4814 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4815 Src->setName("astype"); 4816 return Src; 4817 } 4818 4819 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4820 Src, DstTy, "astype"); 4821 } 4822 4823 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4824 return CGF.EmitAtomicExpr(E).getScalarVal(); 4825 } 4826 4827 //===----------------------------------------------------------------------===// 4828 // Entry Point into this File 4829 //===----------------------------------------------------------------------===// 4830 4831 /// Emit the computation of the specified expression of scalar type, ignoring 4832 /// the result. 4833 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4834 assert(E && hasScalarEvaluationKind(E->getType()) && 4835 "Invalid scalar expression to emit"); 4836 4837 return ScalarExprEmitter(*this, IgnoreResultAssign) 4838 .Visit(const_cast<Expr *>(E)); 4839 } 4840 4841 /// Emit a conversion from the specified type to the specified destination type, 4842 /// both of which are LLVM scalar types. 4843 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4844 QualType DstTy, 4845 SourceLocation Loc) { 4846 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4847 "Invalid scalar expression to emit"); 4848 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4849 } 4850 4851 /// Emit a conversion from the specified complex type to the specified 4852 /// destination type, where the destination type is an LLVM scalar type. 4853 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4854 QualType SrcTy, 4855 QualType DstTy, 4856 SourceLocation Loc) { 4857 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4858 "Invalid complex -> scalar conversion"); 4859 return ScalarExprEmitter(*this) 4860 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4861 } 4862 4863 4864 llvm::Value *CodeGenFunction:: 4865 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4866 bool isInc, bool isPre) { 4867 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4868 } 4869 4870 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4871 // object->isa or (*object).isa 4872 // Generate code as for: *(Class*)object 4873 4874 Expr *BaseExpr = E->getBase(); 4875 Address Addr = Address::invalid(); 4876 if (BaseExpr->isPRValue()) { 4877 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4878 } else { 4879 Addr = EmitLValue(BaseExpr).getAddress(*this); 4880 } 4881 4882 // Cast the address to Class*. 4883 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4884 return MakeAddrLValue(Addr, E->getType()); 4885 } 4886 4887 4888 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4889 const CompoundAssignOperator *E) { 4890 ScalarExprEmitter Scalar(*this); 4891 Value *Result = nullptr; 4892 switch (E->getOpcode()) { 4893 #define COMPOUND_OP(Op) \ 4894 case BO_##Op##Assign: \ 4895 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4896 Result) 4897 COMPOUND_OP(Mul); 4898 COMPOUND_OP(Div); 4899 COMPOUND_OP(Rem); 4900 COMPOUND_OP(Add); 4901 COMPOUND_OP(Sub); 4902 COMPOUND_OP(Shl); 4903 COMPOUND_OP(Shr); 4904 COMPOUND_OP(And); 4905 COMPOUND_OP(Xor); 4906 COMPOUND_OP(Or); 4907 #undef COMPOUND_OP 4908 4909 case BO_PtrMemD: 4910 case BO_PtrMemI: 4911 case BO_Mul: 4912 case BO_Div: 4913 case BO_Rem: 4914 case BO_Add: 4915 case BO_Sub: 4916 case BO_Shl: 4917 case BO_Shr: 4918 case BO_LT: 4919 case BO_GT: 4920 case BO_LE: 4921 case BO_GE: 4922 case BO_EQ: 4923 case BO_NE: 4924 case BO_Cmp: 4925 case BO_And: 4926 case BO_Xor: 4927 case BO_Or: 4928 case BO_LAnd: 4929 case BO_LOr: 4930 case BO_Assign: 4931 case BO_Comma: 4932 llvm_unreachable("Not valid compound assignment operators"); 4933 } 4934 4935 llvm_unreachable("Unhandled compound assignment operator"); 4936 } 4937 4938 struct GEPOffsetAndOverflow { 4939 // The total (signed) byte offset for the GEP. 4940 llvm::Value *TotalOffset; 4941 // The offset overflow flag - true if the total offset overflows. 4942 llvm::Value *OffsetOverflows; 4943 }; 4944 4945 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4946 /// and compute the total offset it applies from it's base pointer BasePtr. 4947 /// Returns offset in bytes and a boolean flag whether an overflow happened 4948 /// during evaluation. 4949 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4950 llvm::LLVMContext &VMContext, 4951 CodeGenModule &CGM, 4952 CGBuilderTy &Builder) { 4953 const auto &DL = CGM.getDataLayout(); 4954 4955 // The total (signed) byte offset for the GEP. 4956 llvm::Value *TotalOffset = nullptr; 4957 4958 // Was the GEP already reduced to a constant? 4959 if (isa<llvm::Constant>(GEPVal)) { 4960 // Compute the offset by casting both pointers to integers and subtracting: 4961 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4962 Value *BasePtr_int = 4963 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4964 Value *GEPVal_int = 4965 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4966 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4967 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4968 } 4969 4970 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4971 assert(GEP->getPointerOperand() == BasePtr && 4972 "BasePtr must be the base of the GEP."); 4973 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4974 4975 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4976 4977 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4978 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4979 auto *SAddIntrinsic = 4980 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4981 auto *SMulIntrinsic = 4982 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4983 4984 // The offset overflow flag - true if the total offset overflows. 4985 llvm::Value *OffsetOverflows = Builder.getFalse(); 4986 4987 /// Return the result of the given binary operation. 4988 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4989 llvm::Value *RHS) -> llvm::Value * { 4990 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4991 4992 // If the operands are constants, return a constant result. 4993 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4994 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4995 llvm::APInt N; 4996 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4997 /*Signed=*/true, N); 4998 if (HasOverflow) 4999 OffsetOverflows = Builder.getTrue(); 5000 return llvm::ConstantInt::get(VMContext, N); 5001 } 5002 } 5003 5004 // Otherwise, compute the result with checked arithmetic. 5005 auto *ResultAndOverflow = Builder.CreateCall( 5006 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 5007 OffsetOverflows = Builder.CreateOr( 5008 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 5009 return Builder.CreateExtractValue(ResultAndOverflow, 0); 5010 }; 5011 5012 // Determine the total byte offset by looking at each GEP operand. 5013 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 5014 GTI != GTE; ++GTI) { 5015 llvm::Value *LocalOffset; 5016 auto *Index = GTI.getOperand(); 5017 // Compute the local offset contributed by this indexing step: 5018 if (auto *STy = GTI.getStructTypeOrNull()) { 5019 // For struct indexing, the local offset is the byte position of the 5020 // specified field. 5021 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 5022 LocalOffset = llvm::ConstantInt::get( 5023 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 5024 } else { 5025 // Otherwise this is array-like indexing. The local offset is the index 5026 // multiplied by the element size. 5027 auto *ElementSize = llvm::ConstantInt::get( 5028 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 5029 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 5030 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 5031 } 5032 5033 // If this is the first offset, set it as the total offset. Otherwise, add 5034 // the local offset into the running total. 5035 if (!TotalOffset || TotalOffset == Zero) 5036 TotalOffset = LocalOffset; 5037 else 5038 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 5039 } 5040 5041 return {TotalOffset, OffsetOverflows}; 5042 } 5043 5044 Value * 5045 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 5046 bool SignedIndices, bool IsSubtraction, 5047 SourceLocation Loc, const Twine &Name) { 5048 llvm::Type *PtrTy = Ptr->getType(); 5049 Value *GEPVal = Builder.CreateInBoundsGEP( 5050 PtrTy->getPointerElementType(), Ptr, IdxList, Name); 5051 5052 // If the pointer overflow sanitizer isn't enabled, do nothing. 5053 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 5054 return GEPVal; 5055 5056 // Perform nullptr-and-offset check unless the nullptr is defined. 5057 bool PerformNullCheck = !NullPointerIsDefined( 5058 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 5059 // Check for overflows unless the GEP got constant-folded, 5060 // and only in the default address space 5061 bool PerformOverflowCheck = 5062 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 5063 5064 if (!(PerformNullCheck || PerformOverflowCheck)) 5065 return GEPVal; 5066 5067 const auto &DL = CGM.getDataLayout(); 5068 5069 SanitizerScope SanScope(this); 5070 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 5071 5072 GEPOffsetAndOverflow EvaluatedGEP = 5073 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 5074 5075 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 5076 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 5077 "If the offset got constant-folded, we don't expect that there was an " 5078 "overflow."); 5079 5080 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 5081 5082 // Common case: if the total offset is zero, and we are using C++ semantics, 5083 // where nullptr+0 is defined, don't emit a check. 5084 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 5085 return GEPVal; 5086 5087 // Now that we've computed the total offset, add it to the base pointer (with 5088 // wrapping semantics). 5089 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 5090 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 5091 5092 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 5093 5094 if (PerformNullCheck) { 5095 // In C++, if the base pointer evaluates to a null pointer value, 5096 // the only valid pointer this inbounds GEP can produce is also 5097 // a null pointer, so the offset must also evaluate to zero. 5098 // Likewise, if we have non-zero base pointer, we can not get null pointer 5099 // as a result, so the offset can not be -intptr_t(BasePtr). 5100 // In other words, both pointers are either null, or both are non-null, 5101 // or the behaviour is undefined. 5102 // 5103 // C, however, is more strict in this regard, and gives more 5104 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 5105 // So both the input to the 'gep inbounds' AND the output must not be null. 5106 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 5107 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 5108 auto *Valid = 5109 CGM.getLangOpts().CPlusPlus 5110 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 5111 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 5112 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 5113 } 5114 5115 if (PerformOverflowCheck) { 5116 // The GEP is valid if: 5117 // 1) The total offset doesn't overflow, and 5118 // 2) The sign of the difference between the computed address and the base 5119 // pointer matches the sign of the total offset. 5120 llvm::Value *ValidGEP; 5121 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 5122 if (SignedIndices) { 5123 // GEP is computed as `unsigned base + signed offset`, therefore: 5124 // * If offset was positive, then the computed pointer can not be 5125 // [unsigned] less than the base pointer, unless it overflowed. 5126 // * If offset was negative, then the computed pointer can not be 5127 // [unsigned] greater than the bas pointere, unless it overflowed. 5128 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5129 auto *PosOrZeroOffset = 5130 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 5131 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 5132 ValidGEP = 5133 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 5134 } else if (!IsSubtraction) { 5135 // GEP is computed as `unsigned base + unsigned offset`, therefore the 5136 // computed pointer can not be [unsigned] less than base pointer, 5137 // unless there was an overflow. 5138 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 5139 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5140 } else { 5141 // GEP is computed as `unsigned base - unsigned offset`, therefore the 5142 // computed pointer can not be [unsigned] greater than base pointer, 5143 // unless there was an overflow. 5144 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 5145 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 5146 } 5147 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 5148 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 5149 } 5150 5151 assert(!Checks.empty() && "Should have produced some checks."); 5152 5153 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 5154 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 5155 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 5156 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 5157 5158 return GEPVal; 5159 } 5160